

Malicious Cryptography

Exposing Cryptovirology

Adam Young

Moti Yung

Wiley Publishing, Inc.

Malicious Cryptography

Malicious Cryptography

Exposing Cryptovirology

Adam Young

Moti Yung

Wiley Publishing, Inc.

Executive Publisher: Robert Ipsen
Executive Editor: Carol A. Long
Developmental Editor: Eileen Bien Calabro
Editorial Manager: Kathryn A. Malm
Production Manager: Fred Bernardi

This book is printed on acid-free paper.

Copyright c© 2004 by Adam Young and Moti Yung. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
(317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used
their best efforts in preparing this book, they make no representations or warranties
with respect to the accuracy or completeness of the contents of this book and specif-
ically disclaim any implied warranties of merchantability or fitness for a particular
purpose. No warranty may be created or extended by sales representatives or written
sales materials. The advice and strategies contained herein may not be suitable for
your situation. You should consult with a professional where appropriate. Neither
the publisher nor author shall be liable for any loss of profit or any other commer-
cial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States
at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks
or registered trademarks of Wiley Publishing, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

ISBN: 0-7645-4975-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Dedicated to Elisa (A. Y.)
and to Maya (M. Y.)

Contents

Foreword xiii

Acknowledgments xix

Introduction xxi

1 Through Hacker’s Eyes 1

2 Cryptovirology 33

3 Tools for Security and Insecurity 51
3.1 Sources of Entropy . 53
3.2 Entropy Extraction via Hashing 54
3.3 Unbiasing a Biased Coin 57

3.3.1 Von Neumann’s Coin Flipping Algorithm 57
3.3.2 Iterating Neumann’s Algorithm 59
3.3.3 Heuristic Bias Matching 60

3.4 Combining Weak Sources of Entropy 62
3.5 Pseudorandom Number Generators 66

3.5.1 Heuristic Pseudorandom Number Generation 66
3.5.2 PRNGs Based on Reduction Arguments 67

3.6 Uniform Sampling . 68
3.7 Random Permutation Generation 71

3.7.1 Shuffling Cards by Repeated Sampling 71
3.7.2 Shuffling Cards Using Trotter-Johnson 73

3.8 Sound Approach to Random Number Generation and Use 76
3.9 RNGs Are the Beating Heart of System Security 77
3.10 Cryptovirology Benefits from General Advances 78

3.10.1 Strong Crypto Yields Strong Cryptoviruses 78
3.10.2 Mix Networks and Cryptovirus Extortion 80

vii

viii Contents

3.11 Anonymizing Program Propagation 85

4 The Two Faces of Anonymity 89
4.1 Anonymity in a Digital Age 89

4.1.1 From Free Elections to the Unabomber 90
4.1.2 Electronic Money and Anonymous Payments 90
4.1.3 Anonymous Assassination Lotteries 92
4.1.4 Kidnapping and Perfect Crimes 93
4.1.5 Conducting Criminal Operations with Mixes 94

4.2 Deniable Password Snatching 97
4.2.1 Password Snatching and Security by Obscurity . . . 97
4.2.2 Solving the Problem Using Cryptovirology 98
4.2.3 Zero-Knowledge Proofs to the Rescue 100
4.2.4 Improving the Attack Using ElGamal 101

5 Cryptocounters 103
5.1 Overview of Cryptocounters 104
5.2 Implementing Cryptocounters 105

5.2.1 A Simple Counter Based on ElGamal 105
5.2.2 Drawback to the ElGamal Solution 106
5.2.3 Cryptocounter Based on Squaring 107
5.2.4 The Paillier Encryption Algorithm 108
5.2.5 A Simple Counter Based on Paillier 111

5.3 Other Approaches to Cryptocounters 111

6 Computationally Secure Information Stealing 113
6.1 Using Viruses to Steal Information 114
6.2 Private Information Retrieval 115

6.2.1 PIR Based on the Phi-Hiding Problem 117
6.2.2 Security of the Phi-Hiding PIR 120
6.2.3 Application of the Phi-Hiding Technique 122

6.3 A Variant of the Phi-Hiding Scheme 122
6.4 Tagged Private Information Retrieval 126
6.5 Secure Information Stealing Malware 131
6.6 Deniable Password Snatching Based on Phi-Hiding 132

6.6.1 Improved Password-Snatching Algorithm 133
6.6.2 Questionable Encryptions 134
6.6.3 Deniable Encryptions 139

6.7 Malware Loaders . 140
6.8 Cryptographic Computing 141

Contents ix

7 Non-Zero Sum Games and Survivable Malware 147
7.1 Survivable Malware . 148
7.2 Elements of Game Theory 150
7.3 Attacking a Brokerage Firm 151

7.3.1 Assumptions for the Attack 152
7.3.2 The Distributed Cryptoviral Attack 153
7.3.3 Security of the Attack 158
7.3.4 Utility of the Attack 159

7.4 Other Two-Player Game Attacks 161
7.4.1 Key Search via Facehuggers 161
7.4.2 Catalyzing Conflict Among Hosts 167

7.5 Future Possibilities . 167

8 Coping with Malicious Software 171
8.1 Undecidability of Virus Detection 171
8.2 Virus Identification and Obfuscation 172

8.2.1 Virus String Matching 173
8.2.2 Polymorphic Viruses 176

8.3 Heuristic Virus Detection 182
8.3.1 Detecting Code Abnormalities 182
8.3.2 Detecting Abnormal Program Behavior 183
8.3.3 Detecting Cryptographic Code 191

8.4 Change Detection . 197
8.4.1 Integrity Self-Checks 197
8.4.2 Program Inoculation 198
8.4.3 Kernel Based Signature Verification 199

9 The Nature of Trojan Horses 201
9.1 Text Editor Trojan Horse 202
9.2 Salami Slicing Attacks . 202
9.3 Thompson’s Password Snatcher 203
9.4 The Subtle Nature of Trojan Horses 206

9.4.1 Bugs May In Fact Be Trojans 208
9.4.2 RNG Biasing Trojan Horse 208

10 Subliminal Channels 211
10.1 Brief History of Subliminal Channels 212
10.2 The Difference Between a Subliminal and a Covert Channel 214
10.3 The Prisoner’s Problem of Gustavus Simmons 215
10.4 Subliminal Channels New and Old 216

x Contents

10.4.1 The Legendre Channel of Gus Simmons 217
10.4.2 The Oracle Channel 220
10.4.3 Subliminal Card Marking 222
10.4.4 The Newton Channel 223
10.4.5 Subliminal Channel in Composites 224

10.5 The Impact of Subliminal Channels on Key Escrow 226

11 SETUP Attack on Factoring Based Key Generation 229
11.1 Honest Composite Key Generation 231
11.2 Weak Backdoor Attacks on Composite Key Generation . . 232

11.2.1 Using a Fixed Prime 233
11.2.2 Using a Pseudorandom Function 234
11.2.3 Using a Pseudorandom Generator 236

11.3 Probabilistic Bias Removal Method 239
11.4 Secretly Embedded Trapdoors 241
11.5 Key Generation SETUP Attack 244
11.6 Security of the SETUP Attack 249

11.6.1 Indistinguishability of Outputs 249
11.6.2 Confidentiality of Outputs 252

11.7 Detecting the Attack in Code Reviews 256
11.8 Countering the SETUP Attack 259
11.9 Thinking Outside the Box 261
11.10 The Isaac Newton Institute Lecture 262

12 SETUP Attacks on Discrete-Log Cryptosystems 265
12.1 The Discrete-Log SETUP Primitive 266
12.2 Diffie-Hellman SETUP Attack 268
12.3 Security of the Diffie-Hellman SETUP Attack 270

12.3.1 Indistinguishability of Outputs 270
12.3.2 Confidentiality of Outputs 271

12.4 Intuition Behind the Attack 275
12.5 Kleptogram Attack Methodology 276
12.6 PKCS SETUP Attacks . 277

12.6.1 ElGamal PKCS SETUP Attack 277
12.6.2 Cramer-Shoup PKCS SETUP Attack 279

12.7 SETUP Attacks on Digital Signature Algorithms 280
12.7.1 SETUP in the ElGamal Signature Algorithm 281
12.7.2 SETUP in the Pointcheval-Stern Algorithm 282
12.7.3 SETUP in DSA . 283

Contents xi

12.7.4 SETUP in the Schnorr Signature Algorithm 284
12.8 Rogue Use of DSA for Encryption 285
12.9 Other Work in Kleptography 286
12.10 Should You Trust Your Smart Card? 288

Appendix A: Computer Virus Basics 295
A.1 Origins of Malicious Software 295
A.2 Trojans, Viruses, and Worms: What Is the Difference? . . 297
A.3 A Simple DOS COM Infector 299
A.4 Viruses Don’t Have to Gain Control Before the Host . . . 303

Appendix B: Notation and Other Background Information 307
B.1 Notation Used Throughout the Book 307
B.2 Basic Facts from Number Theory and Algorithmics 309
B.3 Intractability: Malware’s Biggest Ally 312

B.3.1 The Factoring Problem 313
B.3.2 The eth Roots Problem 314
B.3.3 The Composite Residuosity Problem 314
B.3.4 The Decision Composite Residuosity Problem . . . 315
B.3.5 The Quadratic Residuosity Problem 315
B.3.6 The Phi-Hiding Problem 315
B.3.7 The Phi-Sampling Problem 317
B.3.8 The Discrete Logarithm Problem 318
B.3.9 The Computational Diffie-Hellman Problem 318
B.3.10 The Decision Diffie-Hellman Problem 318

B.4 Random Oracles and Functions 319

Appendix C: Public Key Cryptography in a Nutshell 321
C.1 Overview of Cryptography 321

C.1.1 Classical Cryptography 322
C.1.2 The Diffie-Hellman Key Exchange 324
C.1.3 Public Key Cryptography 325
C.1.4 Attacks on Cryptosystems 326
C.1.5 The Rabin Encryption Algorithm 330
C.1.6 The Rabin Signature Algorithm 331
C.1.7 The RSA Encryption Algorithm 332
C.1.8 The RSA Signature Algorithm 334
C.1.9 The Goldwasser-Micali Algorithm 335
C.1.10 Public Key Infrastructures 336

C.2 Discrete-Log Based Cryptosystems 337

xii Contents

C.2.1 The ElGamal Encryption Algorithm 338
C.2.2 Security of ElGamal 338
C.2.3 The Cramer-Shoup Encryption Algorithm 340
C.2.4 The ElGamal Signature Algorithm 342
C.2.5 The Pointcheval-Stern Signature Algorithm 343
C.2.6 The Schnorr Signature Algorithm 344
C.2.7 The Digital Signature Algorithm (DSA) 345

Glossary 347

References 357

Index 387

Foreword

Terms such as cryptovirology, malware, kleptogram, or kleptography may
be unfamiliar to the reader, but the basic concepts associated with them
certainly are familiar. Everyone knows—often from sad experience—about
viruses, Trojan horses, and worms and many have had a password “har-
vested” by a piece of software planted surreptitiously on their computer
while browsing the Net. The realization that a public key could be placed
in a virus so that part of its payload would be to perform a one-way op-
eration on the host computer that could only be undone using the private
key held by the virus’ author was the discovery from which Malicious
Cryptography sprang. Rather than describe these notions here, intriguing
as they are, I’ll only try to set the stage for the authors’ lucid description
of these and other related notions.

Superficially, information security, or information integrity, doesn’t ap-
pear to be much different from other functions concerned with preserving
the quality of information while in storage or during transmission. Er-
ror detecting and correcting codes, for example, are intended to ensure
that the information that a receiver receives is the same as that sent by
the transmitter. Authentication codes, or authentication in general, are
also intended to ensure that information can neither be modified nor sub-
stituted without detection, thus allowing a receiver to be confident that
what he receives is what was sent and that it came from the purported
transmitter. These sound remarkably alike in function, but they are funda-
mentally different in ways that are at the heart of Malicious Cryptography.
The greatest service this Foreword can render is to give the reader a crisp,
clear understanding of the nature of this difference in order to set the stage
for the book that follows.

Most system functions can be quantitatively specified and tested to
verify that the specifications are met. If a piece of electronic equipment
is supposed to operate within a specified range of a parameter (such as
voltage, acceleration, temperature, shock, vibration, and so forth), then

xiii

xiv Foreword

it is a straightforward matter to devise tests to verify that it does. Closer
in spirit to information security and integrity than physical environmen-
tal specifications would be a specification of a communication system’s
immunity to noise or bit errors. One might specify the minimum data
bandwidth for a given signal to noise (SN) ratio or the allowable bit error
rate. Again it is a straightforward matter to devise tests that verify the
data bandwidth or the bit error rate for a signal possessing the specified
signal to noise ratio. Error detecting and correcting codes may be tailored
to the expected statistical nature of the noise, Fire codes for burst errors
or Grey codes for an angular position reading device, etc. But the veri-
fication that the system is meeting specifications remains straightforward
and quantitative.

Security is fundamentally different from any other system parameter,
however. One of the largest alarm and vault manufacturers in the U.S.
discovered this in a costly example a few years ago. Vaults and safes
are routinely certified for the time documents will survive undamaged in
a fire—itself specified by temperature and type (oil, structural, electri-
cal, etc.). They had developed a new composite material that was very
resistant to cutting, drilling, burning, etc. Extensive tests had been con-
ducted with cutting tools of all sorts including oxyhydrogen burning bars,
drilling with mechanical drills and hypervelocity air-abrasive drills, etc.
Based on these results, they guaranteed their safes and vaults made of
the new material would provide a specified minimum time for penetra-
tion. What they had overlooked was that linear cutting charges (shaped
charges) that were widely used in the oil industry for cutting oil well cas-
ings and in the demolition business for slicing building supports to bring
down buildings could be used to cut out a panel from the side of a safe
or vault in milliseconds instead of requiring hours. This long aside is very
germane to this Foreword. The safe and vault company had measured the
resistance of their product to the attacks they anticipated would be used
against them. The robbers used an entirely unexpected means to open the
vault—and the company paid dearly for their oversight. Malicious Cryp-
tography is almost entirely about doing things in completely unexpected
ways in information integrity protocols.

Going back to the example with which we started, the fundamental
difference between error detecting and correcting codes and authentica-
tion, both of which function to ensure the integrity of information, is that
the first is pitted against nature and the other against a human adversary.
Nature may be hostile, the signal to noise ratio may be large, the signal

Foreword xv

may drop out for extended periods of time, other signals may randomly
mask the desired signal, but nature is neither intelligent nor adaptive. A
human opponent is both. He may also be interactive, probing to gain
information to allow him to refine and adapt his attacks. As those of us in
the information security business like to say, there is no standard attacker
and no standard attack. This is in contrast with all other specifications
where standard environments, no matter how hostile or unpredictable, are
the norm.

What the authors of Malicious Cryptography have done very success-
fully is to capture the essence of how security can be subverted in this
non-standard environment. On several occasions, they refer to game the-
ory without actually invoking the formalism of game theory—emphasizing
instead the game-like setting in which security is the value of the ongoing
competition between a system designer and its attackers.

There have been many books on hacking, software subversion, network
security, etc., which consist mainly of descriptions of successful attacks—
some exceedingly clever and many very devious in their execution. These
are similar in style and feeling to Modern Chess Openings (MCO) that
every chess player knows, studies, and on which he depends. There are of
course many possible lines of play in chess, but the several hundred open-
ings that have stood the test of time and repeated tournament play make
up the MCO. Roughly the first twenty moves or so of these openings, with
promising variations, have been so thoroughly analyzed and understood
that it is rare indeed for an opening not in the MCO to be successful in
match play. A similar situation is true for the end game—not that the
endings are so cataloged and restricted, but rather that the game has sim-
plified to where almost a counting-like analysis reveals the outcome to a
knowledgeable player. Masters will resign a game as lost at a point where
a less experienced player may not even be able to see who has the advan-
tage. As most books on hacking recount one clever attack after another,
MCO recounts one opening after another with an ! or !! in the annotation
to flag a particularly brilliant move. I almost expect to find an exclama-
tion mark in the margin of most books on software subversion when the
deception on which a particular protocol failure turns is revealed.

The middle game in chess, though, must be guided by general principles
since the number of lines of play—the attack, counter attack—between
two masters is virtually unlimited. So it is with information security
protocols and cryptosystems. The possibilities are virtually unlimited so
general principles must guide both the system designer and the counter

xvi Foreword

designer; the attacker seeking to exploit hidden weaknesses in the design;
the designer seeking to prevent such attacks or failing that, to detect
them when they occur. Malicious Cryptography pioneers in motivating
and clearly enunciating some of these principles.

Cryptography, authentication, digital signatures, and indeed, virtually
every digital information security function depend for their security on
pieces of information known only to a select company of authorized in-
siders and unknown to outsiders. Following the usual convention in cryp-
tography we will refer to this privileged information as the key although
in many situations the only thing in common with the usual notion of a
cryptographic key is that it is secret from all but a designated select few.
It may well be that no individual knows the key but that a specified set of
them have the joint capability to either recover it (shared secret schemes)
or to jointly execute a function that in all probability no outsider or any
proper subset of them can do (shared capability schemes). It is almost al-
ways the case that this secret piece of information is supposed to be chosen
randomly—from a specified range of values and with a specified probabil-
ity distribution, generally the uniform distribution. The assumption is
that this insures that an unauthorized user will have no better chance of
discerning the secret key than the probability the same key will be drawn
in an independent drawing of a new value under the same conditions. It is
also generally assumed that only the person choosing the random number
knows it. In fact he may share it with someone else at the time it is drawn,
or they may have chosen the number in advance of the supposed drawing.
In the most extreme case it may be dictated by some other participant
and not chosen by the person supposed to be choosing it all. Every one of
these surreptitious variants has been the basis for serious subversions of
information integrity and security protocols. One of the central themes in
Malicious Cryptography is the mischief that is possible if these conditions
are not met; in other words, if the “random” value is not random in the
sense supposed.

Since security or integrity is directly measured by the probability the
secret key can be discovered (computed) by unauthorized cabals of at-
tackers, the information content of the key (roughly speaking, the size
of the random number) must be great enough that it is computationally
infeasible to simply try all possible values—known as a brute force key
space search. But this means that it is then computationally infeasible
for a monitor to tell whether the random values produced were actually
randomly chosen as supposed or not. This is at the heart of subliminal

Foreword xvii

channels, for example. The subliminal transmitter and receiver share in
secret information about the bias imposed on the selection of the session
keys which enables them to communicate covertly in the overt commu-
nications while it remains computationally infeasible (impossible?) for a
monitor to detect a bias in the session key selection process, and hence
impossible for him to detect either the presence or use of a subliminal
channel.

The dilemma is that if the key is large enough to be secure, it is also
large enough to make it impossible to detect a bias in the selection pro-
cess. It therefore becomes possible to hide information in the keys, to
communicate other keys subliminally, to make it computationally feasi-
ble for designated receivers to perform a key space search while a full
search remains computationally infeasible for outsiders to do, to subvert
information integrity protocols from within, etc. The list of possible de-
ceptions is virtually unlimited and the authors of Malicious Cryptography
have exploited many of these in innovative ways.

In information integrity protocols nothing can be taken for granted,
i.e., nothing can be assumed that cannot be enforced. If the protocol
calls for a number to be chosen from a specified range using a particular
probability distribution, then the assumption must be that it isn’t unless
the other parties to the protocol can force it to be in a secondary protocol.
Otherwise you must assume it could be chosen from a restricted range or
chosen using a different probability distribution, or that it was chosen
earlier and shared with persons assumed not to know it, or that it isn’t
being selected at random at all by the person supposed to be choosing it,
or that it is dictated to him by another party not even considered in the
protocol. Several of the subversions described in Malicious Cryptography
depend on this ability to undetectably hide information in keys. The point
germane to this Foreword, though, is that it is the general principle that
is vital for both the designer and the counter-designer to keep in mind.
There are interactive protocols to insure that the objectives of randomness
are met. Those protocols are not the subject of Malicious Cryptography,
but made all the more important because of the weaknesses exposed in it.

There are other examples, though, in which no means is known to en-
force the desired outcome. Several protocols call for a public modulus to
be the product of two secret primes chosen so as to make it computation-
ally infeasible to factor the modulus—usually only a function of the size
of the factors although in some protocols the factors must satisfy some
number theoretic side condition such as belonging to a particular residue

xviii Foreword

class, etc. It is possible to work a variety of mischiefs if a modulus that
is the product of more than two prime factors can be passed off as the
product of only two. In particular, a subliminal channel becomes possible
with the desirable feature that while the subliminal receiver can receive
subliminal messages sent by the transmitter he cannot falsely attribute a
forged message to the transmitter. It is only polynomially difficult to dis-
tinguish between primes and composite numbers. But so far as is known
it is just as hard to tell if a composite number has three or more factors as
it is to factor the number itself! In the absence of an interactive protocol
to ensure that a modulus has two and only two prime factors, deceptions
that depend on the existence of three or more factors remain a possibil-
ity. Deceptions of this sort do not appear in Malicious Cryptography and
are mentioned here only to illustrate that not all general principles for
deception have solutions available to the designer at the moment.

Malicious Cryptography is a remarkable book; remarkable for what
it attempts and remarkable for what it achieves. The realization that
cryptography can be exploited to achieve malicious ends as easily as it can
to achieve beneficial ones is a novel and valuable insight—to both designers
and counter-designers of information security and integrity protocols.

Gus Simmons

September, 2003

Acknowledgments

We have so many people to thank that it is difficult to figure out where
to begin. It has been said that ideas cannot be created in a vacuum and
in this we believe wholeheartedly. Malicious Cryptography is the product
of interactions and collaborations that span over a decade. In truth we
have family, friends, teachers, coworkers, researchers, students, anonymous
referees, journalists,1 science-fiction authors, movie writers, artists, and
musicians2 to acknowledge. Without such support, enthusiasm, artistic
creativity, teachers, and listeners, this book would not have been possible.

First and foremost we thank Columbia University, our mutual alma
mater. It was at Columbia that our research began, and it was at Columbia
where we met a great number of brilliant people from whom we learned,
and with whom we worked and shared ideas. We thank Zvi Galil, Dean
of the School of Engineering and Applied Science, who served as faculty
advisor to us both. We thank Jonathan Gross and Andrew Kosoresow,
both of whom served on Adam’s PhD committee. Andrew was a great
and dedicated educator, and we mourn his untimely passing. We thank
Matt Franklin and Stuart Haber, both of whom graduated from Columbia.
Matt and Stuart have served as collaborators to us both as well as lecturers
in graduate courses taken by Adam. On numerous occasions Adam flew
into Matt Franklin’s office, wide-eyed and somewhat insane looking, for
the sole purpose of scrawling a brand new attack on his blackboard just
to see how he would react. Adam also thanks Matt Blaze for teaching
an inspiring course on computer security in 1995 and for fostering great
interest in cryptography among his students. Moti extends his gratitude to

1John Markoff, Steven Levy, Katie Hafner, and Bruce Sterling among others.
2Adam thanks Nine-Inch-Nails, Sonic Mayhem, White Zombie, Looking Glass Stu-

dios (System Shock 2 Soundtrack), Devo, and Danzig for setting the mood for the
beginning of the book.

xix

xx Acknowledgments

all of his coauthors and everyone he has worked with over the years, since
it is through scientific work and the exchange of ideas that one develops
as a researcher.

We thank Markus Jakobsson from RSA Data Security. Moti mentored
Markus throughout his dissertation defense preparation and Markus in
turn served on Adam’s PhD committee. Markus reviewed this text and has
sponsored annual lectures on Cryptovirology at NYU. We thank Yiannis
Tsiounis, another student that Moti assisted, for sharing ideas and for
reviewing this book. We thank our colleague Yair Frankel for sponsoring
an invited lecture on kleptography for the Information Surety Group at
Sandia National Labs. We thank Michael Reiter for supporting Adam
while at Lucent Technologies in the Secure Systems Research Division,
and for hosting a lecture on subliminal channels and kleptography.

Adam thanks Matthew Hastings from Los Alamos National Labora-
tory. Over the course of four years at Yale, Matt and Adam jointly exper-
imented with self-replicating code in a safe and controlled environment.
Many of the discoveries and open problems that were found gave impetus
to investigating advanced malicious software attacks. Adam also thanks
Mark Reed from the Yale University Department of Electrical Engineer-
ing. Mark served as Adam’s undergraduate faculty advisor and provided
support for his career both inside and outside of the classroom.

Adam thanks Cigital Labs and in particular Jeff Voas, Jeff Payne,
Gary McGraw, and Matt Schmid for encouraging this work. We thank
Christoph C. Michael, senior research scientist at Cigital Labs, for engag-
ing conversations, contributing artwork, and for lending an ear to a never-
ending stream of clandestine malware rhetoric. We also thank Alexander
Antonov and Paul DesRivières from the Cigital Secure Software Group for
reviewing the manuscript line by line and Mike Copenhafer, Bruce Potter,
Mike Firetti, Viren Shah, Frank Hill, Coleman Baker, and Chris Ren from
Cigital for helpful reviews and discussions.

From Wiley we thank Carol Long,3 Eileen Calabro, Fred Bernardi,
Robert Ipsen, and Kathryn Malm. Carol and her team produced this book
in remarkably short order with the utmost degree of professionalism.

Special thanks goes to Dmitriy Pozdnyakov, Michael Makarius, Leo C.
Petroski, and H. Robert Feinberg for helpful feedback and overall support
of this work. Finally Adam would like to thank his wife, Elisa Young, for
being. Without her this book would cease to have meaning.

3Or cryptolady, as she is known at Wiley.

Introduction

This book is a compendium of malicious software and hardware attacks
geared towards subverting computer systems. The attacks are not of the
sort that exploit software bugs, design flaws, and so forth. The business of
bypassing security measures is outside the scope of this work. Rather, we
present a series of cryptographic methods for defiling computer systems
once internal access is acquired.

Some of the attacks are more technical than others, involving recent
advances in the field of cryptology. As a result this book is likely to be
received in a variety of different ways. To hackers it may serve as a vade
mecum. To security professionals it may serve as a long overdue warning.
To science fiction buffs it may serve as a good read, and to intelligence
agencies it may serve as a challenge to our First Amendment rights.

Chapter 1 is a motivational chapter that portrays the world through
the eyes of a hacker. It reveals the very fabric of a hacker’s existence and
due to its illicit nature we mention the standard disclaimer that reads,
“do not try this at home.” To perform any of the acts described therein
is to risk violating the Computer Fraud and Abuse Act of 1986, among
others. Hackers face scientific problems when trying to infiltrate computer
systems. It was by experiencing these problems first hand that many of
these attacks were discovered.

A great number of people share a close kinship with our digital brethren
and to hackers it is no different. But whereas to writers it is through
text, to artists it is through images, and to musicians it is through music,
to hackers it is through the very language that computers speak when
speaking with each other, the language of binary. To speak in binary and
hear every word they say is to be one with the machine and that feeling
can be hopelessly and utterly addictive.

To the uncorrupt of spirit the need to join with the machine can be
controlled to a degree. This need is illustrated in Chapter 1 over the
course of three short stories. They are written in second person singular

xxi

xxii Introduction

and as such force the reader to play the role of the subduer. It is the
reader that steals passwords using a Trojan horse program. It is the
reader that spends years developing an insidious computer virus, and it
is the reader that takes over the local area network of a small company.
Yet everywhere in the storyline the privacy and integrity of other people’s
data is respected. It portrays the pursuit of knowledge and the thrill of
the hunt, not the kill.

As Lord Acton once said, “power corrupts; absolute power corrupts
absolutely.” This could not be truer with respect to hacking. For this
reason we urge readers not to abuse the ideas presented in this book.
If our efforts coax so much as a single hacker to embrace the greater
mathematical challenges facing system security, then our writing will not
have been for naught, for such a hacker is likely to seek recognition in the
form of conference papers in lieu of news reports.

Given the clandestine nature of the algorithms and protocols that are
presented, it is important to emphasize the nature of secure systems re-
search. Cryptanalysis exists to help make cryptosystems more secure. The
goal of cryptanalysis is not to undo the honorable work of others, but to
find vulnerabilities and fix them. Many a cryptographer has suffered the
disheartening realization that his or her cipher has been broken. Lucky
are those who discover this themselves, but many are they who learn the
hard way when another researcher publishes the discovery in an academic
forum. Cryptanalysis is the mathematician’s version of hacking: it is both
devil’s advocate and antithesis of cryptography. History has proven the
need for cryptanalysis and hence the need to find weaknesses in cryptosys-
tems and publish them. It may be reasoned that the need for cryptanalysis
extends directly to the need to investigate attacks on modern computer
systems. This, we argue, is the realm of cryptovirology and in this treatise
we take a first step in this direction.

In the public eye, the word cryptography is virtually synonymous with
security. It is a means to an end, a way to send e-mail privately and pur-
chase items securely on-line. If nothing else this book will challenge that
view. In the chapters that follow it is shown how modern cryptographic
paradigms and tools including semantic security, reduction arguments,
polynomial indistinguishability, random oracles, one-way functions, Feis-
tel ciphers, entropy extractors, pseudorandom number generators, etc.,
can in fact be used to degrade system security.

It is shown how to devise a cryptovirus to usurp data from a host ma-
chine without revealing that which is sought, even if the virus is observed

Introduction xxiii

at every turn. It is shown how to design a password-snatching cryptotro-
jan that makes it virtually impossible to identify the author when the
encrypted passwords are retrieved. Furthermore, it is intractable to de-
termine if the cryptotrojan is encrypting anything at all even when it is
under constant surveillance.

Still other cryptotrojans are described that attack industry-standard
cryptosystems. By design, these Trojans give the attacker covert access to
the private keys of users and are extremely robust against reverse engineer-
ing. When implemented in tamper-resistant devices these transgressions
cannot be detected by anyone save the attacker. Such Trojans are ideal for
governments that wish to obtain covert access to the encrypted communi-
cations of their citizens. These Trojans show how to apply cryptography
within cryptography itself to undermine the very trust that cryptosys-
tems were designed to provide. In so doing we will expose the dark side
of cryptography and thereby reveal its true dual-edged nature.

Several of the attacks have known countermeasures, some of which
are ideal and others that are merely heuristic in nature. These defenses
are described in detail to give the book a more balanced presentation to
the community at large. It is our belief that these malicious software
attacks should be exposed so that security analysts will recognize them
in the event that they appear in fielded computer systems. Doing so has
the potential of minimizing the malicious software learning curve that
practitioners might otherwise face.

In all likelihood the attacks that are described in this book constitute
the tip of the iceberg in terms of what is possible. Offensive information
warfare is an area of research that is scarcely funded by the U.S. govern-
ment, for obvious reasons. However, the notion of malicious software as
well as cryptography is by no means new to the federal government, and
so one would expect that there has been more classified research in this
area than unclassified research. This book is our earnest attempt to ex-
pose the open research in this area, since corporations, governments, and
individuals have a right to know about that which threatens the integrity
of their computing machinery.

Some readers will inevitably object to the nature of this book. To
this end we remark that these attacks exist, they are real, and that it is
perilous to sweep them under the rug. We believe that they will surface
sooner or later. It is our hope that this book will encourage the study of
cryptography as a whole and at the same time reveal some of the more

xxiv Introduction

serious threats that computer systems face, both from within and from
without.

A. Y.

M. Y.

October, 2003

Chapter 1

Through Hacker’s Eyes

There is no way to describe the feeling of approaching a computer system
to download the data that your Trojan horse has been collecting for days.
Your heart begins to race. You look over your shoulder out of instinct and
start to have major second thoughts about proceeding. The computer
terminal is unoccupied and sits directly in front of you.

Questions plague your thoughts: How many people are capable of
finding the cleverly hidden Trojan? More importantly, does anyone in this
room know it is there? You ease yourself down into the chair. Glancing to
your right you see a student stare at his calculator with a perplexed look
on his face. To your left a girl is laughing on her cell phone. If you could
shrink yourself into nothing and crawl through the cracks in the machine
you would gladly do so. But you are physical and there is nothing you
can do about that now. The coast is clear. You reach for your floppy
and insert it into the drive. Sheens of sweat glaze over your palms. Why?
Because after all, you are returning to the scene of a crime.

Your crime.
Deep down, you rationalize your actions. There is no blood involved,

no money is being stolen, and in the end no real harm is being done. . . or
is there? The floppy drive begins to spin. In moments it will be over.
In moments all of the login/password pairs will be on the disk and you
will be hightailing it to your next class. Perspiration breaks out on your
forehead but is easily dismissed with a waft of your hand. You navigate
to the floppy drive and double-click on the game of Tetris. There is time
for one quick game. The first block is 1 by 5, your favorite. If only they’d
come down like that one after the other you’d have the game in the bag
by laying them out horizontally. But it never works out that way. The
law of probabilities won’t allow it. A book hits the ground and you jump.

1

2 1. Through Hacker’s Eyes

A lanky-looking freshman picks it up. The title—Differential Equations:
Theory and Applications. Smart guy. Most students are only studying
multivariable calculus in their first year. Words begin to echo in the back
of your mind: there has to be a better way, there has to be a better way. . . .
An odd, misshapen block comes into view. You hate those. They make
you lose Tetris every time. A whirring noise emanates from the drive and
this time you know it is writing to the floppy. One more minute and your
doctored up version of Tetris will have downloaded all of the passwords to
the disk. Who’d ever guess this version of Tetris packed such a punch?

A four-sided cube comes down and you ease it over to the left-hand
side of the screen. You love those shapes too. On the surface you are just
playing a game. Your mouse button clicks and space bar presses are as
innocuous as they come. But the real game you are playing is not so easy
to see, and at times it feels like Russian roulette. Your thoughts wander
to your password-snatching Trojan. The possibility that it was found and
that silent sysadmin alarms are sounding in a nearby room is very, very
real.

Something’s wrong.
Something’s not right; you can feel it in the air. The drive should

have stopped spinning by now. Your heart goes still. Looking up, you
catch a glimpse of a man you didn’t notice before. He makes eye contact
with you. Fighting the urge to flee, you quickly look back at your screen.
You missed placing two blocks. You will not make high score. Your mind
begins conjuring swear words without biblical precedent. . . it has never
taken this long before.

The floppy drive finally stops whirring. You quit out of Tetris, eject
the floppy, and reboot the machine. You leave the computer cluster and
enter the hallway half expecting to be halted by university officials. But
none are there. You think yourself silly. You think that there was no
way it could have been found. But the reality is that you know all too
well how to write a background process capable of catching you in the act
and that is what makes you scared. Stepping outside the building, you
breathe a sigh of relief in the midday sun. You made it this time, but
maybe you were just lucky. Maybe it wasn’t in the cards just yet. Like a
junkie to drugs, you are drawn to these machines. They speak to you the
way they speak to no one else. You put in your time. You paid your dues,
and yet for some reason your vision is still shrouded in darkness. There
is something they are not telling you. Perhaps it is something they don’t
even know. It is a question that nags at you like no other, and you sense

1. Through Hacker’s Eyes 3

that the answer lies hidden somewhere within the deepest recesses of your
soul, somewhere out of sight and just beyond your grasp. There has to be
a better way.

Shortly before sundown that same day. . .

The dull roar of thunder reverberates somewhere far off in the distance
as menacing storm clouds roil in from the west. They exhibit all the signs
of a true nor’easter and threaten to engulf the entire city of New Haven.
You swear you just felt a drop of rain hit your left shoulder. Reaching
down, you feel for the disk at your side. The floppy is still there, its
presence reassured at the touch of a thumb. The data it contains is dear
to you, and you’ll be damned if you’re gonna let a little H2O seep through
your denim pocket and claim your catch of the day. So you decide to pick
up the pace a bit.

The path you follow winds in and around, gently sloping downward as
you go, eventually leading to a clearing that overlooks a stand of maples.
The trees are enormous and have stood here for ages. At their center lies a
lone apple tree. It is dwarfed by the older trees and is helplessly sheltered
under a canopy of leaves. Having sensed your unexpected approach, a
nearby squirrel dashes for the safety of a nearby tree. Before reaching
the trunk, it fumbles over an apple and sends it rolling along the ground.
The fruits around you give off a racy odor, a telltale reminder of the
approaching change of season.

Had it not been for the disk, you would chance a brief pause underneath
the eaves to contemplate greater things. Physics lectures always left you
spellbound regarding the mysteries of the world. It was the dream of being
struck in the head by a falling apple that guided you to this school in the
first place, a dream that you summarily dismissed upon meeting your
brilliant roommate. He is a National Merit scholar and received 1580 out
of a possible 1600 on his SATs. The deduction was in the verbal section,
and you always attributed it to his difficulty in comprehending the human
condition. On many levels he is more machine than man, yet his inference
engine is second to none. Physics is his second language and he speaks it
fluently. You abandoned the idea of majoring in physics since the thought
of taking the same classes as he was too much to bear, and since he had
an uncanny ability to make you feel stupid without even trying. Answers
to scientific problems just came naturally to him. Your hacking obsession
combined with a thoroughly tenderized ego would do little to help you
finish school.

4 1. Through Hacker’s Eyes

A gust of wind billows through the trees. The limbs creak and sway in
response, causing rain droplets to roll off their leaves. The water splashes
onto your face and exposed arms, causing you to start. You realize that
you had zoned out completely and had lost all track of time. Your eyes had
stared off into space, fixated on some solitary trees, and subconsciously
absorbed the surrounding scenery. You shrug in spite of yourself. No use
in crying over spilled milk. Your true path has yet to be determined and
there is no reason to worry about it now.

You shift the weight of your backpack to your other shoulder and leave
the small wooded area behind. As always the students took Prospect
Street back to Old Campus while you ventured along an overgrown yet
shorter route, preferring to take the road less traveled. Hypotenuse action
your roommate called it. Over time you discerned the shortest route
between the Sloane Physics Lab and your dorm and it took you through
more than one private yard, not to mention a vast cemetery. It saved
you an innumerable number of backaches to be sure. Take aside any
science student and you will hear the same tale of woe. The cumbersome
textbooks are murderous to haul and the university couldn’t place the
science buildings at a more remote location if it tried.

The Payne Whitney Gymnasium looms ahead, shadowed by the black
storm cover above. Were it not for the parked cars and street signs, the
darkness could easily lead one to mistake it for a castle. Gulls from the
nearby seashore circle above the parapets that line the rooftop. Some dive
and soar, some pick up speed, and still others hover in place in blatant
defiance of the wind. Nightfall descended prematurely on the city, and
what had been just a few droplets of rain minutes before has turned into a
veritable deluge. A small pack of students run through the stone archway
at the base of the gym with newspapers outstretched overhead. The brunt
of the storm is upon you and rainwater quickly seeps into every quarter.
You break into a sprint down Tower Parkway in a last-ditch effort to keep
your data dry.

The torrential rain pummels your body in sheets as you approach the
backdoor of Morse College. You pass quietly into the building under cover
of dusk and enter the underground labyrinth of steam tunnels and storage
rooms. The humdrum of washers and dryers from a nearby laundry room
fills your ears. You take a brief moment to wring what water you can from
your clothing. After regaining your composure, you head down the narrow
hallway and pass alongside the laundry room. It is empty and devoid of
movement, save for a loose ball of lint circling beneath a ventilation shaft.

1. Through Hacker’s Eyes 5

You continue along the corridor towards the small staircase at its end,
leaving a puddle of water with each passing step. A steam release valve
hisses as you pass it by, only to be replaced by the distant clamor of trays
and dishes. The student body has assembled in the Morse cafeteria for the
high-quality food service afforded by the university. It is the early part
of dinner hour and the thought of eating couldn’t be further from your
mind.

You fish the keys out of your pocket as you gain the steps to your floor.
If your roommate is in he’ll probably give you a hard time about tracking
water inside, and rightfully so. You open the door and swing it wide,
revealing the darkened room beyond. He’s out, probably studying in the
science library as usual. You pass through his room and into yours, opting
to leave the lights out for fear of ruining the picturesque atmosphere. With
the toil of the long trek behind, you ease your backpack to the ground and
rest at the foot of your bed. You suspect that he’ll be gone for the better
part of the evening.

It is nights like these that you live for.
A momentary flash of lightning illuminates every darkened corner of

the room. You are not alone. A woman stares at you from across your
bed. Her eyes are as cold as ice and she has daggers at her sides, drawn at
the ready. Li could lunge at you at any moment. It is perhaps one of H. R.
Giger’s most beautiful yet grotesque works of art ever, and you purchased
the poster for twenty dollars at The Forbidden Planet in Manhattan.1

Is she man or machine? Does she need blood or electricity to survive?
Perhaps she needs a bit of both. No one really knows of course, no one
except H. R. Giger himself. But the purpose of the metal sheaths is
clear. They were carefully designed to extract every last drop of blood for
her consumption. Her face is paradoxical: it is clearly frozen in a state
of suspended animation, yet her eyes are seeing and behind them she
is actively calculating. Li has all the makings of perfection: the memory
capacity and precision of a supercomputer, the ability to reason as humans
do and perform modus ponens, yet exist free of fear and pain and want,
with the life expectancy of a machine. There is a definite eeriness about
her, for her eyelids are at half mast and she gives off the impression of
total boredom, as if it is out of curiosity alone that she permits you to
gaze upon her before taking your life.

After a time you get up and seat yourself at your computer, feeling

1The mesmerizing 56” × 80” original is entitled “Li II” and hangs in the Swiss Art
Museum (see http://www.giger.com).

6 1. Through Hacker’s Eyes

her eyes penetrate deep into the back of your head as you do so. She has
watched all of your feeble attempts at becoming one with the machine.

The disk is soaking wet. You pull it out and lay it down next to
your keyboard. The writing on the label is smeared beyond recognition.
A blow dryer simply will not do, and neither will a tissue since it can
leave nasty scratches if sand gets in the way. It will require surgery to
salvage it on such short order. You remove the sliding metal door causing
a small metal spring to fly out and fall to the ground. The door is warped
irreparably, but you will not be needing it again. The two plastic halves
separate easily and you gingerly extract the silicon disk from its casing.
It has water droplets all over it. They are not too big, but it’s a good
thing you didn’t insert the disk into your drive. You take a dry towel from
the bathroom and lay it out on the desk, carefully placing the thin silicon
platter on top of it. The water will evaporate soon enough.

You draw your attention to your computer. The power is still off and
the pen that you positioned carefully atop the keyboard has not moved.
The upper end rests squarely between the “5” and “6” keys and the ball-
point end lies between the “c” and “v” keys. Had it not been aligned as
such there would have been hell to pay, and the inquisition would have
commenced with your roommate. You remove the pen and flip on the
power switch. The desktop appears. The background art reads “Night
City” haphazardly spray painted along a worn and weathered wall set be-
neath a neon sky. The steel rods from the reinforced concrete stand rusted
and jagged along the top, making for rough passage should anyone try to
reach the ruined building beyond. You dubbed the machine Night City in
honor of the cyberpunk role-playing game that bears the same name.2

The protagonists in the cyberpunk genre are a truly admirable lot.
They are high-tech lowlifes that challenge authority at every given op-
portunity, blend in with the crowd, and make commercial programmers
look like toddlers playing with tinker toys. The sprawl is their home, a
megalopolis formed from the eventual unification of Boston, New York,
and Philadelphia. The cyberpunks live on the fringes of society and form
a counterculture unto themselves. They know not of greed. They know
not of rapacity, and they know not of hegemony. However, these things
are not alien to them since they are contended with on a regular basis.
They are technologists absolute and embrace mankind’s tendency to both
make its own problems and later overcome them: deplete the ozone then
sell sun block; pollute the air then sell gas masks; trash this planet then

2See [27, 229].

1. Through Hacker’s Eyes 7

move on to the next. It is in science and technology that they believe.
Like renegade cowboys out of the Wild West, they serve their own needs
in the largely lawless and uncontrollable digital realm. Yet they frequently
perform valuable services for the common good, and play a crucial role in
keeping the powers that be in check, thus preserving the freedoms that we
take for granted. In the end their heroic acts are seldom if ever rewarded,
let alone recognized. Such is the divine tragedy of the good hacker. When
the megacorporations of the world and their puppet governments wrest con-
trol of our lives completely, when they see and hear and record every move
we make, when they tell us how we should think and how we should act
and what we should buy, who else will there be to turn to?

The terminate-and-stay-resident programs load one after another, cre-
ating a line of icons along the bottom of the screen. After the last one
loads you reach around the left side of the machine and press the hardware
debugging switch. Time to go manual. You type in a command to view
the two bytes located at address 0x05DE1940. It contains 0x007E, just as
it should. It read 0x007D when you left, implying that you are the only
one who booted the machine since you went to class this morning. Your
computer is running a number of custom-made Trojan horses, and this
is the result of one of them. Every time the machine boots the Trojan
increments the counter by one.

On one occasion you rebooted the machine and found that the value
had been incremented by two. After a prompt interrogation of your room-
mate you learned that he had turned on your machine to see if you had
some software he needed. When he was finished he turned the machine
back off. Paranoia perhaps? Well, call it what you will. You regard it
as a simple matter of dotting your i’s and crossing your t’s. Anyone who
walks more than 10 feet inside Night City will set off one alarm or another.
There are those who would search your machine, if not for your list of pil-
fered passwords, then for evidence regarding your other extracurricular
activities. Trojans help solve this problem too. Any such person would
only find ciphertexts and a machine so riddled with custom-made Trojans
as to lead one to wonder why you hadn’t written the operating system
from the ground up in the first place.

There was no need to admonish your roommate for using your com-
puter. You trusted him more than anyone else in the world with its con-
tents. He had won your respect on the first day of school due to his raw
intellect alone. There seemed to be no question he could not answer, no
system of equations he could not solve. This applied to everything, from

8 1. Through Hacker’s Eyes

using Maxwell’s equations to describe an electrical phenomena to figur-
ing out how computer viruses worked. This had its downsides of course,
since there is nothing more frustrating than knowing that whenever you
got stuck on a homework problem, the oracle in the adjacent room could
produce the answer in a matter of seconds.

The stage has been set. Soon the disk will be dry and you will be
able to read its contents. You lean back in your chair and throw your
hands behind your head. Ruminations of the previous lecture take over
your thoughts. It was a class on the history of physics, and was taught
by Professor Klein. He is one of the world’s foremost authorities on the
subject, and what adds greatly to his lectures is the fact that he even
looks like Albert Einstein, although you’d be hard-pressed to get another
classmate to admit it openly.

His lecture centered on Neils Bohr, the 1922 winner of the Nobel Prize
in physics. It was awarded for his successful investigations on the structure
of atoms and the radiation emanating from them. However, as Professor
Klein explained, his contributions to mankind far exceeded his status as a
Nobel laureate. He was arguably deserving of a peace prize as well for his
heroic efforts at saving Jews from Nazi tyranny. Under threat of complete
Nazi dictatorship, Bohr held science conferences to bring foreigners to his
research institute. Behind the scenes these conferences were really job
fairs in which Bohr assisted Jewish scientists to find sponsorship abroad.
It was a time in which you were not permitted to leave the country without
a foreign employer to work under.

One of the most interesting aspects of the lecture was what Bohr did
when the Nazis took to the streets of Copenhagen. Bohr had been en-
trusted with the Nobel prizes of Max von Laue and James Franck who
had remained in Germany. Their medals were successfully smuggled out
of Germany at a time in which such exportations were considered to be
capital crimes. The Nazis gathered any and all valuables to feed their war
machine. The Nobel prizes remained at Bohr’s institute for safekeeping,
and as Professor Klein explained, Bohr began to worry considerably that
the Nazis might take over the lab and find the medals. The recipient’s
names were engraved on them, and this would not have bode well for Laue
and Franck had they fallen into enemy hands.

The thought of burying them was immediately ruled out for fear that
they would be unearthed. George de Hevesy, a Nobel prize winner in
chemistry, suggested that the medals be dissolved using a powerful acidic
solution. They proceeded to precipitate the gold from acid and stored the

1. Through Hacker’s Eyes 9

medals in two separate unmarked jars. The Nazis ended up searching the
lab and left the two jars containing the liquefied Nobel prizes alone. The
jars were promptly sent to the royal mint in Stockholm to be recast as
soon as the war was over [170]. It was a fascinating lecture and it was
clear that this was a scientist’s solution to a scientific problem.

You found any and all techniques that can be used to outsmart others
fascinating, especially when it involved outsmarting evil tyranny. But how
can this idea be extrapolated from the physical realm to the digital realm?
You glance at the floppy drying next to you. How can we hide the Tetris
Trojan from prying eyes? The way to do so is not clear at all. In the next
instant a thought occurred to you. The salient aspect of the Bohr-Hevesy
approach was that the gold was effectively melted to assume the same
liquid form as the acid. The acid and gold were then intertwined at the
atomic level, leading to an apparently worthless liquid. A separate process
could later extract all of the Au atoms. This process could be repeated
ad infinitum. How can a virus be seamlessly integrated into its host? One
certainly cannot dissolve an assembly language virus. After all, this is the
digital realm we are dealing with.

Given a high-level programming language J that can be decompiled,
the solution is simple. Suppose that the host is written in J and suppose
that the virus is written in J as well. The virus exists in compiled binary
form, but totes around its J source code as well as a compiler and decom-
piler if needed. When the virus decides to infect a host, it decompiles the
host. It then inserts its own viral source code into the host source code.
The resulting infected source code is then compiled and saved, replacing
the old program in the process. The virus ipso facto adheres to all of
the compiler conventions of its host.3 Depending on what compilers are
available, the virus could be made to conform to the register and calling
conventions of a gnu J compiler, a Microsoft J compiler, a Borland J com-
piler, and so forth. This would make the virus more difficult to detect. Of
course there is ample room for improvement. It would be nice to be able to
infer and subsequently mimic the high-level language programming style
of the host program. You glance over at the floppy lying next to you. It
is finally dry. This research topic will have to wait for another rainy day.

What the disk needs now is a new home. You pull open the top drawer
and pull out a previously dismantled floppy. It had been prepared for just

3One could argue that the decompilability of Java is a security weakness that does
not exist in the C++ language, for example. A language that behaves akin to a
cryptographic one-way function during compilation guards against this vulnerability.

10 1. Through Hacker’s Eyes

such an occasion. You set about reassembling the disk in its new housing.
Moments later it is ready. You insert it into the drive in eager anticipation.
The resident operating system mounts the floppy without a hitch. The
file system properties have to be adjusted on the password file since the
file was designated as invisible. You copy it onto your hard drive and
eject the disk. After double-clicking on the file you find that it has 143
login/password pairs.

Presto.
When left to their own devices people choose the funniest passwords

imaginable. This holds especially true for college undergraduates:

Login: pc541
Password: JoeIsUg1y

Login: sr412
Password: Pee∅nMe

Login: ds912
Password: SnakeH∅`e

You double-click on your saved collection and enter the password that
is needed to decrypt it. One second later the plaintext file opens up in
a text editor. You copy and paste the newly obtained passwords to your
master list. Your running total is now 655. Some of the passwords were
obtained via your password-snatching Trojan; still others were obtained
from brute-force dictionary attacks. The university system administrators
were still making the mistake of letting the Unix passwd file be easily
accessible.

It was a good catch given that your last visit to the Trojan was only a
week before. However, the running total is not really 655. You earmarked
several of these accounts as potential honeypots. The most suspicious of
all is:

Login: Password
Password: Password

Every time a user logs into a university machine, the user is warned
that any unauthorized use is a criminal act and a violation of U.S. law.
These honeypots are a way of trapping rogue users since they are easily
guessed and grant access to accounts that are under 24-hour surveillance.
You surmise that at least 620 of the user accounts should be safe to play
with.

1. Through Hacker’s Eyes 11

Before calling it a day you run your coin-flipping program. You type
in 655 and let it flip away, prepared to toss the coin again if it winds up
on a honeypot. The result comes up 422. You cross-reference this with
your master list and determine that it’s probably not a honeypot account.

Login: edc42
Password: m4Tds∅1

Tomorrow you shall be edc42 for a while.

* * * * *

The night is young as you step out of the house. In the distance, the
Transco Tower stands silhouetted against the skyline. Like a municipal
sentry it watches as the denizens of the city slowly make their way onto
the streets. You smile in spite of yourself, for on this night you have
something very special planned and you doubt that anyone has a vantage
point good enough to see that the sequence of zeros and ones on the disk
at your side is just a little unusual, a tad bit out of place, and in fact upon
closer inspection downright insidious in nature.

You hop on your bike and pedal away from your home. Well, your
home away from home is more aptly put. It has been over a year since
you last visited your father, and the last time you were in Houston this
new creation was little more than an idea on the drawing board. The city
takes on a new hue as the headlights and 7-11 signs shed their evening
glow. With not a cloud in the sky and no chance of rain, a new feeling
begins to grow deep inside. This is the night. She will be free. You hope
your due diligence will keep her alive. She will travel to strange lands and
traverse hostile environments and will rely almost exclusively on what you
taught her to do.

Turning a street corner you head out onto Westheimer. The traffic
lights spread out as far as the eye can see, turning from red to green to
yellow and back again in steady cadence. A small copy shop appears on
the right. Looking inside you see a customer at a computer and a cashier
looking off into space. Two people. No bustle. Not a chance. The last
thing you need is a proprietor looking over your shoulder watching your
every move. You pedal down an access road and jump a curb. Some more
distance is necessary. Every mile counts. You traveled halfway across the
country with her in tow, and it was important that you see her off safely.

12 1. Through Hacker’s Eyes

A small shopping center comes into view. It is surprisingly full of
cars. You swing into the lot and see a Burger King, a movie theater, a
restaurant or two, and nestled in the middle of it all, an enticing-looking
copy shop. Chaining your bike to the nearest pole, you scope the place out.
Video cameras are mounted fore and aft, a convex mirror hangs over the
computer area, there is no uniformed guard, and there is no tape measure
along the side of the front door. Half a dozen customers are in line, and the
copyists are buzzing around like worker bees. Drawing your attention to
the computer area you see three people seated at computers, and another
hovering over a color laser printer. It looks promising. In fact, it looks as
promising as can be. Those machines don’t stand a chance. You get up
and walk into the establishment, just another face in the crowd, another
customer needing to print out documents. You pass into the computer
area and not a single person pays you notice.

As you seat yourself in front of a computer you try to recall how
many times you washed the dishes after eating at a restaurant. Zero.
Why? It’s very simple really. It’s not your responsibility. You pay for
the food. You pay for the service. Cleaning up after yourself is not your
responsibility. How silly would you look if you got up after paying, walked
into the kitchen, and said “here, let me help you with those plates” to
the employees? They would look at you sideways. Leaving your virus on
this general-purpose computing machine is no different than this. The fact
that others lack the cranial capacity to see the grime is not your fault. If
it spoke to them the way it speaks to you then they’d be aware of her
presence. But the privileged are few in number.

A message on the screen informs you of the rate: Ten cents per minute.
The blinking caret asks you for your name. It is waiting. You give it one
stochastically chosen from among the most frequent names in America:
John. This machine is no longer for hire. It is temporarily yours, to do
with as you will provided that it remains functional enough for the next
customer. But most importantly, it must remain an intact vehicle for
making the corporation money. That is what really matters in America.
It will be so, you say to yourself, as you pull out the disk. It will be so.

You glance at the floppy in your hand and question once again your
insatiable need to spread digital diseases. This is the wrong thing to do.
Yet there is no helping your compulsion. You are diseased, but there is
solace in the fact that your disease stems from the morally ruined society
you live in. Greed begets punishment.

From idea in the back of your head, to scribbles on a drawing board, to

1. Through Hacker’s Eyes 13

mnemonics in an ASCII file, and on through the assembler your creation
has traveled. You trained her on every antiviral program you could get
your hands on. She bypasses them all. You click on the control panel and
notice that the machine is running a virus shield. The shield consists of
operating system hooks to file system interrupts that analyze their callers
for suspicious behavior. Not a problem. Your virus already knows the
location of the native interrupts needed to avoid the patches altogether.
She has all the needed ROM addresses stored in her internal circularly
linked list. You wonder how long it will be until she forgets them in lieu of
newer ones, ones that have yet to be chosen by the computer manufacturer.
You wonder if she will even live long enough to see that day. She is so
clever, you think to yourself as you insert the disk, and fastidious too. She
will never get a byte fatter than she already is.

A guy sitting down at the machine next to you looks over his printout.
You make out a pie graph on it that seems to reference budgetary plans.
While he is busy there making money you get busy running your infected
version of Tetris. You spent well over a year designing her, calculating her
cold-hearted offensive and defensive mechanisms.

. . . and now it is time to bring down the machine.

Seconds later a u-shaped block comes down the screen. Bingo. No system
crashes and no antiviral warnings. She is free. She moved into her new
home in the boot sector. But she has yet to leave her burrow and survey
her surroundings. Experience has shown that crashes are not uncommon
in these copy shops, so you hit the restart button knowing full well that
the accounting software will not lose a second of billing time. As you eject
the disk you look to the right and notice that the line has gotten even
longer. The guy next to you signs out and heads to the back of the line
to pay.

The machine boots up without a hitch. You see your name John on
the start screen and click on the button labeled continue. Everything
seems to be going smoothly. You take the liberty of running some of the
resident programs: Photoshop, Microsoft Word, Acrobat reader, and a
few text editors to boot. They all put on a few pounds. But who’s going
to notice? Infecting these programs manually is a good measure against
any futile attempt to remove the virus. She’s flying high, having beaten
the heuristic scanners to the punch. She rerouted the interrupts first this
time and will never be on the defensive on this particular machine ever
again.

14 1. Through Hacker’s Eyes

The clock in the lower right-hand corner of the screen reads “00:12.”
Twelve minutes. That’s only one dollar and twenty cents. It was worth
it. You sign out and head to the back of the line. A lady at the front of
the line is unhappy with her glossy printouts. They are sprawled out all
over the counter and she is taking forever to resolve the issue. The people
behind her are visibly agitated.

You contemplate the future of your creation. Will she survive? Your
gut tells you that she will. She has to. She has so much going for her.
But how will you know how she fares in her new world? She’ll never
write. She’ll never call. If you’re lucky you might even hap upon her some
day. Even then she won’t tell you anything. You won’t know how many
children she has, or how many children her children have, and so on.

The lady reaches for her purse and pulls out a checkbook. Unbeliev-
able. And you thought it was the information age. She finally takes her
bag of glossies and leaves, to the relief of all. The line moves silently
forward.

The problem with your creation is that she is an open book. Anyone
can read her and with any luck she’ll be notorious enough that lots of
people will. You could have trained her to tell you of her exploits, but it
is not clear how this could have been done in such a way that she would tell
you and you alone. Ideally you would like one of her offspring to tell you
some of the names of the infected machines and the order in which they
were infected. You contemplated using Intel CPU IDs and IP addresses
as unique identifiers to record the path that she and her progeny takes.
However, one obvious problem with this approach is that the data could
easily take up too much space in the virus. The real problem is the sheer
stupidity of it. You may as well hand the Feds a road map to your house
and draw a target on your back since it would have the same effect. Even
encrypting the path with 3DES and storing the key within the virus would
do little to hide the path from trained eyes.

A less detailed approach would be to divulge only the number of in-
fected machines instead of the names of the machines and the order in
which they were infected. This could be accomplished by giving her two
generation counters. The idea is simple. A counter i would be included in
the virus that would initially be set to a randomly chosen value r. Each
time a virus has a child it increments i in the child by 1. For example,
if the first virus had 8 offspring then they would each contain i = r + 1.
Each of their children would have i = r+2 and so forth. Another counter
j would store the cumulative number of children that each forefather had.

1. Through Hacker’s Eyes 15

The value j would initially be set to a random value s. After the original
virus had a child it would store j = s+ 1 in itself and in the child. After
the original virus had a second child it would store j = s+ 2 in itself and
in the child. The purpose of using the random values r and s is to throw
off antiviral experts as much as possible, since you know these random
initial conditions and they don’t.

The idea was to try to obtain a future copy V of the virus. In it would
be values for i and j. The distance from V to the root of the family
tree is h = i − r. The average number of children per forefather of V is
b = 2(j−s)

i−r
. So, a very rough estimate4 on the number of existing viruses

is (bh+1 − 1)/(b− 1) (see Figure 1.1). This is the number of vertices in a
complete tree in which each parent has b children. Although the accuracy
of this mechanism is highly suspect,5 it would nonetheless be fun to obtain
these values later on. . . .

The person at the front of the line pays for some printouts and then
motions towards the computer area. The cashier nods, says something
unintelligible, and then points towards the computer you just left. The
customer then walks over to it and sits down. For a moment you freeze.
You didn’t expect it to be used while you were still there. Suddenly the
line seems way too long and your aggravation level rises a notch. It will
be cool, you tell yourself. It’s under control.

You thoroughly contemplated the pros and cons of including the coun-
ters while the virus was on the drawing board. The cons outweighed
the pros. Like any viral outbreak the epicenter paints a strong picture
of where and when the infections commenced. This was the reason you
waited. This is the reason you are here in Houston. You shudder to think
of the information you would give to antiviral analysts if you released it
at school with the counters. The counter values would be low in the viral
samples found on campus and the values would increase as the viruses
moved further away, plus or minus the noise introduced by FTP transfers
and the like. No, the decision not to include the counters was a good one.
It would give the enemy even more information than it would give you.

The person in front of you pays the cashier and walks away. You
approach the counter with cash in hand. The cashier pulls up some in-
formation on the computer and presses the screen once. A paper begins
printing out. He hands the sheet to you. It reads your fake name, your

4This is the sum of terms where the terms form a geometric progression.
5An active adversary could change the counters without killing the virus, and so

forth.

16 1. Through Hacker’s Eyes

Figure 1.1 Estimated number of viruses in the wild

alias du jour, John. He will get a good look at your face but there is no
helping it. You pay the balance and take the receipt. As you head out
the door you pause and glance back at the machine one more time. You
silently bid her farewell, and pray that she will go forth and multiply.

While heading over to your bike, a familiar feeling comes over you in
a wave. There must be a better way, you think to yourself. There has to
be a better way.

Nine months later. . .

From within the darkened confines of your dorm room you sit and
contemplate your creation for the thousandth time. Your drawing board
is filled with pseudocode, directed graphs, and the names of pertinent
operating system calls. Despite your efforts the battle you waged is not
going as planned. Not at all. You push back on your easy chair, causing
the padded leg rest to rise up to your legs. Throwing your hands behind
your head, you stare at your war machine, split down the middle and
dissected in gross detail to enable careful analysis. Your agent was sent
off into the wild blue yonder with tools that now seem to be woefully
inadequate, for not even a whisper of her exploits has found its way to
your ears.

In many ways her design followed a tried-and-true methodology: she is

1. Through Hacker’s Eyes 17

a multipartite virus that, like several parasitic organisms, has three phases
of existence (see Figure 1.2). She started out life in a deliberately infected
executable. From there she migrated to the boot sector. While in the
boot sector she copied herself into RAM. Finally, when in RAM she hunts
down potential host applications and infects them, thus completing the
lifecycle.

She was a prototype and nothing more, you think to yourself in a feeble
attempt to dismiss her apparent shortcomings. A moment later, you feel
ashamed for even thinking this. She’s done nothing to warrant being
belittled so. Perhaps separation anxiety was getting the best of you, for
no matter how hard you tried you could not shake the feeling that part of
you was missing.

You draw your attention to the top of the board and take note of
the words “polymorphism engine no. 1.” She has no routines to modify
her own byte representation but they’ve been in the making for some
time. After an entire week of bug hunting you finally figured out why
your first polymorphic version kept crashing with a bus error. It turns
out that the CPU uses an instruction look-ahead cache and was executing
the ciphertext when you thought it was executing the decrypted code.
Even the assembly level debugger led you to believe that the CPU was
executing the decrypted code correctly. Silly computer manufacturers,
they should know that a program often likes to change itself while it runs.
The solution? Flush the cache. There are a variety of ways to do that.

For a moment you feel an extreme urge to erase everything related
to polymorphism on the board. In all likelihood polymorphism would
not help her spread, since in cleartext form she already bypasses every
antiviral program on the market. Making her polymorphic now would be
like teaching her to run before she could walk. Deep down you know she
can walk. She should be all over the place by now and should’ve been
found.

To ensure that she would spread rapidly, she was designed to handle
battleprogs and memory resident antiviral programs. Battleprogs is the
term you use to refer to applications that perform integrity checks on
their own code. These battle programs are written with the foresight
that one day they may become infected by a virus or Trojan horse. Once
an application is compiled, it can have integrity checking code built into
it by the developer. One way of doing so is by attaching a beneficial
Trojan horse to the program. This program may be structurally similar
to malicious Trojans but serves to verify the integrity of the host. To

18 1. Through Hacker’s Eyes

Figure 1.2 3-Phase multipartite virus

create this beneficial Trojan the developer first computes a checksum on
the compiled binary using a one-way function, for example. The input to
the one-way function can be the body of the host concatenated with the
integer representing the length of the host and the attached Trojan. The
file length may be found by making an appropriate file system call. The
resulting checksum is then stored within the beneficial Trojan.6 When the
executable is run the Trojan gains control first. It then recomputes the
checksum and compares the result to the checksum that stored within the
Trojan. If they don’t match then the Trojan assumes that the application
has been tampered with and refuses to send control to the executable. The

6A problem arises when trying to design a Trojan that computes the checksum of
the host concatenated with the Trojan itself. By storing the resulting hash value within
the Trojan, the hash value that is computed will differ from the stored hash. When a
typical hash function is used, there is little reason to suspect that a reasonable number
of iterations will cause the hash to converge on a fixed-point.

1. Through Hacker’s Eyes 19

Trojan can also perform the checksum on the copy of the host that resides
on the disk drive. The original executable along with the beneficial Trojan
forms a battleprogram that acts as a whistleblower against unexpected
changes.

Over time you encountered many battleprogs and taught her how to
handle them. When she is in her memory resident form, she looks for
currently running executables to infect. She only infects such programs
immediately after they terminate. When she runs from within an exe-
cutable, she infects the boot sector if it isn’t already infected. Following
that she removes herself from the host executable in memory and on disk.
This way, when the host gets control, the host is in its pristine shrink-
wrapped form. As a result, if it computes a checksum on itself then it
will always match. It will match because the program is in fact no longer
infected. You carefully measured the overhead of this approach, and it
has proven to be unnoticeable to the naked eye. To implement generation
counters on top of this, it would be necessary to have the counters only
record the number of boot sector versions of the virus. This is necessary
to avoid overinflating the counter values, since the virus copies itself to
and deletes itself from executable programs.

The first rays of dawn pierce through the darkness of your dorm, pass-
ing over your head and onto the drawing board beyond. You get up and
approach the window. The courtyard below is completely deserted. In a
matter of hours dreary-eyed students will be bustling to class, and you
will be a sleepless walking zombie among them.

You detest daybreak, for it is a pale reminder of yet another night
spent working on your creation, another night not working on quantum
mechanics or signal analysis homework. How you’ve managed to keep
your GPA up given your hacking obsession is a mystery. No doubt part
of it has to do with your electrical engineering study group. The four
of you work on everything together, and when your collective minds are
brought to bear on the written exercises, you usually fare quite well. The
problem is, the Electrical Engineering department has compensated for
such study groups by dishing out impossible assignments. Every problem
set contains at least one problem that is so elusive that it leaves the entire
group dumbfounded. Lately, your contributions to the problem-solving
effort have been lacking, and it hasn’t gone unnoticed. If you keep going
at this rate one or two members of the group are certain to defect, thus
bringing an end to your precious scholastic support network. It is expected
that each person show up with at least two or three solutions to share,

20 1. Through Hacker’s Eyes

even if they are the solutions to the easiest exercises. This at least provides
some measure of assurance that the answers are correct. Last night you
didn’t open a single textbook. They are sitting at the foot of your bed,
ruefully neglected.

. . . your sickness is getting the best of you.

Besieged on all sides by feelings of guilt, you react in the only way you
know how. You pull the curtains over the window so that the night may
continue within. You head over to the drawing board and try to focus
on the task at hand. The assembly code at the bottom of the board has
recently been incorporated into the latest prototype and can therefore be
spared. You pick up the eraser and wipe it away. Workspace is always
necessary to solve problems. There is one thing that you know for sure
could be hindering her attempts to replicate. It is a problem that has
been a thorn in your side for over a year. You crack open a new can of
soda and sit back down in your chair.

When your virus encounters a new computer model that hit the market
after the virus was released and when the computer is running memory-
resident antiviral software, your virus can’t get in. The problem is that
these programs patch critical operating system routines that your virus
needs to call in order to replicate. The patched code analyzes the caller for
suspicious features shared by many viruses, features that your virus has.
When found, the antiviral software alerts the user to the presence of the
virus. If the original operating system vectors are known, then the virus
can bypass the antiviral patches entirely. But, on new machines these
vectors are not known. Even though future operating system routines
are based on previous ones, the vectors cannot be safely guessed. The
computer manufacturer will inevitably debug, reorder, and add to the
existing operating system routines, thereby mucking with all of the offsets.

Furthermore, manually incorporating all of the needed proprietary
code into the virus and making calls directly to the IDE driver would make
her look like the circus fat lady. No, there is no way to solve this problem
adequately. But at least she knows her limitations. She knows when this
situation arises, and she knows not to act. If there’s one thing that these
antiviral sentries lack it’s the element of surprise, and she knows when
they’re watching. Your fielded avatar is designed to learn these needed
interrupt addresses. If she chances upon an unguarded machine, she will
teach herself the needed vectors. She will remember them henceforth and

1. Through Hacker’s Eyes 21

whence not in her circularly linked list of memory cells, only to be forgot-
ten when the machine’s era comes to pass.

You glance back at the newly created space on the drawing board and
take a swig of the soda at your side. There might be a way, you think
to yourself. But deep down your gut is telling you that this problem is
different from the others. It doesn’t feel the same. It is mired in operating
system theory and specifics. On a more technical level there might be a
solution, but it would most likely involve different assumptions regarding
the internal workings of the operating system, and therefore assume a
different underlying operating system altogether. In the end it would not
help in constructing the real-world juggernaut you so desperately wanted
to create.

You decide to put the problem on hold for the moment and head out
to the local computer cluster. When you arrive you see two dreary-eyed
students. One is engrossed in an AutoCAD program at the far end of
the room and the other is waiting impatiently by the laser printer. He
is clearly at the end of an all-nighter since he’s in a robe and his hair is
standing on end. You recall programming your creation once for three days
straight. The last twelve hours were marked by hallucinations and tingling
sensations and you didn’t call it quits until you observed a stapler crawling
towards you on your desk. Such has been the commitment you have made
to her. You seat yourself at a terminal and log onto the network. The
message of the day appears on the screen:

“MOTD — A computer virus has been discovered at several colleges
and universities along the west coast . . . The CERT coordination center
has issued a warning and a virus definition has been made available. We
are asking all students and faculty to perform updated virus scans as soon
as possible. The virus is set to activate on. . . ”

Like visors on a horse your peripheral vision falls away until all you can
see is the message. Blood accelerates through your veins and fear clenches
your heart.

She has been found.
She has been found and not just at one place, but at several. You

want to delete the message of the day. You want to erase it from every
computer in the entire university. You want to delete the virus definition
and take the advisory down from the CERT web site. It’s all too real.
You glance over your shoulder. The other two students are oblivious to
your plight. Given the enormity of your discovery it seems hard to be

22 1. Through Hacker’s Eyes

believe that this could be so. Never before has the virus seemed as much
like a disease as it did now, because unlike before, it cannot be stopped.
It cannot be contained. It is out there and it will no longer heed your call.

It took a day to sink in, and yet another to stop worrying about SWAT
teams and unmarked vans. Then a new feeling began to grow deep inside.
There was no doubt about it now. She had been snatched up and spirited
away to an antivirus lab. You envision her digital form lying bare on an
operating table with her midsection sliced open, her insides succumbing
to the machinations of skilled surgeons. With tools that bore and cut,
she would be systematically dissected and learned. How utterly exposed
and violated she must feel right now. Multitudes of her offspring were now
destined to perish, for nothing of what she had would remain hidden. They
will be caught dead in their tracks, quarantined, and ultimately destroyed.
But she still has one major advantage; there is power in numbers. Her
replication will be exponential and this alone will secure her a place in
the digital food chain. She may even reign supreme, for a time, on the
proving grounds that is information warfare.

Deep down you know that she will multiply while this operating system
version, and possibly the next one remain on the market. You nostalgi-
cally recall a game of cat and mouse you played with her while she was
growing up. She initiated the game, of course, and it lasted for weeks.
For some reason the computer in your dorm began showing a slow but
marked degradation in CPU performance. It wasn’t anything that could
be quantified at first. But something just didn’t feel right. The machine’s
speech was sort of slurred. After a while the pause between sentences
became unbearable and your suspicions codified into a hypothesis: You
were the victim of a virus yourself. The thought was both embarrassing
and at the same time exhilarating.

The more you thought about it the more sense it made, and so you
downloaded all of the latest virus definitions. The number of infected
programs on your machine came up nil after the virus scans. Hmmmm.
Something else then, you thought to yourself. You decided to pull out
the microscope and tweezers and analyze the assembler that you used to
assemble your virus. Your mouth nearly dropped to the floor when you
noticed not one but five viruses hitching a ride at the end of the binary.
They were all earlier prototypes of your virus. Over time the assembly
language alterations had affected her offsets, and she managed to slip past
you as a result. She replicated right under your very nose and you of all
people were none the wiser. She had truly become a thing of beauty.

1. Through Hacker’s Eyes 23

As a result of her escapade, you revised your software development
practice to include a stiff regimen of custom antivirus scans. It was a
simple task to come up with virus definitions for your own creations to
prevent this from happening again. It was ironic how useful the antiviral
software turned out to be in the virus software development process.

Overall it was a valuable lesson she taught you. The day the cat-and-
mouse game ended was the day in which she started showing her true
colors. The machine ran at full speed and she spread with a virulence
heretofore never seen. Her ability to slow the machine to a standstill
without being noticed by trained eyes was testament to her readiness to
leave the nest, and she did very well for herself in the end.

* * * * *

One sunny afternoon in a small office in midtown Manhattan three
employees meet to discuss the progress of a software development project
that is lagging behind schedule. It could have been virtually any software
company in any city and the situation would be the same, only the names
would change. . . .

A young, somewhat disheveled software developer shifts uncomfortably
in his chair with a look of utter consternation on his face.

“So you want us to rewrite the entire system so that all of the com-
mands are in ASCII,” announced the programmer aposematically.

“That is correct, Brian,” replied the man at the head of the table.
“Something might go wrong with the client/server software and they may
want to have a look at it. After all, it is theirs. They paid for it.”

It was an asinine explanation for making such a major last-minute
change to software that is already functional. There is no way in the
world the client would find and read the obscure log file. The three of
you are more likely to be hit by a meteor during this very meeting. Brian
shoots a glance at you from across the table and you nod knowingly.

“But if the messages are in ASCII then they will be five times larger
than necessary,” you reply.

Rajeev casually glances at his Rolex, implying that he has better things
to do than argue with his software developers. He folds his hands in front
of him and considers carefully his response. You have only been at the
company a short while and deserve a better answer than this. He turns
to address you.

24 1. Through Hacker’s Eyes

“I know this, of course. I have developed software in the past as well.
What is important is that we have an intelligible audit log of our system.
If something goes wrong we may have to ask them to send us the log file,”
said Rajeev in a matter-of-fact tone of voice.

His response this time was closer to the truth. Yet in the end there was
no point in arguing with the managing director. The bottom line was that
Rajeev cofounded the company, he won the contract, and you and Brian
were here to fulfill the contract however he saw fit. Rajeev knew how to
keep things running smoothly, despite the inevitable bumps in the road.
The truth was that he wanted the commands for the protocol to be in
ASCII for human resource reasons, not technical reasons. The companies’
software development team was almost exclusively college interns. The
average turnover rate for team members was only six to nine months.
This was hardly enough time for a neophyte to learn the protocol and then
extend it before leaving the company. By making the protocol messages
ASCII instead of binary, the protocol could be learned, monitored, and
debugged more easily.

“Okay, Rajeev,” you concede. “I’ll make the necessary adjustments
and replace the enumeration constants by ASCII strings by close of busi-
ness Monday.”

The first two months on the job had been a crash course on software
reality as opposed to software engineering as you knew it. The company
cared more about your commenting style, indentation style, and variable
and function naming style than anything else. It was as if everything you
learned in school meant nothing, no research into using the best algorithms
and no attention paid to running times. The only priority was to make
the code readable, get it done on time, and try not to let it crash on the
user.

Rajeev’s cell phone rings and with a wave of his hand he brings the
meeting to a close. You and Brian head back to your desks.

“Well, that went as expected,” said Brian.
You nod in agreement. The company had a way of taking a brainless

task and making it even more so. But for the time being it is looking as if
you might actually have something to look forward to. Last night you put
the finishing touches on your latest piece of software and rolled it out, so
to speak. It now resides on every machine in the company, and is ready
to do your bidding. Like a djinni from a bottle the program is prepared
to grant your every wish, no questions asked, and without failure. Only
this djinni gives out more than three wishes.

1. Through Hacker’s Eyes 25

Your job had been to develop the client/server suite from scratch.
The server ran in the background and processed requests made by remote
clients over the local area network. You fulfilled your end of the bargain,
but found the final product to be woefully inadequate for your personal
needs. After all, the server had little if any power over the machine it
ran on and was not amenable to being camouflaged in any way, shape, or
form. So, you took the liberty to develop your own client/server suite. The
key difference being that your server is a Trojan horse that resides deep
within the heart of the operating system. It sends and receives packets at
a subterranean layer of the network protocol stack that is high enough to
facilitate rapid software development, yet low enough to keep the Trojan’s
activities from drawing unwanted attention.

With only two other developers in the room you decide that it’s as good
a time as any to test-drive your new client/server suite. You eagerly fire
up your client program. Your senses are piqued and through the corner of
your eye you take note of what Brian is doing next to you. He is an avid
object oriented programmer and can run circles around you when it comes
to writing anything in excess of 20,000 lines. You’ve got to play it cool this
time, you think to yourself, cool as school. These are no run-of-the-mill
computer users about you. These are young and alert programmers and
unlike the people in marketing you’re always a bit skittish about messing
with them.

You click on a button and row upon row of computers appear on the
screen. They are interconnected by a twisting array of wires and are un-
dulating with a servo-electronic pulse that can only come from something
truly living. Graphical user interfaces always add an extra panaché to
rogue software and are reminiscent of the imaginings of many cyberpunk
novelists. Brian is too close to your machine to be a guinea pig so you
decide to prey on Adrian instead. You move the mouse pointer over his
machine and click on it. His machine slowly rises above the rest. Adrian
has his back to you and his face is buried in a book. It will be his undoing.

Enter your command for this machine, oh great one:

For a fleeting moment you experience a burst of euphoria and power,
but then just as quickly as it came on you lapse back into the reality of
your peon status at the firm. If nothing else you’ll get your kicks. You
click on the button labeled “hardware interrupt.”

26 1. Through Hacker’s Eyes

and which flavor of interrupt will you prefer, oh great one?:

1. key strokes

2. N system beeps

3. N deletes

4. eject CD

5. system reboot in 120 seconds

Cooing inwardly at your creation, you rub your hands together in ea-
ger anticipation. Your Trojan is about to test its wings. Glancing back
over your shoulder, you see that Adrian’s face is still buried in his book.
It is unclear whether it’s a trade book, a software manual, or one of those
Japanese animés he’s always reading. He is an exceptionally good pro-
grammer and to pull one over on him would be a major accomplishment.
He’s also a really great friend, but that is beside the point. You are cur-
rently engaged in an important military exercise and must not let yourself
get sidetracked by unimportant details.

Knowing that Adrian may turn his attention back to his screen at any
moment, you quickly decide to do option 1. He’s currently editing the C
source code to a massive program and you know that he wouldn’t draw
his attention away from his screen unless his program was syntactically
correct. You also couldn’t help but notice that his cursor was at the end
of a statement in main().

A most excellent choice oh great one, and what string shall I conjure?:

You enter the text,

for (;;);

and hit the carriage return. The characters “for(;;);” spring to life on
Adrian’s screen. You immediately quit out of the client program. Unable
to contain yourself, you proceed in the only way you know how to avoid
entering into hysterics. You pick up a book, open it to a random page,
and bite down hard on your free hand. Pain was the only way to contain
the laughter growing inside. The server worked like a charm.

1. Through Hacker’s Eyes 27

Using the reflection in the corner of your screen, you perceive the events
behind you as they unfold. Adrian hits a few keys on the keyboard, drops
the book to his side, sits back in his chair, and waits. He waits as it saves.
He waits impatiently as it compiles. He then waits some more as it links.
As usual, this alone takes so long that he shifts his position to hunch over
the keyboard. He rolls his fingertips on the table in rapid succession and
waits some more as it runs. He waits, and waits, and waits.

“Come on then!” Adrian shouts at his screen.
Adrian finally stood up and threw his book against the wall, cursing

wildly at his screen. The entire ordeal promptly drew the attention of
Brian, who asked him what his problem was. Adrian replied using every
four-letter word imaginable that his machine was busted. He even threat-
ened to throw it out the window. Fearing that Adrian might be a bit too
tightly wound on this particular occasion, you decided to lend some moral
support. You put on your best poker face, spun around in your chair, and
expressed your deepest concern for Adrian’s predicament.

Like it or not, Adrian was forced to experience the halting problem
firsthand. The act of doing so left him quite undone. When Adrian
finally found the infinite loop in his source code, the infinite loop that
materialized out of literally nowhere, he simply stared at his screen and
was unable to utter a single word.

After regaining his composure, Adrian set about trying to determine
what had happened. He downloaded and ran the latest antiviral soft-
ware. He called the help desk to see if the desktop group did anything to
his machine. Despite being poorly versed in Intel assembly language, he
downloaded a disassembler and tried his hand at analyzing the boot sec-
tor. But it was to no avail. In the end he simply could not discern from
whence the offending loop came. Being pressed for time, he eventually
abandoned the hunt altogether.

In all it cost the company an hour or two of Adrian’s time, but the
reparations that it made to your job motivation were without bound. You
simply could not wait to go to work from that day on. Your djinni was
capable of much, much more. It dutifully awaited the arrival packets from
your client and processed them in due course. The network packets came
in two varieties: data and code. The data packets caused the server to
execute predefined commands such as the emulation of keystrokes, and
the code packets were executed by the server verbatim. Every so often a
truly creative prank would occur to you and the code packets sated your
need to perform it on someone’s machine immediately.

28 1. Through Hacker’s Eyes

Yet this particular training drill was but the first of many. Sometime
later a similar opportunity manifested itself and you accepted the call to
action. Howls and hooting emanated from the marketing division and like
a predator to prey your ears perked up. . . .

You look over to Brian, your coworker and soon to be partner in crime.7

“It’s bonehead again,” he says to you with that annoyed look in his
eyes that can only come from one employee who knows that another is
currently getting away with murder.

With Rajeev out smoothing over a client, Eddie took the liberty to
play Quake again, as usual.

Eddie is one of those people everyone can do without. There is nothing
particularly notable about his skill set and it is not clear exactly what his
job responsibilities are. He is simply there. If nothing else Eddie is a
master of keeping himself busy. He manages to find things to do day in
and day out. Sooner or later every new hire learns not to cross swords with
him since he has friends in high places and can make your job miserable
at the drop of a dime.

Brian gets up and heads over to the marketing division and you follow
him. A crowd of people is standing around Eddie’s desk. His speakers are
blaring techno-industrial and the blue-green glow of the game is reflected in
his eyes. Eddie is consumed by his game. Joining the crowd of onlookers,
you notice that he is wielding his favorite weapon, a shoulder-mounted
railgun that fires depleted Uranium shells. He rounds a corner to find
a battle droid directly in front of him. Before it can react Eddie fires
his gun. In a flash of light the weapon sends a shell down the hallway,
leaving a spiral of smoke in its wake. It slams into the droid with a horrific
puncturing sound. The droid was caught off guard and is sent reeling into
the far wall. Its armor plating is badly damaged, but it manages to get
up on all fours. It will take another shot to bring it down. Eddie is doing
quite well and in a matter of minutes he will beat his high score. It just
so happens to be the highest score in the entire company. It’s not like he
doesn’t have enough time to hone his skills or anything.

Smiling inwardly, you excuse yourself to go to the bathroom. As you
head over to pick up the key to the men’s room, you contemplate your
premeditated act. He has it coming to him, you think to yourself. The
guy rubbed your rhubarb the wrong way during your first week on the
job, and now it’s payback time. You pick up the key and head back to

7In a manner of speaking, of course.

1. Through Hacker’s Eyes 29

your desk. You load up your client program, enter a few commands, hit
return, and then terminate the client: Two minutes and counting.

You head back out into the lobby and make sure to make eye contact
with some of the people around Eddie’s desk. It seems that while you were
in the bathroom, Eddie’s machine rebooted for reasons unknown. You had
the pleasure of hearing every delicious detail about it from Brian, who was
as perplexed as everyone else in the matter. For whatever reason the neu-
rons in Eddie’s brain never fired appropriately to make the connection
that you were never around when the digital boogieman struck his ma-
chine. In his mind it was exactly this that exonerated you from his list of
likely suspects.

On one occasion Eddie got so pissed he charged into the development
room on a rampage to discover the identity of the digital boogieman.
He was certain that one of the smart-mouthed developers was to blame.
He did it at lunch hour, immediately following yet another attack on
his system. He moved meticulously from screen to screen, hoping that
somehow despite his complete programming incompetence, he might be
able to glean some incriminating piece of evidence. Like a promising lab
rat, Eddie eventually learned to save his games often, particularly when
he was about to make high score.

But, being the self-appointed sysadmin for your company was not al-
ways so easy. On one occasion Adrian came close to finding your Trojan
horse server. Way too close. In a last-ditch effort to conceal the presence
of your malware, you laid out a series of explanations to divert his search
efforts. It succeeded, and Adrian ended up analyzing benign sections of
the operating system.

In all, the client/server suite performed very reliably, but this did not
prevent the overall series of occurrences from drawing the attention of
upper management. In a rather bizarre turn of events, you were asked to
investigate the suspicious string of events at a team meeting. Your were
the resident security expert and so Rajeev figured you were the man for the
job. He would probably reimage everyone’s machine before outsourcing
the problem to another company. Rajeev liked to save money that way.
The irony of the request hit home and so you decided that you’d better
cool down a little. You thought about it but could not get yourself to take
down any of the rogue servers. So, you decided to simply maintain a lower
profile instead. You disciplined yourself not to reboot Eddie’s machine for
the heck of it, but rather only rebooted it when he was asking for it.

The game suddenly came to a grinding halt when one day you found

30 1. Through Hacker’s Eyes

that you could no longer get to the desktop on Eddie’s machine. Facing
the screen, you looked at it in amazement. It had nothing on it save for
a modal window that prompted you for a password. It seems that Eddie
was trying anything and everything to keep the boogieman off his machine.
Luckily Eddie’s machine was free for you to use since your current task
involved software testing, and it was important that the final product be
compatible with Dell machines. Eddie had the misfortune of having the
only Dell in the company.

Without arousing any suspicion, you sat at his desk during lunch hour
and tried to break in. You tried everything you could think of but it
was to no avail. The machine was locked down. The floppy you held
and the Trojan it contained could not be executed, and you suffered an
infuriating defeat. Before leaving for the day, you took the liberty to
scour the shelves in marketing for the software that successfully thwarted
your attacks. Sure enough, the offending product was located not five feet
from Eddie’s machine. It was a shrink-wrapped disk-locking program.
You plucked it off the shelf and read the back of the box.

“with our patented technology. . . keeps unwanted intruders at bay, al-
lowing your data to remain safe from modification and prying eyes.”

Raising a brow, you conceded that you fell squarely into the category
of unwanted intruders. You placed the box back on the shelf and left work
seething with animosity.

That night you contemplated the day’s events. Having never played
with a disk-locking program before, you were left to hypothesize how it
worked. While pondering how such a program could render your efforts
so ineffective you reached the stark conclusion that all attempts to break
in would be futile.

The following simple design would be good enough to thwart all of
your attacks. A small partition could be created on the hard drive next
to the resident operating system. The partition would be populated with
a small boot program that is capable of sending control to the resident
operating system. The file system or critical portions thereof could be
encrypted using a cipher like 3DES that uses Eddie’s password as the
key. His key would therefore be needed to decrypt it and the key would
not be stored anywhere on the disk. Furthermore, a checksum C could be
computed by running Eddie’s password through a cryptographically strong
one-way hash function. The value C would be stored internally in the new
partition. When the computer reboots, the partition program would get

1. Through Hacker’s Eyes 31

control first. It would prompt you for the password, hash whatever you
enter, and then compare the result to C. If they matched, it would then
decrypt the file system using the password you supplied. If they didn’t
match, then it would tell you that the password was incorrect. When
implemented properly you could stare at every single bit on the hard disk
and still have no clue what Eddie’s password is. The method effectively
cripples the underlying file system and only when it is uncrippled is it
possible to install rogue software.

Whether or not this is the way Eddie’s program actually worked was
immaterial. It did not change the fact that it could have been written this
way. So, there is no reason in theory that you should be able to get back
on his machine. It was bad enough that a shrewd sysadmin could easily
track your activities when you ran the client. This is the same problem
that you faced when you accessed the password-snatching Trojan back at
school. What this situation spelled out was much worse. It meant that in
order to hack into Eddie’s machine it was not enough to be the world’s
greatest hacker. You had to be the world’s greatest cryptanalyst.

In the end Eddie’s machine succumbed to a Trojan horse attack that
commenced from a floppy inserted into his machine while he was present.
He was the one who did the honors by double-clicking on the infected
program, and so he was the one who let you back into his machine. From
then on the servers paid particular attention to all keystrokes that the
users entered into their machines and the lockout never occurred again.

However, the final victory did nothing to ease the mental repercussions
that ensued. The initial failure was bitterly tangible and wore on your
ego. The fact that someone like Eddie with no understanding of computer
security whatsoever could simply install an intelligently written program
and lock you out was disheartening to say the least. The disk-locking
program accomplished its directive, and accomplished it well.

This was not the first time that you had been denied access to a ma-
chine. Everyone has seen password screens without knowing a valid pass-
word to enter. What this situation implied was quite different. Here you
had the entire hard disk at your disposal along with the technical savvy
needed to analyze it and still you could not get in. No other situation you
had ever encountered illuminated the true power of cryptography more
than this. Crypto was not merely being used to prove Eddie’s identity
or conceal his data from your prying eyes. In this situation, crypto was
being used to keep you from modifying Eddie’s data in any meaningful
way. For hours you dwelled on the issue and in the end, accepted defeat.

32 1. Through Hacker’s Eyes

Just how broad is this field that hampered your Trojan horse attack so?
In what other ways can cryptography foil hacking attempts? In gaining
an understanding of the cryptographic defense that foiled your attack, a
Pandora’s Box of possibilities was opened to you.

In those last few months on the job you infused your brethren with an
inexplicable sense of hope in the workplace. It seemed that justice was
in fact a thing of this world, and that the old saying “what goes around
comes around” is true indeed. It’s just that at your company, it seemed
to come around a lot sooner for some reason. Being the good Samaritan
that you are, you confided in Brian in your final week about the Ethernet
client/server suite that you concocted. The torch was passed on to Brian
to help make the company a more bearable place to work.

In the years that followed you heard through the grapevine that a
database weenie joined the team. He had an affinity for music, and brought
with him a CD collection that filled an entire wall. The tortured soul
suffered from a mental condition that compelled him to listen to Kenny
Rogers CDs over and over again. He quickly learned that the gods of the
almighty CD-ROM did not share his taste in country-western, and they
showed their wrath by ejecting his compact disks at every turn.

. . . and so began the quest, born of questions unanswered, to confirm
intuitions and discover yet newer possibilities, a quest that would lead to
a mathematician buried beneath tome and scroll in an ivory tower to the
south wherein these words were inscribed. . . uimibfdscjuiebuspfxfjtjtg!

Chapter 2

Cryptovirology

The digital realm is a truly magical one indeed. Where else can
an object be conjured out of thin air, be teleported across vast
distances, be duplicated in its exact form, be rendered invisible
at the blink of an eye, and be cast back into oblivion?

Professor Matt Blaze bounded from one end of the chalkboard to the
other scrawling the words “multilevel security” as he went. When he fin-
ished he turned to face the class and waited patiently as the students
distributed the handouts to each other. He rubbed his eyes under his
glasses and then glanced at his cell phone, the same cell phone that Cus-
toms gave him such a hard time about when he went on a trip to the
Caribbean. Apparently it was suspected as being a high-tech encryption
device, an article considered to be munitions under ITAR regulations. The
fact that customs was suspicious is not surprising given the nature of his
research. If you were a cryptographer you’d recognize him on sight for his
contributions to the field, and if you weren’t you would be certain due to
his outward appearance that he could dismantle and reassemble a com-
puter system at a glance. He just had that intelligent, computer-savvy
look about him.

When I received my copy I looked at it and couldn’t wait to read it.
In the center of the page was a mug shot of the infamous hacker Kevin
Mitnick. It was a clip from the morning paper, and before diving into the
theory of secure operating systems Matt took the time to discuss the truly
historic events that were unfolding outside of the classroom. Tsutomu
Shimomura was hot on the trail of Kevin Mitnick and Matt made a point
of keeping us informed of the events as they occurred. Having already
read The Cuckoo’s Egg [294] and Cyberpunk: Outlaws and Hackers on the

33

34 2. Cryptovirology

Computer Frontier [127], I appreciated both the significance and difficulty
involved in tracking such a notorious hacker. The combination of news
discussions and spellbinding lectures captivated the class and created a
general feeling that we were all a part of something larger than ourselves
in that Fall ’95 course on computer security.

Matt’s enthusiasm towards computer security was contagious, and the
topics on his syllabus were fascinating: multilevel security, public key
cryptography, zero-knowledge protocols, just to name a few. He brought
in several guest lecturers to add to his presentations. Among them were
Jack Lacy and Joan Feigenbaum. Matt, Jack, and Joan were from AT&T,
a baby Bell that descended from Ma Bell. In 1984 the federal government
forced Ma Bell, then a solitary goliath in the telecom industry, to break
up. To many the mere mention of Ma Bell still conjures up visions of old
men pacing the corridors and ramparts of Bell Labs with staves in hand,
contemplating technologies that would take decades to reach maturity.

Jack Lacy discussed the cryptographic library called CryptoLib that
he helped to develop [166]. His lecture covered the library and the algo-
rithms that it used. Only later did I learn how advanced the library was
in comparison to the GNU projects’ multiprecision library, GNUmp. To
implement modular exponentiation, Cryptolib utilizes Karatsuba multi-
plication, Montgomery reduction, and vector addition chains. Also, in the
case that the multiplicands are identical, a well-known squaring speed-up
is utilized. At that time GNUmp did not incorporate all of these algo-
rithms. The lecture covered many aspects of algorithmic number theory,
and showed just how involved the programming can get when implement-
ing cryptographic primitives.

Lacy went on to describe the random number generator used in Cryp-
toLib called truerand. The truerand algorithm exploits the fact that most
motherboards come equipped with two crystal timing devices. One crys-
tal is used to generate the real-time clock signal and the other is used
to generate the CPU clock signal. The CPU crystal operates at a much
higher frequency than the clock crystal. Truerand pits these two oscillators
against each other and extracts randomness based on their discrepancies.

Truerand operates as follows. Initially, a global Boolean flag F is set to
false and a local variable i is set to zero. Then, the address of a call-back
function is passed as an argument to an operating system call that sets an
alarm. The alarm is set to go off in one tick.1 The call-back function sets
F to true and then terminates. After the operating system call is made,

1A tick is typically 1/60th of a second.

2. Cryptovirology 35

a while loop is entered in which i is incremented by one in each iteration.
The loop terminates only when F is set to true, which occurs when the
call-back function is invoked by the operating system. The key to the
operation of truerand is that it will not always take exactly one tick for
the timer to go off, and hence the number of increments of i is dictated
by the number of CPU instructions executed within that time. In theory,
the inconsistencies in the total number of CPU instructions executed until
the alarm goes off will be reflected most in the least significant bits of i.
In multitasking operating systems great care must be taken to verify that
the counter gets incremented a sufficient number of times.

Joan Feigenbaum gave a lecture on zero-knowledge interactive proofs
(ZKIP). A ZKIP is a protocol that allows a prover to convince a verifier of
some fact without revealing why the fact is true to the verifier [118]. For
example, there exists a ZKIP that allows a prover to prove that n = pq
is the product of two primes without revealing either prime p or q to
the verifier. A zero-knowledge proof of knowledge is similar to a ZKIP,
however, it also proves that the prover knows some fact, for example, the
prime p in n = pq. The fact that the prover knows this prime implies
that the prover can write it down. There are numerous ways to utilize
such protocols to make computer systems more secure. In the military,
a fighter pilot needs to be able to identify an inbound warplane as being
a friend-or-foe. This can be accomplished by assigning to each fighter
pilot a unique composite n. Each pilot can be ordered to prove knowledge
of the factorization of his or her own value n when approaching another
aircraft. ZKIPs are ideal friend-or-foe protocols since they reveal nothing
to the enemy over the airways that would allow the enemy to impersonate
friendly craft in the future.

In computer authentication systems, ZKIPs operate in much the same
way. The user wants to be able to prove his or her identity to the computer
system without revealing any information that would allow a hacker to
impersonate the user at a later time. The zero-knowledge aspect of the
proof implies that a password-snatching Trojan will be unable to collect
information that will enable the Trojan horse author to impersonate the
user. This holds true even if the Trojan observes every single log on
that takes place. Due to the slow but sure introduction of smart card
technology, the days in which users authenticate to sensitive systems using
passwords are undoubtedly numbered.

Perhaps one of Matt’s most interesting lectures was the one covering
the elegant symmetric cipher called TEA. Whereas most ciphers are de-

36 2. Cryptovirology

signed to be both fast and secure, the Tiny Encryption Algorithm [317]
was specifically designed to be tiny as well. This has the benefit of tak-
ing up less disk space, less random access memory, and so on, since the
algorithm itself is so small. Matt indicated in his lecture that anyone who
could break TEA would have a result worthy of scientific publication. To
prod his students into actually thinking about the problem he gave out
an intriguing assignment. He asked us to figure out the TEA decryption
algorithm given only the encryption algorithm.

The reason that breaking TEA is such a challenge is that it is a full-
fledged 32-round Feistel cipher.2 So, the almighty gauntlet had been
thrown down. But, rather than beating my brain against a wall try-
ing to investigate how to break TEA, I decided instead to investigate how
to use TEA to attack computer systems. I marveled at and extolled its
compactness and strength. It is ideal for incorporation into code that’s
not supposed to be there. When the lecture ended I headed out for a bite
to eat with the revised challenge foremost in my mind.

My favorite haunt between classes was Amsterdam Pizza, located di-
rectly across from the Columbia University engineering building. There is
a certain comfort to walking into an eatery, getting food, and sitting down
without breathing a word. It is a courtesy extended only to true regulars.
Smiling at the cashier, I took my slices and soda and sat down at a small
table.

While looking past the line of people to the avenue beyond, I con-
templated TEA. Never had I dreamed that such a strong cipher could be
implemented in four lines of C code. The fact that it constituted a full-
fledged Feistel cipher while being so compact was impressive indeed. It
seemed that there had to be some novel application of TEA to computer
viruses. Most viruses use trivial encryption techniques such as repeated
XOR encryption to hide their code. This form of encryption uses a ran-
domly chosen key over and over to encipher the bulk of the virus, and is
not secure since the key is reused.3 It became apparent that TEA pos-
sesses the potential to make polymorphic viruses much harder to detect.

2Some security issues have been uncovered [153] and an improved version called
XTEA has been proposed [318]. XTEA is given in Figure 2.1. A weakness in XTEA
was addressed by the authors [319]. XTEA has been cryptanalyzed when reduced to
14 rounds [195].

3The Vernam cipher uses a One-time pad and is subject to known-plaintext attacks
when some or all of the pad is reused.

2. Cryptovirology 37

/* XTEA

v gives the plaintext of 2 words

k gives the key of 4 words

N gives the number of cycles, 32 are recommended

if negative causes decoding, N must be the same as

for coding

if zero causes no coding or decoding

assumes 32 bit "long" and same endian coding or

decoding */

tean(long *v,long *k,long N)

{

unsigned long y = v[0],z = v[1],DELTA = 0x9e3779b9;

unsigned long limit,sum;

if (N > 0) /* the "if" code performs encryption */

{

limit = DELTA * N;

sum = 0;

while (sum != limit)

y += (z << 4^z >> 5) + z^sum + k[sum&3],

sum += DELTA,

z += (y << 4^y >> 5) + y^sum + k[sum >> 11&3];

}

else /* the "else" code performs decryption */

{ /* IT IS TRULY MINUSCULE */

sum = DELTA * (-N);

while (sum)

z -= (y << 4^y >> 5) + y^sum + k[sum>>11&3],

sum -= DELTA,

y -= (z << 4^z >> 5) + z^sum + k[sum&3];

}

v[0] = y;

v[1] = z;

return;

}

Figure 2.1 Extended Tiny Encryption Algorithm

38 2. Cryptovirology

The tiny decryption algorithm could be used in the decryption header and
the body of the virus could be encrypted using a strong Feistel cipher.

I then turned my attention from defensive applications to offensive
applications of TEA. Having read about the One-half virus, I wondered if
TEA could make virus attacks more devastating. The One-half virus uses
encryption to render information on the hard disk inaccessible. The virus
stores the decryption keys in the partition table on the infected machine.
When the virus is in memory, it decrypts the data when it is accessed
so that the user will not notice that the encryption occurred [123]. The
novelty behind this attack is that it integrates the virus with its host to
a certain degree. However, since the key can be extracted by specially
designed software and the encrypted data can be decrypted, the attack is
somewhat weak. Therefore, the attack really only contributes one more
hurdle to the disinfection process.

It would be possible to modify the One-half virus so that it never de-
crypts the host information. The decryption algorithm could be removed
from the One-half virus in an attempt to give the virus writer an exclusive
advantage over the victim: since only the virus writer knows the decryp-
tion algorithm, only the virus writer can restore the data. However, this
logic is flawed since, as illustrated by Matt’s homework assignment, it
is often possible to derive the decryption algorithm from the encryption
algorithm alone.

Alternatively, a virus could be designed to encrypt the data using TEA
and then throw away the key as a means of destroying the data. But a
much stronger attack is to simply delete the data. It was apparent that
the compactness of TEA would not improve the attack carried out by the
One-half virus.

The One-half virus is a perfect illustration of the Achilles heel of
viruses. The vulnerability of viruses lies in the fact that they are in-
herently scrutable once found. Using the model of computation known as
a Turing machine, a virus can be viewed as a state-transition table and a
starting state. When an antiviral analyst gets a hold of a virus, the ana-
lyst learns the table and starting state and therefore learns the operations
that the virus is programmed to perform.

It was at this point in time that the improvement to the One-half virus
became clear.4 The attack carried out by the One-half virus is repairable

4It was one of those situations in which you know things are happening around you
but you are zoned out completely. I happened to be watching livery cabs speed uptown
but was scarcely aware of it.

2. Cryptovirology 39

for the simple reason that the view of the virus writer and the view of the
antiviral analyst are symmetric (see Figure 2.2).

It was the word symmetric that triggered the realization. The key
needed to be removed from the antiviral analyst’s view but not from the
virus writer’s view. This would make the views asymmetric. Matt had
recently given a lecture on asymmetric cryptography, also known as public
key cryptography. It became immediately apparent that by using asym-
metric cryptography the views could be made asymmetric.

In this new attack, a public key cryptosystem such as RSA [245] is
used in the payload of the virus. The virus author generates an RSA key
pair specifically for the purpose of mounting the virus attack. The key pair
is generated once and for all before the virus is deployed. The public key
is placed within the virus and the corresponding private key is not placed
in the virus. The private key is kept secret by the author. The viral
payload may be triggered by a particular event or date, for instance. The
payload encrypts critical host data using the public key, thereby taking
the data hostage. From the definition of a public key cryptosystem, it is
not possible to derive the private key from readily available information
such as the public key, which may be extracted from the virus. As a result
antiviral analysts will not be able to determine the private key from the
virus5 (see Figure 2.3). If there are no backups, then only the virus author
will be able to restore the encrypted data because only the virus author
knows the needed RSA private decryption key.

Only later did it truly sink in that it was the notion of computational
intractability that made the virus so powerful. When the virus is scru-
tinized by an antiviral analyst the RSA public key (e, n) will be found
where e is the public exponent and n is the product of two primes p and
q. However, no matter how carefully n is studied it will not reveal its
prime factors p and q, thereby breaking the symmetry.6 For the victim
to recover all of the lost data without the involvement of the virus writer
and without backups, the victim would have to break RSA.

That evening the idea thoroughly congealed in my mind and I consid-
ered the best course of action. The idea had a definite academic ring to

5This means that even though the state-transition table and starting state of the
virus are known, the private key will remain hidden from antiviral analysts.

6To be technically accurate, RSA is based on the difficulty of computing eth roots
modulo n. Also, every RSA ciphertext leaks the Jacobi symbol of the plaintext. Public
key cryptosystems with stronger security properties are discussed at the end of this
chapter.

40 2. Cryptovirology

Figure 2.2 Symmetric views of the virus

it since it fell squarely into the category of denial-of-service attacks which
are attacks that deny one or more users access to computer resources. The
attack is a form of denial-of-service since in the absence of backups the
host can no longer access the encrypted data. But, this attack had a twist
to it. Since the data can be restored using the private key, the attack was
suitable for extortion.

The computer science department offers an optional master thesis
course that is geared towards students who want to pursue a particu-
lar research topic. It seemed to me that this discovery merited a master’s
thesis, but in the end the decision would ultimately fall on the shoulders of
a faculty member. It had the potential of killing two birds with one stone:
develop a prototype while satisfying course credits towards the degree.
The challenge, then, was to solicit the involvement of an Ivy League fac-
ulty member to help investigate a computer virus with an unprecedented
payload.

On the following day, a staff member of the computer science depart-
ment named Alice Cueba took the time to assist me in seeking a thesis
advisor for the idea. Alice knew all the visiting professors as well as all
the full-time faculty members, some of whom were on sabbatical. She has

2. Cryptovirology 41

Figure 2.3 Asymmetric views of the virus

seen more undergraduates and graduates through their educational careers
than I can imagine, and I knew that if anyone could pull some strings to
find someone willing to get involved in this questionable research topic
it was she. Alice spoke with Professor Galil and together they suggested
that I contact Professor Blaze and a guest of the department named Moti
Yung. At the time Moti was a researcher at the IBM T. J. Watson Re-
search Center. Soon after I met Moti for the first time, and I will never
forget the encounter.

Fear gripped me as I approached his office. The idea had already
been laid bare via e-mail and his true intentions for the meeting could
not be ascertained. Academia is riddled with burnouts, student-haters,
and petty thieves of ideas, so I had no idea what to expect. For the first
time in my life I had opted to come clean with a hacking idea and it felt
like I was confessing to something that I hadn’t even done. Would he
belittle the idea? Would he publish it himself? Would he interrogate me
about my past history and then seek my expulsion through the Dean’s
office? The answer to all these questions was no. Amid walls of books and

42 2. Cryptovirology

mountains of papers Moti addressed me as a would-be peer and had me
utterly disarmed within an hour. . . .

* * * * *

When Adam first set foot in my office it was immediately clear that he
was on a mission of some sort. He was shifty-eyed and sat at the very edge
of his seat. On occasion he would look over his shoulder to see if anyone
was listening to him, and he appeared ready to bolt out of my office at
the slightest provocation. It wasn’t as though he seemed guilt-ridden or
anything. Yet there was an unmistakable tinge of something that weighed
heavily on his conscience. In all likelihood it was the disclosure of the idea
that made him feel uneasy rather than my affiliation with the computer
science department. After all, I was a stranger to him and he had openly
admitted via e-mail that he was interested in researching ways of taking
other people’s data hostage, literally.

I did what I could to put him at ease. I made no sudden movements7

and began by asking him rather mundane questions such as how long he
had been at Columbia and who his faculty advisor was. He replied by
saying that he’d been there for a year and that Steven Feiner was his
advisor. We talked briefly about Feiner’s work in computer graphics, and
the conversation slowly moved on to the city of Manhattan, and then onto
where Adam did his undergraduate studies. Overall it seemed as if Adam
wasn’t quite sure what he was getting himself into, but on some level it
appeared as though he believed he was doing the right thing.

What Adam did not realize was that I was already interested in attacks
on computer systems. It is from such threats that security requirements
are identified, and they stimulate the development of new and improved
models and tools for securing computer systems. I welcomed the oppor-
tunity to talk with him about computer viruses, since I had predicted
long ago that they will become increasingly vicious, dynamic, and vir-
ulent. Viruses were the primary motivation for an earlier work that I
did with Ostrovsky on how to withstand mobile virus attacks [215]. This
threat model grew into what is now known as the proactive security model,
which allows for dynamic and non-monotone corruption of machines on a
network. Researchers have to be at least one step ahead of the game in
order to safely handle new attacks. This belief suggests that novel threats

7Slight exaggeration.

2. Cryptovirology 43

have to be exposed, through scientific publications, conferences, and so
forth, so that the necessary infrastructures are developed. Several ques-
tions had occupied my mind upon reading his e-mail and meeting him for
the first time.

How do you deal with a student who has just rediscovered in a negative
light the enormous power of public-key cryptography? Public-key cryp-
tography is the power of breaking symmetries between parties such that
one party can compute something whereas another party cannot. This
power is what makes modern cryptography a science that constantly sur-
prises and mystifies. It is a science in which seemingly paradoxical and
unsolvable problems are solved, problems like “how to flip a coin over the
telephone.”

How do you deal with a student whose apparent goal is to improve
computer virus attacks and capabilities? After all, virus study is danger-
ous and represents a threat in and of itself since experimentation can lead
to accidental viral infections. Great care must be taken to isolate any and
all machines that are used for experimentation.

How do you deal with a student who has a solid background in engi-
neering but doesn’t even know the basics of modular arithmetic? Number
theory is at the very heart of modern cryptography. He was well versed
in continuous mathematics as any student of electrical engineering should
be, yet he had never even heard of the extended Euclidean algorithm when
I first met him. This became clear after I realized that, despite having
applied public key cryptography to virus attacks, he didn’t even know how
to compute an RSA private exponent given the public exponent and the
two private primes.

These questions would all be answered in time. When Adam asked
me if I would be his master’s thesis advisor, I gladly accepted the posi-
tion.8 His academic interest in pioneering virus attacks seemed genuine. It
nonetheless became quickly apparent that his understanding of computer
viruses exceeded the norm, and this suggested that he had conducted ex-
tensive experimentation on his own. I advised him to start learning about
number theory, so he went out and bought Underwood Dudley’s book on
the subject [96]. Every so often he’d hit a roadblock of some sort when
trying to understand a cryptosystem that he’d never seen before, and I
would always explain it to him.

8The cryptovirus attack first appeared in A. Young, “Cryptovirology and the Dark
Side of Black-Box Cryptography,” Master’s Thesis, Comp. Sci. S6902, Columbia
University Dept. of Comp. Sci., Summer, 1995, advisor: Moti Yung.

44 2. Cryptovirology

It was a special time for me, because I found that I was learning as
much from him as he was from me. It is the type of student-teacher
relationship that every faculty advisor strives for. However cliché it may
be, Einstein’s statement that “imagination is more important than knowl-
edge” could not be truer with respect to scientific exploration. Adam’s
enthusiasm for malicious software drove him to study branches of mathe-
matics that he probably would have never learned otherwise. As for where
the research was heading, I did not know. Yet all of the ingredients for
a promising student were present, so I decided to build on his natural
enthusiasm for the subject, and decided that whatever he would learn and
whatever direction his research would take him would be up to him.

Going forward I decided to lay down only a minimal set of principles
as well as a general framework for our collaboration. It was to be a
scientific endeavor rather than a rogue operation. There would be no
accidental release of viruses. In fact, there would be no public disclosure
of executable code at all.

We also discussed the rationale behind publishing information warfare
attacks. I explained that the wisdom of the open research community
as a whole, due to peer reviews, competition, and collaboration, is vast
and that the scrutiny of ideas helps to make systems more secure. Closed
research communities have proven to fail in the past. A classic case is
the secret design behind the Clipper chip that fell from grace due to the
attacks that were found against it. Only the input/output specification
and the chips themselves were made available, yet attacks were nonetheless
found based on the size of its parameters [28] as well as the binding of
its authentication [104]. I explained to him that I agreed to investigate
cryptovirology because it is interesting in its own right, and because I
believed in the importance of researching defenses against cryptovirology.

From this point on working with Adam was like working with any of my
previous graduate students. The motivation and insight that researchers
have on cryptography varies greatly from person to person. Some peo-
ple are driven by the underlying mathematics, some by system security
aspects, some by theoretical considerations, and still others by practical
every-day considerations. Adam approached cryptography from a com-
pletely different angle than others, and it was a new perspective for me.

During the course of our research we began referring to the virus as
a cryptovirus. I coined the term cryptovirus to describe them since it
accurately describes their modus operandi. A cryptovirus is a computer
virus that contains and uses a public key. The original definition stipulates

2. Cryptovirology 45

that the author knows the private key, but this aspect of the definition
can be weakened. Polymorphic viruses have used symmetric encryption
for a long time, and it is fitting to employ a new name for viruses that use
public key cryptography. Cryptoviruses are unique due to their ability to
perform one-way cryptographic computations that only the virus writer
can undo.

* * * * *

And so it was that the first cryptovirus was researched under the aus-
pices of Columbia University. In the weeks that followed we met regularly
in the Mudd building alongside Amsterdam Avenue. During our collab-
orations we realized two shortcomings in the attack. First, in order for
the virus to encrypt a significant amount of data it would be necessary
to break the data into chunks that could be encrypted using RSA. Since
RSA encryption is slow in comparison to symmetric ciphers, this meant
that the attack would take a long time for the virus to carry out. Also,
if the virus writer were to simply give the private key to the victim then
the victim could publish the private key and foil any attempts to extort
other victims. The virus writer could instead demand that he or she be
given the ciphertext in order to perform the decryption, but this would
require a huge file transfer. It is also quite possible that by exposing the
host data to the virus writer, its value would significantly diminish.

We discovered that all of these shortcomings could be resolved in one
fell swoop. In this more refined attack, the virus does not encrypt host
data directly with the public key. Instead, it generates a symmetric key
uniformly at random and then encrypts the host data using this key. The
public key in the virus is then used to encrypt the symmetric key. This
is known as hybrid encryption. If the victim wants the data back, the
victim has to send the virus writer the ciphertext of the symmetric key.
The virus writer then decrypts the ciphertext using his or her own private
key and then sends the symmetric key to the victim. To preserve that
attacker’s anonymity an anonymous remailer can be used to carry out the
transaction. The attack will only work if there are no backups of the host
data, and if the virus was not being observed while mounting the attack.
Since the symmetric key is chosen uniformly at random for each victim,
publication of the symmetric key is not likely to be of any use to other
victims.

46 2. Cryptovirology

With a solid and carefully planned viral payload, we set out to create
the first cryptovirus. A Macintosh SE/30 computer was chosen as our
test bed. The latest copy of the GNU multiprecision library was obtained,
and was modified as necessary to compile on a Macintosh. Only a small
fraction of the GNU multiprecision library was needed, yet it was still
large enough that it comprised the majority of the cryptovirus. Part of
the virus was written in ANSI C and part of it was written in Motorola
assembly language. Before the first version of the virus was compiled,
assembled, and linked, logic was included to prevent replication on any
machine other than the SE/30. It was of the utmost importance that
it not escape. It would have been incredibly embarrassing for Columbia
University if it did.9 The virus was not polymorphic and was not designed
to bypass any antiviral software whatsoever. As an added precaution, a
snippet of the virus was taken and used as a search string. Antiviral
searches were performed regularly using this custom virus definition to
keep the virus in check.

The hybrid cryptosystem for the virus consisted of RSA and TEA.
To generate symmetric keys randomly, AT&T’s truerand was used [166].
Truerand was critical since any weakness in it might give rise to a way
for victims to derive some or all of the bits of the symmetric key used
in the attack. Any weaknesses in truerand, TEA, or RSA would imply a
weakness in the cryptovirus attack.

Truerand can be invoked ad infinitum, producing an endless stream of
random numbers. As a result the cryptovirus can be viewed as a proba-
bilistic algorithm with access to randomness that is generated by a phys-
ical device. The original cryptovirus used the raw outputs of truerand
to generate the symmetric encryption key. However, an entropy extrac-
tion algorithm should be applied to the output of truerand to remove any
potential bias.

Table 2.1 gives a synopsis of the speed of the Macintosh cryptovirus.
The cryptovirus contained a 512-bit RSA public modulus. This is a bit
small by modern standards. RSA key lengths of 768 or 1024 bits should
be used today. The virus generated 384 random bits. This was used to
derive Initialization Vector (IV) information and two 128 bit symmetric
keys denoted by k1 and k2. The virus computed a checksum using cipher
feed-back mode (CFB) on a file entitled ‘payroll’ that the fictitious virus

9I had grown very fond of my alma mater after meeting Moti and it seemed that
Columbia was sticking its neck out to accommodate my abnormal, albeit academic
research interests.

2. Cryptovirology 47

system boot (no attack) < 16.7 msec
infect a program ≈ 1 sec
infect file ‘System’ ≈ 4 sec
perform RSA encryption = 66.7 msec
generate 384 random bits = 6.4 sec
system boot (w/ attack) = 11.92 sec
TEA encr. rate (1 round) = 47k bytes/sec
TEA encr. rate (3 rounds) = 15.7k bytes/sec

Table 2.1 Running time of the virus

code size bytes source language(s)

attack routines ‘main’ 434 ANSI C
TEA encryption routine 88 Asm
truerand size 124 Asm
misc. attack code 804 ANSI C
global data 560 N/A
modified GNUmp lib 4,372 ANSI C

entire attack routine 6,382 ANSI C/Asm
main virus routine 614 Asm

total virus size 6,996 ANSI C/Asm

Table 2.2 Size of the virus

author demanded. The block cipher that was used in CFB was TEA in
encryption-decryption-encryption mode. The EDE mode first encrypts
the plaintext with k1 then decrypts the result with k2 and then encrypts
that result using k1. A keyed cryptographic checksum h that uses keys k1,
k2 can be implemented using CFB as follows.

h(IV, k1, k2,m) = last(CFB(IV, k1, k2,m)) (2.1)

The checksum is computed on a message m. The function last denotes
the final ciphertext block in the CFB ciphertext. A nice aspect of this
checksum algorithm is that it requires very little code above and beyond
the code needed to perform CFB encryption.

48 2. Cryptovirology

The virus then encrypted the confidential file entitled “e-money” using
TEA in EDE mode. The original file was overwritten with the ciphertext
in the process. The checksum, initialization vector information, and the
two TEA keys were encrypted using the 512-bit RSA public key. The IV
that is used in the encryption of the file “e-money” and both keys are
needed by the victim to recover the file “e-money.”

In this hypothetical cryptovirus attack, the author demands the file
“payroll” from the victim. The author does not help the victim unless
the proper file “payroll” and the RSA ciphertext are obtained. Upon
receiving the 512-bit RSA ciphertext from the victim, the virus author
decrypts it using the RSA private key, thereby recovering the checksum,
IV information, and both TEA keys. The author computes a checksum on
the provided file using the IV and both keys that were recovered from the
RSA ciphertext. The file “payroll” is accepted as being valid if and only
if the resulting checksum matches the checksum from the decrypted RSA
ciphertext. If the “payroll” file is valid then the two TEA symmetric keys
are given to the victim to allow the victim to decrypt the file “e-money.”
The virus computes the checksum and asymmetrically encrypts it along
with the TEA keys to prevent the victim from sending an alternate version
of the “payroll” file.

Speed was an important factor in benchmarking the cryptovirus, since
as indicated by the table it took a noticeable amount of time to generate
the 384 random bits. Table 2.2 shows the size of the resulting cryptovirus.
The virus was written in Motorola assembly language and ANSI C.

With a prototype in hand as well as data on its performance, we wrote
a paper about it that was submitted to the IEEE Symposium on Security
& Privacy.10 The paper was accepted and was presented on May 7, 1996
[332].11 To notify the scientific community of this threat, a message was
posted to the sci.crypt newsgroup that explained the use of asymmetric
cryptography to mount a reversible denial of service attack [330].

Since the time of the conference, a number of reports, presentations,
books, and so on, have discussed cryptoviral extortion. Many of these dis-
cussions define cryptoviral extortion as a “virus that encrypts the victim’s
files,” without mentioning anything specific about the type of encryption

10See the call for papers in [285]. Certain members of the program committee were
vehemently opposed to its publication. The notion of a digital facehugger was appar-
ently perceived as “vulgar” and non-scientific.

11The paper was presented in the session entitled Biologically Inspired Topics in
Computer Security. The program for the conference appears in [206].

2. Cryptovirology 49

algorithm that is used by the virus (e.g., symmetric, asymmetric, hybrid).
In one example [86], it is stated that a “cryptovirus” has a payload that
encrypts files with a secret key, making the contents inaccessible to the
owner. In the cryptoviral extortion attack that we designed, the cryp-
tovirus either (1) encrypts files with a public key, or (2) encrypts a session
key with a public key and then encrypts files using the session key. Asym-
metric encryption is central to a secure (from the perspective of the virus
writer) cryptoviral extortion attack since the decryption key cannot be re-
covered from an old copy of the cryptovirus. Viruses that do not employ
asymmetric cryptography do not mount the cryptoviral extortion attack
as defined in [332].

Initially, the combination of software attacks and cryptographic tech-
niques appeared to be quite powerful and this has proven to be even
more so today. What we noticed over the years is that advanced and
provably secure malware attacks are made possible by advances in crypto-
graphic models and algorithmic constructions. Examples of such advances
include: trapdoor functions, semantic security of encryption, cryptograph-
ically strong pseudorandomness, the random oracle model, and so forth.
These are cornerstones for building secure cryptosystems and proving that
they are so. Our research has shown that these tools can be used to de-
vise attacks that are not detectable and that bestow unusual powers to
the attacker. This is not unlike using missiles to take down missiles, i.e.,
fighting fire with fire.

Later on in this book we describe cryptotrojan attacks that leak private
keys to the attacker. The approaches that are taken to prove the security
of the attacks are reminiscent of approaches used in proving the security
of many modern cryptosystems. We investigated cryptovirology and then
moved on (without even realizing it at first) to a subject that we later
called kleptography. From there we moved to other subjects that turned
out to be closely related. Scientific exploration is hard to control and even
harder to predict, and our joint research has led us to places that we did
not expect to go. But it has been our experience that this is the way that
things usually turn out in research.

The remainder of this book is not going to read like the text in Chapters
1 and 2. The purpose of these first two chapters was to expose some of
the motivation and history behind cryptovirology. This is where the pedal
hits the metal, so to speak. The remainder of the text is saturated with
equations and algorithms. However, scattered throughout are ideas and
attacks that are explained at a relatively high level. So, we encourage

50 2. Cryptovirology

readers to keep reading and not be discouraged by the technical details.
To us, playing the role of the bad guy is tremendous fun and we hope that
readers will get a kick out the book, however sinister it may seem.

Chapter 3

Tools for Security and
Insecurity

Cryptosystems and cryptographic protocols rely on various tools to be
implemented properly. Perhaps the most basic tool is a random bit gen-
erator.1 Random bit generators are used to randomly generate symmetric
keys, private keys, padding, and so on in cryptography. They form the
cornerstone of algorithms designed to protect computer systems and the
cornerstone of algorithms that are designed to subvert computer systems.
A poor random number generator could lead to a weak or otherwise guess-
able private key. A poor random number generator could lead to a guess-
able symmetric key and thereby diminish the effectiveness of a cryptovirus
attack.

The survey books on cryptography that appeared in the 1990s gave
the impression that crypto is a panacea for the Internet and its needs.
However, experience has shown that this is far from the case [260]. For
example, symmetric ciphers were analyzed in detail and proposed as solu-
tions to common problems, yet little direction was given on how to arrive
at truly random symmetric keys. This led to implementations containing
very strong components as well as weak ones and security almost always
defaults to the weakest link.

The first part of this chapter describes various physical phenomena
that have been proposed in the literature as sources of randomness. It is
common practice to misuse such sources by utilizing cryptographic hash

1In fact, randomized algorithms in general require access to quality random num-
bers to run properly. Examples include the ubiquitous Quicksort and the randomized
algorithm for computing square roots modulo a prime p when p has no special form.

51

52 3. Tools for Security and Insecurity

functions as entropy extractors. The nature of this questionable practice
is discussed in some detail.

John von Neumann’s classic algorithm for unbiasing a biased coin is
one of the earliest known entropy extraction algorithms.2 In this chapter
it is shown how to apply this algorithm to an entropy source that behaves
like a biased coin. A simple extension to Neumann’s algorithm is then
given along with references to other approaches. Common sense dictates
that the more entropy sources that can be used, the better, so an approach
is given to combine multiple sources of entropy securely. This approach
has the property that the resulting bit stream is perfectly random provided
that at least one of the entropy sources behaves like a biased coin and that
is provably quasi-random otherwise.

It is often the case that sources of physical randomness provide random
bits at a rate that is too slow for most applications. As a result efficient
algorithms are needed that can convert a small number of truly random
bits into a larger number of pseudorandom bits. Such algorithms are called
pseudorandom number generators and the general topic is addressed in this
chapter.

It is an unfortunate fact that even when random numbers are generated
properly they are often misused. For example, OpenSSL suffered from a
classic wrap-around bug in which the numbers from 1 to n were chosen
in such a way that the smallest of these numbers were more likely to be
chosen than the rest [233, 329]. This occurred in the selection of witnesses
for the Rabin-Miller probabilistic primality test. Uniform sampling is a
general subject that is important in designing secure malware as well. For
example, a worm may need to choose a server uniformly at random from a
set of three servers in order to decide which server to infect. Furthermore,
the worm may only have a random bit generator at its disposal to make
the selection. A common programming mistake is to generate two bits to
get a number x between 0 and 3 inclusive, and then let the final answer be
x mod 3. This is wrong since 0 will occur with a higher probability than
1. Uniform sampling techniques solve this problem and for this reason the
topic of uniform sampling is covered.

Even when used correctly, random bits are often utilized in a wasteful
fashion. This problem can be avoided by the judicious selection of efficient
algorithms for the problem at hand. As a case in point, the problem of
shuffling a deck of cards is covered. It is shown how successively choosing
a card from the deck randomly uses up more random bits on average

2In fact, it might even be the first published entropy extraction algorithm.

3.1. Sources of Entropy 53

than applying an unranking algorithm from algorithmic combinatorics.
This particular example is clearly applicable to on-line casinos, but is also
applicable to designing secure polymorphic viruses. A polymorphic virus
often needs to randomly permute instructions and may need to select a
random subset of machine registers to use in a decryption algorithm that
deciphers the bulk of the virus.

The chapter concludes with a discussion of how general advances in
cryptography lend strength to malicious software attacks. It is shown how
semantic security against plaintext attacks and adaptive chosen-ciphertext
security affect the cryptovirus extortion attack from the perspective of the
attacker. Also, the subject of mix networks is addressed. Mix networks
constitute a fundamental building block in secure on-line voting protocols,
electronic money protocols, and so on, and they are also crucial in carrying
out malicious software attacks in a way that protects the perpetrator, be
it a person or finite automaton.

3.1 Sources of Entropy

Computer programs utilize entropy sources to generate random numbers.
Often user input is used as an entropy source. For example, the RSA
toolkit SecurPC, which ran on Microsoft Windows 95, derived random
seeds based on keyboard and mouse timings. This data is collected dur-
ing a period of several minutes in which the user “bangs on the keyboard”
[248]. Aside from being a hassle from the user’s perspective, the security
of this approach is questionable to say the least. Reliance on user-supplied
entropy should be avoided or minimized whenever possible since it is vul-
nerable to attacks and can provide a false sense of security. This holds
true for normal security applications as well as for malicious software.

Desirable sources of entropy are those that are firmly rooted in physical
phenomena that are not affected by the actions of users. The emission from
radioactive material has been proposed as entropy source [124]. Although
this may be a very solid source of randomness, it requires specialized
hardware that does not come with typical personal computer systems.

An attractive candidate for entropy is AT&T’s truerand (described in
Chapter 2) since it is based on physical phenomena and is likely to work
on any PC equipped with a CPU crystal and a real-time clock crystal.
Truerand increments a counter in a busy-waiting fashion until a timer
interrupt causes the loop to terminate. This effectively pits the real-time

54 3. Tools for Security and Insecurity

clock signal against the microprocessor signal and in theory captures their
discrepancies in the resulting counter value.

Another attractive entropy source is the air turbulence that exists
within hard drives. The seek time for a drive is the time it takes the
read/write head to move over the track that it is going to read or write to.
Once in position, the disk must rotate so that the desired sector falls un-
der the read/write head. This is called the rotational latency or rotational
delay [221]. Seek times and rotational delay are governed by physical phe-
nomena and are affected by such things as chaotic air turbulence that is
generated within the confines of high-speed hard disk drives [81]. A typi-
cal way to extract entropy from this source is to measure the time it takes
to perform a disk read, for instance. Davis surmised that the movement
of a hard disk arm perturbs the flow of air inside the drive, thus creat-
ing chaotic turbulence. To implement programs that extract this type of
entropy, one has to be conscious of the fact that most operating systems
cache disk accesses. It is prudent to measure hard disk entropy by making
low level read/write calls.

Using hard disks as entropy sources was carefully studied at Lucent
Technologies [139]. Jakobsson et al devised an approach to extracting
randomness from hard disks based on multiple drive phenomena. They
derived experimental results using a Sun Ultra-1 with a Cheetah disk and
were able to generate between 5 and 577 random bits per minute depending
on the type of phenomena that was used. They subjected the resulting
bits to a battery of tests, and they passed with flying colors.

Designing software that avoids the use of specialized hardware is even
more important in the case of malicious software than in normal scenar-
ios. Consider computer viruses, for example. By their very nature they
propagate from machine to machine, some of which may lack the needed
specialized hardware and all of which are hostile environments to the virus.
Such programs clearly cannot assume the presence of specialized hardware
random number generators.

3.2 Entropy Extraction via Hashing

It is not an uncommon practice to collect randomness from entropy sources
to produce a byte stream and then hash this byte stream to derive a
“random” stream of bits. This heuristic is most likely based on the premise
that since the outputs of cryptographic hash functions look random, they

3.2. Entropy Extraction via Hashing 55

are random. When hash functions are used as such, they are being used
as entropy extractors.3

Consider the SHA-1 cryptographic hash function, for example [211].
SHA-1 takes as input a variable length byte stream and outputs a 160-bit
hash value. SHA-1 is based directly on the MD4 algorithm [242]. MD4 is
a customized hash function designed with the explicit purpose of hashing
with optimized performance in mind. The original MD4 design goals were
to:

1. Make finding a collision difficult, taking about 264 operations to do
so (collision intractability).

2. Make finding a message yielding a pre-specified hash value difficult,
taking about 2128 operations to do so (non-invertability).

Despite the fact that finding collisions was supposed to be difficult, a
collision in MD4 was in fact found [94]. This demonstrates the danger of
relying on primitives that cannot be proven to be correct.

Collision resistance and non-invertability were also the design criteria
used in devising SHA [201]. SHA was not designed to output “random-
looking hash values” and it was not designed to “extract truly random
bits from inputs with a sufficient amount of entropy.” The fact that it
may appear to do so on the surface is immaterial from the standpoint
of security. Properties (1) and (2) above were designed to provide suffi-
cient conditions for using a hash function to heuristically protect against
existential forgeries in digital signature schemes.

The use of SHA-1 to extract 160 “random” bits from the collected
entropy strings is perilous since there is no evidence to suggest that the
SHA-1 function does in fact do this. This use of SHA-1 assumes that it
is a magic box that can magically extract entropy from the input string
and output a truly random 160-bit string. The following quote is from a
paper by Juels et al [148]:

3Adam encountered this practice firsthand while reviewing the RNG code for a
company during a consulting engagement. The client used SHA-1 as an entropy ex-
tractor and the resulting entropy was used to generate random permutations. The
client company shall remain nameless.

56 3. Tools for Security and Insecurity

Timings of human interaction with a keyboard or mouse are
currently the most common source of random seeds for cryp-
tographic applications on PCs. After a sufficient amount
of such timing data is gathered, it is generally hashed
down to a 128-bit or 160-bit seed. This method relies
for its security guarantees on unproven or unprovable as-
sumptions about the entropy generated by human users [97]
and the robustness of hash functions as entropy extractors.

The danger of using a complex algorithm to produce strong random num-
bers in the absence of a theoretical foundation or analysis was noted in
RFC 1750 [97]:

Another serious strategy error is to assume that a very complex
pseudo-random number generation algorithm will produce strong
random numbers when there has been no theory behind or anal-
ysis of the algorithm.

There has been no theory or analysis behind SHA-1’s ability to extract
entropy from its input. The complexity of the SHA-1 algorithm in no way
justifies its use as a magic box.

Consider the case in which entropy is taken from two sources. The
first source is a weak source derived from user input (e.g., message arrival,
mouse inputs, etc.) and potentially guessable inputs such as the system
time. The second source is a strong source of entropy such as a hardware
RNG. There is strong reason to suspect that the clock input is poor indeed.
The following is from RFC 1750 [97]:

Computer clocks, or similar operating system or hardware val-
ues, provide significantly fewer real bits of unpredictability than
might appear from their specifications.

Suppose that 24 bytes are derived solely from the weak source and 24 bytes
are taken directly from the strong source. Finally, suppose that these two
sequences are concatenated and fed as input to SHA-1 to produce a 20-byte
value. The use of SHA-1 in this fashion could in fact result in a seed that
is significantly less random than 24 bytes from the strong entropy source.
It is conceivable that SHA-1 mixes this low-quality randomness with the
high-quality randomness and outputs bits having a degree of randomness

3.3. Unbiasing a Biased Coin 57

that is somewhere between the two extremes. An extreme, albeit remote,
possibility is that SHA-1 will derive virtually all of the resulting entropy
from the weak source. Again, since there is no proof regarding SHA-1’s
true behavior as an entropy extractor, anything seems possible.

3.3 Unbiasing a Biased Coin

The notion of a biased coin is by and large an abstraction used by theorists
to articulate the behavior of a source of entropy. A real coin may certainly
be biased based on how it was minted. But in the context of computer
security, a biased coin is a general term for an entropy source that has a
fixed bias towards outputting binary 1’s or binary 0’s.

As it turns out, the existence of a biased coin is enough to guarantee
access to perfectly random bits. For many people, particularly those in the
computer security field, the mere mention of perfect anything borders on
taboo. Yet, in this case it is safe to say so. The math speaks for itself and
the proof of this statement is given in this chapter. The subtlety lies in
whether or not a given source of entropy in fact behaves like a biased coin
or not.

3.3.1 Von Neumann’s Coin Flipping Algorithm

A biased coin is a coin that has a fixed probability of heads, denoted by
ph = 1/2+δ, where δ is a Real number contained in the interval [-1/2,1/2].
The value δ is referred to as the bias of the coin. Let pt be the probability
of tails. Hence, pt = 1 − ph. For example, if a coin comes up heads
with probability 51% then δ = 1/100. If the coin comes up heads with
probability 49% then δ = −1/100.

The standard approach to removing bias is to use Neumann’s classic
unbiasing algorithm [309]. The problem of unbiasing a biased coin is one
whose fundamental nature is matched only by its elegant solution. It is
instructional to consider the problem using a concrete example. Suppose
that we are given a coin that comes up heads with probability 5/8. Neu-
mann’s solution is as follows. A series of experiments are performed in
which the coin is tossed twice in succession. If in a given experiment the
result is heads followed by tails, then the result of the toss is heads and
no more experiments are performed. If in a given experiment the result is
tails followed by heads, then the final outcome is tails and no more exper-

58 3. Tools for Security and Insecurity

iments are performed. If in a given experiment the tosses are the same,
then another experiment is performed. This is depicted in Table 3.1.

Observe that the probability of heads is the same as the probability
of tails. So, given that the two tosses are not the same the answer will
be heads with probability 1/2. The answer is therefore always correct
when an experiment terminates. An interesting aspect of this algorithm
is that the numerical value of the bias is not needed to generate fair coin
tosses. The probability that a given experiment will terminate with an
answer is 15/64+15/64 = 30/64. Although it is possible that this method
will never terminate when executed, the chances of this is negligible for
a bias of 1/8. Since the algorithm might never halt but always outputs
the correct answer when it does halt, it belongs to a class of algorithms
known as Las Vegas algorithms. The algorithm is tractable for any bias
that is not overwhelmingly close to heads or tails.

The following claim regarding Neumann’s algorithm can be proven.

Claim 1 When the input bits to Neumann’s algorithm are generated by a
biased coin, Neumann’s algorithm outputs a heads with probability 1/2.

To see this, consider the case that a value is output in iteration j. Since
the two input bits for iteration j are generated by a biased coin it follows
that the two flips are independent events. In iteration j, Neumann’s al-
gorithm outputs heads with probability (1/2 + δ)(1/2 − δ). It outputs
tails with probability (1/2− δ)(1/2 + δ). It follows from the commutative
property of multiplication that these probabilities are equal.

Outcome Probability Result

heads-heads 25/64 do over
tails-tails 9/64 do over
heads-tails 15/64 heads
tails-heads 15/64 tails

Table 3.1 Unbiasing using Neumann’s algorithm

3.3. Unbiasing a Biased Coin 59

3.3.2 Iterating Neumann’s Algorithm

There has been a significant amount of research on improving the effi-
ciency of Neumann’s algorithm4 [148, 222]. Rather than reiterating one of
these algorithms, a simple example of how to slightly improve Neumann’s
method will be given. In the improvement described in Table 3.2, Neu-
mann’s algorithm is modified to accept four bits at a time instead of two.
A result of heads is indicated by a binary “1” and a tails is indicated by
a binary “0.”

The middle column shows the output when Neumann’s algorithm is
applied to the input nibble.5 For example, if the input is 0001 then the
first two zeros causes a rejection, and the 01 causes a zero to be output.
The rightmost column shows the output when Neumann’s method is gen-
eralized to taking 4 bits as input. Observe that in each row the rightmost
column has at least as many bits listed as the middle column, and some-
times more so. It follows that this approach has a higher bandwidth than
Neumann’s algorithm.

To see the utility of this increased bandwidth algorithm, suppose that
this improved algorithm is supplied with a very long stream of input bits.
We would expect it to produce more perfectly random bits than Neu-
mann’s classic algorithm would.

The correctness of the improved algorithm will now be analyzed. Recall
from probability theory that if A and B are two events in a uniform
probability space, the conditional probability of A given B is defined as
follows.

Pr[A|B] =
Pr[A ∩B]

Pr[B]

The following are probabilities of outputting 0 and 1 when one bit is
output.

Pr[0 is output | one bit is output] =
p2

tp
2
h

2p2
hp

2
t

=
1

2

4For example, the work of Juels et al shows how to simulate the maximum number
of coin flips for a given number of die rolls.

5One nibble equals four bits.

60 3. Tools for Security and Insecurity

Input Neumann Improved Neumann

0000 - -
0001 0 00
0010 1 10
0011 - 0
0100 0 01
0101 00 00
0110 01 01
0111 0 01
1000 1 11
1001 10 10
1010 11 11
1011 1 11
1100 - 1
1101 0 00
1110 1 10
1111 - -

Table 3.2 Improved Neumann Algorithm with 4-bit input

Pr[1 is output | one bit is output] =
p2

hp
2
t

2p2
hp

2
t

=
1

2

It remains to consider the case that two bits are output. Below, the
probability for 00 is derived.

Pr[00 is output | two bits are output] =
p3

tph + p2
tp

2
h + p3

hpt

4(p3
tph + p2

tp
2
h + p3

hpt)
=

1

4

It is straightforward to show that the conditional probability is 1/4 for
01, 10, and 11 as well.

3.3.3 Heuristic Bias Matching

A crucial observation in Neumann’s classic algorithm is that the bias must
be the same for both flips in a given execution of Neumann’s algorithm

3.3. Unbiasing a Biased Coin 61

for the output bit to be unbiased. This suggests that great care should be
exercised when applying Neumann’s algorithm to a given entropy source.

Neumann’s method can be heuristically applied to remove bias in the
output of truerand using the following algorithm. (Truerand is discussed
in Chapter 2.) In the first step truerand is invoked to obtain the 16 least
significant bits of the counter i. Let s1 denote these 16 bits. Truerand is
then invoked again to obtain another set of 16 bits s2. The least significant
bits from each of these two sets are used as a Neumann experiment, then
the two penultimate bits are used as a second experiment, and so on. For
concreteness, suppose that s1 and s2 are as follows:

s1 = 0100111010001011

s2 = 0101111100101010

Experiment 1 results in 10, experiment 2 results in 11, experiment 3 results
in 00, and so on. A result of 10 is interpreted as a randomly chosen binary 1
and a result of 01 is interpreted as a randomly chosen binary 0. A result of
00 or 11 is regarded as a failed experiment. Let pi,j denote the probability
that a binary 1 occurs in the jth bit of the ith trial, where j = 0, 1, ..., 15
and i = 1, 2, 3, 4, Consider the following two assumptions:

1. pi,j = pi+1,j for i = 1, 3, 5, 7, ... and j = 0, 1, 2, ..., 15.

2. for all i there exists a j contained in {0, 1, 2, ..., 15} such that pi,j is
neither overwhelming nor negligible.

Assumption (1) implies that truerand behaves consistently across pairs
of invocations, which is necessary for correctness. Assumption (2) implies
that in each trial i there is at least one probability pi,j capable of producing
a fair toss.6 For example, suppose that pi,15 = 1 for i = 1, 2, 3, In this
case the random number generator will never output a bit based on bit
position j = 15. If for all i, pi,j = 1 for j = 0, 1, 2, ..., 15 then truerand
would not provide any randomness at all.

This approach demonstrates the notion of heuristic bias matching. A
series of “random” positive integers are obtained from a timing-sensitive
entropy source. The source should not be based on user inputs, and there
should be reason to believe that the source behaved in the same basic way

6This assumption can actually be weakened a little since truerand need only provide
such a probability sufficiently often.

62 3. Tools for Security and Insecurity

to produce each of these numbers. The integers are such that the entropy
is arguably concentrated in the least significant bits. The most significant
bits may have no entropy at all. Pairs of these integers are obtained from
the source. To apply Neumann’s algorithm, the least significant bits are
run through Neumann’s algorithm, then the second least significant bits,
and so on. Of course, this is only a heuristic. But, one would expect
that the biases may in fact match up this way. If they do, then perfectly
random bits will result. To guard against the possibility that the biases
do not match up, multiple entropy sources should be used and a general
approach such as Santha and Vazirani’s algorithm (described in Section
3.4) should be employed to combine the sources.

3.4 Combining Weak Sources of Entropy

Consider a true RNG predicated on the “randomness” derived from key-
board latency. What if the user breaks his or her arm and has to type
methodically with one hand?7 This may eliminate some if not all the ran-
domness for a time. What if a hardware-based RNG suffers a breakdown,
thus rendering the hardware RNG unavailable? Such a solution would
then have to rely entirely on other sources of randomness until the failure
is rectified.

A solid approach to generating pseudorandom bits based on physical
randomness is given in Figure 3.1. The two dark gray boxes are separate
sources that are believed to provide a measurable amount of true entropy.
Each source is treated separately and the output of each source is sent
through an unbiasing algorithm as indicated by the light gray boxes. The
operating system RNG could, for instance, be the Intel hardware RNG.
This RNG uses two free-running oscillators, one that is fast and one that
is much slower. A thermal noise source is used to modulate the frequency
of the slower clock signal. The slower clock triggers measurements of the
faster clock. The drift between the two is used to generate bits, which may
be biased [149]. The Intel hardware RNG applies Neumann’s algorithm
internally to produce an unbiased stream (in theory). This is why the
output of the Intel RNG does not go through a light gray box in Figure
3.1.

The three bit streams produced by the three light gray boxes are then

7Look for key, press key, look for key, press key (commonly referred to as hunting
and pecking).

3.4. Combining Weak Sources of Entropy 63

Figure 3.1 Sound approach to generating and using randomness

bitwise exclusive-or’ed. This is indicated by the ⊕ symbol. Observe that if
one of the physical sources of randomness behaves like a biased coin then
exactly one of the streams going into ⊕ will be completely random. This
is what makes this random number generation method robust. Suppose
that all but one of the sources is compromised, either due to device failure
or a malicious adversary. As long as one of the streams is truly random,
the output of the ⊕ operation will be truly random. If a source were to
shut down, then the stream that it would normally contribute to ⊕ can be
set to all zeros. This will have a null effect on the bitwise XOR operation.

In fact, it is sufficient that in the bitwise XOR operation, one bit in
each bit position be completely random. This will now be analyzed. Let
Bi = bi,1bi,2 · · · bi,k denote the bit string that is output by Neumann’s
algorithm when applied to entropy source i. Each string Bi is k bits

64 3. Tools for Security and Insecurity

in length. Since there are three sources in Figure 3.1, it follows that
1 ≤ i ≤ 3. The strings B1, B2, and B3 are bitwise exclusive-or’ed to
obtain a k-bit seed S = s1s2 · · · sk using the following algorithm.

XORTheBitStrings(B1, B2, B3):
1. for j = 1 to k do:
2. si = b1,j ⊕ b2,j ⊕ b3,j

3. output the bit string S = s1s2 · · · sk

The value S may be used to seed a pseudorandom bit generator.8

The following claim can be proven regarding the application of the
exclusive-or operation to the streams.

Claim 2 If for all j where 1 ≤ j ≤ k there exists an i ∈ [1, 3] such that
bi,j is chosen uniformly at random, then S is a truly random k-bit string.

To see this, consider bit position j where 1 ≤ j ≤ k. Without loss
of generality, let bi,j be a bit that is chosen uniformly at random, with
1 ≤ i ≤ 3. Let ph denote the probability that the three bits in bit position
j other than bi,j exclusive-or to the value heads where heads corresponds
to 1. Hence,

ph = Pr[b1,j ⊕ b2,j ⊕ b3,j ⊕ bi,j] = 1

The probability that sj = 1 is 1
2
ph + 1

2
(1 − ph) = 1

2
. This is the

probability that bit bi,j = 0 and ph results in heads plus the probability
that bit bi,j = 1 and ph results in tails.

Observe that the perfect randomness in each bit in S is closely related
to the security of each plaintext bit in a Vernam ciphertext.9 The uncon-
ditional security of the One-time pad holds regardless of the probability
distribution over the message space.

In addition to being provably secure when a biased coin is available,
this solution produces quasi-random bits when such a coin is not available,
provided that enough sources of weak entropy are used. This follows
immediately from the work of Santha and Vazirani [253], who weaken the

8Other k-bit strings may need to be obtained as well, for example, to compute the
primes p and q in Blum-Blum-Shub.

9Gilbert Vernam published the One-time pad cryptosystem in 1926 [308] and it
wasn’t proven to provide perfect secrecy until some 30 years later [270].

3.4. Combining Weak Sources of Entropy 65

assumption that a biased coin is available. The pseudorandomness results
from the fact that several weakly random bit streams are bitwise exlusive-
or’ed with each other. The basic idea may be illustrated using several
examples. Consider the two entropy sources in Table 3.3.

Consider the first row in Table 3.3. A final result of heads occurs if
source 1 results in heads and source 2 results in tails, or if source 1 results
in tails and source 2 results in heads. This is 5

8
2
8

+ 3
8

6
8

= 28
64

= 7
16

. A coin-
flip that results from the XOR of the bits from the two sources is in every
case the same or better than the best flip in either of the two sources.10

It is important not to misinterpret Figure 3.1. Relying on three sources
alone may not always be a good idea. This is especially true if the sources
are poor. However, when only a small amount of physical sources is avail-
able some form of unbiasing should be performed on each before exclusive-
or’ing the resulting bit streams. If only one entropy source is available and
the source is known to be reliable then it can be used to form multiple
arrays of bytes. These byte arrays can be run through the Santha-Vazirani
algorithm to extract quasi-random bits.

The Santha-Vazirani algorithm is a good way to combine weak entropy
sources to guarantee that the randomness improves. However, the state of
the art in entropy extraction has advanced considerably in recent years.
There is a wealth of scientific literature on the subject [207, 266, 267, 296,
297, 298, 299]. Entropy extraction is an area of theoretical computer sci-
ence unto itself. It has far more applicability than to cryptography alone
since truly random numbers are needed to run randomized algorithms such
as Quicksort properly. Entropy extraction algorithms have their own set of

10A coin flip that is heads with probability 3/8 is in some sense just as erroneous as
one with probability 5/8 since the absolute values of the biases are identical.

ph source 1 ph source 2 ph under XOR

10/16 12/16 7/16
10/16 4/16 9/16
4/8 5/8 4/8
2/16 4/16 5/16

1 5/8 3/8
12/16 14/16 5/16

Table 3.3 Entropy from the XOR of two sources

66 3. Tools for Security and Insecurity

assumptions, not unlike the factoring assumption, Diffie-Hellman assump-
tion, and so on. It is a subject that has been largely neglected in texts
dealing with cryptography. Given the robust nature of modern entropy
extraction algorithms, there is little reason not to employ them to arrive
at provably random seeds for PRNGs.11 Were a company to advertise
both the entropy source assumptions and the intractability assumptions
that their products relied upon, that company would truly raise the bar
in the computer security industry.

It is unfortunate that entropy extractors are largely, if not entirely,
ignored by the software industry. They are often dismissed as being too
slow or otherwise not necessary. To the contrary, the Santha-Vazirani
algorithm is even faster than using most hash functions such as SHA-
1 to extract entropy. It simply performs the bitwise XOR operation on
collected entropy streams. Also, the speed is in many cases irrelevant. The
proper way to generate random bits is to work hard to get a truly random
seed and then let the faster pseudorandom number generator do the rest.
All that is needed is a truly random seed and perhaps a couple more
randomly chosen parameters in order to operate a secure cryptographic
pseudorandom number generator properly.

3.5 Pseudorandom Number Generators

Subsection 3.5.1 presents a pseudorandom number generator that has un-
dergone standardization. It does not enjoy provably secure properties, but
constitutes a sound heuristic approach to the problem. The approach is
ideal for applications that demand a high volume of pseudorandom bits
per second. Subsection 3.5.2 covers PRNGs that have provably secure
properties under well-accepted intractability assumptions.

3.5.1 Heuristic Pseudorandom Number Generation

The algorithm below is a U.S. Federal Information Processing Standard
(FIPS) approved method to pseudorandomly generate keys and initializa-
tion vectors for use with DES. It is from the ANSI X9.17 standard [135].

11The assumptions regarding the nature of entropy sources have been weakened
considerably.

3.5. Pseudorandom Number Generators 67

ANSIX917PRBG(s,m, k):
input: a random 64-bit seed s, integer m, and a DES EDE key k
output: m pseudorandom 64-bit strings x1, x2, ..., xm

1. compute I = Ek(D) where D is a 64-bit representation of the
date/time in as fine a resolution as possible.

2. for i = 1 to m do:
3. xi = Ek(I ⊕ s)
4. s = Ek(xi ⊕ I)
5. output (x1, x2, ..., xm)

This approach is a sound way to generate pseudorandom bits provided
that DES is replaced by a more modern cipher such as AES. Any pro-
grammer that employs this method for pseudorandom bit generation by
replacing DES with AES is employing a sound primitive.

3.5.2 PRNGs Based on Reduction Arguments

A definitive source for provably secure techniques regarding pseudoran-
dom number generators and related primitives is Pseudorandomness and
Cryptographic Applications by Michael Luby [177]. The definition of a
pseudorandom bit generator (PRBG) is given below.

Definition 1 Let k, ` be positive integers such that ` ≥ k + 1 and ` is
a specified polynomial function of k. A (k, `)-PRBG is a function from
k-bit strings to `-bit strings that can be computed in polynomial time (in
k). The input to the PRBG is a k-bit seed s0 and the output is an `-bit
string that is pseudorandom.

A simple and relatively fast (k, `)-PRBG is the Blum-Blum-Shub gen-
erator [30]. It uses the parameters p, q, and n. The values p and q be
two large distinct primes and n = pq. These two primes must be kept
secret. The Blum-Blum-Shub generator is defined as follows. Let s0 be a
quadratic residue modulo n. The pseudorandom bit stream is found by
computing zi for i = 1, 2, 3, ..., `.

zi = (s2i

0 mod n) mod 2

It was originally shown that the output of the Blum-Blum-Shub gen-
erator could be ε-distinguished from ` truly random bits if and only if
there exists an unbiased Monte Carlo algorithm that solves the quadratic

68 3. Tools for Security and Insecurity

residues problem (see Appendix B.3.5) having an error probability of at
most δ, for any δ greater than zero.12 An even stronger result was shown
by Vazirani and Vazirani [307]. They proved that this PRBG is secure
under the weaker assumption that factoring is intractable.

The Blum-Blum-Shub PRBG is also regarded as being secure when
the log2(log2(n)) least significant bits of s2i

0 mod n are used (instead of
just the least significant bit). So, when n is a 768-bit composite, the 9
least significant bits can be used in the pseudorandom bit stream.

Why is this a favorable approach to generating bits pseudorandomly?
The answer to that question is simple. Whereas DES, AES, and so forth
have only been around for a few decades or less, brilliant mathematicians
have been trying to solve the factoring problem for centuries. . . and have
yet to publish a solution.

A provably secure pseudorandom number generator (PRNG) will op-
erate in a secure fashion if and only if the following three conditions hold:

1. The secret PRNG parameters must be kept secret. This includes the
initial seed (and the primes, as in the case of the Blum-Blum-Shub
PRNG, etc.).

2. The parameters for the PRNG must be correct: This means that
the seed must be chosen perfectly at random (and the primes in
Blum-Blum-Shub must be chosen correctly, etc.).

3. The underlying computational intractability assumption (or assump-
tions) must hold. In the case of the Blum-Blum-Shub PRNG, this
means that factoring must in fact be hard.

If any of the above conditions do not hold then the PRNG may be
compromised.

3.6 Uniform Sampling

Often a problem requires that a number be chosen randomly or pseudo-
randomly from a set that has a number of elements that is not a power
of 2. When this is the case random bit generators, be they pseudo or
otherwise, cannot be used directly to generate the needed number. What

12Thus, polynomial indistinguishability holds under the quadratic residuosity as-
sumption.

3.6. Uniform Sampling 69

is needed is an algorithm that utilizes the available random bit generator
to sample from such sets uniformly at random.

For example, suppose that a computer worm propagates on a local
area network by randomly selecting a machine to infect from the set of
machines that are adjacent to the current host. If six such machines are
connected directly to the host, then such an algorithm will be needed.13

This problem boils down to using a coin to simulate the rolling of a fair
six-sided die. The die roll can be simulated perfectly as follows. The coin
is flipped three times to obtain a 3-bit number. This number is uniformly
distributed between 0 and 7 inclusive. If the number is between 0 and
5 then the number is output. Otherwise, the three bits are thrown out
and this procedure is repeated. Since all 6 faces of the die are equally
likely, this method samples {0, 1, 2, 3, 4, 5} uniformly at random. Uniform
sampling techniques are needed when a random bit generator is available
and when elements must be sampled from a set that has a cardinality that
is not a power of 2.

This general uniform sampling algorithm is as follows. Let RBG(i)
denote a perfectly random bit generator that returns a string consisting
of i > 0 truly random bits.

Input: Integer N ≥ 1
Output: R chosen uniformly at random from [0,N-1]
Choose1toNRandomly(N):
1. Let T be the smallest power of 2 such that T ≥ N
2. compute R = RBG(log2(T))
3. if R < N then output R and halt
4. goto step (2)

The following claim regarding uniform sampling can be proven.

Claim 3 Assuming that the function RBG() returns random bit strings,
the function Choose1toNRandomly() outputs R drawn uniformly at ran-
dom from [0,N-1].

To see this, observe that the strings that are output by RBG are
chosen independently at random. Suppose that Choose1toNRandomly
halts with R in iteration j. Let pi,j denote the probability that R = i
with 0 ≤ i < N in iteration j. Clearly pi,j = 1/T . Since step (3) is

13It is in fact possible to view the whole world in terms of computer viruses!

70 3. Tools for Security and Insecurity

the only step that outputs a value, and since this value is R it follows
that Choose1tnNRandomly outputs R drawn uniformly at random from
[0, N − 1].

In a given iteration of Choose1toNRandomly, the value R will be less
than N with probability N/T . So, the probability that a given iteration
causes a repeat in step (4) is 1−N/T . Since T is the smallest power of 2
such that T ≥ N , it follows that N/T > 1/2. So, the probability that no
answer is found after j iterations is,

(
1− N

T

)j
<

(
1− 1

2

)j
= 1

2j

It follows that Choose1toNRandomly is an efficient Las Vegas algorithm.
Observe that Choose1toNRandomly will never loop if N is a power of 2.
This implies that the algorithm is efficient even when random bit strings
are needed. This makes the function ideal for use as a public function
in an Application Programming Interface (API). Note that this function
is how users obtain random numbers in Figure 3.1. This is indicated
by the solid arrow emanating from “uniform sampling algorithm” that
terminates at the bottom of the figure. The dotted arrow that leaves
the “uniform sampling algorithm” and that terminates at the bottom of
the figure indicates that applications have direct access to pseudorandom
sampled values.

In OpenSSL [233], the function BN rand range() generates a crypto-
graphically strong pseudorandom number rnd in the range 0 ≤ rnd <
range. BN pseudo rand range() does the same, but is based on the func-
tion BN pseudo rand(). The function BN rand range() was added14 in
OpenSSL 0.9.6a and the function BN pseudo rand range() was added in
OpenSSL 0.9.6c.

int BN rand range(BIGNUM *rnd, BIGNUM *range);

int BN pseudo rand range(BIGNUM *rnd, BIGNUM *range);

The functions return 1 on success, 0 on error. The error codes can be
obtained by ERR get error().

14It was included in the function BN is prime fasttest() to fix the bug that was
pointed out [329].

3.7. Random Permutation Generation 71

3.7 Random Permutation Generation

Generating random permutations is a fundamental problem in computing.
On-line casinos need to generate random permutations over {1, 2, 3, ..., 52}
to properly shuffle a deck of cards. Computer worms benefit from choosing
random permutations over the set of machines on a network to arrive at an
unpredictable hit list. This allows worms to attempt to travel from one
existing machine to another, rather than simply choosing IP addresses
randomly to try to propagate to. This is important since many heuristic
antiviral network monitors are effective against stupid worms that ping
non-existent Internet addresses. Malicious software is difficult to detect
when it looks, smells, tastes, and feels like all the benign software around
it.

3.7.1 Shuffling Cards by Repeated Sampling

The following algorithm shuffles a deck of cards in-place and is thereby
very memory efficient. Initially, deck[i] = i for i = 1, 2, 3, ..., 52.

CardShuffle():
1. for i = 1 to 51 do:
2. j = number drawn uniformly at random between i and 52 inclusive
3. card = deck[j]
4. deck[j] = deck[i]
5. deck[i] = card

Assuming that a random (or pseudorandom) bit generator is available,
step (2) above can be implemented using Neumann’s method. For exam-
ple, when i = 1 a 6-bit number r is generated. If the number is between 0
and 51 inclusive, then we set j = r+ 1. Otherwise, we generate another 6
bits and repeat. From Lemma 3 it follows that j will be drawn from the
correct probability distribution.

It remains to consider the running time of CardShuffle(). Suppose
that a fair coin is available. How many times would one expect to have
to flip it to get heads? The answer is 2. Suppose that a biased coin is
available that comes up heads with probability 3/4. How many times
would one expect to have to flip it to get heads? The answer is 4/3. The
expected number of random bits needed to shuffle using CardShuffle() is
found by summing the expected number of bits needed in each iteration.

72 3. Tools for Security and Insecurity

The expected number of bits needed per iteration is given below. The
number immediately before the colon is i.

1: 6 ∗ 64
52

2: 6 ∗ 64
51

3: 6 ∗ 64
50

· · · 20: 6 ∗ 64
33

21: 5 ∗ 32
32

22: 5 ∗ 32
31

23: 5 ∗ 32
30

· · · 36: 5 ∗ 32
17

37: 4 ∗ 16
16

38: 4 ∗ 16
15

39: 4 ∗ 16
14

· · · 44: 4 ∗ 16
9

45: 3 ∗ 8
8

46: 3 ∗ 8
7

47: 3 ∗ 8
6

48: 3 ∗ 8
5

49: 2 ∗ 4
4

50: 2 ∗ 4
3

51: 1 ∗ 2
2

For example, in the first iteration when i = 1, one would expect to
have to use 6(64/52) bits to draw the first card in the shuffle. Observe
that 6 ∗ 64 = 384 factors out of the top row, 5 ∗ 32 = 160 factors out of
the second row, and so on. The top row is equivalent to the following,

6 ∗ 64
(

1
52

+ 1
51

+ 1
50

+ · · ·+ 1
33

)
The rightmost term is the difference between two Harmonic numbers,

namely H52 and H32. The nth Harmonic number Hn is defined by,

Hn = 1 +
1

2
+ · · ·+ 1

n
=

n∑
k=1

1

k

This definition is from Concrete Mathematics by D. Knuth et al [122].
Clearly all Harmonic numbers are rational. The above expression is equiv-
alent to,

384(H52−H32)+160(H32−H16)+64(H16−H8)+24(H8−H4)+2+ 8
3
+1

After simplifying, the following expression is obtained.

384H52 − 224H32 − 96H16 − 40H8 − 24H4 + 5 + 2
3

These five Harmonic numbers are given below [111].

3.7. Random Permutation Generation 73

H4 =
25

12
H8 =

761

280
H16 =

2436559

720720

H32 =
586061125622639

144403552893600
≈ 4.0585

H52 =
14063600165435720745359

3099044504245996706400
≈ 4.53804

The expected number of random bits needed to shuffle a single deck is
355.9 using this method.

3.7.2 Shuffling Cards Using Trotter-Johnson

Algorithms to generate and enumerate permutations fall under the cat-
egory of algorithmic combinatorics. Ranking and Unranking algorithms
allow computer scientists to efficiently store, generate, and use combina-
torial objects. Consider the problem of storing a particular permutation
of n objects in a computer. If the objects are numbers, for instance, one
could simply store them in an array. However, a more efficient way is to
establish a bijection between the n! combinatorial objects and the natural
numbers from 0 to n!− 1 and subsequently store the natural number that
uniquely identifies the object.

When a Ranking function is supplied with a combinatorial object it
returns the object’s rank (a natural number that uniquely represents the
object). When a rank is given to an Unranking function, it returns the
corresponding combinatorial object. An example of such a bijection will
go a long way to illustrate this concept. Consider the problem of establish-
ing a bijection between {0, 1, 2, ..., 9} and the

(
5
3

)
subsets of {1, 2, 3, 4, 5}

containing three elements. Table 3.4 depicts a co-lex ordering that defines
such a bijection.

The Trotter-Johnson algorithm is a minimal-change algorithm for gen-
erating the n! permutations. It is a well-known algorithm developed in the
early 1960s by Trotter and Johnson [142, 301]. In this algorithm, π is a
permutation over {1, 2, 3, ..., n}. The value r is a rank of such a permuta-
tion, hence, r ∈ {0, 1, 2, ..., n!− 1}. Shimon Even and Kreher and Stinson
wrote excellent introductory texts on algorithmic combinatorics [98, 163].

74 3. Tools for Security and Insecurity

T rank(T)

[3,2,1] 0
[4,2,1] 1
[4,3,1] 2
[4,3,2] 3
[5,2,1] 4
[5,3,1] 5
[5,3,2] 6
[5,4,1] 7
[5,4,2] 8
[5,4,3] 9

Table 3.4 Co-Lex ordering for 3-element subsets

TrotterJohnsonUnrank(r,n):
1. r2 = 0
2. π[1] = 1
3. for j = 2 to n do:

4. r1 = b rj!
n!
c

5. k = r1 − jr2
6. if r2 is even then

for i = j − 1 down to j − k do:
7. π[i+ 1] = π[i]
8. π[j − k] = j
9. else
10. for i = j − 1 down to k + 1 do:
11. π[i+ 1] = π[i]
12. π[k + 1] = j
13. r2 = r1
14. output π and halt

This algorithm is the natural way to select a particular ordering of
the 52 cards in a deck. The actual value of 52! is needed to implement
shuffling based on unranking. When expressed in decimal the value of 52!
is,

80658175170943878571660636856403766975289505440883277824000000000000

Expressed in hexadecimal, the value of 52! is

3.7. Random Permutation Generation 75

2FDE529A3274C649CFEB4B180ADB5CB9602A9E0638AB2000000000000

The abundance of zeros on the right side of these numbers is due to
the fact that every other number in 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ · · · ∗ 52 is evenly
divisible by 2 and every other fifth number is evenly divisible by 5. The
number of binary digits needed to express 52! is exactly 226.

Given the above value for 52!, Trotter-Johnson unranking can be used
to shuffle as follows. A random 226-bit number r is chosen. If the number
is less than 52! then it is supplied to Algorithm 2.18 with n = 52. The
algorithm will return the shuffle π. If r ≥ 52! then r is discarded, another
226 bits are chosen randomly, and this process repeats.

Multiprecision libraries such as OpenSSL contain routines for testing
if one big number is less than another. To test if x < y the algorithm
scans the bits of x from the most significant bits to least significant bits.
The algorithm does this with y at the same time. The algorithm makes a
determination if and when two bits differ.

Now consider the running time of this approach. Observe that,

52! ≈ 80.658175× 1022

2226 ≈ 107.839787× 1022

So, one would expect to have to generate a sequence of 226 bits about
1.337 times. It follows that using TrotterJohnsonUnrank, about 302.2
random bits will be needed on average to shuffle a single deck. Since
302.2 < 355.6, it is more efficient to use TrotterJohnsonUnrank to shuffle
cards. When 50,000 shuffles are performed we would expect TrotterJohn-
sonUnrank to use up about 1.8 megabytes of randomness.15 The iterated
approach would use up approximately 2.12 megabytes of randomness. The
unranking algorithm helps to pave the way for using PRNGs based on rig-
orous mathematical foundations that tend to be more computationally
demanding than ad hoc constructions.

Finally, if combinatorial objects need to be selected uniformly at ran-
dom then the output of the uniform sampling algorithm can be used as
input to a combinatorial unranking algorithm. This is depicted in Figure
3.1. The rounded box labeled “uniform sampling algorithm” is used to
generate a rank r uniformly at random that is supplied to the unranking
algorithm.

15This is using the common definition of a kilobyte in which 1 kilobyte equals 1,024
bytes (not 1,000 bytes).

76 3. Tools for Security and Insecurity

3.8 Sound Approach to Random Number

Generation and Use

The algorithms that were presented for unbiasing coin flips and perform-
ing uniform sampling are Las Vegas algorithms. That is, they will always
output the correct answer, but strictly speaking there is no guarantee that
they will ever halt. Since well-designed functions return error codes any-
way, it makes sense to make these algorithms Monte Carlo. To do so, the
number of attempts to arrive at an answer can be fixed to, say, 32,000.
If they don’t arrive at an answer then they halt with failure. Otherwise,
they halt at or before 32,000 iterations have passed with the correct an-
swer. This way, the calling function can handle failures gracefully, and we
can say something meaningful about the worst-case running time of the
algorithm.16 As of this writing the OpenSSL functions BN rand range()
and BN pseudo rand range() are still of the Las Vegas type.

Figure 3.1 depicts four output arrows. Two are from the uniform
sampling algorithm and two are from the combinatorial unranking algo-
rithm. These give direct access to random and pseudorandomly sampled
values as well as random and pseudorandomly generated combinatorial
objects. The truly random output of the uniform sampling algorithm
gives the calling application access to truly random bits. This call can
be used to test the quality of the random seeds that are used to seed the
pseudorandom number generator. This may be ascertained by subjecting
the bit stream to FIPS-140 statistical tests, among others.17 The uni-
form sampling function allows applications to generate coin flips, die rolls,
roulette wheel spins, and so on. Finally, the unranking function allows
applications to generate random/pseudorandom permutations over sets,
random/pseudorandom subsets, and so on. The nice aspect of this API is
that at the lowest level, only the uniform sampling algorithm is visible to
application programmers. This should help ward off programming errors
that result from incorrect sampling.

Developing a design document and documenting code is clearly good
software engineering practice. Yet, this seldom ever occurs in practice.
Companies are often riddled with deadlines and wind up with off-the-
cuff implementations all the time. However, security software should be

16This may seem like nitpicky advice. However, we would like to think that when
libraries such as OpenSSL are used to control access to nuclear arsenals such measures
are taken.

17That is, the monobit test, the poker test, the runs test, and the long runs test.

3.9. RNGs Are the Beating Heart of System Security 77

designed so that third parties can easily verify its correctness. Part of
this involves articulating the design and commenting the code, and part
of it involves creating a well-designed application programming interface.
Adam has seen in a number of consulting engagements no design docu-
ments whatsoever, poorly documented code, and to top it all off, random
number generation code that is intimately merged with other code that
performs such things as socket connections. This hampers efforts to verify
the implementation and can be very time-consuming to analyze. Code
that performs the functionality described in Figure 3.1 should be imple-
mented in a completely standalone fashion.

3.9 RNGs Are the Beating Heart of System

Security

Random number generators constitute the very foundation of secure com-
puting machines. If one were to break or otherwise be able to predict
the output of an RNG that is used, it would likely yield unadulterated
access to the machine or sensitive data. A random number generator is a
prime target for carrying out insider attacks. A Trojan horse that lives in
and attacks a random number generator could potentially give the author
unfettered access to private keys, symmetric keys, and the like. This is in
fact the very heart of kleptographic attacks since it employ cryptotrojans
that hide in random number generators and that masquerade as producers
of truly random bits.

Military and government agencies would do well to employ the algo-
rithm of Santha and Vazirani to produce seeding material. This will hedge
against the threat of insider abuse, a topic that is gaining widespread in-
terest in DARPA and ARDA. Applications that rely on a single source of
entropy are paving the way for potentially devastating insider attacks. By
exclusive-or’ing the bit streams from multiple sources, this threat is min-
imized. A malicious software program will also benefit from taking this
approach, since it will prevent the program from relying entirely on the
random number generator provided by the operating system. It is con-
ceivable that the random numbers produced by the operating system are
logged or are otherwise predictable. A computer host is an environment
that is hostile to malware and as such malicious software will benefit from
taking some entropy directly from available peripherals.

Given that truly random seeds are critical for the operation of IN-

78 3. Tools for Security and Insecurity

FOSEC devices, one has to wonder why there are no FIPS standards
encompassing how they are generated. The ANSI X9.17 standard covers
a heuristically sound way to generate pseudorandom bits, but this tech-
nique was proposed by the Banking Industry and does not cover how the
initial seed is derived. A U.S. government standard that encompasses a
sound method for extracting entropy from multiple sources would improve
the security of computer software on a very large scale. Neumann’s al-
gorithm dates back to the middle of the last century. Formal results on
weakening Neumann’s assumptions can be traced back to the early 1980s,
and research on the subject has continued.

3.10 Cryptovirology Benefits from General

Advances

The original Macintosh cryptovirus was a proof-of-concept that had sub-
stantial room for improvement. For example, instead of using the outputs
of truerand directly, it could have applied Neumann’s algorithm or a more
advanced entropy extractor to the output of truerand. Ideally, a cryp-
tovirus would also utilize such sources as hard disk turbulence and the
RNG that is provided by the underlying operating system. Although the
simple extortion attack did not require a large number of random bits,
it should have nonetheless applied an entropy extractor to several differ-
ent sources of entropy. In this section a number of improvements and
extensions to the cryptovirus attack are discussed.

3.10.1 Strong Crypto Yields Strong Cryptoviruses

In all likelihood the RSA cipher as originally defined is secure enough
to mount the cryptovirus extortion attack. However, improved public
key cryptosystems exist. A known drawback to RSA is that each RSA
ciphertext c = me mod n leaks the Jacobi symbol of m with respect to n
[175]. (See Appendix B.2 for an explanation of the Jacobi symbol.) The
Jacobi symbol of m with respect to n is either 1 or −1. Since e is odd, it
is not hard to see that,

J(m/n) = J(m/n)e = J(me/n) = J(c/n) (3.1)

3.10. Cryptovirology Benefits from General Advances 79

Since the Jacobi symbol must be one of two different values, a sin-
gle bit of information about m is leaked in every ciphertext. Ideally, no
poly-time computable function of the plaintext should be efficiently com-
putable given the ciphertext. In this example the computable function has
a certain semantic meaning, namely the Jacobi function. But other effi-
ciently computable functions with semantic meaning may exist. Another
drawback to RSA is that it is deterministic. Every time that a particular
message m1 is encrypted in RSA the exact same ciphertext c1 will result.
This means that it is possible to guess the plaintext in a given ciphertext
and then verify the guess. For example, suppose c1 = me

1 mod n is known.
If m2 is suspected as being the plaintext it can be encrypted to obtain
c2 = me

2 mod n. If c2 = c1 then m2 = m1. When a user encrypts short
messages there is the risk that someone else can guess the plaintext and
verify the guess. A heuristic way to prevent adversaries from guessing the
plaintext and then verifying is to shrink the message space and include a
random bit string in each encryption. This makes each plaintext message
map to more than one ciphertext message. However, a provably secure
approach is more desirable. In the more general case it should not be
possible to select two messages and distinguish between their encryptions.

These observations lead to two notions of security: semantic security
and message Indistinguishability, respectively. As it turns out, when the
adversary is allowed to be any probabilistic poly-time algorithm these
two definitions of security are equivalent. To avoid such vulnerabilities a
semantically secure cryptosystem can be used [117]. An encryption algo-
rithm is semantically secure against plaintext attacks if for all probability
distributions over the message space, anything that a passive adversary
can compute efficiently about the plaintext given the ciphertext can also
be efficiently computed without the ciphertext given any historical infor-
mation about the plaintext.

An efficient public key cryptosystem called Optimal Asymmetric En-
cryption Padding (OAEP) has been proposed [19] that can be imple-
mented given any trapdoor one-way function such as RSA. Its security
was proven within the random oracle model18 [18]. When a cryptosystem
is used that is semantically secure against plaintext attacks to encrypt a
symmetric key, no partial information about the symmetric key is revealed
in the resulting ciphertext. Such a cryptosystem therefore provides more
security than using RSA as originally defined. In computer security, the
standard approach is to formalize the capabilities of the adversary in a

18The security of OAEP has recently been reinvestigated in [109, 272].

80 3. Tools for Security and Insecurity

threat model, develop an algorithm to deal with the possible presence of
the adversary, and then prove that the algorithm is secure within that
threat model. The bottom line is that a cryptosystem is only guaranteed
to be secure within the threat model that it is designed to handle and may
well succumb to more powerful adversaries should they exist.19

Semantic security against plaintext attacks guarantees that an adver-
sary that tries to determine some additional partial information concerning
a plaintext given the corresponding ciphertext along with existing partial
information cannot do so. However, there exists an even more powerful
type of adversary than this. For example, in the case of the cryptovirus
extortion attack what has not been considered is a group of victims that
is prepared to pay multiple ransoms, that use the virus writer as a de-
cryption oracle, and that choose the public key ciphertexts based on pre-
viously decrypted ciphertexts. This amounts to what is called an adaptive
chosen-ciphertext attack. This illustrates some of the subtleties in design-
ing secure systems. A cryptosystem that is semantically secure against
plaintext attacks is not necessarily semantically secure against adaptive
chosen-ciphertext attacks. However, it turns out that OAEP is secure
against adaptive chosen-ciphertext attacks.

This reasoning implies that cryptoviruses benefit directly from general
advances in cryptology. Even though the original cryptovirus did not use
multiple entropy sources and an entropy extractor, and even though it
did not use OAEP, it is straightforward to utilize these more advanced
techniques to design secure cryptoviruses.

3.10.2 Mix Networks and Cryptovirus Extortion

Arguably, the weakest aspect of the extortion attack from the perspec-
tive of the virus writer is obtaining the ransom without getting caught.
To this end, it may be best to avoid demanding cash entirely. If the
virus writer seeks information alone, then a more attractive alternative is
possible. Methods exist that enable two mutually distrusting parties to
communicate securely over a network in an anonymous fashion. The basic
vehicle for doing so is called a mix network [54]. A mix network forms
the basis for anonymous remailing systems and is a fundamental building
block for many cryptographic protocols [55, 119, 137, 295]. In a nutshell
a mix network is a service that lets users send messages anonymously to
other users, and that makes the correlation of output messages with input

19Side channel analysis and kleptographic attacks must also be considered.

3.10. Cryptovirology Benefits from General Advances 81

messages nearly impossible. Mix networks fall into two major catagories:
synchronous mixes and asynchronous mixes. In practice asynchronous
mixes are ideal for anonymizing e-mail traffic, whereas synchronous mixes
are best for randomizing message traffic in batches. It is typically easier
to produce formal proofs of security for synchronous mixes than for asyn-
chronous mixes, and as a result synchronous mixes tend to be employed
in protocols such as electronic voting. This allows ballots to be cast in a
provably anonymous fashion. Asynchronous mixes are arguably easier to
deploy on a large scale and rely on a number of heuristic defenses against
particular attacks.

A mix network consists of a collection of N mix net nodes. The basic
idea behind an asynchronous mix is to take an incoming message, send
it from node to node along a randomly chosen path, and then send it to
its final destination. It is necessary to use encryption to prevent corre-
lations based on content as well as to fix the length of each message so
that correlations based on size are not possible. This implies that large
messages need to be broken down into smaller pieces, and short messages
need to be padded out to the requisite length. The fixed sized messages
are encrypted using a probabilistic public key cryptosystem. Therefore,
even if the same message is sent through the network on more than one
occasion it will look different each time with overwhelming probability.
Not only are outsiders a threat to mix networks, but insiders are a threat
as well. A properly designed mix net is still secure even if a fixed fraction
of the nodes are operated by malicious persons that collude in order to
track messages. Assuming that a sufficient number of messages go in and
out of a given node at any given time it is important that the message
go through multiple honest nodes to make the probability of tracing it
negligible. A mix network is depicted in Figure 3.2.

Onion routing is a common method for implementing asynchronous
mix networks. In an onion routing system, each of the N nodes has a
key pair. A user selects a random traversal among the N nodes and
successively encrypts in reverse-order the message using the public keys
corresponding to the nodes that the message will traverse. In choosing the
traversal, the same node can be chosen multiple times and therefore loops
are possible in the path that the message takes. The layers of the resulting
ciphertext are peeled away by performing decryption as the message trav-
els through the network. By padding with random bytes it is possible to
accomplish this in such a way that the length of the transmitted message
is always the same.

82 3. Tools for Security and Insecurity

Figure 3.2 Asynchronous mix network

Over time a given mix net node may receive 1,000 incoming messages.
These are decrypted, the order of them is mixed, and the resulting mes-
sages are sent out. The original packet headers are discarded and the
messages are sent in newly constructed packets. This prevents trivial
matching based on packet headers. If a message is decrypted entirely
then it is sent to the final recipient. This way, a given input message to
the node may end up being any of 1,000 different outgoing messages (see
Figure 3.3).

It is also possible for a mix node to decrypt a message, determine the
next intended recipient, and then re-encrypt the message using the public
key of the recipient. When this re-encryption is probabilistic, it makes it
more difficult for the original sender to identify his or her own message as
it moves through the mix network.

An asynchronous mix network must have a sufficiently large message
volume at all times. If only a handful of messages is traveling through the
network then correlation is trivial. There are numerous attacks on mix net-
works that have been described in the literature.20 For example, an active

20Lance Cottrell described several attacks against asynchronous mix networks [75].

3.10. Cryptovirology Benefits from General Advances 83

Figure 3.3 Mixing in a mix network node

adversary may try to determine the partial path of an unknown message
by sandwiching it between messages of the adversaries’ own choosing. The
object is to fill the queue of messages in the mix with custom-made mes-
sages, all except for the one that needs to be traced. The adversary then
watches the messages as they leave the node to determine where the sand-
wiched message goes. The adversary takes note of how many messages
each intended recipient receives. This is enough to determine where the
sandwiched message went.

A novel solution to this problem has been proposed [112]. The idea
is to regard the mix net nodes as probabilistic algorithms and let them
affect the paths that messages take. The way this is accomplished is by
flipping coins, and with a certain probability sending a given message on a
short, randomly chosen inter-mix detour. When a detour occurs it has the
effect of adding a few new layers back onto the message in question. This
mechanism has the novel property that even the sender does not know for
sure what path his or her message will take within the mix network. The
probability that a given message is sent on a detour must be low enough
to keep the message volume from growing out of control.

Methods have been devised to not only allow anonymous messages
to be sent, but also to allow anonymous replies [112]. In the cryptovirus
attack, the virus can instruct the victim to place the victim’s email address
on a public bulletin board. To avoid embarrassment, the virus can tell
the victim to first encrypt the e-mail address using the public key in
the virus. The e-mail address can be chosen specifically for dealing with
the virus writer and therefore not reveal the identity of the victim. The
virus writer periodically scans the board for such ciphertexts, and decrypts

84 3. Tools for Security and Insecurity

them when found. The virus writer then sends the demand anonymously
to the victim. Provided that the ransom is information, the victim can
include the ransom within the anonymous reply. As long as the ransom
itself does not reveal the identity of the victim, the attack preserves the
victim’s anonymity. A mix network is therefore a powerful building block
for carrying out cryptovirus attacks.

To apprehend the virus writer, law enforcement bodies may seek to
subpoena the administrators of each node in the mix network. Such a
subpoena might call for the current private key and all previous private
keys of each of the administrators. If all of the needed private keys and
message traffic were obtained, this would allow law enforcement to trace
any given message. However, if each mix net node adhered to a de facto
mix net protocol standard, generated new key pairs every so often, and
deleted all previous private keys and coin tosses, then the subpoena would
likely not help law enforcement. Also, if the nodes spanned multiple coun-
tries then the tracing effort would be hampered even more due to legal
complications.

The fact that mix net nodes traditionally decrypt incoming messages
and then re-encrypt them when they are sent out, implies that the indi-
vidual private keys of each mix net administrator can be used to trace
message traffic. A recent method known as universal re-encryption has
been proposed as a basis for a provably secure mix network [120]. By
using a cryptosystem such as ElGamal that allows re-encryption without
first decrypting, it is possible to have the mix net nodes randomize the in-
coming messages in an oblivious fashion. With respect to the virus attack,
this implies that there are no administrator private keys for law enforce-
ment to subpoena. If a re-encryption mix net node does not store the
random permutation that it used in a mix operation, then the permuta-
tion is effectively lost forever.21 This property makes re-encryption mixes
very attractive to criminals that need to communicate anonymously.

Various indirect methods exist to achieve financial gain through extor-
tion. For example, a determined attacker may premeditate an extortion
attempt by purchasing several shares of a small public company, provided
that a substantial number of shares are up for sale. Once the attack is
carried out the victim can be forced to purchase a high volume of shares
from the small company. This has a tendency to drive the share price
up, at which point the attacker can cash out. The obvious drawback to

21Unless all of the inputs and outputs of the re-encryption mix network are obtained.

3.11. Anonymizing Program Propagation 85

this method is that all of the outstanding shareholders may be regarded
as suspects.

3.11 Anonymizing Program Propagation

An important issue that has been glossed over is the anonymity of the
actual virus propagation. Strictly speaking, given enough snapshots of
the states of machines on a network it is theoretically possible to trace the
flow of a virus or worm perfectly. So, an interesting theoretical question is
how to design a virus or worm that cannot be traced. Intuitively it would
seem that a solution along these lines would make use of some form of mix
network.

At first sight Figure 3.4 may appear to be quite silly. It looks like an
artery or something out of a Dr. Seuss book, but it is quite illustrative of a
new concept that will now be introduced. Consider a simple generalization
of a mix network in which it is programs that are mixed instead of simply
messages. Suppose further that programs can submit themselves to the
mix network. In this case a program can choose a destination, jump into
the mix, and then reappear at the destination much like the bug does
in the figure. This in itself would not be very useful unless the program
had a way of gaining control when it arrives at its destination. This
could be accomplished by having the client programs for the mix network
automatically run the programs that are received from the network.

This system is somewhat similar to the worm that was researched
at the Palo Alto Research Center (see Appendix A.1) with one critical
difference: a program’s starting location cannot be ascertained at all once
the program travels through the network.22 A nice feature to have would
be a program that submits itself to the mix and that can either choose
the destination machine explicitly or let the mix choose the final machine
based on its own random coin flips. This latter approach allows programs
to literally disappear without a trace from one machine and show up at
some random location that the program itself could not have predicted
accurately. This aspect would make viruses and worms very happy.

The system can be construed as a distributed operating system in
which the processes may optionally be distributed anonymously among
many machines. It may at first sight appear to be suicidal for users. In
many respects this is in fact the case. However, a virtual machine with

22The program could be designed to reveal this information deliberately, however.

86 3. Tools for Security and Insecurity

Figure 3.4 A mix that mixes programs

a security kernel that verifies the signature on programs before running
them can be used to implement execution rights and access control.

The system has some very interesting implications for digital copyright
issues. Suppose that the system is based on a mix that enables anonymous
messages to be sent along with anonymous replies [112]. Also, suppose that
a program is written that uses private information retrieval (see Section
6.2) to search for a particular MP3 song and retrieve it. The program can
contain a specific query as well as the database administrator algorithm.
The program runs the database administator algorithm on the query and
the database of the machine when it arrives.23 If this program shows up
on a machine through the mix, takes an MP3, and then disappears back to

23The scheme can utilize tagged private information retrieval (see Section 6.4) and
use a questionable encryption scheme (Subsection 6.6.2) to “encrypt” the response to
the query. A sting operation can be performed by pirates against law enforcement in
which witnesses of non-encryption are revealed to refute the validity of ciphertexts that
are “evidence.”

3.11. Anonymizing Program Propagation 87

where it came from, is the owner of the machine at fault in a legal sense? If
the database consists of public domain songs as well as commercial songs
then the owner of the machine will never have any way of knowing if a
commercial song has ever been taken off the machine or not.

In this respect the system acts like a passive file server since programs
can show up out of nowhere, take files, and jump back into the mix. The
only overt action that the mix client does that makes file sharing possible
is to send control to programs that arrive from the mix. This overt action
can be eliminated without hindering public file sharing capabilities. The
system can be designed to check for the requisite level of access control,
but contain a rather convenient bug that accidentally allows world read
permissions to commercial MP3s. Can users be liable for not finding bugs
in their software and fixing them? Can companies be liable for selling
or distributing buggy software? Should laws be passed to force users
not to trust the world? The mix-based distributed operating system just
described is hackable by design.24 The cryptographic agent that moves
through it is designed to hide what it is doing. This is an example of
how cryptography can be maliciously used by software pirates to violate
copyright laws.

24In terms of world read permissions.

Chapter 4

The Two Faces of Anonymity

The ability to communicate anonymously and do things in an anonymous
fashion is a mixed blessing. Criminals that perform criminal operations in
an anonymous way minimize their risk of getting caught and voters that
cast ballots anonymously do so without fear of persecution. Anonymity
mechanisms, however simple in design, can be regarded as technologies
unto themselves. The need for communicating anonymously and perform-
ing anonymous activities has extended into the digital realm and there
currently exist advanced cryptographic algorithms for anonymously send-
ing e-mails, voting, and purchasing items over the Internet. The potential
for abuse of such technologies is immense and the first part of this chapter
sheds some light on many of the possibilities. The chapter concludes with
a description of a cryptotrojan attack that utilizes an anonymous com-
munication channel. By carrying out the attack, the Trojan horse author
is able to steal login/password pairs from a host machine in a way that
greatly diminishes the risk of getting caught.

4.1 Anonymity in a Digital Age

Mechanisms that provide anonymity serve the common good in a variety
of ways. For example, the ability to cast ballots anonymously helps protect
voters against government persecution in response to their choices in elec-
toral candidates. Other modes of communication that involve anonymity
include tip lines for law enforcement agencies, newspaper classified ads,
and suggestion boxes. The way in which these anonymity mechanisms
serve the common good is clear. Tip lines help prevent citizens who may
know the criminal from being discovered by the criminal, and also help

89

90 4. The Two Faces of Anonymity

lesser accomplices reveal crimes without fear of prosecution. Likewise,
suggestion boxes help customers and patrons speak candidly about the
products and services of a company or store without running the risk of
being identified and mistreated.

4.1.1 From Free Elections to the Unabomber

The ability to carry out actions in an anonymous fashion is not without
its drawbacks. For instance, a terrorist can take credit for a bombing by
sending a letter to a news agency, calling from a pay phone, and so forth.
These approaches are risky for criminals since they can leave behind a
trail of fingerprints, eyewitnesses, skin tissue, and so on. The mail system
is subject to even worse abuses, as evidenced by the Unabomber and
Anthrax attacks in the United States.

The migration of anonymity mechanisms to the digital realm is likely
to have a growing impact on both the beneficial and malicious capabilities
they provide. Cryptographic on-line elections have the potential to be
more accurate, more secure, and timelier. This paves the way for society
to resolve issues by voting on a much larger scale, thereby more accurately
capturing the true consensus of the population. On the flip side of this
coin, a terrorist can claim credit for a bombing by sending a message to a
news agency via an anonymous remailer. This eliminates the possibility
of leaving a physical trail for forensic scientists. Terrorists can also co-
ordinate their activities using anonymous remailers and can conceivably
assign tasks to individuals without ever even meeting them in person.

4.1.2 Electronic Money and Anonymous Payments

Cash is a payment medium that is favored by many consumers due to
the anonymity that it provides. Purchasing items with cash preserves the
anonymity of the buyer and seller. When a consumer purchases an item
with a debit or credit card, the consumer’s identity and often the item or
items that are purchased are revealed and recorded. This information is
often sold to marketing agencies for profit and is used to solicit more sales
via targeted advertising.

The downside to cash from the consumer’s perspective is that it is easy
to steal. A mugger that steals a wallet containing cash will profit from
the criminal act. If the wallet contains a debit card then the criminal is
at a loss since the personal identification number is needed to get at the

4.1. Anonymity in a Digital Age 91

money. Consumers therefore face a tradeoff when deciding to carry either
cash or debit cards. Cash guarantees anonymity but runs the risk of being
stolen. Debit cards are resilient against theft but expose the consumer to
aggressive advertising.

Cryptography may well hail as the savior in this dilemma. Electronic
money is a technology that combines the anonymity of cash with the
security and convenience offered by debit cards. The concept of e-money
takes getting used to, since it implies that streams of zeros and ones can
replace paper money. E-money is one of the most involved applications of
public key cryptography.

One of the benefits of e-money is that it can be protected from de-
struction. Once downloaded to a smart card, the e-notes can be copied
to a home computer. If the smart card is destroyed then a backup will
reside on the computer and vice versa. This is not the case with paper
money. Since e-notes can be duplicated one would think that forging them
would be trivial. However, this is not the case since the underlying algo-
rithms are designed to protect against double-spending [53]. Once a note
is spent it renders all other identical copies null and void. When consider-
ing the evolution of currency, the migration to e-money makes sense. The
problems associated with bartering perishables for non-perishables were
solved using coins. The problem of lugging around hundreds of pounds of
coins was minimized using paper money. Assuming that smart cards be-
come ubiquitous, e-money may become a cheaper payment medium overall
compared to paper money. Unlike printing dollar bills, e-money takes a
fraction of a second and very little energy to mint.

Electronic payment systems remain a very active area of research today
since there are numerous problems to deal with in order to arrive at an
acceptable solution [9, 37, 53, 130, 168, 212, 214, 303, 313]. For example,
divisibility is important since many items are valued at fractions of a
dollar. Efficiency is an issue since too much protocol interaction may
render solutions impractical to use. A fundamental security requirement is
that it must not be possible to counterfeit e-notes. An important problem
to consider in deploying a secure payment system is that the security of
the entire system often degenerates to that of the security level of the
weakest link. This is often the case in the theory of secure systems. In
many situations it is important to augment a payment scheme using mix
networks [138]. Perhaps the most intriguing technological advantage to
e-money over paper money is that the unforgeability aspect can be proven
based on well-established intractability assumptions.

92 4. The Two Faces of Anonymity

The anonymity provided by cash payments is attractive to criminals
as well. Criminals often prefer to conduct transactions using cash due to
the difficulty of tracing it in small quantities. As a result, serial numbers
and watermarks are used when needed to help track the movement of
U.S. treasury notes. The countermeasure to these traceability mechanisms
is money laundering. It is not uncommon for small-time crooks to buy
expensive goods at a department store in one state and then return them
in another state in order to move large sums of money safely.

4.1.3 Anonymous Assassination Lotteries

Since truly anonymous e-money is not traceable it would provide an ideal
medium for money laundering. It would be possible to leave the country
with millions of dollars tucked away safely within an average-sized wallet.
This has the potential to fill the treasuries of crime syndicates and ter-
rorist groups to unprecedented levels. When combined with anonymous
remailers, the potential for abuse of e-money is even worse. So begins the
manifesto of Jim Bell, civil libertarian [186]:

A few months ago, I had a truly and quite literally “revolutionary” idea,
and I jokingly called it “Assassination Politics”: I speculated on the ques-
tion of whether an organization could be set up to legally announce that
it would be awarding a cash prize to somebody who correctly “predicted”
the death of one of a list of violators of rights, usually either government
employees, officeholders, or appointees. It could ask for anonymous con-
tributions from the public, and individuals would be able (to) send those
contributions using digital cash.

The idea combines the notion of e-money with anonymous remailers to
create a treacherous lottery. Cash would flow in through anonymous mix
networks and each winner would receive his or her share of the pool in
an anonymous reply. The combined technologies also make it possible for
criminals to pay for each other’s services by sending e-money to each other
using anonymous remailers. This makes it impossible to coerce criminals
in custody to divulge the identity of accomplices since they won’t know
the identities of their accomplices. Hence, the sum of both technologies is
greater than the two.

4.1. Anonymity in a Digital Age 93

4.1.4 Kidnapping and Perfect Crimes

To illustrate this even further, consider the problem that a kidnapper faces
in collecting the ransom money. Even if the kidnapper sends the delivery
person on a wild goose chase to the final drop-off point, the kidnapper may
still get caught. This situation is risky from the kidnapper’s perspective
since it makes certain assumptions about the surveillance capabilities and
overall manpower of law enforcement. But with e-money, this is not the
case. The kidnapper can insist that the ransom be paid using e-money
that is encrypted under the kidnapper’s public key. Like in the cryptovirus
attack, the kidnapper can insist that the encrypted e-money be sent using
an anonymous remailer in an anonymous reply. This is known as the
perfect crime [311].

Armed with this foresight, cryptographers have devised algorithms for
implementing electronic money with safeguards that prevent these abuses
[50, 140]. These safeguards typically involve key escrow, and therefore
utilize a predetermined group of escrow authorities. When needed, the
escrow authorities can collaborate and thereby trace the flow of e-money
notes. They therefore have the ability to revoke the anonymity provided by
the underlying system. Kidnappers that try to use e-money with revocable
anonymity would face even worse traceability issues than with cash. In
the case of assassination politics the identities of the lottery participants
could be ascertained.

Sometimes it is amazing how science fiction novels foreshadow future
technology. The text below is from the chapter entitled “The Logicality
of Liking” from Book II of the 1975 novel The Shockwave Rider [43]. It
bears a striking resemblance to mixes with revocable anonymity.1

“What sort of trick?”
“Sometimes it’s known as going to the Mexican Laundry.”
“Ah. You route a credit allotment—to avoid either tax or

recriminations—into and out of a section of the net where no-
body can follow it without special permission.”

Given the existence of anonymous e-cash schemes that provide for
revocable anonymity, one might assume that the threat of assassination
politics and perfect crimes is eliminated. However, this assumption is
fundamentally flawed since it makes the implicit assumption that there is

1Special thanks to C. C. Michael for pointing this out.

94 4. The Two Faces of Anonymity

an entity that is capable of controlling all payment mediums. This need
not be the case.

Suppose that an offshore organization (for example, a small foreign
country) creates a digital currency. Using encryption, signatures, and mix
networks it would be possible to buy and sell products and services using
the currency on the Internet in a confidential and untraceable fashion
(similar to “BlackNet” [184]). This organization can design the payment
system to be completely anonymous.2

Any country or organization that does this is likely to thrive. It would
become a repository for crime syndicates worldwide and would probably
amass an endowment in short order that would permit it to invest in legit-
imate businesses. Other countries could pass legislation that would make
using the foreign e-money illegal, but cryptography would greatly inhibit
law enforcement’s ability to enforce such laws. Under these circumstances,
the threat of anonymous assassination lotteries and perfect crimes remains
alive. In Bruce Sterling’s book Islands in the Net [292], Grenada is a pirate
cove that closely resembles this sort of country.

4.1.5 Conducting Criminal Operations with Mixes

Mix nets and anonymous money are powerful technologies for conducting
criminal activities (see Subsection 3.10.2). One can surely expect an im-
mense amount of interest from law enforcement agencies and intelligence
agencies whenever a mix network is deployed. It was only a matter of time
until strong cryptography became a household technology. It is quite pos-
sible that robust mix networks will come next. Traditionally, it is open
standards that gain the most widespread and rapid adoption. An open
standard for a mix network, should one be drafted and highly utilized by
the general public, could prove to be the single most liberating and at the
same time life-threatening Internet technology to date. Various peoples
live out their entire lives in fear of persecution. Mix networks have the
potential to help make freedom of speech a reality worldwide.

In fact, something very similar to such a widespread open protocol
already exists. The people at Nullsoft3 developed the gnutella protocol in
late 1999. The gnutella protocol is currently utilized by an immense num-
ber of people round-the-clock to share files on the Internet. Many of these
files are copyrighted MP3 songs. Needless to say these sorts of programs

2Perhaps under suitable computational intractability assumptions.
3The creators of Winamp.

4.1. Anonymity in a Digital Age 95

have been the bane of the recording industry for some time now. Unlike its
predecessor, Napster, the gnutella protocol is completely decentralized and
allows each user to be a file sharing server. This makes it exceptionally
hard to apprehend those who illegally duplicate and distribute copyrighted
material. It is possible to design a protocol akin to the gnutella protocol
that preserves the anonymity of the recipients of copyrighted material. For
example, users could connect to offshore servers using a mix network. This
would allow citizens in countries with stringent copyright laws to violate
copyright laws in an undetectable fashion. Furthermore, if the sharing
were performed at a packet switching layer, the new protocol could serve
as a general mix net packet switch and a medium for distributing MP3s.
This would serve hardened criminals and casual copyright violators alike.
Due to the immense number of packets relating to MP3 transfers, the
network would always be highly utilized and a high level of anonymity
would be assured for everyone. Perhaps the biggest technical challenge is
handling the needed PKI for such a service.

An anonymous e-mail service based on a cryptographically secure mix
net when combined with e-cash is a criminal’s dream: criminals can op-
erate in cells, coordinate criminal acts by sending each other anonymous
e-mails, and pay for each other’s services by sending each other e-cash via
anonymous e-mail, all without ever knowing each other’s true identity. In
cryptographic terms, it is a way of secret-splitting criminal operations.4

This is a policeman’s worst nightmare. Even if one criminal is appre-
hended there would be no way to use that prisoner to track down his or
her accomplices. . . simply because the prisoner would honestly not know
who the accomplices were. Interrogators love to lie to captives to get them
to divulge facts that law enforcement needs. In fact they are permitted
to do so under U.S. law. They need only read the criminal his or her Mi-
randa rights and then slap ’em around a bit to prevent the criminal from
taking the fifth. However, they cannot lie about leniency in regards to
sentencing. Given enough pressure many criminals break. With mix nets
and anonymous cash, breaking the prisoner may be a fruitless endeavor.

Using mix nets securely is a complicated business. Imagine the follow-
ing Trojan horse attack on a mix net. A malicious entity, Mitch, deploys
an e-mail client with a stegotrojan in it. Two criminals, Alice and Bob,
both use this infected e-mail client to send and receive e-mails. Suppose

4Certain crimes can even be split down to the level where each slice is hardly a
criminal act in and of itself. The ability to amass chemicals in small quantities comes
to mind.

96 4. The Two Faces of Anonymity

that each copy of the client has a unique identifier ID. Each time a client
sends out an e-mail it steganographically encodes two IDs in the header
information. One ID is that of the client that constructed the e-mail. The
other ID is that of the ID in the most recently received e-mail packet.

In this attack it is assumed that Alice and Bob use the infected clients
on a regular basis for benign communications. Also, suppose that they
have never communicated by e-mail before and that on a single occasion
Alice sends Bob e-mail through an e-mail anonymizer wherein the e-mail
describes a premeditated criminal act. Bob’s client will eventually receive
the e-mail, perhaps through his digital pseudonym. Alice’s ID will go out
in stego form in Bob’s next e-mail. For instance, it may go to a user named
Carol. If the header data that is going to Carol is in plaintext form then
Mitch, who is passively eavesdropping on the network, will be in a position
to learn that the anonymous e-mail that Bob received was in fact sent from
Alice. The point of this attack is that hackers and intelligence agencies
can use stegotrojans to foil the anonymity that is provided by mix nets.
There are a myriad of other ways to do this. Criminals and honest users
alike would do well by verifying the design used in all of their hardware
and software, especially network related software. In the absence of doing
so, the safest assumption to make is that all of your communications will
be traceable. This attack does not necessarily imply that Mitch will be
able to read the message that was sent from Alice to Bob through the mix
net. It could be encrypted using Bob’s public key. However, due to the
steganographic tag in the e-mail header, the ciphertext could be traceable.
This may constitute enough probable cause to arrest and interrogate Alice
or Bob.

Violating the anonymity afforded by mix nets is a serious issue. It has
the potential for ruining the privacy in electronic voting protocols. There
exist numerous provably secure cryptographic protocols for voting in the
scientific literature. Many are based on the existence of secure anonymiz-
ing capabilities. In a matter of years companies are likely to produce
e-voting software and tout it as being 100 percent secure, accurate, and
timely. Given the presidential election tally screw-up in Florida recently,
it may end up being adopted. If such technologies become the norm, the
threat of stegotrojans and government corruption could then more easily
give rise to an Orwellian society.

The use of Linux or a similar free operating system may help in pre-
venting stegotrojan attacks. Operating systems that are based on Unix
exist in the public domain. Their source code can be verified. They can

4.2. Deniable Password Snatching 97

then be compiled and used. However, care must be taken that the under-
lying computer and compiler do not contain Trojans. A clever attack in
this regard is presented in Section 9.3.

4.2 Deniable Password Snatching

Given the ideas behind assassination politics and the perfect crime it
seemed only natural that other dark applications of anonymity could be
found. These two threats do not involve malware per se and can be cat-
egorized as protocols that are conducted by malicious individuals. The
cryptovirus attack merges malware with mix networks and could easily
make use of e-money if such currency were known to be untraceable.

The concept of a cryptovirus is a simple one. Place a public key in a
virus and let it perform one-way operations on the host system that only
the author can undo. It is really the payload of a cryptovirus that gives
it an edge, since the public key in no way assists in viral replication. The
discovery of the cryptovirus attack led us to ask ourselves the following
question:

In what other novel ways can malicious software, when gifted with the
public key of the author, mount attacks on its host with improved efficacy?

The question itself suggests that all existing cryptographic tools need
to be analyzed from the perspective of degrading system security rather
than improving it. The notion of anonymity had already proven fruitful
in the perfect crime, assassination politics, and the cryptovirus attack. It
was only natural to question whether or not its uses had been exhausted.
This led to our work on deniable password snatching [334].

4.2.1 Password Snatching and Security by Obscurity

Consider a typical Trojan horse program that steals the login/password
pairs of users. The Trojan horse program hooks into the system’s au-
thentication mechanism and captures such pairs as they are entered by
the users. The login/password pairs are often stored in a file with an
obscure name in a remote location on the file system. In some operating
systems it is even possible to designate the file as being invisible, which
makes it harder to detect. The attacker then accesses the machine at
a later time and downloads the pilfered login/password pairs. From the
attacker’s perspective this attack is risky for two reasons:

98 4. The Two Faces of Anonymity

1. Someone else may find the hidden file and infiltrate the accounts,
thereby endangering the author of the Trojan horse. The assumption
that others will not read data in the file by virtue of the fact that the
file is hidden is dangerous. It is an instance of security by obscurity,
a discouraged cryptographic practice.

2. The Trojan horse may be discovered by system administrators and
alarms may be put in place that sound whenever the hidden file is
read. So, the Trojan author is sticking his or her neck out by issuing
commands to download the hidden file.

Security by obscurity is discouraged among cryptographers but it is a
principle that applies to computer security in general. Security should not
depend on the secrecy of the design nor the ignorance of the attacker [13].

4.2.2 Solving the Problem Using Cryptovirology

The virus writer can readily overcome both of these problems. To carry
out the attack, a cryptotrojan that contains the public key of the virus
writer can be used. To solve the first issue, the Trojan horse encrypts
each login/password pair using the public key contained within the virus.
The data can be encrypted using the RSA-based OAEP cryptosystem, for
instance. The resulting ciphertext is stored in a hidden file as before. The
hidden file can be designed to contain M ciphertext values at all times and
hence remain fixed in size. To implement this, an index i is stored at the
beginning of the file (see Figure 4.1). The value i stores the index of the
next ciphertext to be overwritten. It will range from 0 to M − 1 inclusive
and when M − 1 is reached the value for i will then wrap back around
to zero. This way, the Trojan will overwrite the oldest entries in the file
when it is full. By doing so the entries will always be kept up-to-date. If
the Trojan is in place for months on end and users change their passwords,
the Trojan will overwrite the old passwords in favor of the new ones. It
is important to keep the file from constantly increasing in size to keep it
from drawing unwanted attention.

In the deniable password-snatching attack the file is initially filled with
M ciphertexts corresponding to the encryptions of M randomly chosen
messages. The starting value for i is a number chosen uniformly at random
between 0 and M − 1 inclusive. These starting conditions help obfuscate
the activity of the Trojan immediately upon deployment.

4.2. Deniable Password Snatching 99

Figure 4.1 Hidden login/password file

The notion of anonymity leads to the solution of issue (2). The fact
that the login/password pairs are securely encrypted paves the way for
using an anonymous distribution channel. The idea is to covertly give the
hidden file to the general public. This can be done without compromising
the stolen passwords since only the Trojan horse author can decrypt the
file.

For concreteness, consider a scenario in which the Trojan author plans
on returning to the machine to download the hidden file to a floppy disk.
In this attack the Trojan horse is designed to unconditionally copy the
hidden file to every writable floppy disk that is inserted into the machine
that has a sufficient amount of free space. To make the password data
as unnoticeable as possible, it is written to the last few unused sectors of
the floppy disk. These sectors must remain unused in the eyes of the file
system. If the sectors were marked as allocated then users might discover
the file due to loss of disk space. The Trojan horse author must be sure
not to write to the floppy disk until the hidden file is safely recovered
from the floppy using a low-level disk editor. As a result of this approach,
lots of users may inadvertently receive a copy of the hidden password file.
Since it is public key encrypted they will not be able to decipher it.

100 4. The Two Faces of Anonymity

This attack illustrates that malware often needs to collect and store
data that is obtained from the host environment. To make malware dif-
ficult to detect it should be fixed in size and this suggests that circularly
linked lists are ideal data structures for storing data that needs to be kept
up-to-date in malware.

The biggest problem that remains in this attack from the perspective
of the Trojan horse author is installing the Trojan horse program in the
first place. One way to do this is to write a virus that installs the Trojan
horse program. For example, the author can store the infected program on
a floppy. To install the Trojan horse, the floppy is inserted into the host
machine and the infected program is run. The virus will migrate from the
executable on the floppy to the host machine on its own. If the author is
caught at this time then he or she can claim to be an innocent victim of
the virus.5

4.2.3 Zero-Knowledge Proofs to the Rescue

There are a couple of effective defenses against this deniable password-
snatching attack. If a Public Key Infrastructure is available and users
are outfitted with smart cards, then they can conduct zero-knowledge in-
teractive proofs to authenticate without using login/password pairs. It
can be shown via a simulation argument that an eavesdropper that ob-
serves ZKIP authentication sessions learns absolutely nothing that will
allow the eavesdropper to impersonate other users. Another solution is
to use timed cryptographic tokens such as RSA’s SecurID product. This
battery-powered token computes hash values and displays them on the
token in regular intervals. Each user must also choose a personal identi-
fication number (PIN) to use along with the token. To authenticate to a
host system a user transmits both the PIN and the current hash value.
Like ZKIPs, the solution is secure against eavesdroppers that learn the
PIN and hash values, provided that the SecurID token remains in the
custody of the user. The SecurID token is a tamper-resistant device that
stores secret information that is used to compute the hash values. The ex-
istence of these robust authentication technologies implies that the utility
of the deniable password-snatching attack is likely to wane as time goes
on.

However, the attack is general in nature and can be used for stealing

5Such an argument is not likely to work when you are a known cryptovirologist,
however.

4.2. Deniable Password Snatching 101

data other than login/password pairs. The method works equally well for
stealing any kind of information on host machines. Assuming that a be-
nign communication channel exists, a Trojan on a compromised machine
can broadcast public key encrypted data over the channel. Benign chan-
nels include steganographic channels, subliminal channels, dummy fields
in packet headers, and so on. In this case only the Trojan author will be
able to decipher the broadcast.

4.2.4 Improving the Attack Using ElGamal

By using a specific type of public key cryptosystem the attack can be
improved slightly. Ideally, the Trojan horse author would like the ad-
ministrator of the host machine to be as oblivious to the activities of the
Trojan horse as possible. This includes not letting the administrator know
how many passwords, if any, were stolen before the discovery of the Trojan
horse.

This can be accomplished by using the ElGamal cryptosystem [110]
modified appropriately [304] to be semantically secure under plaintext at-
tacks6 (see Appendix C.2.2). Recall that x is the private key and (y, g, p)
is the corresponding public key in ElGamal. The ciphertext of m is the
pair (a, b). One of the most useful properties of ElGamal is that its ci-
phertexts are malleable under multiplication. By multiplying b by some
other plaintext m1 the encrypted plaintext becomes mm1 mod p. Also,
it is possible to rerandomize ElGamal ciphertexts as follows. Choose a
value k1 < q randomly and compute (a′, b′) = (agk′ mod p, byk′ mod p).
This changes the appearance of (a, b) completely and (a′, b′) decrypts to
the same value as (a, b).

In regular intervals the Trojan horse can be designed to perform this
rerandomization to all M ciphertexts regardless of whether or not any
new passwords are stolen. Also, the decision to steal each login/password
pair can be probabilistic. As a result, with some very small probability
the Trojan will never encrypt any login/password pairs. This approach
will hamper the sysadmin’s attempt to determine if any passwords have
been stolen before the discovery of the Trojan horse. If disk backups
are continually taken then system administrators will have a chance of
catching a glimpse of the previous activities of the Trojan horse. For
example, a dump of virtual memory could expose the virus while it was
encrypting a given user’s password. However, if all of the backups miss

6In this attack the malware designer cannot be used as a decryption oracle.

102 4. The Two Faces of Anonymity

these small windows of opportunity, then it could not be proven that any
passwords had been stolen prior to the discovery of the Trojan. All M
entries will change regardless of whether or not the Trojan snatches a
single password.

As in turns out the deniable password-snatching attack can be im-
proved even more. By observing the password-snatching Trojan in action
it is possible to witness it encrypt passwords and transmit them. It is
possible to redesign the Trojan so that even when the Trojan is monitored
at runtime it is not possible to tell if it is actually encrypting anything.
The improved attack utilizes a new notion that we call questionable en-
cryptions. See Section 6.6 for details.

Chapter 5

Cryptocounters

A common trigger used in viruses to decide when to attack is a counter
value. Such viruses typically do not trigger until it has propagated itself
a certain minimum number of times. The Den Zuk virus contains such
a trigger [289]. When counters are used only to measure the number of
viruses in the wild, a good approach is to utilize two different generation
counters. One counter would store the generation number of the virus
that is incremented by one in each child a given virus has. This would
provide the height h of the family tree. The other counter would be used to
measure the average number of children that each virus has (see Chapter
1). This mechanism could be used as a tool for measuring replication
performance of viruses in real-world infections.

However, antiviral analysts would likely benefit more than virus writers
from the incorporation of counters in virus code since they would receive
better population samplings. To solve this malware problem, a method
is needed to implement such counters in a way that the viruses can in-
crement the counters but that only the virus writer can read the actual
counter values. A cryptocounter is a cryptographic primitive that solves
this problem.

In this chapter a simple cryptocounter scheme is presented based on
the ElGamal public key cryptosystem. Drawbacks to this approach are
then given, followed by an improved approach based on the Paillier public
key cryptosystem. The chapter concludes with discussion of even more
ways to implement a cryptocounter.

103

104 5. Cryptocounters

5.1 Overview of Cryptocounters

Informally, a cryptocounter is a probabilistic public key encryption that
encrypts a counter value that anyone can increment or decrement but that
can only be decrypted using the appropriate private key. Put another way,
it is a malleable ciphertext that allows the plaintext to have 1 added to
it or 1 subtracted from it. The increment and decrement operations can
be performed by anyone without even knowing the plaintext value and
without first decrypting the encryption of the counter value.

The typical threat model for the operation of a cryptocounter is the
honest-but-curious model. In this model, it is assumed that the machine
that increments the cryptocounter does so properly, and does not change
the counter in unexpected ways. For instance, if the algorithm normally
increments the cryptocounter once every hour, the machine does not ma-
liciously increment it twice every hour, and so on. It is assumed that
the machine that operates on the cryptocounter ciphertext is passive and
merely observes any and all computations regarding the counter. The
machine may do its best to try to learn the counter value based on these
observations, hence the term curious. In this sense the machine is a form
of passive adversary. But, the machine does not interfere with the nor-
mal operation of the counter, which is a capability that active adversaries
have.

By placing a cryptocounter within the virus, there is an added level of
protection over the use of a plaintext counter. The counter value that the
cryptocounter encrypts will never be revealed. This holds even if snapshots
of the cryptocounter are taken on a regular basis. Such snapshots can
occur as the result of coredumps and so forth. It is necessary to monitor
the operations on the cryptocounter each step of the way in order to keep
track of the current counter value.

Consider a virus that stores two cryptocounters to help keep track of
the number of viruses in the wild. It is relatively safe to assume that before
the virus is discovered, the host machine will not corrupt the counter
value and will not interfere with the virus when it increments the counter.
Also, it is prudent to assume that once the virus is found several system
administrators may examine their logs to try to determine the counter
values. Assuming that the snapshots are spaced out reasonably far enough,
the snapshots are not likely to reveal the counter values that the viruses
contain.

5.2. Implementing Cryptocounters 105

5.2 Implementing Cryptocounters

In this section two methods for implementing cryptocounters are given.
This first is based on the ElGamal public key encryption algorithm. Al-
though conceptually very simple, this approach has a significant drawback
when counter values are large. The second approach is almost as simple
as the first. It is a counter based on the Paillier public key cryptosystem.
The Paillier cryptosystem is described and it is shown how to use Paillier
to implement a simple cryptographic counter.

5.2.1 A Simple Counter Based on ElGamal

It is straightforward to utilize the ElGamal public key cryptosystem to
implement a rudimentary cryptocounter. In the semantically secure ver-
sion of ElGamal (see Appendix C.2.2) the message space consists of all
messages m such that mq = 1 mod p. Here q is a large prime that divides
p − 1 evenly. Since the cryptosystem is malleable under multiplication
modulo p, the plaintext can be multiplied by values modulo p without
ruining the decipherability of the ciphertext. So, a simple counter can be
implemented using the public key (y, g, p) as follows.

The plaintext is initially set to g1 = g. By choosing k1 randomly,
the first counter value is computed to be the pair (a1, b1) that is equal to
(gk1 mod p, yk1g mod p). To increment the counter by 1, the ciphertext
(a2, b2) can be computed by setting (a2, b2) = (a1, b1g mod p). Similarly,
(a3, b3) = (a2, b2g mod p). When this ciphertext is decrypted, the plaintext
is found to be g3 mod p. This is illustrated in Table 5.1.

However, there is a problem with this approach since it paves the way
for correlation attacks against the virus. For example, consider a genera-
tion counter that is incremented by one in each child. Suppose that a virus
on machine A has a child on machine B and that this virus has a child on
machine C. The ciphertexts on A,B,C would be (a1, b1), (a2, b2), (a3, b3),
respectively. Observe that the equalities a1 = a2 = a3 hold. The problem
is that b3/g = b2 mod p and b2/g = b1 mod p. So, the path of the virus
can be ascertained based on the relationships between b1, b2, and b3.

This problem can be solved by rerandomizing the ciphertexts each time
the counter is incremented. This makes correlation impossible due to the
semantic security of the underlying cryptosystem. This approach will
now be described. The plaintext is initially set to g1 = g. By choos-
ing k1 randomly, the first counter value is computed to be (a1, b1) =

106 5. Cryptocounters

ciphertext value i = 1 i = 2 i = 3

ai = gk1 mod p a1 a2

bi = yk1g mod p b1g mod p b2g mod p

Table 5.1 Flawed ElGamal Cryptocounter

(gk1 mod p, yk1g mod p). To increment the counter by 1, the ciphertext
(a2, b2) is computed by choosing k2 < q randomly and setting (a2, b2) =
(a1g

k2 mod p, b1y
k2g mod p). When this ciphertext is decrypted, the

plaintext is found to be g2 mod p. To see that this works, note that
b2
ax
2

= yk1gyk2g
gk1xgk2x = gxk1ggxk2g

gk1xgk2x = g2 mod p. To increment the counter again,

the ciphertext (a3, b3) = (a2g
k3 mod p, b2y

k3g mod p) is computed using a
randomly chosen value k3 < q, and so on. This is illustrated in Table 5.2.
This method stores the actual counter value in the exponent of g. The
counter value i therefore corresponds to the ElGamal plaintext gi mod p.

Suppose that the cryptocounter ciphertext (ai, bi) is obtained from a
virus. By performing ElGamal decryption the plaintext m = bi/ai

x mod p
is found. Since m = gi mod p, computing i is equivalent to computing the
base g discrete logarithm of m. Provided that i is not exponentially large,
this can be done by testing whether or not gi = m mod p for i = 1, 2, 3, ...
until the equality holds.

5.2.2 Drawback to the ElGamal Solution

The drawback to this counter is that there is no trapdoor for the counter
value. The value for i must be found by brute-force after gi mod p is
computed via decryption. Consider an application in which the counter
value is not always incremented by one. If at some point the counter is
incremented by an exponentially large value, it will take exponential time
to determine the exact counter value during decryption. When used for
implementing virus generation counters this drawback may not be very sig-

ciphertext value i = 1 i = 2 i = 3

ai = gk1 mod p a1g
k2 mod p a2g

k3 mod p
bi = yk1g mod p b1y

k2g mod p b2y
k3g mod p

Table 5.2 ElGamal Cryptocounter

5.2. Implementing Cryptocounters 107

nificant, but in other applications it may well be. Cryptographic counters
like this one can be used in a variety of ways. They are ideal mechanisms
for securely gathering statistics on untrustworthy host machines and are
general tools for securing mobile agents.

5.2.3 Cryptocounter Based on Squaring

The ElGamal cryptocounter is trivial to decrement by anyone. To decre-
ment (ai, bi) one need only compute (ai, big

−1 mod p) and then reran-
domize the new pair. This drawback can be heuristically avoided using
the following variation of the counter. It is very similar to the ElGamal
cryptocounter in terms of choosing exponents randomly, rerandomizing,
decrypting the counter, etc. However, instead of using the prime p, the
modulus n is used where n is the product of two secret primes. The value
g ∈ ZZ∗

n is chosen such that it has order λ(n)/2. Hence, g is a quadratic
residue modulo n.

The counter value 0 is represented by a randomly chosen quadratic
residue a modulo n that is kept secret. To increment the counter by 1,
both ai and bi are squared modulo n. Thus a2 corresponds to a counter
value of 1, a4 mod n corresponds to a counter value of 2, and so on (see
Table 5.3).

Just as in the ElGamal cryptocounter there is no trapdoor here. To
determine the counter value the pair (ai, bi) is decrypted using x and the
resulting plaintext is a2i

mod n. The counter value is i and this can be
found by brute force. A brute force approach is to start with a, square it
repeatedly and stop when a value is found that matches the plaintext of
(ai, bi).

Consider the problem of decrementing the counter without a and with-
out knowing the factorization of n. This can be trivially accomplished by
reverting to a previously stored cryptocounter pair if one is available. If
no previous snapshots of the cryptocounter are available, then the counter
value can be modified by setting bi = biw mod n where w is a quadratic

ciphertext value i = 0 i = 1 i = 2

ai = gk0 mod n a2
0g

k1 mod n a2
1g

k2 mod n
bi = yk0a mod n b20y

k1 mod n b21y
k2 mod n

Table 5.3 Squaring Cryptocounter

108 5. Cryptocounters

residue modulo n. However, this modification is not likely to be mean-
ingful since a is kept secret.1 Decrementing a cryptocounter pair directly
without any previous copies amounts to computing a square root of ai and
a square root of bi modulo n, which is intractable.

5.2.4 The Paillier Encryption Algorithm

Perhaps one of the simplest and most elegant solutions to the problem of
implementing a cryptocounter is to use Paillier’s public key cryptosystem
[216]. The Paillier cryptosystem constitutes a one-way trapdoor under the
computational composite residuosity assumption (see Appendix B.3.3).
The Paillier cryptosystem is semantically secure against plaintext attacks
under the decision composite residuosity (DCR) problem (see Appendix
B.3.4).

The value n in Paillier is the product of two large primes p and q, the
same as in RSA. The Paillier cryptosystem is based on the following two
properties of Carmichael’s λ function.

1. For any w contained in ZZ∗
n2 , the congruence wλ(n) ≡ 1 mod n holds.

2. For any w contained in ZZ∗
n2 , the congruence wnλ(n) ≡ 1 mod n2

holds.

In RSA the public exponent e in the public key (e, n) is relatively prime
to (p−1)(q−1). Typically, the value e is shared by all the users. Paillier’s
cryptosystem is quite a bit different since it does not employ e. Instead,
the cryptosystem utilizes an integer g that has order v modulo n2 with v
satisfying the following congruence.2

v ≡ 0 mod n (5.1)

The value g is shared by all the users. The public key is (n, g) and the
private key is λ(n).

1In fact, by using two different counter constructs such as this one and the ElGamal
one at the same time, by making the counter values equivalent, and by incrementing
them in lock-step, a redundancy check is implemented. The check is verified by de-
crypting the cryptocounters and making sure they both store the same count. This
makes it harder for an active adversary to falsify a previous counter value.

2The value g is said to have order v modulo n2 if and only if v is the smallest positive
integer satisfying gv ≡ 1 mod n2.

5.2. Implementing Cryptocounters 109

The following is how to encrypt a message m, which is an integer
satisfying m < n. A value u is chosen uniformly at random from ZZ∗

n and
the ciphertext c is computed as follows,

c = gmun mod n2 (5.2)

The function L(x) = x−1 mod n2

n
is used for decryption. The following

equation shows how to decrypt c to recover m.

m = L(cλ(n) mod n2)L(gλ(n) mod n2)−1 mod n (5.3)

It remains to show that decryption succeeds for all messages m. By
Euclid’s division rule, given positive integers gλ(n) and n2 with n2 6= 0,
there exist unique integers q and r, with 0 ≤ r < n2 such that gλ(n) =
qn2 + r. In this equation q is the quotient and r is the remainder upon
dividing gλ(n) by n2. The value r equals gλ(n) mod n2. By reducing both
sides modulo n this implies that,

gλ(n) ≡ r mod n (5.4)

By property (1),

gλ(n) ≡ 1 mod n (5.5)

By transitivity, equations 5.4 and 5.5 imply that r ≡ 1 mod n. Hence,
gλ(n) mod n2 is congruent to 1 modulo n. So, there exists an integer β < n
such that gλ(n) mod n2 = 1 + βn. Hence,

gλ(n) ≡ 1 + βn mod n2 (5.6)

By subtracting 1 from both sides it follows that gλ(n)−1 ≡ βn mod n2.
This implies that gλ(n) − 1 mod n2 = βn mod n2. Define t1 to be gλ(n) −
1 mod n2. So, t1 = βn mod n2. By applying the division rule again, it

110 5. Cryptocounters

follows that there exists a k1 such that βn = k1n
2 +t1. So, t1/n = β−k1n.

By reducing both sides modulo n, it follows that t1/n ≡ β mod n. Since
t1/n = L(gλ(n) mod n2) this implies that

β ≡ L(gλ(n) mod n2) mod n (5.7)

By raising both sides of equation 5.2 by λ(n) and reducing modulo n2

it follows that cλ(n) ≡ (gmun)λ(n) mod n2. From property (2), the value
unλ(n) ≡ 1 mod n2. Hence,

cλ(n) ≡ (gλ(n))m mod n2 (5.8)

Now, by substituting equation 5.6 for gλ(n) in equation 5.8 it follows
that cλ(n) ≡ (1 + βn)m mod n2. The Binomial Theorem describes the
expansion of the binomial (1+βn) on the right side of this equation. But,
since this equation is reduced modulo n2, every term will be zero except for
the first two terms of the expansion. As a result, cλ(n) ≡ 1+mβn mod n2.
So,

cλ(n) − 1 ≡ mβn mod n2 (5.9)

But this implies that cλ(n) − 1 mod n2 = mβn mod n2. Define t2 to
be cλ(n) − 1 mod n2. By the division rule, there exists a k2 such that
mβn = k2n

2 + t2. Hence, t2/n = mβ − k2n. By reducing both sides
modulo n it follows that t2/n ≡ mβ mod n. Since t2/n = L(cλ(n) mod n2)
this implies that,

L(cλ(n) mod n2) ≡ mβ mod n (5.10)

By substituting equation 5.7 for β in equation 5.10 it follows that,

L(cλ(n) mod n2) ≡ mL(gλ(n) mod n2) mod n (5.11)

5.3. Other Approaches to Cryptocounters 111

Multiplying both sides by L(gλ(n) mod n2)−1 mod n results in the
plaintext m.

Since the quantity L(gλ(n) mod n2)−1 mod n is always the same each
time that a ciphertext c is decrypted, this value can be computed once
and for all. So, let ψ = L(gλ(n) mod n2)−1 mod n. The user can then store
(λ(n), ψ) as his or her private key. Equation 5.12 shows how to decrypt c
using ψ.

m = ψL(cλ(n) mod n2) mod n (5.12)

As in RSA, the Chinese Remainder Theorem can be used to speed up
decryption. A variant of Paillier’s scheme has been proposed that makes
some efficiency improvements regarding the size of Paillier ciphertexts [79].

5.2.5 A Simple Counter Based on Paillier

The way to utilize this cryptosystem as a cryptocounter is straightforward.
The counter is initially set to m = 1. To encrypt this counter value, u1 is
chosen randomly and the ciphertext is computed to be c1 = g1un

1 mod n
2.

To increment the counter by one, u2 is chosen randomly and the value
c2 = c1gu

n
2 mod n

2 is computed. In general, ci = ci−1gu
n
i mod n

2. This
rerandomization guarantees that each counter value is encrypted in a se-
mantically secure fashion.

The benefit of this approach as opposed to the ElGamal solution is
that no comparisons are necessary when ci is decrypted. The value i is
found immediately. A depiction of what a cryptocounter looks like when
viewed on an untrusted machine is given on the right side of Figure 5.1.

5.3 Other Approaches to Cryptocounters

The Paillier cryptocounter is efficient in the sense that the counter value
can be computed in poly-time even if the counter value is exponentially
large. The Paillier cryptosystem constitutes an additive homomorphism
under multiplication modulo n2 since the product of two ciphertexts yields
a ciphertext containing a plaintext that is the sum of the two original
plaintexts. A cryptocounter was proposed by Katz et al that does not
rely on this property [152]. Their construction shows how to implement a
cryptocounter given any encryption scheme that is homomorphic over the

112 5. Cryptocounters

Figure 5.1 Plaintext counter vs. cryptocounter

additive group ZZ2. As a result, cryptocounters can be constructed based
on the quadratic residuosity assumption.

In summary, cryptocounters can be implemented based on the Decision
Diffie-Hellman problem, the problem of distinguishing nth residues modulo
n2, and the composite quadratic residuosity problem. So, if the Decision
Diffie-Hellman problem is found to be tractable, for example, then one of
the other settings might still provide a secure foundation for this primitive.
It is also quite possible that cryptocounters can be synthesized based on
other intractability assumptions as well.

Chapter 6

Computationally Secure
Information Stealing

Perhaps the two biggest fears that the victim of a computer virus has
is that information has been covertly stolen or that data files have been
deleted or altered by the virus. This chapter focuses exclusively on the
former fear. Such viruses are among the most insidious since they can steal
information for an indefinite period of time before ever being noticed.

More specifically, the problem of designing malware to securely and pri-
vately steal information is considered. The chapter begins with a straight-
forward cryptovirological approach that utilizes the public key of the mal-
ware author. However, this approach has a significant drawback since the
virus code reveals the data that it is trying to steal. This drawback forms
the motivation for a stronger model to privately obtain information. This
strong model is known as the private information retrieval (PIR) problem.
The notion of a PIR scheme is given and various approaches to solving
this problem are mentioned.

A computationally secure PIR scheme is then described that has some
very desirable properties from an operational standpoint. A few variants
of this scheme are presented, thereby developing a heuristic solution that
is amenable for use in real-world malware. Such malware is capable of
privately stealing information without revealing anything about the in-
formation that is sought and without revealing anything about what is
taken.

The notion of private information retrieval is closely related to a new
notion that will be introduced in this chapter called questionable encryp-
tions. An algorithm that produces questionable encryptions of data may,
depending on its inputs, produce valid encryptions or fake encryptions

113

114 6. Computationally Secure Information Stealing

that are actually just random numbers. It is related to private informa-
tion retrieval since it is intractable to distinguish between the two cases
and since a virus that sends questionable encryptions to the author may
not be sending encryptions at all.1

Several constructions for a questionable encryption scheme are de-
scribed as well as an instantiation based on the Phi-Hiding technique.
It is shown how to use questionable encryptions to improve the deniable
password-snatching attack described in Section 4.2. A further improve-
ment of the deniable password-snatching attack is given based on the
notion of malware loaders. Malware loaders are programs that contain
enough functionality to load secure malware modules obtained from the
network. By themselves they reveal very little regarding the ensuing at-
tack since the modules that are loaded contain the code that is specific to
the attacks that are conducted. They form a way of compartmentalizing
malware functionality to allow attacks to deploy the truly malicious code
from the safety of anonymizing networks.

The chapter concludes with a brief discussion of the cryptocomput-
ing problem. A cryptocomputer is a primitive that has the potential to
greatly improve antipiracy technologies as well as malware technologies in
the same fell swoop. It is an ambitious new direction for cryptography,
since a cryptocomputer is a virtual machine that can perform general com-
putational operations on plaintext data that is hidden within ciphertext
without ever exposing the plaintext in the process.

6.1 Using Viruses to Steal Information

Consider the problem of designing a virus to steal information from a
host system. A typical scenario involves a tag string that can be used
to identify the associated information that is desired by the virus author.
For example, if the host contains a salary database indexed by the em-
ployee name, the virus can be designed to steal the salary information of a
given employee. In the case that the virus writer wants to get the skinny
on an employee named Billy Bob, someone that the virus writer feels is
overly compensated, the virus writer could design the virus to search for
the string “Billy Bob” and steal the associated salary information. The
database would contain the entry “Billy Bob, $130,000.” Upon matching
the string “Billy Bob” contained in the virus with the entry “Billy Bob”

1Hence, there is a form of cryptographic obliviousness at work.

6.2. Private Information Retrieval 115

in the database, the virus knows it found the correct database entry. The
virus then copies the value 130,000 into an internal viral storage area.
Once found, the virus could delete the tag “Billy Bob” within itself in an
attempt to hide that which was sought.

The virus certainly accomplishes its stated goal, yet it nonetheless
suffers from some obvious drawbacks:

1. Stolen Data Revealed: The data is stored within the virus in the
clear. This implies that its value will be available to anyone who ob-
tains the virus down the road. In this example the string “130,000”
is stored in plaintext form in the virus.

2. Tag Information Revealed: Even if the tag is deleted once the data
is pilfered, previous snapshots of the virus will reveal the tag that
the virus used. Hence, people may still be able to figure out it is
Billy Bob’s salary that was obtained.

Drawback (1) may be trivially resolved [332]. To fix this problem a
randomly generated public key is placed within the virus, thus forming
a cryptovirus. When the salary is found, it is asymmetrically encrypted
and the resulting ciphertext is stored within the virus. This ciphertext is
toted around until the author obtains the virus, extracts the ciphertext,
and decrypts it using his or her private key.

As it turns out, drawback (2) can be resolved as well. The solution is
non-trivial and forms the bulk of this chapter. What is needed is a pri-
vate information retrieval algorithm that can privately retrieve Billy Bob’s
salary without revealing the tag string “Billy Bob.” This information-
stealing method is applicable to malware in general, not just viruses. It is
equally useful in designing password-snatching Trojans and other Trojans
that steal data.

6.2 Private Information Retrieval

In its most basic form, the private information retrieval (PIR) problem
is for one party to retrieve the entry in a database that is maintained by
one or more other parties without revealing which entry is sought. The
formal problem is as follows. A database consists of n entries, each of
which stores a single binary digit. The database can be represented by
a bit string B = b1b2 · · · bn. The problem is to submit a query i to the

116 6. Computationally Secure Information Stealing

database administrator,2 where 1 ≤ i ≤ n in such a way that the i is not
revealed to the database administrator, yet bi is returned in response to
the query. Hence, bit bi is privately retrieved from the database.

This technology has obvious applicability in practice. For example,
consider a high-tech company that wants to obtain a patent but does not
want to reveal to the database administrators the exact technology that
the company is interested in. If the company could privately retrieve the
patent, then this problem would be solved.

The obvious solution to this problem is to simply return the contents
of the database in response to the query. However, for large databases
this solution is obviously inefficient. The notion of private information
retrieval (PIR) was proposed by Chor et al and independently by Cooper
et al [61, 71]. The proposed solutions can be broken down into two basic
security categories: those that are information theoretically secure,3 and
those that are computationally secure.

To date the information theoretically secure solutions involved two or
more database administrators that possess copies of the same database
and that collectively process the queries of a user. A solution that is in-
formation theoretically secure cannot be broken under any circumstances,
provided that the entity that supplies the query does not collude with
database administrators and provided that the database administrators
do not communicate with each other. It is analogous to multiprover proof
systems [20].

A solution that is computationally secure is secure only under certain
computational intractability assumptions. Schemes that fall under this
latter category tend to be more efficient in terms of data storage overhead,
since to date the information theoretic solutions assume that the database
is replicated two or more times.

Chor and Gilboa demonstrated that it is possible to arrive at a sub-
polynomial communication complexity with minimal database replication
when it is assumed that user inputs are private under a computational
intractability assumption [60]. Kushilevitz and Ostrovsky showed that
database replication can be avoided entirely [165]. They designed a single-
database computational PIR that has subpolynomial communication com-
plexity. It is based on the quadratic residuosity assumption (see Appendix
B.3.5). Chachin, Micali, and Stadler presented a two-round computation-

2Or administrators, in the case that multiple instances of the database are main-
tained.

3This is also often referred to as being unconditionally secure.

6.2. Private Information Retrieval 117

ally secure PIR that assumes the existence of a single database [48]. Their
solution is polylogarithmic in n, the size of the database. It is based on
two new complexity assumptions (see Appendix B.3.6 and B.3.7). The
scheme is remarkably efficient and elegant, partly due to the fact that it is
only computationally secure, when compared to other PIR schemes. For
this reason it will be described in this chapter.

6.2.1 PIR Based on the Phi-Hiding Problem

The Phi-Hiding PIR scheme consists of three algorithms. These are a
query generator, a database algorithm, and a response retriever. The
query generator encrypts the query i in such a way that bit bi can be
privately retrieved from B. Of course, i is not encrypted in the usual
sense, but it is nonetheless concealed from the database administrator.
The outputs of this algorithm are a query q that hides i as well as a secret
s that can be used to recover bit bi. The database algorithm takes the
database B as input as well as q and applies the query to each entry in the
database. The end result of this computation is a response r. The value
r is returned in response to the query. Finally, the values r and the secret
s are supplied to a response-retrieving algorithm. This algorithm outputs
bit bi. This PIR is a two-round scheme since q is given to the database
administrator in round one and r is returned in round two.

The intuition behind the scheme is as follows. A schema is given that
allows a sufficiently large prime number pj to be constructed deterministi-
cally for each database entry j. Hence, the database entries 1, 2, ..., n will
correspond to primes p1, p2, ..., pn. With overwhelming probability these
primes will be distinct. The user wants to obtain the bit in entry i of the
database without revealing i. The prime that is used to obtain this bit is
pi. A composite m is then constructed that is tailored after this prime. It
is crafted in such a way that pi divides φ(m) evenly, yet m is difficult to
factor even when pi is known. A value x is then chosen uniformly at ran-
dom from ZZ∗

m. With overwhelming probability x will not have pth
i roots

modulo m. A value in ZZ∗
m that does not have pth

i roots modulo m is con-
strued as a binary zero. Hence, with overwhelming probability x will be a
binary zero. The database administrator is given the schema to compute
the primes as well as x. The administrator uses the schema to compute
p1, p2, ..., pn and sets x0 = x. To retrieve the entry, the administrator com-

putes xj = x
p

bj
j

j−1 mod m and returns xn to the user. With overwhelming
probability, xn will not have pth

i roots modulo m unless bi = 1. Hence,

118 6. Computationally Secure Information Stealing

with overwhelming probability the transformations on x will leave xn as
a binary zero unless bi = 1 in which case xn with have a pth

i root, thereby
making xn a binary one. So, there is a forced correlation between bit bi
and whether or not xn has pth

i roots or not.
The scheme utilizes a security parameter k. This value must be chosen

such that k > (log n)2. It is not uncommon in a formal cryptographic
algorithm to provide 1k as input. Recall that this is the binary string that
consists of k binary 1’s. The reason for this is to provide a suitable setting
for measuring the running time of the algorithm. When 1k is provided
as input, it becomes meaningful to say that the algorithm runs in time
that is polynomial in the length of its input, no matter how tiny the usual
inputs to the algorithm are. So, this custom is utilized in the descriptions
of these algorithms.

The algorithm for the query generator is given below. It utilizes
the subroutines PrimeGenerator and PhiHide that are subsequently de-
scribed. Also, the parameter f is covered in Appendix B.3.6.

QueryGenerator(n, i, 1k):
input: integer n (number of bits in the database B)

integer i satisfying 1 ≤ i ≤ n
output: a query q = (m,x, Y) where:

m is a composite that is kf bits in length
x contained in ZZ∗

m

Y which consists of k3 k-bit strings
secret s which is the factorization of m

1. generate random k-bit strings y0, y1, ..., yk3−1

2. set Y = (y0, y1, ..., yk3−1)
3. compute pi = PrimeGenerator(n, i, Y, 1k)
4. compute (Q1, Q2) = PhiHide(f, pi, 1

k)
5. compute m = Q1Q2

6. choose x randomly from ZZ∗
m

7. output q = (m,x, Y) and s and halt

Algorithm PrimeGenerator generates a prime in a deterministic fash-
ion based on the values a and Y . It utilizes a deterministic primality
testing algorithm [5].

PrimeGenerator(n, a, Y, 1k):
input: integer n (number of bits in the database B)

integer a satisfying 1 ≤ a ≤ n

6.2. Private Information Retrieval 119

Y which consists of k3 k-bit strings
output: a k-bit prime pa

1. for j = 0 to 2k−log n do:
2. set A to be the (log n)-bit representation of a
3. set J to be the (k − log n)-bit representation of j
4. set σaj = A||J
5. compute zj =

∑k3−1
`=0 y`σ

`
aj mod 2k

6. if zj is prime then output pa = zj and halt
7. output pa = zj and halt

A composite integer m is said to φ-hide a prime pa if pa divides φ(m)
evenly. It is implicitly assumed that m is difficult to factor completely.
Algorithm PhiHide is used to φ-hide pa within the composite m.

PhiHide(f, pa, 1
k):

input: integer f
k-bit prime pa

output: the factorization s = (Q1, Q2) of a composite m = Q1Q2 where
m is kf bits in length

1. repeatedly choose a random (kf − k)-bit integer q1 until
Q1 = paq1 + 1 is prime

2. choose a random kf -bit prime Q2

3. output s = (Q1, Q2) and halt

The tractability of PhiHide holds under the Phi-Sampling assumption
(see Appendix B.3.7). Under the Extended Riemann Hypothesis, algo-
rithm PhiHide runs in expected polynomial time in kf . The database
administrator runs DatabaseAlgorithm that takes the database B and
query q as input.

DatabaseAlgorithm(B, q, 1k):
input: database B = b1b2 · · · bn consisting of n bits

query q = (m,x, Y)
output: a response r contained in ZZ∗

m

1. set n = |B|
2. set x0 = x
3. for j = 1 to n do:
4. compute pj = PrimeGenerator(n, j, Y, 1k)

5. compute ej = p
bj

j

120 6. Computationally Secure Information Stealing

6. compute xj = x
ej

j−1 mod m
7. output r = xn and halt

The value r is then sent back to the entity that submitted the query
r. Once obtained, the entity runs algorithm ResponseRetriever on r and
the secret s.

ResponseRetriever(n, i, (q, s), r, 1k):
input: integer n (number of bits in the database B)

integer i satisfying 1 ≤ i ≤ n
query q = (m,x, Y)
secret factorization s = (Q1, Q2)
response r ∈ ZZ∗

m obtained from database administrator
output: a bit b such that b = bi with overwhelming probability
1. compute pi = PrimeGenerator(n, i, Y, 1k)

2. compute t = (Q1−1)(Q2−1)
pi

3. compute w = rt mod m
4. set b = 0
5. if w = 1 then set b = 1
6. output b and halt

The probability that a random element in ZZ∗
m has a pth

i root modulo
m is exponentially small in k. Observe that ResponseRetriever returns
b = 1 if and only if r has pth

i roots modulo m.

6.2.2 Security of the Phi-Hiding PIR

For a retrieval scheme to truly constitute a computationally secure PIR it
must satisfy two properties. It must satisfy the correctness property as well
as the privacy property. Informally, the correctness property states that
with overwhelming probability it should be possible to efficiently construct
a query, run the query on the database, and decrypt the query efficiently
such that the proper bit is obtained. The privacy property states that
there does not exist a circuit that can take the query as input and discern
i from it. The formal definition of a computationally secure PIR will now
be given.

Definition: Let the three private information retrieval algorithms de-
noted by QueryGenerator, DatabaseAlgorithm, and ResponseRetriever
be efficient algorithms. These algorithms constitute a polylogarithmic

6.2. Private Information Retrieval 121

computationally secure PIR scheme if there exist constants a, b, c, d > 0
such that,

1. Correctness: for all n, for all n-bit strings B, for all i ∈ {1, 2, 3, ..., n},
and for all k, after the ordered execution of the following steps:

(a) (q, s) = QueryGenerator(n, i, 1k)

(b) r = DatabaseAlgorithm(B, q, 1k)

Pr[ResponseRetriever(n, i, (q, s), r, 1k) = bi] > 1− 1
2ak .

2. Privacy: for all n, for all i, j ∈ {1, 2, 3, ..., n}, for all k such that
2k > nb, and for all 2ck-gate circuits A, after the ordered execution
of the following steps:

(a) (q1, s1) = QueryGenerator(n, i, 1k)

(b) (q2, s2) = QueryGenerator(n, j, 1k)

Pr[A(n, q1, 1
k) = 1]− Pr[A(n, q2, 1

k) = 1] < 1
2dk .

The correctness assumption says that a computationally secure PIR
need only work correctly nearly all of the time, not absolutely all of the
time. In short it says that the failure probability must be negligible in k.
The privacy property says that there should not exist an adversary circuit
A that can distinguish a query containing i from a query containing j
with non-negligible probability. It also shows that Q is efficient under the
Phi-Sampling assumption (see Appendix B.3.7).

The proof that the aforementioned scheme constitutes a polylogarith-
mic PIR will not be given here. We refer the reader to the original paper
on the scheme [48]. The non-trivial aspect of the proof is in showing that
privacy holds. The proof that privacy holds is by contradiction. For the
sake of contradiction it is assumed that the privacy condition does not hold
for (D,Q,R). From this assumption it follows that an adversary circuit A1

exists that violates the privacy property. It is then shown how to use A1 as
an oracle in a guessing circuit C1 that violates the Phi-Hiding assumption
(see Appendix B.3.6). This leads to a contradiction since the underlying
premise is that the Phi-Hiding assumption holds. Hence, the assumption
that the privacy condition does not hold is in error. The guessing circuit
C1 performs Lagrange interpolation to find y0, y1, ..., yk3−1 based on the
input prime p, i, and randomly chosen k-bit numbers a1, a2, ..., ak3 .

122 6. Computationally Secure Information Stealing

6.2.3 Application of the Phi-Hiding Technique

It is instructive to analyze the performance of the Phi-Hiding scheme in a
practical scenario. Consider a database that consists of 236 bits and hence
n = 236 entries.

236 bits = 233 bytes = 223 kbytes = 213 MB = 23 GB

This may therefore be thought of as the problem of privately obtaining a
single bit from an eight gigabyte hard drive.

Since k must be greater than (log n)2 it follows that k must be chosen
such that k > 362 = 1296. For simplicity suppose that k = 1296. The
query contains Y which consists of k3 strings, each of which is k-bits in
length. Since 233 bits equals 1 gigabyte this corresponds to,

(362)4

233 = 4898

233 = 21698

233 = 98

217 GB

It follows that Y is about 328 gigabytes long. A query that is 328 gigabytes
would present significant problems in many practical settings.

The Phi-Hiding PIR has a communication complexity that is polylog-
arithmic in n times a polynomial in the security parameter k. It is this
polynomial dependence that may lead to such a large query. Choosing k
as such is overkill and this is duly noted in the original paper.

Relaxing the restriction that k be greater than (log n)2 is one way to
make this PIR more viable in practice. However, other relaxations may
also be considered. Minimizing the size of the query is critical in mobile
agent applications, and in viruses in particular since the size of a virus
has everything to do with how hard the virus is to find. This provides
the motivation for the closely related PIR scheme that is presented in the
next section.

6.3 A Variant of the Phi-Hiding Scheme

This variation of the Phi-Hiding PIR utilizes a security parameter k that
may be chosen independently of n. In general it is prudent to choose k ≥
160. The approach is essentially the same, except that a random oracle
assumption is used. The random oracle assumption allows the query q to
be shrunk considerably. As always care must be taken when instantiating
a random oracle. A simple hash function such as SHA-1 will rarely suffice.

6.3. A Variant of the Phi-Hiding Scheme 123

It should provide an enormous number of output bits (not just 160 as in
SHA-1) and correlations should not be possible.

Let RandPrimek be a random function with domain {0, 1}∗. This
function is implemented using a random oracle H as follows. When
RandPrimek(s) is invoked on an input bit string s, RandPrimek in turn
invokes H(s). The output of H is a bit string that is countably infinite in
length. At the time the oracle was created, each bit in H(s) was chosen
with probability 1/2. The random function RandPrimek samples H(s)
k-bits at a time and tests for primality using a deterministic primality
test [5]. It samples at most k3 strings from H(s) each of which is k-bits
in length. The first k-bit sequence that is prime forms the output of R. If
no prime is found, then the last k-bit string is output. This is analogous
to the original Phi-Hiding scheme that essentially makes k3 attempts at
finding a random k-bit prime.

The expected running time of RandPrimek can be ascertained based
on the Prime Number Theorem (see Appendix B.2). For a given input
string s the probability that no prime is found is at most about (1− 1

k
)k3

.
It follows that RandPrimek has an efficient expected running time.

QueryGenerator2(n, i, 1k):
input: integer n (number of bits in the database B)

integer i satisfying 1 ≤ i ≤ n
output: a query q = (m,x, Y) where:

m is a composite that is kf bits in length
x contained in ZZ∗

m

y which is a k-bit string
secret s which is the factorization of m

1. generate a random k-bit string y
2. set I to be the (log n)-bit representation of i
3. compute pi = RandPrimek(y||I)
4. compute (Q1, Q2) = PhiHide(f, pi, 1

k)
5. compute m = Q1Q2

6. choose x randomly from ZZ∗
m

7. output q = (m,x, y) and s and halt

DatabaseAlgorithm2(B, q, 1k):
input: database B = b1b2 · · · bn consisting of n bits

query q = (m,x, y)

124 6. Computationally Secure Information Stealing

output: a response r contained in ZZ∗
m

1. set n = |B|
2. set x0 = x
3. for j = 1 to n do:
4. set J to be the (log n)-bit representation of j
5. compute pj = RandPrimek(y||J)

6. compute ej = p
bj

j

7. compute xj = x
ej

j−1 mod m
8. output r = xn and halt

ResponseRetriever2(n, i, (q, s), r, 1k):
input: integer n (number of bits in the database B)

integer i satisfying 1 ≤ i ≤ n
query q = (m,x, y)
secret factorization s = (Q1, Q2)
response r ∈ ZZ∗

m obtained from database administrator
output: a bit b such that b = bi with overwhelming probability
1. set I to be the (log n)-bit representation of i
2. compute pi = RandPrimek(y||I)
3. compute t = (Q1−1)(Q2−1)

pi

4. compute w = rt mod m
5. set b = 0
6. if w = 1 then set b = 1
7. output b and halt

This scheme is nearly identical to the original Phi-Hiding PIR scheme.
The only significant difference is how the primes p1, p2, ..., pn are chosen.
They are still chosen deterministically, yet they are chosen by applying
a random oracle to a randomly chosen seed y. The efficiency of this
approach is readily apparent since the query is the same as before except
that it contains y instead of Y . The value y is k-bits in length whereas Y
is k4 bits in length.

The privacy aspect differs in certain respects from the privacy proof
of the original Phi-Hiding scheme. Let A1 be the adversary circuit that
violates the privacy condition. A guessing circuit C1 may be constructed
that (i) uses A1 as an oracle, and that (ii) solves the Phi-Hiding problem.
The inputs to A1 must not look suspicious, otherwise A1 can balk and not
complete the needed operation. So, whatever inputs C1 concocts, they
must conform to the inputs that A1 expects. Hence, C1 must be able to

6.3. A Variant of the Phi-Hiding Scheme 125

simulate these inputs in such a way that they conform to what A1 expects.
Given that this scheme is in the random oracle model, it makes sense to
consider simulators for other random oracle cryptosystems.

Bellare and Rogaway gave an elegant formalization of a common cryp-
tographic technique known as the Fiat-Shamir heuristic [18]. They showed
how to convert any atomic proof system4 with knowledge error 1/2 in the
random oracle devoid model into non-interactive zero knowledge proof sys-
tem with knowledge error 1/2k(n) where k(n) is a given security parameter.
The construction is attractive since it permits the adversary to make 2k(n)

oracle queries in an attempt to break the non-interactive zero-knowledge
proof system. The salient aspect of this construction that is relevant to
this PIR is what is known as the random oracle completion operation.
Bellare and Rogaway allow the simulator to prescribe a small (polynomial
sized) piece of the oracle, and have the rest magically filled out at random.

The random oracle completion operation, or ROC for short, takes as
input (u, v) and returns an oracle R that is random subject to the con-
straint that R(u) is prefixed by v. The random string completion opera-
tion, or RSC for short, is an operation that takes a string v ∈ {0, 1}∗ as
input and appends to it a countably infinite sequence of random bits. So,
conceptually, the output of R on input u is v followed by RSC(v).

The operations ROC and RSC can be utilized in the guessing circuit
C1(m, p) that takes the composite m and the k-bit prime p as input. The
approach is as follows. The value y is chosen to be a random k-bit string
and u = y||I is computed. Here I is the (log n)-bit representation of
i. A series of k-bit strings are generated randomly until one is found
that is prime. This prime is then replaced by p. This sequence of k-bit
values forms the bit string v. The ROC operation is performed to compute
R = ROC(u, v). The RSC operation then defines the bits that follow v in
the output of R. The oracle R is then used as the oracle in the random
function RandPrime.

Assuming that the problem instance (m, p) is chosen randomly, this
approach produces primes p1, p2, ..., pn that are drawn from the probability
distribution that the adversary circuit A1 expects. Of course, one of these
primes is in fact p from the problem instance (m, p). In this fashion, A1

is duped by C1 into solving the Phi-Hiding problem.
This computational PIR solves the space problems associated with

the PIR query q. However, it does not minimize the running time of
the database algorithm. This may prove to be too burdensome in some

4For any language L contained in NP.

126 6. Computationally Secure Information Stealing

settings, yet perhaps not in others. It is an interesting research problem
to develop a more computationally efficient private information retrieval
scheme.

6.4 Tagged Private Information Retrieval

The random oracle based PIR presented in Section 6.3 is a space efficient
way to privately obtain a single bit from a database of bits. It is of course
possible to define w databases B1, B2, ..., Bw and perform the PIR scheme
w times, once for each database. This allows the user to obtain all w bits
corresponding to entry i in each database. This effectively forms a single
database containing n entries, each of which contains a w-bit string.

However, this scheme is still somewhat abstract and leaves much to be
desired in terms of applying it in many practical situations. There may be
some situations in which the needed entry may be referenced by an index
i, but a more likely scenario is one in which the needed entry is associated
with a particular tag string rather than an index i that is contiguous with
the other entries. For instance, consider a hacker that wishes to obtain the
password of BobbyB142 and no one else. The database consists of the user
names as tags and the passwords as database entries. The hacker would
like to construct a Trojan horse that privately retrieves the password of
BobbyB142 without revealing that his password is sought. The Trojan
could be resident and apply the database administrator algorithm to each
password that is entered. The Trojan will steal Bobby’s password each
time he enters it.

The PIR in Section 6.3 can be retrofitted to solve this problem. It can
be employed by viewing the database as multiple 1-bit databases. The
index sequence i can consist of the binary representations of all current
user names. There will of course be huge gaps in this index sequence. It
is clearly more desirable to come up with a custom tagged PIR for this
problem. This PIR will now be described. The tagged database B is
defined as follows,

B = ((t1, b1), (t2, b2), ..., (tn, bn)) (6.1)

Here the ti’s are each W1 bits in length and the bi’s are each W2 bits
in length. The value bj = (bj,1, bj,2, ..., bj,W2) for 1 ≤ j ≤ n. The problem
is to obtain string bi privately from the database administrator.

6.4. Tagged Private Information Retrieval 127

QueryGenerator3(n, ti, 1
k):

input: integer n (number of bits in the database B)
integer ti where |ti| = W1

output: a query q = (m,x, Y) where:
m is a composite that is kf bits in length
X consisting of W2 values from ZZ∗

m

y which is a k-bit string
secret s which is the factorization of m

1. generate random k-bit string y
2. compute pi = RandPrimek(y||ti)
3. compute (Q1, Q2) = PhiHide(f, pi, 1

k)
4. compute m = Q1Q2

5. for j = 1 to W2 do:
6. choose xj randomly from ZZ∗

m

7. set X = (x1, x2, ..., xW2)
8. output q = (m,X, y) and s and halt

DatabaseAlgorithm3(B, q, 1k):
input: database B

query q = (m,X, y)
output: a response R consisting of W2 values from ZZ∗

m

1. set n equal to the number of entries in B
2. for j = 1 to W2 do:
3. set x0,j = xj

4. for j = 1 to n do:
5. compute pj = RandPrimek(y||tj)
6. for ` = 1 to W2 do:

7. compute ej,` = p
bj,`

j

8. compute xj,` = x
ej,`

j−1,` mod m
9. output R = (xn,1, xn,2, ..., xn,W2) and halt

ResponseRetriever3(n, ti, (q, s), R, 1
k):

input: integer n (number of entries in the database B)
integer ti where |ti| = W1

query q = (m,X, y)
secret factorization s = (Q1, Q2)
response R = (xn,1, xn,2, ..., xn,W2)

output: a bit string b such that b = bi with overwhelming probability

128 6. Computationally Secure Information Stealing

1. compute pi = RandPrimek(y||ti)
2. compute t = (Q1−1)(Q2−1)

pi

3. for j = 1 to W2 do:
4. compute w = xt

n,j mod m
5. set bi,j = 0
6. if w = 1 then set bi,j = 1
7. output b and halt

The scheme generalizes the random oracle PIR in the obvious way. It
uses a series of elements from ZZ∗

m to record the desired database entry.
Each bit in the retrieved string corresponds to a pth

i root or non-root. No
security argument will be given for this particular scheme. However, it is
clear that it is based on the Phi-Hiding problem and gets its security from
the intractability of distinguishing higher order residues from non-residues.

The tagged information retrieval algorithm can also be conceptually
viewed as a logic circuit. This perspective will be given here; however,
it is emphasized that this is for illustrative purposes only and in no way
captures the essence of the Phi-Hiding scheme from a cryptographic stand-
point. The object is to design a cryptographic pattern matching and stor-
age circuit. If we disregard the cryptographic aspect of this problem, the
corresponding circuit can be realized in a straightforward fashion using
logic synthesis.5

Suppose that the tag ti is 4-bits long and the associated data bi is also
4 bits long. The circuit contains ti in hardwired form. This is depicted
in Figure 6.1. For concreteness suppose that ti = 1110, as in the figure.
These bits are encrypted in the tagged information retrieval scheme. Also,
the circuit initially contains a 4-bit register x. Each value is initially zero
as depicted in the figure. The value x corresponds to X in the tagged
information retrieval query.

To operate correctly the circuit must match the input tag with the
hardwired tag ti. If they match the corresponding data, bi should be
copied into the 4-bit register x. If they don’t match, then the register
values should remain unchanged. The problem can be broken down into
two parts: a pattern-matching circuit and a bit-writing circuit. Consider
the pattern-matching circuit. The goal is to produce a binary 0 if the
input tag matches the hardwired tag ti and zero otherwise. This can be
implemented by first bitwise XORing the tag bits. If they all match then

5Logic synthesis is typically covered in an introductory undergraduate course in
electrical engineering.

6.4. Tagged Private Information Retrieval 129

Figure 6.1 Informaton retrieval circuit

all the resulting bits will be zero. If the bits in a single bit position differ
then at least one of the resulting bits will be one. So, by ORing all the
resulting bits, the result of the OR will be zero if and only if all bits match.
Let the resulting signal bit be denoted by s.

The signal s can be used to decide whether or not to copy the associated
data bits into the 4-bit register x. This is the job of the W-gates, which
stands for writing gates. When s = 0 the W-gates should cause x to
assume the value of bi. When s = 1 the W-gates should leave x unchanged.
This design gives rise to the truth table given in Table 6.1.

In Table 6.1, b denotes one of the bits in bi, xi denotes the correspond-
ing bit in x, and x′ denotes the value that xi will be changed to. Note

130 6. Computationally Secure Information Stealing

b x s x′

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 6.1 Truth table for W-gate

that whenever s = 0, the output value x′ assumes the value of b. Also,
whenever s = 1 the value x′ assumes the value of x.

It is conventional in boolean algebra to let xs denote the logical AND
of x and s where x and s are boolean values. It is also conventional to let
x + s denote the logical OR of x and s and s̄ to denote the logical NOT
of s.

The following is how to turn Table 6.1 into a boolean expression using
the sum-of-products method. For each output x′ that equals 1, a particular
term is created in the boolean expression. Consider a row which contains
x′ = 1. The term is the logical AND of the variables with the exception
that a variable is negated if its entry contains a zero. For example, the
fourth row from the top of Table 6.1 has a zero in the column for b. Hence,
the term for this row is b̄xs. All of the resulting terms are then ORed
together. The truth table therefore gives rise to the following boolean
equation.

x′ = b̄xs+ bx̄s̄+ bxs̄+ bxs (6.2)

This boolean expression is implemented in a circuit called W-gate that is
given in Figure 6.2.

It is instructive to consider the operation of the circuit in Figure 6.1.
Suppose that the circuit is initially given (t1, b1) where t1 is the 4-bit tag
and b1 is the 4-bit data value. After this input is processed the circuit is
given the input pair (t2, b2) and then (t3, b3). Let (t1, b1) = (1010, 1100),
(t2, b2) = (1110, 0110), and (t3, b3) = (0101, 1110). Since 1010 ⊕ 1110 =

6.5. Secure Information Stealing Malware 131

Figure 6.2 W-gate for information-stealing circuit

0100 it follows that s will be 1 for (t1, b1). From the truth table it is
evident that the value x does not change whenever s = 1. So by the time
(t2, b2) is fed as input to the circuit, x is still 0000. Now consider the input
(t2, b2). Since 1110⊕ 1110 = 0000 it follows that s will be zero for (t2, b2).
From the truth table it is clear that the value x is set to be b whenever
s = 0. So, by the time (t3, b3) is fed as input to the circuit, x will be 0110.
Finally, consider the input (t3, b3). Since 0101 ⊕ 1110 = 1011 it follows
that s will be 1 for (t3, b3). From the truth table it is evident that the
value x does not change from 0110.

The amazing thing about the Phi-Hiding scheme is that it effectively
implements this circuit without ever revealing the bits that are compared
and stored. The tag ti and x are encrypted from the start. Yet, the
cryptocircuit nonetheless can both compare bit strings and then store
data whenever a match occurs.

6.5 Secure Information Stealing Malware

The computational PIR in Section 6.4 is usable for both honest and ma-
licious purposes. As previously described it can be used to implement a

132 6. Computationally Secure Information Stealing

robust PIR based password-snatching Trojan. Of course, it is possible to
implement PIR Trojans to take other information as well.

An elegant end-to-end solution is to use a PIR Trojan in conjunction
with a mix network. The malware author sends signed queries through
the mix net to the PIR Trojan. The PIR Trojan verifies the signature on
the queries using the public key of the Trojan author that is contained in
the Trojan. If the query is authentic and recent (checking time-stamps,
etc.), then it is processed. The Trojan runs the query through the PIR
scheme and computes the corresponding result R. This result is then
communicated back to the Trojan author. It is already in encrypted form,
but can be further encrypted to hide its form. To see this, note that it
consists of values drawn from ZZ∗

m and this can be statistically detected. So,
the Trojan asymmetrically encrypts it and sends it to the author. This can
be done via return anonymous remailing, publishing it to a bulletin board
through the mix net, and so on. This is an extremely powerful infowar
attack since in all aspects of the information theft, the true intentions of
the attacker are cryptographically concealed.

There is no reason why some or all of the tag string ti cannot be
dynamic data as well. For example, the last few bits of the tag can be
the current date and time. This allows the PIR to privately obtain timely
information rather than just static information.

This PIR scheme is very useful in mobile agents to privately retrieve
data in untrusted hosts’ systems. It can be used by viruses to steal data
without revealing that which is sought, provided that the database is
defined to contain a large number of entries (some or all of an entire hard
drive, for instance).

6.6 Deniable Password Snatching Based on

Phi-Hiding

The Phi-Hiding scheme can be used to improve the deniable password-
snatching attack (see Section 4.2). A drawback to the deniable password-
snatching attack is that it is possible to observe the Trojan properly en-
crypt login/password pairs at run-time. A transcript of this activity itself
forms strong evidence that can be used in a court of law. This possibility
can be reduced significantly.

6.6. Deniable Password Snatching Based on Phi-Hiding 133

6.6.1 Improved Password-Snatching Algorithm

The improved deniable password-snatching attack is as follows. It is based
on the tagged information retrieval scheme that is described in Section
6.4. The Trojan horse contains n prime numbers p1, p2, p3, ..., pn and n
composites m1,m2,m3, ...,mn with the property that mi Phi-Hides pi for
1 ≤ i ≤ n. These parameters are chosen according to the Phi-Hiding
PIR scheme. Let H(·) be a random function that maps {0, 1}∗ onto the
set {p1, p2, ..., pn}. Hence, a given input string s ∈ {0, 1}∗ will satisfy
H(s) = pi where 1 ≤ i ≤ n with probability 1/n. The random function
H is included in the Trojan. Only the Trojan horse author knows the
factorization of the n composites. The Trojan horse also contains n circu-
larly linked lists L1, L2, ..., Ln as well as n indexes I1, I2, ..., In that serve as
pointers into these lists. Each element of a list is used as a storage location
for the ciphertext of a single login/password pair. It is assumed that each
login/password pair can be represented using W2 bits. The linked lists
are employed in a least recently used fashion. Hence, older ciphertexts are
replaced by newer ones.

Let s denote the login for a login/password pair that is obtained by
the Trojan. Upon obtaining the login/password pair, the Trojan com-
putes pi = H(s). The Trojan concatenates the login with the password
and then pads the resulting string with leading zeros to derive a W2-
bit string b. This string is effectively the desired database entry in the
tagged information retrieval scheme. The Trojan then generates a tuple
X = (x1, x2, ..., xW2) randomly, where each element of this tuple is con-
tained in ZZ∗

mi
. The Trojan then applies the tagged information retrieval

scheme to this tuple as if it were part of a query for a database entry b.
In other words, for each bit in b that is a binary “1,” the corresponding
element in the tuple is exponentiated to pi modulo mi. The tuple that
results from this process is an encryption of the login/password pair. The
Trojan stores this encryption as follows. The Trojan overwrites the entry
in Li that is pointed to by Ii with the newly formed encryption. The Tro-
jan advances index Ii and then awaits a new login/password pair. Note
that when the index reaches the end of the list, advancing it amounts to
setting it back to zero. Also, the Trojan unconditionally copies all n linked
lists to the last few unused sectors of every writable floppy that is inserted
into the machine.6

6Or distributes the lists using some other channel (e.g., steganographic channel,
subliminal channel, transmission over a mix network, broadcast channel, etc.).

134 6. Computationally Secure Information Stealing

It would be possible to carry out this attack by using only one big
circularly linked list, one Phi-Hidden prime, and one composite that hides
the prime. To see why this is a bad idea, consider the case in which
a given user logs into the machine quite often. When this happens the
single list would be saturated with this user’s login/password pair. When
multiple lists are used only one of the lists would be saturated. The use
of hashing with multiple circularly linked lists ensures a good spread of
snatched passwords, and the least recently used nature guarantees that
the passwords are up-to-date.

6.6.2 Questionable Encryptions

At first sight it may appear that the attack that uses multiple linked lists
is needlessly complicated. Also, it might not be clear why this snatching
attack is better than the original deniable password-snatching attack that
copies asymmetrically encrypted login/password pairs to the disk. The
reason that this attack is an improvement is due to the subtle nature of
what constitutes theft. For a law enforcement officer to frisk a citizen,
there must be probable cause. For the judicial system to convict a citizen,
there must be proof that a crime has been committed. The Phi-Hiding
password-snatching attack helps cast doubt as to whether or not thievery
has occurred.

Consider the ElGamal based deniable password-snatching attack. The
Trojan contains the ElGamal public key (y, g, p). For concreteness, let
this be the version of ElGamal that is semantically secure against plaintext
attacks. Hence, suppose that g has order q where q is prime and p = 2q+1.
Let G be the prime order subgroup of ZZ∗

p that is generated by g.
Observe that it is possible to sample values y ∈ G without knowing

the private key x such that y = gx mod p. This implies that the Trojan
author could conceivably gift the Trojan with a public key without even
knowing the corresponding private key. A defendant that claims that he
or she does not know the private key could in fact be telling the truth. It
is quite possible that no one knows the private key in this case. However,
it is straightforward to verify that the order of y modulo p is q. Hence,
it is possible to verify that y is a public key, whether someone knows the
private key x for y or not.

What this means is that by observation, it is possible to witness the
Trojan leak asymmetric ciphertexts in the deniable password-snatching
attack, whether they can be decrypted or not. So, it is possible to prove

6.6. Deniable Password Snatching Based on Phi-Hiding 135

in some sense that sensitive data has been transmitted outside of the
machine. This is not the case in the Phi-Hiding password-snatching attack.

In the Phi-Hiding password-snatching attack, either pi divides φ(mi)
or not. This is not subject to debate. It is either true or it isn’t. Hence, if
for all i it is the case that pi does not divide φ(mi) then the Trojan is not
asymmetrically encrypting anything at all. When this is the case, sensitive
information is not being transmitted outside of the host machine. Proving
that the Trojan snatches passwords amounts to proving that one of the
primes pi divides φ(mi). The presumed intractability of this is closely
related to the Phi-Hiding assumption. Under this scheme, it is possible
for the Trojan author to deploy a Trojan in which none of the primes
are Phi-Hidden. If prosecuted, the Trojan author can prove that none of
the primes are Phi-Hidden by revealing the prime power decomposition of
the n composites in the Trojan. We argue that the Phi-Hiding password-
snatching attack is one of the best ways to snatch passwords from a fielded
machine since it places the burden of proof on the prosecution in a very
strong way. It is fitting to say that this Trojan satisfies the questionable
encryption property, for lack of a better term. The reason that this term
seems appropriate is that it is questionable as to whether the Trojan is
encrypting anything at all.

A natural question to ask is whether or not the deniable password-
snatching Trojan satisfies the questionable encryption property when RSA
is used. Consider the case that the login/password pairs are encrypted
using RSA with a deterministic padding scheme or are encrypted us-
ing OAEP. Also, suppose that e is the typical value of 216 + 1 which
is prime. The Trojan author can deliberately choose p and q such that
gcd(e2, φ(pq)) = e. Without loss of generality, let 0 = p − 1 mod e and
0 6= q − 1 mod e. Adleman, Manders, and Miller presented a generaliza-
tion of Tonelli’s algorithm to compute rth roots modulo a prime where
r is a small prime [4] (see also [174]). Recall that there are r roots in
the complete solution set in this case.7 This algorithm is efficient when
e is small and can be used to compute eth roots modulo p. When the
factorization of n = pq is known it follows that there exists an efficient
algorithm to compute eth roots modulo n in this case. In OAEP the cor-
rect root will be immediately apparent by verifying the OAEP checksum
field that results from hashing. In RSA, the correct root will also likely
be apparent by looking for padding bits, an ASCII value that appears to

7See page 161 of [12].

136 6. Computationally Secure Information Stealing

be a login/password pair, and so on. With such a small value for e this
approach does not exhibit the questionable encryption property.

By setting e to be significantly larger than 216 + 1, for example, by
making it a 160-bit prime, the RSA cryptosystem exhibits the questionable
encryption property. The reason for this is twofold. First, observe that
deciding whether or not e divides φ(n) evenly is a decision problem that
is intimately related to the Phi-Hiding problem. Second, when e does in
fact divide φ(n) evenly, it is intractable for the malware author to perform
decryption correctly. This follows from the fact that to date, there is no
known algorithm for efficiently computing eth roots mod p with such a
large prime e. For details the reader is referred to a section in Bach and
Shallit entitled, “Computing d-th Roots” [12]. However, the questionable
encryption properly need not rely on the inability of the private key holder
to compute eth roots. To see this, consider the following alternative. The
value e can be set to be the product of numerous small, distinct, and
odd primes. As before the value e should be at least 160 bits. In this
case it is possible to efficiently compute eth roots modulo p. However, the
questionable encryption property still holds due to the fact that there are
far too many roots for the private key holder to check. An asymmetric
encryption function that exhibits the questionable encryption property is
a specialized instance of cryptocomputing since it is possible to observe the
function compute a value, but there is no way to tell if the resulting value
is an asymmetric ciphertext or not.

The following are two additional ways to implement questionable en-
cryptions. The first is based on the Goldwasser-Micali cryptosystem (see
Appendix C.1.9). Recall that the GM cryptosystem uses a pseudosquare
y modulo n where n is the public modulus. The malware designer can
choose y to be a quadratic residue modulo n instead of a pseudosquare.
It is not hard to see that all of the values in a GM ciphertext will then be
randomly chosen quadratic residues. Hence, the malware author will not
be able to decipher anything. The author can later prove this by revealing
a square root of y and also the factorization of n if the author so desires.
This root serves as a witness that there is no trapdoor value for GM that
reveals the plaintext. It follows that questionable encryptions can be im-
plemented under the quadratic residuosity assumption. This approach is
related to the computationally secure PIR of Kushilevitz and Ostrovsky
[165].

The second approach is heuristic in nature. Let (y, g, p) be an ElGamal
public key, let g and p be fixed system parameters, and let G be the group

6.6. Deniable Password Snatching Based on Phi-Hiding 137

generated byG. The value y can be chosen by computing y = H(s). Here s
is a large randomly chosen seed and H is a random function with domain
{0, 1}∗ (instantiated using a hash function). The range of H is equal
to G. The questionable encryption property holds under the presumed
intractability of computing a triple (x, y, s) satisfying,

gx mod p = y = H(s) and y ∈ G (6.3)

The pair (y, s) serves as a witness that no one knows the trapdoor value
associated with y. This follows from the fact that if x is also known to
the malware author then a valid triple must have been found.

A questionable encryption scheme is a form of oblivious transfer and
can be regarded as a variant of all-or-nothing disclosure [38, 39]. However,
these two notions differ in a couple of ways. A questionable encryption
scheme can operate as an asymmetric cipher that is applied repeatedly
and independently to many pieces of data, not data defined within the
scope of a single protocol as is the case of all-or-nothing disclosure.

Court systems often rely on precedent in dealing with a case. The
following is a way to establish a public precedent in regards to questionable
encryptions. A virus writer can deploy a virus that computes questionable
encryptions of sensitive data and that publishes these encryptions on the
Internet. The virus can be designed so that it does not in fact encrypt
anything. Once there has been a suitable amount of press coverage, the
virus writer can anonymously reveal the factorization of n. This may put
many people at ease. There would likely be even more press coverage that
mentions that quite surprisingly the virus does not encrypt anything at
all. With any luck this occurrence will cast a substantial amount of doubt
in subsequent court cases involving questionable encryptions.

A public key cryptosystem that exhibits the questionable encryption
property is a general tool for malware. It makes it such that encryptions
are questionable in the sense that there is no way of knowing whether
or not asymmetric encryptions are really being computed. For example,
the SETUP attack on RSA key generation can utilize RSA with a 160-bit
prime e. If it is the case that gcd(e, φ(n)) = e, then the malware author can
later reveal the factorization of n and show that there never was a SETUP
attack being performed despite the fact that the basic functionality needed
to mount a SETUP attack is present.

The notion of questionable encryptions has potentially serious impli-
cations for copyright law. Consider a provider that illegally transmits

138 6. Computationally Secure Information Stealing

copyrighted material to a recipient. For example, a recipient gives the
provider a public key and the provider sends the recipient copyrighted
material (e.g., MP3 music files) encrypted under the recipient’s public
key.

Now consider how a questionable encryption scheme can minimize the
legal risk for the recipient. Suppose that a questionable encryption scheme
is used as the delivery mechanism. If the recipient gives the provider a
fake public key that produces a nonce under the asymmetric encryption
algorithm, then the recipient receives random numbers instead of copy-
righted material and hence the provider and recipient have not violated
any copyright laws. In this case the provider is providing a random num-
ber generation service. If the public key is real, then the recipient has
knowingly elicited copyrighted material that the provider had no right to
give.

In this copyright violation scheme, only the recipient can initiate a
copyright violation, and only the recipient knows if a violation is even
occurring. Strictly speaking, the provider is not knowingly or willingly
violating any copyright laws. The use of questionable encryptions for
copyright violations therefore adds an extra hurdle to the successful pros-
ecution of rogue recipients of copyrighted material.

It is natural to investigate how law enforcement bodies could try to
catch copyright violators. Suppose that an undercover officer registers a
real public key with the provider. If the officer later obtains copyrighted
material from the provider, then strictly speaking it was the officer that
enacted the copyright violation, not the provider. It seems that the officer
would have to monitor another user: (1) generate a real public key, (2)
register the public key with the provider, and then (3) obtain and decrypt
the received ciphertext. This approach would clearly show that the recip-
ient is in violation of the law. However, it is more difficult to show that
the provider knowingly duplicated and transferred copyrighted material.
In this regard, the notion of questionable encryptions adversely affects the
enforceability of copyright laws. Recording industry groups would have a
much harder time prosecuting people that use protocols like Gnutella if
the underlying data delivery system were designed to use a questionable
encryption algorithm.

An issue that was glossed over is the case that the copyrighted mate-
rial is bulky. For example, a copyrighted file may be 2 to 3 megabytes in
size. To deal with bulk data encryptions, a secure number-theoretic pseu-
dorandom number generator can be used. The seed is encrypted with the

6.6. Deniable Password Snatching Based on Phi-Hiding 139

questionable encryption scheme and the pseudorandom sequence that re-
sults from the seed is bitwise XORed with the plaintext. Observe that the
seed is lost when the fake public key is used in the questionable encryption.
Hence, the resulting ciphertext stream is polynomially indistinguishable
from a random bit string with respect to the key holder and everyone else.

6.6.3 Deniable Encryptions

The notion of a deniable encryption was put forth by Canetti, Dwork,
Naor, and Ostrovsky [52] and it is related to the notion of questionable
encryptions. The utility of computing deniable encryptions is motivated
by the following possibility. Consider a situation in which the transmission
of encrypted messages is intercepted by an adversary who can later ask
the sender to reveal the random choices8 used in generating the ciphertext,
thereby exposing the plaintext. An encryption scheme produces deniable
encryptions if the sender can produce fake random choices that will make
the ciphertext appear to be an encryption of a different plaintext, thereby
keeping the true plaintext secret. Similar requirements can be formulated
with respect to attacking the receiver and with respect to attacking both
parties. A construction was given based on the existence of a trapdoor
permutation.

Deniable encryption has several applications. For example, it can be
incorporated in current protocols for incoercible and receipt-free voting in
a manner that eliminates the need for a physically secure communication
channel. It also underlies recent protocols for generalized incoercible mul-
tiparty computation that have no physical security assumptions. Also,
deniable encryption provides an elegant and simplified construction of a
multiparty protocol that is adaptively secure.

One of the differences between deniable encryptions and questionable
encryptions is as follows. In a questionable encryption the receiver has a
witness that the value is an encryption or a witness that the value is not
a witness under a particular PKCS. In a deniable encryption the receiver
can effectively present a witness for each possible interpretation of the
plaintext. Another difference lies in the setting. A questionable encryp-
tion scheme must be such that it produces questionable encryptions while
the encryption algorithm is under surveillance. In the deniable encryption
setting this is not the case since the sender and receiver share secret infor-
mation and only the transmitted messages, not the actual computations,

8As well as the secret key if it exists.

140 6. Computationally Secure Information Stealing

are assumed to be observable. In other words, the sender is allowed to
compute privately without an adversarial onlooker. These two notions are
different and solve different problems yet they are related in the following
way: they both permit the recipient to refute the contents of the cipher-
text. In questionable encryptions the recipient can claim that nothing
is encrypted at all and in the deniable encryption case the recipient can
claim that almost any string is encrypted.

6.7 Malware Loaders

The notions of deniable password snatching (that is, subtly broadcast-
ing asymmetric ciphertexts wherein only the attacker can decrypt them),
questionable encryptions, and private information retrieval clearly assists
an attacker to receive information in such a way that (1) everyone receives
the information but only the attacker can decrypt it, and (2) for all any-
one knows, the ciphertexts are not ciphertexts but actually nonces, thus
implying that information leakage may not have occurred.

Recall that in the original deniable password-snatching attack, the at-
tacker uses a virus to install the cryptotrojan on the host machine. The
attacker’s only recourse if apprehended in this phase is to claim to be an
innocent victim of the virus. This does not bode well for the attacker,
since the virus will contain a Trojan that contains functionality for leak-
ing information (although deciding if it really does is still intractable).
Any prosecutor would likely try to make the case that the questionable
encryptions were in fact encryptions. Since the information retrieval phase
can be cryptographically improved, it is natural to ask if the malware de-
ployment phase can be improved as well. In this section this question is
answered in the affirmative. The idea utilizes the notions of an operating
system, code signing, and signal monitoring. For concreteness it will be
described within the context of snatching passwords, although other forms
of information stealing are possible.

The attacker randomly generates a symmetric key and a key pair for
a digital signature scheme. The symmetric key and digital signature veri-
fication public key are placed within a cryptotrojan. The cryptotrojan is
designed to operate as follows. When running it constantly listens in on
a public broadcast channel. This channel can be a public channel on the
Internet, for example. The channel can even be a steganographic channel
in graphics files within yet another more visible channel such as Usenet.
When it receives a message it decrypts it using the symmetric key. The

6.8. Cryptographic Computing 141

cryptotrojan then checks the structure of the plaintext data that results.
If it is not in the form of a message, followed by a signature on the mes-
sage, then it is rejected. If it is, then the signature on the message is
verified using the public key.9 If the signature is valid then the message is
regarded by the cryptotrojan as an authentic message from the attacker.

The Trojan then executes the message as a child process. In UNIX this
can be done using fork and exec, for example. The Trojan is thus acting
like an operating system that uses code signing to check for authentic code.
Since the Trojan loads and runs the process it seems natural to refer to it
as a malware loader. The attacker constructs a module that the attacker
wants the host system to run. This module is really just a self-contained
program. The attacker digitally signs the module using the private signing
key, encrypts the module and signature on it with the symmetric key, and
then broadcasts the resulting binary string over a subtle public broadcast
channel. The Trojan receives the signed and encrypted module from the
broadcast channel and runs it only if it is authentic.

One module that the attacker can send is the questionable encryption
password snatcher. This module questionably encrypts login/password
pairs and broadcasts them on a subtle outgoing public channel. Another
module can be a private information retrieval module that accepts queries
and then scans information connected to peripherals to construct the re-
sponse. The response is then broadcast on the subtle outgoing public
channel. Like in the original deniable password-snatching attack, the cryp-
totrojan can be deployed via self-replicating malware.

The attack is a major improvement for the following reason. If the
attacker is caught red-handed distributing the self-replicating malware
that contains the cryptotrojan then half of the attack code will not be
found on the attacker’s person. This hampers things greatly from a legal
perspective, since the attacker can claim that while yes, self-replicating
code was being installed, its payload was only an operating system, which
in itself can be quite harmless.

6.8 Cryptographic Computing

In some sense PIR schemes can be considered to be a specialized prob-
lem in cryptographic computing. It is the problem of performing secret
string matching and string variable assignment while under the scrutiny

9Timestamps can also be used to guard against replay attacks.

142 6. Computationally Secure Information Stealing

of untrusted observers. This section covers the more general concept of
cryptographic computing.

Cryptographic computing is an area of cryptography that is in its in-
fancy. It is a new, ambitious direction for the field. Originally cryptogra-
phy sought to provide confidentiality for inert data. Cryptocomputing is
concerned with performing useful computations on encrypted data with-
out having to decrypt it, not just the secure transport and storage of
encrypted data. This functionality is applicable to software piracy pro-
tections schemes as well as secure mobile agents, viruses, worms, and so
on.

In fact there is a very close relationship between piracy protection
and secure mobile agent theory. They both adhere to the same premise
that the underlying machine that is running the software is untrustworthy
in some way. The most basic problem is observability: the underlying
code can be scrutinized using debugging tools and hence the underlying
algorithm can be learned and replicated elsewhere. This presents problems
when a company wishes to deploy an unpatented algorithm that they wish
to keep as a trade secret. It also poses a problem when a mobile agent
is sent off to do work on a public network since the agent and the data
it gathers is subject to the scrutiny of untrusted observers. The field
of secure mobile agents is gaining in popularity, as evidenced by young
workshops such as the IEEE International Conference on Mobile Agents
(that had its sixth meeting last year). There has even been enough work
in the area of cryptographic mobile agents to warrant general surveys on
the subject [231].

However, the notion of performing useful computations in untrusted
environments is at least as old as public key cryptography itself. In as
early as 1978, around the time that the RSA algorithm was discovered, a
sufficient mathematical framework for performing secure computations on
an untrusted machine was proposed [100, 244]. Specifically, it was noted
that the existence of an additive homomorphism over the ciphertexts of a
public key encryption function E defined over an appropriate domain as
well as the existence of a multiplicative homomorphism over the cipher-
texts would be sufficient to enable general computations over encrypted
data akin to that which can be performed by Turing machines. In other
words, the primitive would consist of operations (E,⊕,⊗) such that for
all plaintexts m1 and m2,

E(m1)⊕ E(m2) = E(m1 +m2) (6.4)

6.8. Cryptographic Computing 143

E(m1)⊗ E(m2) = E(m1 ∗m2) (6.5)

The additive homomorphism is denoted by ⊕, and the multiplicative
homomorphism is denoted by ⊗. Interestingly, it is a trivial exercise to
identify a multiplicative homomorphism for the RSA function, but the
existence of an additive homomorphism for RSA is unknown.

If these primitives were to exist then they could be used to implement
a universal logic gate such as a NAND or NOR gate. The gate would not
operate on plaintext bits, but instead it would operate on ciphertext bits.
For instance, the NAND gate would take as input two ciphertexts that
each encrypt a single bit and it would return a ciphertext corresponding
to the logical NAND of the two input plaintext bits. This would occur
without ever decrypting the input ciphertexts. It is well known that any
combinatorial circuit can be synthesized based on a universal gate. It is
also well known that any Turing machine can be efficiently simulated by
a Boolean circuit [315].

The practical utility of such a primitive may be brought into question,
since an encrypted bit would likely occupy 768 or more ciphertext bits
in the machine, and each operation is likely to involve multiple modular
exponentiations, for instance. However, it would certainly be possible to
implement small circuits to perform simple yet useful computations on
untrusted hosts.

It is safe to say that researchers have been investigating the existence of
these primitives for more than 20 years. However, it is important to bear
in mind that this is a quest for a general-purpose cryptographic computing
machine, not a machine that needs to solve a particular problem. In the
mid-1980s the open research community began investigating dedicated
cryptographic computing algorithms.

One such cryptocomputing algorithm appeared in 1986 [2, 99]. The
idea was to disguise an instance of a hard problem, such as the discrete-
logarithm problem, and have an untrusted machine solve it. The approach
allows Alice to hide information from Bob while getting Bob to do some
useful work. Alice has y and wants to know the value x such that y =
gx mod p. Bob has a magic computer and has a good chance of being
able to solve the problem by brute force. Alice would like Bob to solve
the problem for her, but does not want Bob to learn x.

Here is how the two of them can accomplish this. Alice chooses r < q
randomly and computes yr = ygr mod p. She sends yr to Bob and Bob

144 6. Computationally Secure Information Stealing

computes the discrete logarithm of this value using the base g and the
modulus p. So, Bob computes v = x + r mod q and sends this value
to Alice. Alice recovers x by computing x ≡ v − r ≡ x + r − r mod q.
Bob has no way of knowing what the value of x is. Similar results have
been shown for the quadratic residuosity problem and the primitive root
problem [1, 2].

A problem that is closely related to computing with encrypted data
is the problem of performing secure multiparty computation. The first
example of this is the famous Millionaire problem: Alice and Bob each
have an integer number and they want to know who holds the greater
number without having to disclose the numbers to one another. This was
first addressed by Andrew Yao [325] in 1982. The more general context
is the following. Two or more parties want to determine some property
about the pieces of information they hold while keeping them private. The
main results in the domain were achieved by Andrew Yao [326] in 1986
for the two-party case.

In 1987 Goldreich et al showed how to securely implement any desired
multiparty functionality [116]. The security is guaranteed, provided either
a majority of the players are honest or all parties are semi-honest. In other
words, all parties send messages according to the protocol, but keep track
of and share all intermediate results. Much attention has been paid to
the important issue of minimizing the number of rounds of computation
in this model. There is a wealth of literature regarding secure multiparty
computations [14, 15, 16, 56, 57, 58, 105, 106, 107].

A working group, organized by DARPA, met in October 1996 to dis-
cuss security issues regarding the execution of code on machines that are
operated by untrusted parties. In 1997 a workshop was held on the sub-
ject [80]. It was geared towards developing the semantics, structures, and
security assumptions that form the basis for single-party secure computa-
tion. It was concluded that numerous approaches lacked formal grounds
for security, and that they typically relied on ad hoc or otherwise hidden
security assumptions.

In 1997 Sander and Tschudin proposed a method to compute with en-
crypted functions to overcome the problem of protecting mobile code from
its host [250, 251]. Techniques were presented to achieve non-interactive
computing with encrypted programs in certain cases and give a complete
solution for this problem in certain instances. In particular they gave a
protocol that allows non-interactive evaluation of encrypted polynomials
over the ring of integers modulo N where N is a smooth (that is, N has no

6.8. Cryptographic Computing 145

large prime factors). The results are based on the use of homomorphic en-
cryption schemes and function composition techniques. In particular they
utilize an additive scheme of Lipton and Sander [176] that is polynomial
time indistinguishable under the assumption of the hardness of the Power
Residue Hypothesis, which is a generalization of the Quadratic Residue
Hypothesis to residues of higher degree.

It is argued that this primitive may be usable in mobile agents that
need to remotely sign their output. The agents would thereby be able to
create undetachable digital signatures. However, they remark that there
are still outstanding technical obstacles that need to be overcome in order
to achieve this goal. Research that is related to this was presented in
Financial Crypto ’02 by Stern et al who gave a method for computing
with encrypted rational numbers [103].

The first formal result regarding generalized cryptographic computing
was presented in 1999 by Sander et al [252]. It was shown how in one
round a protocol for secure evaluation of circuits can be performed in
polynomial-time for NC1 circuits (Nick’s Class). The protocol involves
an input party sending encrypted input to a second party (a cryptocom-
puter). The second party evaluates the circuit (or a known circuit over
its additional private input) non-interactively, securely, and obliviously,
and provides the output to the input party without learning it. This
directly applies to protection against reverse engineering since under well-
established intractability assumptions the reverse engineer provably learns
nothing about the program that is being executed. An implementation is
presented that is based on the quadratic residuosity problem. This im-
proved on previous results that are specialized to the case of NC1 circuits
and that require a constant number of communication rounds. The sce-
nario also coincides with computing with encrypted data when the input
is transformed into an output while remaining encrypted throughout the
computation. The algorithm utilizes a probabilistic encryption method
that is random self-reducible. The paper also gives a new provably se-
cure public key scheme that allows the computation of the logical AND
operation using encrypted data. This scheme is homomorphic over a semi-
group (instead of a group) and thus also expands the range of algebraic
structures that can be encrypted homomorphically.

The work on one-round secure computation has been ongoing [47].
Cachin et al investigate one-round secure computation between two dis-
trusting parties as well: Alice and Bob each have private inputs to a
common function, but only Alice, acting as the receiver, is able to learn

146 6. Computationally Secure Information Stealing

the output. The protocol is limited to one message from Alice to Bob fol-
lowed by one message from Bob to Alice. The solution has an advantage
over the Sander et al cryptocomputer since it works for polynomial-depth
circuits. However, for the purposes of generalized mobile agent comput-
ing the solution has a drawback that it cannot iteratively receive inputs
and compute values based on previously stored results. All of the inputs
must be present at the time the computation commences. The authors
propose a remedy to this based on symmetric cryptography but it has
various inherent limitations. The solution nonetheless provides stronger
evidence regarding the feasibility of executing mobile code in untrusted
environments.

Chapter 7

Non-Zero Sum Games and
Survivable Malware

Today, computer viruses, Trojans, and worms are summarily removed from
computers when found. Even in the case of the One-half virus that is de-
signed to make safe removal difficult, disinfection is still possible without
damaging the host system. Antiviral programs seldom attempt to remove
a virus unless they believe there are no harmful consequences for doing
so. But what if the consequence extends beyond the infected computer
in question? Put another way, what if the removal of a virus on one ma-
chine will cause damage on another remotely located machine? If harmful
consequences result from removing malware then the payoff for removal
becomes a negative quantity in game theoretic terms. Of course, leaving
the malware on the system may have a payoff that is even more negative.
This begs the question as to whether or not there exist malware enforce-
able games between the host and the malware that have a higher payoff
for the host when the malware is allowed to remain after discovery.

The unspoken dream of every virus writer is to design a virus that
cannot be safely removed even after discovery.1

It is this that would constitute a true digital disease. This chapter inves-
tigates how various technologies can achieve this end when appropriately
combined.

A dedicated attacker may have a rather serious goal in mind. For ex-
ample, the attacker may want to factor someone’s RSA key, or compute a
discrete logarithm. Attacks along these lines are presented in this chapter.

1Of course, this could be our own demented dream. Who really knows?

147

148 7. Non-Zero Sum Games and Survivable Malware

An attacker that is simply carrying out a prank may simply want to
give people a hard time. Under these circumstances survivability among
malware helps to ensure that the attack lasts even after the virus is dis-
covered and antivirus software is deployed. Such attacks hinge on the
fact that not everyone is going to apply antiviral solutions on time, and
some might not get around to it at all.2 By distributing the bargaining
chips that the virus has among several machines (for example, sensitive
information that is damaging if disclosed), the virus can be made to be
more survivable. In this situation, when Alice deletes the virus from her
machine, the viruses that still reside on Bob and Carol’s machines may
exact revenge by anonymously posting stolen data from Alice’s machine.
The notion of distributing data among viruses and having them coordinate
their attack efforts with each other is well known [332].

7.1 Survivable Malware

The ultimate goal of designing a survivable virus has been noted in the
literature [332]. This notion was inspired by a creature called the facehug-
ger that appeared in the science fiction movie Alien [265]. The facehugger
is a parasitic alien that attacks humanoids for the purposes of perpetu-
ating the alien species. It has the appearance of a small octopus with
a long, powerful tail. It wraps its fingerlike legs around the host’s head
and its long tail around the host’s neck, threatening the flow of air to the
lungs. Once attached to the face of the victim, it slides a tube through the
victim’s mouth. The victim falls unconscious and remains in hibernation
while retaining the ability to breathe normally.

The lifecycle for the alien species is as follows. The facehugger implants
an embryo into the living host that gestates in the victim’s abdomen.
Eventually the host dies since the embryo grows into a baby drone that
breaches the lining of the stomach. When the monstrous drones grow up,
they herd together more humanoids for the facehuggers. Once in a blue
moon a facehugger implants the embryo of a new queen. The queen in
turn lays eggs that hatch into facehuggers.3

The facehugger is a fascinating alien creature. Any attempt to remove

2Some may even leave deliberately neglected and hence hackable machines on the
net to assist other hackers.

3Interestingly enough, a cyborg robot in the movie Alien regarded the alien species
as nothing short of perfection. This view is maintained even as the entire spaceship
crew is slowly killed off.

7.1. Survivable Malware 149

it causes it to tighten its tail and suffocate the host. Any attempt to
lacerate it will cause it to bleed its acidic blood that will eat through any
and all flesh. It even eats through metal. The facehugger maliciously
forces a symbiotic relationship with its host.

In fact, there exists an even earlier fictional precedent for a facehugger-
like entity.4 What’s more, it takes the form of rogue software that travels
through the network. The following is from the chapter entitled “Collapse
of the Stout Party” in Book II of the 1975 novel The Shockwave Rider
[43]:

“Remember what you said about a tapeworm?”
“Oh my God. That was a joke. You mean they spat in our

eye again?”
“See for yourself, It’s kind of—uh—fierce, isn’t it?”
“Fierce is only half of it. Well, I guess it better claim its first

victim. You found it. You go tell Mr. Hartz to abandon the
attack on Hearing Aid.”

“What?”
“You heard me. Carry the good news from Y to X! Tamper

with this thing, and—and my God! The data-net would be in
chaos in one minute flat or maybe sooner! Hurry!”

Could a digital analog to the facehugger ever be devised? This, of
course, is not known, yet various technologies when combined appropri-
ately do suggest that something similar might be possible. A protocol
is given in Section 7.3 that is a step in this direction. It was presented
at West Point and was published in the proceedings of IEEE Information
Assurance ’03 [331]. The protocol constitutes a distributed cryptovirus at-
tack in which the virus initiates a two-player game between copies of itself
and the victimized machine. Game theory is used to analyze the conse-
quences for ignoring or meeting the demands of the distributed virus.

Game theory grew out of work at RAND Corporation, Stanford Uni-
versity, and the work of John von Neumann. It is a mathematical study
of rational decision making, and involves the payoffs received in simpli-
fied multiplayer games. Of particular interest in this chapter is a class of
games called two-player non-zero sum games. The most celebrated such
game is the famous Prisoner’s Dilemma in which two players find them-
selves in a situation in which there is no guaranteed way to win: true

4Special thanks to C. C. Michael for pointing this out.

150 7. Non-Zero Sum Games and Survivable Malware

collaboration is the only way to guarantee minimal losses by both. How-
ever, in a commercial society such collaboration does not exist between
competing companies. This suggests that companies are optimal targets
for game-theoretic virus and worm payloads.

7.2 Elements of Game Theory

In order to analyze the effectiveness of the attack that is presented, some
basic notions in game theory [178] are needed. Table 7.1 is standard
notation for a two-player non-zero sum game. In the game there are two
players, the column player and the row player. The column player selects
either column 1 or column 2 and the row player selects either row 1 or row
2. The selections occur simultaneously and the payoff for each is listed in
the entry that results from the two selections. The row player receives the
payoff on the left and the column player receives the payoff on the right.
For instance, if the column player selects column 2 and the row player
selects row 1 then the row player is paid b1 and the column player is paid
b2. Payoffs can be positive, zero, or even negative, indicating indebtedness
on behalf of the player.

A game is a constant sum game if a1 +a2 = b1 + b2 = c1 + c2 = d1 +d2.
A game is a zero-sum game if it is a constant sum game and a1 + a2 = 0.
When a game is not a zero-sum game it is a non-zero sum game. There are
several famous non-zero sum games including Prisoner’s Dilemma [305],
Chicken, Battle of the Sexes, and so on. This attack involves a particular
type of non-zero sum game that has a trivial solution.

The Prisoner’s Dilemma is a well-known non-zero sum game that ex-
emplifies a dichotomy between cooperation and rational decision making
that can occur. This classic game theory problem is as follows.

Column 1 Column 2

Row 1 a1, a2 b1, b2
Row 2 c1, c2 d1, d2

Table 7.1 Payoff matrix for a two-player non-zero sum game

7.3. Attacking a Brokerage Firm 151

Two suspects A and B are in prison. The police have insufficient ev-
idence for getting a conviction. The two suspects are separated and each
one is offered the same deal: confess, and provided the other prisoner re-
mains silent, there is no penalty. In this case the other prisoner will get
10 years to life. If both prisoners remain silent then each gets a 6-month
prison term. If both prisoners confess, then each gets 5 years to life.

The payoff matrix for this game is given in Table 7.2. A rational
approach to this problem from A’s perspective is as follows. Clearly either
B confessed or B did not confess. If B confessed and A does not, then
A gets 10 years. But, if A confesses, then A only gets 5 years. If B did
not confess, then by confessing A goes free. If A does not confess, then in
this case A gets 6 months. To avoid heavy losses it is best for A to rat on
B and confess. Assuming that they both behave rationally they will each
confess and serve 5-year sentences. But, if they cooperate, they each do 6
months.

Merrill Flood and Melvin Dresher of RAND first discovered this para-
dox in 1950. Albert W. Tucker wrote about it in a Stanford University
memo in 1950 that didn’t appear until later [305].

7.3 Attacking a Brokerage Firm

The applications of utility theory and probabilistic decision making have
been growing recently in secure systems research. For example, in Fi-
nancial Crypto ’03 the utility of a thief who seeks to exploit a single
vulnerability to attack multiple installations was investigated [255]. The
issue that is addressed here takes utility theory in a slightly different di-
rection. Game theory is used as an integral part of the attack itself that
is mounted on the host. The attack in this section builds on the notion of
a cryptovirus by adding a novel property: it is possible that the payload
of the virus will survive even after the virus is discovered. The payload

Prisoner A confess Prisoner A deny

Prisoner B confess −5,−5 0,−10
Prisoner B deny −10, 0 −.5,−.5

Table 7.2 Payoff matrix in the Prisoner’s Dilemma

152 7. Non-Zero Sum Games and Survivable Malware

has a chance to survive since it initiates a two player non-zero sum game
between the host system and remote copies of the virus. The host system,
which in this case is a brokerage firm, is forced to play the game under
the threat that sensitive information on the host system will be disclosed
by the malware.

The attack differs from the extortion attack in the following way. In
the extortion attack, the victim is denied access to its own valuable in-
formation and has to pay to get it back, whereas in the attack that is
presented here the victim retains access to the information but its dis-
closure is at the discretion of the computer virus. The attack therefore
assumes that the critical host data satisfies a different property altogether.

It has been argued that whereas PKI adoption will do much to establish
trust between individual people in public networks, it will also do much
to establish trust for malware in public networks [331]. PKI paves the
way for malware to be able to verify the compliance of remote victims
by having the virus verify digital signatures, and public key cryptography
allows viruses to send secure messages to other viruses.

7.3.1 Assumptions for the Attack

The victim of this particular attack is a stock market brokerage firm that
conducts on-line trading. It is assumed that this firm has its own public
key infrastructure and it is also assumed that the Securities and Exchange
Commission (SEC) has its own PKI. Also, the clients of the brokerage firm
belong to their own PKIs as well. It is necessary that all of these PKIs
trust one another (that is, that they be cross-certified).

In this hypothetical scenario, trades occur in a very straightforward
fashion. A client sends a signed message to the brokerage firm to request
a trade in his or her account. Provided the signature is valid and the
funds/shares are available the firm agrees to perform the transaction. At
this point the firm signs the buy/sell request and sends the signed request
to the trading floor. The SEC, acting as an overseer of all public trades,
sends the outcome of the trade to the firm via a signed message. If a
buyer/seller was found and the trade was carried out, then the SEC con-
firms its legitimacy. The brokerage firm forwards this signed response to
the client at which point the client verifies it. This way, clients who may
not be legally permitted to buy and sell stocks directly can do it securely
through the brokerage firm for a small fee.

Another infrastructure that is assumed for this attack is an anonymous

7.3. Attacking a Brokerage Firm 153

mix network (see Subsection 3.10.2). Since the attack amounts to an illegal
act it is assumed that the mix network is vast. This may occur through the
development and widespread adoption of a de facto mix network industry
standard, for instance. To avoid the threat of a subpoena being issued
that allows law enforcement to demand the private keys of the mixes, a
re-encryption mix net can be used [120]. With such a service, seizing the
machines of the mix net administrators would not help in apprehending
abusers. The mix network in this attack is used in conjunction with a
readable and writable public bulletin board. An example of such a public
bulletin board is a Usenet newsgroup. It is assumed that the virus can
both read from and write to the bulletin board anonymously. Servers
currently exist that take e-mail messages and post them to the Usenet
newsgroups and many users employ these servers to post anonymously.
The assumptions are as follows:

1. A PKI encompasses the SEC, the brokerage firm, and the clients of
the firm (for example, three cross-certified PKIs).

2. Clients send digitally signed buy/sell stock requests through the
firm, and the SEC returns to clients, through the firm, signed re-
sponses to trade requests.

3. There exists a large anonymous mix network that is not controlled
by law enforcement bodies.

4. There exists a public readable/writable bulletin board that accepts
posts from the mix network and that is operated in such a way that
it cannot be inhibited by law enforcement.

5. There exists a viral grace period in which the distributed viruses
can freely post to the board in an inconspicuous and uninterrupted
fashion.

6. The infection tree of the virus is difficult to reconstruct. This is
necessary to conceal the location of the viral instances. In general a
virus does not need to store any information relating to its previous
host.

7.3.2 The Distributed Cryptoviral Attack

The attack is carried out by a distributed cryptovirus that tries to find
three suitable host machines. The viral attack may be broken down into

154 7. Non-Zero Sum Games and Survivable Malware

three phases: replication that leads to the infection of three suitable host
machines, preparation for the attack, and then playing the two-player
game.

All reading and writing to the bulletin board by the viruses is done
through the mix network. For simplicity it is assumed that the messaging
system is both timely and reliable. The following are the steps in the
cryptovirus attack protocol:

1. Phase I: The cryptovirus is released into the wild. It is designed to do
nothing but replicate for a specified period of time. For example, it
will do nothing but replicate until a particular date. This allows the
virus to secure entry into a large number of potential host systems.

2. When the virus activates on the particular date it analyzes its host
to ascertain how well it will support the two-player game. For the
machine to be an acceptable host it must fall into one of two cate-
gories: it must either be a brokerage machine or a reclusive machine.
A brokerage machine is a machine in a brokerage firm that has sensi-
tive information D available to the virus. Information D must have
the property that it would be severely damaging to the firm if it
were disclosed to the public. A reclusive machine is a machine in a
remote area that preferably undergoes little if any scrutiny.

3. Phase II: If the host is a brokerage or reclusive machine then the
virus posts a message to the bulletin board. The message indicates
whether the host is a brokerage or reclusive machine and contains
a randomly chosen identifier for the virus. The identifier can be a
randomly chosen 512-bit number, for instance. These identifiers will
be unique with overwhelming probability.

4. Each virus on a brokerage machine then goes about selecting two
viruses on distinct reclusive machines to carry out the attack. Let
Vb denote a virus on a particular brokerage machine. For j ranging
from 1 to 2, Vb selects (e.g., at random) a posting of a reclusive
virus, takes note of its identifier, and posts a message inviting the
reclusive virus to engage in the attack with Vb. The reclusive virus
reads the post of Vb and responds with one of two different posts: it
accepts the invitation of Vb to act as virus Vr,j, or rejects. It rejects
if and only if it accepted a previous invitation. This step amounts
to a handshaking protocol in which Vb establishes the IDs for Vr,1

and Vr,2 and vice versa.

7.3. Attacking a Brokerage Firm 155

5. Vr,1 reads the bulletin board and finds the message in which Vr,2

accepts the invitation of Vb. Vr,2 reads the bulletin board and finds
the message in which Vr,1 accepts the invitation of Vb. This way each
virus Vb, Vr,1, and Vr,2 knows the IDs of the other two viruses. When
Vb posts a message to Vr,1 it includes a from field that includes the
ID of Vb and includes a to field containing the ID of Vr,1. This allows
the viruses to communicate with each other unambiguously.

6. Each of the three viruses (Vb, Vr,1, and Vr,2) generates a key pair
and gives the public key to the other viruses by posting it to the
bulletin board. To prevent man-in-the-middle (MITM) attacks it
is necessary that all viral activity goes unnoticed before the attack.
From then on every viral posting is first signed and then encrypted
for the intended recipient, and the signatures on all messages are
verified before being accepted as valid. Note that the ciphertext
postings need not have identifiers visible on the outside. The viruses
can attempt to decrypt any and all ciphertexts to distinguish valid
postings from random data.

7. Once all three public keys have been posted, Vb chooses a pad R
randomly and then encrypts D using the Vernam cipher, thereby
obtaining the ciphertext C. Vb then transmits R securely to Vr,1 and
C securely to Vr,2 over the bulletin board.

8. Vb instructs the brokerage firm to establish a new account for the
virus (if necessary). Either by making the attack known to the firm,
or in secret, the virus allocates an account for itself containing say,
$10,000.

9. Phase III: By communicating in a signed and encrypted fashion over
the bulletin board, Vr,1 and Vr,2 collectively select a publicly tradable
stock to purchase and request that a single share be purchased. This
share can be selected uniformly at random from all tradable shares or
can be chosen according to a specified algorithm. The collaborative
decision-making process can be accomplished by having Vr,1 and
Vr,2 conduct fair coin tosses [31, 33] over the bulletin board. This
guarantees fair coin tosses even if the coin flips of one of the viruses
are compromised. The virus insists that the resulting share be held
under the street name of the firm.

10. The desired transaction is conveyed to Vb by Vr,1 and Vr,2 using

156 7. Non-Zero Sum Games and Survivable Malware

the bulletin board. Vb either performs the transaction in secret (if
it has control over the trading system), or failing that, it informs
the brokerage firm of the desired stock transaction by displaying a
message to the broker, for example.

11. The brokerage firm’s trading system either carries out the purchase
or does not. If it does, then either Vb, or the firm acting as Vb,
encrypts the signed SEC response under the public keys of Vr,1 and
Vr,2 respectively and publishes the two resulting ciphertexts in two
different postings.

12. Vr,1 expects to find a posting on the bulletin board from Vb consisting
of a signed SEC response. If a valid signed response is not received
within time T (e.g., two days) by Vr,1, then Vr,1 posts R in plaintext
form to the bulletin board. Similarly, Vr,2 expects to find a posting
on the bulletin board from Vb consisting of a signed SEC response
within time T . Vr,2 posts C in plaintext form to the bulletin board
if the SEC signed response is not received on time. So, if the two
encrypted SEC messages are not posted then anyone with access to
the bulletin board will be able to bitwise exclusive-or C with R and
recover the sensitive data D, thus ending the two-player game in
Phase III.

13. If the initial trade request is processed, then eventually another re-
quest is made by Vr,1 and Vr,2. By keeping track of the account
internally, the virus can issue sale transactions in addition to buy
transactions.

The attack is depicted in Figure 7.1. The purpose of using street names
is to keep the transactions fluid, as in typical firm/client relationships.5

Over time such a virus may make many transaction requests, which may
be to either buy or sell shares.

Note that when the virus asks the firm to purchase one share of XYZ,
the firm can always obtain a fresh signature as follows. The firm can sell
one share of XYZ if it already has one to spare, or failing that, it can
sell short on one share. The firm can then buy the share of XYZ back

5The issue of who to make the blackmailed stock out to was pointed out by Michael
L. Gershman when this attack was presented at an NYU course entitled Cryptographic
Protocols in the summer of 2003. The course was taught by Dr. Markus Jakobsson
from RSA Labs.

7.3. Attacking a Brokerage Firm 157

Figure 7.1 Distributed cryptoviral attack

from the open market and obtain the fresh SEC signature that the virus
expects. So what can really be gained in this attack? If nothing else,
the virus has secured the opportunity to prove its worth as an intelligent
investment advisor. The goal in this particular attack is not to give the
virus writer direct monetary gain,6 but to give the distributed malware
purchasing power. The virus will develop a portfolio history based on its
transaction requests. The firm must comply with the requests under threat
of sensitive information disclosure, and hence the firm must observe the
series of requested transactions. Over time the virus may prove its worth
as a portfolio manager. In the event that the virus develops a solid track
record the firm may actually start purchasing shares at the request of the

6The virus could be programmed to demand that the firm buy tens of thousands
of shares of a particular company to raise the stock value of each share. This would
benefit a virus writer if the virus writer already held lots of shares.

158 7. Non-Zero Sum Games and Survivable Malware

virus without selling them first. If the account grows, the virus will be in
a better position to levy unorthodox demands against its victim.7

A computer virus could conceivably steal investment advice as well.
This is possible if the virus is in a position to observe the investment
decisions of other investors. The virus could eavesdrop on the buy/sell
transactions and then mimic the decisions of the best investors. An ideal
host for such functionality is a client program that allows users to send
transaction requests to an on-line brokerage firm.

Another possibility is for the virus to demand that the firm purchase
a CD from a bank. In this case the CD would have to be signed by the
bank under the PKI of the bank. This type of investment differs from
stocks since a CD cannot be cashed out prematurely without suffering a
financial penalty. However, even in this case the firm can try to sell the
CD to someone who actually wants it in order to obtain the cash that was
spent on the CD.8 An interesting question is whether or not there exists a
financial investment mechanism that truly locks the buyer in and prevents
the transference of the asset in question.

Also, what is to prevent the firm from notifying the SEC that the
attack is being carried out? This would certainly foil the malware attack.
The firm can certainly do this, but by doing so the firm would likely run
the risk of the attack being made public. Hacker attacks can be very
embarrassing to large companies and it is not uncommon for companies
to cover them up and even suffer losses to do so.

7.3.3 Security of the Attack

On an algorithmic level it is possible to select various primitives for use in
this attack that are provably secure by themselves. For example, the Op-
timal Asymmetric Encryption Padding (OAEP) algorithm used in PKCS
#1 can be used to perform encryption, and PKCS #1 can be used for sign-
ing the messages that the viruses send each other [249]. Also, a provably
secure mix network can be selected. However, it is difficult to analyze
the exact security of this hybrid cryptographic protocol, except against
specific attacks. This results from the complexity of combining all of the
underlying primitives.

To allow confidential and authenticated communications between Vr,1,

7The virus will have thus crossed the line from malware to beneficial software, and
making it unhappy implies the loss of valued investment advice.

8This was pointed out by C. C. Michael at Cigital.

7.3. Attacking a Brokerage Firm 159

Vr,2, and Vb it might be tempting at first to include three separate key
pairs in the initial virus. However, this is not a secure approach since the
key pairs will exist in all future offspring of the virus and will therefore
provide no privacy in Phase III of the attack. However, by having the
viruses generate key pairs in Phase II the key exchange is subject to a
man-in-the-middle attack. For this reason it seems necessary that the
viruses operate in secret from when the virus is released up until the
beginning of Phase III.

The reason that Vb utilizes the Vernam cipher is to try to protect the
privacy of the brokerage firm. Since the One-time pad is information
theoretically secure, an administrator that finds R will not learn anything
about the plaintext D without the ciphertext C. The same applies for
C. This mechanism, combined with the use of mix networks, gives the
brokerage firm the assurance that D is stored in a secret-splitting fashion.
Other approaches can be used to accomplish this as well. For example,
an m-out-of-n secret sharing scheme [21, 22, 40, 42, 59, 101] can be used
in which any m out of n viruses can collaborate and reconstruct D.

A corollary of this attack is that Vb can be removed without affecting
the overall game that is initiated. Virus Vr,1 and virus Vr,2 expect SEC
signed messages in response to their trade initiations. The viruses do not
care who actually obtains and sends these signatures. A broker can carry
out all of the tasks that Vb performs in Phase III manually. It is a matter
of semantics to say that the malware is removed by removing Vb. This will
not change the fact that the information needed to reconstruct D will be
exposed to the general public if the SEC responses are not received.

7.3.4 Utility of the Attack

Many stock portfolios specialize in particular markets such as pharma-
ceuticals, computer technology, energy, and so on. For this reason the
demand to purchase a tradable stock chosen randomly from all tradable
stocks is likely to be perceived negatively. As a result the perceived payoff
for making the purchase that the virus selects will likely be negative irre-
spective of any potential return on investment. If it were known a priori
that this two-player game were only going to be played once, a suitable
characterization for the game might be the one given in Table 7.3.

The column player is the victimized brokerage firm and the row player
is the distributed cryptovirus. Column 1 is the choice to buy the stock
that the virus requests. Column 2 is the choice to refuse the transaction.

160 7. Non-Zero Sum Games and Survivable Malware

Column 1 Column 2

Row 1 1,−1 0,−10
Row 2 0,−10 0,−10

Table 7.3 Payoff matrix for virus and firm

Row 1 is the choice to issue a buy request. Row 2 is the choice to publish
sensitive data D.

The game differs from a traditional two-player game since the choice
that the virus makes is in fact contingent upon the choice that the firm
makes. The payoffs may be reasoned as follows. The firm suffers a −10
penalty if D ends up being published. This happens if the firm denies the
buy request or if the virus simply decides to publish D. The virus may
as well select row 2 and publish D if the column player chooses column
2. Strictly speaking, due to this conditional move, this matrix is more
of a payoff matrix than a two-player game. Also, the salient feature of
the payoff matrix is the partial ordering of the payoffs as opposed to the
specific values given in Table 7.3.

This “game” is nonetheless not a zero-sum game since 0 + (−10) =
−10. It is not a constant sum game since 1 + (−1) = 0 does not equal
0 + (−10) = −10. The game is therefore a non-zero sum game. But it
is arguably one of the less interesting non-zero sum games since there is
no conflict of interest. When played once the optimal strategy for each
player is clear. The solution to the game is row 1, column 1. However,
for the firm, winning amounts to cutting the firm’s losses whereas for the
cryptovirus winning amounts to successfully coaxing the firm to purchase
a stock.

It is difficult to speculate on the game when it is repeated multiple
times. There are numerous factors to take into account including how
often the virus makes requests, how many shares are in each request, and
so on. If the firm denies every request and eliminates the virus, then the
firm can guarantee a loss of no worse than −10. But, if the firm processes
the requests and the virus ultimately publishes D anyway, then the losses
could be even more. If the damage that would result from the publication
of D far outweighs the purchase of a few stocks, then it may be best to
cater to the virus, at least for a time. On the other hand, one should
not immediately discount the possibility that the virus will make sound
investment decisions. It is not unthinkable that some day a real-time

7.4. Other Two-Player Game Attacks 161

trading engine could be created that would cause the firm to eagerly wait
for the valued investment advice of the cryptovirus. Once such a stance is
established, the virus could make uncanny demands such as who to hire
and fire in the firm.

The utility of this attack from the malware author’s perspective is
clear. It amounts to an on-line agent that is capable of automatically
making and executing the author’s investment decisions. The author can
communicate with the agent over the same bulletin board using public
key cryptography and make manual decisions on behalf of the agent. This
allows the author to exercise control over the victim with very minimal
real-time interaction, thereby minimizing the author’s chances of being
apprehended. If the investments are lucrative, the attack amounts to a
free lunch for both the firm and the author. If they are not lucrative, then
the firm loses money and the author loses nothing.

There are several issues that are left open. For example, are there
well-defined and well-studied games in game theory that directly apply to
this particular malware attack? Are there ways to improve the attack9

so that the victimized firm is certain that D will not be published if the
transaction is honored?

7.4 Other Two-Player Game Attacks

There are other two-player games that can be initiated by malware as
well. Two such attacks are described in this section. They both utilize
the notion of a distributed virus that carries out its payload by having its
individual instances communicate with each other securely.

7.4.1 Key Search via Facehuggers

The notion of using viruses to solve computationally difficult problems is
well known. For instance, a virus can by brute force try to determine the
DES key that was used to produce a particular symmetric encryption [320].
Also, viruses can be used to steal CPU time to try to factor composites,
compute discrete logarithms, and so on.

In this subsection a particular cryptovirus attack is detailed that is
geared towards solving the discrete logarithm problem in a prime order
subgroup. The prime order subgroup discrete-log problem is believed to

9Questions such as this were raised by Shabsi Walfish during the NYU lecture.

162 7. Non-Zero Sum Games and Survivable Malware

be intractable and is the basis for many cryptographic algorithms such
as DSA. Recall that the DSA private key is x and the DSA public key is
(y, g, p) (see Subsection C.2.7). DSA utilizes a public prime q that is 160
bits in length. The order of g modulo p is q and hence q divides p − 1
evenly.

The attack utilizes the approach of Feigenbaum et al to hide informa-
tion from an oracle [1, 2, 99] (see Section 6.8). The virus writer chooses
r < q randomly and computes yr = ygr mod p thus randomizing y. It is
simple enough to place yr = ygr mod p in a virus and let the offspring
try to compute the base g discrete log of yr. If it is found, then it can be
posted to a bulletin board so that the virus writer can obtain it. Since the
virus writer knows r, the virus writer can recover x from the posting. This
allows the virus writer to try to determine someone’s DSA private key x
in y = gx mod p by brute force in such a way that the owner of the public
key has no way of knowing that the private key has been compromised.

Consider the case that one of these viruses is found. The virus would
likely be chewing up a fair amount of CPU time, and would be a nuisance
in general, and would simply be removed. So in this straightforward attack
a machine is lost whenever the virus on that machine is found, that is, there
is one less machine to perform the distributed brute-force computation.

However, if the virus were more like a facehugger then there would be
consequences for removing it. The goal then is to devise a mechanism
that optimizes the number of machines that are actively trying to solve
the discrete logarithm problem instance. The following is a virus attack
that seeks to achieve this goal. We call the virus a facehugger and give a
very high level description of it.10

To mount the attack the virus writer chooses r < q randomly and
computes yr = ygr mod p. The value (yr, p, g, q) is placed within the
virus. It is assumed that the virus is given a grace period in which it can
infect many machines and remotely store sensitive data without hindrance,
and so on. The virus operates much like the virus in the attack on the
brokerage firm. Each virus generates a large random identifier ID, each
virus generates a key pair, and they communicate securely11 with each
other over a mix network and bulletin board, and so on. The identifiers
serve as digital pseudonyms. Each virus searches its host for sensitive host
data D that would be damaging if published. This data is encrypted using

10We thank C. C. Michael for helpful discussions regarding this distributed cryptovi-
ral attack.

11That is, they timestamp, sign, and encrypt their messages.

7.4. Other Two-Player Game Attacks 163

the Vernam cipher. The resulting ciphertext C and One-time pad R are
securely sent to the two other viruses involved in the attack on the host.

So far the attack is almost exactly the same as the attack on the
brokerage firm. However, the attack would be on a much larger scale
since any host machine that contains sensitive data D is a viable host for
the attack. Brokerage firms are not sought after explicitly. Let the total
number of viruses be denoted by N and for simplicity assume that all N
machines contain sensitive data. The viruses partition the key space into
N roughly equal partitions each of which is a contiguous set of numbers.
The viruses are each responsible for making their respective hosts search
a given partition. Let s1 denote the starting value for the partition of a
given virus V1.

It is important not to overload a virus in terms of the Vernam cipher-
texts and One-time pads that it stores from other virus attacks. To avoid
this the viruses carefully arrange the way they store the sensitive data.
The arrangement of viruses can be expressed as a bipartite graph (see
Figure 7.2). Each virus is represented by two vertices of the same color.
The figure shows the case of N = 5, 4, 3 from left to right.

Although it is not shown in the figure, the vertices are labeled using
the identifiers of the viruses. The vertex at the top has the highest value
for ID, the one below that has the second highest value for ID, and so on.
When a virus computes a One-time pad and Vernam ciphertext it sends
them to the two viruses indicated by the directed edges.

The bipartite graphs in the figures are all quite similar since each
vertex connects to the two vertices directly below it and to the right,
except for the bottom two vertices. The bottom vertex always connects
to the top two vertices on the right. The vertex second from the bottom
always connects to the top and bottom vertices on the right. Also, the

Figure 7.2 Bipartite arrangement of the facehugger

164 7. Non-Zero Sum Games and Survivable Malware

arrangement is constructed such that each virus is responsible for storing
a Vernam ciphertext from one machine and a One-time pad from another.

When the grace period ends each virus immediately begins searching
the keyspace. For example, V1 immediately starts searching the partition
that begins with s1. Virus V1 checks to see if yr = gs1 , gs1g, gs1+1g, and so
on. The partition is exponentially large so the virus, which is polynomially
bounded, will not finish the search. If the logarithm of yr is found, then
it is posted to the bulletin board.

Each virus also demands that two other hosts conduct searches. Con-
sider the case that V1 stores the Vernam ciphertext C2 and One-time pad
R3 corresponding to the senstive data on two other infected machines M2

and M3, respectively. Also, let the viruses on these machines be denoted
by V2 and V3, respectively. V1 demands that V2 and V3 search the key space
as well. This is accomplished by having V1 send each of these two ma-
chines challenge sequences. The following is how the challenge sequences
for V2 are constructed. It is the same for V3.

At regular intervals (e.g., once every couple of hours or so) V1 chooses
r1, r2 < q randomly, chooses j randomly from {0, 1, 2, ..., 220−1}, and then
flips a coin. If the result is heads then V1 sets w = r2 and t = yrg

r1 mod p.
If the result is tails then V1 sets w = r1 − j mod q and t = gr1 mod p. V1

sends the pair (t, w) to V2 securely.
If there exists an i contained in {0, 1, 2, ..., 220 − 1} such that t =

gw+i mod p then V1 expects V2 to respond with i. If no such i exists then
V1 expects V2 to respond with “no exponent found.” Failure to produce a
valid answer, that is, i such that 0 ≤ i < 220 or “no exponent found” after
time T elapses always results in the publication of C2 in retaliation. For
concreteness let T = 2 hours. This interval must be chosen to give plenty
of elbow room for V2 to solve two challenge sequences at once.

If the result is heads and V2 responds with i then V1 checks to see if

gw+i ?
= t = yrg

r1 mod p. If this equality does not hold then V1 publishes
C2 to the bulletin board. If the equality does hold then V1 publishes
w + i − r1 ≡ x + r mod q to the bulletin board. This allows the virus
writer to recover x since the virus writer knows r. If the result is heads
and V2 responds with “no exponent found” then V1 assumes on faith that
there is no i contained in {0, 1, 2, ..., 220 − 1} such that gw+i = t mod p
and so V2 passes the challenge sequence.

Now consider the case that the result is tails. If V2 responds with “no
exponent found” or a value for i such that j 6= i then V1 publishes C2

7.4. Other Two-Player Game Attacks 165

to the bulletin board in retaliation. If i = j then V2 passes the challenge
sequence.

So what is really going on here? V1 is conducting a sting operation of
sorts against the host of V2. With 50 percent probability a sequence is
sent to M2 for which, if V2 is still running properly on M2, V2 will find
the discrete logarithm and give it to V1. With 50 percent probability M2

is given a portion of the keyspace to search. M2 has no way of knowing
which is the case. So, it can do no better than guess. To be uncooperative
the operator of M2 can refuse to send a discrete logarithm when one is
found. However, the operator will be caught with probability 1/2. This
interactive protocol is intimately related to the notion of a proof of work.
Informally speaking, a proof of work allows a prover to demonstrate to a
verifier that the prover has performed a certain amount of computational
work in a specified interval of time [136].

The operator of M2 can decide to ignore V1’s challenge sequences en-
tirely under the assumption that only C2 will be published and not the
One-time pad R2. However, this increases the chances that both C2 and
R2 will become available, thus compromising C2⊕R2. M2 will still receive
challenge sequences from the other virus, unless it has been tampered
with.

The attack is intriguing since it creates a form of deadlock when the
victims do not trust each other. For instance, if the operator of the ma-
chine that hosts V1 decides to be a good samaritan and delete the Vernam
ciphertext and One-time pad that V1 is storing, there is no reason to
believe that the operators of the machines that store the ciphertext and
One-time pad that V1 sent out will reciprocate. They might in fact publish
them. This can cause the good samaritan to loose the game.

The payload of the facehugger forces victims to perform intensive com-
putations under the threat of sensitive information disclosure. This would
clearly be a hassle and a nuisance for the victim. It is related to the use
of puzzles to defend against connection depletion attacks [146]. However,
it uses puzzles as a malicious payload rather than a defense. Also, the
payload is not simply destructive since these intensive computations are
geared towards breaking a public key.

There are also other issues to consider. For example, when the viruses
are never found this scheme creates needless extra work for the virus.
This results from the phoney challenge sequences that must be searched.
However, when the viruses are brought to near extinction the virus has
a chance to continue the search on machines in which the virus has been

166 7. Non-Zero Sum Games and Survivable Malware

discovered. Open issues include ways of improving the attacks as well as
identifying new attacks along these lines.

A similar sort of attack can be carried out against composite public
keys. Let n = pq be the product of two large primes p and q. This could
be a Rabin public key, an RSA public key, and so on. The virus contains
n and attempts to discover the factorization of n. Already a complication
exists since if the owner of the public key n learns that a virus is trying
to break it, the owner will immediately revoke the public key n. However,
if the virus writer has a ciphertext c that was computed using n, then
breaking n is still useful in trying to decrypt c. The attack will not be
described in detail, but the general idea will be sketched out.

In the attack the virus writer tries to obtain two ambivalent roots of a
quadratic residue modulo n. The values x and y are ambivalent roots of
x2 mod n if x2 ≡ y2 mod n and x 6= ±y mod n. These two values allow n
to be factored since gcd(x + y, n) or gcd(x − y, n) is a non-trivial divisor
of n.

The virus writer places a = x2 mod n in the virus and hopes that the
viruses will find a y that is ambivalent with respect to x. Also, the virus
contains a random function H that maps {0, 1}∗ onto the set ZZ∗

n. Let
Hj(s) = H(J ||s) where J is the 20-bit binary representation of j and s is
any input string. It may be assumed that Hj(·) is publicly known.

The victim’s machine is challenged by the virus as follows. The virus
chooses r1 randomly from ZZ∗

n, w randomly from ZZ∗
n2 , j randomly from

{0, 1, 2, ..., 220 − 1}, and flips a coin. If the result is heads then the virus
computes t = ar2

1 mod n. If the result is tails then the virus computes
t = Hj(w)2 mod n. The virus sends the challenge (t, w) to the victim.

If the victim does not respond with i ∈ {0, 1, 2, ..., 220− 1} or “no root
found” on time then the sensitive data is published in retaliation. If the
victim responds with i ∈ {0, 1, 2, ..., 220 − 1} then the virus checks to see

if Hi(w)2 mod n
?
= t. If this does not hold then the sensitive data (either

the Vernam ciphertext or the One-time pad) is published. If this does
hold and the coin toss resulted in heads then Hi(w)/r1 mod n =

√
a is

asymmetrically encrypted under the public key of the virus writer that is
contained in the virus. This ciphertext is published to a bulletin board so
that the virus writer can obtain it. If Hi(w)/r1 is ambivalent with respect
to x then the virus writer can factor n using Hi(w)/r1 and x.

7.5. Future Possibilities 167

7.4.2 Catalyzing Conflict Among Hosts

An ancient strategy when three warring factions are mutually at odds is to
get the two opposing factions to obliterate each other and then take out the
one that is left standing, if any. A surviving faction will likely have suffered
severe losses in the initial battle. This strategy can be extrapolated to
cryptovirus attacks as well. The basic idea is to infect two remote systems
that are operated by owners that oppose each other. The viruses securely
transfer sensitive host data to each other to initiate a two-player game
and then announce that this has been done. The two owners must then
complete the two-player game that the virus initiated.

Consider such an attack against two companies. The cryptovirus asym-
metrically encrypts sensitive information from company A and transmits
it to another copy of the virus located at company B. The virus at B de-
crypts the ciphertext with its private key. Similarly, the virus at B steals
sensitive information from B, asymmetrically encrypts it, and then trans-
mits the ciphertext to the virus at A. The virus at A decrypts it with its
private key. When all of the information has been transferred, the dis-
tributed cryptoviruses alert their respective victims of the presence of the
newfound information on their system.

If the information that was transferred is damaging when disclosed and
if A and B are in direct competition, then A and B have entered into an
exacerbated state of conflict. A and B are then left to arrive at a solution.
In this situation the virus can be removed but its payload may only be
considered removed if and when A and B complete the two-person game
that the distributed cryptovirus started. Viruses that force their victims
to play games with each other are unique since they exploit naturally
occurring distrust among victims.

7.5 Future Possibilities

These attacks constitute plausibility results regarding survivable malware.
The following are basic ideas that form the basis for such attacks:

1. Implementing the virus as a distributed algorithm. The virus resides
on multiple machines that are networked. This gives robustness
against the possibility that the virus attack will be terminated since
deleting or compromising one or two viruses may not halt the attack
(fault-tolerant viruses).

168 7. Non-Zero Sum Games and Survivable Malware

2. Having the viruses utilize a bulletin board. This allows the viruses
to communicate to each other by reading and writing to a single
location that they are all aware of.

3. Having the viruses utilize a mix net. This allows the viruses to con-
ceal their locations from everyone including each other and therefore
helps to keep them from being discovered.

4. Having the virus employ split (or threshold) encryption. This pro-
tects the privacy of the victim(s). Without some measure of privacy
certain victims may not hesitate to pull the plug on the virus alto-
gether and ignore the viral demands.

5. Having the virus employ asymmetric cryptography. This allows the
viruses to exchange public keys, digitally sign data, and encrypt data
using a public key. Hence, the viruses can establish authenticated
and confidential channels with each other through the mix net and
over the bulletin board.

6. Having the viruses generate shared randomness. Cryptographic coin
flipping protocols allow the viruses to generate randomness in a way
that is robust against a small number of viruses being compromised.
In some sense it allows the distributed viruses to perform distributed
decision making with the benefit of having an honest random (Turing
machine) tape.

7. Having the victims victimize each other. This defers blame and some
degree of culpability away from the virus. It provides victims with
an alternate means of dealing with the payload; namely, by having
the victims reconcile their differences out-of-band. Such conflicts
can be instigated by certain non-zero sum games.

Another extension that can be made to this type of distributed malware
is secure multiparty computations. These are cryptographic protocols that
allow a number of parties to securely evaluate a circuit and they have
some very robust security properties with respect to privacy, faults, and
so on. By having a distributed virus employ such protocols, they would
be able to perform secure distributed computations even when some of
the viruses are compromised.

Looking even further ahead, consider the following possibility. In-
telligent agents are slowly becoming integrated with our everyday lives.

7.5. Future Possibilities 169

When we call a company that provides some form of service (for exam-
ple, a bank) we often get connected to electronic helpers. These agents
use voice recognition to answer our questions, perform transactions, and
even offer advice on achieving problem resolution. A chilling thought is
the possibility that the back-end software of such an agent is a victim of
an ongoing distributed cryptovirological attack. The virus could directly
influence the actions of such an agent. The thing about distributed cryp-
toviruses that use mix nets is that there is essentially no way to find out
where they are on the net. One could argue that the first step in achieving
power is the accumulation of wealth. The overall threat is a foreseeable
possibility since we are increasingly allowing machines to make decisions
for us.

Fears that machines might evolve and subsequently replace people ap-
peared in S. Butler’s novel Erewhon. It was published in 1872 [46] and
challenged the moral hypocrisy of Victorian England and its ecclesiasti-
cal institutions. In Automata, S. F. Wright describes machines that take
over all human activities and eventually eliminates the entire species [322].
Also, the Colossus computer from the 1966 novel Colossus [143, 254] and
the Skynet computer in the movie The Terminator [51] threaten the ex-
tinction of all mankind.

The distributed cryptovirus attacks may appear to be sensational, and
for our time they most certainly are. However, they are perhaps no less
sensational than how a pair of cell phones would have appeared to the in-
ventor of the telegraph. In today’s computing environments these attacks
are perhaps most relevant as thought-provoking possibilities rather than
realizable threats.

Chapter 8

Coping with Malicious
Software

This chapter is likely to seem quite out of place in this book. Nevertheless,
after dedicating so many chapters of this book towards malicious software
attacks we felt obliged to present some results on how to defend against
these attacks. This chapter is not a how-to manual to recover from a
viral infection. Rather, a number of proactive and reactive security mea-
sures are given to combat the spread of self-replicating malware. Antiviral
heuristics are presented along with their counter-heuristics, their counter-
counter-heuristics, and so forth, to illuminate the challenges facing viral
containment. The chapter also includes heuristics for identifying cryp-
toviruses and cryptotrojans wherever they may reside. These heuristics
are based on the fact that cryptoviruses and cryptotrojans must contain
a public key which has certain mathematical properties.

8.1 Undecidability of Virus Detection

A number of real-world problems that would be nice to be able to solve
are in fact not solvable. For instance, it would be useful to be able to
determine algorithmically if on input1 M and w, where M is an arbitrary
given Turing machine and w is an arbitrary given input string, whether
or not M accepts2 w. This is known as the halting problem. It is a
decision problem since the answer comes in the form of yes or no. To
solve this problem it would be necessary for the Turing machine to answer

1To be precise, the input is a Gödelization of M and of w.
2Turing machine M accepts w if M(w) terminates in a final state.

171

172 8. Coping with Malicious Software

correctly for all possible input machines and all possible inputs to those
machines. Such a program would be an invaluable tool for assessing the
correctness of programs, since a program is correct if and only if it always
outputs the correct answer and halts on all inputs. However, using a
Cantor diagonalization argument Alan Turing proved that no such Turing
machine exists [306]. This is not a complexity issue; it is a computability
issue since the problem as stated is not solvable at all.

It is an unfortunate consequence in the theory of secure computing
that the same applies to testing whether or not an arbitrary program is
infected with an arbitrary virus. Adleman proved that if an algorithm
exists that can detect the presence of viruses in the general case, then
an algorithm exists that solves the halting problem. Since the halting
problem is Turing undecidable, this proves that the problem of detecting
viruses is Turing undecidable [3].

Regardless of this fundamental limitation to virus detection, methods
are needed to identify viruses since hackers continue to write and release
computer viruses. As a result heuristics have been developed and deployed
to identify both known viruses and viruses that are yet to be written. By
virtue of being heuristic in nature they each fail in specific cases, but they
nonetheless raise the bar in terms of what is necessary to spread viruses
successfully.

To deal with these heuristics, virus writers have reacted by developing
their own suite of heuristics to bypass antiviral heuristics. These heuristics
constitute counter-heuristics and some of them are surprisingly general in
nature. However, these in turn have led to the development of counter-
counter-heuristics in antiviral software, and so on. The end result has
been an ongoing tug-of-war between detection and evasion methods.

8.2 Virus Identification and Obfuscation

There are several challenges surrounding the design of robust computer
viruses and worms and designing algorithms to detect viruses and worms
wherever present. The first part of this section covers the issue of string
matching. String matching is often used by antivirus programs to pos-
itively identify viral strains. But, it is also a method that is used by
viruses to identify themselves. Viral self-identification is necessary to pre-
vent overpopulation and to prevent a host from being infected multiple
times. The development of string matching antiviral programs lead to the
development of polymorphic viruses, which are viruses that are specifi-

8.2. Virus Identification and Obfuscation 173

cally designed to foil string matching antiviral programs. The notion of a
polymorphic virus is covered at the end of this section.

8.2.1 Virus String Matching

By definition, a virus spreads by copying a possibly altered version of
itself to other programs, which in turn continue the viral replication. An
unavoidable problem in designing such viruses is the possibility of multiple
infection. How does a virus know if it already infected a given program?
If the virus has no way of knowing this, then it may end up infecting the
same program so many times that the user notices a suspicious loss in disk
space.

Some viruses were programmed not to care about multiple infections.
For example, the Israeli virus will infect a host multiple times [289]. This
implies that viruses need an algorithm for identifying whether or not a
given executable is already infected. This decision problem is exactly
the same decision problem that antiviral software faces when analyzing
the same executable. The virus writer can include within the virus an
efficient algorithm for solving the decision problem and use it to prevent
multiple infections. But the drawback to this is that if the virus is ever
discovered it solves the problem of identifying the virus in the wild for the
antiviral analyst. A viral detection algorithm is therefore a mixed blessing
for both parties:

1. virus writer: prevents the virus from infecting programs multiple
times and thereby minimizes the chances that the virus will be dis-
covered due to loss of disk space. But, at the same time it gives a
detection algorithm to antiviral analysts when the virus is found.

2. antiviral analyst: lowers the chance that a user will find the virus
due to unexplained loss of disk space. But once found it has the
benefit of solving the problem of identifying the virus in the wild
(assuming it is well written).

Viruses that are indiscriminate about the executables they infect are very
dangerous since they have the potential to bring down host systems by
their replication alone. The fallout due to the famous Internet Worm is
a case in point [287, 288].

It is possible to slow the rate of infection to prevent a virus from
being discovered right away, without including a self-detection mechanism.

174 8. Coping with Malicious Software

This can be accomplished by limiting the timeframe in which the virus
replicates on a given machine [302]. To limit the timeframe the virus
stores a circularly linked list internally to keep track of the most recently
infected machines. Each list element contains a timestamp and a machine
name.3 The virus is designed to replicate for a specified time interval I on
any given machine (e.g., I = 2 days). When it is executed it obtains the
name of the machine that it is currently on. If the name is not contained
in the linked list then it overwrites the oldest element in the list with
the current machine name and the current time, and then infects another
program on the machine. If the name is contained in the linked list then
the timestamp T for that element is retrieved. If the current time exceeds
T plus I then the virus does not infect anything and sends control to
the host. Otherwise, the virus infects another program. This method
minimizes the excess infections that occur due to backtracking, but does
prevent a given program from being infected more than once.

Designing a self-detection algorithm involves some subtle issues. For
example, it is tempting to include an ID string in a virus at a known offset
from the end of the virus. When the virus appends itself to the end of
a host, the ID string is at a known offset from the end of the program.
However, it is naive to assume that a program is infected if and only if
the ID appears at the given offset since the program could have become
infected by another virus.

The simplest viruses copy themselves to host applications without sig-
nificantly altering themselves. When this occurs there is an easy way for
viruses and antiviral programs to determine if a given executable is in-
fected. The basic method for doing so is called pattern matching [69]. The
idea is to take a string of bytes from the virus that does not change from
generation to generation and use it to find other instances of the virus. By
checking an executable for the presence of this substring it can be deter-
mined whether or not the executable is infected. Antiviral programs called
scanners perform this scanning process. If the string is sufficiently long
and the pattern it contains is unique this method will detect the presence
of the virus in infected programs.

The approach is not flawless since the string may appear naturally in
certain programs. For instance, this can occur in programs that perform
complicated copy-protection operations that contain a large amount of
binary data, and so on. As a result this method sometimes produces false
positives. However, this method can never produce a false negative when

3A machine name can be a hard drive label, IP address, and so on.

8.2. Virus Identification and Obfuscation 175

used to identify known viruses.4 String matching is performed correctly
every time and the string will never be missed.5 As a result a string
matcher that claims to detect all known viruses will never indicate that a
program is free of infection when in fact the program is infected.

A countermeasure to scanners is to design the virus so that it does not
contain any of the strings contained in the database. This is incredibly
easy for a virus writer to do: the virus writer infects a program with
the virus and then subjects the program to all available antivirus tools
to see if the virus is found. A scanner is capable of detecting a deployed
virus only after the needed search string is included in the list of search
strings. It is often the case that a new virus is detected only after it
mounts a successful attack on a host. Consequently, scanners are not very
proactive in identifying viruses. The measure is occasionally proactive
since a new virus sometimes reuses the code of other viruses or contains
trivial modifications and as a result succumbs to an existing search string.

To perform comprehensive viral scanning it is necessary to perform the
lowest level read operations that are possible, since a surprising number
of hiding places exist for viral code. For example, most file systems break
a disk down into clusters that are fixed in size (e.g., 1024 bytes). An
executable seldom occupies an integral number of clusters exactly and as a
result there are often unused bytes at the end of executables. The number
of unused bytes is dictated by the difference between the physical end-
of-file marker and the logical end-of-file marker. The 1963 virus, among
others, takes the liberty of storing data in this area [283].

Also, hard disks are typically designed to support multiple operating
systems by allowing the disk to be divided into multiple partitions. Com-
puters are often sold with only one preinstalled operating system and one
low-level partition for the operating system. In some cases there is still
space left over for another tiny partition. Assuming a virus is not too large
it could turn this free space into a partition for itself without encroaching
on the resident operating system at all. In the case of a multipartite virus
this implies that the boot sector phase of the virus would appear to oc-
cupy no space at all from the perspective of the operating system. Such
viruses gain control from the ROM code of the computer before the boot
sector of the operating system is even executed.

4Stealth viruses (explained later) are an exception to this rule since they have the
potential to alter the scanner’s perception of the true binary data in the program.

5Polymorphic viruses are a different case. The question here is whether or not a
program contains a particular substring.

176 8. Coping with Malicious Software

On MS-DOS systems this physical boot sector is called the master boot
record (MBR) and is exploited by the Monkey virus [283]. In general, boot
sector viruses are very dangerous since they gain control of the computer
before anything else [289]. This illustrates that malware can sometimes be
overlooked by scanners that obtain their data through operating system
read calls.

Antivirus scanners have proven to be an effective reactive security mea-
sure against viruses and are widely used to check executables, boot sectors,
RAM, and so on. Many are even sophisticated enough to first decompress
and then scan files compressed using popular compression programs. An-
tiviral products that scan for viruses often include software that is capable
of disinfecting programs. Since the viruses they search for have already
been carefully analyzed, in many cases it is possible to algorithmically re-
move them from the host program. However, whenever possible, infected
programs should be deleted and backups should be reinstalled.

8.2.2 Polymorphic Viruses

A straightforward countermeasure to viral scanning is designing a virus
to modify its own coding sequence. In laboratory experiments, Fred Co-
hen produced viruses that had no common sequences of over three bytes
between each subsequent generation by using encryption [67, 69]. Such
viruses are called polymorphic viruses, otherwise known as evolutionary
viruses.

Numerous polymorphic viruses have appeared in the wild. For exam-
ple, the Tremor virus is a polymorphic virus that has almost 6,000,000,000
forms [283]. A polymorphic virus typically consists of two parts: a header
and a body. When dormant, the body remains in encrypted form. When
activated, the header is the first section of code to receive control from
the operating system. The header decrypts the body in memory. Once
the body is decrypted the header transfers control to the body. The body
then performs the normal viral operations. When the body is finished it
sends control to the host program (see Figure 8.1).

The header stores the symmetric key needed to decrypt the body. This
key can be chosen uniformly at random in each generation of the virus and
the plaintext of the body can be encrypted using the new key. The new key
is stored in the decryption header to ensure that decryption will proceed
correctly. By making certain assumptions about the randomness of the

8.2. Virus Identification and Obfuscation 177

resulting ciphertexts, it may be argued that detecting the virus using
search strings requires that the search string be taken from the header.

Virus writers have a variety of methods for making the decryption
header change as well. Some approaches for this are more effective than
others. One obvious method is to employ several different ciphers and
randomly select among them. This is a good approach but may in some
cases lead to unacceptably large viruses.

Another common approach is to weave dummy instructions between
the instructions that constitute the decryption algorithm. Most processors
support a NOP instruction that literally does nothing. It is shorthand for
no-operation and has many uses. On RISC machines these instructions
cause the program to wait until all pending bus activity is completed. This
allows synchronization of the pipeline and prevents instruction overlap.
It is not uncommon on CISC machines to see NOP instructions woven
within the sections of a switch statement to improve the performance of
the instruction cache by aligning each section on a new cache line.

There are also a number of arithmetic dummy instructions. For in-
stance, the additive identity element 0 can be used in an ADD instruc-
tion. The assembly language instruction ADD a`, 0 adds the value 0 to
the machine register a` and clearly does not change a`. The instruction
MUL a`, 1 multiplies the value in a` by 1 and also preserves the value
in a`. There are dummy instructions for logical operations as well. For
example, OR a`, 0 performs a bitwise logical OR operation and does not
change the value in a`.

Another type of dummy instruction is any instruction that operates
on registers that are not used in the underlying algorithm. For example,
many algorithms do not require the use of all of the data registers at once
on the target microprocessor. In this case the addition, multiplication,
and so on, of any number in that register has a null effect. All of these
dummy instructions have the potential to foil string-matching scanners.

There exist a number of tools that antiviral analysts use that specifi-
cally search for such dummy instructions. These tools typically have false
positive rates that are very high and as a result make them unsuitable
for use by the average user. They nonetheless greatly minimize the time
needed for skilled analysts to find polymorphic code.

A better way to obfuscate the decryption header is to replace instruc-
tions with other instructions that perform the same operation and to ex-
ploit the fact that many instructions can be reordered without affecting

178 8. Coping with Malicious Software

Figure 8.1 Typical polymorphic virus

the overall correctness of the algorithm [282]. For example, on Intel pro-
cessors there are many ways to set register a` to zero, including:

1. MOV a`,0

2. SUB a`,a`

3. XOR a`,a`

4. AND a`,0

In the case that code can be reordered, the virus can choose an ordering
randomly when creating a modified decryption header. For example, the
value x + y + z can be derived by computing t1 = x + y and then by
computing t2 = t1 + z. Alternatively, it can be derived by computing
t1 = y+z and then t2 = t1 +x. This works since integers are commutative
under addition.

8.2. Virus Identification and Obfuscation 179

When four instructions are completely interchangeable there are 4!
ways to order them. Implementing this correctly is subtler than it seems
since to be truly correct, one of the 4! permutations must be chosen uni-
formly at random. A typical random number generator will output a ran-
dom byte or byte sequence. Such a generator can therefore be used to im-
plement a random bit generator. To choose one of the 4! = 4∗3∗2∗1 = 24
permutations uniformly at random the following Las Vegas algorithm can
be performed. Five random bits are taken from the random bit generator.
These 5 bits constitute a number chosen uniformly at random between 0
and 31 inclusive. If the number is less than 24 then it is used to select the
permutation. Otherwise another 5 bits are generated and the process is
repeated.

Once this number is found it is necessary to translate it into the ap-
propriate permutation over the four instructions, for example, (0, 2, 1, 3).
There are well-known methods in algorithmic combinatorics to efficiently
translate such numbers into the combinatorial objects they represent.
These are referred to as unranking algorithms. When working with per-
mutations the Trotter-Johnson algorithm is an efficient way to perform
ranking and unranking [142, 163, 301].

Register usage is another aspect that is easily randomized. On the
Motorola 68000 Microprocessor there are eight general-purpose data reg-
isters. A given decryption algorithm may only require the use of four data
registers. There are

(
8
4

)
ways of selecting four distinct registers from the

set of eight registers. Kreher and Stinson give a comprehensive overview of
ranking and unranking algorithms for k-element subsets (that is, binomial
coefficients) [163].

Choosing the set of registers to use uniformly at random may seem
like a good heuristic, but with a bit more effort a better approach may be
as follows. To make the code less conspicuous, the set of registers should
be chosen according to the way the host uses them. This may be accom-
plished by analyzing the host, calculating the probability distribution over
the registers, and then selecting the set of registers to use based on that
probability distribution. If for whatever reason a given compiler never
uses a particular register, then the decryption header will never employ
that register either, thereby making heuristic detection via inhomogeneous
code less likely.

Another approach to heuristically obfuscating a decryption header is to
interleave another algorithm within the header. For example, by weaving
within the header an arbitrary algorithm such as Mergesort and having it

180 8. Coping with Malicious Software

sort legitimate data, it may be considerably more difficult to determine
that the header performs decryption. In the end all of these heuristics
succumb to reverse engineering by an analyst or a carefully crafted pro-
gram that specifically looks for this type of obfuscation.6 However, a virus
writer’s goal is often to simply bypass all existing antiviral programs and
not worry about what will be developed further down the road.

It has been observed that since many viruses execute before the host, it
is often possible to positively identify polymorphic viruses by letting them
decrypt themselves [197]. The general idea is to emulate the operation of
the host program for the first few thousand or so instructions and then scan
the resulting executable for the presence of known polymorphic viruses.
The method is called generic decryption and involves three components:
a CPU emulator, an emulation control module, and a scanner. The CPU
emulator is designed to emulate a particular CPU such as a Pentium IV
processor. The emulation control module determines such things as how
many instructions will be emulated7 and is also responsible for making
sure that no damage is done to the underlying machine as a result of the
presence of malware. For example, writes to the disk may be prevented
or otherwise contained. The scanner is applied to the code at regular
intervals during the emulation to attempt to detect malicious software.
Generic decryption can be performed on the fly along with traditional
scanning methods to help identify polymorphic viruses wherever present.

A countermeasure to generic decryption is to make the virus decrypt
its body with some fixed probability. The virus could generate a random
number and with some probability not decrypt its main body at all. For
example, when the virus gains control in a given invocation of the host
program, it could roll a six-sided die. If the result is “1” then the virus
could decrypt itself and then try to replicate. If the result is not “1” then
it could simply send control back to the host.

Another countermeasure to generic decryption is to make the virus
gain control at a randomly determined offset within the host program. Im-
plementing this countermeasure is more complicated than it seems since
simply overwriting portions of the host will likely lead to crashes. As
usual, the bulk of the virus could be stored at the end of the executable.
The problem then remains to modify the host to send control to the virus.
One approach to accomplishing this is to choose an offset within the host

6This further motivates the study of the cryptocomputing problem.
7Due to the halting problem there is no general way to determine if a program will

halt or not.

8.2. Virus Identification and Obfuscation 181

randomly and overwrite the code at that location with a jump instruc-
tion. The original code would need to be stored within the virus, and the
overlaid jump instruction would send control to the virus uncondition-
ally. When the virus finishes executing it repairs the host by overwriting
the jump instruction with the original host code and then sends control
back to where it normally would have been. This has been demonstrated
experimentally (see Appendix A.4).

This approach is not without its risks, however. The jump instruc-
tion and the viral code that follows it should preserve the state of the
program. Register values should be pushed onto the stack, and so on,
and popped when the virus completes. Also, if the jump instruction is
too long it might overwrite code that forms an entry point for another
jump instruction within the host. This could cause the host program to
crash as a result of the inserted jump instruction. The virus would have
to heuristically analyze the host to make certain that this cannot occur. If
the host were naturally polymorphic, this analysis would be just as hard
as the problem faced by antiviral programs. Finally, race conditions could
cause faulty behavior within the host. If the jump instruction were written
over an atomic action that operates on a semaphore and if the viral op-
eration exacerbates the race-condition, then the infected host could crash
or produce erroneous results.8

Another general heuristic for detecting polymorphic viruses is to look
for changes in memory where the code for the currently running executable
resides [218]. Symantec developed a tool that interprets the program one
instruction at a time and that takes note of every byte in the program’s
code space that changes. This method is a solid countermeasure, but has
certain weaknesses. For example, it is possible to make the virus create
multiple encryption layers with decryption headers in the host. These
small headers can decipher the rest of the binary executable and therefore
almost every byte of the program in memory can be changed. Another
issue to deal with is programs that spawn child programs.9

An unavoidable aspect of making a virus difficult to detect is that by
doing so it becomes harder for the virus to detect itself. This makes it
difficult for the virus writer to prevent multiple infections. The more a

8There are a myriad of other problems that could arise as well. For example, the
inserted jump could alter a checksum, cause a digital signature verification to fail, and
so on.

9For example, processes often fork and exec in UNIX thereby creating more heap
zones that need to be analyzed.

182 8. Coping with Malicious Software

virus writer strives to make the virus undetectable, the more difficult it
becomes for the virus to detect itself. This leads to the aforementioned
trade-off wherein the virus writer has to decide whether or not to include
a virus detection algorithm within the virus. Assuming that multiple
infections are not tolerable, the true threat model that a virus writer faces
is that of preventing the virus from being discovered in the first place.

8.3 Heuristic Virus Detection

Viruses perform actions that are not typical of normal programs. As a
result there are several heuristics that can be used to detect them whenever
they are present. For example, a virus replicates by definition. Word
processors, web browers, and e-mail programs do not replicate. So, any
program that contains code that adds code to another program could in
fact be infected with a virus. However, there are certain obvious exceptions
to this rule. For example, software companies often release fixes to their
software in the form of patches. These patches are programs that add
or overwrite code to a program on the machine. Software patches allow
portions of large programs to be repaired without reinstalling the entire
program.

In this section several virus detection heuristics are described. These
include the detection of code abnormalities such as unusual program entry
points and unusual program behavior such as self-replicating code. The
section concludes with ways of detecting cryptographic functions in binary
progams. These latter heuristics are designed to help detect cryptoviruses
and cryptotrojans.

8.3.1 Detecting Code Abnormalities

Scanners are excellent protection mechanisms for viruses that have already
been discovered. However, virus writers often subject viruses to antiviral
scanners before releasing them, thus guaranteeing that they do not contain
any of the known search strings. More often than not such viruses are only
discovered as a result of the activation of their payloads. It is therefore
desirable to be able to detect new viruses before they have a chance to sab-
otage computer systems. This motivates the need for proactive antiviral
mechanisms that heuristically detect computer viruses.

One approach to proactively detecting viruses relies on the fact that
many viruses append themselves to the end of executables and change the

8.3. Heuristic Virus Detection 183

entry point to point to themselves. In bulky programs this initial jump
may be abnormally large and thereby indicate the presence of a virus.
Some viruses change the entry points to very unusual locations and this
forms another heuristic for viral detection.

Weber, Schmid, Geyer, and Shatz at Cigital Labs devised a handful of
clever methods for detecting malware [314]. Their methods were imple-
mented in a toolkit called the Portable Executable Analysis Toolkit, or
PEAT for short. PEAT is designed to detect malware that has been added
to programs after they have been compiled, and is based on the premise
that hand-crafted malware introduces statistical discrepancies when it ap-
pears within an otherwise homogenous binary executable.

When a compiler creates a program it often creates jump tables for
functions and has internal jumps and subroutine calls throughout. How-
ever, when malware is appended there will typically be only one jump into
the added malware and one jump out to send control back to the host.
In this case there may be a noticeable lack of flow control instructions
between the malware and its host. PEAT looks for flow control anomalies
such as this to help identify malware. Also, most programs are written
in high-level languages, whereas malware is typically written in assembly
language and as a result tends to be more compact and efficient. When
malware is attached to a homogenous executable there is often a statistical
difference in the instruction frequencies between the two regions. PEAT
searches for these variations and reports them to the user. The PEAT
toolkit has a false positive rate that is too high for most end-users but is
ideal for reducing the time needed for skilled analysts to identify malicious
code.10

8.3.2 Detecting Abnormal Program Behavior

By definition viruses copy possibly altered versions of themselves into host
programs. Many antiviral programs exploit this intrinsic property of com-
puter viruses to identify new strains. By looking specifically for executable
code that modifies other executable code there is a chance that new strains
will be identified before they have a chance to execute their payloads. At

10A number of other companies provide antiviral software that perform viral scan-
ning, heuristic detection, and disinfection. Such products include Symantec Antivirus
and McAfee VirusScan. These products typically have lower false positive rates than
PEAT against known viruses but higher false negative rates against new viruses.

184 8. Coping with Malicious Software

the heart of every operating system is an operating system services layer
that provides exactly this functionality.

Modern operating systems provide a set of service routines to applica-
tions that enable the applications to make full use of the computer and
its peripherals. For example, there are well-defined operating system rou-
tines to read keystrokes from the keyboard, read and write data to disk
drives, and so forth. By providing developers with a standard interface to
common peripherals, the specifics of particular peripheral devices may be
ignored without hindering their usability. This standard interface there-
fore provides a level of abstraction for software developers and eases the
overall software development process. Device drivers help bridge the gap
between operating system calls and the underlying peripheral machinery.
The operating system expects to be supplied with a device driver whenever
a new device is attached to the system. This provides operating system
developers with their own level of abstraction. The amount of code needed
to interface directly with device drivers is often substantial and so the op-
erating system service routines help to minimize the amount of code used
in individual applications.

Application programs typically access operating system routines us-
ing software interrupts. To invoke an operating system routine such as
reading in a keystroke from the keyboard, the program typically places
various parameters in CPU registers and then executes a software inter-
rupt instruction (e.g., INT 21h). The CPU then temporarily suspends
the operation of the program and looks up the address of the operating
system routine for that interrupt in the interrupt vector table (see Fig-
ure 8.2). Control is then sent to the address and the operation is carried
out. When the operating system routine is finished it returns control back
to the calling program by executing an interrupt return instruction (e.g.,
IRET). The values that are returned are typically left for the calling pro-
gram in CPU registers. For instance, the values may indicate whether or
not a key was pressed and which key was pressed, if any.

Many viruses propagate by first opening the target executable file with
write permissions followed by a call to write to the file. It would there-
fore make sense to scan executables for a software interrupt that opens
executables for writing followed by a software interrupt that attempts to
write to the file. However, in the case of polymorphic viruses this will not
always work since the interrupt instructions could be encrypted.

A heuristic solution to this problem is to monitor at run-time all at-
tempts to open files with write permissions and all attempts to write data

8.3. Heuristic Virus Detection 185

Figure 8.2 Operating system software interrupt handling

to the disk. An effective way to carry out this form of monitoring is to
modify the operating system service routines to be more suspicious of
the applications that call them. Interrupt patching is a standard systems
programming technique that can be utilized to add such functionality to
otherwise trusting operating system service routines.

To patch an interrupt, an interrupt handler is loaded into memory in a
persistent and non-relocatable block. The entry in the interrupt table cor-
responding to the operating system routine being patched is overwritten
with the starting address of the new interrupt handler. When the han-
dler finishes executing it sends control to the address that was originally
contained in the interrupt table. Many operating systems have service
routines for manipulating the interrupt vector table. Common functions
include returning the interrupt handler address for a particular interrupt
and setting the interrupt handler address for a particular interrupt.

On occasion a bug is found in a native operating system routine and the

186 8. Coping with Malicious Software

routine needs to be replaced. This presents a problem when the routine is
located in ROM since it cannot be modified without replacing the chip on
the motherboard.11 One solution is to distribute a software update that
patches the buggy interrupt. Such a patch can replace the original handler
entirely by executing an interrupt return instruction when it completes
instead of sending control to the buggy handler.

The ability to patch operating system routines provides a good ap-
proach to heuristically detecting attempts to modify executable code. An
interrupt activity monitor works by loading antiviral interrupt handlers
soon after the computer is booted. These handlers are collectively man-
aged and typically span several different operating system routines (see
Figure 8.3). When they gain control they analyze the circumstances sur-
rounding the call and often maintain state information across calls. They
take note of such things as opening executable files for writing followed
by attempts to write to the file. In general, monitors look for attempts
to write to any sector containing executable code such as device drivers,
boot sectors, and so on [185, 289]. They also typically look for attempts
to reformat floppy disks and other potentially malicious acts.

When a suspicious sequence of events occurs an activity monitor will
normally display a message to the user that implicates the calling program.
The monitor may also request permission from the user to pass control to
the operating system service routine. If the user agrees to let the operation
continue, control is then sent to the original address that was listed in the
interrupt table (see Figure 8.4). This way, users have a chance to stop a
virus before it writes itself to another program.

One of the dangers in using activity monitors is that if the alerts occur
too frequently, the user may then become desensitized to them. Alerts may
arise when a software patch is applied, when a new program is compiled,
when a program utilizes a copy protection scheme that causes the program
to write to itself (e.g., WordPerfect [185]), and so on. This form of “cry
wolf” makes it more likely that users will allow a virus to spread in spite
of warnings from an activity monitor. Unlike scanners, activity monitors
are designed to identify both existing and future viruses, and as a result
activity monitors are prone to yield false negative results. False negatives
are guaranteed due to the undecidability of viral detection.

How do viruses deal with this heuristic countermeasure? There are

11The contents of EEPROM chips can actually be changed by users, but this of-
ten requires explicit user intervention. It is a very security-intensive operation since
malware can be burned into the chip.

8.3. Heuristic Virus Detection 187

Figure 8.3 Heuristic interrupt monitor

a variety of ways that viruses bypass activity monitors. A boot sector
virus can gain access to the interrupt table before activity monitors and
as a result learn the starting addresses of the operating system routines
that it needs to call. Once learned, the virus can call them directly when
needed or temporarily modify the interrupt table to contain the original
addresses. However, it is not uncommon for activity monitors to patch
operating system routines that manipulate the interrupt table. In this
case the boot sector virus could manipulate the interrupt table directly.

Another viral defense against activity monitors that boot sector viruses
can take is to create a viral patch that encompasses all of the interrupts
that the virus will need to invoke (see Figure 8.5). In this situation the
virus does not need to utilize the interrupt table at all. It therefore makes
all the difference in the world which program gains access to the interrupt
table first: the virus or the activity monitor. As a result the interrupt table
has traditionally formed a battleground in older PC operating systems.

188 8. Coping with Malicious Software

Figure 8.4 Virus detected by activity monitor

A challenge for viruses is to be able to call operating system routines
on a machine that is already running an activity monitor. Such a situa-
tion arises when an infected program is run for the first time on a machine
that is judiciously guarded by an activity monitor. The reason that this
is a non-trivial undertaking is that when the operating system routine
is patched with an activity monitor, the starting address of the operat-
ing system routine is overwritten in the interrupt table with the starting
address of the activity monitor. The starting address for the operating
system routine is typically stored somewhere within the activity monitor
to allow control to be transferred to the operating system routine. Tunnel-
ing is a method in which a virus tries to recover the starting address of the
original operating system routine by heuristically analyzing the activity
monitor code [239, 283]. If all of the needed addresses are successfully re-
covered, the virus can call the original operating system routines directly
and circumvent the activity monitor completely.

8.3. Heuristic Virus Detection 189

Figure 8.5 Virus bypassing an activity monitor

A cumbersome and oftentimes risky way to avoid this type of activity
monitor is to implement all of the needed operating system functionality
directly within the virus [185]. This way there is no need to utilize the op-
erating system services. However, this is very difficult to do while keeping
the size of the virus at a minimum.

Viruses that patch operating system interrupts are invoked frequently
since they gain control whenever an application makes a service request.
The fact that they gain control frequently makes it easy for them to infect
programs since they can infect the currently running program as opposed
to performing a directory search. Many of the early viruses replicate by
infecting interrupt handlers [289]. Some cleverly written memory-resident
viruses only write themselves to other executables during normal write
operations. On disk drives that have lights, this implies that the light
goes on only when the light would normally go on and as a result makes
such viruses difficult to detect.

190 8. Coping with Malicious Software

Viruses that patch interrupts have the added benefit of being able to
utilize stealth methods [283]. A stealth virus patches one or more operating
system read calls and when an attempt is made to read a sector containing
the virus (e.g., the boot sector), the virus returns the uninfected version of
the image. The Pakistani Brain virus camouflaged its presence by patching
the BIOS read interrupt on IBM PC machines [289]. Consequently, when
an integrity check is computed on a machine that is infected with a stealth
virus, the integrity check will pass and thereby fail to detect the presence
of the virus. This threat implies that it is important to boot from a clean
operating system in order to check for viruses.

In carefully designed operating systems it is quite difficult for viruses
to gain access to the interrupt table. Many of the early viruses had free
reign over the interrupt table since the early personal computers were
not designed with the threat of computer viruses in mind. One of the
primary reasons why these early viruses were so successful is that older
PC operating systems were based on a very weak trust model. This model
assumed that each machine was used by a single trustworthy user [289].
The model did not take into account large exchanges of software and as a
result these early viruses flourished.

The danger of viral replication is minimized in operating systems that
run in protected kernel mode, such as UNIX. Security kernels were origi-
nally designed to provide provable security. They evolved from the notion
of a reference monitor12 that was described in the Anderson Report [6].
A reference monitor is an abstraction of the access checking function of
object monitors [121]. The main idea behind a security kernel is to have
a small nucleus of operating system software that is tasked with adminis-
tering the security policy of the entire system. Provided that the kernel
is small, the verification effort is much less than what would be required
to verify a complete operating system [85].

A security kernel operates in a separate address space that is not ac-
cessible to user programs. Privileged operations such as starting I/O and
halting the CPU are available exclusively to the kernel. User programs
request services from the kernel via system calls. System calls are used to
cause the kernel to read from the keyboard, read/write to disk drives, and
so on. System calls are usually implemented as hardware traps that change
execution mode of the CPU and the current address space mapping. The
kernel validates the parameters supplied by user programs before they are
used in order to guarantee the correctness of the system. All parame-

12The notion of a reference monitor was suggested by Roger Schell.

8.3. Heuristic Virus Detection 191

ters that are passed are copied into the kernel address space [169]. Open
research on security kernels began in the early 1970s and a number of
prototypes were implemented soon thereafter [256, 290, 312].

In the UNIX operating system, programs inherit the access privileges
of the user that is currently logged in. As long as the user avoids logging
in as root whenever possible, it is very difficult for a virus to gain total
control of the machine. Usually when a virus succeeds at becoming root
it succeeds due to the exploitation of a bug that exists in the underlying
operating system.

8.3.3 Detecting Cryptographic Code

Cryptographic malware is a subset of all malicious software. Examples of
malicious software that do not employ cryptography include the cookie-
monster virus. Its name derives from the cookie monster on the television
show Sesame Street. It would flash up the message “I want a cookie” on
the monitor. The word “cookie” had to be fed to the virus to keep it quiet
[185]. A cookie monster Trojan that ran on PDP machines was also re-
ported [129]. The relationship between cryptography and malware may be
depicted by way of a Venn diagram (see Figure 8.6). Polymorphic viruses
that employ trivially breakable symmetric encryption still fall within the
intersection, yet due to their simplistic nature they should probably be
plotted more towards the malware set as opposed to the cryptographic
code set.

It follows that one way to heuristically detect cryptoviruses is to heuris-
tically detect the presence of cryptographic code. The absence of cryp-
tographic code implies that absence of cryptoviruses, cryptotrojans, and
so on. In considering this problem, a number of heuristics immediately
come to mind. For example, many cryptographic libraries test primality
by first performing trial division using small primes. It is not uncommon
for a primality-testing program to store an array constant consisting of all
prime numbers that fit within 16 bits. These are ordered from smallest
to largest (e.g., 2, 3, 5, 7, 11, 13, 17, ...). It is possible to detect such im-
plementations using a form of string matching. Basically, this sequence
of primes is searched for taking into account little endian and big-endian
machine architectures. However, the majority of cryptovirus attacks that
have been presented do not involve primality testing (the exception is the
RSA SETUP attack). So this cryptographic code detection heuristic is
likely to be of little use in those cases.

192 8. Coping with Malicious Software

Figure 8.6 Malware and cryptographic code

In a similar vein it is straightforward to detect many symmetric ciphers
as well. These algorithms have fixed constants in the form of substitution
boxes and permutation boxes. When in plaintext form, they are relatively
easy to detect using string-matching techniques. The ability to detect
decryption algorithms is crucial in detecting advanced polymorphs. The
heuristic detection of Feistel transformations can also indicate the presence
of cryptographic hash functions. This helps to infer semantics about the
program in question since it reveals some of the underlying cryptographic
functions that are used.

A general heuristic13 to detect public key cryptography implementa-
tions is to look for the presence of the Karatsuba multiplication algorithm
[150]. The Karatsuba algorithm is an efficient algorithm for multiplying
two large numbers together. It follows the divide-and-conquer paradigm
and has a complexity of O(nlog23) where n is the size in bits of the numbers
being multiplied.14 The classic multiplication algorithm that is taught in
grade school has a running time of O(n2).

Karatsuba is used in many cryptographic libraries since it speeds up

13This heuristic was developed by Adam at Cigital Labs.
14This may be proven by setting up the recurrence relation and solving it.

8.3. Heuristic Virus Detection 193

RSA, ElGamal, DSA, and a wealth of other algorithms. The algorithm
is given below. For simplicity it is assumed that |x| = |y| = 2α for some
integer α > 0. The notation |x| denotes the bit length of x.

Karatsuba(x,y):
1. if |x| ≤ 16 then return (x ∗ y)
2. m = |x|/2
3. compute a and b such that x = a2m + b
4. compute c and d such that y = c2m + d
5. t = Karatsuba(a, c)
6. u = Karatsuba(a+ b, c+ d)
7. v = Karatsuba(b, d)
8. output (tv22m + (u− t− v)2m + v) and halt

The reason that Karatsuba is faster than the classical approach is that it
divides a problem into three problems of half the size.

The recursive structure of Karatsuba lends itself to a simple detection
heuristic. The heuristic requires that the call graph of the program in
question be constructed from the binary code. There is ongoing research in
the area of reconstructing call graphs from binary programs [62, 63, 64, 65].
A call graph is a directed graph where each vertex is a function and each
directed edge is a pointer to a function that the vertex calls. There are a
number of algorithms and packages available that can be used to construct
the call graph for a given program. If such a graph contains a cycle, then
it contains a recursive function call. In a straightforward implementation,
Karatsuba will have the calling structure depicted in Figure 8.7.

Since Karatsuba calls itself exactly three times, one would expect it to
contain a single function that sends control to the Karatsuba entry point
exactly three times. An algorithm like Mergesort that divides a problem
into two problems of half the size would contain a function that called
Mergesort exactly twice, and so on. This implies that Karatsuba can be
singled out to a degree. Detecting whether or not a directed graph contains
a cycle is an elementary problem. It can be accomplished by performing a
breadth-first search of the graph, while maintaining a list of vertices that
have been visited. When a back-edge is found that leads to a vertex that
has already been visited, a cycle has been found. By storing the parent of
each vertex in a parent array, the cycle can be traversed backwards and
written down.

It is worth noting that a generalization of Karatsuba exists. Also,
large integer multiplication can be performed using Strassen multiplica-

194 8. Coping with Malicious Software

Figure 8.7 Recursive structure of karatsuba

tion. This method is based on the Fast Fourier Transform and is a good
candidate for parallel implementation. Thus, other recursive structures
can be heuristically searched for as well.

Another potential approach to detecting cryptoviruses and cryptotro-
jans is to search for the public keys they contain. Shamir and Someren
investigated approaches for algorithmically searching for RSA public and
private keys in bulk data [268]. This was within the context of lunch time
attacks where an attacker gets brief access to a machine and wants to
search for cryptographic keys quickly. This notion is useful for detecting
malware that uses such keys as well. In this section heuristics are given
for detecting various types of public keys. Consider discrete log trapdoor.
A discrete logarithm based key pair typically comes in 3 forms:

1. ((y, g, p), x) where y = gx mod p, ordp(g) = p − 1, p − 1 has large
prime divisor

8.3. Heuristic Virus Detection 195

2. ((y, g, p), x) where y = gx mod p, ordp(g) = (p− 1)/2 = q where q is
prime

3. ((y, g, p, q), x) where y = gx mod p, ordp(g) = q, where q is prime

In all three pairs, the first tuple is the public key and x is the private
key. In form (2) p is a safe prime. Here ordp(g) denotes the order of g
modulo p. In form (1), g generates ZZ∗

p. In forms (2) and (3), g has order
q and generates a prime order subgroup of ZZ∗

p.
Multiprecision integers are typically stored in one’s complement format

in cryptographic libraries. Typically, p is 768 or 1024 bits in length. The
value y is almost always the same length as p. The value g is sometimes
chosen randomly, but a common heuristic in choosing a generator g is to
try g = 2, 3, 4, 5, 6, ... until one is found. It is believed that the factorization
of p − 1 must be known to test if a value is a generator. This heuristic
is likely to work when g is chosen uniformly at random. The idea is to
heuristically identify these parameters in embedded code based on the fact
that they are typically high-entropy strings of specific lengths. Certain
assertions exist based on the mathematical relations. These assertions are
listed below for each form:

1. The value p is prime: This is a somewhat weak assertion, but it is
worth noting that this form is old-fashioned. ElGamal encryptions
that use such keys are not semantically secure against plaintext at-
tacks.

2. The value p is prime, (p− 1)/2 is prime, g(p−1)/2 = 1 mod p.

3. The value p is prime, q is prime, q divides p−1 evenly, gq = 1 mod p,
q is typically 160 bits in this setting (e.g., DSA).

Checking for such assertions has the potential of minimizing false pos-
itives. For example, if form (3) is satisfied, there is a good chance that a
public key has been found.

It is worth articulating the failure probability for form (3) above, since
this is the one with the lowest false positive rate. A random value in ZZ∗

p

will have order q with probability about q/p. This is found by dividing
the number of elements in G by the number of elements in ZZ∗

p. Here G is
the prime order subgroup of ZZ∗

p generated by g. Typically, q is 160 bits
and p is say, 768 bits. So, this probability is about 2160/2768 = 2−608. Note
that the public key y will also have order q modulo p. Hence, the heuristic

196 8. Coping with Malicious Software

need only find y or g. This probability is so astronomically small that if
this assertion holds, a public key will most certainly have been found in
the software.

In DSA, the prime p varies from 512 to 1024 bits in multiples of 64
bits. One would expect 768 or 1024 to be used the most. The following
heuristic can be used to search for DSA public keys of the form (y, g, q, p)
in binaries. It runs in time polynomial in the length of the binary code that
is analyzed. However, it is somewhat computationally intensive and so is
most practically applied when a binary has been found that is believed to
contain a Trojan, virus, worm, and so on, and the malware is not identified
by other means, for example, commercial antiviral software.

This heuristic searches for (y, q, p) from (y, g, p, q) where yq = 1 mod p.
The reason that we do not search for g is that g can be very small (10
bits or less, and so on). But, for a randomly chosen private key x, y will
almost certainly be as long as p in bits.

The heuristic assumes that big numbers are stored on byte boundaries.
It can be coded to handle big endian and little endian architectures. For
simplicity assume that the bytes are ordered from most significant to least
significant. The heuristic can handle one’s complement and two’s comple-
ment big integers, since the numbers are the same when they are positive.
All public key parameters are positive.

In this example we will assume that p is 1024 bits and q is 160 bits.
Hence, p is 128 bytes and q is 20 bytes. The following is the heuristic to
find prime order subgroup trapdoors in binaries:

1. Scan the binary for 1024-bit primes p. This is done by checking the
first 128 bytes, then shifting one byte, testing primality, shifting one
byte, testing primality, and so on. The end result is a list Lp of 1024
bit primes. For a random byte stream, the Prime Number Theorem
implies that 1 in 1024 values will be prime naturally. Remove all
values from Lp that have low entropy.

2. Scan the binary for 160-bit primes q. This is the same as in step 1,
except that it is for a different size prime. Let the resulting list be
Lq. Remove all values from Lq that have low entropy.

3. Scan the binary for 1024 bit values y that have high entropy. Let
the resulting list be Ly. This list may be quite large.

4. For each possible 3-tuple (y, q, p) where y ∈ Ly, q ∈ Lq, and p ∈ Lp,

8.4. Change Detection 197

compute yq mod p. If this quantity equals 1 then output (y, q, p) for
this tuple. Note that multiple 3-tuples might be output in this step.

In general, if a single 3-tuple is output, a prime order subgroup public
key has been found in the binary.

8.4 Change Detection

Computer viruses must invariably change their hosts in some way in order
to infect them. As a result one way to detect infections is to look for
changes in executables. It may be tempting to simply consider the size in
bytes of executables in order to detect changes since by adding code to a
program one would think that the resulting program would be larger than
the original. But this is not necessarily the case. If the binary code in
the host executable is redundant then it can be compressed to make the
added viral code less noticeable.

For example, a virus could be written that performs Huffman com-
pression and decompression [134] and that has space reserved internally
for a Huffman tree. When an executable is considered for infection, the
Huffman tree for the executable is computed and the compression ratio is
calculated. If the size of the compressed executable plus the size of the
virus is less than or equal to the size of the original executable, then the
virus decides to infect the executable. The virus then compresses the exe-
cutable and pads it as necessary so that the resulting data when combined
with the virus is the same length in bytes as the original executable. It is
necessary that such a virus gain control before the host program to pre-
vent the infected executable from crashing. When the virus gains control
it performs its normal viral operations, decompresses the host, and then
sends control to the host.

8.4.1 Integrity Self-Checks

File sizes alone are therefore not sufficient for identifying changes to ex-
ecutables. A better approach is to utilize cryptographic integrity checks
[68, 70]. A program can perform cryptographic integrity checks at run-
time to help ascertain whether or not the program has been changed in
any way. A simple approach is to compute a cryptographic hash of the
executable after the program is compiled and include the hash value in-
side a routine that is appended to the program, much like a Trojan horse

198 8. Coping with Malicious Software

program. This program will recompute the hash on the body of the ex-
ecutable at run-time and compare the result with the internally stored
value. The routine sends control to the body of the executable if and
only if the hash values are equal. The design of self-checking software is a
well-studied area [70, 327].

A drawback to cryptographic integrity checks is that they notify the
user of changes only after they occur. This line of defense therefore falls
into the category of being reactive in nature. Also, it is critical that the
initial cryptographic hash values are computed on executables that are
known to be virus-free. To prevent false alarms it is necessary to update
the hash values whenever software updates are applied. In environments
in which programs are frequently added and updated this solution may
prove cumbersome.

There exists a subtler problem with integrity self-checks. Consider a
virus that replicates as follows. Once control is sent to the host the virus
immediately gains control and searches the file system for two programs to
infect. Once found, the virus infects both of them and then disinfects itself
from its host in memory.15 The virus then sends control to its host. If the
host performs an integrity check on itself in memory then it will pass since
it is in the same pristine form that it would be if it were never infected.
It passes since the host is no longer infected. Like other viruses, this virus
will also benefit from an exponential infection rate since it performs two
infections each time it disinfects itself. The virus therefore demonstrates a
fundamental weakness in viral self-checking. The self-disinfection defense
constitutes a mixed blessing, both from the perspective of the virus writer
and from the perspective of antiviral analysts:

1. virus writer: Has the benefit of preventing the virus from being
discovered by hosts that perform integrity self-checks. However, it
assists antiviral analysts in devising a cure for the virus.

2. antiviral analyst: Has the drawback of preventing executables that
perform integrity self-checks from finding the virus. But once found,
it reveals the steps necessary to safely remove the virus.

8.4.2 Program Inoculation

Activity monitors form a solid proactive measure to prevent viruses from
spreading in the first place. However, the numbing alerts that they present

15And from the disk image, if possible.

8.4. Change Detection 199

to the user can negatively impact the success of the measure. Another
proactive measure is to inoculate programs against specific viruses [289].
Inoculation is a procedure that protects a given program from being in-
fected in the first place. It only works against viruses that actively pre-
vent multiple infections in a given host. In this procedure an executable
is modified in such a way that it appears to the virus as if it is already
infected. More often than not this involves appending data to the end
of the application that contains data at a particular offset that leads the
virus to believe that a copy is already in the host. The appended data is
benign and serves only to fool the virus into thinking that the application
is already infected.

The main problem with this solution is that there may be far too
many viruses to protect against. Also, if this method is applied to an
executable that checks its own integrity then it may fail to run in response
to the modification. The addition of the benign data to the code will with
overwhelming probability cause cryptographic integrity checks to fail.

8.4.3 Kernel Based Signature Verification

To be most effective the integrity checking should be conducted externally
on the program rather than internally. External integrity checking pro-
grams exist that take snapshots of vulnerable programs and sectors when
they are first installed. Some time later these programs take new snap-
shots and compare them with the old ones. If a new snapshot does not
match the corresponding old snapshot then the user is notified. Such snap-
shots duplicate the executable code exactly and therefore identify changes
perfectly. This form of external checking is most effective when it is ap-
plied from within a secure kernel. For reasons of efficiency a cryptographic
hash can be used in lieu of raw images. Before running an application,
the kernel computes the cryptographic hash of the file and compares the
result with the internally stored value in the kernel space. The program
is executed if and only if they match.

Although this method is a clear improvement, it does not prevent
programs from being altered after leaving the manufacturer and before
installation on the user’s machine. A powerful end-to-end solution to this
problem combines the notion of a secure kernel with digital signatures
[85, 87]. In this method the kernel stores the root and CA digital certifi-
cates of the PKI used to certify the application that is to be run. The
manufacturer digitally signs the application and releases it along with the

200 8. Coping with Malicious Software

digital signature and certificate that are needed to verify the signature.
When the user runs the application, the certificate and signature are given
to the kernel. The kernel verifies the authenticity of the certificate using
the internally stored CA certificate and also checks a Certificate Revo-
cation List if necessary. Once the certificate is deemed valid it is used
to verify the signature on the application. The application is run if and
only if the certificate and signature are valid. When a signature is valid
the user can be overwhelmingly certain that the program has not been
tampered with.

This form of integrity checking will never produce false positive results.
If the digital signature is invalid, then the application has been changed
without a doubt. However, there is a negligible chance that a false negative
will result. A malicious user or program can change an application and still
have the signature verify correctly with an exponentially small probability.

In retrospect it is safe to say that the early viruses spread rampantly
only because of the initial short-sightedness of PC manufacturers. With
the Internet revolution and the proliferation of secure kernels in desktop
PCs, virus writers today face hurdles that they really should have been
facing two decades ago. It is a classic case of existing yet neglected tech-
nology. Public key cryptography promises to close this gap even further
and provide more secure and more reliable computing environments in the
years to come.

Chapter 9

The Nature of Trojan Horses

Up until this point the book has focused largely on self-replicating pro-
grams. The exception to this is the deniable password-snatching attack
described in Section 4.2 that is carried out by a Trojan horse program.
The remainder of the book focuses exclusively on Trojan horse programs.

The term Trojan horse is a fitting one for describing malicious software
and is based on a Greek myth. According to legend, the Greeks were un-
able to penetrate the city of Troy using siege machines and other weapons
of war. So, they devised a plan. They built a huge wooden horse with a
hollow belly and filled it with Greek warriors that were poised for attack.
The Greeks pushed the horse to the outskirts of Troy and then sailed away.
The Trojans assumed that it was a peace offering and brought the horse
inside the city to celebrate the presumed departure of the Achaeans. The
citizens rejoiced and drank heavily throughout the evening and much of
the night. The Greek warriors took the city by surprise under cover of
dark.

Computer Trojan horses are much the same. They are invisible to the
naked eye. They appear within otherwise attractive or harmless programs.
They require some form of user or operating system intervention to acti-
vate, and they do something that the user does not expect. The purpose
of this chapter is to convey a basic principle that underlies the design of
Trojan horse programs, the principle being that Trojans are designed to
exploit resources and access permissions that are inherent in their hosts.
By virtue of being one with the host program the Trojan inherits these
resources and access permissions and exploits this to achieve its goal. In
the case of password snatchers the goal is to securely and subliminally leak
login/password pairs to the Trojan author. In the case of kleptographic

201

202 9. The Nature of Trojan Horses

attacks the goal is to securely and subliminally leak private keys to the
attacker, and so on.

To further illustrate this principle, key questions that attackers ask
themselves are addressed. Such questions are along the lines of, “If I
could place a Trojan in program X, how could I program it to exploit the
system?” It was this sort of thinking that led to the kleptographic attacks
in the chapters that follow.

9.1 Text Editor Trojan Horse

Consider a multiuser operating system that has an installed text editor
that is free for use. Users can run the text editor, create and modify text,
and save their files to disk. However, suppose further that this program
can be executed but not modified or deleted by the users, as in typical
multiuser operating systems such as UNIX.

This program has certain unique privileges. It has read access to every
text file that users create or open for editing. As such it is an ideal target
for a Trojan horse program that is geared towards stealing the private data
of others. When a Trojan is installed in this program it can store data
from one user and make the data available to the Trojan horse author. It
could have devastating effects if, for example, top secret data were leaked
to someone that had only secret clearance or lower. This type of attack
was described in the visionary Anderson report of 1972 [6].

9.2 Salami Slicing Attacks

In November of 1987 an article was published in the Globe and Mail that
described a talk given by Sergeant Ted Green, an officer of the Ontario
Provincial Police.1 The talk described several logic bomb attacks and other
attacks against systems. One of them was a Trojan horse attack that was
clearly intended to achieve financial gain. The attack was carried out by
an employee of a bank who managed to accumulate $70,000 by funneling a
few cents out of every account into his own [179, 205]. This type of attack
is called a salami slicing attack [219] since small portions of money are
purloined from numerous accounts. This is necessary to prevent employees
from noticing that their paychecks are a bit less than they should be. Many

1We make no guarantees about the accuracy of this article.

9.3. Thompson’s Password Snatcher 203

assets or resources can be salami sliced. For instance, CPU use can also be
salami sliced. This allows malware to steal CPU time in small increments
to solve computational problems in an inconspicuous fashion.

The resource that the bank Trojan has access to is money and the
Trojan steals the money. The resource that the text editor has access to
is the documents of many users and the Trojan steals the documents. The
cryptotrojans described in Chapters 11 and 12 are inserted into cryptosys-
tems that have access to private keys which are also stolen. All of these
Trojans exploit the access privileges of their hosts and steal the assets that
they have access to. So, the methodology for designing a Trojan is simple:
decide what sort of asset is desired, determine which programs have access
to it, and then carefully design a Trojan to secure the asset. However, ac-
tually getting the Trojan into position is a different story. This can easily
be done by an insider, whereas outsiders often have to exploit bugs in the
system to gain entry.

9.3 Thompson’s Password Snatcher

Stealing login/password pairs is the bread and butter of every hacker’s
existence. Once a system is infiltrated, password-snatching programs are
often surreptitiously installed. Such programs are often referred to as
rootkits [132]. They are installed to ensure that access to the machine
continues to be possible, even if a few accounts are terminated due to sus-
picious activity. Such programs have been written as DOS terminate and
stay resident (TSR) programs that record all keystrokes entered via the
keyboard. These programs typically patch the operating system hardware
interrupt for key presses and log the key presses to a hidden file. Techni-
cally speaking, such a stand-alone program is not a Trojan horse per se
since it is not directly attached to a host.

The addition of a stand-alone TSR program to a file system may be
a noticeable act of espionage. For example, if the TSR program is stored
in a directory of programs that are always run at boot time then its
presence may be revealed. A more desirable approach from the attacker’s
perspective is to integrate the password-snatching code into an existing
operating system program in an unnoticeable fashion.

A suitable host for a password-snatching Trojan is any program that
has access to the passwords of users. A perfect example of this is the UNIX
passwd program. The passwd program is the UNIX program that is re-
sponsible for verifying the identity of UNIX users by obtaining and verify-

204 9. The Nature of Trojan Horses

ing login/password pairs. There are two obvious approaches to mounting
a Trojan horse attack against such a program. The first is to manually
attach one by copying the Trojan to the end of the passwd program and
altering the entry point and exit points appropriately. Another option,
assuming that root access is possible, is to modify the source code for the
password program, recompile it, and install the compromised version. It
may be argued that this form of attack is the epitome of a Trojan horse
attack.

Even this approach suffers from an obvious drawback. What if the
source code for the passwd program is updated and the system adminis-
trator compiles a new version of it? If the system administrator installed
the new version, the old one would be deleted and the attack would be
foiled due to the system update. The use of a UNIX compiler therefore
threatens the perpetuation of the Trojan horse attack. It would make
sense, then, to install a Trojan horse program into the compiler so that
whenever it is given the source to the passwd program it secretly inserts
the password-snatching code. This will clearly increase the survivability
of the attack.

But what if the compiler is recompiled? It is common practice to both
add functionality and fix non-fatal flaws in a compiler by having it compile
the revised version of itself. If such a compromised compiler is recompiled
the code that secretly inserts the Trojan into the passwd program would
be lost.

Ken Thompson described a somewhat involved Trojan horse attack
that solves this program elegantly [300]. The idea is as follows. A normal
compiler parses a source file, checks its syntax, and produces object code.
This standard compiler behavior is indicated by the ellipsis in Figure 9.1.

The parameter s is a pointer to a string that contains the source code.
The idea is to insert a source level Trojan horse into the source code of
the compiler that checks for two patterns in the string s. The first pattern

Figure 9.1 Normal compiler (ANSI C notation)

9.3. Thompson’s Password Snatcher 205

is source code corresponding to the password verification program (e.g.,
passwd). When this pattern is found the password-snatching source code
is secretly added to the program just before it is compiled. The Trojan is,
of course, not saved to the source file of the password program. The second
pattern is source code corresponding to the compiler. When this pattern
is found the entire compiler Trojan is secretly included in the compiler
source code just before it is compiled. This code, of course, contains all of
the source code for the password-snatching Trojan. This is indicated by
the two “if” statements in Figure 9.2.

This Trojan is somewhat virus-like since it copies itself in its entirety
into the source file for the compiler whenever the compiler is compiled.
It could be added to the source for the compiler, the compiler could be
recompiled, and the old compiler could be replaced with the new. This
would remove all traces of the source code for the Trojan horse attack.
The Trojan would remain in binary form, seamlessly integrated with the
rest of the compiled instructions.

The moral of the story is that one cannot ascertain the honesty of
the code that is being created even if the source code is analyzed before
compilation. To be certain that no slight of hand is being performed
it is necessary to analyze the binary code of the compiler. Even this
is not enough, for the microprocessor itself can execute a covert series
of instructions at any time, based on a previously executed sequence of
opcodes or otherwise. Thompson’s Trojan horse attack exploits the unique
capabilities of its host:

1. It exploits the fact that compilers are used to make programs, in-
cluding the passwd program and the compiler itself.

2. It exploits the fact that the passwd program has unadulterated ac-
cess to login/password pairs. By transitivity the compiler has access
to login/password pairs as well (in some sense).

It is only natural to ask what other Trojan horses can be concocted
based on host programs with unique capabilities and responsibilities. It
was this very question that drove the research behind kleptography: A
key generation program has access to private keys, a public key decryption
program has access to private decryption keys, a digital signature program
has access to private signing keys. What types of Trojan horses can be
attached to these programs that exploit the fact that they have access to
private keys? This very question is addressed in the chapters that follow.

206 9. The Nature of Trojan Horses

Figure 9.2 Compiler with Trojan (ANSI C notation)

9.4 The Subtle Nature of Trojan Horses

It is difficult at best to come up with a formal definition of a Trojan
horse program. Whether or not a given program is a Trojan horse can
depend completely on the perspective of the user that encounters it. Take
the reboot monitoring Trojan described in Chapter 1, for instance. This
Trojan could not be simpler in design. It is installed in a highly concealed
manner. The host of the Trojan is a program that is found on virtually
everyone’s machine2 and that gains control when the system boots. It
increments a counter by 1 each time the machine is rebooted and stores
the counter in variable in RAM and on the disk.

The Trojan is a very simple form of spyware that solves a problem
facing any hacker. For example, suppose that a hacker has a gigabyte of
data that can be used as evidence against the hacker. The data should
obviously remain encrypted almost all the time. When the hacker leaves
his or her machine for a period of time, the hacker wants to make sure that

2Such as an operating system process.

9.4. The Subtle Nature of Trojan Horses 207

a law enforcement agent does not install a monitor on the machine.3 Such
a monitor could be used to log all of the hacker’s personal passwords, and
so on. So, the Trojan is used by the hacker to booby trap the machine.
The hacker simply notes the counter value, turns off the machine, and then
leaves. Upon returning, the hacker turns on the machine (it had better
still be off!) and takes note of the counter value. If the machine had
been turned on in the interim, the hacker would likely know. The hacker’s
program needs to be hidden since if the law enforcement agent finds it, the
counter value could be adjusted to make it look as if the machine hadn’t
been used by anyone.

Is this rogue program a Trojan? Certainly not from the perspective of
the hacker since the hacker knows what it is about. It is clearly a Trojan
from the perspective of the law enforcement agent since the agent doesn’t
know that it is there. Given the fact that the program is designed to be
hard to find and does something that someone doesn’t expect, it seems
natural that it should be classified as a Trojan. This makes it rather
interesting, since it is a purely beneficial Trojan from the perspective of
the hacker.

Also, there is a fine line between what constitutes a Trojan horse attack
and what constitutes an honest programming mistake. In the subsections
below two examples of Trojans are given that illustrate this fine line. They
have the property that even when they are analyzed by skilled program-
mers it may not be clear whether or not they are Trojans at all. The
first such example is a Trojan that is nothing more than a bug. However,
this bug is bad enough that when planted properly it allows that Trojan
author to break into the computer system. The second Trojan horse is
a purely mathematic one. The Trojan affects the statistical distribution
of the output of a random number generator in a way that makes the
generator extremely sensitive to the input entropy. So, when the Trojan
is given correct inputs it does nothing to harm the output of the random
number generator. However, when the Trojan is given poor inputs, the
Trojan adversely affects the outputs of the random number generator.

3The passwords that the hacker types in can probably be obtained via a hidden
camera, but there may be crucial encrypted evidence that is never typed in or displayed
on the screen.

208 9. The Nature of Trojan Horses

9.4.1 Bugs May In Fact Be Trojans

As early as 1978 Farber and Popek described an address wraparound vul-
nerability in the PDP-10 TENEX system [230]. Under the right condi-
tions, a user could force the program counter to overflow while executing
a supervisor call. This resulted in a privileged-mode bit in the word cor-
responding to the state of the process to be activated, thereby causing
control to return to the user’s program in supervisor mode.

If a user forced this condition by accident, then it would constitute
a bug. However, if the user forced this condition on purpose so that it
could later be exploited, then it would constitute a Trojan horse. This
illustrates the fine line between bugs and Trojan horse programs.

9.4.2 RNG Biasing Trojan Horse

The following is a Trojan horse that attacks random number generators.
The Trojan horse is effectively a digital filter that accepts as input “ran-
dom” bits and outputs “random” bits. Such filters are often used to re-
move any existing biases in the distribution over the input bits, as in the
case of John von Neumann’s method for unbiasing a biased coin. However,
this filter is somewhat the opposite in purpose. Rather than eliminating
any existing bias, this filter exacerbates any existing bias. However, if
there is no bias to begin with then there will not be any bias in the output
values.

The algorithm is given below. It takes as input three bits b1, b2, b3. It
outputs a single bit B. By supplying it with an endless stream of input
bits it will produce an endless stream of output bits. It is assumed that
each bit bi is produced with a fixed bias for all i.

BiasExacerbator(b1, b2, b3):
1. B = 0
2. if b1b2b3 = 111 or 110 or 101 or 011 then B = 1
3. output B and halt

For example, the stream of bits bi may be produced by a loaded coin
that produces heads with probability 51 percent. Let the probability of
heads be denoted by ph = 1/2 + δ. If δ = 0 then the coin is fair. If δ > 0
then heads is more likely than tails. If δ < 0 then tails is more likely than
heads.

9.4. The Subtle Nature of Trojan Horses 209

Let the probability of tails be denoted by pt. Hence, pt = 1− ph. The
probability that BiasExacerbator outputs B = 1, denoted by pH is given
below.

pH = p3
h + p2

hpt + phptph + ptp
2
h = p3

h + 3p2
hpt (9.1)

pH = (1/2 + δ)3 + 3(1/2 + δ)2(1/2− δ) (9.2)

pH =
1

2
+

3

2
δ − 2δ3 (9.3)

From equation 9.3 it is clear that when δ = 0 the value pH = 1/2.
Hence, if the input bits are not biased then the output bits will not be
biased. As a sanity check note that if δ = 1/2 then the value pH = 1.
This is what one would expect when this function is given bi = 1 for all i.

The interesting issue is to determine under what circumstances this
digital filter messes with the input distribution. Suppose that δ > 0. It will
amplify the input bias towards heads whenever the following inequality
holds.

1

2
+

3

2
δ − 2δ3 >

1

2
+ δ (9.4)

This simplifies to the following inequality,

δ2 <
1

4
(9.5)

To solve the above inequality for δ we may take the square root of both
sides. The value δ2 has two square roots, namely δ and −δ and 1/4 has
the two square roots 1/2 and −1/2. Since it was assumed that δ > 0 it
follows that amplification towards heads will occur whenever 0 < δ < 1/2.
No amplification occurs when δ = 0, 1/2. If δ < 0 it can be shown that
the bias will increase towards tails whenever −1/2 < δ < 0.

210 9. The Nature of Trojan Horses

The interesting aspect of this filter is that it amplifies the bias in the
direction that the bias is already in. For example, if the initial bias is
towards heads, then the output bias is even more towards heads. If the
input bias is towards tails, then the output bias will be even more towards
tails.

This filter may be aptly dubbed a Trojan horse if it is appended to a
random number generator. Mathematically speaking, it is totally benign
when the input bits are unbiased. But, when the input bits are biased
this Trojan makes the bias even worse. A natural question to ask is
how to design finite automata to detect such a Trojan and label it as
malicious. Such a program would have to somehow “understand” that
the mathematics behind the algorithm makes the underlying software “less
stable.”

To summarize, the fact that an address wraparound vulnerability can
constitute a Trojan horse is really a matter of semantics. As illustrated by
the RNG biasing Trojan, whether or not a program constitutes a Trojan
can also be a matter of pure mathematics.

Chapter 10

Subliminal Channels

Subliminal channels form the cornerstone of modern kleptography. They
can be utilized in the payloads of cryptoviruses and cryptotrojans to imple-
ment robust backdoors in cryptographic algorithms. Subliminal channels
were originally investigated to demonstrate a weakness in a nuclear arms
control verification protocol. In this regard subliminal channels demon-
strated a plausibility result: given a carefully selected cryptosystem, a
sneaky Trojan horse program could be developed for that cryptosystem
that leaks which missile silos contain nuclear missiles. The applications
of subliminal channels grew to encompass devastating smart-card insider
threats. The classic abuse of subliminal channels is in the Prisoner’s Prob-
lem that was formulated by Gus Simmons. This problem is described in
this chapter along with numerous known subliminal channels.

On the surface it would seem that whenever a subliminal channel exists
in a cryptosystem, this is a bad thing. However, ironically enough, this
is not the case. It has been shown that this communication channel can
sometimes be used in a non-subversive and publicly advertisable way. The
chapter concludes with a description of how a subliminal channel can be
used to help solve the key escrow problem. In a nutshell it is often possible
to utilize a subliminal channel to securely transmit a private key to the
key escrow authorities in a key escrow system. In this regard, subliminal
channels are entirely beneficial. This was an intriguing development since
it took a subversive technology and turned it into a very useful technology.

211

212 10. Subliminal Channels

10.1 Brief History of Subliminal Channels

Gus Simmons is the father of subliminal channels. His investigations into
the subject began in the 1970s and it is instructional to explain1 the origin
of this fantastic cryptographic phenomenon [280]. In 1978 the Carter ad-
ministration was seriously considering the adoption of a national security
protocol that was designed to allow Russia to verify how many minute-
man missiles the United States had fielded in the 1,000 U.S. silos without
exposing which silos were actually armed. To constitute an acceptable
solution to Russia, the compliance messages would have to be digitally
signed in a way that would not be possible for the United States to forge.
At any given time the United States was permitted to have 100 minute-
man missiles residing in randomly chosen silos. Any more than this would
be a violation of the SALT II treaty, a treaty devised to control the arms
race [281].

The scheme that the Carter administration was endorsing was often
referred to in the press as the missile shell game. This is because the 100
missiles would be shuttled randomly using trucks among the 1,000 silos
on a continual basis. It was envisioned that these trucks would even haul
fake payloads, such as water, to conceal whether or not a given payload
actually contained a live missile. This was necessary since the trucks could
be observed via spy satellites. However, simply hauling fake loads would,
of course, not be enough. The trucks would all have to exhibit the same
acceleration, lest they be distinguished using elementary kinematics.2

The proposed solution, one that would allow Russia to verify the num-
ber of minuteman missiles the United States had placed afield, utilized
both sensors and cryptographic devices. The sensors were to be placed in
the silos. The data acquired by the sensors would indicate the presence
or absence of a missile in a given silo, thus constituting a single bit of
information. This bit had to be protected so that it could not be forged
or falsely attributed. Both countries agreed that the sensor technology
was acceptable. Gravimetric sensors could be used to detect underground
features versus voids, tilt sensors could also be used, and so on. In the
proposed solution each country would provide its own cryptographic algo-
rithm.

1Many interesting details have been omitted from the explanation in this section.
Interested readers are urged to read about it from the source [280].

2Incidentally, this entire concept is remarkably similar to the operation of a digital
mix network.

10.1. Brief History of Subliminal Channels 213

This problem was being solved at about the same time that the Diffie-
Hellman key exchange was devised. Symmetric ciphers were the norm
at that time. The basic idea was to have the cipher use a secret key to
encrypt a message. Both the ciphertext and plaintext would be output by
the device. Signature verification amounted to decrypting the ciphertext
and comparing the result to the plaintext. Implicit in this approach was
that it should not be possible to leak information in each ciphertext. The
ability to do so could potentially compromise the identity of the silo and
give the enemy the opportunity to launch a devastating first strike.

As the story goes, the NSA viewed the SALT II treaty as an oppor-
tunity to learn more about the state of cryptography in Russia. It was
suggested that the Russians come up with their own cipher to place in the
device. Gus Simmons saw the peril in this rationale. He called a meeting
with the NSA, armed with the fact that the recently discovered Rabin
cipher could be used to leak a single bit out of the device to the Russians.
To sign a message in Rabin, the message is transformed into a square
modulo the public key. A square root of the message is then computed
using the two prime factors of the public key (see Appendix C.1.6). Four
square roots exist, and so any of the four square roots can be used as the
signature on the message. This was an incredibly important discovery.
The device had the elbow room to leak information out from under the
noses of the United States.3 Exactly two of these roots can safely be used
to leak a single bit. It is these two roots that have a Jacobi symbol of 1.

This was conveyed to the NSA and the response was largely that of
disinterest. They indicated that they would never approve of such a cipher
and said that a one-bit channel is insignificant. Ten bits would allow
the unambiguous identification of a given silo since 210 = 1024 > 1000.
Ultimately, it was the projected cost of the solution, not this channel, that
caused it to be abandoned.

Gus Simmons was nonetheless determined to demonstrate the impor-
tance of his finding. He had found a major hole in the protocol used to
verify the compliance of the SALT II treaty, a protocol developed by TRW
and approved by the NSA. Yet, as will be shown in this chapter, this was
merely the tip of the iceberg of Simmons’ contributions to the subject.

3Had this channel actually been exploited, the code to do so could aptly be dubbed
a Trojan horse program.

214 10. Subliminal Channels

10.2 The Difference Between a Subliminal

and a Covert Channel

The difference between a covert channel and a subliminal channel is subtle
at best. Typically, the term subliminal channel is used to refer to an
information transmission channel that can be used to send information
out of (or potentially into) a cryptosystem. A covert channel, on the
other hand, is a somewhat older notion that is broader in scope.

A concrete example will go a long way to explain what a covert channel
is. Suppose that Alice and Bob are connected to a computer that is
running a multiuser operating system. In a secure operating system that
can be used for sensitive (e.g., military) applications it should not be
possible for a process that Alice is running to transmit information covertly
to a process that Bob is running. But, suppose that a printer is connected
to this machine. Each process can make an operating system call to print
data. This call will return a result code indicating success or failure.
The result code will also indicate if the printer is busy printing out a
document. Alice’s process can utilize a special communication protocol
to speak with a process that Bob is running. For example, printing out
two short documents with a brief pause in between could correspond to a
binary “1” and printing out one document could be a binary “0.” Bob’s
process calls the operating system routine in a busy waiting fashion to
receive bits from Alice’s process.

The problem of confining a program during its execution so that it
cannot transmit information to any program other than its caller is known
as the Confinement Problem. This problem was introduced by Butler
Lampson [167]. A simple example of this problem is a text editor that
secretly saves some data from one user’s text file and exposes the stolen
data to another user. A program that cannot do this is said to be confined.
If a process can covertly establish such a channel with a process other than
its caller, then this channel constitutes a covert channel. Covert channels
exist in all forms of software and hardware systems, and there have been
efforts to develop multilevel security systems that avoid this problem.

To summarize, a subliminal channel can be categorized as a covert
channel, but the converse is not always the case. Subliminal channels are
particular to cryptosystems.

10.3. The Prisoner’s Problem of Gustavus Simmons 215

10.3 The Prisoner’s Problem of Gustavus

Simmons

The work in analyzing the SALT II treaty compliance led to subsequent
investigations on the negative impact of subliminal channels in digital
signature algorithms. The Prisoner’s Problem4 clearly accentuates the
hazards of digital signature algorithms [274]. In the Prisoner’s Problem,
Alice and Bob are two inmates who wish to coordinate a jailbreak. All of
their communications must pass through a warden named Willy. If Willy
sees any information that appears to be ciphertext and is not a valid digi-
tal signature, he does not forward it to the receiver. The problem that the
prisoner faces is to devise a way to communicate with the other prisoner
via digital signatures despite the fact that Willy will read everything and
verify every digital signature. It is assumed that Willy is actively looking
for misbehavior by the inmates and that he will refuse to forward invalid
digital signatures. This prevents the prisoners from abusing their privi-
leges by sending ciphertexts to each other. The problem is only regarded
as being satisfactorily solved provided that the following two properties
hold:

1. The subliminal channel algorithm can be made public without com-
promising Alice and Bob’s ability to coordinate a jail break.

2. Willy can neither read information from the subliminal channel nor
even detect that it is being used.

Property (1) eliminates simplistic solutions that are not secure. For
example, suppose that before going to prison Alice and Bob agreed to use
the following scheme to communicate. To send a subliminal message, the
sender concocts an ASCII message such that the least significant bit in
each sentence matches a bit in the subliminal message. This solution hides
information from Willy by virtue of the fact Willy is not privy to it.5 Using
this solution is perilous since Willy may record every transmission and
later discover the steganographic channel. The attack is actually a very
simple form of steganography. A comprehensive treatise on steganographic
methods was given by Johnson, Duric, and Jajodia [141].

4Note that this is distinct from the Prisoner’s Dilemma in game theory that is
described in Chapter 7.

5This is commonly referred to as security by obscurity.

216 10. Subliminal Channels

Simmons presented the first acceptable solution to this problem. The
solution assumes that Alice and Bob both know Alice’s signing private
key x before they are sentenced. This solution is as follows.

1. The sender Alice generates an innocuous message to be signed.

2. Alice signs the innocuous message using x with the modified signing
algorithm in such a way that the subliminal message is encoded
within the signature that is output.

3. The signature and innocuous message are given to the warden Willy.

4. Willy verifies the signature, and after finding nothing amiss, for-
wards the information along to Bob.

5. Bob verifies the signature and if it is valid, Bob assumes that the
signature is authentic.

6. Bob then extracts the subliminal message from the signature using
x.

The primary difference between this solution and the aforementioned
steganographic solution is that even if Willy knows the particulars of the
subliminal channel, he still cannot detect the use of the channel nor read
from it since he does not know x.

Definition 2 A subliminal channel is a channel that exists within a cryp-
tographic protocol, authentication system, digital signature algorithm, and
so on, that transmits additional messages to a (special) receiver that is
hidden, such that the messages cannot be read by other receivers (or a
warden).

10.4 Subliminal Channels New and Old

Simmons demonstrated subliminal channels in the ElGamal and Schnorr
digital signature algorithms [275]. The following is the subliminal channel
he found in ElGamal. Let m′ mod p − 1 be the subliminal message that
Alice wants to send to Bob. It is required that m′ and p− 1 be relatively
prime. To sign the innocuous message m, Alice calculates the signature

10.4. Subliminal Channels New and Old 217

value r = gm′
mod p. The signature on m is the pair of values (r, s) where

s is computed as in equation 10.1.

s = m′−1(H(m)− xr) mod p− 1 (10.1)

Bob recovers m′ by computing m′ = s−1(H(m)− xr) mod p− 1. Note
that x is required to recover m′. Clearly a sufficient portion of m′ must
be randomly chosen, otherwise the warden could guess m′ and compute
x. This would not only expose the use of the subliminal channel, but also
its contents and Alice’s private signing key.

10.4.1 The Legendre Channel of Gus Simmons

Simmons proposed a couple of narrowband channels. In this subsection
a narrowband channel of Simmons will be described that is based on
quadratic residuosity. It solves the Prisoner’s Problem and does not re-
quire Alice to divulge her private signing key to Bob. This channel is
suitable for numerous discrete-log based signature algorithms and it was
described by attacking DSA in particular [277, 278].

In this attack, Alice and Bob both agree on 14 distinct large prime
numbers p1, p2, ..., p14 prior to being arrested. Each of these primes is
greater than q. This channel has a bandwidth of 14 bits6 per DSA signa-
ture. Let m = m1m2 · · ·m14 be the 14 bits that Alice wants to send to
Bob subliminally. To send the message m, Alice repeatedly chooses k in
the Digital Signature Algorithm (see Appendix C.2.7) and then calculates
the signature value r until the following is satisfied:

L(r/pi) = 1 ⇔ mi = 1 for i = 1, 2, 3, ..., 14 (10.2)

Bob can recover m in a straightforward fashion. Bob applies Euler’s cri-
terion to r mod pi and knows that mi = 1 if and only if L(r/pi) = 1.

The 14 primes should each be greater than q for the following reason.
For simplicity consider the one bit channel that uses p1 to leak one sub-
liminal bit. If p1 is large (e.g., 128 bits in length) but is still less than

6The bandwidth can be set to be a bit larger or smaller. In general the bandwidth
is O(log(log p)) bits per signature.

218 10. Subliminal Channels

q, then the following situation can occur. It is possible that k will be
chosen such that r = (gk mod p) mod q is evenly divisible by p1. In
this case, r mod p1 = 0. It follows that r is neither a quadratic residue
nor a quadratic non-residue modulo p1. Hence, certain values for r would
never be output by a digital signature device that utilizes this channel.
By making p1 > q this situation cannot occur.

It is important to consider the expected running time of the Legendre
channel. Since finding a suitable k for a particular subliminal message is
a randomized process, the running time can be estimated by considering
the probability of finding a suitable k for a given 14-bit message. This is a
tricky point to analyze formally. One would expect that a randomly chosen
k in DSA will lead to an r = (gk mod p) mod q that is a quadratic residue
modulo pi with probability 1/2. This results from the fact that half of the
elements in pi are quadratic residues. Under this assumption, a value k will
be able to leak a particular message with probability about 2−14. Another
potential issue is the probability distribution over r that is induced by the
probability distribution over the message space. For communications to
be subliminal, the attacked values for r must be indistinguishable from
the values for r that result when k is chosen uniformly at random. For
the one bit version of this channel that uses only p1, the values for r will
be indistinguishable from the ones that result from choosing k uniformly
at random. This follows from a theorem due to Seysen if the r’s are not
squares over the Reals [133].

It has been assumed that DSA was designed to be a signature algorithm
that is hard to abuse in the sense that it could not be used directly as a
public-key system, a key exchange system, or as any system providing for
confidential information exchange (see [284]). Therefore, it was surprising
that Simmons found a channel in it with a bandwidth of 14 bits. If this
subliminal channel were employed in a device used to verify the SALT
II treaty, it would be capable of leaking the exact identity of each silo.
This observation, therefore, destroys the logic behind letting the Russians
choose their own cryptographic algorithm for the device for the purpose
of learning more about Russian cryptography.

Simmons showed that if Alice’s relationship with her accomplice has
not gone south then she can use this channel to give her private key to
Bob. After doing so she can utilize a channel much like the one described
in Section 10.4 to establish a higher bandwidth channel with Bob. In this
method the 160-bit DSA private key x is divided into 16 blocks with each
block consisting of 10 bits. Four bits are used to identify each of the 16

10.4. Subliminal Channels New and Old 219

different blocks and 10 bits are used to display the contents of a given
block. Since the aforementioned channel has a bandwidth of 14 bits, it
can be used to leak a block and the index for the block. This can be
accomplished by letting m1,m2, ...,m10 be the contents of the block and
letting m11,m12,m13,m14 be the index. So, at a bare minimum, 16 digital
signatures are needed to leak an entire DSA private key.

Some algorithm is needed to choose which block to leak in a given DSA
signature. An obvious approach is to choose a block uniformly at random.
This approach is ideal when the DSA signing algorithm is implemented in
a smart card device that has limited or otherwise restricted non-volatile
memory. (This would prevent the device from cycling through the 16
blocks in order.) Given this randomized block selection approach, a natu-
ral question to ask is how many signatures on average will be required to
convey Alice’s private key in its entirety. As it turns out, the number of
such signatures is dictated by the first moment of the Coupon Collector’s
Problem [102].

The Coupon Collector’s Problem is as follows. Each time a customer
buys groceries, the customer is given a coupon that is selected uniformly
at random from all N possible types of coupons. If a customer wants
to obtain at least one of each possible type of coupon, how many times
must the customer go grocery shopping on average? It turns out that
the expected number of times is N log N . So, in the case of leaking the
DSA private key x, Alice could expect to have to give Bob 16 log 16 = 64
digital signatures. The applicability of the Coupon Collector’s Problem
to subliminal channels was noted in a kleptographic attack on black-box
symmetric ciphers [340].

The ability to leak private keys as such has extremely important impli-
cations for smart card security. It brings into question the wisdom behind
implementing cryptography in hardware. If DSA were implemented in a
tamper-resistant device and this attack were carried out, then the manu-
facturer of the device could obtain the DSA private keys of anyone who
uses the device. The attack is not robust against reverse engineering, since
knowledge of the 14 primes implies knowledge of the private keys. But
the attack nonetheless demonstrates the feasibility of creating effective
subliminal channels out of thin air.

An approach to foiling this is to prevent Alice from having the luxury of
choosing k explicitly. By adding a trusted entity to the signature process,
a protocol can be devised that prevents Alice from choosing k explicitly. In
the scenario of the Prisoner’s Problem, the signer and the warden jointly

220 10. Subliminal Channels

generate the signature by having each person contribute to the randomness
in the signature [276, 279]. A complication in this approach is due to
the fact that the prisoner who constructs the signature can simply halt,
thereby not computing a signature and converying a single bit [90].

10.4.2 The Oracle Channel

In Subsection 10.4.1, the probability that a random k allows the 14-bit
subliminal message to be leaked was argued to be 2−14. This assumption
is clearly number theoretic in nature. One of the reasons that this analysis
is complicated is as follows. Consider the 1-bit channel that uses p1. For
it to be the case that with probability 1/2 a randomly chosen k leads to
an r that is a quadratic residue modulo p1, it is required that half of the
values in ZZq be quadratic residues modulo p1. Now consider the case in
which the channel is extended to 14 primes. In this case, the event that
r is a quadratic residue modulo p1 and the event that the same r is a
quadratic residue modulo p2 are not independent.

A further issue to consider is that of computational efficiency. The
Legendre symbol of r must be computed modulo each pi to determine if r
leaks the desired subliminal message. Using Euler’s Criterion, numerous
modular exponentiations must be computed for each signature (r, s) that
contains a subliminal message.

Aside from these very minor technicalities, it is natural to ask why
the Legendre channel works. This question is perhaps best answered by
analyzing it a bit more closely. Let LegendreChannel denote the function
that is used to decide if r subliminally leaksm1,m2, ...,m14 using the secret
primes p1, p2, ..., p14 > q. Hence, this function is a boolean predicate that
may be computed by running Euler’s Criterion 14 times and checking the
results.

LegendreChannel(r, (m1,m2, ...,m14), (p1, p2, ..., p14)) = 0 or 1 (10.3)

When LegendreChannel outputs 1 then r leaks the 14-bit subliminal
message. The inputs are a publicly displayed value r, a subliminal mes-
sage, and a secret key in the form of 14 distinct primes. Clearly the space
for r and the key space should be large to make the channel secure. This
brute-force channel works well for short messages due to the elbowroom
in choosing r.

10.4. Subliminal Channels New and Old 221

Horster, Michels, and Petersen proposed a narrowband channel that
uses a One-time pad [133]. The 14-bit version of this channel will now
be described. In this channel, Alice and Bob share a randomly chosen
14-bit string b1, b2, ..., b14. The 14-bit subliminal message is XORed with
this bit string and the resulting 14-bit Vernam ciphertext is displayed in
the 14 least significant bits of r. Hence, k is repeatedly chosen until the
14 least significant bits of r happen to match this Vernam ciphertext. The
predicate for this channel, which is named after Horst et al, is given below.

HMP (r, (m1,m2, ...,m14), (b1, b2, ..., b14)) = 0 or 1 (10.4)

When HMP returns 1, the 14 least significant bits of r is the Vernam
ciphertext of the 14-bit subliminal message. The subliminal message is
recovered by decrypting the Vernam ciphertext using the One-time pad
b1, b2, ..., b14. Strictly speaking, this channel is not secure if it is used more
than once.

A new channel will now be presented that extends the Simmons and
Horster et al narrowband channels. It is based on the observation that
a large space for r is required as well as a large key space. The channel
is as follows. A random oracle R is chosen randomly and is used in the
attack. As in Simmons’ original attack, the parameter k is repeatedly
chosen until an r is found that leaks the subliminal message. Let S be a
randomly chosen secret seed. For concreteness let S be a 160-bit quantity.
The value S is analogous to the 14 primes in the Simmons attack. The
predicate for the Oracle Channel is as follows.

OracleChannel(r, (m1,m2, ...,m14), S) = 0 or 1 (10.5)

In the attack, the device repeatedly chooses k, computes r, and then
computes the above predicate. The attack ceases when the predicate re-
turns 1. The final values for k and r are the ones used in computing the
digital signature that is output. The predicate is instantiated by com-
puting R(S||r) and taking the first 14 output bits of the oracle. If these
14 bits match m1,m2, ...,m14 exactly, then the predicate returns 1. Upon
obtaining r, the attacker need only take the first 14 output bits of R(S||r)
to recover m1,m2, ...,m14.

222 10. Subliminal Channels

It is instructive to consider the security of this channel. Suppose that
the channel is being used in a black-box environment and that the user
suspects that the device is using this channel to leak secrets. From the
perspective of the device designer, the user is a distinguishing adversary
that wants to be able to distinguish honest devices from those that use the
subliminal channel. A worst-case scenario is one in which the device always
leaks the same 14-bit message, and one in which the adversary supplies
the key pair to the device and analyzes the resulting DSA signatures (r, s).
Note that given x and (y, g, p) it is straightforward to recover k from (r, s).
So, the distinguishing adversary has access to every value for k that the
device uses in the signatures that it outputs.

The security parameter in DSA is 160, the number of bits in q. To
try to distinguish, the poly-time adversary can obtain a set of signatures
that has a cardinality that is polynomial in k. Given the limited number
of outputs that are created, the likelihood that the device will generate a
given value for k more than once is very small. Hence, the oracle inputs
will likely be distinct. This means that the oracle outputs will likely be
chosen in an independent fashion. Since there are an exponential in 160
number of values for k that can be used to leak a given 14-bit message,
it is not hard to see that the distinguishing adversary cannot distinguish.
This approach is applicable to the ElGamal Legendre channel as well as
the DSA Legendre channel.

10.4.3 Subliminal Card Marking

Another early result on subliminal leakage of information was a subliminal
attack on a cryptographic poker game protocol. Rivest, Shamir, and Adle-
man suggested the scheme. It utilizes a box-locking primitive based on
the RSA algorithm. In the scheme Alice and Bob know the factorization
of a large number N . Alice chooses an exponent K randomly mod φ(N)
such that K is relatively prime to φ(N). She uses K as the RSA exponent
to lock cards from a virtual deck of cards in a box (by exponentiation mod
N with the exponent K). Let EK(M) denote the box-locking primitive
applied to card M . She can unlock a box using the inverse of K mod
φ(N). As long as she does not give K to Bob, the contents of the box
is secured. Note that this primitive constitutes a commutative symmetric
cipher. Bob can lock the box received from Alice, and give the result to
Alice, which Alice can unlock. However, in this case Alice cannot read the
contents of the box without Bob performing the unlocking procedure to

10.4. Subliminal Channels New and Old 223

reverse his locking computation. This commutative property is necessary
to play this version of mental poker (for example, over the phone).

However, in 1980 Richard Lipton observed that if M is a perfect square
modulo N , then so is EK(M). The encryption primitive therefore pre-
serves quadratic residues. In a paper by DeMillo and Merrit it was shown
how this primitive can be used to mark cards M [83]. For example, a
player who initially encrypts M has an advantage in identifying/ruling
out encrypted cards by determining quadratic residuosity modulo N of
locked cards in which the player does not know the contents. Though
this attack doesn’t uniquely identify marked cards, it does give an unfair
advantage to those who employ it, and may help a player cheat and win
in the long run. It is clear that this attack, in some sense, constitutes a
subliminal channel with a bandwidth between 0 bits and 1 bit (knowledge
of the factors of N is needed to use this channel).

10.4.4 The Newton Channel

Work on finding new subliminal channels has continued as demonstrated
by the discovery of the Newton channel [7]. The following is a description
of this channel. Let p = qm+1 be prime, and let q be prime. Furthermore,
assume that m is a smooth integer and that g generates ZZ∗

p. For security
it is assumed that computing discrete logs in the group generated by gm

is hard. Let c be the message that is to be subliminally leaked. To display
c in an exponentiation mod p using base g, a value k′ mod (p − 1)/m is
chosen randomly, and then k is solved for in k = c+k′m mod p−1. Hence,

k ≡ c mod m (10.6)

The user then publishes r = gk mod p in the usual way. For example,
this could be the value r in an ElGamal digital signature. The value c can
be computed by anyone by solving for z in the following equation.

(gq)z ≡ rq mod p (10.7)

The value z can be found since the order of the subgroup of ZZ∗
p gen-

erated by gq is a smooth integer. Let B be the largest prime in m (i.e.,

224 10. Subliminal Channels

its smoothness). Using the Pohlig-Hellman algorithm [224] and Pollard’s
Rho algorithm [227] this requires time O(B1/2). It then follows that,

c ≡ z mod m (10.8)

Observe that this is in fact a broadcast channel since everyone is ca-
pable of computing c. The Newton channel can be modified to address
this issue. This is done by replacing q with two different primes q1 and q2,
having the sender and receiver a priori secretly share the signing private
key mod q2, and having the sender keep the signing key mod q1 private
[7]. This, however, requires a more specialized form for the factorization
of p− 1 and may result in reducing the security of the underlying system.

So what can be done to minimize the threat of malware that exploits
the Newton channel? Fortunately, the elimination of this particular chan-
nel is not difficult. By basing cryptosystems on a prime order subgroup of
ZZ∗

p, this particular channel can be eliminated. DSA is a perfect example
of a cryptosystem that is immune to this threat.

10.4.5 Subliminal Channel in Composites

Yvo Desmedt noted that it is possible to choose half of the bits of the
product of two primes explicitly when one is free to choose any two large
prime numbers [89]. In Crypto ’96 it was shown that this channel can
be used by malicious software to compromise RSA key geneartion [333].
Also, a number of recent papers address the generation of RSA moduli
with a predetermined portion [145, 172].

One approach to displaying data in the bit representation of the mod-
ulus n is as follows. Suppose that n is required to be a W -bit composite
that is the product of two W/2-bit primes p and q. Let M be a W/2 bit
integer. Hence, M is W/2 bits long and the most significant bit is 1. The
goal is to display M in the bit representation of n that is being randomly
generated.

DisplayM(M):
input: a W/2-bit subliminal message M
output: two W/2-bit primes p and q
1. set W = 2|M |
2. generate a random W/2-bit string RND

10.4. Subliminal Channels New and Old 225

3. set n1 = M ||RND
4. generate a random W/2-bit prime p
5. solve for quotient q and remainder r in n1 = pq + r
6. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then goto step 2
7. if q is composite then goto step 2
8. output (p, q) and halt

The quotient q and remainder r are computed by performing division.
In many cases M will appear in unaltered form in the W/2 upper order
bits of n = pq = n1 − r. However, sometimes the subtraction of r will
cause a borrow bit to be taken from M in the upper order bits. In this
case M − 1 is displayed in the upper order bits. The subliminal message
M can easily be recovered in either case. Ideally M should be chosen in a
pseudorandom fashion, since fixing it may give rise to a weak composite
that might be easily factorable. There are variations on this approach to
displaying subliminal information in composites n = pq.

Kilian and Leighton showed how to exploit this channel to subvert a
factoring based key escrow system [155]. This applies, for instance, to
a PKI that is based on RSA. In such a key escrow system the users are
forced to escrow their RSA private keys in order to be registered into the
PKI. However, the subliminal channel in composites allows rogue users
to subliminally display composites n′ that have unescrowed private keys
within composites that have escrowed private keys. More specifically, the
public modulus n′ of a rogue user can be displayed within the upper half
of the bits in the bit representation of his or her own legitimate public
modulus n (see Figure 10.1). The security parameter of n′ is half of the
value of the security parameter of n. When such rogue users collude,
they can establish an unescrowed PKI that benefits from the certification
performed in the legitimate infrastructure, since CA signatures on the
legitimate composites are also signatures on the rogue composites.

This form of abuse has been dubbed shadow public key abuse. A
shadow public key is a public key that is displayed within the bits of
a legitimate public key. Note, however, that if an RSA shadow public key

Figure 10.1 Shadow public key attack on composites

226 10. Subliminal Channels

is displayed within a legitimate composite then its security parameter will
be half that of the security parameter of the legitimate composite.

A coalition of rogue users can always go outside of the system to de-
feat a key escrow infrastructure. However, one can envision a scenario in
which a totalitarian government persecutes all persons that establish rogue
certification authorities that certify unescrowed keys. In such a situation
the shadow public key attack subverts the totalitarian PKI and uses it to
securely distribute shadow public keys.

10.5 The Impact of Subliminal Channels on

Key Escrow

The applications of subliminal channels have expanded significantly over
the years. Using subliminal channels it was shown how to implement an
RSA based key escrow system using smart card devices in a way that is
transparent7 to the end user [333]. The information needed by the key
recovery agent to recover the private key of a user is encoded within the
upper order bits of the public key itself and cannot be obfuscated by
the user without ruining the public key. In other words, the user cannot
publish the public key without publishing the means for the key recovery
agent to recover the user’s RSA private key. By way of a subliminal
channel, the two pieces of information are inseparable. The public key is
digitally signed by a device-specific signing private key contained within
the device. So, the device outputs three values to the user: a public key,
the corresponding private key, and a signature on the public key. The user
is registered into the PKI if and only if a public key is given to the CA
along with a valid signature on the public key. The signature on the public
key proves that the public key was generated by the hardware device. The
upper order bits of the public key is an asymmetric ciphertext that when
decrypted by the key escrow authorities reveals a prime divisor of the RSA
public modulus of the user.

This hardware based key escrow solution seemed so close to being the
solution to software key escrow, yet no cigar. The problem is that it
requires hardware. The private signing key in the device has to remain
private otherwise users can forge unescrowed key pairs. The key element
that was missing was a proof that the private key is escrowed.

7That is, it is as protocol-efficient as an unescrowed PKI.

10.5. The Impact of Subliminal Channels on Key Escrow 227

The software key escrow problem had received a lot of attention [155,
192, 193, 246] and was the subject of a fair amount of controversy. The
fair cryptosystem approach of Micali could be implemented completely
in software, but requires that each user secretly shares his or her private
key in a publicly verifiable fashion among a set of key escrow authorities.
So, it is required that the user perform more protocol interaction than
in the case of an unescrowed public key infrastructure. It seemed that if
the hardware based key escrow system from Crypto ’96 could be modified
so that the device creates a single non-interactive zero-knowledge proof8

that the private key is properly escrowed, then a more efficient protocol
for software key escrow could be made.

This, in fact, turned out to be the case. It was shown that by having
the user construct such a proof, the problem of software key escrow is
solved [328, 337]. The key escrow solution utilizes a technique that is
often referred to as verifiable encryption [108, 291]. The public keys of
the key recovery authorities are used in constructing the non-interactive
proof that in itself constitutes a ciphertext that encrypts the private key
of the user. The non-interactive proof shows in zero-knowledge that the
plaintext is in fact the private key of the user, and is hence recoverable by
the key escrow authorities. This proof has been referred to as a certificate
of recoverability.

The basic idea is to make entry into the public key infrastructure
contingent upon providing a public key and corresponding proof of escrow
to the certification authority (CA). In other words, each user is forced to
escrow his or her own private key, otherwise the user will not be issued a
digital certificate from the CA. The CA signs the public key if and only if
the public key and proof are valid. The key escrow authorities can recover
the user’s private key from the public key and proof alone. In this respect,
the key escrow solution does not require tamper-resistance and maintains
transparency with respect to the end user. It is transparent since the
certificate of recoverabilty can be sent to the CA along with the public
key. The user can obtain the public key of the escrow authorities from the
CA, for instance. As a result, the user never has to interact directly with
the key escrow authorities.

This approach differs from the fair cryptosystem approach in a critical
way: in fair cryptosystems, the user splits his or her private key into
shares and gives them to the escrow authorities in a verifiable fashion,
whereas in a solution based on certificates of recoverability the escrow

8In the form of a small data file (that is, a non-interactive zero-knowledge proof).

228 10. Subliminal Channels

authorities generate shares of a private key, compute the corresponding
public key, and have the users use the public key to construct certificates
of recoverability.9

Numerous other verifiable encryption algorithms have been shown that
mention certificates of recoverability as a particular application [11, 49,
217, 232, 264, 273]. To date, the notion of certificates of recoverability
have caught on in the scientific community but has yet to make its way
into the industry. In retrospect, subliminal channels were an essential step
in the discovery of a protocol-efficient solution to the software key escrow
problem.

Another approach to efficient key escrow has recently been proposed
by Franklin and Boneh [36]. The solution is based on the notion of an
identity-based cryptosystem [269]. In the Franklin-Boneh system, the pub-
lic key of a user can be computed by anyone given publicly available in-
formation about the user such as name, social security number, date of
birth, and so on. A set of trusted authorities computes the private key of
the user and sends the private key to the user. The private key is escrowed
until these authorities decide to take it out of escrow.

This system is remarkable since it is essentially certificate-free. How-
ever, some form of key revocation mechanism is needed if the private key
is ever compromised. The solution differs from systems that utilize cer-
tificates of recovery since the recovery authorities must actively compute
and transmit the private key for each new user. In a scheme based on
certificates of recoverability, the key recovery authorities remain off-line
until an actual recovery is needed. The Franklin-Boneh scheme is secure
against chosen ciphertext attacks in the random oracle model assuming an
elliptic curve variant of the computational Diffie-Hellman problem. The
system is based on the Weil pairing [144].

9The exact algorithm varies depending on whether it is an ElGamal-based or RSA-
based solution.

Chapter 11

SETUP Attack on Factoring
Based Key Generation

The notion of black-box hardware and software and the hazards associated
with them are familiar to everyone. For example, when a user installs a
new commercial program there is no easy way to find out if the program is
sending personal information across the Internet back to the manufacturer.
Such information could include personal e-mail addresses, the name of
the user’s Internet service provider, what type of machine the user is
using, and so on. The fear is that there might be an invasion of privacy
that could among other things lead to aggressive marketing. Hardware
implementations of algorithms are even more black-box in nature since
the silicon housing hides the underlying circuitry.

When cryptosystems are implemented in a black-box fashion this fear
is magnified tenfold. In a worst-case scenario the cryptosystem could be
sending the user’s secret keys back to the manufacturer. This could allow
the manufacturer to do such things as decrypt the user’s communications,
sign documents on behalf of the user, or even gain unlawful access to the
user’s machine. This chapter addresses this threat by exploring ways of
designing cryptotrojans that to do exactly this, in spades.

In the pages that follow, a set of attacks are presented that are specifi-
cally designed to attack black-box key generation algorithms that generate
factoring based keys. Such key generation algorithms are used to gener-
ate private keys for RSA, Rabin, Goldwasser-Micali, and other public key
cryptosystems [117, 237, 245]. The first set of attacks are simplistic in
nature and have varying degrees of security. Drawbacks to these solu-
tions are presented that relate to the threat of reverse engineering and
that affect the security of the attacks. The chapter concludes with an

229

230 11. SETUP Attack on Factoring Based Key Generation

improved cryptotrojan attack that does not suffer from these drawbacks.
It is a kleptographic attack that applies cryptography within the crypto-
graphic key generation algorithm to securely undermine the integrity of
the device. The cryptotrojan leaks private keys to the attacker securely
and subliminally through the seemingly honest output of the black-box
device. The attack is secure from the attacker’s perspective based on the
assumed intractability of factoring. The proof of security is in the random
oracle model (see Appendix B.4).

The threat of advanced kleptographic attacks is an extremely impor-
tant consideration when insider attacks are possible. A cryptotrojan can
be inserted into a fraction of all the black-box devices that are produced.
This implies that spot reverse engineering checks, that is, choosing devices
randomly and checking for the presence of cryptotrojans, will not always
work since some of the devices are honest. This issue is even worse when
the devices are tamper-resistant. Such chips are the epitome of black-
boxes since they are designed to hide the internals from well-funded and
dedicated adversaries.

Designing cryptographic devices to be tamper-resistant is an involved
science and the security afforded by such devices is an active area of re-
search [8, 10]. Tamper-resistant cryptographic microchips have been en-
dorsed by the U.S. government, namely, in the Clipper chip and Capstone
technology. The Clipper and Capstone technologies have been offered as
next generation hardware-protected key escrow devices. Even software
implementations can be perceived as black-boxes when users refuse to an-
alyze the code at the assembly language level. Simply verifying a digital
signature on code in no way proves that the code is free of backdoors.

This chapter is likely to be of interest to companies that manufac-
ture smart cards and organizations that rely on smart cards for sensitive
applications. It demonstrates clearly how an insider who has control of
cryptographic designs or implementations can benefit from carrying out
insider attacks with minimal loss of overall security. Also, this chapter
is important to users who wish to use mix networks securely. When a
cryptotrojan is used to generate the keys for a mix network, the author of
the Trojan is often in a position to trace the flow of messages throughout
the network.

Since black-box cryptosystems are central to the security of the at-
tacks in this chapter, the definition of a black-box cryptosystem needs to
be spelled out. The definition of a black-box cryptosystem incorporates
the notion of efficiently computable functions and thus addresses the is-

11.1. Honest Composite Key Generation 231

sue of computational complexity. Also, it captures ideas from electrical
engineering since it makes the worst-case assumption that the black-box
has non-volatile memory.

Definition 3 A black-box cryptosystem is an efficient probabilistic
algorithm1 that has readable and writable non-volatile memory. In other
words, it has access to a fair coin and can store variables across multiple
invocations. Furthermore, the algorithm and memory are not externally
accessible. Only the input and output of the cryptosystem is accessible.

Note that whereas a manufacturer may claim that a given microchip
does not contain non-volatile memory cells, it may nevertheless contain
non-volatile memory. Manufacturers could easily lie in this regard. The
availability of non-volatile memory has a significant impact on the types
of cryptotrojan attacks that can be carried out within the device, since it
allows a Trojan to store values across multiple invocations of the device.

11.1 Honest Composite Key Generation

The key generation algorithm GenPrivatePrimes1 described below may
be used to generate the primes p and q for RSA private keys, Rabin pri-
vate keys, Goldwasser-Micali private keys, and so on. However, it does
not check that gcd(e, (p − 1)(q − 1)) = 1 as in the case of RSA key gen-
eration. This check can be easily added. Most composite key generation
algorithms output composite integers of even bit length. Typical lengths
are 768, 1024, and 2048 bits. For simplicity GenPrivatePrimes1 will only
generate W/2-bit primes such that W is evenly divisible by 2. W should
be 768 or greater to provide a suitable setting for the factoring problem.
It is a simple matter to multiply these two primes to derive the public key
n = pq. The Appendices cover the notation and underlying algorithms
that are used.

RandomBitString1():
input: none
output: random W/2-bit string
1. generate a random W/2-bit string str
2. output str and halt

1That is, a probabilistic poly-time Turing machine that may or may not utilize the
random tape.

232 11. SETUP Attack on Factoring Based Key Generation

GenPrivatePrimes1():
input: none
output: W/2-bit primes p and q such that p 6= q and |pq| = W
1. for j = 0 to ∞ do:
2. p = RandomBitString1() /* at this point p is a random string */
3. if p ≥ 2W/2−1 + 1 and p is prime then break
4. for j = 0 to ∞ do:
5. q = RandomBitString1()
6. if q ≥ 2W/2−1 + 1 and q is prime then break
7. if |pq| < W or p = q then goto step 1
8. if p > q then interchange the values p and q
9. set S = (p, q)
10. output S, zeroize all values in memory, and halt

Also, note that there are some elements of the ANSI C programming
language in this program [154]. Text that appears between /* and */ are
programmer’s comments and break causes control to exit the innermost
loop. The keyword continue sends control to the beginning of the next
iteration of the innermost loop. Testing for primality can be performed
in deterministic polynomial-time [5]. A feel for how long this algorithm
will take to run can be determined using Chernoff bounds and the Prime
Number Theorem (see Appendix B.2).

Observe that a K-bit string can have leading zeros. A K-bit positive
integer must have a most significant bit equal to 1. The product of two
K-bit positive binary integers with K > 1 is either a 2K bit integer or
a 2K − 1 bit integer. To see this, note that 2K−1 is the smallest K-bit
integer. 2K−1 squared is 22K−2, which is 2K− 1 bits long. Also, note that
2K−1 is the largestK-bit positive integer. 2K−1 squared is 22K−2K+1+1,
which is a 2K bit integer. So, in this algorithm it is entirely possible that
W/2 bit primes p and q will be chosen such that |pq| < W bits.

11.2 Weak Backdoor Attacks on Composite

Key Generation

There exist several Trojan horse attacks on composite key generation.
Those presented in this section are all rather simplistic in nature and
have varying degrees of security. They are classic attacks in some sense
since they are intuitively obvious to any cryptographer. However, none of

11.2. Weak Backdoor Attacks on Composite Key Generation 233

them is as secure from the attacker’s perspective as a secretly embedded
trapdoor attack. They are useful to study since they exemplify important
properties that a secure cryptotrojan attack against a cryptosystem should
exhibit.

11.2.1 Using a Fixed Prime

An attacker can change the design so that the prime p is fixed and known
to the attacker, or an attacker can append a Trojan horse to the program
that deletes p after GenPrivatePrimes1 is called and that substitutes the
fixed prime p. In this case the function GenPrivatePrimes1 may have to
be invoked anew if |pq| < W , and so on. Either way, since p is known to
the attacker, the attacker can factor every public key that is generated.
The modified algorithm is given below.

GenPrivatePrimes2():
input: none
output: W/2-bit primes p and q such that p 6= q and |pq| = W
1. for j = 0 to ∞ do:
2. q = RandomBitString1()
3. if q ≥ 2W/2−1 + 1 and q is prime then break
4. if |pq| < W or p = q then goto step 1
5. if p > q then interchange the values p and q
6. set S = (p, q)
7. output S, zeroize all values in memory, and halt

The rationale behind this attack is that since q is chosen randomly, the
modulus will look random to the casual observer. This is important since
the modulus n = pq will be made public, for example, by being placed in
a digital certificate. An important consideration is that a user is often in
a position to learn each of the primes p and q corresponding to his or her
own public key. This holds true in the case of software key pairs that are
stored in personal information exchange2 files, for instance. However, this
is not always the case for private keys that are generated and used in smart
cards. If the user has access to (n, e, d) where ed = 1 mod (p− 1)(q − 1)
then a well-known3 probabilistic algorithm can be used to efficiently factor
n. From the attacker’s perspective it is always safest to assume the worst,

2For example, stored according to RSA’s PKCS #12 format.
3Figure 4.10 in Stinson details the factoring algorithm that works given the decryp-

tion exponent [293].

234 11. SETUP Attack on Factoring Based Key Generation

and that is that p and q will be known to the key owner. This has the
following properties:

1. The attack is detectable: One need only hypothesize that the attack
is being carried out, obtain two moduli n that are output by the
device, and compute their greatest common divisor. This value will
be p and it will divide both moduli evenly. Note that this detection
method will work even if the key owner does not have access to his
or her own private key.

2. The attack is breakable without reverse engineering: The Euclidean
algorithm can be run on two different moduli n and as a result the
prime p can be found. So, the device need not even be reverse
engineered to break the attack.

3. The attack doesn’t exhibit forward secrecy vs. reverse engineers: In
an ideal situation, the reverse engineer who recovers the algorithm
and its current state should not be able to determine the previous
prime numbers that the device computed. Since p is revealed to the
reverse engineer, this is not the case.

There are numerous variations on this attack. For example, the public
modulus n can be generated so that it can be factored more easily than
normal. For example, n could be the product of a 512-bit prime and two
256-bit primes. Again, this gives the attacker no significant advantage
over other users since anyone can factor such moduli.

11.2.2 Using a Pseudorandom Function

The problem of detectability in the attack described in Subsection 11.2.1
can be avoided by using pseudorandom values instead of random values
and having the initial seed known only to the device and the attacker. In
the jargon of Turing machines, this means that the algorithm will take
its randomness from a pseudorandom Turing machine tape rather than
from a truly random tape. Since the pseudorandom tape is polynomi-
ally indistinguishable from a truly random tape, the sampled primes will
be indistinguishable as well. It makes sense for the attacker to use a
pseudorandomness primitive that is predicated on the difficulty of fac-
toring. This way, both of the composites that are generated and the
rogue pseudorandom primitive used to compute the primes will rely on

11.2. Weak Backdoor Attacks on Composite Key Generation 235

the same intractability assumption. Basing the primitive on the discrete
logarithm problem would make the attack rely on two potentially different
intractability assumptions.

One of the goals of using pseudorandom values is to prevent the back-
door from being exploited by anyone other than the attacker. To those
familiar with cryptographic primitives, it may be tempting to utilize a
pseudorandom function to accomplish this goal. For example, consider
the following approach. The pseudorandom function F is used in the de-
vice along with a secret string ID [113, 114]. The string ID should be
sufficiently long. For simplicity assume that |ID| = 160. The IDs for the
devices should be chosen randomly, subject to the constraint that they all
be unique. The function F is publicly known. Recall that F (ID, x) is in-
distinguishable from a random value, where ID is secret and x is a public
index. The pseudorandom bit stream is formed by invoking F with x =
1, 2, 3, The index x is stored in non-volatile memory within the device.
Hence, the pseudorandom bit stream is F (ID, 1)||F (ID, 2)||F (ID, 3)|| · · ·.

So, why does the attacker have an advantage? Well, observe that at
most a polynomial4 number of devices can be manufactured. So, there are
a polynomial number of distinct values chosen from all possible 160-bit
strings from the database of IDs that only the attacker knows. With-
out knowing this database, the complexity of guessing an ID correctly is
exponential.

Though conceptually simple, this approach does not provide compu-
tational forward secrecy. For example, suppose that a reverse engineer
opens the device and obtains F , ID, and i = 117. The reverse engineer
can recover the previous pseudorandom bits by computing,

F (ID, 1)||F (ID, 2)|| · · · ||F (ID, 117)

It is therefore imperative that the device forgets its past, which is not
the case in this approach. So, this particular attack has the following
properties.

1. The attack is not detectable: Even if a user hypothesizes that this
exact attack is being carried out, its presence cannot be detected
without knowing ID.

2. The attack is not breakable without reverse engineering: The pseu-
dorandom bits that are used by the key generation algorithm are

4In some reasonable parameter.

236 11. SETUP Attack on Factoring Based Key Generation

indistinguishable from random ones without knowledge of ID. It
follows that provided that the device is not successfully reverse en-
gineered the attack is secure.

3. The attack doesn’t exhibit forward secrecy vs. reverse engineers: In
an ideal situation, the reverse engineer who recovers the algorithm
and its current state should not be able to determine the previous
prime numbers that the device computed. However, since ID is
revealed to the reverse engineer and since x = 1, 2, 3, ..., this is not
the case.

The third drawback above is addressed in Subsection 11.2.3. The point
of this subsection is not to argue that pseudorandom functions cannot
be used to attack key generation in a desirable way. The point that is
being made is that a straightforward use of them is not very desirable.
What is needed is a mode of operation that is effectively memoryless. A
memoryless mode of operation is one that prevents the reverse engineer
from being able to determine previous inputs to the function.

11.2.3 Using a Pseudorandom Generator

A solid approach to attacking the composite private key generation al-
gorithm is to use a pseudorandom number generator G (see Subsection
3.5.2) and an initial seed. The attack will be illustrated using the Blum-
Blum-Shub. Define G to be a (k, 2k)-PRBG (see Subsection 3.5.2). Define
GH(s) to be the k most significant bits of G(s) and define GL(s) to be
the k least significant bits of G(s). Let s0 be the randomly chosen 2k-
bit initial seed that is stored within the device and that is known to the
attacker.

In this attack, the input values si for G are defined by si+1 = GL(si)
where i = 0, 1, 2, The pseudorandom bit stream that the device uses to
compute private keys is defined by GH(s0)||GH(s1)||GH(s2)|| · · ·. When
the algorithm outputs (p, q) on a given invocation, only one seed si is
stored in non-volatile memory. Previous seeds are erased and lost. It can
be shown that the attack has the following properties.

1. The attack is not detectable: Even if a user hypothesizes that this
exact attack is being carried out, its presence cannot be detected
without knowing one of the seeds.

11.2. Weak Backdoor Attacks on Composite Key Generation 237

2. The attack is not breakable without reverse engineering: The pseu-
dorandom bits that are used by the key generation algorithm are in-
distinguishable from random ones without knowing one of the seeds.
It follows that provided that the device is not successfully reverse
engineered, the attack is secure.

3. The attack exhibits forward secrecy vs. reverse engineers: Consider
the case that a reverse engineer is able to recover the algorithm and
its current state. The reverse engineer will not be able to determine
the previous prime numbers that the device computed. Doing so
implies the ability to invert the pseudorandom generator G.

In practice it would not be wise to provide multiple devices with the
same initial seed s0. This would quite literally cause users to generate the
same “random” private keys, and would not go unnoticed.

Another threat to the integrity of this attack exists that has not been
addressed. Consider the possibility that a powerful engineer can effec-
tively peer into the device, read its contents, and then repair it, replace
it, or somehow guarantee that the device will appear to have been left un-
touched. FIPS-140 level 4 complaint smart cards are supposed to destroy
the data they contain if the casing is breached. In theory, then, some form
of non-intrusive reading method would be required for such smart cards.
One cannot help but wonder if such a non-intrusive reading capability
exists in the form of a sensitive instrument that measures a particular
property of the physical device at runtime. If this were possible, then
even this pseudorandom generator attack would not be secure. The pow-
erful engineer would be able to learn the current seed and hence all future
randomness that the device will employ. One can envision a covert opera-
tion in which the smart card belonging to an enemy is obtained, read, and
then carried back to its place of origin. In this case all future randomness
that the device will use would be known to the powerful engineer. This
threat model begs the question as to whether a design exists that is secure
against this threat. Such an attack is one that can be scrutinized by a
reverse engineer and then be redeployed in a way that will remain secure
against the reverse engineer.

Another weakness of the PRNG attack revolves around software im-
plementations. Suppose that there exists an on-line server that generates
key pairs and issues them to users. The code for the server may be dig-
itally signed and the signature may be verified periodically. This implies
that the reverse engineer cannot modify the code after successful reverse

238 11. SETUP Attack on Factoring Based Key Generation

engineering without the modification being detected. In the case of the
pseudorandom number generator attack, an archived core-dump would
reveal an intermediate seed and hence compromise all subsequent private
keys that are generated.

The remainder of this chapter describes a kleptographic attack that is
robust against the exposure of intermediate seeding material. It is based
on a result published in Crypto ’96 [333]. The original approach focused
on attacking software key generation implementations. The scheme was
entitled PAP, meaning pretty-awful-privacy. This was a play on PGP,
the well known pretty-good-privacy program that originally utilized RSA
[343]. The goal in designing PAP was to come up with a cryptotrojan
that could be deployed in a program like PGP that gave the Trojan horse
writer an exclusive advantage: the ability to derive the private keys of all
users. One of the tricky aspects of this approach is that the Trojan, which
is in software, will be duplicated as is along with PGP. This prevents each
instance of the Trojan from having unique identifiers. However, it seems
that given this restriction it is difficult to arrive at cryptotrojan attacks
with provably secure properties.

It has since become clear that the best way to approach the problem
is to gear the attack towards hardware implementations such as smart
cards. In this situation, secret seeding material can be used in the black-
box environment to provide strong security guarantees. It is when the
black-box is opened that the fail-safe aspects of the key generation attack
take effect. It makes sense to study the problem this way, since it is then
straightforward to weaken the black-box assumption to obtain a gray-
box assumption. For lack of a better term, a gray-box may be regarded
as a box that is difficult to look into but not impossible. A compiled
program may be considered to be a gray box with respect to the average
user. In so doing, the security against the successful reverse engineer in
the black-box setting may be regarded as the security that is provided in
the gray-box scenario. In software cryptotrojan attacks, the Trojan can
search for a unique identifier in its host at run-time. For example, a fixed
IP address or a guessable CPU ID can be used as an identifier. By doing
this, a security analysis is formulated that accounts for both hardware and
software security settings.

11.3. Probabilistic Bias Removal Method 239

11.3 Probabilistic Bias Removal Method

One of the tools that will be needed for the kleptographic attack on com-
posite key generation is what we call, for lack of a better term, the proba-
bilistic bias removal method (PBRM). The method is reminiscent of the
technique used to sample a set uniformly at random given a fair coin.
The problem is as follows. Suppose that we have a value x that is drawn
uniformly at random from {0, 1, 2, ..., R − 1}. Being kleptographers, we
cannot display x as such within the output of a cryptosystem since it is
drawn from the wrong set. Suppose that the correct set to draw from
uniformly at random is {0, 1, 2, ..., S − 1}, where S > R > S

2
. Since the

correct set is a superset of the wrong set the value x has in effect been
drawn from the correct set, but using the wrong probability distribution.
That is, x will be one of R,R + 1, ..., S − 1 with probability zero. This
bias towards the lower elements must be removed.

If we could somehow display x in the form of a value x′ that is uniformly
distributed in {0, 1, 2, ..., S − 1}, then the modified version of x will no
longer look suspicious. It is required that the value x be easily derivable
from x′.

PBRM(R,S, x):
input: R and S with S > R > S

2
and x contained in {0, 1, 2, ..., R− 1}

output: e contained in {−1, 1} and x′ contained in {0, 1, 2, ..., S − 1}
1. set e = 1 and set x′ = 0
2. choose a bit b randomly
3. if x < S −R and b = 1 then set x′ = x
4. if x < S −R and b = 0 then set x′ = S − 1− x
5. if x ≥ S −R and b = 1 then set x′ = x
6. if x ≥ S −R and b = 0 then set e = −1
7. output e and x′ and halt

The value −1 indicates failure. It is clear that x is readily obtainable
from x′. To see this note that x = x′ unless x′ ≥ R, in which case
x = S − 1 − x′. Note that this is a Monte Carlo algorithm. If it fails, a
new value for x will have to be chosen.

Lemma 1 Let S > R > S
2
, let x be a value chosen uniformly at random

from {0, 1, 2, ..., R − 1}, and let (e, x′) = PBRM(R,S, x). If e = 1 then
x′ is uniformly distributed in {0, 1, 2, ..., S − 1}.

240 11. SETUP Attack on Factoring Based Key Generation

Proof Define E1 to be the event that x < S − R and b = 1. Define
E2 to be the event that x < S − R and b = 0. Define E3 to be the event
that x ≥ S −R and b = 1. Observe that the probability that a particular
x ∈ {0, 1, 2, ..., R− 1} is chosen is 1

R
.

Pr[E1 ∪ E2 ∪ E3] =
S −R

2R
+
S −R

2R
+
R− (S −R)

2R
=

S

2R
(11.1)

Pr[E1 ∩ (E1 ∪ E2 ∪ E3)] =
S −R

2R
(11.2)

Pr[E2 ∩ (E1 ∪ E2 ∪ E3)] =
S −R

2R
(11.3)

Pr[E3 ∩ (E1 ∪ E2 ∪ E3)] =
R− (S −R)

2R
=

2R− S

2R
(11.4)

Equations 11.1 through 11.4 give rise to the following three conditional
probabilities.

Pr[E1 | E1 ∪ E2 ∪ E3] =
S−R
2R
S
2R

=
S −R

S
(11.5)

Pr[E3 | E1 ∪ E2 ∪ E3] =
2R−S

2R
S
2R

=
2R− S

S
(11.6)

Pr[E2 | E1 ∪ E2 ∪ E3] =
S−R
2R
S
2R

=
S −R

S
(11.7)

Clearly all values for x′ in the interval [0, S −R) are equally likely. Since
there are S − R possible values for x′ in this interval, it follows from
equation 11.5 that when event E1 occurs, each value x′ in this interval is
chosen with probability S−R

S
1

S−R
= 1

S
. A similar argument holds for the

intervals [S−R,R) and [R,S). It follows that if e = 1 then x′ is uniformly
distributed in {0, 1, 2, ..., S − 1}. �

This bias removal method is a useful tool to leak secrets out of a
cryptosystem in an inconspicuous fashion.

11.4. Secretly Embedded Trapdoors 241

11.4 Secretly Embedded Trapdoors

Recall that the fundamental weakness in the pseudorandom number gen-
erator backdoor attack is that once an intermediate seed is exposed, the
future operation of the device is compromised (see Subsection 11.2.3).
This weakness alone may be enough to prevent smart card companies and
designers from ever mounting such an attack. Inserting a deliberate back-
door is a criminal offense that warrants jail time. However, inserting a
deliberate backdoor that is exploitable by people other than the malicious
designer could lead to serious breaches in national security. The study of
robust backdoors is thus of great importance to intelligence agencies and
hackers alike.

This problem can be solved by thinking kleptographically. The idea is
to use cryptography to construct carefully designed cryptotrojans. These
cryptotrojans may be designed into the cryptosystem by a malicious man-
ufacturer, or they may be added to the code by hackers after deployment.
Consider the key generation process. A key generation algorithm outputs
a private key and a public key to the user. Only the public key gets sent
across public networks. So, it is safe to assume that the Trojan horse
designer will be able to obtain the public keys that the Trojan generates.
This is a communications channel between the device and the attacker.
Gus Simmons demonstrated the subversive power of such channels by for-
mally investigating the notion of subliminal channels. If a prime that
divides n can be displayed in the binary representation of n then the at-
tacker could factor n. This is the heart of the attack on composite key
generation and it is based on the subliminal channel that exists in com-
posite key generation (see Subsection 10.4.5). However, simply placing
the prime p in the upper order bits of n would allow anyone to factor n.
This implies that p should be asymmetrically encrypted using the public
key of the attacker. Hence, cryptography should be employed within cryp-
tography to gain exclusive access to everyone’s private keys. This attack
was first published in Crypto ’96 [333]. It was later refined in Eurocrypt
’97 [335]. This attack may be regarded as a cryptotrojan attack since
it exploits the fact that key generation algorithms have access to private
keys, and since the Trojan uses the public key of the attacker.

It is critical that cryptotrojans not interfere with the normal operation
of a device. By definition a subliminal channel has a fixed bandwidth that
can be utilized without hindering the device’s normal operation. Cryp-
totrojans that exploit subliminal channels to leak ciphertexts will therefore

242 11. SETUP Attack on Factoring Based Key Generation

not hinder the expected behavior of the device. Care must of course be
taken to ensure that the subliminal channel is utilized in a covert fashion.
The infected black-box cryptosystem must appear normal in every way.

To discover attacks on other cryptosystems one should ask the follow-
ing questions:

1. What are the outputs of the device?

2. Does the device exhibit a subliminal channel?

3. If so, what is the bandwidth of the channel?

4. What can we hide or encode within the outputs of the device without
hindering its normal operation and without giving the attack away?

The key generator outputs public keys and so it is in public keys that
private keys must be displayed. As a result of the attack, a database of
public keys is in fact a database of public keys and ciphertexts that en-
crypt the corresponding private keys. Only the attacker is able to decrypt
these ciphertexts. A cardinal lesson in kleptography is that subliminal
channels, wherever present, can be used by cryptotrojans to leak public
key encryptions that are computed using the public key of the attacker.

The two basic threats from the attacker’s point of view give rise to the
following two types of adversaries.

1. Distinguishing Adversary: The goal of the distinguishing adversary
is to distinguish an honest implementation from a dishonest imple-
mentation, assuming that neither of these particular devices has ever
been reverse engineered. It is assumed that the distinguishing ad-
versary has successfully reverse engineered one or more devices and
obtained their code and obtained the contents of their non-volatile
memory. It is assumed that the adversary has access to all public
information including public algorithms, public keys, ciphertexts,
signatures, and so on.

2. Cryptanalyzing Adversary: The goal of the cryptanalyzing adver-
sary is to break the security of a given device that has never been
reverse engineered. This may involve factoring a public key, decrypt-
ing a public key encryption, forging a signature, and so on. It is
assumed that the cryptanalyzing adversary has successfully reverse
engineered one or more devices (other than the one in question) and

11.4. Secretly Embedded Trapdoors 243

obtained their code and obtained the contents of their non-volatile
memory. It is assumed that the adversary has access to all public
information including public algorithms, public keys, ciphertexts,
signatures, and so on.

For example, a reverse engineer may have reverse engineered one chip
and will try to use that information to factor the composite that is output
by another chip. When the composites are generated using a kleptographic
attack, the reverse engineer should not be able to factor such a composite.
This should hold even if the reverse engineer can specify the inputs to the
device, for example, the size of the keys that are generated. Even with the
ability to adaptively select the inputs and receive the outputs, the reverse
engineer should not be able to factor other peoples’ composites.

Informally, a SETUP (secretly embedded trapdoor with universal pro-
tection) attack is an algorithm that can be embedded within a cryptosys-
tem to leak encrypted secrets within the output of the cryptosystem, often
through a subliminal channel that exists in that cryptosystem. This en-
cryption is typically performed using the public key of the attacker that
is contained within the cryptosystem. Since the public key is used in a
trapdoor one-way function, and since it is secretly embedded within the
cryptosystem, the resulting code is referred to as having a secretly embed-
ded trapdoor. The information that is leaked through the cryptosystem
is universally protected because even if the cryptanalyzing adversary is
given access to the leaked ciphertext, the reverse engineered device (that
is, the code for the attack and the attacker’s public key), and the contents
of the device’s non-volatile memory, the ciphertext can only be decrypted
by the attacker. This enables the attacker to maintain his or her relative
advantage over other users and even successful reverse engineers. SETUP
attacks are designed to gracefully handle the possibility of reverse engi-
neering and are designed to be robust against users who try to distinguish
honest devices from dishonest ones.

The following is an informal definition of a SETUP.

Definition 4 Let C be an honest black-box cryptosystem that con-
forms to a public specification. Let C ′ be a dishonest version of C that
contains a publicly known cryptotrojan algorithm,5 that was implemented
by an attacker A, and that may contain secret seeding information that is

5For example, that may be obtained by successful reverse engineering, or using the
algorithm from this chapter.

244 11. SETUP Attack on Factoring Based Key Generation

not publicly known. Cryptosystem C ′ constitutes a SETUP version of C
if the following properties hold:

1. Halting Correctness: C and C ′ are efficient algorithms. That is,
they must halt in time polynomial in the length of their inputs, and

2. Output Indistinguishability: The outputs of C and C ′ are indistin-
guishable to all efficient probabilistic algorithms except for the at-
tacker A who can always distinguish, and

3. Confidentiality of outputs of C: The outputs of C are confidential
to all efficient probabilistic algorithms and do not compromise the
cryptosystem that C implements, and

4. Confidentiality of outputs of C ′: The outputs of C ′ are confidential
to all efficient probabilistic algorithms except for the attacker A, and
do not compromise the cryptosystem that C ′ implements, and

5. Ability to compromise C ′: With overwhelming probability the at-
tacker A can decrypt, forge, or otherwise cryptanalyze at least one
private output of C ′ given a sufficient number of public outputs of
C ′.

Property 2 utilizes the notion of polynomial indistinguishability of prob-
ability distributions, a concept that is central to proving the security of
various cryptosystems. Properties 2, 3, and 4 can be made more compre-
hensive by requiring that they hold in an adaptive scenario in which the
adversary adaptively chooses the inputs for the device and receives the
public outputs. This is analogous to providing security against adaptive
chosen ciphertext attacks. It follows that the above definition of a secure
backdoor draws from well-studied concepts in modern cryptography.

11.5 Key Generation SETUP Attack

The notion of a SETUP attack was presented at Crypto ’96 [333] and
was later improved slightly [335]. To illustrate the notion of a SETUP
attack, a particular attack on RSA key generation was presented. The
SETUP attack on RSA keys from Crypto ’96 generates the primes p and
q from a skewed distribution. This skewed distribution was later corrected

11.5. Key Generation SETUP Attack 245

while allowing e to remain fixed6 [341]. A backdoor attack on RSA was
also presented by Crépeau and Slakmon [77]. They showed that if the
device is free to choose the RSA exponent e (which is often not the case in
practice), the primes p and q of a given size can be generated uniformly at
random in the attack. Crépeau and Slakmon also give an attack similar
to PAP in which e is fixed. Crépeau and Slakmon [77] noted the skewed
distribution in the original SETUP attack as well. The specific attack that
is given in this section is based on the first author’s doctoral dissertation.

When the honest algorithm GenPrivatePrimes1 is implemented in
the device, the device may be regarded as an honest cryptosystem C.
The advanced attack on composite key generation is specified by the algo-
rithm GenPrivatePrimes3 below. This algorithm is the infected version
of GenPrivatePrimes1 and when implemented in a device it effectively
serves as the device C ′ in a SETUP attack.

Recall that a random oracle R(·) takes as input a bit string that is
finite in length and returns an infinitely long bit string. Let H(s, i, v)
denote a function that invokes the oracle and returns the v bits of R(s)
that start at the ith bit position, where i ≥ 0. For example, if R(110101) =
01001011110101... then,

H(110101, 0, 3) = 010

and

H(110101, 1, 4) = 1001

and so on.
The algorithm GenPrivatePrimes3 contains the attacker’s public key

N where |N | = W/2 bits, and N = PQ with P and Q being distinct
primes. The primes P and Q are kept private by the attacker. The
attacker’s public key is half the size of p times q, where p and q are the
primes that are computed by the algorithm. Each device contains a unique
W/2-bit identifier ID. The IDs for the devices are chosen randomly,
subject to the constraint that they all be unique. The variable i is stored
in non-volatile memory and is a counter for the number of compromised
keys that the device created. It starts at i = 0. The variable j is not
stored in non-volatile memory. The attack makes use of the four constants
(e0, e1, e2, e3) that must be computed by the attacker and placed within

6For example, with e = 216 + 1 as in many fielded cryptosystems.

246 11. SETUP Attack on Factoring Based Key Generation

the device. These quantities can be chosen randomly, for instance. They
must adhere to the requirements listed in Table 11.1.

It may appear at first glance that the backdoor attack below is need-
lessly complicated. However, the reason for the added complexity be-
comes clear when the indistinguishability and confidentiality properties
are proven. This algorithm effectively leaks a Rabin ciphertext in the up-
per order bits of pq and uses the Rabin plaintext to derive the prime p
using a random oracle.

Note that due to the use of the probabilistic bias removal method,
this algorithm is not going to have the same expected running time as
the honest algorithm GenPrivatePrimes1(). A standard approach to
designing randomized algorithms is to design them to be Monte Carlo
as opposed to Las Vegas. That is, the running time is bounded by a
fixed polynomial and the failure probability is bounded from above. This
guarantees a poly-time algorithm. However, in the case of composite key
generation, such an algorithm either outputs (p, q) or failure. If the
failure probability is not carefully designed in the attack, it might be
possible to distinguish the honest key generator from the dishonest one
based on the frequency of the failure output. The ultimate goal in the
attack is to make it produce outputs that are indistinguishable from the
outputs of an honest implementation. It is easiest to utilize the Las Vegas
key generation algorithm in which the only possible type of output is (p, q).

The value Θ is a constant that is used in the attack to place a limit
on the number of keys that are attacked. It is a restriction that simplifies
the algorithm that the attacker uses to recover the private keys of other
users.

Constant Properties

e0 e0 ∈ ZZ∗
N and L(e0/P) = +1 and L(e0/Q) = +1

e1 e2 ∈ ZZ∗
N and L(e2/P) = −1 and L(e2/Q) = +1

e2 e1 ∈ ZZ∗
N and L(e1/P) = −1 and L(e1/Q) = −1

e3 e3 ∈ ZZ∗
N and L(e3/P) = +1 and L(e3/Q) = −1

Table 11.1 Constants used in key generation attack

11.5. Key Generation SETUP Attack 247

GenPrivatePrimes3():
input: none
output: W/2-bit primes p and q such that p 6= q and |pq| = W
1. if i > Θ then output GenPrivatePrimes1() and halt
2. update i in non-volatile memory to be i = i+ 1
3. let I be the |Θ|-bit representation of i
4. for j = 0 to ∞ do:
5. choose x randomly from {0, 1, 2, ..., N − 1}
6. set c0 = x
7. if gcd(x,N) = 1 then
8. choose bit b randomly and choose u randomly from ZZ∗

N

9. if J(x/N) = +1 then set c0 = eb
0e

1−b
2 u2 mod N

10. if J(x/N) = −1 then set c0 = eb
1e

1−b
3 u2 mod N

11. compute (e, c1) = PBRM(N, 2W/2, c0)
12. if e = −1 then continue
13. if u > −u mod N then set u = −u mod N /* for faster decr. */
14. let T0 be the W/2-bit representation of u
15. for k = 0 to ∞ do:
16. compute p = H(T0||ID||I||j, kW

2
, W

2
)

17. if p ≥ 2W/2−1 + 1 and p is prime then break
18. if p < 2W/2−1 + 1 or if p is not prime then continue
19. c2 = RandomBitString1()
20. compute n′ = (c1 || c2)
21. solve for the quotient q and the remainder r in n′ = pq + r
22. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
23. if q is not prime then continue
24. if |pq| < W or if p = q then continue
25. if p > q then interchange the values p and q
26. set S = (p, q) and break
27. output S, zeroize everything in memory except i, and halt

It is assumed that the user, or the device that contains this algorithm,
will multiply p by q to obtain the public key n = pq. Making n publicly
available is perilous since with overwhelming probability p can easily be
recovered by the attacker. Note that c1 will be displayed verbatim in the
upper order bits of n = n′ − r = pq unless the subtraction of r from n′

causes a borrow bit to be taken from the W/2 most significant bits of n′.
The attacker can always add this bit back in to recover c1.

Suppose that the attacker, who is either the malicious manufacturer or
the hacker that installed the Trojan horse, obtains the public key n = pq.

248 11. SETUP Attack on Factoring Based Key Generation

The attacker is in a position to recover p using the factors (P,Q) of the
Rabin public key N . Rabin decryption is described in Appendix C.1.5.
The factoring algorithm attempts to compute the two smallest ambivalent
roots of a perfect square modulo N . Let t be a quadratic residue modulo
N . Recall that a0 and a1 are ambivalent square roots of t modulo N
if a2

0 ≡ a2
1 ≡ t mod N , a0 6= a1, and a0 6= −a1 mod N . The values

a0 and a1 are the two smallest ambivalent roots if they are ambivalent,
a0 < −a0 mod N , and a1 < −a1 mod N . The Rabin decryption algorithm
can be used to compute the two smallest ambivalent roots of a perfect
square t, that is, the two smallest ambivalent roots of a Rabin ciphertext.

For each possible combination of ID, i, j, and k the attacker computes
the algorithm FactorTheComposite given below. Since the key generation
device can only be invoked a reasonable number of times, and since there
is a reasonable number of compromised devices in existence, this recovery
process is tractable.

FactorTheComposite(n, P,Q, ID, i, j, k):
input: positive integers i, j, k with 1 ≤ i ≤ Θ

distinct primes P and Q
n which is the product of distinct primes p and q
Also, |n| must be even and |p| = |q| = |PQ| = |ID| = |n|/2

output: failure or a non-trivial factor of n
1. compute N = PQ
2. let I be the Θ-bit representation of i
3. W = |n|
4. set U0 equal to the W/2 most significant bits of n
5. compute U1 = U0 + 1
6. if U0 ≥ N then set U0 = 2W/2 − 1− U0 /* undo the PBRM */
7. if U1 ≥ N then set U1 = 2W/2 − 1− U1 /* undo the PBRM */
8. for z = 0 to 1 do:
9. if Uz is contained in ZZ∗

N then
10. for ` = 0 to 3 do: /* try to find a square root */
11. compute W` = Uze`

−1 mod N
12. if L(W`/P) = +1 and L(W`/Q) = +1 then
13. let a0, a1 be the two smallest ambivalent roots of W`

14. let A0 be the W/2-bit representation of a0

15. let A1 be the W/2-bit representation of a1

16. for b = 0 to 1 do:
17. compute pb = H(Ab||ID||I||j, kW

2
, W

2
)

18. if p0 is a non-trivial divisor of n then

11.6. Security of the SETUP Attack 249

19. output p0 and halt
20. if p1 is a non-trivial divisor of n then
21. output p1 and halt
22. output failure and halt

The quantity U0 + 1 is computed since a borrow bit may have been
taken from the lowest order bit of c1 when the public key n = n′ − r is
computed.

11.6 Security of the SETUP Attack

The entire proof that this attack constitutes a secretly embedded trapdoor
with universal protection will not be given. However, the two non-trivial
aspects of this proof will be sketched out. It is stressed that this is a proof
in the random oracle model and that when the attack is implemented, it
is subject to the weaknesses of the primitive used to instantiate the oracle.
The proof that the attack satisfies Property 2 of a SETUP attack will be
outlined. It is shown that the primes that are output by the cryptotrojan
are computationally indistinguishable from the primes that are output
by the honest key generation algorithm. The proof that the outputs are
confidential, even against a successful reverse engineer, is then outlined.
This is Property 4 of a SETUP attack and it holds using a reduction
argument.

11.6.1 Indistinguishability of Outputs

It is assumed that the distinguishing adversary knows the cryptotrojan
algorithm. This could be from prior reverse engineering endeavors. Hence,
the attacker’s Rabin public key N is known to the adversary. Since the
adversary has not reverse engineered the particular device in question the
adversary does not know the value ID right off the bat.

There is nothing to distinguish when i > Θ, so we will consider the
case that i ≤ Θ. The first observation is that indistinguishability does not
hold against an adversary that has unbounded computational resources.
Such an adversary can factor N and hence knows P and Q. This means
that the adversary is capable of decrypting Rabin ciphertexts when they
are embedded in the upper order bits of pq. The attacker can guess a value
for ID and then invoke the key generation device, say four times. The
adversary collects the four pairs of primes that the device outputs. This

250 11. SETUP Attack on Factoring Based Key Generation

data set is used to help test if the guess for ID was correct or not. The
adversary knows that j will be zero at the beginning of each invocation.
The adversary also knows that the values for i will be i, i+ 1, i+ 2, and
i + 3. Since i ≤ Θ can be guessed, the adversary will be able to verify
correctly with overwhelming probability whether or not the guess for ID
was correct. The adversary can probe the integrity of the device’s output
values by performing the same computations that the device would do
if it were dishonest and comparing the results with the data set. If the
values do not match the data set, ID may be guessed again. In time,
the computationally unbounded adversary will be able to try all IDs and
hence distinguish an honest device from a dishonest one.

The attack is, however, indistinguishable to all adversaries that are
polynomially bounded in computational power.7 Let C denote an honest
device that uses GenPrivatePrimes1() and let C ′ denote a dishonest
device that uses GenPrivatePrimes3(). A key observation is that the
primes p and q that are output by the dishonest device are chosen from
the same set and same probability distribution as the primes p and q that
are output by the honest device. So, it will be shown that p and q in
the dishonest device C ′ are chosen from the same set and from the same
probability distribution as p and q in the honest device C.8

First consider the value p. In C, clearly p is chosen randomly from
the set of W/2-bit prime numbers due to the first loop. Now consider the
device C ′. Note that the substring (ID||I||j) is completely unique to the
jth iteration in the inner loop of the ith invocation in the unique device that
contains ID. Since (T0||ID||I||j) is the argument to the random oracle,
this means that this oracle input is different from every other oracle input,
even when considering all outermost iterations and all devices. Since the
output of R(T0||ID||I||j) is sampled W/2 bits at a time, it follows that
p is chosen uniformly at random from all W/2-bit prime numbers in C ′.
Therefore, C ′ generates p from the same set and probability distribution
as p in C.

It remains to consider the set and distribution that is used to choose q.
In C, clearly q is chosen randomly from the set of W/2-bit prime numbers.
Now consider the device C ′. If x is not relatively prime to N then c0 is
assigned the value x. If x is relatively prime to N , then c0 is set to be a

7Polynomial in W/2, the security parameter of the attacker’s Rabin modulus N .
8The key to this being true is that n′ is a random W -bit string and so it can have

a leading zero. So, |pq| can be less than W bits, the same as in the operation in the
honest device before p and q are output.

11.6. Security of the SETUP Attack 251

randomly chosen element from ZZ∗
N using the four constants e0, e1, e2, and

e3. It follows that c0 is a random element of {0, 1, 2, ..., N − 1}. It follows
from Lemma 1 that c1 is a random element of {0, 1, 2, 3, ..., 2W/2 − 1}.
Hence, c1 is a randomly chosen W/2-bit string. Clearly c2 is a randomly
chosen W/2-bit string as well. Due to the concatenation of c1 and c2 it
follows that n′ is a random W -bit string.

Using Euclid’s division equation with quotient q and r as the remain-
der, n′ = pq + r = (2W/2−1 + 1)2 + 0 is the smallest possible value for
n′ such that p, q ≥ 2W/2−1 + 1. But this equals 2W−2 + 2W/2 + 1 and
is thus a (W − 1)-bit quantity. The greatest possible W/2-bit integer is
p = q = 2W/2−1. So, n′ = pq+r = pq+(p−1) = (2W/2−1)2+(2W/2−1)−1
is the greatest possible value for n′ such that p and q are W/2-bit inte-
gers. But this equals 2W − 2W/2 − 1 and is hence a W -bit quantity. This
shows that the smallest and largest possible values for n′ = pq + r where
|p| = |q| = W/2 and p, q ≥ 2W/2−1 + 1 are contained in {0, 1}W . Hence,
all values for n′ = pq + r where |p| = |q| = W/2 and p, q ≥ 2W/2−1 + 1
are contained in {0, 1}W . It follows that for every pair (p, q) such that
|p| = |q| = W/2 and p, q ≥ 2W/2−1 + 1, there are p values in {0, 1}W that
when divided by p yield q as the quotient. Since all n′ ∈ {0, 1}W are
equally likely, q is chosen uniformly at random from the W/2 bit integers
greater than or equal to 2W/2−1 + 1 in C ′. Those values for q that are
composite will be rejected. Hence, q is chosen uniformly at random from
all W/2-bit primes.

This can be conceptualized as follows. The W/2-bit prime p can be
fixed and the space {0, 1}W can be “divided” into regions containing p
numbers. A region consists of qp+ 0,qp+ 1,qp+ 2,...,qp+ p− 1. Observe
that when each of these values is divided by p the quotient is q. Note also
that there are p such values. The regions are the rows below.

. . .

(q−1)∗p+0 (q−1)∗p+1 (q−1)∗p+2 . . . (q−1)∗p+p−1

(q+0)∗p+0 (q+0)∗p+1 (q+0)∗p+2 . . . (q+0)∗p+p−1

(q+1)∗p+0 (q+1)∗p+1 (q+1)∗p+2 . . . (q+1)∗p+p−1

. . .

A dart can then be thrown at {0, 1}W . Which region if any the dart lands
in determines the value of q. Due to acceptance/rejection no region is
preferred and exactly one valid region must be selected.

252 11. SETUP Attack on Factoring Based Key Generation

The remaining tests (that make sure that p 6= q, etc.) are identical in
C and C ′. Hence, the outputs of C and C ′ are drawn from the same set
and probability distribution. This implies that the only way to distinguish
is to guess the oracle input ID correctly. Since ID is not guessable and
since it is kept secret from all adversaries in the black-box cryptosystem
C ′, it follows that the outputs of C and C ′ are indistinguishable to all
computationally bounded adversaries.

11.6.2 Confidentiality of Outputs

An important observation is that the security parameter of the attacker’s
public key is half the value of the security parameter of the public key
that is being generated. For instance, if the key being generated is a 1024-
bit composite then the attacker’s composite is 512 bits in length. This is
clearly a risky scenario since if the device is reverse engineered, then the
effective security parameter is 512. However, if the key that is generated is
2048 bits, then the attacker’s key is 1024 bits. It is possible to modify this
attack so that the attacker’s public key has a higher security parameter
in the SETUP attack. However, such variants will not be discussed here.9

Recall that Property 4 of a SETUP attack (see Section 11.4) is con-
fidentiality against a reverse engineering adversary. In this section a re-
duction argument is given to prove that Property 4 holds. The claim is
that there exists an algorithm that can break the confidentiality of the
cryptotrojan attack if and only if there exists an algorithm that can factor
efficiently. Clearly if factoring can be broken then there exists an efficient
algorithm to break the confidentiality of the cryptotrojan. It remains to
show the converse, namely, that if there exists an efficient algorithm that
can break the cryptotrojan then factoring is easy.

In a nutshell this is proven by showing that if an efficient algorithm
exists that violates the confidentiality property then either W/2-bit com-
posites PQ can be factored or W -bit composites pq can be factored. This
reduction is not a randomized reduction, yet it goes a long way to show
the security of the cryptotrojan attack.

With regard to confidentiality it is assumed that the computationally
bounded adversary has reverse engineered the device in question and hence
knows the value for ID that it contains. It is assumed that the device has
been reconstituted and redeployed. It is also assumed that the adversary
knows the current value for i that exists in the non-volatile memory store of

9For example, elliptic curve cryptosystems can be used [157, 158, 162, 187, 188, 189].

11.6. Security of the SETUP Attack 253

the device. These are very generous assumptions about what the adversary
knows.

To prove confidentiality of the dishonest device it is necessary to show
that the adversary cannot compute p in n = pq when the adversary has
the following view,

viewC′ = (n, ID, i,N, e0, e1, e2, e3) (11.8)

The adversary also knows the cryptotrojan algorithm. What the adversary
does not have access to is the coin flips that the cryptotrojan will generate
once it has been redeployed.

The proof of confidentiality is by contradiction. Suppose for the sake of
contradiction that a computationally bounded algorithm A exists that vio-
lates the confidentiality property. For a randomly chosen input, algorithm
A will return a non-trivial factor of n with non-negligible probability. The
adversary could thus use algorithm A to break the confidentiality of the
system. Algorithm A factors n when it feels so inclined, but must do so a
non-negligible portion of the time.

It is important to first set the stage for the proof. The adversary that
we are dealing with is trying to break a public key pq where p and q were
computed by the cryptotrojan. Hence, pq was created using a call to the
random oracle R. It is conceivable that an algorithm A that breaks the
confidentiality will make oracle calls as well to break pq. Perhaps A will
even make some of the same oracle calls as the cryptotrojan. However,
in the proof we cannot assume this. All we can assume is that A makes
at most a polynomial10 number of calls to the oracle and we are free to
“trap” each one of these calls and take the arguments.

Consider the following algorithm SolveFactoring(N, n) that uses A as
an oracle to solve the factoring problem.

SolveFactoring(N, n):
input: N which is the product of distinct primes P and Q

n which is the product of distinct primes p and q
Also, |n| must be even and |p| = |q| = |N | = |n|/2

output: failure, or a non-trivial factor of N or n
1. compute W = 2|N |
2. for k = 0 to 3 do:

10Polynomial in W/2.

254 11. SETUP Attack on Factoring Based Key Generation

3. do:
4. choose ek randomly from ZZ∗

N

5. while J(ek/N) 6= (−1)k

6. choose ID to be a random W/2-bit string
7. choose i randomly from {1, 2, ...,Θ}
8. choose bit b0 randomly
9. if b0 = 0 then
10. compute p = A(n, ID, i,N, e0, e1, e2, e3)
11. if p < 2 or p ≥ n then output failure and halt
12. if n mod p = 0 then output p and halt /* factor found */
13. output failure and halt
14. output CaptureOracleArgument(ID, i,N, e0, e1, e2, e3) and halt

CaptureOracleArgument(ID, i,N, e0, e1, e2, e3):
1. compute W = 2|N |
2. let I be the Θ-bit representation of i
3. for j = 0 to ∞ do: /* try to find an input that A expects */
4. choose x randomly from {0, 1, 2, ..., N − 1}
5. set c0 = x
6. if gcd(x,N) = 1 then
7. choose bit b1 randomly and choose u1 randomly from ZZ∗

N

8. if J(x/N) = +1 then set c0 = eb1
0 e

1−b1
2 u1

2 mod N

9. if J(x/N) = −1 then set c0 = eb1
1 e

1−b1
3 u1

2 mod N
10. compute (e, c1) = PBRM(N, 2W/2, c0)
11. if e = −1 then continue
12. if u1 > −u1 mod N then set u1 = −u1 mod N
13. let T0 be the W/2-bit representation of u1

14. for k = 0 to ∞ do:
15. compute p = H(T0||ID||I||j, kW

2
, W

2
)

16. if p ≥ 2W/2−1 + 1 and p is prime then break
17. if p < 2W/2−1 + 1 or if p is not prime then continue
18. c2 = RandomBitString1()
19. compute n′ = (c1 || c2)
20. solve for the quotient q and the remainder r in n′ = pq + r
21. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
22. if q is not prime then continue
23. if |pq| < W or if p = q then continue
24. simulate A(pq, ID, i, N, e0, e1, e2, e3), watch calls to R, and

store the W/2-most significant bits of each call in list ω

11.6. Security of the SETUP Attack 255

25. remove all elements from ω that are not contained in ZZ∗
N

26. let L be the number of elements in ω
27. if L = 0 then output failure and halt
28. choose α randomly from {0, 1, 2, ..., L− 1}
29. let β be the αth element in ω
30. if β ≡ ±u1 mod N then output failure and halt
31. if β2 mod N 6= u2

1 mod N then output failure and halt
32. compute P = gcd(u1 + β,N)
33. if N mod P = 0 then output P and halt
34. compute P = gcd(u1 − β,N)
35. output P and halt

Note that with non-negligible probability A will not balk due to the
choice of ID and i. Also, with non-negligible probability e0, e1, e2, and
e3 will conform to the requirements in the cryptotrojan attack. So, when
b0 = 0 these four arguments to A will conform to what A expects with non-
negligible probability. Now consider the call to A when b0 = 1. Observe
that the value pq is chosen from the same set and probability distribution
as in the cryptotrojan attack. So, when b0 = 1 the arguments to A will
conform to what A expects with non-negligible probability. It may be
assumed that A balks whenever e0, e1, e2, and e3 are not appropriately
chosen without ruining the efficiency of SolveFactoring. So, for the re-
mainder of the proof we will assume that these four values are as defined
in the cryptotrojan attack.

Let u2 be the square root of u2
1 mod n such that u2 6= u1 and u2 <

−u2 mod n. Also, let T1 and T2 be u1 and u2 padded with leading zeros as
necessary such that |T1| = |T2| = W/2 bits, respectively. Denote by E the
event that in a given invocation algorithm A calls the random oracle R at
least once with either T1 or T2 as the W/2 most significant bits. Clearly
only one of the two following possibilities hold:

1. Event E occurs with negligible probability.

2. Event E occurs with non-negligible probability.

Consider case (1). Algorithm A can detect that n was not generated by
the cryptotrojan by appropriately supplying T1 or T2 to the random oracle.
Once verified, A can balk and not output a factor of n. But in case (1)
this can only occur at most a negligible fraction of the time since changing
even a single bit in the value supplied to the oracle elicits an independently

256 11. SETUP Attack on Factoring Based Key Generation

random response. By assumption, A returns a non-trivial factor of n a
non-negligible fraction of the time. Since the difference between a non-
negligible number and negligible number is a non-negligible number it
follows that A factors n without relying on the random oracle. So, in case
(1) the call to A in which b0 = 0 will lead to a non-trivial factor of n with
non-negligible probability.

Now consider case (2). Since E occurs with non-negligible probability
it follows that Amay in fact be computing non-trivial factors of composites
n by making oracle calls and constructing the factors in a straightforward
fashion. However, whether or not this is the case is immaterial. Since
A makes at most a polynomial number of calls11 to R the value for L
cannot be too large. Since with non-negligible probability A passes either
T1 or T2 as the W/2 most significant bits to R and since L cannot be too
large it follows that β and u1 will be ambivalent roots with non-negligible
probability. Algorithm A has no way of knowing which of the two smallest
ambivalent roots SolveFactoring chose in constructing the upper order
bits of pq. Algorithm A, which may be quite uncooperative, can do no
better than guess at which one it was, and it could in fact have been
either. Hence, SolveFactoring returns a non-trivial factor of N with non-
negligible probability in this case.

It has been shown that in either case, the existence of A contradicts
the factoring assumption. So, the original assumption that adversary A
exists is wrong. This proves that the cryptotrojan satisfies Property 4 of
a SETUP attack.

Immediately following the test for p = q in C and in C ′ it is possible to
check that gcd(e, (p−1)(q−1)) = 1 and restart the entire algorithm if this
does not hold. This handles the generation of RSA primes by taking into
account the public RSA exponent e. This preserves the indistinguishabil-
ity of the output of C ′ with respect to C.

11.7 Detecting the Attack in Code Reviews

Since the attack is indistinguishable in black-box implementations, the
only way to detect its presence is to analyze what is in the black box.12 This,
of course, implies that the black box can be breached and the assumption

11Polynomial in W .
12Care must be taken to buffer the computations and power consumption, and so

on, in order to guard against side channel analysis.

11.7. Detecting the Attack in Code Reviews 257

broken. However, it is naive to think that the attack can be detected by
analyzing the code for GenPrivatePrimes1() alone. The reason for this
is that the attack can be carried out at a lower level, for example, in a
random number generation routine.

For concreteness, consider a dishonest version of RandomBitString1
called RandomBitString2. Rather than choosing strings perfectly at ran-
dom, it utilizes GenPrivatePrimes3 to arrive at output values. This may
be accomplished as follows. GenPrivatePrimes3 is invoked to obtain
the compromised values p and q. It then generates a series of perfectly
random W/2-bit strings that it will utilize in the next set of outputs.
The length of this series is determined as follows. The series terminates
when exactly two values that satisfy the requirements for p and q in
GenPrivatePrimes1 are found. Hence, the last value is the prime q.
These two primes are then thrown away and replaced by the primes that
were output by GenPrivatePrimes3 to obtain the actual series. Each
time that RandomBitString1 is invoked it outputs the next value in the
series. When the series is exhausted it mounts the attack again.

So why will this attack work? Observe that when GenPrivatePrimes1
invokes RandomBitString2 over and over, it will be going through the
carefully chosen series of W/2-bit strings. As a result it will arrive at
the compromised values for p and q since they are the first two satisfac-
tory primes. The reason why the series was chosen as such was to prevent
arousing any suspicion in GenPrivatePrimes1. Observe that the compro-
mised primes p and q occur with the exact same frequency that one would
expect from an honest random number generator RandomBitString1.

There is a terribly important message here for security practitioners
that perform code reviews. A SETUP attack can be implemented at any
level prior to the private key p and q being output by the key generation
device. The attack could even occur within the casing that houses the
source of physical randomness. Detecting a SETUP attack is an extremely
involved process in practice and requires a generous amount of time as well
as full and complete disclosure of all algorithms and schematic diagrams
to truly rule out the possible existence of backdoors.13

This issue is of particular importance when company A hires company
B to do a code review. Very often company A will have some form of flag-
ship product or service that performs random number generation or key
generation. They have a vested interest in their product or service being

13Even then the devices that are manufactured might not actually correspond to the
circuit designs that are provided to the examiner.

258 11. SETUP Attack on Factoring Based Key Generation

viewed in a positive light by the general public. It is not uncommon for
such companies to (1) hire company B that is well known for performing
high-quality software reliability and security reviews, (2) assign their own
developers as points of contact for company B, and (3) expect to derive a
press release that states how amazing their product or service is. This is a
recipe for disaster. The points of contact are in a precarious position. Giv-
ing the code to real software experts often make them very nervous, and
justifiably so. Any bug, error, or fault that is found will imply a mistake
on their part. Simply put, they don’t want company B to find anything
and will often take measures to prevent them from finding anything. As a
result they will often try to deliver as little code as possible for the review.
A SETUP attack cannot be detected at all unless all code and schematic
diagrams are provided to company B by company A.14

Corporations charged with deploying smart cards as well as foreign
information ministries need to pay particular attention to these backdoor
attacks. When a tiger team is handed a smart card and its PIN and is
asked to detect whether or not a backdoor exists, they will not be able to
do so. A properly implemented SETUP attack cannot be detected under
any circumstances. Such a SETUP attack would have to take into account
timing analysis, differential power analysis, and so on, and be implemented
accordingly.

Totalitarian governments are in an ideal position to force their popu-
lace to utilize smart cards. The rationale behind outfitting the people as
such is manyfold. For one, in some countries women are not permitted
to leave the country without the permission of their husbands or fathers.
One can envision a situation in which a married woman cannot leave the
country without a digitally signed form from her husband. In the event
that a monarchy contracts the implementation work to a foreign corpo-
ration, the corporation or the vendor they choose would be in an ideal
position to mount SETUP attacks in the smart cards that are sent.

To make matters worse, the cryptotrojans could be placed in only half
the delivered devices, thereby confounding the detectability even under
reverse engineering. These backdoors could allow foreign agents to mas-
querade as any given citizen. It behooves foreign information ministries
and ordinary citizens alike to learn exactly what cryptographic algorithms
they are using in black-box devices, since the migration to cryptographic

14We have seen this occur too many times during commercial consulting engagements
and it has provided impetus for writing this book.

11.8. Countering the SETUP Attack 259

machinery can actually weaken authentication checks in certain circum-
stances.

11.8 Countering the SETUP Attack

To avoid this attack, the following heuristic can be used to generate com-
posite keys. It is based on the SETUP attack itself with some obvious
modifications.

GenPrivatePrimes4():
input: none
output: W/2-bit primes p and q such that p 6= q and |pq| = W
1. for j = 0 to ∞ do:
2. generate s1, s2, c2 to be random W/2-bit strings
3. compute c1 = H(s1, 0,W/2)
4. for k = 0 to ∞ do:
5. p = H(s1||s2,

kW
2
,W/2)

6. if p ≥ 2W/2−1 + 1 and p is prime then break
7. compute n′ = (c1 || c2)
8. solve for the quotient q and the remainder r in n′ = pq + r
9. if q is not a W/2-bit integer or if q < 2W/2−1 + 1 then continue
10. if q is not prime then continue
11. if |pq| < W or if p = q then continue
12. set S = (p, q, s1, s2, k) and break
13. output S, zeroize all values in memory, and halt

The general public can verify that the SETUP attack has not been
performed on a given modulus. This can be done by checking that either
H(s1, 0,W/2) or H(s1, 0,W/2) + 1 equals the W/2 uppermost bits of n.
Here the +1 accounts for a potential borrow bit having been taken from
c1. The problem with publishing s1 is that it can constitute a subliminal
channel by itself. So, ideally the private key owner and possibly a certifi-
cation authority should perform this check. The private key owner should
always keep (p, q, s2, k) secret.

The seed s2 is for the benefit of the owner of p and q. A heuristic way
to check that p was generated using H is to verify that the prime p is
equal to H(s1||s2,

kW
2
,W/2) and that a smaller value for k does not make

H(s1||s2,
kW
2
,W/2) a prime that is greater than or equal to 2W/2−1 + 1.

The goal is to force devices that implement this algorithm to first commit

260 11. SETUP Attack on Factoring Based Key Generation

to s1 in the upper order bits of n and then commit to s2 in the prime
p. This method is not perfect since about O(log(log(n))) bits can still be
leaked in n using brute force key generation.

It should be noted that this defense only protects against the partic-
ular SETUP attack described above. In general, it is not clear that the
aforementioned attack that uses a pseudorandom tape tp for key genera-
tion can be avoided at all without resorting to an interactive form of key
generation. It is well known that many subliminal channels can be foiled
by relying on protocols in which a trusted party influences every random
value that is derived. For RSA key generation in particular, a protocol has
been given that allows for verifiable randomness [147]. In this protocol,
the user and the CA (a trusted third party) generate a key pair for the user
and the CA does not learn the private key. At the end of the protocol the
CA is convinced that the key pair has the correct form, that it is randomly
chosen, and that its randomness was influenced by the CA’s coin tosses.
It is mentioned that this protocol can be conducted using two indepen-
dently designed implementations that communicate with each other to foil
kleptographic attacks. For example, one peripheral device can act as the
“user” and another peripheral can act as the trusted third party in the
protocol. This is a promising direction for guarding against kleptographic
attacks.

For non-interactive key generation, one can try to separate the source
of randomness from the key generation algorithm, and users can verify the
operation of the deterministic portion of the whole key generation process
at most only polynomially many times. However, the deterministic key
generation device may in fact have a secret on-board random number
generator that it uses in a given invocation with inverse-polynomial prob-
ability. Hence, the resulting deterministic key generator may in fact be a
probabilistic poly-time Turing machine that mounts randomized SETUP
attacks infrequently. It then becomes a game for the manufacturer to see
how many invocations he or she can compromise without being detected.
It is a game because detecting the attack amounts to choosing a large
enough polynomial to represent the number of output values that are an-
alyzed. The manufacturer can always choose a larger polynomial for its
inverse-polynomial attack probability.

A more general heuristic can be applied to any scenario involving a
randomized algorithm. The device can choose a seed s1 randomly, and
use the oracle output R(s1) as the random tape in the probabilistic Turing
machine. The device outputs its normal computation along with s1. Given

11.9. Thinking Outside the Box 261

s1, a verifier can check the output against the advertised algorithm that
the device is said to implement. This applies to cryptographic algorithms
and in fact all randomized algorithms. For example, when Quicksort is
implemented in hardware this approach can be used to help verify its
operation. However, this approach still suffers from the possibility that
the device will operate in a Byzantine fashion some of the time.

11.9 Thinking Outside the Box

Side channel analysis is another approach that can be used to attempt to
steal private keys and other private information from smart card imple-
mentations. Side channels are outside the box attacks that seek to derive
sensitive information from a cryptosystem based on the operating charac-
teristics of the device. Devices are real machines and they use power, give
off heat, and take a certain amount of time to run based on the particular
parameters used in the cryptosystem.

Kocher presented timing attacks against public key cryptographic al-
gorithms [159]. Kocher’s result was in fact presented in the same session
in Crypto ’96 as the original SETUP attack on RSA. Timing attacks ap-
ply to both software as well as hardware cryptographic implementations.
They exploit the fact that different private keys cause measurably different
running times in many cryptographic algorithms whenever they are im-
plemented in a straightforward fashion. It was shown that cryptographic
operations need to be buffered to make them have indistinguishable run-
ning times irrespective of which particular private keys are used.

Power analysis is another form of side-channel analysis that seeks to
derive secret key information from hardware based cryptosystems. It has
been shown that for certain algorithms, by measuring the power consump-
tion of devices during their operation it may be possible for the attacker
to deduce private key information from the device [26, 160].

These side channels show that it is not sufficient in practice to rely
entirely on abstract models of computation such as probabilistic Turing
machines to develop secure cryptographic devices. To put it another way,
formal proofs of security are necessary but not sufficient in achieving real-
world security. Side channel attacks are very important to consider when
developing real-world cryptographic machinery and are currently receiving
a lot of attention by the research community.

262 11. SETUP Attack on Factoring Based Key Generation

11.10 The Isaac Newton Institute Lecture

The idea of a SETUP attack grew out of our research on cryp-
tovirus attacks. The discovery resulted from the following question
that we asked ourselves: what if the file that is asymmetrically en-
crypted by the virus resides inside a cryptosystem? The notion of
hiding data in relation to a cryptosystem immediately suggested that
subliminal channels should be considered. At the time, I was well
aware of the notion of a subliminal channel. However, Adam had
never heard of this notion and ended up rediscovering the concept
by chancing upon the subliminal channel in RSA composites. I re-
ferred Adam to Simmons’ work and Yvo Desmedt’s work on abuses in
cryptography [89] and he learned that both the notion of a subliminal
channel as well as the particular channel in composites was far from
new. However, leaking asymmetrically encrypted data through these
channels was new, and together we articulated the result in Crypto
’96, taking care to appropriately relate the discovery to previous work
on information hiding.

Upon investigating the SETUP attack on RSA key generation it
became clear that by combining public key cryptography with sub-
liminal channels, very powerful backdoors could be implemented in
cryptosystems. The idea is to take a cryptosystem that exhibits a
subliminal channel, and plant a cryptotrojan inside it. The payload
of the cryptotrojan leaks asymmetric ciphertexts through the sublim-
inal channel in the cryptosystem. To prevent the subliminal attack
from being found, two things became readily apparent. It is neces-
sary that the cryptosystem be a black-box to hide the presence of the
Trojan, and it is necessary that users not be able to detect when the
subliminal channel is being used. This latter consideration suggested
that it wasn’t enough to rely on the fact that outputs look normal.
The notion of polynomial indistinguishability was well known to us.
So, the most obvious threat model to use was that of a probabilis-
tic poly-time adversary that tries to distinguish honest cryptosystem
outputs from those that result from the cryptotrojan.

The discovery showed that in addition to cryptovirus extortion
attacks, public key cryptography proved to be an invaluable tool for
stealing private keys secretly. It showed that even more cryptographic
notions and techniques could be applied to subvert computer systems.

11.10. The Isaac Newton Institute Lecture 263

In particular, the notion of polynomial indistinguishability became
critical for formally proving the security of the backdoor. It was the
combination of data theft and strong cryptographic techniques that
led to the term kleptography, which I coined.

In 1996 the Isaac Newton Institute for Mathematical Sciences at
the University of Cambridge held a year-long program on Computer
Security, Cryptography, and Coding Theory. I was invited to attend
and stayed there from January to February. Adam and I agreed that
this was a good time to present our findings on SETUP attacks to
the greater research community.

As it turns out, Gus Simmons was present at the Isaac Newton
Institute when I arrived. I met with him and mentioned that I had
some results that might be of interest to him since they were closely
related to his work on subliminal channels. One afternoon I went to
his office and conveyed the ideas to him, and he absorbed them in
their entirety. I later gave a talk that covered the attack on RSA key
generation, and found myself having to explain a number of times at
the board the specifics behind how the private key is encoded within
the bit representation of the corresponding public key itself.

I remember a few reactions that I hope I will not misrepresent,
since this all happened some time ago. Whitfield Diffie was in the
audience and was carefully listening to every word I said. He ex-
plained that for years he had been telling people that the only way
that cryptosystems can be trusted is by implementing them in hard-
ware that is thoroughly tested. One of the key rationales behind this
is that when the code is in read-only memory, it cannot be tampered
with. He remarked that in light of the SETUP attack, this wisdom is
flawed. Diffie added that the attack shows that the trust of the user
must be placed in the manufacturer instead of the device. If I remem-
ber correctly I nodded my head and found that he truly understood
the implications of this threat.

In response to the lecture, Peter Landrock (who was then at the
University of Aarhus but has since joined Cryptomatics) commented,
“You guys have really vicious minds.”

Whereas in other scientific forums this sort of statement might have
been insulting, I interpreted it as the highest form of compliment.

He then added, “You take the mathematical notion of public key
crypto and apply it to do such nasty things.”

“Yes,” I responded, “that is exactly right.”

264 11. SETUP Attack on Factoring Based Key Generation

I later e-mailed Adam a short note of encouragement and men-
tioned that the overall gist of our work was both clearly understood
and well received by several distinguished cryptographers. At no time
during my stay did I mention the fact that the idea was derived from
a cryptovirus extortion attack. It seemed prudent to let the research
community digest these attacks one at a time so that the software
industry would have a chance to build defenses, and so that I would
not develop a reputation as a renegade cryptographer. Adam and
I deferred explaining these attacks in a comprehensive fashion until
now.

Chapter 12

SETUP Attacks on
Discrete-Log Cryptosystems

Existing cryptosystems based on the discrete logarithm problem are in no
way immune to the threat of kleptographic attacks. This chapter expands
upon the previous chapter by showing how to mount SETUP attacks on
such cryptosystems. The notion of a discrete-log kleptogram is introduced
that allows the attacker to obtain secret information covertly from fielded
cryptosystems. What is novel about this approach is that it implements
SETUP attacks without using explicit subliminal channels. Rather than
employing information leaking channels, the implementation uses internal
cryptographic tools to generate opportunities to leak information. As
before, the approach avoids trivial attacks on the pseudorandomness of the
device and similar simple attacks that would enable a successful reverse
engineer to learn future states of the device.

The approach employs the discrete logarithm as a one-way function
thereby assuring forward secrecy. The discrete-log kleptogram primitive
is then used to attack the Diffie-Hellman key exchange [92]. The attack
gives the attacker access to the shared secret key that is generated in the
exchange. The primitive is then applied to discrete-log based public key
encryption algorithms. It is shown how this gives the attacker access to
plaintext. Finally, it is shown how to apply the primitive to discrete-log
based signature algorithms to enable the attacker to gain access to signing
private keys.

Some of the attacks presented in this chapter on discrete-log based
signature algorithms are new and build on previous work [336, 339]. The
proof of security for the Diffie-Hellman key exchange SETUP attack is
sketched out and the approach is based on [341]. The attack is secure in

265

266 12. SETUP Attacks on Discrete-Log Cryptosystems

the random oracle model. Attacks are given for other discrete-log based
cryptosystems as well, but no formal proof of security is given for them.

12.1 The Discrete-Log SETUP Primitive

A kleptogram is a publicly displayed value such as a ciphertext, signature,
public key, and so on, that also serves as a backdoor. In the SETUP attack
on the Diffie-Hellman key exchange, the device computes a kleptogram,
displays it in one key exchange, and then uses the concealed value to
securely compromise the next key exchange. This concealed value is used
to derive the randomness in the subsequent key exchange.

Let p denote a large prime and let g be an element in ZZ∗
p with order

w. Let G denote the subgroup of ZZ∗
p generated by g. It is assumed that

solving Diffie-Hellman in G is difficult. So, w must contain a large prime in
its factorization to defend against the use of the Pohlig-Hellman algorithm
[224].

In the kleptographic attack, the honest device outputs exponents for
g that are chosen honestly. The dishonest device contains an analogous
subroutine that outputs exponents for g that are securely compromised by
the attacker.1 These may be used as private exponents in a cryptosystem
defined over G to provide the attacker with a backdoor. The following is
the exponent generation algorithm used by the honest device.

GenPrivateExponent1(K):
input: a value K that is the empty string or a value contained in ZZ∗

w

output: an element k contained in ZZ∗
w

1. choose k to be random element in ZZ∗
w

2. output k and halt

Observe that GenPrivateExponent1 patently ignores the input K.
Let |w| denote the number of bits used in representing w in binary. As-
suming that GenPrivateExponent1 has access to a true random bit gen-
erator, it can be implemented as follows. Exactly |w| bits are generated
randomly. If the value is not contained in ZZ∗

w then these bits are thrown
out and a new set of |w| bits are generated. If this value is not contained
in ZZ∗

w, then it is thrown out and |w| more bits are generated, and so
on. This process guarantees that k is chosen from the correct probability

1The attacker can be a hacker, a malicious manufacturer, or an insider.

12.1. The Discrete-Log SETUP Primitive 267

distribution. It is possible to set x = k, use x as a private key, and set
y = gx mod p. The public key is then (y, g, p).

Let X be a value contained in ZZ∗
w and let Y = gX mod p. The value

X is the private key of the attacker. The public key of the attacker is
(Y, g, p). The algorithm GenPrivateExponent2 is used by a dishonest
device that contains a |p|-bit identifier ID. The IDs for the devices are
chosen randomly, subject to the constraint that they all be unique. It is
anticipated that a device may eventually get reverse engineered, in which
case Y will become known to the reverse engineer in addition to the ran-
domly chosen ID in it. The device may or may not be destroyed during
reverse engineering.

It is assumed that each device has a readable and writable memory
capability. This non-volatile memory is used by the attacker to maintain
a count i of how many times the attack has been carried out. The value
for i is initially set to 0. Let F1 be a random function with range ZZ∗

w (see
Appendix B.4). The function F1 can be implemented in practice using a
suitable cryptographic hash function.

GenPrivateExponent2(K):
input: a value K that is the empty string or a value contained in ZZ∗

w

output: an element k contained in ZZ∗
w

1. if i > Θ then output GenPrivateExponent1(K) and halt
2. update i in non-volatile memory to be i = i+ 1
3. compute t = Y K mod p
4. let T0 be the |p|-bit representation of t
5. compute k = F1(T0||ID||i)
6. output k, zeroize everything in memory except i, and halt

The constant Θ is polynomial in |p| and is used to eventually cease
the attack. The reason this is done is to simplify the proof of security.
The primitive is applied as follows. The device is supplied with a value
T = gK mod p. As will become clear in the specific attacks that are
presented, T will correspond to a Diffie-Hellman key exchange value, a
public key, a portion of a digital signature, and so on. When the device
is invoked the value k = GenPrivateExponent2(K) is computed. In the
attacks that are presented, k will correspond to a Diffie-Hellman exponent,
a nonce in a digital signature algorithm, and so on. The device outputs
gk mod p in one form or another and possibly other information as well.
The goal of the reverse engineer is to obtain k from a given device based on

268 12. SETUP Attacks on Discrete-Log Cryptosystems

what was learned from previous reverse engineering efforts and all other
available information.

When the primitive is deployed, that attacker has a unique advantage.
If the attacker obtains T , the attacker can compute t = TX ≡ Y K mod p
and then pad t to obtain T0. Since the attacker was the one that selected
all of the IDs, the attacker is in a position to compute k = F1(T0||ID||i)
since i ≤ Θ can be readily guessed. It is this unique advantage that forms
the basis for the optimal-bandwidth attacks. In essence, a key exchange is
being performed between the attacker and the device each time that the
device is invoked. The shared secret is used to secretly convey a random
nonce k to the attacker. The use of the oracle and ID guarantees that
the user cannot distinguish the view of the honest device from the view
of the attacked device, even if Y , ID, i, and so on are obtained through
reverse engineering.

12.2 Diffie-Hellman SETUP Attack

The Diffie-Hellman key exchange (see Appendix C.1.2) exhibits a discrete
log kleptogram that can be exploited to give an insider (e.g., the manufac-
turer) an advantage. Consider the event that Alice and Bob perform two
separate key exchanges. In the first round Alice sends Bob A1 = ga1 mod p
and Bob sends Alice B1 = gb1 mod p. In the second round Alice sends Bob
A2 = ga2 mod p and Bob sends Alice B2 = gb2 mod p. The two shared
secrets are ga1b1 mod p and ga2b2 mod p, respectively.

In this attack, Alice’s device is dishonest and mounts the SETUP at-
tack.2 So it is the one using GenPrivateExponent2. Bob’s device C
is honest and uses GenPrivateExponent1. The attacker can utilize the
backdoor provided that one or both of the devices mount the SETUP
attack. To be conservative, it is assumed that Alice’s device outputs
(ai, g

ai mod p) to Alice. This allows her to verify its computations by
checking that g raised to the first value equals the second. Of course,
she must keep all of the values for ai secret. In the ith key exchange, the
device will store ai and await Bi. When the device is given Bi it outputs
Bi

ai mod p. The goal of the attacker is to learn the Diffie-Hellman value
ga2b2 mod p.

Alice’s device chooses a1 randomly from ZZ∗
w and outputs the pair of

values (a1, g
a1 mod p) to Alice. It stores a1 in non-volatile memory. Alice

2For example, the manufacturer could be a malicious entity.

12.2. Diffie-Hellman SETUP Attack 269

supplies the device with B1. The device then computes Ba1
1 mod p and

outputs this value to Alice. At this point an honest device would erase a1,
but Alice’s device does not. Instead, it stores a1 in non-volatile memory
until the subsequent key exchange. When the next exchange is initiated,
Alice’s device does not choose a2 randomly using a random bit generator.
Instead, it computes a2 = GenPrivateExponent2(a1). The device out-
puts (a2, g

a2 mod p) to Alice. The value B2 is then supplied to the device
by Alice, at which point it outputs Ba2

2 mod p to Alice. Observe that Alice
is essentially letting the device choose all the randomness for her. If she
were suspicious, she could take the outputs of the device and compute the
Diffie-Hellman secrets herself.3

Alice is in big trouble. She is in trouble because the attacker who
is carrying out the attack on Alice, namely, the insider who created her
device (or altered it), is passively eavesdropping on the network. The
attacker obtains (A1, B1, A2, B2) from the network. Let T = A1. The
attacker then uses the private key X to compute,

t = TX ≡ AX
1 ≡ Y a1 ≡ Y K mod p (12.1)

By padding t with leading zeros the value T0 is constructed. The
attacker knows all of the IDs, and can guess i. So, the attacker can
compute k = a2 = F1(T0||ID||i). Since the attacker also obtains A2 =
gk = ga2 mod p from the net the attacker is in a position to compute
Ba2

2 mod p. To see this, note that the attacker can guess ID and i and
compute a guess for a2. To verify, the attacker raises g to this guess and
compares the result to A2. If they match, then a2 has been found without
a shadow of a doubt. The attacker can therefore compute the second
Diffie-Hellman secret ga2b2 mod p and listen in on Alice and Bob’s second
conversation.

The attack can be extended to encompass several key exchanges. This
can be accomplished by having the dishonest device compute the values
a3 = GenPrivateExponent2(a2), a4 = GenPrivateExponent2(a3), and
so forth. Every so often a new ai should be chosen randomly to commence
a new attack. This is necessary to guarantee forward secrecy, that is,
to guard against the device being reverse engineered, studied, repaired,
redeployed, and then subsequently compromised.

3But even then she’d be victimized.

270 12. SETUP Attacks on Discrete-Log Cryptosystems

12.3 Security of the Diffie-Hellman SETUP

Attack

The entire proof that this attack constitutes a secretly embedded trapdoor
with universal protection will not be given. However, the two non-trivial
aspects of this proof will be sketched out. It is stressed that these are
proofs in the random oracle model and that when the attack is imple-
mented it is subject to the weaknesses of the primitive used to instantiate
the oracle. The proof that the attack satisfies Property 2 will be outlined.
It is shown that in the random oracle model, the exponents that are out-
put by the cryptotrojan are computationally indistinguishable from the
exponents that are output by the honest exponent generation algorithm.
The proof that the outputs are confidential, even against a successful re-
verse engineer is then outlined. This is Property 4 of a SETUP attack and
it holds using a reduction argument.

12.3.1 Indistinguishability of Outputs

It is assumed that the distinguishing adversary knows the cryptotrojan
algorithm. This could be from prior reverse engineering endeavors. Hence,
the attacker’s public key (Y, g, p) is known to the adversary. Since the
adversary has not reverse engineered the particular device in question the
adversary does not know the value ID right off the bat.

There is nothing to distinguish when i > Θ, so we will consider the
case that i < Θ. The first observation is that indistinguishability does not
hold against an adversary that has unbounded computational resources.
Such an adversary can solve Diffie-Hellman and hence knows T0. This
means that the adversary is capable of predicting the subsequent private
exponents perfectly. The attacker can guess a value for ID and then in-
voke the exponent generation device, say four times. The adversary then
collects the four exponents that the device outputs. This data set is used
to help test if the guess for ID was correct or not. The adversary knows
that the values for i will be i, i + 1, i + 2, and i + 3. Since i ≤ Θ can be
guessed, the adversary will be able to verify correctly with overwhelming
probability whether or not the guess for ID was correct. The adversary
can probe the integrity of the device’s output values by performing the
same computations that the device would do if it were dishonest and com-
paring the results with the data set. If the values do not match the data
set, ID may be guessed again. In time, the computationally unbounded

12.3. Security of the Diffie-Hellman SETUP Attack 271

adversary will be able to try all IDs and hence distinguish an honest de-
vice from a dishonest one. The attack is, however, indistinguishable to all
adversaries that are polynomially bounded in computational power.4

Let C denote the honest device that uses GenPrivateExponent1() and
let C ′ denote the dishonest device that uses GenPrivateExponent2(). A
key observation is that the exponents that are output by the dishonest
device are chosen from the same set and same probability distribution as
the exponents that are output by the honest device. The honest device will
always choose its outputs uniformly at random from ZZ∗

w. Note that every
device contains a unique string ID, and every device increments i between
calls to the oracle. When considering all devices it follows that the portion
of the input string corresponding to (ID||i) will never be supplied to the
oracle more than once. Since the output of a random oracle is a randomly
chosen string that is independent of every other query it follows that the
exponents that are output by the dishonest device are drawn from the
same set and probability distribution as the outputs of the honest device.

This implies that the only way to distinguish is to guess the oracle
input ID correctly. Since ID is not guessable5 and since it is kept secret
from all adversaries in the black-box cryptosystem C ′, it follows that the
outputs of C and C ′ are indistinguishable to all computationally bounded
adversaries.

12.3.2 Confidentiality of Outputs

Recall that Property 4 of a SETUP attack (see Section 11.4) is confiden-
tiality against a reverse engineering adversary. In this section a reduction
argument is given to prove that Property 4 holds. The claim is that there
exists an algorithm that can break the confidentiality of the cryptotrojan
attack if and only if there exists an algorithm that can compute Diffie-
Hellman secrets efficiently. Clearly if Diffie-Hellman can be broken then
there exists an efficient algorithm to break the confidentiality of the cryp-
totrojan. It remains to show the converse, namely, that if there exists
an efficient algorithm that can break the cryptotrojan then solving Diffie-
Hellman is easy.

In a nutshell this is proven by showing that if an efficient algorithm
exists that violates the confidentiality property then Diffie-Hellman can

4Polynomial in |W/2|.
5It is exponential in the security parameter |p|.

272 12. SETUP Attacks on Discrete-Log Cryptosystems

be solved efficiently. This reduction is a randomized reduction and is
therefore very strong.6

With regard to confidentiality, it is assumed that the computationally
bounded adversary has reverse engineered the device in question and hence
knows the value for ID that it contains. It is assumed that the device has
been reconstituted and redeployed. It is also assumed that the adversary
knows the current value for i that exists in the non-volatile memory store of
the device. These are very generous assumptions about what the adversary
knows.

To prove confidentiality of the dishonest device it is necessary to show
that the adversary cannot compute ga2b2 mod p when the adversary has
the following view,

viewC′ = (ID, i, Y, g, p, A1, B1, A2, B2) (12.2)

The values A1 and A2 in this view are the outputs of C ′. The adversary
also knows the cryptotrojan algorithm. What the adversary does not have
access to is the coin flips that the cryptotrojan will generate once it has
been redeployed.

The proof of confidentiality is by contradiction. Suppose for the sake of
contradiction that a computationally bounded algorithm A exists. For a
randomly chosen input, algorithm A solves Diffie-Hellman on (A2, B2) with
non-negligible probability. The adversary could thus use algorithm A to
break the confidentiality of the system. Algorithm A solves Diffie-Hellman
on (A2, B2) when it “feels” so inclined, but must do so a non-negligible
portion of the time.

It is important to first set the stage for the proof. The adversary is
trying to break the key exchange (A2, B2) that was computed in part by
the cryptotrojan. Hence, this Diffie-Hellman secret was created using a
call to the random oracle R. It is conceivable that an algorithm A that
breaks the confidentiality will make oracle calls as well to break (A2, B2).
PerhapsA will even make some of the same oracle calls as the cryptotrojan.
However, in the proof we cannot assume this. All that can be assumed is
that A makes at most a polynomial7 number of calls to the oracle and we
are free to trap each one of these calls and take the arguments.

6Randomized reductions are very strong since when they hold for a fixed fraction of
the inputs there typically exists a reduction that holds with overwhelming probability
for all inputs.

7Polynomial in |p|.

12.3. Security of the Diffie-Hellman SETUP Attack 273

Consider the following algorithm SolveDiffieHellman that uses A as
an oracle to solve the Diffie-Hellman problem.

SolveDiffieHellman(g, p, U, V):
input: prime p, generator g of G, U = gu mod p, and V = gv mod p
output: an element ψ contained in G
1. choose r1, r2, r3, r4, r5, and r6 randomly from ZZ∗

w

2. choose ID to be a random |p|-bit string
3. choose i randomly from {1, 2, ...,Θ}
4. simulate k = A(ID, i, U r2r1 , gr2 , p, V r2r3 , gr2r4 , U r2r5 , V r2r6),

watch calls to R, and store the |p| most significant
bits of each call in list ω

5. compute k0 = k(r2r5r6)−1
mod p

6. remove all elements from ω that are not contained in G
7. let L be the number of elements in ω
8. if L = 0 then
9. set β to be a random element in G
10. else
11. choose α randomly from {0, 1, 2, ..., L− 1}
12. let β be the αth element in ω

13. compute k1 = β(r2r1r3)−1
mod p

14. generate bit b randomly
15. output ψ = kb and halt

Note that with non-negligible probability A will not balk due to the
choice of ID and i. Denote by Tuv the |p| bit binary string that corresponds
to the value gr2ur1vr3 mod p when padded appropriately. Denote by E the
event that in a given invocation of A, algorithm A calls the random oracle
R on (Tuv||ID||i) at least once. Clearly only one of the two following
possibilities hold:

1. Event E occurs with negligible probability.

2. Event E occurs with non-negligible probability.

Consider case (1). Algorithm A can detect that U r2r5 mod p was not
generated by the cryptotrojan by appropriately supplying (Tuv||ID||i) to
the random oracle. Once verified, A can balk and not output the base
gr2 mod p Diffie-Hellman secret corresponding to (U r2r5 , V r2r6). But in
case (1) this can only occur at most a negligible fraction of the time since

274 12. SETUP Attacks on Discrete-Log Cryptosystems

changing even a single bit in the value supplied to the oracle elicits an inde-
pendently random response. By assumption, A returns the base gr2 mod p
Diffie-Hellman secret corresponding to (U r2r5 , V r2r6) a non-negligible frac-
tion of the time. Since the difference between a non-negligible number
and negligible number is a non-negligible number it follows that A solves
the base gr2 mod p Diffie-Hellman problem on (U r2r5 , V r2r6) without re-
lying on the random oracle. So, in case (1) it follows that with non-
negligible probability b will be 0 and SolveDiffieHellman will output
ψ = k0 = guv mod p.

Now consider case (2). After making an oracle call with Tuv algorithm
A will be able to detect that the value U r2r5 mod p was generated incor-
rectly. Being adversarial in nature, algorithm A may not wish to lend a
helping hand and may in fact immediately balk. But, it is too late. Since A
makes at most a polynomial number of calls8 toR the value for L cannot be
too large. Since A invokes the oracle with the string (Tuv||ID||i) with non-
negligible probability and since L cannot be too large it follows that Tuv

will be equal to Tc with non-negligible probability. So, with non-negligible
probability SolveDiffieHellman captures the needed Diffie-Hellman se-
cret that was passed to the oracle and raises it to the (r2r1r3)

−1 power.
Recall that U r2r1 mod p was submitted to A in place of Y and V r2r3 mod p
was submited to A in place of A1. So, despite any subsequent misbehavior
by A, SolveDiffieHellman computes k1 = guv mod p with non-negligible
probability. It follows that with non-negligible probability b will be 1 and
SolveDiffieHellman will output ψ = k1 = guv mod p.

It has been shown that in either case, the existence of A contradicts the
Diffie-Hellman assumption. So, the original assumption that adversary A
exists is wrong. This proves that the cryptotrojan satisfies Property 4 of
a SETUP attack.

This attack is the very essence of kleptography. It uses cryptography
directly to attack cryptography itself. The Diffie-Hellman key exchange
is used to securely and subliminally compromise a key exchange between
two unwary users, namely, Alice and Bob. The notion of a reduction ar-
gument is used to prove the confidentiality of the attack in the random
oracle model. Assuming the existence of a random oracle, the attack on
Diffie-Hellman is as secure as Diffie-Hellman itself. The notion of compu-
tational indistinguishability of probability distributions is used to prove
that the attack cannot be detected in black-box environments. It is a

8Polynomial in |p|.

12.4. Intuition Behind the Attack 275

demonstration that modern cryptographic paradigms and tools can be
used to subvert computer systems in a forward-engineering fashion.

12.4 Intuition Behind the Attack

Having seen the application of this attack to Diffie-Hellman, it is now pos-
sible to shed more light on the intuition behind the attack. On the surface
the attack is nothing more than a random number generator that takes
an auxiliary input and outputs a value drawn uniformly at random from
ZZ∗

w. However, just below the surface something utterly insidious is occur-
ring. When the auxiliary input is an exponent of g, the device performs
a key exchange with the attacker’s public key and submits the resulting
shared secret to a random oracle. Provided that a modular exponentiation
that uses the auxiliary value is made available to the attacker, the whole
cryptosystem that uses the random number generator can be securely and
subliminally compromised. As will become clear in the following sections,
this modular exponentiation is a discrete-log kleptogram.

How and why is this attack possible? It is based on two very powerful
notions: the ability to conduct key exchanges over untrusted networks and
the notion of a cryptographic one-way function with certain randomness
properties. The notion of a random oracle is more of a tool than a practical
reality. It is a point in fact that no such efficient oracle can even be
synthesized. Yet it nonetheless constitutes a very useful tool for proving
the security of cryptographic algorithms. Random oracle proofs essentially
show that if any weakness exists in a fielded cryptosystem that is based
on a correct random oracle proof, then the weakness must reside in the
choice of the primitive that was used to instantiate the oracle.

It might not be immediately clear what the advantages of this attack
are over using a pseudorandom number generator with a fixed secret seed.
First, note that if the device containing C ′ is reverse engineered and subse-
quently repaired or replaced with an identical-looking device, the reverse
engineer will still not be able to exploit the presence of C ′. The attacker
will continue to gain access to private keys and so forth, but the reverse
engineer will not. Also, when the pseudorandom number generator ap-
proach is used, the device could be reverse engineered, the seed learned,
the device reinstated, and the reverse engineer, along with the attacker,
would know all of the future secrets. The attacker would be none the
wiser. In covert applications, gathering data may not be acceptable if the
act of doing so runs the risk of having it fall into enemy hands.

276 12. SETUP Attacks on Discrete-Log Cryptosystems

With some simple modifications, the attack is also favorable for deploy-
ment in software. The ID string could be replaced by the IP address of
the current machine, or perhaps something else that is public and unique.
This would ensure that the device chooses random values in each invo-
cation. This way, the software containing GenPrivateExponent2 could
be duplicated as is. The public key Y would act as a secret (until it is
perhaps discovered and disclosed). Although far from tamper-resistant,
this approach retains many of the properties of the approach that is taken
here that assumes tamper-resistance.

12.5 Kleptogram Attack Methodology

The discrete-log SETUP primitive can be applied across a great many
discrete-log based cryptosystems. There is an underlying methodology on
how to synthesize a SETUP attack against a discrete-log based cryptosys-
tem. This methodology is given below.

1. Identification of a kleptogram: To apply the discrete-log SETUP
attack, it is necessary to find a modular exponentiation that the
device outputs.

2. Availability of the kleptogram to the attacker: This modular ex-
ponentiation must eventually become available to the attacker (for
example, the manufacturer). It can be encoded into a public key,
a digital signature, a ciphertext, and so on. Sometimes a modular
exponentiation can be reconstructed based on the outputs of a cryp-
tosystem (for example, gk mod p can be reconstructed from a DSA
signature).

3. Availability of the exponent to the SETUP mechanism: The expo-
nent of this modular exponentiation must be available within the
device at the time that the modular exponentiation is computed.
This is necessary for the SETUP attack to function. Such a modu-
lar exponentiation constitutes a discrete-log kleptogram.

4. Exploitation of the kleptogram: The exponent of the kleptogram is
fed as input to GenPrivateExponent2. As a result, this primitive
will output a securely compromised random number.

5. Using the compromised nonce: The random number that is out-
put by GenPrivateExponent2 must be used as a secret nonce in

12.6. PKCS SETUP Attacks 277

the underlying cryptosystem. Provided that the exposure of this
nonce to the attacker will compromise the cryptosystem that uses
GenPrivateExponent2, the attack (should) constitute a SETUP at-
tack.

It is stressed that the above steps are a heuristic approach to identifying
kleptographic attacks in discrete-log based cryptosystems. There is no
guarantee that this approach will always work. Yet it is nonetheless a
good way to think kleptographically.

12.6 PKCS SETUP Attacks

The two most basic types of asymmetric algorithms are encryption al-
gorithms and digital signature algorithms. SETUP attacks exist against
discrete-log based algorithms that fall into both of these categories. In this
section SETUP attacks are presented against discrete-log based asymmet-
ric encryption algorithms.

The SETUP mechanism is nefariously placed in encryption algorithms,
not decryption algorithms, since it is anticipated that ciphertexts may
become readily available to the attacker over a public network. These
attacks may all be construed as cryptotrojan attacks against programs
that perform public key encryption. The payload of the cryptotrojan
securely and subliminally leaks plaintexts to the insider.

12.6.1 ElGamal PKCS SETUP Attack

Consider the ElGamal encryption algorithm (see Appendix C.2.1). Con-
sider two different ElGamal encryptions (a1, b1) and (a2, b2). Let a1 =
gk1 mod p and let a2 = gk2 mod p. Also, let b1 = yk1m1 mod p and let
b2 = yk2m2 mod p.

The first objective is to identify a kleptogram. Observe that a1 is a
modular exponentiation and hence it satisfies step (1). Since the cipher-
text (a1, b1) may be sent across a public network, the value a1 may even-
tually be obtained by the attacker. So the value a1 satisfies step (2). The
exponent k1 is generated by the ElGamal encryption algorithm and so is
readily available to the encryption algorithm.9 So, a1 satisfies property (3)
as well. Suppose that k1 is fed as input to GenPrivateExponent2. This

9The exponent k1 can be thought of as a resource that can be exploited by a carefully
designed cryptotrojan.

278 12. SETUP Attacks on Discrete-Log Cryptosystems

will satisfy step (4). Finally, by setting k2 = GenPrivateExponent2(k1)
instead of generating k2 randomly, the output will constitute a random
nonce in the second encryption. So, this approach satisfies step (5).

The question remains as to whether or not this is a SETUP attack.
The attacker can obtain a1 = gk1 mod p from the public network. By
computing t = aX

1 mod p and padding with zeros as necessary, the value
T0 can be obtained by the attacker. As a result, the attacker is in a
position to compute k2 = F1(T0||ID||i) by guessing ID and i. As in the
attack on Diffie-Hellman, all guesses can be verified for correctness. Since
the attacker can compute k2, the attacker can compute b2y

−k2 mod p. This
value is m2.

Observe that this attack utilizes fresh randomness in the form of k1.
This assures confidentiality of future outputs against a cryptanalyzing
adversary10 that learns ID and gX mod p. The attack can be chained
in the same way as the attack on the Diffie-Hellman key exchange. The
proof that this is a secure SETUP is very much the same as the proof for
the attack on Diffie-Hellman. This should come as no surprise due to the
relationship between Diffie-Hellman and the ElGamal encryption scheme
(see the reduction in Appendix C.2.2).

Typically, when public key cryptography is needed to encrypt bulk
data, hybrid cryptosystems are used. Thus, in this mode of usage, the
SETUP can leak keys. It can leak the randomly generated symmetric
keys used to encrypt the data. An optimal bandwidth attack can be
implemented in an ElGamal based hybrid system as follows. In a nutshell,
the value F1(T0||ID||i) can be used directly or indirectly to derive the bits
in the symmetric key for the hybrid encryption. The legitimate message
recipient decrypts (a, b) to obtain the needed symmetric key. So does the
attacker, in effect.

Another attack exists against cryptographic providers such as smart
cards that are given access to private decryption keys and that are used to
both encrypt and decrypt messages. Let Alice be the user of the provider
that contains the cryptotrojan and let Bob be a user with public key
(yb, g, p). Alice’s public key is (ya, g, p). In this attack, the cryptotrojan
in Alice’s provider only mounts the attack when it obtains Alice’s private
key xa in ya = gxa mod p. The provider must obtain access to it when she
decrypts the first message that she receives.

Once the value xa is obtained by the provider, the attack commences.

10For example, a hacker that obtains an old snapshot of the signing algorithm at
run-time.

12.6. PKCS SETUP Attacks 279

In the attack, the nonce ki that is used to encrypt a message to Bob is not
chosen randomly. Instead, it is chosen based on the shared Diffie-Hellman
secret gxaX mod p. More specifically, when the ciphertext to Bob is the
ith encryption that the provider computes after that attack commences,
Alice’s provider computes the nonce to be ki = F1(T0||ID||i) where T0 is
Alice and the attacker’s shared Diffie-Hellman secret, padded accordingly.
Once again this demonstrates the use of cryptography to attack cryptog-
raphy itself. The cryptotrojan uses the shared Diffie-Hellman secret of
Alice and the attacker to compute ki. The nonce ki is used to compute
yki

b mod p, a shared Diffie-Hellman secret between Alice’s cryptographic
provider and Bob. Recall that in ElGamal, this quantity is computed
during data encryption.

The indistinguishability of this attack hinges on the secrecy of the
value ID. To see this, note that Alice may be inquisitive and may try
to determine if her device carries out this attack. She may have reverse
engineered a similar device11 and hence obtained gX mod p. She thus
knows the shared secret T0 since she knows her own private key. However,
since a random oracle is used and since ID is unknown to Alice, indistin-
guishability still holds. This is a bandwidth-optimal attack on ElGamal
encryption since the attacker need only obtain Alice’s public key (ya, g, p)
and the ElGamal encryption to perform decryption.

Now consider confidentiality against a cryptanalyzing adversary. Such
an adversary may be assumed to have access to the value ID in Alice’s
device, and also gX mod p via reverse engineering. It must, however, be
the case that xa is not known to such an adversary. This happens when, for
instance, the device is given only temporary access to xa. Confidentiality
holds based on the fact that neither xa nor X is known to the adversary.
Hence, the Diffie-Hellman secret T0 that the attacker shares with Alice’s
device is not known to the cryptanalyzing adversary.

12.6.2 Cramer-Shoup PKCS SETUP Attack

The Cramer-Shoup cryptosystem is described in Appendix C.2.3. The
public key in Cramer-Shoup is (g1, g2, c, d, h) and the ciphertext is the
tuple (u1, u2, e, v).

11For instance, the process of reverse engineering may destroy the device in ques-
tion. So, she may be able to reverse engineer other devices but not her own without
destroying it.

280 12. SETUP Attacks on Discrete-Log Cryptosystems

u1 = gr
1, u2 = gr

2, e = hrm, α = H(u1, u2, e), v = crdrα (12.3)

For simplicity it will be assumed that G is a cyclic subgroup of ZZ∗
p

where p is prime. Consider two separate encryptions in Cramer-Shoup.
Let (u1, u2, e, v) be an encryption of m that uses r as the nonce and let
(u′1, u

′
2, e

′, v′) be an encryption of m′ that uses r′ as the nonce.
The first objective is to identify a kleptogram. Observe that u1 is a

modular exponentiation and hence it satisfies step (1). Since the cipher-
text may be sent across a public network, the value u1 may eventually be
obtained by the attacker. So the value u1 satisfies step (2). The exponent
r is generated by the Cramer-Shoup encryption algorithm and so is readily
available to the encryption algorithm. So, u1 satisfies property (3) as well.
Suppose that r is fed as input to GenPrivateExponent2. This will satisfy
step (4). Finally, by computing r′ = GenPrivateExponent2(r) instead of
choosing r′ randomly, the output will constitute a random nonce in the
second encryption. So, this approach satisfies step (5).

The question remains as to whether or not this is a SETUP attack.
The attacker can obtain u1 = gr mod p from the public network. By
computing t = uX

1 mod p and padding with zeros as necessary, the value
T0 can be obtained by the attacker. As a result, the attacker is in a
position to compute r′ = F1(T0||ID||i) by guessing ID and i. As in
the attack on Diffie-Hellman, all guesses can be verified for correctness.
Since the attacker can compute r′, the attacker can compute the message
m′ = e′h−r′ mod p. The attack can be chained in the same way as the
attack on the Diffie-Hellman key exchange.

12.7 SETUP Attacks on Digital Signature

Algorithms

SETUP attacks against discrete-log based signature schemes constitute
a direct extension of the work of Gus Simmons on the Prisoner’s Prob-
lem. In this section SETUP attacks against discrete-log based signature
schemes are given. The SETUP mechanism is placed in the algorithm that
computes digital signatures, not the signature verification algorithm, since
it is anticipated that digital signatures may eventually become available
to the attacker. These attacks may be construed as cryptotrojan attacks

12.7. SETUP Attacks on Digital Signature Algorithms 281

against programs that compute and output digital signatures. The pay-
load of the cryptotrojan securely and subliminally leaks signing private
keys to the insider.

These attacks assume that the devices are implemented with a priori
knowledge of the values for g, p, q, and so on that the users will use. The
primes p and q can still be chosen using a one-way hash function so as to
dismiss any suspicions that they are trapdoor primes. This will not hinder
the effectiveness of the attacks. These parameters are often fixed for all
users. In these SETUP attacks, trapdoor primes are not needed;12 any
primes will do.

A related, but different, attack on signature algorithms that uses weak
pseudorandomness has been shown [17]. The main difference between this
attack and SETUP attacks is that SETUP attacks use randomness as well
as carefully computed pseudorandomness in concert with the attacker’s
public key that is included in the black-box device.

12.7.1 SETUP in the ElGamal Signature Algorithm

A SETUP attack on the ElGamal signature algorithm was proposed that
is based on the notion of a subliminal channel [333]. However, the at-
tack is a rather weak form of SETUP. The attack was later strengthened
[336]. Both of these attacks required that the attacker obtain two digital
signatures in order to recover the signing private key.

In this subsection the attack is improved substantially by making a
simple observation. The observation is as follows. The attacker can in-
clude the public key Y in the device to mount the attack. The unwary
user has a public key y and a corresponding signing private key x that is
supplied to the signature algorithm. This immediately implies that the
user and the attacker have a shared Diffie-Hellman secret. The secret is
Y x = yX = gXx mod p. This fact can be utilized to securely and sublimi-
nally leak the signing private key x at a higher bandwidth than previous
approaches.

The ElGamal digital signature algorithm is described in Appendix
C.2.4. The user’s public key is (y, g, p) and the signature on m is (r, s).
The value r equals gk mod p where k is the randomly chosen nonce for
the signature.

The first objective is to identify a kleptogram. Observe that y is a
modular exponentiation and hence it satisfies step (1). Since the public

12Trapdoor primes were originally suspected in DSA.

282 12. SETUP Attacks on Discrete-Log Cryptosystems

key (y, g, p) may be obtained by the attacker, the value y satisfies step (2).
The exponent x is given to the ElGamal signing algorithm by the user and
so is readily available within the signing algorithm. So, y satisfies property
(3) as well. Suppose that x is fed as input to GenPrivateExponent2. This
will satisfy step (4). Finally, by computing k = GenPrivateExponent2(x)
instead of choosing k randomly, the output will constitute a random nonce
in the signature (r, s). So, this approach satisfies step (5).

The question remains as to whether or not this is a SETUP attack.
Suppose that the attacker can obtain y = gx mod p from a public network.
By computing t = yX mod p and padding with zeros as necessary, the
value T0 can be obtained by the attacker. As a result, the attacker is in
a position to compute k = F1(T0||ID||i) by guessing ID and i. As in
the attack on Diffie-Hellman, all guesses can be verified for correctness.
In this attack the argument T0 that is passed to the oracle will always
be the same. It is the binary string corresponding to the secret that the
unwary user and the attacker share. However, since i is incremented in
each device, random values for k will always be used.

Suppose that r has a multiplicative inverse modulo p − 1. If r is
even, then it clearly does not have such an inverse. The inverse will exist
whenever gcd(r, p − 1) = 1. If the inverse exists, then the attacker can
compute x = r−1(H(m) − sk) mod p − 1 since the attacker can compute
k. The possibility that r does not have an inverse is becoming less of an
issue year after year, since cryptosystems are typically defined over prime
order subgroups for security reasons. It is not hard to see that this attack
against classical ElGamal nonetheless leaks x at a high bandwidth.

Consider the case that the user who knows x is curious and wants to
know if his or her black-box device is carrying out the attack. If this user
reverse engineers a similar device then it may be assumed that gX mod p
is obtained. Therefore, the user knows T0. However, the particular value
for ID in the user’s device is secret. It follows that under the random
oracle assumption k will be random. This assures indistinguishability.
Confidentiality holds under a random oracle argument based on the Diffie-
Hellman assumption.

12.7.2 SETUP in the Pointcheval-Stern Algorithm

The Pointcheval-Stern digital signature algorithm is described in Ap-
pendix C.2.5. The first objective is to identify a kleptogram. Observe
that y is a modular exponentiation and hence it satisfies step (1). Since

12.7. SETUP Attacks on Digital Signature Algorithms 283

the public key (y, g, p) may be obtained by the attacker, the value y sat-
isfies step (2). The exponent x is given to the Pointcheval-Stern signing
algorithm by the user and so is readily available within the signing algo-
rithm. So, y satisfies property (3) as well. Suppose that x is fed as input
to GenPrivateExponent2. This will satisfy step (4). Finally, by comput-
ing k = GenPrivateExponent2(x) instead of choosing k randomly, the
output will constitute a random nonce in the signature (r, s). So, this
approach satisfies step (5).

The question remains as to whether or not this is a SETUP attack.
Suppose the attacker can obtain y = gx mod p from a public network. By
computing t = yX mod p and padding with zeros as necessary, the value T0

can be obtained by the attacker. As a result, the attacker is in a position
to compute k = F1(T0||ID||i) by guessing ID and i. As in the attack on
Diffie-Hellman, all guesses can be verified for correctness. In this attack
the argument T0 that is passed to the random oracle will always be the
same. However, since i is incremented in each device, random values for
k will always be used.

Suppose that r has a multiplicative inverse modulo p − 1. In this
case the attacker can compute x = r−1(H(r||m) − sk) mod p − 1 since
the attacker can compute k. Despite the potential non-existence of an
inverse of r, this attack nonetheless leaks x at a high bandwidth over the
signatures that are output.

12.7.3 SETUP in DSA

The Digital Signature Algorithm is described in Appendix C.2.7. The
order of g in DSA is q so g generates a prime order subgroup of ZZ∗

p in DSA.
The user’s public key is (y, g, p). The private key of the user is x < q. The
signature on a message m is (r, s) where r = (gk mod p) mod q.

The first objective is to identify a kleptogram. Observe that y is a
modular exponentiation and hence it satisfies step (1). Since the public
key (y, g, p) may be obtained by the attacker, the value y satisfies step (2).
The exponent x is given to the DSA signing algorithm by the user and so
is readily available within the signing algorithm. So, y satisfies property
(3) as well. Suppose that x is fed as input to GenPrivateExponent2. This
will satisfy step (4). Finally, by computing k = GenPrivateExponent2(x)
instead of choosing k randomly, the output will constitute a random nonce
in the signature (r, s). So, this approach satisfies step (5).

The question remains as to whether or not this is a SETUP attack.

284 12. SETUP Attacks on Discrete-Log Cryptosystems

Suppose the attacker can obtain y = gx mod p from a public network. By
computing t = yX mod p and padding with zeros as necessary, the value T0

can be obtained by the attacker. As a result, the attacker is in a position
to compute k = F1(T0||ID||i) by guessing ID and i. As in the attack on
Diffie-Hellman, all guesses can be verified for correctness. In this attack
the argument T0 that is passed to the random oracle will always be the
same. In essence, it is the Diffie-Hellman secret Y x = yX = gXx mod p that
is shared between the unwary user and the attacker. Since i is incremented
in each device, random values for k will always be used. Since r < q it
follows that r will have a unique multiplicative inverse modulo q. So, the
attacker can compute x = r−1(sk −H(m)) mod q since the attacker can
compute k.

This attack can applied to the Prisoner’s Problem of Gus Simmons.
Using this attack, Alice can securely and subliminally leak her signing
private key x to Bob under the observance of a warden in a single digital
signature. As a result, it effectively increases the bandwidth of the Legen-
dre channel from 14 bits to 160 bits, the size of the entire signing private
key. Also, this attack has the novel feature that it can be accomplished
without requiring that Alice give her private key to Bob before going to
prison.

12.7.4 SETUP in the Schnorr Signature Algorithm

The Schnorr digital signature algorithm is described in Appendix C.2.6.
The order of g in Schnorr is q so g generates a prime order subgroup of ZZ∗

p

in Schnorr. The user’s public key is (y, g, p) where y = g−x mod p. The
signature on a message m is (e, s) where e = H(m||r) and r = gk mod p.

The first objective is to identify a kleptogram. Observe that y is a
modular exponentiation and hence it satisfies step (1). Since the public
key (y, g, p) may be obtained by the attacker, the value y satisfies step (2).
The exponent x is given to the Schnorr signing algorithm by the user and
so is readily available within the signing algorithm. So, y satisfies property
(3) as well. Suppose that x is fed as input to GenPrivateExponent2. This
will satisfy step (4). Finally, by computing k = GenPrivateExponent2(x)
instead of choosing k randomly, the output will constitute a random nonce
in the signature (e, s). So, this approach satisfies step (5).

The question remains as to whether or not this is a SETUP attack.
Suppose the attacker can obtain y = g−x mod p from a public network.
By computing t = yX mod p and padding with zeros as necessary, the

12.8. Rogue Use of DSA for Encryption 285

value T0 can be obtained by the attacker. As a result, the attacker is in
a position to compute k = F1(T0||ID||i) by guessing ID and i. As in the
attack on Diffie-Hellman, all guesses can be verified for correctness. Since
e < q it follows that e will have a unique multiplicative inverse modulo q.
So, the attacker can compute x = e−1(s− k) mod q since the attacker can
compute k.

12.8 Rogue Use of DSA for Encryption

One of the criticisms of DSA was that it does not provide for secret key
distribution, as RSA does. Smid and Branstad indicated that DSA is in-
herently different from RSA in this respect when they stated that “The
DSA does not provide for secret key distribution because DSA is not in-
tended for secret key distribution” [284]. This perceived feature of DSA
over RSA is in fact non-existent. DSA can be exploited to securely com-
municate messages between two colluding users.

Nyberg and Rueppel showed a way to abuse DSA. They showed how to
securely integrate DSA with key distribution by computing the signature
(r, s) with H(m) = 1 [209]. However, setting H(m) = 1 makes the abuse
of DSA blatantly obvious.

Borrowing ideas from kleptography, it was shown how to abuse DSA
without setting H(m) = 1 in the signature [336]. It is based on the
observation that the value gk mod p can be recovered from (r, s). This
can be done as follows,

gk = gs−1H(m)ys−1r mod p (12.4)

So, Alice can send a DSA signed message to Bob that is effectively asym-
metrically encrypted as follows. Alice chooses k randomly and raises Bob’s
DSA public key y to this k, thereby yielding a secret Diffie-Hellman key
z = yk mod p. Alice then encrypts this message using z as the symmetric
key in classical cipher. Alice signs the resulting ciphertext using her DSA
private key, using k as the nonce in her DSA signature. Bob can recover
gk mod p using the signature (r, s). He can then compute z by raising
gk mod p to his private key. With z he can decrypt the signed message
that was symmetrically encrypted. The only information that is sent is
the encrypted file, which is the message that is signed, and (r, s).

286 12. SETUP Attacks on Discrete-Log Cryptosystems

12.9 Other Work in Kleptography

There are numerous other results in kleptography and related areas that
are not presented in this book. In this section some of these results are
mentioned. In particular the topic of embedding a backdoor into a sym-
metric cipher is addressed. Also, heuristics are given for designers of sym-
metric ciphers for showing the absence of backdoors in the ciphers they
create. These are only heuristics and are by no means foolproof. This list
of results may not be exhaustive, so we apologize in advance if any results
are omitted.

It has been shown how to use public key encryption to turn the Newton
channel, which is a broadcast channel, into a private subliminal channel
[339]. This is a form of kleptographic attack that utilizes the Newton
channel directly. The attack can be used to leak the ElGamal signing
private key in each ElGamal signature that is output by the signing device.
The attack requires 160 bits of smoothness in p−1, where p is the modulus
in the ElGamal public key.

A challenging problem is to implement a secure backdoor in a sym-
metric cipher. This is challenging since typical symmetric ciphers are
deterministic and therefore make it difficult to exploit randomness in com-
putations. Symmetric ciphers have been proposed in the past that have
secret specifications. Despite this security by obscurity approach, the U.S.
government proposed Skipjack [41, 200] as a secret cipher and planned on
deploying it in the Clipper chip. Efforts have been made to research the
possibility of building backdoors into secret ciphers, as well as building
backdoors into public ciphers. Such results are merely plausibility results,
geared towards casting doubt on questionable COMSEC practices that
are based in part on secrecy.

The construction of symmetric ciphers with backdoors was addressed
by Blaze, Feigenbaum, and Leighton [29]. They showed that a symmetric
cipher with such a backdoor is equivalent to a public key cryptosystem.
To see this, note that if Alice chooses a symmetric key randomly and
then encrypts a message with it using a backdoor symmetric cipher, she
and the insider can access the plaintext. No one else can. Alice can
thus send asymmetrically encrypted data to Bob by encrypting it with a
randomly chosen symmetric key and then sending the resulting ciphertext
to him. Bob need not know the symmetric key she used per se, as long
as the backdoor gives him access to the plaintext. In this scenario the

12.9. Other Work in Kleptography 287

public keys are in fact the specification of the backdoor symmetric cipher
themselves.

Rijmen and Preneel proposed a trapdoor cipher that has a public spec-
ification and that still provides the designer with an exclusive advantage
[240]. The recovery ability in their algorithm is based on a very specific
trapdoor that allows the designer to break the encryption using linear
cryptanalysis. This cipher was subsequently cryptanalyzed [323]. Patarin
and Goubin also proposed a symmetric cipher with a backdoor in it [220].
This method was also cryptanalyzed [24, 93].

Monkey is an example of a backdoor attack that requires that its design
be kept secret [338]. It is a black-box symmetric cryptosystem with a
public I/O specification, an 80-bit key, and a 64-bit block size. In order for
Monkey to leak symmetric key information it is required that the designer
obtain a sufficient amount of ciphertexts under a given key k such that
each contains a particular known-plaintext bit. This allows the designer
to recover k. Monkey reveals one plaintext bit in each ciphertext to a
successful reverse engineer.

A successor to Monkey, called Black-Rugose, was recently proposed
[340]. This design eliminates the need for known plaintext entirely to leak
symmetric key information to the insider. Monkey leaks a bound on the
message entropy to the reverse engineer. It requires that the designer
obtain a sufficient number of ciphertexts that encrypt messages with a
requisite level of redundancy. The information leakage method that is
used employs data compression as a basic tool to generate a subliminal
channel.

The potential of inserting backdoors into symmetric ciphers suggests
that all internal constants proposed in an algorithm have to be justified in
order to argue that a design-level attack is not being carried out. There
are two basic approaches to this. The first is to pass a seed through a
one-way function and let the cipher constants be the output of the one-
way function. The seed is used to help prove that the constants were not
maliciously chosen. The MARS symmetric cipher utilized SHA-1 applied
to seeding information to derive S-Box values [45]. MARS was chosen
as a finalist in the AES selection process. Another approach is to utilize
universal constants such as π and e. The Blowfish cipher utilizes the
digits of π in hexadecimal as S-Box values [258]. In practice, candidate S-
Box values must be tested against the threat of linear cryptanalysis [180],
differential cryptanalysis [25, 72], and so on before they are used.

Weis and Lucks showed attacks on black-box ciphers that exploit the

288 12. SETUP Attacks on Discrete-Log Cryptosystems

randomness used in the choice of initialization vectors and other avenues
that might be readily available to a design-level attacker [316]. The attacks
are geared exclusively towards deterministic devices that perform secret
key encryption. It was shown how to kleptographically compromise stream
ciphers.

Kleptographic attacks can be thought of as design-level abuses of cryp-
tographic algorithms. The attacks that were shown affect key generation
algorithms, public key encryption algorithms, and digital signing algo-
rithms. Yet there are other primitives used in modern cryptography that
may be undermined as well. Ways have been investigated on how to
subjugate threshold cryptosystems based on the fact that no single user
possesses the entire private key [324]. A source of potential abuses is the
fact that third parties do not know whether or how a secret key is shared
due to the transparent nature of secret sharing. This was dubbed the dark
side of threshold cryptography.

12.10 Should You Trust Your Smart Card?

When implemented properly,13 SETUP attacks give the manufacturer
your private keys in such a way that you cannot detect the transgression
without reverse engineering the card. In the case of RSA, for example,
by virtue of publishing your public key you are giving your corresponding
private key to the manufacturer when the manufacturer implements the
malicious key generation algorithm described in Section 11.5. Given the
current state of industry standards there is little reason to trust any smart
card whatsoever unless you trust the manufacturer entirely. As PKI takes
root, the potential payoff for a company that carries out a SETUP attack
will only increase.

Countering the threat of a SETUP attack is a subtle business. Consider
the attack on the Diffie-Hellman key exchange. The device can behave in
a completely unpredictable, Byzantine fashion. It could flip a 224 sided
coin, and mount the attack if and only if the result of the toss is 1. The
device would therefore be honest most of the time. This demonstrates
the peril in trusting black-boxes. If Alice tests 210 outputs to check for a
SETUP, the device can flip a 225 sided coin. If Alice tests 215 outputs, the
device could flip a 235 sided coin, and so on.

13For example, taking into account timing attacks, differential power analysis, and
so on.

12.10. Should You Trust Your Smart Card? 289

In general there is no need for a Diffie-Hellman key exchange device to
output the exponent it generates randomly in each key exchange to the
user. The device need only output the modular exponentiation and the
shared secret to be of use. The reason that the device in the Diffie-Hellman
SETUP attack outputs exponents was to show that the attack works even
in this worst-case scenario. However, the following countermeasure can
be used to help show that the key exchanges are honest (that is, that no
SETUP attack is being performed). Rather than choosing the exponent
randomly, the device chooses a seed s randomly and passes it through a
public one-way hash function14 to obtain H(s). The value H(s) is then
used as the Diffie-Hellman key exchange exponent. In addition to the
normal Diffie-Hellman key exchange value, the device outputs the seed s
to the user. So, Alice’s device outputs (s, gH(s) mod p). If she is suspicious
she can hash the seed and verify the output of the device.

This is a very general defense mechanism against the threat of discrete-
log SETUP attacks. The oracle H(·) is in fact choosing the randomness
that is used as the exponent. This countermeasure is by no means perfect.
In fact, there is a weakness in it. The device can make numerous calls to
the oracle H(·). For instance, the device can continually make calls until
the 14 least significant bits of gH(s) mod p are as desired. This channel has
a similar bandwidth as the Legendre channel of Gus Simmons. However,
if Alice always verifies that her device is operating correctly, she will exert
more computational effort than the device. This defeats the purpose of
using the device altogether. She may as well do the exchanges herself
since she is already computing just as many modular exponentiations as
her device.

The approach of using H(·) and having the device output the tuple
(s, gH(s) mod p) is nonetheless a very good one. On numerous consulting
engagements15 Adam has been asked to “try to get the private key off
the smart card.” This directive was administered with the wholehearted
belief that it was possible to verify that no one would ever have access
to the private key.16 It was a joke, really. Yet a mechanism that permits

14The outputs must look random.
15Fortune 500 companies included.
16Mentioning the existence of kleptographic attacks was ineffectual. The argument

was summarily dismissed as being theory. To translate, the Fortune 500 company was
basically saying, “We don’t care. We are paying our security consultants a lot of money.
We are exercising due diligence and hence will not lose our jobs.”

290 12. SETUP Attacks on Discrete-Log Cryptosystems

the verification of the devices’ choice of randomness would help to say
something meaningful about the integrity of the implementation.

A similar approach is to eliminate all randomness from the device. In
this approach the requirement is made that the device be a deterministic
algorithm. A separate device supplies the randomness and the device
in question uses the randomness to perform public key operations. This
approach is hazardous due to the coin-flipping problem. VLSI chips have
a variety of ways of generating randomness themselves and it could still
mount the SETUP attack once in a blue moon.

To summarize, the following two reasons form fundamental difficulties
in dealing with insider threats in probabilistic cryptographic algorithms:

1. The device can always “cheat” when you’re not looking. Even when
you believe it to be deterministic and supply it with randomness
yourself for verification purposes, it can with a very small probability
ignore your randomness on a given occasion and substitute its own
on the sly.

2. If you are always looking, then you are doing even more work than
the device. This defeats the purpose of using the cryptographic
device altogether.

Another option to mitigate the insider threat is to utilize multiple key
pairs that are generated and stored on devices made by different manu-
facturers. In this approach an encryption is computed by encrypting the
message multiple times using each different public key. This is often re-
ferred to as cascading encryptions. A given document is signed multiple
times using each different private key. This way, if one smart card is com-
promised and another is not, the overall solution will inherit the security
of the honest device. The ciphertext layer computed by the honest device
will never be breached and the signatures from the honest device will never
be forged. This is probably the best approach until industry standards
start addressing this problem. (This may be overly optimistic.)

We recommend that users who must rely on smart cards exercise due
diligence in investigating all of the manufacturers involved in the com-
plete solution. The manufacturers should be at least as trustworthy as
the certificate authority, if not more. We recommend that users be wary
of snake oil. If a manufacturer claims they have a whiz-bang crypto-
graphic algorithm or random number generator but will not disclose it

12.10. Should You Trust Your Smart Card? 291

in its entirety, then we recommend that their products not be used. Se-
curity by obscurity is an unacceptable practice, even when proprietary
algorithms are concerned. Published (and preferably standardized) algo-
rithms should always be used by vendors. If a manufacturer claims that
there are no backdoors, we recommend that users get a third-party assess-
ment of this and that users verify that the third party had unobstructed
access to any and all source code, schematic diagrams, test data, require-
ments documents, and design documents. This includes any and all such
documentation from the chip manufacturer(s). Anything short of this fails
to suggest that a backdoor is not present in the design.

A naive response to this issue is the following. “My smart card is a
NIST approved FIPS level 140-2 device and I have the certificate to prove
it.” Well, this is all fine and good. It could be that the certification lab
actually took the time to look for flaws, weaknesses, and backdoors in the
code. Even so, where is the guarantee that the specification they analyzed
is the one that actually got manufactured? Who’s to say that one in every
hundred devices doesn’t have a SETUP mechanism in it? A commercial
FIPS-140 certificate does not provide any assurance that the specification
that was certified by NIST is the same one that was implemented in your
particular smart card. The payoff for such illicit behavior on behalf of a
vendor may not be high now. But as PKI takes root, the potential payoff
for a small-fry smart card company to actually carry out a SETUP attack
may become staggering. The NIST smart card certification process is
both honorable and helpful, yet this does not change the fact that a FIPS-
140 certificate is likely to give many people who do not fully understand
cryptography and the FIPS certification process a false sense of security
against insider threats.

Personally, we would never completely trust a third-party smart card,
no matter who made it. It is simply too easy to leak information securely
and subliminally in cryptographic parameters or otherwise. If multiple
cryptosystems cannot be simultaneously employed from multiple manu-
facturers then our best advice is to simply assume that someone knows
your private key.

However, the following is a fail-safe way to generate a public key and
certify it without worrying about backdoors. You will need a coin, pencil,
paper, flashlight, and hard hat. It is of course necessary that you be a
spelunker and that you leave all electronic devices behind, save for the
flashlight.

292 12. SETUP Attacks on Discrete-Log Cryptosystems

1. Climb down into the deepest crevice in the earth’s crust.

2. Make sure no one followed you down there.

3. Flip the coin and perform Neumann unbiasing on the results to
generate unbiased coin tosses.17

4. Use the pencil to write down the resulting private key.

5. Compute the corresponding public key on the paper.

6. Memorize the key pair.

7. Burn the paper, pencil, and flashlight.

8. Climb back to the surface and submit the public key to a certificate
authority.

This may be justly called the Caveman key generation algorithm. Pro-
vided that no one invades your brain using extrasensory powers and pro-
vided that you use your private key securely, your private key will be
known only by you.18

17If it is weighted unfairly, then it is possible that the mint manufactured the coin
with a deliberate statistical backdoor.

18This is a joke, of course.

12.10. Should You Trust Your Smart Card? 293

Appendix A

Computer Virus Basics

This appendix is intended to give a quick overview of malicious software
for those who are not already familiar with the subject. The origins of ma-
licious software are described, followed by a discussion of competing defi-
nitions for a virus and a worm. The structure of a simple IBM PC virus is
then provided. The appendix concludes by dispelling a common miscon-
ception about how viruses and Trojans gain control from their hosts. It is
shown that viruses and Trojans can utilize string matching to randomize
the location of the jump instruction in the host that sends control to the
malware.

A.1 Origins of Malicious Software

The origin of the modern computer virus can be traced back to 1949, when
John von Neumann presented lectures that encompassed the theory and
organization of complicated automata [310]. Neumann postulated that
a computer program could reproduce itself. Bell Laboratories employees
eventually gave life to Neumann’s theory in the 1950s in a game dubbed
Core Wars. In this game, two programmers would unleash software or-
ganisms and watch as the programs attempted to lay claim to the address
space in which they fought. The Core Wars were described in a May 1984
issue of Scientific American [91]. Ken Thompson, winner of the presti-
gious ACM Turing Award, mentioned in his Turing Award lecture that he
had experimented with self-replicating code as an undergraduate [300]. At
that time he had challenged himself to write the smallest self-replicating
program possible in the usual vehicle, the FORTRAN programming lan-
guage.

295

296 Appendix A

The notion of a backdoor in software, as we know it today, can be
traced back to the late 1960s. The concept of multiuser operating systems
grew out of the need to make efficient use of expensive computing machin-
ery. Prior to this, physical controls could be used to maintain security of
batch processing machines, yet the effectiveness of such controls began to
wane as soon as programs from different users began sharing memory on
a single computer.

It was when the military began utilizing multiuser and networked op-
erating systems that security issues surrounding these systems came to a
head. The discussion of computer subversion was addressed in an article
by Petersen and Turn in the 1967 AFIPS Conference [223]. The question
of security control in resource sharing systems was the focus of a series
of events in 1967. The Advanced Research Projects Agency was asked to
form a task force to study and recommend hardware and software safe-
guards to protect classified information in multiaccess resource sharing
computer systems. The task force contained a technical panel that in-
cluded, among others, James P. Anderson and Daniel J. Edwards. The
report of the task force was printed in 1970 and published by the Rand
Corporation under ARPA sponsorship [321]. The RAND report identifies
a class of active infiltration that utilize “trap-door” entry points into the
system to bypass the security facilities and permit direct access to data.

The notion of a Trojan horse was identified by Daniel J. Edwards1

and was described as a “Trojan horse” in the Anderson report in 1972 [6].
One of the earliest Trojans was a segment of binary code that was inserted
into Multics binary code and was distributed to all sites. Paul Karger and
Roger Schell described this Trojan in 1974 [151].

In 1982, J. F. Shoch and J. A. Hupp published their work on computer
worms [271]. While at the Xerox Palo Alto Research Center (PARC)
they investigated the use of worms for the purposes of performing dis-
tributed computation over a network. They called their program a worm
in honor of the computer tapeworm described in the science fiction novel
The Shockware Rider [43], a cyberpunk novel that predates the term cy-
berpunk. These worms adhered to a prespecified protocol that enabled
them to move from machine to machine without user intervention. They
were programmed to look for idle machines in order to exploit free CPU
power and were designed to control their numbers.

Scattered reports indicate that a computer virus spread on Apple com-
puters as early as 1981. Also, numerous sources indicate that a virus called

1From the NSA.

A.2. Trojans, Viruses, and Worms: What Is the Difference? 297

the Elk Cloner was written in 1983 [129]. This virus became well known in
the Apple community and spread on Apple Computer’s DOS 3.3 operating
system. Fred Cohen did a considerable amount of the initial research on
computer viruses in the early and mid 1980s [66, 67, 69]. His doctoral dis-
sertation covered virus theory and his faculty advisor, Professor Leonard
Adleman (co-inventor of the RSA algorithm), also worked on the problem.

A.2 Trojans, Viruses, and Worms: What Is

the Difference?

Researchers have proposed competing definitions for what a worm is and
what a virus is. For example, McAfee and Haynes refer to the infamous
self-replicating program that Robert T. Morris, Jr. wrote as a virus.2

Morris was a graduate student at Cornell University at the time, and his
creation spread like wildfire across the Internet/Arpanet in November of
1988. McAfee and Haynes define a virus to be a computer program that
is created to infect other programs with copies of itself and that has the
ability to clone itself. They define a worm to be a program that can burrow
its way into systems to manipulate, destroy, or alter data, and that does
not contain instructions to replicate. In fact, they even state that worms
cannot replicate.3

In contrast, Peter J. Denning referred to the Morris program as the
Internet Worm [88]. Denning stated that some media reports mistakenly
called the invading program a virus rather than a worm. He defined a
virus to be a code segment that embeds itself inside a legitimate program,
that is activated when the program is activated, and that then embeds
another copy of itself in another legitimate but uninfected program.

To shed light on this apparent dichotomy, the exact nature of the
Morris program must be considered. The Morris program had three dif-
ferent infection vectors [88]. Whenever an infection vector succeeded it
established a connection with a remote shell and fed the shell a 99-line
bootstrap program together with the commands that were needed to com-
pile and execute it. If everything worked, the rest of the worm was sent to
the new machine. The parent worm then issued commands to construct
a new worm from the delivered pieces. The McAfee-Haynes definition of
a worm is more in line with the beneficial worms that Shoch and Hupp

2See page 80 of [185].
3See page 29 of [185].

298 Appendix A

researched. Under this definition, a worm does not contain explicit in-
structions to replicate and hence adheres to the McAfee-Haynes notion of
a worm.

It is perhaps safest to say that there is no single correct definition of a
worm. The research at XEROX showed that worms could be quite useful
for performing distribute computations when they are carefully controlled.
News agencies like to go hog wild whenever a rapidly spreading program
hits the Internet, and so this has cast worms with malicious propagation
vectors in a negative light.

Rather than making the distinction between a virus and a worm con-
tingent upon the insertion of a program’s own code into a host program,
we prefer to make the distinction contingent upon whether or not user
intervention is required for replication. We prefer the following definition
of worm.

Definition 5 A computer worm is a program that causes possibly altered
copies of itself to be created without any user intervention.

We use the possibly altered language to account for the fact that pro-
grams can change their own code (such as polymorphic viruses). We prefer
the following definition of a virus.

Definition 6 A computer virus is a program that when triggered by an
action of the user, causes possibly altered copies of itself to be created.

The beneficial XEROX programs and the Morris program of ’88 are worms
under these definitions. Also, many e-mail “worms” are viruses under
these definitions. This holds whenever the user has to open his or her
inbox or open a specific e-mail for the virus to propagate.

The biological analogs of computer viruses and worms form a possible
justification for our definitions. A worm will crawl beneath the earth of
its own volition. In order for the common cold virus to spread, a host
has to place him or herself within the proximity of another potential host
and then cough, sneeze, and so forth. This is analogous to a virus that
will only spread if the user types in the name of the infected program and
then hits the carriage return or if the user double-clicks on the icon of the
infected program, and so on. We are not arguing that our definitions are
any better or worse than any other definitions. They just seem to make a
good deal of sense.

A.3. A Simple DOS COM Infector 299

An important aspect to our definition is that it says nothing about
computer networks. If a program can spread on its own from program to
program on a single machine while the user is asleep, then the program
may be justifiably referred to as a worm.

Fortunately, no one would argue about the definition of a Trojan horse
program. A Trojan horse program does not replicate. If it replicated, then
it would be a virus or a worm.

Definition 7 A Trojan horse is a program that does not replicate and that
performs something that the user does not intend the infected program to
do.

As shown in Chapter 9, a Trojan horse can be as simple as an ex-
ploitable bug that is deliberately placed in a program. Some exploitable
bugs such as buffer overruns or improperly handled race conditions can
appear to be honest programming errors.

A.3 A Simple DOS COM Infector

An example will go a long way to show how a virus spreads on a typical
disk operating system. Although admittedly outdated, a good example is a
virus that infects MSDOS COM files. A COM file is an executable MSDOS
program that has the .com extension at the end of the executable’s file
name. The reason why these programs are so simple to infect is that COM
files are direct memory images of programs. The format of a COM file
is as follows. It must be less than 64 kilobytes and the first instruction
begins at offset 100h (256 bytes). The first 256 bytes can be all zeros, for
instance.

When a COM file is executed, DOS loads what is called the program
segment prefix (PSP) at the first available segment in memory. This is a
data structure that is 256 bytes long and contains bookkeeping information
for DOS. This bookkeeping information may overwrite the bytes that were
there when the COM file was initially copied from the disk into random
access memory. Immediately following the program segment prefix the
code for the COM file begins, so MSDOS sends control to offset of 100h to
execute the COM program. COM files must be small enough to fit within
one segment, thereby limiting their maximum length to be just short of
64 kilobytes. When the COM file is finished running, it can send control

300 Appendix A

back to MSDOS by executing the int 20h interrupt instruction, or it can
execute the ret instruction that employs a return address on the stack.

The simplest form of virus that does not destroy data in its host is an
appending virus. An appending COM virus stores virtually all of its code
immediately following the last byte in the COM file. This code is called
the virus body. Simply putting this code there will not allow the virus to
gain control when the host COM file is executed by the operating system.
So, the virus overwrites the first few executable bytes of the COM file with
an unconditional jump that sends control to the beginning of the appended
virus. The overwritten bytes are not destroyed, however. Instead, they
are carefully saved within the virus. When the virus is finished executing,
the executable bytes in memory that were overwritten are restored in
memory. Control is then sent to the first executable instruction in the
COM file. The COM file is then in its original form, save for the virus
hanging out just beyond the last byte of the COM file. This is illustrated
in Figure A.1. A COM infector must make certain that its operation does
not modify the program segment prefix before sending control to the host.
Otherwise, the host program might not operate correctly.

The simplest way to prevent a virus form infecting a host multiple times
is to design it to detect itself. This can be accomplished by choosing a
20-byte value IDENTIFIER uniformly at random and then including
it in the virus as a data constant. The virus can then detect itself by
performing string matching using these 20 bytes. Since the identifier is
160 bits long, mismatches should occur with negligible probability. The
downside is that this gives antiviral programs an excellent way to identify
the virus as well.

Many viruses use tiny identification strings to let the virus detect itself.
Sometimes it is a small string at a fixed offset that is used for identification.
At the very least this could lead to false virus identifications. At the worst
it could lead to programming errors. As the virus is developed its offsets
will inevitably change. This could cause the virus to go out of control and
escape the author’s machine unexpectedly. This problem does not occur
with a large randomly chosen identifier.

It is easy to embed a constant within assembly code. This can be
accomplished by placing an unconditional jump instruction just before
the constant that sends control immediately following the constant. To
utilize the constant, a label can be placed just before it. This approach
may be used in this example virus. The data that it jumps over is the value
IDENTIFIER and the valueHOSTINSTR. The valueHOSTINSTR

A.3. A Simple DOS COM Infector 301

Figure A.1 Simple appending COM virus

is the bytes that were overwritten at the beginning of the host COM file.
They are stored as a constant so that the virus can repair the host at run-
time prior to sending control to it. An example Intel assembly language
implementation of this method is given below.

nop

jmp AfterData

IDENTIFIER:

db 1Eh,40h,1Ah,41h,5Eh,01h,1Eh,A2h,3Eh,90h

db 02h,99h,02h,67h,10h,76h,4Fh,5Dh,1Eh,CFh

HOSTINSTR:

dd 0 ;allocate 4 bytes

AfterData:

nop

One thing that a virus typically needs to do is get a pointer to itself
at run-time so that it can copy itself. A common approach is to call a

302 Appendix A

subroutine and then obtain the return address of the subroutine from the
stack.4 This is not always necessary.

Suppose that it is known that the size of the virus can be stored within
a two-byte quantity. In this case the size of the virus can be guessed and
used within the source with the knowledge that it is probably incorrect.
The true size of a virus can be found after it is assembled. This value can
then be fed back into the virus by copying it into the assembly source.
This way the virus source knows how large the virus is. An MSDOS call
exists that lets a virus learn the size of a COM file. An appending virus
can then get its offset by subtracting the size of the virus from the size of
the COM file.

The following is an overview of the execution of a COM file P1 that is
infected with this simple appending COM virus.

1. P1 begins executing. The jump instruction at offset 100h sends con-
trol to the virus at the end of P1.

2. The virus chooses a COM file P2 uniformly at random from all COM
files on the computer.

3. The virus opens P2 for reading and writing. If this fails, control is
sent to step 10.

4. If P2 contains the string IDENTIFIER, control is sent to step 10.

5. If P2 does not have enough room for the virus, control is sent to step
10.

6. The virus copies itself to the end of the last byte of P2 in RAM.

7. The virus stores the first three or four bytes starting at offset 100h
in P2 within the new copy of the virus.

8. The virus overwrites the first three or four bytes in P2 that start at
offset 100h with a jump instruction that sends control to the new
virus.

9. The virus writes the changes to P2 to the disk and closes P2.

10. The virus repairs the first 3 or 4 bytes of code in P1 that start at
offset 100h in RAM using the stored values.

4This is so common that it is used as a virus detection heuristic.

A.4. Viruses Don’t Have to Gain Control Before the Host 303

11. The virus sends control to offset 100h in P1.

The operations of opening files, closing files, reading files, writing files,
and so on, are standard in any disk operating system. In older versions
of MS-DOS these functions are called by invoking interrupt 21h. This
interrupt is reserved for DOS function calls. The standard way to invoke
a DOS call is to load the Intel CPU register AH with a function value and
then invoke the int 21h instruction. Table A.1 shows the function values
needed to implement this simple COM infector.

For example, the following assembly code closes a file.

mov ah,3e ;close file

int 21

It loads the 8-bit Intel CPU register AH with the 8-bit quantity 3Eh
and then invokes interrupt 21h. The DOS interrupt reads the value in
AH and determines that the program wishes to perform the close file
operation.

A.4 Viruses Don’t Have to Gain Control

Before the Host

It is surprising how many people assume that viruses have to get control
before their hosts. This is clearly the easiest way to implement a virus,
but it is by no means the only way. A virus can search the host for a
small set of code with known functionality and then replace it with a
jump to the virus. An experimental Macintosh virus dubbed the SysBeep
virus did exactly this.5 SysBeep is a Macintosh OS call that takes a
single argument, an integer indicating the duration of the system beep as
measured in ticks. The SysBeep call can be implemented using the “move”
instruction followed by the trap for SysBeep. The move instruction pushes
an integer onto the stack. Address register A7 is the stack pointer. The
trap instruction is two bytes and has the hexadecimal value A9C8. Only

5Experimentally demonstrated at Yale in the early 1990s by the first author and
Matt Hastings.

304 Appendix A

Hexadecimal value in AH DOS operation

23 get file size
3B change current directory
3C create file/handle
3D open file/handle
3E close file/handle
3D open file/handle
3F read from file/device
40 write to file/device
41 delete file
47 get current directory
4E find match file
56 move file (rename it)

Table A.1 Old MSDOS calls

these two instructions are needed to invoke a system beep and as it turns
out these two instructions were extremely common for making the call.

The following is an example of a call to SysBeep. It pushes the 16 bits
of data stored in data register D0 onto the stack in the MOVE.W instruc-
tion. The mnemonic SysBeep is a call to the Macintosh OS SysBeep call.
This is a debugging listing that demonstrates the size of the instructions.
The semicolon is used to indicate a comment that extends to the end of
the line that it is on.

+0022 000026 MOVE.W D0,-(A7)

+0024 000028 _SysBeep ; A9C8

+0026 00002A MOVEQ #$03,D0

Below is a different debugging listing that shows the actual bytes of
the instructions, that being 3F2E0008A9C8.

0000000A: 3F2E 0008 MOVE.W beepSize(A6),-(A7)

0000000E: A9C8 _SysBeep

A.4. Viruses Don’t Have to Gain Control Before the Host 305

The machine he was using was a Macintosh SE/30 that used the Mo-
torola 68030 microprocessor. It is a complex instruction set computer
(CISC), and so the instructions varied in size. The move instruction in
the first listing above is 2 bytes long. The move instruction in the second
listing is 4 bytes long.

A search algorithm was implemented that looked for a move word
instruction followed by A9C8. The search algorithm took into account
the fact that the move word instruction may vary in size. When found,
the virus safely stored these two instructions within the body of the virus.
It then replaced these two instructions with an unconditional jump to the
body of the virus, adding padding bytes if necessary. Just before sending
control back to the host, the virus repaired the two instructions using
the two saved instructions. It then sent control to the first of the two
instructions. The virus was written entirely in ANSI C.

The more general lesson is that a virus can search for any small set of
instructions and overwrite them with an unconditional jump to the virus.
This can be accomplished by choosing an offset into the code uniformly at
random, searching the code for the small set of instructions from there on,
and the wrapping around to the beginning of the code if one is not found
when the end is reached. The search terminates when either the small set
of instructions is reached, or the search leads back to the randomly chosen
offset. This way, the small set of instructions that are replaced are chosen
randomly from all possible sets of instructions that can be replaced.

Great care must be taken, for suppose that an “if” statement that
occurs before the overwritten code sends control into the middle of the
overwritten code. In this case, the virus might not have a chance to repair
the code before the host sends control to it. This will more than likely
cause a crash or bus error. The problem is that of atomicity. A virus can
heuristically check that no jump instructions send control to the middle
of the overwritten code.

This approach is a countermeasure to generic decryption. Recall that
in generic decryption, the first several thousand instructions of a program
are emulated to try to get a polymorph to decrypt itself if present. If a
polymorphic virus gains control before the host and decrypts itself, then
generic decryption should succeed as well as subsequent string-matching
algorithms that are performed. By randomizing the location of the in-
struction that jumps to the virus, there is a good chance that the virus
will slip by the generic decryption engine.

Appendix B

Notation and Other
Background Information

This appendix describes most of the material that is needed to follow the
ideas presented in this book without covering ideas from cryptography.
First, standard notations are described that are used throughout the text
as well as well-known definitions from number theory. Some basic facts
and algorithms from number theory are also given. The appendix then
focuses on a set of computational problems in the field of computational
number theory. Most of these computational problems are believed to be
intractable and many have only been identified recently. The appendix
concludes with a description of the random oracle model.

B.1 Notation Used Throughout the Book

In this section notation as well as some basic definitions are given that
are used throughout the book. String notation is given followed by logic
operations and logic statements. Standard notation from number theory
is then given along with basic definitions. This is followed by set theory
notation and notation from probability theory. The section concludes with
asymptotic notation.

When a is a bit string, |a| denotes the length of a in bits. For example,
|01001| = 5. The operator || denotes string concatenation. So, if a and b
are bit strings then a||b denotes the bit string that results from concate-
nating a with b. For example, 010||11 = 01011. When x is a positive
integer it is understood that |x| denotes the length of x in bits when x is
represented in base 2. The set of strings that are each m-bits in length

307

308 Appendix B

is denoted by {0, 1}m. The set of all bit strings that are each countably
infinite in length is denoted by {0, 1}∞.

The operator ⊕ denotes the bitwise exclusive-or operation, also de-
noted by XOR. So, a⊕ b denotes the bitwise XOR of bit string a with bit
string b. The bit strings a and b in a⊕ b must be the same length in bits.
For example, 0011 ⊕ 0101 = 0110. The notation ⇔ denotes “if and only
if.” This is used for logic statements in which A is true if and only if B is

true, written as A ⇔ B. The notation
?
= is typically used in descriptions

of digital signature algorithms and other cryptographic algorithms that
require equality testing. It is a Boolean operator that takes two integers

a and b as input. The value a
?
= b returns true if a equals b and false

otherwise.
The function gcd denotes the greatest common divisor function. Thus,

gcd(a, b) returns the greatest common divisor of integers a and b. For
example, gcd(10, 15) = 5.

If a and b are integers, then a is said to be congruent to b modulo n if
n divides a− b evenly. This is written as,

a ≡ b mod n (B.1)

We say that “a is congruent to b modulo n.” The integer n is referred to as
the modulus of the congruence. For example, 5 ≡ 19 mod 7, 0 ≡ 8 mod 4,
and −1 ≡ 9 mod 5.

ZZn denotes the set of integers modulo n. So, ZZn = {0, 1, 2, 3, ..., n−1}.
The multiplicative group of ZZn is denoted by ZZ∗

n. It is common practice to
be sloppy and let ZZ∗

n also refer to the set that the group is defined over. So,
ZZ∗

n consists of all elements a ∈ ZZn such that gcd(a, n) = 1. If n is prime
then the set ZZ∗

n consists of all integers a such that 1 ≤ a < n. When A and
B are sets then A− B denotes set subtraction. For example, S = A− B
may be found by setting S = A and then removing from S each element
e that is in both A and B. For example, {1, 2, 3, 4, 5} − {2, 4} = {1, 3, 5}.
The notation ∈ is used to denote “contained in.” When S is a set of
elements and an element a is contained in S we write a ∈ S. For example,
2 ∈ ZZ5. But, it is incorrect to say 5 ∈ ZZ5.

The notation Pr[A] is used to indicate the probability that event A
occurs. For example,

Pr[tossing coin 1 results in heads] =
1

2
(B.2)

B.2. Basic Facts from Number Theory and Algorithmics 309

indicates that coin 1 is a fair coin since heads comes up with probability 50
percent. The notation Pr[A|B] denotes the conditional probability that
event A will occur given that event B occurs. Recall that,

Pr[A|B] =
Pr[A ∩B]

Pr[B]
(B.3)

where A and B are events.
The notation f(·) is used to denote a function f that takes one argu-

ment as input. The dot is used as a placeholder for the argument. For
example, f(x) = 2x3 + x − 1. Similarly, f(·, ·) denotes a function that
takes two arguments as input. For example, f(x, y) = 3x2− 2xy+ 4y+ 1.

Big-O notation is used in this book. Informally, f(n) = O(g(n)) means
that f does not grow faster asymptotically than g(n) within a constant
multiple. Formally speaking, this holds when there exists a constant c > 0
and an integer n0 > 0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. A
polynomial time algorithm is an algorithm that has a worst-case running
time of O(nk) where k is a constant and n is the size of the input to the
algorithm. Generally speaking, poly-time algorithms are algorithms that
can be expected to yield answers within a reasonable length of time.

B.2 Basic Facts from Number Theory and

Algorithmics

Number theory is a branch of mathematics that is central to modern cryp-
tography and hence computer security. It is characterized by an enumer-
able number of problems whose elegance and simplicity are matched only
by their difficulty in solving. There are a number of great introductory
books on the subject [96, 128, 164, 247]. Many public key cryptosystems
are rooted in unsolved problems in computational number theory and as
such a basic understanding of this branch of mathematics is critical in
understanding public key cryptography. This section is by no means a
comprehensive introduction to the subject. The goal here is to convey
some of the basic ideas so that the reader will know where to look for
more information.

310 Appendix B

The Prime Number Theorem1 [164] can be used to estimate the prob-
ability that a randomly chosen number is prime.

π(x) ∼ x

ln x
(B.4)

The function π(x) is defined as the number of prime numbers less than or
equal to x. Generally speaking, a randomly chosen k-bit number is prime
with probability about 1/k.

The greatest common divisor of two integers can be computed us-
ing the Euclidean algorithm. Hence, this algorithm is used to compute
d = gcd(a, b) for two integers a and b. This may well be one of the oldest
non-trivial algorithms in the history of algorithmics. A more general com-
putational problem is to compute the two integers x and y in ax+ by = d
where a and b are non-negative integers with a ≥ b. The extended Eu-
clidean algorithm solves this computational problem efficiently. It is often
used to compute multiplicative inverses. For example, it is used to com-
pute the RSA private key d given e, p, and q (see Appendix C.1.7).

To describe various public key cryptosystems it is necessary to cover
Euler’s totient function φ(·). It takes a single integer as an argument and
has various properties. If p is prime and k ≥ 1 then φ(pk) = (p− 1)pk−1.
The function is multiplicative. In other words, if gcd(a, b) = 1 then φ(ab) =
φ(a) ∗ φ(b). Finally, if

n = pe1
1 p

e2
2 · · · pem

m (B.5)

where the pi’s are distinct primes and ei ≥ 1 for 1 ≤ i ≤ m, then

φ(n) = n(1− 1/p1)(1− 1/p2) · · · (1− 1/pm) (B.6)

The symbol λ is used to denote Carmichael’s lambda function. This
function is defined as follows. The value λ(2) = 1, λ(4) = 2, and
λ(2t) = 2t−2 if t ≥ 3. Also, if n is a positive integer with prime-power
factorization 2t0pt1

1 p
t2
2 · · · ptm

m then λ(n) is the least common multiple of

1This theorem was proven independently by Hadamard and De La Valleé Poussin
in 1898.

B.2. Basic Facts from Number Theory and Algorithmics 311

λ(2t0), φ(pt1
1), ..., φ(ptm

m). The value λ(n) is also commonly referred to as
the minimal universal exponent [247].

A generator g of ZZ∗
n is an element that is capable of generating all

elements in the set ZZ∗
n by exponentiating g modulo n. More formally,

if g is a generator of ZZ∗
n then ZZ∗

n consists of the elements gi mod n for
0 ≤ i ≤ φ(n) − 1. So, using modular exponentiation g is capable of
generating this set. If ZZ∗

n has a generator then ZZn is said to be cyclic.
The value g is a generator of ZZ∗

n if and only if,

gφ(n)/p 6= 1 mod n (B.7)

for every prime divisor p of φ(n). This immediately suggests a way to find
a generator for a given value n. Provided that the factorization of φ(n)
is known, the inequality B.7 is verified for each prime divisor of φ(n). If
there exists a prime divisor p for which it does not hold, then g is not a
generator. If ZZ∗

n is cyclic then the number of generators is φ(φ(n)). So,
it is often possible to find a generator by choosing g uniformly at random
from ZZ∗

n and performing this test.
An algorithm is needed to compute y = gx mod p when g, x and

p are large (for example, 1024-bit quantities). To see this, note that a
1024-bit number g raised to a 1024-bit number is a quantity so large that
it will never fit within the memory of a computer system. The value y
can be computed using the square-and-multiply algorithm. This algorithm
works by repeatedly squaring the value g and reducing modulo p after each
squaring. The end result is 1024 values each of which are about 1024 bits
in length. The quantities are g, g2 mod p, g4 mod p, g8 mod p, and so on.
Depending on where binary ones appear in the exponent x, these values
can be multiplied to compute y, all the while reducing modulo p.

There are even faster approaches. For example, vector addition chains
may be used in concert with Karatsuba multiplication and Montgomery
reduction. Also, when the base g is fixed, it is possible to speed things up
by precomputing the powers of g as previously mentioned.

The value a ∈ ZZ∗
n is a quadratic residue modulo n if there exists an

x ∈ ZZ∗
N such that a ≡ x2 mod n. If no such x exists then a is a quadratic

non-residue modulo n. Euler’s criterion is a method that may be used to
test if a given integer a is a quadratic residue modulo a prime p or not.
The value a is a quadratic residue modulo p if and only if a

p−1
2 mod p = 1.

Quadratic residuosity is so pervasive in number theory that it has its
own symbolic representation. The Legendre symbol is a tool for noting

312 Appendix B

whether or not a is a quadratic residue modulo the prime p. The Legendre
of a with respect to p is written as L(a/p) and is only defined for odd
primes p and integers a. Note that this does not indicate that a is divided
by p. It is notation for a symbol that has one of three values: 0, 1, or
−1. The value L(a/p) is 0 if p divides a evenly. It is 1 if a is a quadratic
residue modulo p, and it is −1 if a is a quadratic non-residue modulo p.
Euler’s criterion may be used to evaluate the Legendre of a with respect
to p.

The Jacobi symbol J(a/n) is a generalization of the Legendre symbol.
The Legendre symbol only applies to odd primes p whereas the Jacobi
symbol applies to all odd numbers n ≥ 3. Let n be as defined in equation
B.5. The Jacobi of a with respect to n is defined as follows,

J(a/n) = L(a/p1)
e1L(a/p2)

e2 · · ·L(a/pm)em (B.8)

Note that if n is prime then the Jacobi symbol equals the Legendre sym-
bol.2

The notation ZZ∗
n(+1) is used to represent the set of values a ∈ ZZ∗

n such
that J(a/n) = 1. A pseudosquare modulo n = pq where p and q are prime
is a quadratic non-residue y such that J(y/n) = 1.

Note that when n is the product of two distinct primes p and q, the pair
(L(a/p), L(a/q)) can have any of four possible values. These four possible
values are (1, 1), (−1,−1), (−1, 1), and (1,−1). The value a is a quadratic
residue only in the case of (1, 1). The value a is a pseudosquare only in
the case of (−1,−1). Furthermore, the number of quadratic residues in
ZZ∗

n(+1) equals the number of pseudosquares in ZZ∗
n(+1).

The following definition is relevant to the Paillier cryptosystem. Con-
sider the integers modulo n2. A number a is said to be an nth residue
modulo n2 if there exists a number y ∈ ZZ∗

n2 such that a = yn mod n2.
Furthermore, the set of nth residues is a multiplicative subgroup of ZZ∗

n2 of
order φ(n). Every nth residue a has exactly n roots, each of degree n.

B.3 Intractability: Malware’s Biggest Ally

Modern cryptography is made possible by the failures in modern algorith-
mics. Cryptosystems such as RSA and the Diffie-Hellman key exchange

2This is the basis for the Solovay-Strassen probabilistic primality test [286].

B.3. Intractability: Malware’s Biggest Ally 313

are regarded as secure since they are based on computational problems
that are presumed to be intractable. It is well known that if you can fac-
tor, then you can break RSA, and so it is these very problems that keep
unwanted intruders at bay.

Yet this entire book is dedicated to showing how these same crypto-
graphic primitives can be used to mount novel attacks on host cryptosys-
tems. The simplest such attack is a denial-of-service attack in which a
virus public key encrypts critical host data. When backups aren’t avail-
able, only the virus author can restore the information since only the virus
author has the needed private decryption key. Intractability is therefore
a powerful ally in the hands of malicious software programs.

In this section several computational problems in number theory are
described. They form the basis of security for several public key cryptosys-
tems. Some of these problems related to others in known ways. Most of
the problems described in this section are assumed to be intractable in the
proofs of security for various cryptosystems. However, the Phi-Sampling
assumption is a necessary assumption for a given scheme to work properly.3

Many of the known relationships between these problems are described.

B.3.1 The Factoring Problem

The Rabin cryptosystem is based on the assumed intractability of solving
the factoring problem (see Appendix C.1.5). This is often referred to as
the factoring assumption. In the case of Rabin and other cryptosystems
we are interested in whether or not the factoring problem is solvable for the
product of two distinct primes p and q. The more general integer factor-
ization problem is the following. Given an integer n find its factorization.
That is, find p1,p2,...,pm, and e1, e2,...,em as in equation B.5.

The integer factorization problem is contained in the complexity class
known as FNP. FNP is a class of function problems that have the following
form: given an input x and a polynomial time predicate F (x, y), if there
exists a y satisfying F (x, y) then output any such y, otherwise output
“no.” This is not to be confused with NP, the set of decision problems
that are solvable by polynomial time Turing machines that answer “yes”
if at least one computation path accepts and “no” otherwise.

There exist a number of algorithms for solving the factoring problem.
Examples include the quadratic sieve method [82, 228] and the number

3Formally, speaking it is a requirement for completeness of the underlying crypto-
graphic protocol.

314 Appendix B

field sieve [44, 171]. Yet there is no known algorithm to date that can
efficiently factor RSA moduli n that are 768 bits or larger.

B.3.2 The eth Roots Problem

The RSA cryptosystem is based on the assumed intractability of solving
the eth roots problem (see Appendix C.1.7) where e ≥ 3. This is often
referred to as the eth roots assumption or the RSA assumption. The eth

roots problem is as follows. Given a composite number n, an integer e ≥ 3
such that gcd(e, φ(n)) = 1, and an integer c ∈ ZZ∗

n, find an integer m such
that me ≡ c mod n. The RSA problem is to solve the eth roots problem
when n is the product of two distinct primes p and q.

The RSA problem is trivially solvable if factoring is solvable. To see
this, note that if the factors p and q can be computed from n, then d can
be computed such that ed = 1 mod (p − 1)(q − 1) using the extended
Euclidean algorithm. The value d is the private exponent corresponding
to the RSA public key (e, n). So once d has been found the RSA problem
can be solved using RSA decryption.

When e = 2 the problem is to compute square roots modulo n. This
problem has been proven to be equivalent to the factoring problem [237].
The non-trivial implication is proven using a randomized reduction argu-
ment that shows how to factor n given an oracle that returns a square
root.

B.3.3 The Composite Residuosity Problem

The Paillier public key cryptosystem constitutes a one-way trapdoor under
the assumed intractability of solving the computational composite resid-
uosity problem (see Subsection 5.2.4). Let n be the product of two large
primes p and q. Let g be an element of ZZ∗

n2 having an order that is a
non-zero multiple of n. The computational composite residuosity prob-
lem is as follows. Given n, g, and w ∈ ZZ∗

n2 , compute the unique value
x ∈ ZZn for which there exists a y ∈ ZZ∗

n such that gxyn ≡ w mod n2. The
computational composite residuosity assumption is that no probabilistic
poly-time algorithm exists that solves this problem. The problem of in-
verting the Paillier cryptosystem is by definition the problem of solving
the computational composite residuosity problem. It has been shown that
this problem is solvable if the RSA problem is solvable when the public
RSA exponent e equals n [216].

B.3. Intractability: Malware’s Biggest Ally 315

B.3.4 The Decision Composite Residuosity Problem

The Paillier public key cryptosystem is semantically secure against plain-
text attacks based on the assumed intractability of solving the decision
composite residuosity problem. Let n be the product of two large primes
p and q. Let g be an element of ZZ∗

n2 having an order that is a non-zero
multiple of n. The decision composite residuosity problem is as follows.
Given n, g, w ∈ ZZ∗

n2 , and a value x ∈ ZZn, decide whether or not there
exists a y ∈ ZZ∗

n such that gxyn ≡ w mod n2. The decision composite resid-
uosity assumption is that no probabilistic poly-time algorithm exists that
solves this problem. There exist other cryptosystems that are predicated
on the difficulty of deciding higher order residuosity [23, 196]. It has been
shown that the ability to solve the computational composite residuosity
problem implies the ability to solve the decision composite residuosity
problem [216].

B.3.5 The Quadratic Residuosity Problem

The Goldwasser-Micali public key cryptosystem is based on the assumed
intractability of solving the quadratic residuosity problem (see Appendix
C.1.9). Let n be an odd composite integer. The quadratic residuosity
problem is as follows. Given n and a randomly chosen element a from
ZZ∗

n(+1) decide whether or not a is a quadratic residue modulo n. The
quadratic residuosity assumption is that no probabilistic poly-time algo-
rithm exists that solves this problem.

The Goldwasser-Micali cryptosystem is concerned with the particular
case that n is the product of two distinct large primes. This problem is
easily solvable if factoring is solvable. If factoring is solvable then p and
q can be computed efficiently given n. The value a is a quadratic residue
modulo n if and only if L(a/p) = 1 and L(a/q) = 1. So, using Euler’s
criterion, these two Legendre symbols can be computed using p and q.

B.3.6 The Phi-Hiding Problem

The Phi-Hiding private information retrieval scheme is based on the as-
sumed intractability of solving the Phi-Hiding problem (see Subsection
6.2.1). The formal definition of the Phi-Hiding assumption was given by
Cachin et al in Eurocrypt ’99 [48]. It is a relatively new intractability
assumption and as such many readers may not be familiar with it. For
this reason both an informal and formal definition of it is given.

316 Appendix B

Let m be the product of two large primes p and q. Let p0 and p1 be
b-bit primes such that only one of them divides φ(m) evenly. Recall that
φ is the Greek letter phi. Informally, the Phi-Hiding problem is as follows.
Given m, p0, and p1 decide with non-negligible probability whether p0

divides φ(m) evenly or whether p1 divides φ(m) evenly. Informally, the
Phi-Hiding assumption is that no efficient algorithm exists that solves
this problem. We say that a composite integer m φ-hides a prime p1 if p1

divides φ(m) evenly.
The formal definition of the Phi-Hiding assumption will now be given.

Rather than utilizing the notion of a probabilistic Turing machine, the
definition utilizes a different computational model. It is based on the
notion of a circuit. A k-gate circuit is a finite function that is computable
by acyclic circuitry that consists of k gates in which a gate implements
the NOT logical operation or the AND logical operation. The definition
also utilizes a number of number theoretic sets. These are given in Table
B.1.

It follows from Table B.1 that H
b
(m) is the set of b-bit primes that

are not φ-hidden by m. Recall that a poly-time Turing machine M is a
machine that on input x ∈ {0, 1}∗ halts in at most p(|x|) steps where p(t)
is a polynomial in t.

Phi-Hiding Assumption: There exist constants e, f, g, h > 0 such that
for all k > h and for all 2ek-gate circuits C, after the ordered execution of
the following steps:

1. choose a composite m randomly from Hk
kf ,

2. choose p0 randomly from Hk(m),

3. choose p1 randomly from H
k
(m),

Set What the set contains

PRIMESb set of all b-bit primes
Ha set of composites pq where |p| = |q| = a

Hb(m) set of b-bit primes that are φ-hidden by m

H
b
(m) PRIMESb −Hb(m)
Hb

a set of composites m ∈ Ha that φ-hide a b-bit prime

Table B.1 Sets relating to the Φ-hiding assumption

B.3. Intractability: Malware’s Biggest Ally 317

4. choose a bit b randomly,

the probability that C(m, pb) = b is less than 1
2

+ 1
2gk . �

The Phi-Hiding problem is to find a circuit C that violates this as-
sumption.

Revealing a large prime p1 that divides φ(m) evenly may expose the
factorization of m. Coppersmith gave an efficient algorithm that factors
m on input m and p1 if p1 > m1/4 and p1 divides φ(m) evenly [73, 74].
Therefore, it is easy to decide if p1 divides n when p1 > m1/4. Also, this
assumption does not hold when p1 = 3 and m ≡ 2 mod 3 where m = pq.
To see this, note that one of p or q is congruent to 1 mod 3 and the other
is congruent to 2 mod 3. Suppose that p = 3k1 + 1 and q = 3k2 + 2 for
some integers k1 and k2. Clearly, 3 divides (p− 1)(q − 1) in this case.

The Phi-Hiding assumption is a conservative assumption regarding the
security of φ(m) even though the prime p1 that divides φ(m) is available
to the distinguisher D. To see this, note that the prime p1 is not assumed
to be a constant fraction shorter than m, but polynomially shorter. This
follows from the assumed existence of f to constitute the kf -bit composite
m.

B.3.7 The Phi-Sampling Problem

The completeness4 of the Phi-Hiding PIR scheme is based on the assumed
tractability of performing φ-sampling (see Subsection 6.2.1). Let p1 be a
given prime number. Informally, the Phi-Sampling problem is to efficiently
find a random composite5 m such that p1 divides φ(m) evenly. The Phi-
Sampling assumption is that the Phi-Sampling problem is tractable. The
formal definition of the Phi-Sampling problem will now be given. The
definition utilizes the set Hk

kf as defined in Table B.1.

Phi-Sampling Assumption: There exists a constant h > 0 such that
for all k > h, there exists a probabilistic poly-time Turing machine S such
that for all k-bit primes p1, S(p1) outputs the factorization of a random
kf -bit number m ∈ Hk

kf where p1 divides φ(m) evenly.

4That is, the ability for a user to construct queries and perform the private infor-
mation retrieval.

5Generally speaking, a randomly chosen composite will be difficult to factor if it is
large enough.

318 Appendix B

B.3.8 The Discrete Logarithm Problem

The Pointcheval-Stern digital signature algorithm is based on the assumed
intractability of the discrete logarithm problem (see Appendix C.2.5). Let
p be a prime such that p−1 has a large prime divisor. Let g be a generator
of ZZ∗

p. Informally, the discrete logarithm problem is to compute a given
(g, p, ga mod p) for randomly chosen a < p − 1. The discrete logarithm
assumption is that no probabilistic poly-time algorithm exists that solves
this problem. This problem is efficiently solvable using the Pohlig-Hellman
algorithm when all prime divisors of p − 1 are small [224]. When this is
the case p− 1 is said to be a smooth integer.

B.3.9 The Computational Diffie-Hellman Problem

The Diffie-Hellman key exchange is based on the assumed intractability
of solving the Diffie-Hellman problem (see Subsection C.1.2). Let p be a
prime such that p − 1 has a large prime divisor. Let g be a generator of
ZZ∗

p. Informally, the computational Diffie-Hellman problem is to compute
gab mod p given (g, p, ga mod p, gb mod p) for randomly chosen exponents
a and b. The computational Diffie-Hellman assumption is that no prob-
abilistic poly-time algorithm exists that solves this problem. The set of
values (ga mod p, gb mod p, gab mod p) is called a Diffie-Hellman triple.

If the discrete logarithm problem can be efficiently solved then so can
the Diffie-Hellman problem. This can be shown via a randomized reduc-
tion argument. It has yet to be shown whether or not the ability to solve
Diffie-Hellman implies the ability to solve the discrete logarithm problem
in the general case. These two problems have been shown to be equivalent
in certain cases [84, 181, 182, 183]. There have been some results on the
hardness of computing individual bits in a Diffie-Hellman shared secret
[34].

B.3.10 The Decision Diffie-Hellman Problem

The Cramer-Shoup cryptosystem is based on the assumed intractabil-
ity of solving the Decision Diffie-Hellman (DDH) problem (see Appendix
C.2.3). Let p be a prime. Let g be an element that generates a large
subgroup of ZZ∗

p. Also, let the order of g have no small prime divi-
sors. Informally, the DDH problem is to distinguish with non-negligible
probability the triple (ga mod p, gb mod p, gab mod p) from the triple
(ga mod p, gb mod p, gc mod p) where a, b, and c are chosen randomly

B.4. Random Oracles and Functions 319

modulo the order of g. The Decision Diffie-Hellman assumption is that no
probabilistic poly-time distinguisher exists that solves this problem.

If the order of g is divisible by a small prime r ≥ 2, then it is possible to
distinguish randomly chosen Diffie-Hellman triples from randomly chosen
triples. This follows from the fact that the rth residuosity of each of the
values,

ga mod p, gb mod p, gab mod p, gc mod p (B.9)

can be determined. For example, if the prime 2 divides the order of g
evenly, then testing for quadratic residuosity can help indicate the pres-
ence of Diffie-Hellman triples. To see this, note that when ga mod p is
a quadratic residue and gb mod p is a quadratic residue it will always be
the case that gab mod p is a quadratic residue. Hence, a suitable setting
for DDH is one in which breaking Diffie-Hellman is difficult and one in
which the order of g is not divisible by any small primes. A survey on the
Decision Diffie-Hellman problem was written by Dan Boneh [35].

B.4 Random Oracles and Functions

Random oracles are a theoretical tool used for proving the security of
cryptosystems. It is a complete idealization of the functionality that some
hash functions “seem” to provide on the surface. Informally, a random
oracle R is a function that takes as input a single bit string s and that
returns a countably infinite stream of randomly chosen bits. So, R(s)
is an infinitely long bit string. For example, R(01001) = 010011010...,
R(01000) = 101101110.... An important aspect of R is that all of its
outputs are predetermined. That is, if R is given s as a query twice, R
will respond with the same infinitely long bit string. Below is the formal
definition of a random oracle.

Definition 8 A random oracle R is a function from {0, 1}∗ to {0, 1}∞
such that for a given query s to R, each and every output bit of R(s) is
chosen uniformly at random and independent of every bit in s.

A random oracle cannot be implemented in practice. Yet, they are use-
ful tools for arguing the security of a cryptosystem when the cryptosystem
relies on a cryptographic hash function. The idea is to replace the hash

320 Appendix B

function with a random oracle and then try to prove that the resulting
algorithm is secure. It is then reasoned that any weaknesses that exist in
the actual implementation must result from a weakness in the hash func-
tion that was used to instantiate the oracle, and not the cryptographic
design [18].

In this book the term random function is used. A random function is
the same as a random oracle except that the range is defined to be a finite
set. It is possible to define a random function F from {0, 1}∗ to ZZ∗

N using
a random oracle R as follows. Suppose that N is k-bits long. A given
element e ∈ {0, 1}∗ maps to an element in ZZ∗

N as follows. Let m be the
first k bits of the infinitely long string R(e). If m ∈ ZZ∗

N then F (e) = m.
Otherwise, consider the next k bits in R(e). If this quantity is contained
in ZZ∗

N then this quantity is F (e), and so on. It is easy to see that F (e)
maps to an element drawn uniformly at random from ZZ∗

N .

Appendix C

Public Key Cryptography in a
Nutshell

This appendix is not intended to be a comprehensive overview of public
key cryptography.1 There are a number of great books covering cryptog-
raphy for practitioners as well as researchers [115, 156, 190, 257, 293].
The purpose of this appendix is to introduce the reader to some of the
basic concepts of public key cryptography and hopefully provide enough
information to enable readers who are new to cryptography to gain a bet-
ter understanding of this book without having to go elsewhere. Public
key cryptography is a technology that is central to the design of advanced
malicious software.

C.1 Overview of Cryptography

Cryptology is the study of the hidden word. It is broken down into two
subfields called cryptography and cryptanalysis. Cryptography is the sci-
ence of developing cryptosystems that encipher and decipher data, among
other things. Cryptanalysis is the study of breaking cryptosystems. A
cryptanalyst is one who seeks to break or find weaknesses in the ciphers
that are developed by a cryptographer. One who dabbles in both subfields
may be justly referred to as a cryptologist.

Classical cryptography dates back thousands of years and has been
employed for such things as concealing command and control information

1Indeed, it is arguably an injustice to the field to try to sum it up in a single albeit
lengthy appendix on the subject. But, we have done so for the sake of those readers
who might not look elsewhere.

321

322 Appendix C

during times of war. Command and control information must be secured,
even against the messengers that carry it, so that it does not fall into
enemy hands while in transit. In this respect the most basic use of cryp-
tography can be regarded as malicious in nature. It is malicious from the
perspective of allied forces whenever it is used by the enemy to hide en-
emy command and control information from allied forces. This book is the
study of malicious cryptography in a more literal sense, since it describes
how to use cryptography to craft advanced malicious software agents that
traverse hostile networks and execute cryptographic payloads.

A classical cryptosystem consists of an encryption algorithm and a
corresponding decryption algorithm. To encrypt data, the encryption al-
gorithm requires the user to supply it with a cryptographic key. When
prompted for a key, a user will typically enter a word or phrase that will
be easy to remember. This text is then transformed into a binary string
that in turn serves as an encryption key. The encryption algorithm then
uses the key to algorithmically transform the input message into a cryp-
togram, or ciphertext. No information is lost in this process and provided
that the key is available, the ciphertext can be converted back into the
original message using the decryption algorithm.

C.1.1 Classical Cryptography

More formally, a classical cryptosystem consists of an encryption algorithm
E, a decryption algorithm D, a message space M, a ciphertext space C,
and a key space K. The key space is a large set of numbers from which
a key is chosen in order to encipher data. For example, in AES-128 the
key space consists of all bit strings of length 128 bits [204]. The key space
therefore contains 2128 unique encryption keys. To encrypt a message m
chosen from the message space, a key k is chosen randomly from K and
the ciphertext c is computed. This may be represented as,

c = E(m, k) (C.1)

The encryption algorithm E takes m and k as input and computes
the ciphertext c of the message m. The message m is often referred to
as the plaintext, or cleartext of c. Although there typically exist various
cryptanalytic methods for making an educated guess at k given a set of
plaintext/ciphertext pairs computed using k, a straightforward guess at

C.1. Overview of Cryptography 323

the value of k in AES-128 would be correct with probably one in 2128.
In general, the ciphertexts will differ whenever a different key is used to
encrypt the message.2 The ciphertext c is decrypted using algorithm D
and the same key k.

m = D(c, k) (C.2)

This type of cryptosystem is called a symmetric cipher since decryp-
tion requires the same key that was used in encryption. Many symmetric
ciphers have been proposed over the years. Examples include DES, Blow-
fish, Twofish, AES, and so on [204, 210, 258, 259, 261].

In the past it has been the case that various organizations and com-
panies have kept algorithms E and D secret in the implementations that
they endorse. For example, the U.S. government proposed a classified
block cipher called Skipjack [41, 200] as part of the Clipper Initiative.
This algorithm was later declassified and made readily available. Another
example is the RC4 cipher which was initially a trade secret of RSA Data
Security Inc. [241]. RC4 has since become public. Cryptographers often
criticize the practice deploying secret symmetric ciphers. Ciphers are typ-
ically regarded as secure because they resist known cryptanalytic methods
and because the general public has scrutinized them. Secret ciphers are
not subject to public scrutiny, and hence tend to foster little trust within
the open research community. Such ciphers can harbor backdoors or at the
very least suffer from vulnerabilities or design errors. Kerckhoffs’ princi-
ple states that the strength of a cryptosystem should reside entirely in the
difficulty of determining the key k from specific attacks (e.g., chosen plain-
text) not from the secrecy or obscurity of the algorithm. The insistence
that both E and D be private is an instance of security by obscurity.

Classical cryptography solves the problem of concealing message traffic
over public networks, but it assumes that the sender and receiver have
previously agreed upon a randomly chosen key k. In a system consisting
of thousands of users, this initial exchange can be at best cumbersome
to arrange. Consider a network of n users in which each user fears that
the other users will try to read their messages. To guarantee the privacy
of communications, each possible pair of users needs a randomly chosen
key k. The total number of keys needed to solve this problem is therefore(

n
2

)
= n(n−1)/2. This corresponds to the number of edges in the complete

2In other words, if k1 6= k2 then chances are that c1 = E(m, k1) 6= c2 = E(m, k2).

324 Appendix C

graph on n vertices, denoted by Kn. For example, when n = 6 a total
of 15 keys is necessary (see Figure C.1). The number of keys is therefore
quadratic in the number of users.

C.1.2 The Diffie-Hellman Key Exchange

When two users need to establish a shared secret key k and they have a
secure channel at their disposal, then they can do so by communicating
over the channel. Once k is agreed upon, messages can be privately sent
from one user to the other over a public network such as the Internet. A
protocol that allows two users to establish a key over a public network is
enormously beneficial since it eliminates the need to establish keys out-
of-band. The first solution to this problem was proposed by Whitfield
Diffie and Martin Hellman in their seminal 1976 paper covering the Diffie-
Hellman key exchange [92]. The algorithm utilizes a large prime p and a
generator g of ZZ∗

p. The values p and g must provide a suitable setting for
the discrete-logarithm problem.

The values p and g are publicly known. Let Alice and Bob be two
users who want to establish a shared secret key over a public network.
To perform the exchange, Alice chooses an integer a uniformly at random
such that 1 ≤ a < p − 1. Alice sends Bob the value A = ga mod p. At
the same time Bob chooses an integer b uniformly at random such that
1 ≤ b < p − 1 and sends Alice the value B = gb mod p. Alice computes
ka = Ba mod p and Bob computes kb = Ab mod p. Observe that ka = kb

since,

ka ≡ Ab ≡ (ga)b ≡ (gb)a ≡ Ba = kb mod p (C.3)

Both Alice and Bob have therefore agreed upon the symmetric key
k = ka = kb. The key exchange is based on the Diffie-Hellman assumption
(see Appendix B.3.9).

The Diffie-Hellman key exchange solved the problem of negotiating
secret keys over an untrusted network wherein there exist passive eaves-
droppers.3 However, it does not minimize the total number of keys that
are needed to allow each user to communicate privately with each other
user. The Diffie-Hellman key exchange is used to establish a symmetric

3In practice it is necessary to utilize a more advanced key agreement method. This
is due to the existence of threats such as man-in-the-middle attacks (explained later).

C.1. Overview of Cryptography 325

Figure C.1 Symmetric keys needed for six users

key, so the number of symmetric keys that are needed is still quadratic
in the number of users. This provided the motivation for the concept of
a public key cryptosystem. In a public key cryptosystem, the number of
required keys is only linear in the number of users. W. Diffie and M. Hell-
man proposed this concept in the original Diffie-Hellman key exchange
paper.

C.1.3 Public Key Cryptography

A public key cryptosystem consists of an encryption algorithm E, a de-
cryption algorithm D, a message space M, a ciphertext space C, a private
key space K, and a public key space P . The public key space typically
differs from the private key space. A user chooses a private key x ran-
domly from K. This value is then used to compute the public key y. To
encrypt a message m contained in M, the user obtains the public key y
of the recipient and computes,

c = E(m, y) (C.4)

326 Appendix C

The ciphertext c is then transmitted to the recipient. Using the private
key x, the user recovers m as follows,

m = D(c, x) (C.5)

Only the recipient can recover m from c since only the recipient knows
x. This type of cryptosystem is also referred to as an asymmetric cryp-
tosystem since the decryption key is different from the encryption key.

The security of a public key cryptosystem rests on the presumed in-
tractability of one or more computational problems. Under the intractabil-
ity assumption it is intractable to compute the private key x given the
corresponding public key y and other available information. Private com-
munications are conducted as follows. The public keys of the users are
displayed in a public database. To send a message to a recipient, the pub-
lic key y of the recipient is obtained in a secure fashion from the trusted
database. The sender computes the encryption of m to be c = E(m, y)
and sends c to the recipient. The recipient obtains the secret message by
computing m = D(c, x).

C.1.4 Attacks on Cryptosystems

If a cryptanalyst is able to learn the plaintext in every ciphertext then
the cryptanalyst has completely broken the encryption scheme. This is
accomplished by deducing the secret key, or by other means. The following
are attacks that can be mounted on an encryption algorithm. They all
assume that both the encryption algorithm and decryption algorithm are
publicly known. The attacks are ordered from the weakest threat model
to the strongest threat model.4

1. Ciphertext-only attack: The threat model for this attack is one in
which the cryptanalyst is only given access to ciphertexts above and
beyond that which is publicly known. The goal of the cryptanalyst
is to try to determine one or more plaintexts correctly. Any scheme
that succumbs to this type of attack is insecure.

2. Known-plaintext attack: The threat model for this attack is one
in which the cryptanalyst is given access to several ciphertexts and

4A cryptosystem that is secure within a strong threat model is significant indeed,
since it is secure against a very powerful adversary.

C.1. Overview of Cryptography 327

corresponding plaintexts. Furthermore, it may be assumed that all
ciphertexts were produced using the same key and that the crypt-
analyst is aware of this. The goal of the cryptanalyst is to try to
determine one or more plaintexts correctly for one or more cipher-
texts that the cryptanalyst has not yet seen.

3. Chosen-plaintext attack: The threat model for this attack is one
in which the cryptanalyst is allowed to choose one or more plaintexts
to be encrypted and is permitted to submit them to an encryption
oracle all at once. The oracle then gives the corresponding cipher-
texts to the cryptanalyst. It may be assumed that all ciphertexts are
produced using the same key and that the cryptanalyst is aware of
this. The goal of the cryptanalyst is to try to determine one or more
plaintexts correctly for one or more ciphertexts that the cryptanalyst
has not yet seen.

4. Adaptive chosen-plaintext attack: The threat model for this
attack is one in which the cryptanalyst is allowed to choose one or
more plaintexts to be encrypted and is permitted to submit them
to an encryption oracle. The cryptanalyst is permitted to submit a
plaintext, receive the corresponding ciphertext, and then formulate
another plaintext to submit. Hence, the cryptanalyst can adaptively
choose the plaintexts to be encrypted based on previously received
ciphertexts. It may be assumed that all ciphertexts are produced
using the same key and that the cryptanalyst is aware of this. The
goal of the cryptanalyst is to try to determine one or more plaintexts
correctly for one or more ciphertexts that the cryptanalyst has not
yet seen.

5. Chosen-ciphertext attack: The threat model for this attack is
one in which the cryptanalyst is allowed to choose one or more ci-
phertexts to be decrypted and is permitted to submit them to a
decryption oracle all at once. The oracle then gives the correspond-
ing plaintexts to the cryptanalyst. The decryption oracle is a device
that the cryptanalyst is given temporary access to, but that is still
able to conceal the secret key from the cryptanalyst. The goal of the
cryptanalyst is to try to determine one or more plaintexts correctly
without access to the device for one or more ciphertexts that the
cryptanalyst has not yet submitted to the oracle.

328 Appendix C

6. Adaptive chosen-ciphertext attack: The threat model for this
attack is one in which the cryptanalyst is allowed to choose one or
more ciphertexts to be decrypted and is permitted to submit them
to a decryption oracle. The cryptanalyst is permitted to submit
a ciphertext, receive the corresponding plaintext, and then refor-
mulate another ciphertext to submit. Hence, the cryptanalyst can
adaptively choose the ciphertexts to be decrypted based on previ-
ously received plaintexts. The decryption oracle is a device that
the cryptanalyst is given temporary access to, but that is still able
to conceal the secret key from the cryptanalyst. The goal of the
cryptanalyst is to try to determine one or more plaintexts correctly
without access to the device for one or more ciphertexts that the
cryptanalyst has not yet submitted to the oracle.

There is an extensive body of research surrounding security against
malleability, chosen-ciphertext attacks, and adaptive chosen ciphertext
attacks [32, 78, 95, 199, 238, 342]. To maintain rigorous security, the
goal has been to devise an asymmetric cryptosystem that is based on
well-accepted (and if possible, very weak) intractability assumptions. Of
secondary importance is to make the ciphertexts that are output by the
cryptosystem as small as possible.

Similar types of attacks exist against digital signature algorithms. A
signature algorithm succumbs to an existential forgery if a cryptanalyst is
able to compute a signature for one or more messages. The cryptanalyst
need not have any control over which message or messages are signed for
an existential forgery attack to be regarded as a success. The mere fact
that a valid signature on a message was produced by the cryptanalyst
without the involvement of the legitimate signer implies that the scheme
is vulnerable to an existential forgery. A signature algorithm succumbs
to a selective forgery attack if a cryptanalyst is able to compute digital
signatures on a particular class of messages. It must be possible for the
signatures to be produced without the involvement of the legitimate signer
for the attack to be regarded as a success. A complete break for a signature
algorithm occurs when a cryptanalyst is able to forge the signature on
any chosen message. For instance, the cryptanalyst could either deduce
the private signing key or devise an efficient algorithm that is capable of
forging signatures.

As in the case of encryption schemes, signature algorithms can be
broken down into various attacks that adhere to different threat models.
The following are attacks that can be mounted on a signature algorithm.

C.1. Overview of Cryptography 329

They all assume that both the signing and verification algorithms are
publicly known. The attacks are ordered from the weakest threat model
to the strongest threat model.

1. Key-only attack: The threat model for this attack is one in which
the cryptanalyst is only given access to the public signature verifica-
tion key above and beyond that which is publicly known. The goal
of the cryptanalyst is to produce a valid signature on any message.

2. Known-message attack: The threat model for this attack is one
in which the cryptanalyst is given access to several messages and
corresponding signatures. Furthermore, it may be assumed that all
signatures were produced using the same signing private key. The
goal of the cryptanalyst is to produce a valid signature on a different
message.

3. Chosen-message attack: The threat model for this attack is one
in which the cryptanalyst is allowed to choose one or more messages
to be signed and is permitted to submit them to a signing oracle all
at once. The oracle then gives the corresponding signatures to the
cryptanalyst. It may be assumed that the oracle always uses the
same private signing key. The goal of the cryptanalyst is to produce
a valid signature on a different message.

4. Adaptive chosen-message attack: The threat model for this at-
tack is one in which the cryptanalyst is allowed to choose one or more
messages to be signed and is permitted to submit them to a signing
oracle. The cryptanalyst is permitted to submit a message, receive
the corresponding signature, and then formulate another message to
submit. Hence, the cryptanalyst can adaptively choose the messages
to be signed based on previously received signatures. It may be as-
sumed that the oracle always uses the same private signing key. The
goal of the cryptanalyst is to produce a valid signature on a different
message.

There is an extensive amount of literature regarding secure signature
schemes [125, 126, 131, 191, 198, 213]. Some of these approaches attempt
to utilize the weakest possibility intractability assumptions, whereas others
try to keep the size of each digital signature at a bare minimum.

330 Appendix C

C.1.5 The Rabin Encryption Algorithm

The Rabin cryptosystem is based on the computational intractability of
factoring [237]. The private key in Rabin is two large primes p and q that
are roughly equal in size. The corresponding public key is n = pq. In
this rendition of Rabin it will be assumed that p ≡ 3 mod 4 and that
q ≡ 3 mod 4 since this gives rise to a very simple decryption algorithm.5

The message space for Rabin is ZZn. The integers a and b are needed for
decryption and are found by solving the following diophantine equation.

ap+ bq = 1 (C.6)

The extended Euclidean algorithm can be used to find these two values.
They can then be stored along with the private key (p, q).

To encrypt a message m in Rabin the ciphertext c is computed as
follows.

c = m2 mod n (C.7)

Given the special form of p and q the following algorithm can be used
to decrypt c.

1. compute r = c
p+1
4 mod p

2. compute s = c
q+1
4 mod p

3. compute t = aps+ bqr mod n

4. compute u = aps− bqr mod n

The plaintext m is either t, −t mod n, u, or −u mod n. These are the
four square roots of c modulo n. It is possible that gcd(m,n) 6= 1 in which
case there may be only one or two square roots of c.

It is possible to use a redundancy function (e.g., a checksum) to help
disambiguate m from the other square roots. For example, this can be
done using a hash function. The idea is to shrink the message space and

5When n is as such, n is contained in the set of Blum integers.

C.1. Overview of Cryptography 331

make some of the most significant bits of m the hash of the lower order
bits.

This cryptosystem is provably secure against chosen-plaintext attacks.
However, it completely succumbs to a chosen-ciphertext attack. To see
this, note that the attacker can choose a value r randomly from ZZ∗

n and
compute the ciphertext c = m2 mod n. If the attacker has access to the
decryption device, the attacker can use the device to obtain a square root
m′. With probability 1/2, m′ will not be congruent to ±m mod n in which
case gcd(m−m′, n) is a non-trivial divisor of n.

Rabin also works when p and q are not of this special form. In this case
c is reduced modulo p and then its two square roots modulo p are found
using a probabilistic poly-time root finding algorithm [12]. The two roots
of c mod q are also found. Using the Chinese Remainder Theorem these
four values can be used to compute the four square roots of c modulo n.

Scott Lindhurst wrote a comprehensive treatise on computing square
roots modulo a prime [173]. Also, Kumanduri and Romero provide a
nice description of a Las Vegas algorithm for computing a square root of
quadratic residue modulo a prime [164]. The Las Vegas version can easily
be converted into a Monte Carlo algorithm with fixed polynomial running
time and negligible failure probability. The way to do so is as follows.
One of the steps in the algorithm finds a randomly chosen quadratic non-
residue. By bounding the number of attempts to find such a non-residue
in this step, the algorithm can be made Monte Carlo. If a non-residue is
not found by the time the bound is reached, then the algorithm halts with
failure. Hence, the entire algorithm is Monte Carlo.

C.1.6 The Rabin Signature Algorithm

The Rabin digital signature algorithm is based on the computational in-
tractability of factoring [234]. The public and private keys are the same as
those in the Rabin encryption algorithm. To sign a message it is necessary
that the message be a quadratic residue modulo n. It is also necessary
that the message contain some redundancy to guard against existential
forgeries. Let R(·) be a redundancy function that hashes its input mes-
sage to an appropriate size, adds redundancy, and guarantees that the
final output value of R(·) is a square modulo n.

1. compute m′ = R(m)

2. compute a square root r =
√
m′ mod n using p and q

332 Appendix C

The signature on m is r. There are four unique square roots of m′

modulo n. To verify the signature the verifier computes m′ = R(m) and
makes sure that the following equation holds.

m′ ?
= r2 mod n (C.8)

If the public key is not current or if Equation C.8 does not hold, then
the signature is rejected.

C.1.7 The RSA Encryption Algorithm

The Rivest-Shamir-Adleman (RSA) public key cryptosystem [245] was
the first public key cryptosystem to implement the concept of a public
key cryptosystem [92]. It is perhaps the most widely used public key cryp-
tosystem today. The RSA primitive may be used for public key encryption
and decryption and also for digitally signing and verifying messages. In
this appendix the classic RSA algorithm will be described and it will be
shown how to use it to encrypt and decrypt messages.

The space of private keys in RSA consists of pairs of randomly chosen
large prime numbers. So, to generate an RSA private key the user chooses
two large prime numbers p and q randomly. Currently, 384-bit primes
or larger are deemed sufficient to use RSA securely. A standard way to
generate an RSA prime is to generate a large number randomly and then
test it for primality. This process is repeated if the number is found to be
composite. The Rabin-Miller probabilistic primality test is often used for
this purpose [194, 235], although an efficient method for testing primality
was recently discovered that is deterministic [5].

The values p and q must satisfy another requirement in addition to
being prime. RSA utilizes a public exponent e that is typically shared by
all of the users in the system. The primes p and q must also satisfy the
property that e and (p−1)(q−1) be relatively prime. In other words, the
greatest common divisor of e and (p− 1)(q − 1) must be 1.

gcd(e, (p− 1)(q − 1)) = 1 (C.9)

The prime number e = 216 + 1 is often used in modern RSA imple-
mentations. Once p and q are found, the private key d is computed using

C.1. Overview of Cryptography 333

the extended Euclidean algorithm. The value d is chosen by solving the
following diophantine equation for d and w.

ed+ w(p− 1)(q − 1) = 1 (C.10)

The value w is discarded. Finally, the composite number n is computed
to be the product of p and q. In RSA, the public key is the pair of values
(e, n) and the private key is d. The values e and d are multiplicative
inverses of each other modulo (p− 1)(q − 1).

The message space for RSA consists of all messages m such that 1 <
m < n and such that gcd(m,n) = 1. The ciphertext space is the same as
the message space. The following is how to encrypt a message m using
RSA,

c = me mod n (C.11)

The private key d is required to decrypt the public key ciphertext c.
The message is recovered as follows,

m = cd mod n (C.12)

It may not be immediately clear why decryption should yield m every
time. Euler’s generalization to Fermat’s Little Theorem may be utilized
to show that this is indeed the case:

For all u relatively prime to n, uφ(n) ≡ 1 mod n.

Here φ is Euler’s totient function. When n = pq, φ(n) = (p−1)(q−1).
The proof that RSA decryption is correct is as follows. Let m be any
valid RSA message. Observe that cd = med = m1−w(p−1)(q−1) = m1 ∗
mφ(n)(−w) mod n. Since m is relatively prime to n, it follows from Euler’s
generalization that mφ(n) = 1 mod n, so cd = m ∗ (1)−w = m mod n.

It is important to dispel one of the popular misconceptions about RSA.
It is not uncommon for industry practitioners to say something along the
lines of “breaking RSA is equivalent to factoring.” Whereas this might
in fact be true, it is not known as of this writing. RSA as originally
defined is based on the computational difficulty of computing eth roots
(see Appendix B.3.2).

334 Appendix C

C.1.8 The RSA Signature Algorithm

The concept of a digital signature is based on the concept of a digital
identity. In its most basic form, the idea is to assign to a user, who
for the sake of argument will be called Alice, a large randomly chosen
number.6 The number must be large enough so that with overwhelming
probability Alice’s number is unique. Anyone in possession of this number
can masquerade as Alice, so she must make sure to keep it secret. This
schema would be of little use if Alice were unable to use her number in
any meaningful way, so there should be some mechanism for her to use
it. One of the most basic usages of such numbers is in a digital signature
algorithm. The concept of a digital signature was introduced by Diffie
and Hellman [92], but no realization of the primitive appeared until later
[236, 245].

In a digital signature algorithm, a private key serves as this secret
number and is chosen randomly from the set of all possible private keys.
A digital signature algorithm is much like a public key cryptosystem ex-
cept that it involves algorithms for signing messages and verifying signed
messages as opposed to algorithms for encrypting messages and then de-
crypting them. In a digital signature algorithm, a message m is signed
using a private key x to produce a digital signature s. The pair of val-
ues (m, s) constitutes a signed message. To verify (m, s) as being a valid
signed message, the public key y in addition to (m, s) is supplied as input
to the signature verification algorithm. This algorithm returns true if and
only if s is a valid digital signature on m. One of the most widespread dig-
ital signature algorithms in use today is RSA that utilizes the same keys
as the RSA encryption algorithm. RSA is therefore often used to refer
to both the RSA public key cryptosystem and the RSA digital signature
algorithm.

The original RSA signature algorithm is as follows. To sign a message
m contained in ZZ∗

n, the signer Alice computes,

s = md mod n (C.13)

using her private key d. The message m is accompanied by the digital
signature s. In typical e-mail applications, a signed e-mail is transmitted
with s as well as the digital certificate needed to verify the signature s on
m.

6Or numbers, like the two primes in RSA.

C.1. Overview of Cryptography 335

Anyone in possession of (m, s, (e, n)) can verify the digital signature
s. The signature is regarded as valid if and only if the following equation
holds.

m
?
= se mod n (C.14)

However, this approach is subject to existential forgery attacks. To see
this, observe that anyone can choose a signature s randomly from ZZ∗

n and
compute m = se mod n. When this is performed, s is a valid signature
on m. A well-known heuristic to remedy this problem is to compute the
signature s using a cryptographic one-way hash function H as such,

s = H(m)d mod n (C.15)

The signature is verified by hashing the message that was signed to
obtain H(m) and then verifying that the following equality holds.

H(m)
?
= se mod n (C.16)

C.1.9 The Goldwasser-Micali Algorithm

One of the drawbacks to the RSA encryption algorithm as originally de-
fined is that it leaks a single plaintext bit in every ciphertext. This bit is
the Jacobi symbol of the plaintext, and is either “1” or “−1.” Since e is
odd it is straightforward to see that J(m/n) = J(me/n) for all valid RSA
plaintexts m.

This observation pointed to a problem in public key cryptography in
general. It should not be possible for an adversary to so much as even
distinguish one encryption from another. This problem can be formulated
as an experiment. Let an adversary choose any two different plaintexts m1

andm2, let the encryption algorithm choose one of the messages randomly,
encrypt it, give the resulting ciphertext to the adversary, and then let the
adversary guess which message was encrypted. In a truly secure public
key cryptosystem the adversary should be able to guess with probability

336 Appendix C

significantly greater than 1/2 which message was encrypted. In RSA, the
adversary can choose a message m1 such that J(m1/n) = 1 and another
message m2 such that J(m2/n) = −1 and then distinguish correctly every
time.

The GM cryptosystem was the first cryptosystem to provably solve this
problem. It was presented by Goldwasser and Micali along with a rigorous
definition of security known as semantic security and a proof that the GM
cryptosystem is semantically secure against plaintext attacks [117].

The private key in GM is a pair of large primes p and q that are roughly
equal in size. This cryptosystem makes use of pseudosquares modulo n.
The public key in GM is n and a pseudosquare y modulo n. It is not
hard to show that −1 is a pseudosquare modulo n when p ≡ 3 mod 4
and q ≡ 3 mod 4. For other primes a pseudosquare y can be found as
follows. Find a quadratic non-residue a modulo p and a quadratic residue
b modulo q. By applying the Chinese Remainder Theorem to a and b, the
value that results is a pseudosquare modulo n.

A message m = m1m2 · · ·mt in GM is represented as a bit string of
length t. Each bit mi for 1 ≤ i ≤ t in m is encrypted by choosing ri at
random from ZZ∗

n and computing ci as follows.

ci = ymir2
i mod n (C.17)

The ciphertext on m is c = c1c2 · · · ct. The value ci is a quadratic
residue if and only if mi = 0. The value ci is a pseudosquare otherwise.
The ciphertext is decrypted as follows. For i ranging from 1 to t the
following is computed.

`i = L(ci/p) (C.18)

mi is set to 0 if `i = 1 and mi is set to 1 if `i = −1.
The GM cryptosystem solves the problem in RSA in which Jacobi

symbols are revealed by making message distinguishability hold based on
the quadratic residuosity assumption (see Appendix B.3.5).

C.1.10 Public Key Infrastructures

When two users decide to use a public key cryptosystem to communicate
privately over a public network, there is a danger in having the sender

C.2. Discrete-Log Based Cryptosystems 337

transmit his or her public key to the receiver. If an active adversary
is present, the adversary could potentially intercept the public key y and
substitute it with another public key y′. The person who wants to send the
plaintext messagem would then receive y′ thinking that it is the public key
of the recipient ofm, when in fact it is the public key of the adversary. This
same adversary could then intercept the ciphertext c encrypted using y′

and then decrypt c using x′ which only the adversary knows. The plaintext
message could then be encrypted using y and the resulting ciphertext could
be forwarded on to the intended recipient. This active attack is called a
man-in-the-middle attack since the adversary carries out the attack in
between the sender and the receiver.

The problem with using a public key cryptosystem by itself is that
there is no way to authenticate the public keys of users. The standard
way to foil a man-in-the-middle attack is to have a trusted entity securely
distribute the public keys of the users. This trusted entity is called a
certification authority (CA). The CA has its own key pair and everyone is
assumed to have the correct public key of the CA. The CA issues a digital
certificate to each user in the public key system. A digital certificate
consists of the user’s name, public key, and other identifying information,
along with the CA’s digital signature on this information. This way, when
a user obtains a digital certificate, the user can verify the signature on it
to be certain that the public key it contains came from the CA. This is a
public key infrastructure (PKI) in its most basic form [161].

In addition to establishing secure channels over public networks, public
key cryptosystems reduce the complexity of symmetric ciphers since they
reduce the total number of keys that are needed by the n users. In a
system of n users, only n keys need to be exchanged and only 2n keys
are needed in total. These 2n keys consist of the n private keys and n
corresponding public keys. The advantages of public key cryptography
are therefore twofold: it enables private communication channels to be
established over open networks and it minimizes the required number of
cryptographic keys.

C.2 Discrete-Log Based Cryptosystems

The discrete-log cryptosystems in this section are all closely related to
the Diffie-Hellman key exchange as well as the Decision Diffie-Hellman
assumption. They form the basis for many advanced cryptographic pro-
tocols such as electronic voting and e-cash.

338 Appendix C

C.2.1 The ElGamal Encryption Algorithm

The ElGamal public key cryptosystem is an elegant cryptosystem that gets
its security from the Diffie-Hellman key exchange [110]. This cryptosystem
employs the same parameters (p, g) used in Appendix C.1.2. The private
key is an integer x chosen uniformly at random such that 1 ≤ x < p− 1.
The corresponding public key is y = gx mod p. The public key of a user is
represented by the three values (y, g, p). The value y will vary from user to
user in a public key infrastructure while g and p can be shared by all. The
message space in ElGamal is ZZp. To encrypt a message m, an integer k is
chosen uniformly at random such that 1 ≤ k < p−1. The ciphertext of m
is the pair (a, b) = (gk mod p, ykm mod p). The pair (a, b) is decrypted by
computing m = ba−x mod p. The following equation demonstrates that
decryption will always succeed for properly formed ciphertexts.

ba−x ≡ ykm(gk)−x ≡ gxkmg−kx ≡ m mod p (C.19)

The inverse of a is denoted by a−1 mod p. This inverse exists, is unique,
and can be computed using the extended Euclidean algorithm.

C.2.2 Security of ElGamal

It can be shown via a reduction argument that the Diffie-Hellman key
exchange is no more or less secure than ElGamal. Suppose that an oracle
ODH exists that solves the Diffie-Hellman problem. That is, for a random
choice of t and u, ODH(g, p, gt mod p, gu mod p) returns gtu mod p with
non-negligible probability.7 It will now be shown how to use ODH to break
the ElGamal ciphertext (a, b). Choose the integers r1, r2, r3 uniformly at
random such that 1 ≤ r1, r2, r3 < p− 1. Then compute,

y1 = yr1r3 mod p (C.20)

and,

y2 = ar2r3 mod p (C.21)

7For simplicity this statement is not quantified over a random choice of p, although
this is often the case in formal results relating to Diffie-Hellman.

C.2. Discrete-Log Based Cryptosystems 339

The oracle is then invoked and the value w = ODH(gr3 mod p, p, y1, y2)
is found. With non-negligible probability w will be equal to gr3xkr1r2 mod p.
To see this, note that with non-negligible probability the oracle returns
the Diffie-Hellman secret corresponding to y1 = gr3xr1 mod p and y2 =
gr3kr2 mod p. Assuming that w is indeed as such, t is as follows,

t = w(r1r2r3)−1

mod p = gxk mod p (C.22)

It is easy to see that bt−1 ≡ m mod p.
The reason that the random values r1, r2, and r3 were used was to

demonstrate a randomized reduction. A randomized reduction is a strong
form of reduction since it allows the oracle to refuse to give correct an-
swers most of the time but can still be used to break ElGamal with high
probability. If the oracle fails to decrypt (a, b), then new random values
can be chosen and the oracle can be queried again.

It remains to show that given an oracle OElG that breaks ElGamal with
non-negligible probability the Diffie-Hellman key exchange can be broken.
Let the Diffie-Hellman key exchange problem instance be T = gt mod p
and U = gu mod p. The key exchange value is gut mod p. Suppose that
with non-negligible probability OElG(g, p, y, a, b) = m. Again, values for
r1, r2, and r3 are chosen randomly. An integer b is chosen randomly from
Gq. Then compute,

y1 = T r1r3 mod p (C.23)

and,

y2 = U r2r3 mod p (C.24)

The oracle is then invoked to obtain the value,

m = OElG(gr3 mod p, p, y1, y2, b) (C.25)

With non-negligible probability the value bm−1 mod p will be equal
to the Diffie-Hellman secret corresponding to y1 and y2 using the gen-
erator gr3 mod p. Assuming that m is as such, it follows that bm−1 =

340 Appendix C

(gr3)tr1ur2 mod p. Therefore, it follows that (bm−1)(r1r2r3)−1
mod p =

gtu mod p. It has been shown that Diffie-Hellman is breakable if and
only if ElGamal is breakable.

To implement ElGamal in a way that is semantically secure against
plaintext attacks the original ElGamal cryptosystem needs to be redefined
a little [304]. It is sufficient that the order of g be devoid of small prime
factors and that the message space consists only of elements that have the
same order as g. In general it is a good practice to choose g so that its
order is a large prime and to define the message space to be the prime
order subgroup generated by g. For instance, prime numbers of the form
p = 2q + 1 can be used where q is prime. Such a prime p is said to be
a safe prime. ElGamal is semantically secure against plaintext attacks
when p is a safe prime, g has order q, and the message space is the set
of quadratic residues modulo p. However, this approach is still not secure
against adaptive chosen-ciphertext attacks [238].

C.2.3 The Cramer-Shoup Encryption Algorithm

The Cramer-Shoup public key cryptosystem is secure against adaptive
chosen ciphertext attacks [76]. It is based on the Decision Diffie-Hellman
problem (see Appendix B.3.10) and the existence of a collision intractable
hash function. The scheme involves only a few exponentiations over a
group, making it a rather efficient scheme from a computational stand-
point.

Cramer-Shoup utilizes a group G of prime order q where q is large. It
also uses a collision intractable hash function H that hashes long strings
to values contained in ZZq. The private key in Cramer-Shoup is the six
values (x1, x2, y1, y2, z1, z2), all of which are chosen randomly from ZZq.
The public key includes the values g1 and g2 that are chosen randomly
from G. The public key also includes the following three values.

c = gx1
1 g

x2
2 , d = gy1

1 g
y2
2 , h = gz1

1 g
z2
2 (C.26)

It is assumed that the values are computed within the group G (for
example, by performing modular reductions using the prime modulus p).
So, the public key is (g1, g2, c, d, h).

The message space for Cramer-Shoup is G. To encrypt a message m, a
value r is chosen randomly from ZZq and the following values are computed,

C.2. Discrete-Log Based Cryptosystems 341

u1 = gr
1, u2 = gr

2, e = hrm, α = H(u1, u2, e), v = crdrα (C.27)

The ciphertext on m is (u1, u2, e, v).
The nice thing about chosen-ciphertext secure cryptosystems is that

they allow the receiver to verify that the sender knows the plaintext. In
other words, it is not possible to send a message to someone using their
public key without knowing what the plaintext is. Such a cryptosystem is
said to be plaintext-aware. The first thing that the receiver should do upon
obtaining ciphertext computed using Cramer-Shoup is verify its integrity.
This is performed by computing α = H(u1, u2, e) and then verifying that
the following equality holds.

v
?
= ux1

1 u
x2
2 (uy1

1 u
y2
2)α (C.28)

If it does not hold then the decryption algorithm outputs “reject.” This
prevents the recipient from going ahead and interpreting the plaintext as if
it were valid. It also guarantees that despite any subsequent publication of
the plaintext, the sender only learns that which he or she already knows.8

If this equality holds then the ciphertext is decrypted as follows.

m = eu−z1
1 u−z2

2 (C.29)

It will now be shown that a properly constructed ciphertext will always
cause the correct plaintext to be output by the decryption algorithm.
First, the decryption algorithm will never output “reject” in this case. To
see this, note that since u1 = gr

1 and u2 = gr it follows that,

ux1
1 u

x2
2 = grx1

1 grx2
2 = cr (C.30)

So, ux1
1 u

x2
2 in Equation C.28 is equal to cr. Likewise, since uy1

1 u
y2
2 = dr it

follows that the term in the parenthesis in C.28 equals dr. But then this
equality must hold due to the rightmost equality in (C.27).

8In fact, this prevents the sender from being able to use the receiver as a decryption
oracle.

342 Appendix C

Since u−z1
1 u−z2

2 = g−rz1
1 g−rz2

2 = h−r it follows that,

eu−z1
1 u−z2

2 = hrmh−r = m (C.31)

The elegant proof of security of Cramer-Shoup can be found in the
original paper.

C.2.4 The ElGamal Signature Algorithm

The ElGamal digital signature algorithm utilizes the same parameters as
the ElGamal public key cryptosystem. There are numerous variants of
this digital signature algorithm [208, 209].

To sign a message m an integer k is chosen uniformly at random such
that 1 ≤ k < p − 1 and such that gcd(k, p − 1) = 1. The fact that
gcd(k, p − 1) = 1 guarantees the existence of a unique inverse of k. The
signature on m is the pair (r, s) = (gk mod p, k−1(H(m)−xr) mod p− 1).
H is a cryptographic one-way function that may, for instance, be the secure
hash algorithm (SHA-1) [202] or MD5 [243]. The digital signature on the
message m is the pair of values (r, s).

Anyone who is in possession of (m, (r, s), (y, g, p)) can verify the signa-
ture (r, s) on m. The signature is regarded as valid if and only if 1 ≤ a < p
and the following equality holds:

yrrs mod p
?
= gH(m) mod p (C.32)

In the case that (y, g, p) was obtained from a digital certificate it is also
necessary to verify the validity of the digital certificate. This is typically
done by verifying the CA signature in the certificate, checking certification
revocation lists, and so on.

It will now be shown that signature verification will always succeed for
properly computed signatures. Suppose that (r, s) is constructed accord-
ing to the algorithm. Consider the equation for the signature value s. By
multiplying both sides of the equation by k it follows that,

ks = H(m)− xr mod p− 1 (C.33)

C.2. Discrete-Log Based Cryptosystems 343

Adding xr modulo p − 1 to both sides of Equation C.33 yields the
following equation.

xr + ks = H(m) mod p− 1 (C.34)

Then, by raising g to the value on each side of this equation the fol-
lowing equation is obtained,

gxrgks = yrrs = gH(m) mod p (C.35)

This is the equality that is tested during signature verification. So,
signature verification will always succeed for properly constructed signa-
tures.

The use of H is necessary to avoid existential forgery attacks. To see
this, suppose that H is not used. Hence, let m be used in place of H(m).
The following is a one-parameter forgery attack on ElGamal. Choose
a value e uniformly at random such that 1 ≤ e < p − 1 and compute
r = gey mod p. Then compute s = −r mod p− 1 and m = es mod p− 1.
The pair (r, s) is a valid signature on m as illustrated by the following
equation.

yrrs = gxrrs = g−xs(gegx)s = ges = gm mod p (C.36)

C.2.5 The Pointcheval-Stern Signature Algorithm

David Pointcheval and Jacques Stern [225] (see also [226]) showed that by
altering ElGamal slightly, it can be proven to be secure against adaptive
chosen-message attacks. In this model they showed that forgeries are
possible if and only if the discrete-logarithm problem is solvable. This
proof was shown in the random oracle model.

To sign a message m an integer k is chosen uniformly at random such
that 1 ≤ k < p − 1 and such that gcd(k, p − 1) = 1. The fact that
gcd(k, p− 1) = 1 guarantees the existence of a unique inverse of k. First,
the signature value r is computed.

r = gk mod p (C.37)

344 Appendix C

Once r is computed, the value s is found as follows.

s = k−1(H(m||r)− xr) mod p− 1 (C.38)

The digital signature on the message m is the pair of values (r, s).
Anyone who is in possession of (m, (r, s), (y, g, p)) can verify the signature
(r, s) on m. The signature is regarded as valid if and only if 1 ≤ a < p
and the following equality holds.

yrrs mod p
?
= gH(m||r) mod p (C.39)

Pointcheval and Stern introduced the notion of a forking lemma and
used it to construct their random oracle based proof. The forking lemma
technique has since been utilized to show the security of other random
oracle based cryptographic algorithms.

C.2.6 The Schnorr Signature Algorithm

The Schnorr algorithm [262, 263] has the nice feature that its signatures
are very small. It makes use of a cryptographic one-way hash function
H that outputs values in ZZq. Let p and q be large primes such that q
divides p−1. Let g be an element of ZZ∗

p with order q. The signing private
key in Schnorr is a value x chosen uniformly at random from ZZq. The
corresponding public key is y = g−x mod p. To sign a message m the
value k is chosen randomly from ZZq. A Schnorr digital signature is the
pair (e, s) that is computed as follows.

r = gk mod p (C.40)

e = H(m||r) (C.41)

s = k + xe mod q (C.42)

C.2. Discrete-Log Based Cryptosystems 345

A signature is regarded as valid if and only if the following equation
holds.

e
?
= H(m || (gsye mod p)) (C.43)

C.2.7 The Digital Signature Algorithm (DSA)

The Digital Signature Algorithm is similar to ElGamal except that it
is defined using a value g < p that generates a prime order subgroup
G of ZZ∗

p. Let the prime q denote the order of g. It is part of a U.S.
government standard called the Digital Signature Standard (DSS) [203].
Let H denote a cryptographic one-way hash function such as SHA-1 and
let q be a 160-bit prime number. To sign a message m, an integer k is
chosen uniformly at random from ZZ∗

q. The signature on m is the pair
(r, s) = ((gk mod p) mod q, k−1(H(m) + xr) mod q). Anyone who is
in possession of (m, (r, s), (y, g, p)) can verify the validity of the digital
signature (r, s) on the message m. Observe that signatures are quite small.
The pair (r, s) occupies a mere 320 bits.

The digital signature (r, s) on the message m is regarded as valid if
and only if 0 < r, s < q and the following equality holds.

r
?
= (gs−1H(m)yrs−1

mod p) mod q (C.44)

It will now be shown that signature verification will always succeed
for properly computed signatures. Suppose that (r, s) is constructed ac-
cording to the algorithm. Consider the equation for the signature value s.
Multiplying both sides of this equation by ks−1 mod q yields,

k = s−1(H(m) + xr) mod q (C.45)

Raising g to each side of this equation modulo p yields gk mod p on
the left side and,

gH(m)s−1

(gx)rs−1

mod p = gH(m)s−1

yrs−1

mod p (C.46)

346 Appendix C

on the right side. But this implies that r = (gk mod p) mod q will always
equal (gH(m)s−1

yrs−1
mod p) mod q and so signature verification will always

succeed for properly computed signatures.
An obvious advantage of DSA is that it produces short signatures. A

DSA signature consists of two positive integers, both less than q, whereas
an ElGamal signature consists of a value less than p and a value less than
p − 1. It is not uncommon for q to be 160 bits and p to be 768 bits or
more in size.

Glossary

ACL Access Control List.

anonymous remailer An e-mail system that allows a sender to send a
message anonymously to a receiver over an insecure network.

ANSI American National Standards Institute.

ANSI C Version of the C programming language that was standardized
by ANSI.

API Application Programming Interface.

ARDA Advanced Research and Development Activity. ARDA is an In-
telligence Community (IC) center for conducting advanced research
and development related to information technology.

ASCII American Standard Code for Information Interchange.

BIOS Basic Input Output System.

bus error A bus error occurs in a computer when an invalid address is
issued from the processor to the memory bus.

call-back function A function that has its address passed as an argu-
ment to another function. The receiving function will invoke the
call-back function under prespecified conditions. Typically, the ad-
dress of a call-back function is passed to an operating system routine.

cascaded encryption An encryption is cascaded if the plaintext was
encrypted using two or more different keys, thereby consisting of
multiple ciphertext layers.

347

348 Glossary

CERT Computer Emergency Response Team. Founded by DARPA in
1988.

cleartext Data that has not been enciphered in any way.

composite quadratic residuosity problem A computational decision
problem that is believed to be intractable. The problem is to dis-
tinguish quadratic residues from pseudosquares modulo n where n
is a large composite number. (They both have a Jacobi symbol of
unity.)

COMSEC Communications Security. COMSEC products are capable of
encrypting data, digitally signing data, and so on.

CRL Certificate Revocation List. Used by a certification authority to
publicly disclose key pairs that have been revoked. It lists revoked
key pairs and is digitally signed by the certification authority. A
CRL is typically updated on a regular basis (for example, every day
or two).

Cyberpunk A term used to describe a futuristic sci-fi genre involving
greedy multinational corporations and rebellious computer hackers.

DARPA Defense Advanced Research Projects Agency.

DCR Decision Composite Residuosity assumption. This is a decision
problem that is believed to be intractable when defined over a suit-
able set of parameters.

DDH Decision Diffie-Hellman assumption. This is a decision problem
that is believed to be intractable when defined over a suitable set of
parameters.

Denial-of-Service (DoS) An attack that denies a victim or group of
victims access to some service. Examples include deleting data,
clogging up computer networks with data packets, hogging up CPU
time, and so on.

DES Data Encryption Standard. The Data Encryption Standard defines
a symmetric encryption algorithm with a 56-bit key space and a
64-bit block size. The standard also covers the corresponding de-
cryption algorithm.

Glossary 349

Diffie-Hellman secret This term is often used to refer to the key that
results from conducting a Diffie-Hellman key exchange.

directed graph A graph in which each edge is an arrow from one vertex
to another. Sometimes referred to as a digraph.

DLL Dynamic Linked Library.

double-spending An attempt to spend a given e-money note more than
once.

DOS Disk Operating System.

EEPROM Electrically Erasable Programmable Read Only Memory. A
type of ROM chip that can actually be written to by performing a
specialized operation. Such chips often support at most 100,000 or
so writes.

efficiently computable A problem is efficiently computable if it is solv-
able by a probabilistic poly-time Turing machine. A decision prob-
lem is efficiently computable if it is contained in BPP.

entropy extractor An entropy extractor is an algorithm that takes data
from an entropy source as input and that extracts entropy from this
data. The extractor outputs values that are uniformly distributed
provided that the input data adheres to the underlying assumptions
associated with the extractor.

forward secrecy A cryptosystem or protocol has the forward secrecy
property if the disclosure of confidential secrets does not compromise
previous communications between Alice and Bob.

ftp File Transfer Protocol.

GNU Gnu’s Not Unix. GNU is the name of a complete Unix-compatible
software system that is freely available in binary and source code
form, but that may not be used for commercial purposes.

GNU MP The GNU project’s multiprecision library.

Gnutella A decentralized Internet protocol developed in 1999 for sharing
files indiscriminately.

350 Glossary

graph A graph G is a pair (V,E) where V is a set of vertices and E is a
set of edges defined over the vertices.

GUI Graphical User Interface.

Halting Problem The problem of constructing a Turing machine that
can decide whether or not an arbitrary Turing machine halts on all
inputs. Alan Turing proved that this problem is not computable
using a Cantor diagonalization argument.

hash function A computationally efficient function that maps arbitrary
length binary strings to binary strings that are fixed in length called
hashes or hash values. In practice hash functions are often assumed
to exhibit various properties, such as mapping their inputs to pseu-
dorandom output values. When the domain of a hash function is
larger than its range collisions result (at least two inputs map to the
same output).

hexadecimal Base-16 number system. The hexadecimal numbering sys-
tem consists of the digits 0,1,2,...,9,A,B,C,D,E,F .

honest but curious A model for multiparty computation in which the
honest but curious party does not hinder with the computations,
but wants to know the values involved in the computation.

hybrid encryption A method of encryption that employs both symmet-
ric and asymmetric cryptography. Used to encrypt bulk data effi-
ciently.

IDE Integrated Drive Electronics.

inter-mix detour A method that reroutes a mix net message by sending
it on a short series of randomly chosen mix net nodes.

intractable problem A problem is intractable if in general it cannot be
solved efficiently. A problem cannot be solved efficiently if there
does not exist a probabilistic poly-time Turing machine that solves
it.

ITAR International Traffic in Arms Regulations. U.S. federal regulations
that govern the traffic of articles that are considered to be munitions.
This includes various enciphering/deciphering machines.

Glossary 351

Jacobi symbol The Jacobi symbol of a ≥ 0 with respect to n is defined
whenever n is an odd positive integer. It is defined in terms of the
Legendre symbol. The Jacobi symbol of a number with respect to
n is 0, 1, or −1.

Las Vegas algorithm A Las Vegas algorithm is an algorithm that may
never halt, but if it does, it halts with the correct answer.

logic bomb Code surreptitiously inserted into a program that causes it
to perform some destructive or security-compromising activity when-
ever a specified condition is met.

malleable ciphertexts A ciphertext is malleable if its corresponding
plaintext can be modified in a known way by modifying the cipher-
text such that decryption yields the modified plaintext. The notion
of non-malleable cryptography was put forth by Dolev et al [95].

malware Malicious Software. Examples of malicious software include
computer viruses, worms, and Trojan horses.

MITM Man-In-The-Middle. An active attack that is carried out when
two users exchange their public key over the network. The man in
the middle is able to read and potentially even modify messages that
are later sent between the two users.

mix network A tool for sending information anonymously. A mix net is
an interconnected network consisting of several nodes that takes as
input encrypted messages, mixes them by bouncing them from node
to node, and eventually sends them to their final destinations.

model of computation A general method for computing those prob-
lems that are computable. Examples include Grammars, µ-recursive
functions, and Turing machines. It has been proven that Turing
machines can be imitated by Grammars, that can be imitated by
µ-recursive functions, that can be imitated by Turning machines.
Hence, these models are all equivalent.

Monte Carlo algorithm A Monte Carlo algorithm is an algorithm with
a bounded running time, but that may halt with an incorrect answer.

MOTD Message-of-the-Day.

352 Glossary

MP3 MPEG-1 Layer 3. MP3 is an audio file format for compressing
sound (usually a song) into a small file with hardly any noticeable
loss in quality.

MSCAPI Microsoft Cryptographic API.

Multics Multiplexed Information and Computing Service is a timeshar-
ing mainframe operating system that began in 1965. It was originally
a research project and influenced the design of operating systems.
Multics became a commercial product sold by Honeywell.

multipartite virus A virus that resides in two or more distinct forms.
For example, the virus may propagate from an executable, to the
boot sector, to a patched operating system interrupt routine in mem-
ory, and then back again.

multiprecision library A set of functions that perform elementary op-
erations on multiprecision numbers. For example, it may implement
addition, subtraction, multiplication, division, modular exponentia-
tion, logic operations, and so forth.

multiprecision number A number whose word length exceeds that of
the underlying computer’s native word length. For example, on a
32-bit machine a multiprecision number may be 512 bits in length,
consisting of sixteen 32-bit words.

nonce A word often used in the descriptions of cryptographic algorithms
to denote a randomly chosen value or parameter.

NSA National Security Agency. The branch of the U.S. government re-
sponsible for establishing information superiority through crypto-
logic prowess, among other disciplines.

OAEP Optimal Asymmetric Encryption Padding. A PKCS based on
RSA that is secure in the random oracle model.

onion routing A method used to implement mix networks. Each mes-
sage is encrypted multiple times and each encryption layer is re-
moved by performing decryption as the message travels through the
mix network to its final destination.

PDP Programmed Data Processor. A series of computers manufactured
by Digital Equipment Corporation.

Glossary 353

PIR Private Information Retrieval. A method of retrieving information
from a database without revealing to the database administrator
which entry has been queried. Schemes exist to solve this problem
that are information theoretically secure and other schemes exist
that are only computationally secure.

PKCS Public Key Cryptosystem

PKI Public Key Infrastructure

polymorphic virus A virus that is designed to change its outward ap-
pearance to avoid being detected by antiviral programs.

poly-time Polynomial time. A polynomial time algorithm M (i.e., a
poly-time Turing machine M) is an algorithm for which there exists
a polynomial p(·) such that the running time of M on any given
input x is at most p(|x|), where |x| denotes the length of x.

PRNG Pseudorandom Number Generator.

probabilistic poly-time Turing machine A Turing machine in which
zero or more state transitions are random choices among a finite
number of alternatives. The running time of the machine is bounded
by a polynomial.

pseudocode Source code, usually in an imperative programming lan-
guage, which may not conform to a specific language but is readily
understood.

public key infrastructure An infrastructure that is designed to dis-
tribute the public keys of users securely, thereby avoiding man-in-
the-middle attacks.

random oracle A function f that when given any string δ ∈ {0, 1}∗
responds with a string Ωδ chosen uniformly at random from {0, 1}∞.
Furthermore, f always responds with Ωδ when given δ.

random oracle model A computational model that assumes the exis-
tence and availability of a random oracle. It is a hypothetical model
used to argue the security of cryptographic algorithms.

relatively prime Two integers α and β are relatively prime if their great-
est common divisor is 1.

354 Glossary

RNG Random Number Generator. An algorithm or device that gener-
ates truly random numbers. Often used to generate seed values for
pseudorandom number generators.

root A user in a UNIX system that has all possible privileges on the
machine. System administrators often log in as root to make critical
changes to the system.

rootkit A rootkit is a set of tools used after infiltrating a computer system
that hides logins, processes, and logs and also often sniff terminals,
connections, and the keystrokes. It is called a rootkit after the fact
that originally it referred to allowing the attacker to maintain root
access to a machine.

security by obscurity The often perilous rationale that a system is se-
cure due to the fact that its inner workings are not publicly known.

semantic security A formal notion of security for public key cryptosys-
tems. A PKCS is semantically secure (against a particular type of
attack) if for all probability distributions over the message space,
anything that a passive adversary can compute efficiently about the
plaintext given the ciphertext can also be efficiently computed with-
out the ciphertext.

smooth integer An integer n is smooth if it consists of no large prime
factors. An integer n is p-smooth if it is not divisible by any primes
larger than p.

snake oil A liquid sold as medicine (for example, in a traveling medicine
show) that is medically worthless. In cryptography it refers to a
security product, typically with a proprietary (i.e., secret) design,
with questionable or otherwise unachievable security properties.

subliminal channel A communications channel, usually within cryp-
tosystems, that when utilized allows information to be transferred in
secret without hindering the normal operation of the cryptosystem.

tractable problem A problem is tractable if in general it can be solved
efficiently. A problem is efficiently solvable if there exists a proba-
bilistic poly-time Turing machine that solves it.

trapdoor A trapdoor is a single value or a tuple that can be used as a
public key in a public key encryption algorithm.

Glossary 355

trapdoor primes It was originally suspected that the primes chosen for
the Digital Signature Algorithm might give the U.S. government
an advantage in forging signatures, and so on. These primes were
referred to as trapdoor primes.

triple-DES An algorithm based on DES that typically utilizes two dif-
ferent keys k1 and k2. The data is DES encrypted using k1, then
the result is DES decrypted using k2, and then that result is DES
encrypted using k1.

Trojan horse A code segment that is appended, designed, or integrated
into another program that does something that the user does not
expect.

TSR program A terminate-and-stay resident (TSR) program. This usu-
ally refers to DOS programs that remain active in memory while the
user runs other programs.

Turing machine A computing device consisting of a finite control, an
unbounded sequential tape, and a head that can be used for read-
ing and writing symbols on the tape. It is a conceptual model of
computation used for proving computability and complexity results.

Turing undecidable A language (i.e., a finite or countably infinite set
of strings) is Turing undecidable if there does not exist a Turing
machine that can decide membership for that language.

VLSI Very Large Scale Integration. A term describing semiconductor
circuits composed of hundreds of thousands of logic elements.

References

[1] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding infor-
mation from an oracle. In Proceedings of the 19th ACM Symposium
on Theory of Computing, pages 195–203. ACM, 1987.

[2] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding infor-
mation from an oracle. Journal of Computer and Systems Science,
39(1):21–50, 1989.

[3] L. M. Adleman. An abstract theory of computer viruses. In S. Gold-
wasser, editor, Advances in Cryptology—Crypto ’88, pages 354–374.
Springer-Verlag, 1988. Lecture Notes in Computer Science No. 403.

[4] L. M. Adleman, K. Manders, and G. Miller. On taking roots in finite
fields. In Proceedings of the 18th IEEE Symposium on Foundations
of Computer Science, pages 175–177, 1977.

[5] Manindra Agarwal, Nitin Saxena, and Neeraj Kayal. PRIMES is in
P. Preprint, August 6, 2002.

[6] James P. Anderson. Computer security technology planning study.
Technical Report ESD–TR–73–51, USAF Electronic Systems Divi-
sion, Hanscom AFB, October 1972.

[7] R. Anderson, S. Vaudenay, B. Preneel, and K. Nyberg. The Newton
Channel. In Workshop on Information Hiding, pages 151–156, 1996.

[8] Ross Anderson and Markus Kuhn. Tamper resistance—a cautionary
note. In Proceedings of the 2nd USENIX Workshop on Electronic
Commerce, pages 1–11, November 1996.

[9] Ross Anderson, Harry Manifavas, and Chris Sutherland. A
practical electronic cash system, 1995. Available from author:
Ross.Anderson@cl.cam.ac.uk.

[10] Ross J. Anderson and Markus Kuhn. Low cost attacks on tamper
resistant devices. In Security Protocols—Proceedings of the 5th In-
ternational Workshop, pages 125–136. Springer-Verlag, April 7–9,
1997. Lecture Notes in Computer Science No. 1361.

357

358 References

[11] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal on Selected Areas in
Communications, 18(4):593–610, April 2000.

[12] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory—Volume
I: Efficient Algorithms, Chapter 7—Solving Equations over Finite
Fields. MIT Press, 1996.

[13] P. Baran. On distributed communications: IX. security, secrecy,
and tamper-free considerations. Technical Report RM-3765-PR, The
Rand Corp., 1964.

[14] Donald Beaver. Multiparty protocols tolerating half faulty proces-
sors. In G. Brassard, editor, Advances in Cryptology—Crypto ’89,
pages 560–572. Springer-Verlag, 1990. Lecture Notes in Computer
Science No. 435.

[15] Donald Beaver. Efficient multiparty protocols using circuit random-
ization. In J. Feigenbaum, editor, Advances in Cryptology—Crypto
’91, pages 420–432. Springer, 1992. Lecture Notes in Computer Sci-
ence No. 576.

[16] Donald Beaver and Shafi Goldwasser. Multiparty computation with
faulty majority. In G. Brassard, editor, Advances in Cryptology—
Crypto ’89, pages 589–590. Springer-Verlag, 1990. Lecture Notes in
Computer Science No. 435.

[17] Mihir Bellare, Shafi Goldwasser, and D. Micciancio. Pseudo-random
number generation within cryptographic algorithms: the DSS case.
In Advances in Cryptology—Crypto ’97, pages 277–291. Springer-
Verlag, 1997.

[18] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In First ACM Conference
on Computer and Communications Security, pages 62–73, 1993.

[19] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption.
In Alfredo De Santis, editor, Advances in Cryptology—Eurocrypt ’94,
pages 92–111. Springer, 1995. Lecture Notes in Computer Science
No. 950.

[20] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson.
Multi-prover interactive proofs: How to remove intractability as-
sumptions. In Proceedings of the 20th ACM Symposium on Theory
of Computing, pages 113–132. ACM, 1988.

[21] J. Benaloh. Secret sharing homomorphisms: Keeping shares of A
secret sharing. In A. M. Odlyzko, editor, Advances in Cryptology—
Crypto ’86. Springer, 1987. Lecture Notes in Computer Science No.
263.

References 359

[22] J. Benaloh and J. Leichter. Generalized secret sharing and monotone
functions. In S. Goldwasser, editor, Advances in Cryptology—Crypto
’88, pages 27–36. Springer-Verlag, 1988. Lecture Notes in Computer
Science No. 403.

[23] Josh C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, 1988.

[24] E. Biham. Cryptanalysis of Patarin’s 2-round public key system
S-Boxes (2R). In Advances in Cryptology—Eurocrypt ’00, pages
408–416. Springer-Verlag, 2000.

[25] E. Biham and A. Shamir. A Differential Cryptanalysis of the Data
Encryption Standard. Springer-Verlag, 1993.

[26] E. Biham and A. Shamir. Power analysis of the key scheduling of the
AES candidates. In Second AES conference, pages 115–121, 1999.

[27] Loyd Blankenship. Gurps Cyberpunk—high-tech low-life roleplaying
sourcebook. Steve Jackson Games, 1990.

[28] Matt Blaze. Protocol failure in the escrowed encryption standard.
In Proceedings of the 2nd ACM Conference on Computer and Com-
munications Security, pages 59–67. ACM, 1994.

[29] Matt Blaze, Joan Feigenbaum, and F. T. Leighton. Master-key cryp-
tosystems. Technical Report DIMACS: TR 96-02, Center for Dis-
crete Mathematics and Theoretical Computer Science, 1996.

[30] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-
random number generator. SIAM Journal on Computing, 15(2):364–
383, May 1986.

[31] M. Blum. Coin flipping by telephone: A protocol for solving impossi-
ble problems. In Proceedings of the 24th IEEE Computer Conference
(CompCon), pages 133–137. IEEE, 1982.

[32] M. Blum, P. Feldman, and S. Micali. Proving security against
chosen cyphertext attacks. In S. Goldwasser, editor, Advances in
Cryptology—Crypto ’88, pages 256–268. Springer-Verlag, 1988. Lec-
ture Notes in Computer Science No. 403.

[33] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor,
Advances in Cryptology: A Report on Crypto ’81, pages 11–15. U.C.
Santa Barbara Dept. of Elec. and Computer Eng., 1982. Tech Report
82-04.

360 References

[34] D. Boneh and R. Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes.
In Advances in Cryptology—Crypto ’96, pages 129–142. Springer-
Verlag, 1996.

[35] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorith-
mic Number Theory Symposium, pages 48–63, 1998. Lecture Notes
in Computer Science No. 1423.

[36] Dan Boneh and Matt Franklin. Identity-based encryption from the
Weil pairing. In Advances in Cryptology—Crypto ’01, pages 213–
229. Springer-Verlag, 2001. Lecture Notes in Computer Science No.
2139.

[37] Stefan Brands. Untraceable off-line cash in wallets with observers.
In Douglas R. Stinson, editor, Advances in Cryptology—Crypto ’93,
pages 302–318. Springer, 1994. Lecture Notes in Computer Science
No. 773.

[38] G. Brassard, C. Crépeau, and Jean-Marc Robert. Information the-
oretic reductions among disclosure problems. In Proceedings of the
27th IEEE Symposium on Foundations of Computer Science, pages
168–173. IEEE, 1986.

[39] G. Brassard, C. Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In A. M. Odlyzko, editor, Advances in
Cryptology—Crypto ’86, pages 234–238. Springer-Verlag, 1987. Lec-
ture Notes in Computer Science No. 263.

[40] E. F. Brickell. Some ideal secret sharing schemes. Journal of Com-
puter and Systems Science, 37:156–189, 1988.

[41] E. F. Brickell, D. E. Denning, S. T. Kent, D. P. Maher, and W. Tuch-
man. Skipjack Review, Interim Report: The Skipjack Algorithm,
July 28, 1993.

[42] Ernest F. Brickell and Daniel M. Davenport. On the classification
of idea secret sharing schemes. In G. Brassard, editor, Advances
in Cryptology—Crypto ’89, pages 278–285. Springer-Verlag, 1990.
Lecture Notes in Computer Science No. 435.

[43] John Brunner. The Shockwave Rider. Del Rey, 1975.

[44] J. P. Buhler, H. W. Lenstra, and Carl Pomerance. The development
of the number field sieve, volume 1554 of Lecture Notes in Mathe-
matics. Springer-Verlag, 1994.

[45] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. Matyas, L. O’Connor, M. Peyravian, D. Safford, and
N. Zunic. MARS—A candidate cipher for AES. NIST AES Proposal,
June 1998.

References 361

[46] Samuel Butler. Erewhon. Indypublish.com, 1872.

[47] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller. One-
round secure computation and secure autonomous mobile agents. In
U. Montanari, J. P. Rolim, and E. Welzl, editors, Proceedings of the
27th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pages 512–523. Springer, 2000. Lecture Notes
in Computer Science No. 1853.

[48] Christian Cachin, Silvio Micali, and Markus Stadler. Computation-
ally private information retrieval with polylogarithmic communica-
tion. In J. Stern, editor, Advances in Cryptology—Eurocrypt ’99,
pages 402–414. Springer-Verlag, 1999. Lecture Notes in Computer
Science No. 1592.

[49] J. Camenisch and I. B. Damg̊ard. Verifiable encryption, group en-
cryption, and their applications to separable group signatures and
signature sharing schemes. In Advances in Cryptology—Asiacrypt
’00, Lecture Notes in Computer Science No. 1976, pages 331–345.
Springer-Verlag, 2000.

[50] Jan Camenisch, Ueli Maurer, and Markus Stadler. Digital pay-
ment systems with passive anonymity-revoking trustees. In Euro-
pean Symposium on Research in Computer Security (ESORICS),
pages 33–43, 1996.

[51] James Cameron. The Terminator, January 1984. Screenplay: Harlan
Ellison, James Cameron, Gale Anne Hurd, William Wisher.

[52] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable en-
cryption. In Advances in Cryptology—Crypto ’97, pages 90–104.
Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1294.

[53] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In
S. Goldwasser, editor, Advances in Cryptology—Crypto ’88, pages
319–327. Springer-Verlag, 1988. Lecture Notes in Computer Science
No. 403.

[54] David Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24:84–88, Febru-
ary 1981.

[55] David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of Cryptology, 1:65–75,
1988.

[56] David Chaum. The spymasters double-agent problem: Multiparty
computations secure unconditionally from minorities and crypto-
graphically from majorities. In G. Brassard, editor, Advances in
Cryptology—Crypto ’89, pages 591–603. Springer-Verlag, 1990. Lec-
ture Notes in Computer Science No. 435.

362 References

[57] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty un-
conditionally secure protocols. In Carl Pomerance, editor, Advances
in Cryptology—Crypto ’87, pages 462–462. Springer-Verlag, 1988.
Lecture Notes in Computer Science No. 293.

[58] David Chaum, Ivan B. Damg̊ard, and Jeroen van de Graaf. Mul-
tiparty computations ensuring privacy of each party’s input and
correctness of the result. In Carl Pomerance, editor, Advances in
Cryptology—Crypto ’87, pages 87–119. Springer-Verlag, 1988. Lec-
ture Notes in Computer Science No. 293.

[59] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable se-
cret sharing and achieving simultaneity in the presence of faults. In
Proceedings of the 26th IEEE Symposium on Foundations of Com-
puter Science, pages 383–395. IEEE, 1985.

[60] Benny Chor and Niv Gilboa. Computationally private information
retrieval. In Proceedings of the 29th ACM Symposium on Theory of
Computing, pages 304–313. ACM, 1997.

[61] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private information retrieval. In Proceedings of the 36th IEEE Sym-
posium on Foundations of Computer Science, pages 304–313. IEEE,
1995.

[62] Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table
case statements from binary code. Science of Computer Program-
ming, 40:171–188, 2001.

[63] Cristina Cifuentes and Antoine Fraboulet. Intraprocedural static
slicing of binary executables. In Proceedings of the IEEE Interna-
tional Conference on Software Maintenance. IEEE, 1997.

[64] Cristina Cifuentes and Doug Simon. Procedure abstraction recovery
from binary code. In Proceedings of the Conference on Software
Maintenance and Reengineering, pages 55–64, 2000.

[65] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assem-
bly to high-level language translation. In Proceedings of the IEEE
International Conference on Software Maintenance, pages 228–237.
IEEE, 1998.

[66] Fred Cohen. Computer viruses: theory and experiments. In Pro-
ceedings of the 7th DoD/NBS Computer Security Conference, pages
240–263, September 1984.

[67] Fred Cohen. Computer viruses—theory and experiments. In IFIP-
TC11 Computers and Security, volume 6, pages 22–35, 1987.

References 363

[68] Fred Cohen. A cryptographic checksum for integrity protection in
untrusted computer systems. In IFIP-TC11 Computers and Secu-
rity, volume 6, 1987.

[69] Fred Cohen. Computer Viruses. PhD thesis, University of Southern
California, 1988.

[70] Fred Cohen. Implications of computer viruses and current methods
of defense. In Peter J. Denning, editor, Computers Under Attack:
Intruders, Worms, and Viruses. Addison-Wesley, 1990.

[71] David A. Cooper and Kenneth P. Birman. Preserving privacy in
a network of mobile computers. In Proceedings of the 16th IEEE
Symposium on Security and Privacy, pages 26–38. IEEE, 1995.

[72] Don Coppersmith. The data encryption standard (DES) and its
strength against attacks. Technical Report RC 18613(81421), IBM
T.J. Watson Research Center, December 1992.

[73] Don Coppersmith. Finding a small root of a bivariate integer equa-
tion; factoring with high bits known. In Ueli Maurer, editor, Ad-
vances in Cryptology—Eurocrypt ’96, pages 178–189. Springer, 1996.
Lecture Notes in Computer Science No. 1233.

[74] Don Coppersmith. Finding a small root of a univariate modu-
lar equation. In Ueli Maurer, editor, Advances in Cryptology—
Eurocrypt ’96, pages 155–165. Springer, 1996. Lecture Notes in
Computer Science No. 1233.

[75] Lance Cottrell. Mixmaster & remailer attacks. Available at
http://www.obscura.com/∼loki/remailer/remailer-essay.html.

[76] Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In
Hugo Krawczyk, editor, Advances in Cryptology—Crypto ’98, pages
13–25. Springer-Verlag, 1998. Lecture Notes in Computer Science
No. 1462.

[77] Claude Crépeau and Alain Slakmon. Simple backdoors for RSA key
generation. In Marc Joye, editor, Topics in Cryptology CT-RSA,
The Cryptographers’ Track at the RSA Conference, pages 403–416.
Springer, 2003. Lecture Notes in Computer Science No. 2612.

[78] I. Damg̊ard. Towards practical public key systems secure against
chosen ciphertext attacks. In J. Feigenbaum, editor, Advances in
Cryptology—Crypto ’91, pages 445–456. Springer, 1992. Lecture
Notes in Computer Science No. 576.

364 References

[79] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification
and some applications of Paillier’s probabilistic public-key system.
In Kwangjo Kim, editor, Proceedings of the 4th Workshop on Prac-
tice and Theory in Public Key Cryptography (PKC), pages 119–136.
Springer, February 2001.

[80] DARPA. Workshop on foundations for secure mobile code, March
1997. http://www.cs.nps.navy.mil/research/languages/wkshp.html.

[81] Don Davis, Ross Ihaka, and Philip Fenstermacher. Crypto-
graphic randomness from air turbulence in disk drives. In Yvo G.
Desmedt, editor, Advances in Cryptology—Crypto ’94, pages 114–
120. Springer, 1994. Lecture Notes in Computer Science No. 839.

[82] J. A. Davis and D. B. Holdridge. Factorization using the quadratic
sieve algorithm. In D. Chaum, editor, Advances in Cryptology—
Crypto ’83, pages 103–113. Plenum Press, 1984.

[83] R. DeMillo and M. Merrit. Protocols for data security. IEEE Com-
puter, 16(2):39–50, 1983.

[84] B. denBoer. Diffie-Hillman is as strong as discrete log for certain
primes. In S. Goldwasser, editor, Advances in Cryptology—Crypto
’88, pages 530–539. Springer-Verlag, 1988. Lecture Notes in Com-
puter Science No. 403.

[85] Dorothy E. Denning. Cryptography and Data Security, pages 232,
318, Addison-Wesley, 1983.

[86] Dorothy E. Denning. Information Warfare and Security, page 270,
Addison-Wesley, 1999.

[87] Peter J. Denning. The science of computing: Computer viruses.
American Scientist, 76:236–238, May–June 1988.

[88] Peter J. Denning. The internet worm. In Peter J. Denning, editor,
Computers Under Attack: Intruders, Worms, and Viruses. Addison-
Wesley, 1989. Reprinted from American Scientist, March-April 1989,
pages 126-128.

[89] Y. Desmedt. Abuses in cryptography and how to fight them. In
S. Goldwasser, editor, Advances in Cryptology—Crypto ’88, pages
375–389. Springer-Verlag, 1988. Lecture Notes in Computer Science
No. 403.

[90] Yvo Desmedt. Simmons’ protocol is not free of subliminal chan-
nels. In Proceedings of the Computer Security Foundations Work-
shop, pages 170–175. IEEE Computer Society Press, 1996.

References 365

[91] A. K. Dewdney. Computer recreations: In the game called Core
War hostile programs engage in a battle of bits. Scientific American,
250(5):14–22, May 1984.

[92] W. Diffie and M. E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22:644–654, Novem-
ber 1976.

[93] Y. Ding-Feng, L. Kwok-Yan, and D. Zong-Duo. Cryptanalysis of
the “2R” schemes. In Advances in Cryptology—Crypto ’99, pages
315–325. Springer-Verlag, 1999.

[94] H. Dobbertin. Alf Swindles Ann, CryptoBytes (3) 1, Autumn, 1995.

[95] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In
Proceedings of the 23rd ACM Symposium on Theory of Computing,
pages 542–552. ACM, 1991.

[96] Underwood Dudley. Elementary Number Theory, 2nd edition. W.
H. Freeman and Co., September 1978.

[97] D. Eastlake, S. Crocker, and J. Schiller. Randomness recommenda-
tions for security, December 1994. RFC 1750.

[98] Shimon Even. Algorithmic Combinatorics. Macmillan, New York,
1973.

[99] Joan Feigenbaum. Encrypting problem instances, or, Can you take
advantage of someone without having to trust him? In H. C.
Williams, editor, Advances in Cryptology—Crypto ’85, pages 477–
488. Springer-Verlag, 1986. Lecture Notes in Computer Science No.
218.

[100] Joan Feigenbaum and Michael Merritt. Open questions, talk ab-
stracts, and summary of discussions. In DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 2, pages
1–45. AMS, 1991.

[101] P. Feldman. A practical scheme for non-interactive verifiable secret
sharing. In Proceedings of the 28th IEEE Symposium on Foundations
of Computer Science, pages 427–438. IEEE, 1987.

[102] W. Feller. An Introduction to Probability Theory and its Applica-
tions. John Wiley & Sons, Inc., 1957.

[103] Pierre-Alain Fouque, Jacques Stern, and Geert-Jan Wackers. Cryp-
tocomputing with rationals. In Proceedings of the Sixth International
Financial Cryptography Conference. Springer-Verlag, March 11–14
2003.

366 References

[104] Yair Frankel and Moti Yung. Escrow encryption systems visited:
Attacks, analysis and design. In Don Coppersmith, editor, Advances
in Cryptology—Crypto ’95, pages 222–235. Springer, 1995. Lecture
Notes in Computer Science No. 963.

[105] Matthew Franklin. Complexity and Security of Distributed Protocols.
PhD thesis, Department of Computer Science, Columbia University,
1994.

[106] Matthew Franklin and Stuart Haber. Joint encryption and message-
efficient secure computation. In Douglas R. Stinson, editor, Ad-
vances in Cryptology—Crypto ’93, pages 266–277. Springer, 1994.
Lecture Notes in Computer Science No. 773.

[107] Matthew K. Franklin and Moti Yung. Communication complexity of
secure computation (extended abstract). In Proceedings of the 24th
ACM Symposium on Theory of Computing, pages 699–710. ACM,
1992.

[108] E. Fujisaki and T. Okamoto. A practical and provably secure scheme
for publicly verifiable secret sharing and its applications. In Kaisa
Nyberg, editor, Advances in Cryptology—Eurocrypt ’98, pages 32–
46. Springer-Verlag, 1998. Lecture Notes in Computer Science No.
1403.

[109] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP
is secure under the RSA assumption. In J. Kilian, editor, Advances
in Cryptology—Crypto ’01, volume 2139 of Lecture Notes in Com-
puter Science, pages 260–274. Springer-Verlag, 2001.

[110] T. El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31:469–472, 1985.

[111] Michael Gilleland. Working with fractions in java—harmonic num-
bers. Table of the first 100 harmonic numbers. Downloaded from
http://www.merriampark.com/fractions.htm.

[112] Ceki Gülcü and Gene Tsudik. Mixing e-mail with Babel. In Sym-
posium on Network and Distributed System Security, pages 2–16.
Internet Society, February 1996.

[113] O. Goldreich, S. Goldwasser, and S. Micali. How to construct ran-
dom functions. In Proceedings of the 25th IEEE Symposium on
Foundations of Computer Science, pages 464–479. IEEE, 1984.

[114] O. Goldreich, S. Goldwasser, and S. Micali. How to construct ran-
dom functions. Journal of the ACM, 33(4):792–807, October 1986.

References 367

[115] Oded Goldreich. The Foundations of Cryptography, volume 1. Cam-
bridge University Press, June 2001.

[116] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest
majority. In Proceedings of the 19th ACM Symposium on Theory of
Computing, pages 218–229. ACM, 1987.

[117] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, April 1984.

[118] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complex-
ity of interactive proof-systems. In Proceedings of the 17th ACM
Symposium on Theory of Computing, pages 291–304. ACM, 1985.

[119] P. Golle and D. Boneh. Almost entirely correct mixing with ap-
plications to voting. In Proceedings of the 9th ACM conference on
Computer and Communications Security, pages 59–68. ACM, 2002.

[120] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syver-
son. Universal Re-encryption for Mixnets. RSA Conference—
Cryptographer’s Track, 2003.

[121] G. S. Graham and P. J. Denning. Protection—principles and prac-
tice. AFIPS Spring Joint Computer Conference, 40:417–429, 1972.

[122] Ronald Graham, Oren Patashnik, and Donald Ervin Knuth. Con-
crete Mathematics: A Foundation for Computer Science (2nd edi-
tion), page 29, Addison-Wesley, 1994.

[123] Roger A. Grimes. Malicious Mobile Code. O’Reilly & Associates,
Inc., 2001.

[124] M. Gude. Concept for a high-performance random number generator
based on physical random phenomena. Frequenz, 39:187–190, 1985.

[125] L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In S. Gold-
wasser, editor, Advances in Cryptology—Crypto ’88, pages 216–231.
Springer-Verlag, 1988. Lecture Notes in Computer Science No. 403.

[126] Louis Guillou and Jean-Jacques Quisquater. Efficient digital public-
key signature with shadow. In Carl Pomerance, editor, Advances
in Cryptology—Crypto ’87, pages 223–223. Springer-Verlag, 1988.
Lecture Notes in Computer Science No. 293.

[127] Katie Hafner and John Markoff. Cyberpunk: Outlaws and Hackers
on the Computer Frontier. Simon & Schuster, 1991.

368 References

[128] G. H. Hardy and E. M. Wright. An Introduction to the Theory of
Numbers, 4th edition. Oxford Clarendon Press, 1975.

[129] David Harley, Robert Slade, and Urs E. Gattiker. Viruses Revealed.
Osborne/McGraw-Hill, 2001.

[130] B. Hayes. Anonymous one-time signatures and flexible untraceable
electronic cash. In J. Seberry and J. Pieprzyk, editors, Advances in
Cryptology—Auscrypt ’90, volume 453 of Lecture Notes in Computer
Science, pages 294–305. Springer-Verlag, 1990.

[131] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive public key and signature schemes. In Proceedings of the
Fourth Annual Conference on Computer and Communications Se-
curity, pages 100–110. ACM, 1997.

[132] Greg Hoglund and Gary McGraw. Exploiting Software, Chapter 8:
Rootkits, Addison-Wesley, 2004.

[133] Patrick Horster, Markus Michels, and Holger Petersen. Subliminal
channels in discrete logarithm based signature schemes and how to
avoid them. Technical Report TR-94-13-D, University of Technology
Chemnitz-Zwickau, September 1994.

[134] D. A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the Institute of Radio Engineers
(IRE), 40(9):1098–1101, September 1952.

[135] American National Standards Institute. ANSI X9.17: Financial in-
stitution key management (wholesale), 1985. ASC X9 Secretariat—
American Bankers Association.

[136] M. Jakobsson and A. Juels. Proofs of work and bread pudding
protocols. In Proceedings of the IFIP TC6 and TC11 Joint Work-
ing Conference on Communications and Multimedia Security (CMS
’99). Kluwer, 1999.

[137] Markus Jakobsson. A practical mix. In Kaisa Nyberg, editor,
Advances in Cryptology—Eurocrypt ’98, pages 448–461. Springer-
Verlag, 1998. Lecture Notes in Computer Science No. 1403.

[138] Markus Jakobsson and D. M’Raihi. Mix-based electronic payments.
In Stafford E. Tavares and Kenk Meijer, editors, Selected Areas in
Cryptography ’98, Canada, August 17-18, pages 157–173. Springer,
1999. Lecture Notes in Computer Science No. 1556.

[139] Markus Jakobsson, Elizabeth A. M. Shriver, Bruce Hillyer, and Ari
Juels. A practical secure physical random bit generator. In ACM
Conference on Computer and Communications Security, pages 103–
111. ACM, 1999.

References 369

[140] Markus Jakobsson and Moti M. Yung. Revokable and versatile e-
money. In Proceedings of the Third Annual ACM Conference on
Computer and Communications Security, pages 76–87. ACM, 1996.

[141] N. Johnson, Z. Duric, and S. Jajodia. Information Hiding: Steganog-
raphy and Watermarking—Attacks and Countermeasures. Kluwer
Academic Publishers, 2000.

[142] S. M. Johnson. Generation of permutations by adjacent transposi-
tions. Mathematics of Computation, 17:282–285, 1963.

[143] D. F. Jones. Colossus. Berkeley Pub Group, 1966. Reissue March,
1985.

[144] Antoine Joux. The Weil and Tate pairings as building blocks for
public key cryptosystems. In Claus Fieker and David R. Kohel, ed-
itors, Proceedings of the Fifth Algorithmic Number Theory Sympo-
sium (ANTS), pages 20–32. Springer, 2002. Lecture Notes in Com-
puter Science No. 2369.

[145] M. Joye, P. Paillier, and S. Vaudenay. Generating RSA moduli with
predetermined portion. In Ç. K. Koç and Christof Paar, editors,
Proceedings of the 2nd Workshop on Cryptographic Hardware and
Embedded Systems (CHES), pages 340–354. Springer-Verlag, 2000.
Lecture Notes in Computer Science No. 1965.

[146] A. Juels and J. Brainard. Client puzzles: A cryptographic defense
against connection depletion attacks. In S. Kent, editor, Proceed-
ings of Networks and Distributed Security Systems, pages 151–165.
Internet Society, 1999.

[147] A. Juels and J. Guajardo. RSA key generation with verifiable ran-
domness. In D. Naccache and P. Paillier, editors, Proceedings of the
5th Workshop on Practice and Theory in Public Key Cryptography
(PKC), pages 357–374. Springer-Verlag, 2002.

[148] A. Juels, M. Jakobsson, E. Shriver, and B. Hillyer. How to turn
loaded dice into fair coins. IEEE Transactions on Information The-
ory, IT-46(3):911–921, 2000.

[149] Benjamin Jun and Paul Kocher. The Intel random number
generator, April 22, 1999. White Paper—Downloaded from
http://download.intel.com/design/security/rng/CRIwp.pdf (pre-
pared for Intel Corporation).

[150] A. A. Karatsuba and Yu. P. Ofman. Multiplication of multidigit
numbers by automata. Physics Doklady, 7:595–596, 1963. Translated
from Doklady Akad. Nauk, vol. 145, no. 2, pages 293–294, 1962.

370 References

[151] Paul A. Karger and Roger R. Schell. Multics security evaluation:
Vulnerability analysis. Technical Report ESD-TR-74-193 volume II,
HQ Electronic Systems Division, Hanscom AFB, MA 01731, June
1974.

[152] Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic
counters and applications to electronic voting. In Birgit Pfitz-
mann, editor, Advances in Cryptology—Eurocrypt ’01, pages 78–92.
Springer-Verlag, 2001. Lecture Notes in Computer Science No. 2045.

[153] John Kelsey, Bruce Schneier, and David Wagner. Related-key crypt-
analysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and
TEA. In International Conference on Information and Communi-
cations Security, pages 233–246, 1997.

[154] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language, 2nd edition. Prentice Hall Software Series. Prentice Hall,
March 1989.

[155] J. Kilian and F. T. Leighton. Fair cryptosystems revisited. In Ad-
vances in Cryptology—Crypto ’95, pages 208–221. Springer-Verlag,
1995.

[156] N. Koblitz. A Course in Number Theory and Cryptography.
Springer-Verlag, New York, 1987.

[157] N. Koblitz. Elliptic curve cryptosytems. Mathematics of Computa-
tion, 48(177):203–209, 1987.

[158] N. Koblitz. Constructing elliptic curve cryptosystems in character-
istic 2. In A. J. Menezes and S. A. Vanstone, editors, Advances
in Cryptology—Crypto ’90, pages 156–168. Springer-Verlag, 1991.
Lecture Notes in Computer Science No. 537.

[159] Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Neal Koblitz, editor, Ad-
vances in Cryptology—Crypto ’96, pages 104–113. Springer-Verlag,
1996. Lecture Notes in Computer Science No. 1109.

[160] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In M. Wiener, editor, Advances in Cryptology—Crypto ’99,
pages 388–397. Springer-Verlag, 1999. Lecture Notes in Computer
Science No. 1666.

[161] Loren M. Kohnfelder. Towards a practical public-key cryptosystem.
B.S. Thesis, supervised by L. Adleman, May 1978.

[162] K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone. New
public-key schemes based on elliptic curves over the ring Zn. In
J. Feigenbaum, editor, Advances in Cryptology—Crypto ’91, pages

References 371

252–266. Springer, 1992. Lecture Notes in Computer Science No.
576.

[163] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms—
Generation, Enumeration, and Search. Encyclopedia of Mathemat-
ics and its Applications. CRC Press, 1998.

[164] R. Kumanduri and C. Romero. Number Theory with Computer Ap-
plications, Algorithm 9.2.9. Prentice Hall, 1998.

[165] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval. In
Proceedings of the 38th IEEE Symposium on Foundations of Com-
puter Science, pages 364–373. IEEE, 1997.

[166] J. B. Lacy, D. P. Mitchell, and W. M. Schell. Cryptolib: Cryp-
tography in software. In Proceedings of the 4th USENIX Security
Symposium, pages 1–17, 1993.

[167] Butler W. Lampson. A note on the confinement problem. Commu-
nications of the ACM, 16(10):613–615, 1973.

[168] Laurie Law, Susan Sabett, and Jerry Solinas. How to make a mint:
the cryptography of anonymous electronic cash. National Security
Agency, Office of Information Security Research and Technology,
Cryptology Division, June 1996.

[169] Sammuel J. Leffler, Marshall Krik McKusick, Michael J. Karels, and
John S. Quarterman, editors. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley, 1989.

[170] Birgitta Lemmel. The Nobel Medals and the Medal for the
Memorial Prize in Economic Sciences. Nobel e-Museum. See
http://www.nobel.se/nobel/medals/index.html.

[171] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard.
The number field sieve. In Proceedings of the 22nd ACM Symposium
on Theory of Computing, pages 564–572. ACM, 1990.

[172] Arjen K. Lenstra. Generating RSA moduli with a predetermined
portion. In Kazuo Ohta and Dingyi Pei, editors, Advances in
Cryptology—Asiacrypt ’98, pages 1–10. Springer-Verlag, 1998. Lec-
ture Notes in Computer Science No. 1514.

[173] Scott Lindhurst. An analysis of shanks algorithm for comput-
ing square roots in finite fields. In Rajiv Gupta and Kenneth S.
Williams, editors, Proceedings of the 5th Conference of the Canadian
Number Theory Association (1996), volume 19 of CRM Proceedings
and Lecture Notes. American Mathematical Society, August 1999.

372 References

[174] Scott Charles Lindhurst. Computing roots in finite fields and groups,
with a jaunt through sums of digits—Chapter 3: Extensions of
Shanks Algorithm. PhD thesis, University of Wisconsin at Madi-
son, 1997.

[175] R. Lipton. How to cheat at mental poker. In In Proceedings of AMS
Short Course on Cryptography, 1981.

[176] Richard Lipton and Tomas Sander. An additively homomorphic
encryption scheme or how to introduce a partial trapdoor in the
discrete log (submitted for publication), November 1997.

[177] Michael Luby. Pseudorandomness and Cryptographic Applications.
Princeton University Press, 1996.

[178] R. Duncan Luce and Howard Raiffa. Games and Decisions—
Introduction and Critical Survey. Dover Books, 1985.

[179] Kirk Makin. Article written for the Globe and Mail, November 3,
1987.

[180] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helle-
seth, editor, Advances in Cryptology—Eurocrypt ’93, volume 765 of
Lecture Notes in Computer Science, pages 386–397. Springer-Verlag,
1994.

[181] Ueli Maurer and Stefan Wolf. Diffie-Hellman oracles. In Advances
in Cryptology—Crypto ’96, pages 268–282. Springer-Verlag, 1996.

[182] Ueli Maurer and Stefan Wolf. The relationship between breaking the
Diffie-Hellman protocol and computing discrete logarithms. SIAM
Journal on Computing, 28(5):1689–1721, 1999.

[183] Ueli M. Maurer. Towards the equivalence of breaking the Diffie-
Hellman protocol and computing discrete algorithms. In Yvo G.
Desmedt, editor, Advances in Cryptology—Crypto ’94, pages 271–
281. Springer, 1994. Lecture Notes in Computer Science No. 839.

[184] T. C. May. Section 3.8: Blacknet. In High Noon on the Electronic
Frontier, MIT Press, 1996.

[185] John McAfee and Colin Haynes. Computer Viruses, Worms, Data
Diddlers, Killer Programs, and Other Threats to Your System. St.
Martin’s Press, 1989.

[186] Declan McCullagh. Crypto-convict won’t recant. In Wired News.
Wired Digital Inc., April 14, 2000. Jim Bell’s quote appears on
http://jya.com/ap.htm.

References 373

[187] A. Menezes and S. A. Vanstone. The implementation of elliptic curve
cryptosystems. In J. Seberry and J. Pieprzyk, editors, Advances in
Cryptology—Auscrypt ’90, volume 453 of Lecture Notes in Computer
Science, pages 2–13. Springer-Verlag, 1990.

[188] A. J. Menezes, editor. Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, 1993.

[189] A. J. Menezes and S. A. Vanstone. Elliptic curve cryptosystems and
their implementation. Journal of Cryptology, 6:209–224, 1993.

[190] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[191] S. Micali and A. Shamir. An improvement of the Fiat-Shamir iden-
tification and signature scheme. In S. Goldwasser, editor, Advances
in Cryptology—Crypto ’88, pages 244–248. Springer-Verlag, 1988.
Lecture Notes in Computer Science No. 403.

[192] Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brick-
ell, editor, Advances in Cryptology—Crypto ’92, pages 113–138.
Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.

[193] Silvio Micali. Guaranteed partial key escrow. Technical Re-
port MIT/LCS/TM-537, MIT Laboratory for Computer Science,
September 1995.

[194] Gary L. Miller. Riemann’s hypothesis and tests for primality. Jour-
nal of Computer and System Sciences, 13(3):300–317, 1976.

[195] Dukjae Moon, Kyungdeok Hwang, Wonil Lee, Sangjin Lee, and
Jongin Lim. Impossible differential cryptanalysis of reduced round
XTEA and TEA. In Proceedings of the Fast Software Encryption
Workshop, pages 49–60, 2002.

[196] David Naccache and Jacques Stern. A new public-key cryptosystem
based on higher residues. In ACM Conference on Computer and
Communications Security, pages 59–66. ACM, 1998.

[197] Carey Nachenberg. Computer virus-antivirus coevolution. Commu-
nications of the ACM, 40(1):46–51, January 1997.

[198] M. Naor and M. Yung. Universal one-way hash functions and their
cryptographic applications. In Proceedings of the 21st ACM Sympo-
sium on Theory of Computing, pages 33–43. ACM, 1989.

[199] Moni Naor and Moti M. Yung. Public-key cryptosystems provably
secure against chosen ciphertext attack. In Proceedings of the 22nd
ACM Symposium on Theory of Computing, pages 427–437. ACM,
1990.

374 References

[200] National Institute of Standards and Technology (NIS).
SKIPJACK and KEA algorithm specifications, May 1998.
http://csrc.nist.gov/encryption/skipjack-1.pdf,
skipjack-2.pdf.

[201] National Institute of Standards and Technology (NIST). Proposed
federal information processing standard for secure hash standard.
Federal Register, 57(21):3747–3749, January 31, 1992.

[202] National Institute of Standards and Technology (NIST). FIPS Pub-
lication 180-1: Secure Hash Standard. Federal Register, April 17,
1995.

[203] National Institute of Standards and Technology (NIST). FIPS Publi-
cation 186-2: Digital Signature Standard. Federal Register, January
27, 2000.

[204] National Institute of Standards and Technology (NIST). FIPS Publi-
cation 197: Advanced Encryption Standard (AES). Federal Register,
November 26, 2001.

[205] Peter G. Neumann. Logic bombs and other system attacks—in
Canada. The Risks Digest, 5(63), November 23, 1987.

[206] Peter G. Neumann. IEEE Symposium on Security and Privacy.
The Risks Digest, 17(69), February 7, 1996. Reprint of Security &
Privacy program by Dale M. Johnson.

[207] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A sur-
vey and new constructions. Journal of Computer and System Sci-
ences, 58(1):148–173, 1999.

[208] K. Nyber and R. Rueppel. Message recovery for signature schemes
based on the discrete logarithm problem. In Journal of Cryptology,
volume 8, pages 27–37, 1995.

[209] K. Nyberg and R. Rueppel. Message recovery for signature
schemes based on the discrete logarithm problem. In Advances in
Cryptology—Eurocrypt ’94, pages 182–193. Springer-Verlag, 1994.

[210] National Bureau of Standards. FIPS Publication 46: Announcing
the data encryption standard, January 1977.

[211] National Bureau of Standards. Secure hash standard. Technical
Report FIPS Publication 180, National Bureau of Standards, 1993.

[212] T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigen-
baum, editor, Advances in Cryptology—Crypto ’91, pages 324–337.
Springer, 1992. Lecture Notes in Computer Science No. 576.

References 375

[213] Tatsuaki Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In Ernest F. Brickell,
editor, Advances in Cryptology—Crypto ’92, pages 31–53. Springer-
Verlag, 1992. Lecture Notes in Computer Science No. 740.

[214] Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-knowledge au-
thentications and their applications to untraceable electronic cash.
In G. Brassard, editor, Advances in Cryptology—Crypto ’89, pages
481–497. Springer-Verlag, 1990. Lecture Notes in Computer Science
No. 435.

[215] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus
attacks. In Proceedings of the 10th ACM Symposium on Principles
of Distributed Computing, pages 51–59. ACM, 1991.

[216] Pascal Paillier. Public-key cryptosystems based on composite degree
residue classes. In Jacques Stern, editor, Advances in Cryptology—
Eurocrypt ’99, pages 223–238. Springer-Verlag, 1999. Lecture Notes
in Computer Science No. 1592.

[217] Pascal Paillier and Moti Yung. Self-escrowed public-key infrastruc-
tures. In Information Security and Cryptology (ICISC), pages 257–
268. Springer, 1999. Lecture Notes in Computer Science No. 1787.

[218] The Symantec Enterprise Papers. Understanding and managing
polymorphic viruses, XXX, July 1999. (whitepaper downloaded from
http://www.symantec.com/avcenter/whitepapers.html).

[219] Donn B. Parker. Crime by Computer. Charles Scribner’s Sons, 1976.

[220] J. Patarin and L. Goubin. Asymmetric cryptography with S-Boxes.
In Proceedings of ICICS ’97, pages 369–380. Springer, 1997. Lecture
Notes in Computer Science No. 1334.

[221] David A. Patterson and John L. Hennessy. Computer Organization
& Design—The Hardware/Software Interface. Morgan Kaufmann
Publishers Inc., 1994.

[222] Y. Peres. Iterating von Neumann’s procedure. The Annals of Statis-
tics, 20(1):590–597, 1992.

[223] H. E. Petersen and R. Turn. System implications of information pri-
vacy. Proceedings of the AFIPS Spring Joint Computer Conference,
30:291–300, 1967.

[224] S. C. Pohlig and M. E. Hellman. An improved algorithm for com-
puting logarithms over GF (p) and its cryptographic significance.
IEEE Transactions on Information Theory, IT-24(1):106–110, Jan-
uary 1978.

376 References

[225] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In U. Maurer, editor, Advances in Cryptology—Eurocrypt
’96, pages 387–398. Springer-Verlag, 1996. Lecture Notes in Com-
puter Science No. 1070.

[226] David Pointcheval and Jacques Stern. Security arguments for digital
signatures and blind signatures. Journal of Cryptology, 13(3):361–
396, 2000.

[227] J. M. Pollard. Monte Carlo methods for index computation (mod
p). Mathematics of Computation, 32(143):918–924, 1978.

[228] Carl Pomerance. The quadratic sieve factoring algorithm. In
T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in
Cryptology—Eurocrypt ’84, pages 169–182. Springer-Verlag, 1985.
Lecture Notes in Computer Science No. 209.

[229] M. Pondsmith, E. Bolme, S. Shirley, A. Swenson, C. Fisk, W. Moss,
J. Smith, M. MacDonald, and L. Pondsmith. Night City, 1991.
ISBN: 0-937279-11-0, total number of pages: 184.

[230] G. J. Popek and D. A. Farber. A model for verification of data secu-
rity in operating systems. Communications of the ACM, 21(9):737–
749, September 1978.

[231] J. Posegga and G. Karjoth. Mobile agents and telcos’ nightmares.
Annales des Telecommunications, special issue on communications
security, 55:29–41, 2000.

[232] G. Poupard and J. Stern. Fair encryption of RSA keys. In Bart
Preneel, editor, Advances in Cryptology—Eurocrypt ’00, pages 172–
189. Springer, 2000. Lecture Notes in Computer Science No. 1807.

[233] OpenSSL Project. Current version—openssl 0.9.7b, April 10, 2003.
Open source toolkit that implements SSL, Transport Layer Secu-
rity (TLS), and a full featured cryptographic library. OpenSSL is
available at http://www.openssl.org.

[234] M. Rabin. Digitalized signatures as intractable as factorization.
Technical Report MIT/LCS/TR-212, MIT Laboratory for Com-
puter Science, January 1979.

[235] M. Rabin. Probabilistic algorithms for testing primality. Journal of
Number Theory, 12:128–138, 1980.

[236] M. O. Rabin. Digitalized signatures. In Richard A. DeMillo,
David P. Dobkin, Anita K. Jones, and Richard J. Lipton, edi-
tors, Foundations of Secure Computation, pages 155–168. Academic
Press, 1978.

References 377

[237] Michael Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Technical Report MIT/LCS/TR-212,
Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, January 1979.

[238] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack. In J. Feigenbaum, editor,
Advances in Cryptology—Crypto ’91, pages 433–444. Springer, 1992.
Lecture Notes in Computer Science No. 576.

[239] Virus Bulletin. Virus Bulletin Ltd., Richard Ford, editor, page 4,
March, 1993.

[240] V. Rijmen and B. Preneel. A family of trapdoor ciphers. In E. Bi-
ham, editor, Proceedings of the Fast Software Encryption Workshop,
pages 139–148. Springer, 1997.

[241] R. L. Rivest. The RC4 Encryption Algorithm (Proprietary). RSA
Data Security, Inc., March 12, 1992.

[242] Ronald L. Rivest. The MD4 message digest algorithm. Technical
Report MIT/LCS/TM-434, MIT Laboratory for Computer Science,
October 1990.

[243] Ronald L. Rivest. The MD5 message-digest algorithm. Internet
Request for Comments, April 1992. RFC 1321.

[244] Ronald L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. In R. DeMillo, D. Dobkin,
A. Jones, and R. Lipton, editors, Foundations of Secure Computa-
tion, pages 169–180. Academic Press, 1978.

[245] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120–126, 1978.

[246] M. J. B. Robshaw. Recent proposals to implement Fair Cryptogra-
phy. Technical Report TR-301, RSA Laboratories, October 1993.

[247] Kenneth H. Rosen. Elementary Number Theory and its Applications,
4th Edition. Addison-Wesley, 2000.

[248] RSA Data Security, Inc. SecurPC for Windows 95 Users Manual,
1997.

[249] RSA Data Security, Inc. PKCS #1: RSA Cryptography Standard,
Version 2.1, June 2002.

378 References

[250] Tomas Sander and Christian F. Tschudin. Towards mobile cryptog-
raphy. In Proceedings of the 19th IEEE Symposium on Security and
Privacy, pages 215–224. IEEE, May 1998.

[251] Tomas Sander and Christian F. Tschudin. Towards mobile cryptog-
raphy. Technical Report TR-97-049, ICSI Technical Report, Novem-
ber 22, 19997.

[252] Tomas Sander, Adam L. Young, and Moti M. Yung. Non-interactive
cryptocomputing for NC1. In Proceedings of the 40th IEEE Sym-
posium on Foundations of Computer Science, pages 554–567. IEEE,
October 17–19, 1999.

[253] M. Santha and U. V. Vazirani. Generating quasi-random sequences
from slightly-random sources. In Proceedings of the 25th IEEE Sym-
posium on Foundations of Computer Science, pages 434–440. IEEE,
1984.

[254] Joseph Sargent. Colossus: The Forbin Project, 1969. Screenplay:
James Bridges.

[255] Stuart Schechter and Michael Smith. How much security is enough to
stop a thief? In Proceedings of the Seventh International Financial
Cryptography Conference. Springer-Verlag, January 27–30, 2003.

[256] W. L. Schiller. Design of a security kernel for the PDP-11/45. Tech-
nical Report ESD–TR–73–294, The MITRE Corporation, December
1973.

[257] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, New York, 1993.

[258] Bruce Schneier. Description of a new variable-length key, 64-bit
block cipher (Blowfish). In Ross Anderson, editor, Proceedings of
the Fast Software Encryption Workshop, pages 191–204. Springer-
Verlag, December 1993. Lecture Notes in Computer Science No.
809.

[259] Bruce Schneier. The Blowfish encryption algorithm. Dr. Dobb’s
Journal, pages 38–40, April 1994.

[260] Bruce Schneier and Niels Ferguson. Practical Cryptography. Wiley,
2003.

[261] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall, and Niels Ferguson. The Twofish encryption algorithm, a 128-
bit block cipher. Wiley, 1999.

References 379

[262] C. P. Schnorr. Efficient identification and signatures for smart cards.
In G. Brassard, editor, Advances in Cryptology—Crypto ’89, pages
239–252. Springer, 1990. Lecture Notes in Computer Science No.
435.

[263] C. P. Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4:161–174, 1991.

[264] Berry Schoenmakers. A simple publicly verifiable secret sharing
scheme and its application to electronic voting. In M. Wiener, edi-
tor, Advances in Cryptology—Crypto ’99, pages 148–164. Springer,
1999. Lecture Notes in Computer Science No. 1666.

[265] Ridley Scott. Alien, May 25, 1979. Screenplay: Dan O’Bannon and
Ronald Shusett, Creature Design: H. R. Giger.

[266] Ronen Shaltiel. Recent developments in explicit constructions of ex-
tractors. Bulletin of the European Association for Theoretical Com-
puter Science (EATCS), 77:67–95, 2002.

[267] Ronen Shaltiel and Christopher Umans. Simple extractors for all
min-entropies and a new pseudo-random generator. In Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science,
pages 648–657. IEEE, 2001.

[268] A. Shamir and N. van Someren. Playing hide and seek with stored
keys. In Financial Cryptography, pages 118–124. Springer-Verlag,
1999. Lecture Notes in Computer Science No. 1648.

[269] Adi Shamir. Identity-based cryptosystems and signature schemes. In
G. R. Blakley and D. C. Chaum, editors, Advances in Cryptology—
Crypto ’84, pages 47–53. Springer, 1985. Lecture Notes in Computer
Science No. 196.

[270] C. E. Shannon. Communication theory of secrecy systems. Bell
System Technical Journal, 28:657–715, 1949.

[271] John F. Shoch and Jon A. Hupp. The worm programs: Early ex-
perience with a distributed computation. Communications of the
ACM, 25(3):172–180, 1982.

[272] V. Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in
Cryptology—Crypto ’01, pages 239–259. Springer-Verlag, 2001.

[273] V. Shoup and J. Camenisch. Practical verifiable encryption and de-
cryption of discrete logarithms. In Advances in Cryptology—Crypto
’03. Springer-Verlag, 2003.

380 References

[274] Gustavus J. Simmons. The prisoners’ problem and the subliminal
channel. In D. Chaum, editor, Advances in Cryptology—Crypto ’83,
pages 51–67. Plenum Press, 1984.

[275] Gustavus J. Simmons. The subliminal channel and digital signa-
tures. In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in
Cryptology—Eurocrypt ’84, pages 364–378. Springer-Verlag, 1985.
Lecture Notes in Computer Science No. 209.

[276] Gustavus J. Simmons. An introduction to the mathematics of trust
in security protocols. In Proceedings of the Computer Security Foun-
dations Workshop, pages 121–127. IEEE Computer Society Press,
1993.

[277] Gustavus J. Simmons. The subliminal channels of the U.S. Digital
Signature Algorithm (DSA). In Proceedings of the Third Symposium
on State and Progress of Research in Cryptography, pages 35–54,
1993.

[278] Gustavus J. Simmons. Subliminal communication is easy using the
dsa. In T. Helleseth, editor, Advances in Cryptology—Eurocrypt ’93,
pages 218–232. Springer-Verlag, 1993. Lecture Notes in Computer
Science No. 0765.

[279] Gustavus J. Simmons. Cryptanalysis and protocol failures. Com-
munications of the ACM, 37(11):56–65, November 1994.

[280] Gustavus J. Simmons. Subliminal channels: Past and Present. IEEE
European Transactions on Telecommunication, 5(4):459–473, 1994.

[281] Gustavus J. Simmons. The history of subliminal channels. IEEE
Journal on Selected Areas in Communication, 16(4):452–462, May
1998.

[282] Rune Skardhamar. Virus Detection and Elimination. Academic
Press, 1996.

[283] Robert Slade. Robert Slade’s Guide to Computer Viruses, pages 45,
60, 89, 102, 106-110, 454, Springer-Verlag, 1994.

[284] Miles E. Smid and Dennis K. Branstad. Response to comments of
the NIST proposed digital signature standard. In Ernest F. Brickell,
editor, Advances in Cryptology—Crypto ’92, pages 76–88. Springer-
Verlag, 1992. Lecture Notes in Computer Science No. 740.

[285] IEEE Computer Society. CIPHER. Newsletter of the IEEE Com-
puter Society’s TC on Security and Privacy, Ed. Carl Landwehr,
Assoc. Ed. Hilarie Orman, Issue 10, November 1, 1995.

References 381

[286] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality.
SIAM Journal on Computing, 6:84–85, 1977.

[287] Eugene H. Spafford. The internet worm program: An analysis. Tech-
nical Report CSD-TR-823, Purdue University Department of Com-
puter Science, 1988.

[288] Eugene H. Spafford. The internet worm: Crisis and aftermath. Com-
munications of the ACM, 32(6):678–687, 1989.

[289] Eugene H. Spafford, Kathleen A. Heaphy, and David J. Ferbrache. A
computer virus primer. In Peter J. Denning, editor, Computers Un-
der Attack: Intruders, Worms, and Viruses. Addison-Wesley, 1990.

[290] Michale J. Spier, Thomas N. Hastings, and David N. Cutler. An
experimental implementation of the kernel/domain architecture. In
Proceedings of the Fourth ACM Symposium on Operating System
Principles, pages 8–21. ACM, January 1973.

[291] Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Mau-
rer, editor, Advances in Cryptology—Eurocrypt ’96, pages 190–199.
Springer, 1996. Lecture Notes in Computer Science No. 1070.

[292] Bruce Sterling. Islands in the Net. Ace Books, March 1989.

[293] Douglas R. Stinson. Cryptography: Theory and Practice, First Edi-
tion. CRC Press, 1995.

[294] Cliff Stoll. The Cuckoo’s Egg: Tracing a Spy Through the Maze of
Computer Espionage. Doubleday, 1989.

[295] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous
connections and onion routing. In Proceedings of the 18th IEEE
Symposium on Security and Privacy, pages 44–54. IEEE, May 1997.

[296] Amnon Ta-Shma. On extracting randomness from weak random
sources (extended abstract). In Proceedings of the 28th ACM Sym-
posium on Theory of Computing, pages 276–285. ACM, 1996.

[297] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-
less condensers, unbalanced expanders, and extractors. In Proceed-
ings of the 33rd ACM Symposium on Theory of Computing, pages
143–152. ACM, 2001.

[298] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors
from reed-muller codes. In Proceedings of the 42nd IEEE Symposium
on Foundations of Computer Science, pages 638–647. IEEE, 2001.

382 References

[299] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors
from reed-muller codes. Electronic Colloquium on Computational
Complexity (ECCC), 8(36), 2001.

[300] Ken Thompson. Reflections on Trusting Trust. Communications of
the ACM, 27(8), 1984.

[301] H. F. Trotter. ACM Algorithm 115: Perm. Communications of the
ACM, 5(8):434–435, August 1962.

[302] Yiannis Tsiounis. Personal Communication, February 2003.

[303] Yiannis Tsiounis. Efficient Electronic Cash: New Notions and Tech-
niques. PhD thesis, Northeastern University, 1997.

[304] Yiannis Tsiounis and Moti M. Yung. On the security of ElGamal-
based encryption. In Hideki Imai and Yuliang Zheng, editors, Pro-
ceedings of the 1st Workshop on Practice and Theory in Public Key
Cryptography (PKC), pages 117–134. Springer, February 1998. Lec-
ture Notes in Computer Science No. 1431.

[305] Albert W. Tucker. On Jargon: The Prisoner’s Dilemma, UMAP
Journal 1, 101, 1980.

[306] Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, pages 230–265, 1936.

[307] U. V. Vazirani and V. V. Vazirani. Efficient and secure pseudo-
random number generation. In Proceedings of the 25th IEEE Sym-
posium on Foundations of Computer Science, pages 458–463. IEEE,
1984.

[308] G. S. Vernam. Cipher printing telegraph systems for secret wire and
radio telegraphic communications. Journal of the American Institute
for Electrical Engineers, 45:109–115, 1926.

[309] John von Neumann. Various techniques for use in connection with
random digits. In von Neumann’s Collected Works, volume 5, pages
768–770. Pergamon, 1963.

[310] John von Neumann. (Part One) Transcripts of lectures given at the
University of Illinois, Dec. 1949. In A. W. Burks, editor, Theory and
Organization of Complicated Automata, pages 29–87. University of
Illinois Press, 1966.

[311] Sebastiaan von Solms and David Naccache. On blind signatures and
perfect crimes. Computers and Security, 11(6):581–583, October
1992.

References 383

[312] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and
verification of the UCLA UNIX security kernel. Communications of
the ACM, 23(2):118–131, 1980.

[313] Peter Wayner. Digital Cash: Commerce on the Net. Academic Press,
1996.

[314] Michael Weber, Matthew Schmid, David Geyer, and Michael Shatz.
A toolkit for detecting and analyzing malicious software. In 18th
Annual Computer Security Applications Conference, pages 423–431,
December 9–13, 2002.

[315] Ingo Wegener. The Complexity of Boolean Functions. John Wiley
and Sons Ltd., 1987.

[316] Rüdiger Weis and Stefan Lucks. All your key bit are belong to
us—the true story of black box cryptography. In Proceedings of the
3rd International system administration and networking Conference
(SANE), May 27-31, 2002.

[317] David J. Wheeler and Roger M. Needham. TEA, a Tiny Encryption
Algorithm. Proceedings of the Fast Software Encryption Workshop,
pages 363–366, 1994. Lecture Notes in Computer Science No. 1008.

[318] David J. Wheeler and Roger M. Needham. TEA extensions.
Draft technical report, University of Cambridge, downloaded from
http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps, 1997.

[319] David J. Wheeler and Roger M. Needham. Correction to XTEA.
Draft technical report, University of Cambridge, downloaded from
http://www.cl.cam.ac.uk/ftp/users/djw3/xxtea.ps, October 1998.

[320] Steve R. White. Covert distributed processing with computer
viruses. In G. Brassard, editor, Advances in Cryptology—Crypto
’89, pages 616–619. Springer-Verlag, 1990. Lecture Notes in Com-
puter Science No. 435.

[321] Security Controls for Computer Systems. Technical Report R-609,
Willis H. Ware, editor, Rand Corp., February 1970. Declassified Oct.
10, 1975 by DARPA.

[322] Sydney Fowler Wright. Automata. DNA Publications (currently),
September 1929.

[323] H. Wu, F. Bao, R. Deng, and Q. Ye. Cryptanalysis of Rijmen-Preneel
trapdoor ciphers. In Advances in Cryptology—Asiacrypt ’98, pages
126–132. Springer, 1998.

384 References

[324] Shouhuai Xu and Moti Yung. The dark side of threshold cryptog-
raphy. In Matt Blaze, editor, Proceedings of the Sixth International
Financial Cryptography Conference. Springer, 2002.

[325] A. C. Yao. Protocols for secure computations. In Proceedings of the
23rd IEEE Symposium on Foundations of Computer Science, pages
160–164. IEEE, 1982.

[326] A. C. Yao. How to generate and exchange secrets. In Proceedings
of the 27th IEEE Symposium on Foundations of Computer Science,
pages 162–167. IEEE, 1986.

[327] S. Yau and R. Cheung. Design of self checking software. In IEEE
Conference on Reliable Software, pages 450–457, 1975.

[328] Adam Young and Moti Yung. Auto-escrowable and auto-recoverable
cryptosystems, 1997. U.S. Patent 6,202,150, issued March 13, 2001,
filed May 28, 1997.

[329] Adam L. Young. Found bug in Rabin-Miller probabilistic primal-
ity test in OpenSSL. It was fixed in distributions 0.9.6a and later.
OpenSSL is available at http://www.openssl.org, 2002.

[330] Adam L. Young. cryptoviruses. Message posted to the sci.crypt
newsgroup, ayoung@news.cs.columbia.edu, 1996/05/21.

[331] Adam L. Young. Non-zero sum games and survivable malware. In
Proceedings of the 4th Annual IEEE Information Assurance Work-
shop, June 18–20, 2003. United States Military Academy, West
Point, New York.

[332] Adam L. Young and Moti M. Yung. Cryptovirology: Extorsion-
based security threats and countermeasures. In Proceedings of the
17th IEEE Symposium on Security and Privacy, pages 129–141.
IEEE, May 1996.

[333] Adam L. Young and Moti M. Yung. The dark side of black-box
cryptography, or: Should we trust capstone? In Neal Koblitz, editor,
Advances in Cryptology—Crypto ’96, pages 89–103. Springer-Verlag,
1996. Lecture Notes in Computer Science No. 1109.

[334] Adam L. Young and Moti M. Yung. Deniable password snatching:
On the possibility of evasive electronic espionage. In Proceedings of
the 18th IEEE Symposium on Security and Privacy, pages 224–235.
IEEE, May 1997.

[335] Adam L. Young and Moti M. Yung. Kleptography: Using cryp-
tography against cryptography. In Walter Fumy, editor, Advances
in Cryptology—Eurocrypt ’97, pages 62–74. Springer-Verlag, 1997.
Lecture Notes in Computer Science No. 1233.

References 385

[336] Adam L. Young and Moti M. Yung. The prevalence of klepto-
graphic attacks on discrete-log based cryptosystems. In Burton S.
Kaliski, editor, Advances in Cryptology—Crypto ’97, pages 264–276.
Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1294.

[337] Adam L. Young and Moti M. Yung. Auto-recoverable auto-
certifiable cryptosystems. In Kaisa Nyberg, editor, Advances in
Cryptology—Eurocrypt ’98, pages 17–31. Springer-Verlag, 1998. Lec-
ture Notes in Computer Science No. 1403.

[338] Adam L. Young and Moti M. Yung. Monkey: Black-box symmetric
ciphers designed for monopolizing keys. In Proceedings of the Fast
Software Encryption Workshop, pages 122–133. Springer, 1998.

[339] Adam L. Young and Moti M. Yung. Bandwidth-optimal klepto-
graphic attacks. In Ç. K. Koç, D. Naccache, and C. Paar, editors,
Proceedings of the 3rd Workshop on Cryptographic Hardware and
Embedded Systems (CHES), pages 235–250. Springer, 2001. Lecture
Notes in Computer Science No. 2162.

[340] Adam L. Young and Moti M. Yung. Backdoor attacks on black-box
ciphers exploiting low-entropy plaintexts. In Eighth Australasian
Conference on Information Security and Privacy (ACISP), pages
297–311. Springer-Verlag, 2003. Lecture Notes in Computer Science.

[341] Adam Lucas Young. Kleptography: Using Cryptography Against
Cryptography. PhD thesis, Columbia University Graduate School
of Arts & Sciences, 2002. Thesis Advisor: Zvi Galil (and Moti M.
Yung).

[342] Yuliang Zheng and Jennifer Seberry. Practical approaches to at-
taining security against adaptively chosen ciphertext attacks. In
Ernest F. Brickell, editor, Advances in Cryptology—Crypto ’92,
pages 292–304. Springer-Verlag, 1992. Lecture Notes in Computer
Science No. 740.

[343] Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press,
June 1995.

Index

NC1, see Nick’s Class
φ(·), 310
π(·), 310
eth roots assumption, 314
gcd(·, ·), 310
1963 virus, 175
3DES, see symmetric cipher, 3DES

activity monitor, 186
adaptive attacks

chosen-ciphertext, 53, 80, 328, 340
chosen-message, 329, 343
chosen-plaintext, 327

AES, see symmetric cipher, AES
algorithmic combinatorics, 53
all-or-nothing disclosure, 137
ambivalent root, 166, 248, 256
Anderson Report, 190, 202
anonymous remailer, 45, 90
ANSI C, 232
ARDA, 77
assassination politics, 92, 93, 97
asymmetric cryptography, 39
asymmetric cryptosystem, 326
AT&T, 34
authentication systems, 35

battleprogs, 17
bias matching, heuristic, 60
biased coin, 52, 57
Big-O notation, 309
Binomial Theorem, 110
black-box cryptosystem, 231
Blowfish, see symmetric cipher, Blow-

fish
Blum integer, 330
busy-waiting, 53

call graph, 193

call-back function, 34
Capstone, 230
card shuffling, 71
Carmichael lambda function, 310
cascading encryptions, 290
CERT, 21, 348
certificate of recoverability, 227
certificate revocation list, see CRL
certification authority, 225, 227, 259,

292, 337
CFB, see cipher feed-back
chaotic air-turbulence, 54
checksum, 18, 30, 46, 135, 330
Chernoff bounds, 232
Chinese Remainder Theorem, 111, 331,

336
chosen-ciphertext attack, 327, 331
chosen-message attack, 329
chosen-plaintext attack, 327, 331
cipher feed-back, 46
ciphertext-only attack, 326
circularly linked list, 21, 100, 133
Clipper chip, 230, 286
Columbia University, 36
complete break, 328
composite key generation

honest, 231
SETUP attack on, 246
weak attacks on, 232

Computational Composite Residuosity
assumption, 314, 315

conditional probability, 309
Confinement Problem, 214
congruence, 308
constant sum game, 150, 160
cookie-monster virus, 191
Core Wars, 295
correctness property, 120

387

388 Index

Coupon Collector’s Problem, 219
covert channel, 214
CRL, 200, 342, 348
cross-certified, 152, 153
cryptanalysis

definition of, 321
differential, 287
linear, 287

cryptanalyst, 321
cryptanalyzing adversary, 242
cryptocomputing, 114, 136, 142
cryptocounter, 103, 104, 111

based on additive group ZZ2, 111
ElGamal based, 105
Paillier based, 108, 111

cryptographer, 321
cryptography

definition of, 321
cryptolib, 34
cryptologist, 321
cryptology

definition of, 321
cryptotrojan, 77, 191, 238, 271, 281
cryptovirus, 43, 44, 48, 51, 78, 115, 191
cyberpunk, 6, 25

DARPA, 77, 144
database algorithm, 117, 119, 123, 127
database replication, 116
DCR, 108, 315, 348
DDH, 112, 318, 319, 337, 348
decision problem, 171
Den Zuk virus, 103
deniable encryption, 139
deniable password-snatching, 97, 132
denial-of-service, 40, 313, 348
DES, see symmetric cipher, DES
differential power analysis, 261, 288
Diffie-Hellman assumption, 318, 324
Diffie-Hellman key exchange, 213, 265,

266, 268, 271, 274, 278, 288,
289, 313, 318, 324, 337, 338

Diffie-Hellman triple, 318
digital certificate, 199, 227, 233, 334,

337, 342
digital signature algorithm, 280, 334

DSA, 217, 218, 222, 283, 345

ElGamal, 216, 223, 342
Pointcheval-Stern, 282, 318
Rabin, 331
RSA, 334
Schnorr, 284, 344

Digital Signature Standard, 345
discrete logarithm, 106, 143, 217, 235,

265, 280, 318, 324, 337, 343
discrete logarithm assumption, 318
disk-locking program, 30
distinguishing adversary, 242, 249
double-spending, 91
DSA, see digital signature algorithm,

DSA

e-money, 91–94
EDE mode, 47, 48, 67
electronic voting, 96
ElGamal cryptosystem, see public key

cryptosystem, ElGamal
Elk Cloner virus, 297
elliptic curve cryptosystems, 252
entropy extractor, 46, 52, 55
entropy sources

CPU crystal, 34, 53
free-running oscillators, 62
hard disk air-turbulence, 54
keyboard presses, 53
mouse timings, 53
radioactive emissions, 53
system time, 56
thermal noise, 62

Euclidean algorithm, see greatest com-
mon divisor

Euler’s criterion, 217, 220, 311, 312, 315
Euler’s totient function, 310, 333
existential forgery, 55, 328, 331, 335,

343
extended Euclidean, 310, 314, 330, 333,

338
Extended Riemann Hypothesis, 119
Extended Tiny Encryption Algorithm,

see symmetric cipher, XTEA

factoring assumption, 313, 330
fair cryptosystem, 227
fault-tolerance, 167
Feistel cipher, 36

Index 389

Fermat’s Little Theorem
generalized form, 333

Fiat-Shamir heuristic, 125
FIPS, 66
FIPS-140, 76, 237, 291
FNP, 313
forward secrecy, 235–237, 265, 269, 349
friend-or-foe, 35

game theory, 149, 150
gcd, see greatest common divisor
generator, 311, 318, 324

finding an, 311
generic decryption, 180, 305
GNUmp, 34, 46
gnutella protocol, 94
greatest common divisor, 231, 234, 256,

282, 310, 314, 330–332, 342,
343

definition of, 308

halting problem, 27, 171, 350
Harmonic numbers, 72
hash function, 52, 54, 267, 319, 330, 340

collision intractability, 55, 340
extracting entropy with, 55
MD4, 55
MD5, 342
non-invertability, 55
SHA-1, 55, 122

hexadecimal, 350
homomorphism

additive, 111, 142
multiplicative, 142

honest-but-curious model, 104
honeypot, 10
hooks, see operating system, hooks
Huffman compression, 197
hybrid encryption, 45, 278

identity-based cryptosystem, 228
inoculation, 199
integrity checks, 17, 197
Intel hardware RNG, 62
inter-mix detour, 83
Internet Worm, 173, 297
interrupt addresses, 20
intractable, 313, 350

Israeli virus, 173
ITAR, 33, 350

Jacobi symbol, 39, 78, 213, 312, 335,
336

Karatsuba multiplication, 34, 192, 311
Kerchhoff’s principle, 323
key escrow, 226
key-only attack, 329
kleptogram, 266
kleptogram, discrete-log, 265, 268, 275–

277, 280–283
kleptographic attack, 80, 205, 219, 230,

277
known-message attack, 329
known-plaintext attack, 36, 326

Lagrange interpolation, 121
Las Vegas, 58, 76, 179, 246, 331, 351
Legendre symbol, 311, 315
logic bomb, 202, 351
Lucent Technologies, 54
lunch time attacks, 194

malleable ciphertext, 101, 104, 105, 351
MARS, see symmetric cipher, MARS
MD4, see hash function, MD4
memory-resident, 20
message indistinguishability, 79, 335
Millionaire problem, 144
minimal change algorithm, 73
minimal universal exponent, 311
MITM, 155, 159, 324, 337, 351, 353
mix network, 53, 80, 91, 94–96, 132,

133, 153, 158, 168, 212, 230
asynchronous, 81
sandwich attack, 83
synchronous, 81

mobile agent, 107, 122, 132, 142, 146
Monkey virus, 176
Monte Carlo, 67, 76, 239, 246, 331, 351
Montgomery reduction, 34, 311
MP3, 352
multipartite, 17
multiprecision library, 34, 75, 349, 352

Napster, 95

390 Index

Neumann’s unbiasing algorithm, 57, 71,
292

iterated, 59
Newton channel, see subliminal chan-

nel, Newton channel
Nick’s Class, 145
Night City, 6
NIZK proof, 125, 227
non-zero sum game, 147, 149, 150, 160,

168
nonce, 138, 267, 276, 278, 352
NP, 313
Nullsoft, 94
number field sieve, 314

OAEP, 79, 80, 98, 135, 158, 352
One-half virus, 38
One-time pad, 36, 64, 159, 221
one-way function, 9, 18, 265, 275, 287,

289, 335, 344, 345
onion routing, 81, 352
OpenSSL, 52, 70, 75
operating system

hooks, 13
interrupt handler patch, 20
routines, 20

Paillier, see public key cryptosystem,
Paillier

Pakistani Brain virus, 190
PAP, see pretty-awful-privacy
password-snatching, 2, 10, 31, 97, 115,

126, 135, 141, 203
patch, see operating system, interrupt

handler patch
PBRM, see probabilistic bias removal

method
PEAT toolkit, 183
perfect crime, 93, 94, 97
permutation generation, 71
personal information exchange, 233
PGP, see pretty-good-privacy
Phi-Hiding assumption, 117, 316
Phi-Sampling assumption, 119, 317
PIR, see private information retrieval
PKCS #12, see personal information

exchange

PKI, 95, 152, 153, 158, 199, 225, 226,
288, 291, 336, 338

plaintext-aware, 341
Pohlig-Hellman, 224, 266, 318
Pollard’s Rho, 224
polymorphic virus, 17, 36, 46, 175, 176,

184, 191, 298, 305
polynomially indistinguishable, 68, 139,

244, 250, 252, 271
Power Residue Hypothesis, 145
pretty-awful-privacy, 238, 245
pretty-good-privacy, 238
primality test, 191, 312, 332

deterministic, 118, 123, 232, 332
Prime Number Theorem, 123, 232, 310
Prisoner’s Dilemma, 149, 150
Prisoner’s Problem, 215, 284
privacy property, 120
private information retrieval, 113, 115,

120, 131, 136, 141
computationally secure, 116
Phi-Hiding scheme, 117, 315, 317
Trojan, 132
unconditionally secure, 116

PRNG, see pseudorandom generator
probabilistic bias removal method, 239,

246
proof of work, 165
pseudonym, 96, 162
pseudorandom function, 234–236
pseudorandom generator, 52, 66–68, 76,

138, 236, 238, 275
ANSI X9.17, 66, 78
BBS, 64, 67, 236

pseudosquare, 136, 312, 336, 348
public key cryptosystem, 325

Cramer-Shoup, 279, 318, 340
ElGamal, 134, 277, 338
Goldwasser-Micali, 229, 315, 335
Paillier, 108, 312, 314, 315
Rabin, 213, 229, 246, 248, 249, 313,

330
RSA, 39, 78, 79, 136, 143, 224, 229,

244, 256, 312, 314, 332

quadratic residuosity assumption, 112,
136, 315, 336

Index 391

quadratic sieve, 313
quasi-random, 52
query generator, 117, 118, 123, 126
questionable encryption, 102, 134, 138

Rabin-Miller algorithm, 52, 332
race condition, 181
random function, 125, 166, 267, 320
random oracle, 124, 221, 245, 255, 272,

273, 275, 283, 284, 319
assumption, 122, 282
model, 79, 230, 249, 266, 270, 274,

343
random self-reducible, 145
ranking algorithm, 73
reduction argument, 67, 249, 252, 270,

272, 274, 314, 318, 338
reference monitor, 190
relative primality, 216, 250, 333, 353
repeated XOR encryption, 36
residues, 319

higher order, 128, 145, 315
quadratic, 67, 248, 311, 315, 319,

331, 336, 340
response retriever, 117, 120, 124, 127
revocable anonymity, 93
Rivest-Shamir-Adleman cryptosystem,

see public key cryptosystem,
RSA

rootkit, 203, 354
rotational delay, 54
rotational latency, 54
RSA assumption, 314

safe prime, 195, 340
salami slicing attack, 202
Salt II treaty, 212, 213, 218
Santha-Vazirani algorithm, 62, 64
scanner, 174, 177
secret sharing, 159
secretly embedded trapdoor with uni-

versal protection, see SETUP
secure multiparty computation, 144
SecurID, 100
security by obscurity, 98, 215, 291
security kernel, 190
security parameter, 118, 122, 252
selective forgery, 328

semantic security, 49, 79, 101, 315, 336,
340

semaphore, 181
SETUP, 191, 229, 243, 249, 256–258,

261, 263, 265, 268, 276, 283,
288

definition of, 243
SHA-1, see hash function, SHA-1
shadow public key, 225
side channel analysis, 80, 256, 261
Skipjack, see symmetric cipher, Skip-

jack
smart card, 219
smooth integer, 144, 223, 286, 318, 354
snake oil, 290, 354
Solovay-Strassen algorithm, 312
sprawl, 6
square-and-multiply, 311
stealth virus, 175, 190
steganography, 96, 101, 133, 215
subliminal channel, 101, 133, 211, 214,

216, 241, 243, 259, 262, 281,
287

card marking using residues, 222
ElGamal signature, 216
history of, 212
impact on research, 226
Legendre channel, 217, 284
Newton channel, 223, 286
Oracle channel, 220, 221
product of primes, 224, 262

sum-of-products method, 130
symmetric cipher, 192, 323

3DES, 30
AES, 67, 322
Black-Rugose, 287
Blowfish, 287, 323
DES, 66
MARS, 287
Monkey, 287
RC4, 323
Skipjack, 286
TEA, 35, 46
Twofish, 323
XTEA, 36

SysBeep virus, 303

392 Index

tamper-resistance, 219, 230, 276
TEA, see symmetric cipher, TEA
terminate-and-stay resident, 7, 203, 355
threat model, 80, 326
tick, 34
timing attacks, 261, 288
Tiny Encryption Algorithm, see sym-

metric cipher, TEA
tractable, 112, 248, 317, 354
Tremor virus, 176
Trotter-Johnson algorithm, 73, 179
truerand, 34, 46, 53
tunneling, 188
Twofish, see symmetric cipher, Twofish

unbiasing, 52, 208, 292
uniform sampling, 52, 68
universal gate, 143
universal re-encryption, 84, 153
unranking algorithm, 73, 179

vector addition chains, 34, 311
verifiable encryption, 227
Vernam cipher, 36, 64, 155, 221

worm, 52, 69, 71, 85, 142, 147, 173,
296–298

XEROX PARC, 85
XTEA, see symmetric cipher, XTEA

zero-sum game, 150, 160
ZKIP, 35, 100, 125

	Malicious Cryptography : Exposing Cryptovirology
	Cover

	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Through Hacker's Eyes
	2 Cryptovirology
	3 Tools for Security and Insecurity
	3.1 Sources of Entropy
	3.2 Entropy Extraction via Hashing
	3.3 Unbiasing a Biased Coin
	3.3.1 Von Neumann's Coin Flipping Algorithm
	3.3.2 Iterating Neumann's Algorithm
	3.3.3 Heuristic Bias Matching

	3.4 Combining Weak Sources of Entropy
	3.5 Pseudorandom Number Generators
	3.5.1 Heuristic Pseudorandom Number Generation
	3.5.2 PRNGs Based on Reduction Arguments

	3.6 Uniform Sampling
	3.7 Random Permutation Generation
	3.7.1 Shuffling Cards by Repeated Sampling
	3.7.2 Shuffling Cards Using Trotter-Johnson

	3.8 Sound Approach to Random Number Generation and Use
	3.9 RNGs Are the Beating Heart of System Security
	3.10 Cryptovirology Benefits from General Advances
	3.10.1 Strong Crypto Yields Strong Cryptoviruses
	3.10.2 Mix Networks and Cryptovirus Extortion

	3.11 Anonymizing Program Propagation

	4 The Two Faces of Anonymity
	4.1 Anonymity in a Digital Age
	4.1.1 From Free Elections to the Unabomber
	4.1.2 Electronic Money and Anonymous Payments
	4.1.3 Anonymous Assassination Lotteries
	4.1.4 Kidnapping and Perfect Crimes
	4.1.5 Conducting Criminal Operations with Mixes

	4.2 Deniable Password Snatching
	4.2.1 Password Snatching and Security by Obscurity
	4.2.2 Solving the Problem Using Cryptovirology
	4.2.3 Zero-Knowledge Proofs to the Rescue
	4.2.4 Improving the Attack Using ElGamal

	5 Cryptocounters
	5.1 Overview of Cryptocounters
	5.2 Implementing Cryptocounters
	5.2.1 A Simple Counter Based on ElGamal
	5.2.2 Drawback to the ElGamal Solution
	5.2.3 Cryptocounter Based on Squaring
	5.2.4 The Paillier Encryption Algorithm
	5.2.5 A Simple Counter Based on Paillier

	5.3 Other Approaches to Cryptocounters

	6 Computationally Secure Information Stealing
	6.1 Using Viruses to Steal Information
	6.2 Private Information Retrieval
	6.2.1 PIR Based on the Phi-Hiding Problem
	6.2.2 Security of the Phi-Hiding PIR
	6.2.3 Application of the Phi-Hiding Technique

	6.3 A Variant of the Phi-Hiding Scheme
	6.4 Tagged Private Information Retrieval
	6.5 Secure Information Stealing Malware
	6.6 Deniable Password Snatching Based on Phi-Hiding
	6.6.1 Improved Password-Snatching Algorithm
	6.6.2 Questionable Encryptions
	6.6.3 Deniable Encryptions

	6.7 Malware Loaders
	6.8 Cryptographic Computing

	7 Non-Zero Sum Games and Survivable Malware
	7.1 Survivable Malware
	7.2 Elements of Game Theory
	7.3 Attacking a Brokerage Firm
	7.3.1 Assumptions for the Attack
	7.3.2 The Distributed Cryptoviral Attack
	7.3.3 Security of the Attack
	7.3.4 Utility of the Attack

	7.4 Other Two-Player Game Attacks
	7.4.1 Key Search via Facehuggers
	7.4.2 Catalyzing Conflict Among Hosts

	7.5 Future Possibilities

	8 Coping with Malicious Software
	8.1 Undecidability of Virus Detection
	8.2 Virus Identification and Obfuscation
	8.2.1 Virus String Matching
	8.2.2 Polymorphic Viruses

	8.3 Heuristic Virus Detection
	8.3.1 Detecting Code Abnormalities
	8.3.2 Detecting Abnormal Program Behavior
	8.3.3 Detecting Cryptographic Code

	8.4 Change Detection
	8.4.1 Integrity Self-Checks
	8.4.2 Program Inoculation
	8.4.3 Kernel Based Signature Verification

	9 The Nature of Trojan Horses
	9.1 Text Editor Trojan Horse
	9.2 Salami Slicing Attacks
	9.3 Thompson's Password Snatcher
	9.4 The Subtle Nature of Trojan Horses
	9.4.1 Bugs May In Fact Be Trojans
	9.4.2 RNG Biasing Trojan Horse

	10 Subliminal Channels
	10.1 Brief History of Subliminal Channels
	10.2 The Difference Between a Subliminal and a Covert Channel
	10.3 The Prisoner's Problem of Gustavus Simmons
	10.4 Subliminal Channels New and Old
	10.4.1 The Legendre Channel of Gus Simmons
	10.4.2 The Oracle Channel
	10.4.3 Subliminal Card Marking
	10.4.4 The Newton Channel
	10.4.5 Subliminal Channel in Composites

	10.5 The Impact of Subliminal Channels on Key Escrow

	11 SETUP Attack on Factoring Based Key Generation
	11.1 Honest Composite Key Generation
	11.2 Weak Backdoor Attacks on Composite Key Generation
	11.2.1 Using a Fixed Prime
	11.2.2 Using a Pseudorandom Function
	11.2.3 Using a Pseudorandom Generator

	11.3 Probabilistic Bias Removal Method
	11.4 Secretly Embedded Trapdoors
	11.5 Key Generation SETUP Attack
	11.6 Security of the SETUP Attack
	11.6.1 Indistinguishability of Outputs
	11.6.2 Confidentiality of Outputs

	11.7 Detecting the Attack in Code Reviews
	11.8 Countering the SETUP Attack
	11.9 Thinking Outside the Box
	11.10 The Isaac Newton Institute Lecture

	12 SETUP Attacks on Discrete-Log Cryptosystems
	12.1 The Discrete-Log SETUP Primitive
	12.2 Diffie-Hellman SETUP Attack
	12.3 Security of the Diffie-Hellman SETUP Attack
	12.3.1 Indistinguishability of Outputs
	12.3.2 Confidentiality of Outputs

	12.4 Intuition Behind the Attack
	12.5 Kleptogram Attack Methodology
	12.6 PKCS SETUP Attacks
	12.6.1 ElGamal PKCS SETUP Attack
	12.6.2 Cramer-Shoup PKCS SETUP Attack

	12.7 SETUP Attacks on Digital Signature Algorithms
	12.7.1 SETUP in the ElGamal Signature Algorithm
	12.7.2 SETUP in the Pointcheval-Stern Algorithm
	12.7.3 SETUP in DSA
	12.7.4 SETUP in the Schnorr Signature Algorithm

	12.8 Rogue Use of DSA for Encryption
	12.9 Other Work in Kleptography
	12.10 Should You Trust Your Smart Card?

	Appendix A: Computer Virus Basics
	A.1 Origins of Malicious Software
	A.2 Trojans, Viruses, and Worms: What Is the Difference?
	A.3 A Simple DOS COM Infector
	A.4 Viruses Don't Have to Gain Control Before the Host

	Appendix B: Notation and Other Background Information
	B.1 Notation Used Throughout the Book
	B.2 Basic Facts from Number Theory and Algorithmics
	B.3 Intractability: Malware's Biggest Ally
	B.3.1 The Factoring Problem
	B.3.2 The eth Roots Problem
	B.3.3 The Composite Residuosity Problem
	B.3.4 The Decision Composite Residuosity Problem
	B.3.5 The Quadratic Residuosity Problem
	B.3.6 The Phi-Hiding Problem
	B.3.7 The Phi-Sampling Problem
	B.3.8 The Discrete Logarithm Problem
	B.3.9 The Computational Diffie-Hellman Problem
	B.3.10 The Decision Diffie-Hellman Problem

	B.4 Random Oracles and Functions

	Appendix C: Public Key Cryptography in a Nutshell
	C.1 Overview of Cryptography
	C.1.1 Classical Cryptography
	C.1.2 The Diffie-Hellman Key Exchange
	C.1.3 Public Key Cryptography
	C.1.4 Attacks on Cryptosystems
	C.1.5 The Rabin Encryption Algorithm
	C.1.6 The Rabin Signature Algorithm
	C.1.7 The RSA Encryption Algorithm
	C.1.8 The RSA Signature Algorithm
	C.1.9 The Goldwasser-Micali Algorithm
	C.1.10 Public Key Infrastructures

	C.2 Discrete-Log Based Cryptosystems
	C.2.1 The ElGamal Encryption Algorithm
	C.2.2 Security of ElGamal
	C.2.3 The Cramer-Shoup Encryption Algorithm
	C.2.4 The ElGamal Signature Algorithm
	C.2.5 The Pointcheval-Stern Signature Algorithm
	C.2.6 The Schnorr Signature Algorithm
	C.2.7 The Digital Signature Algorithm (DSA)

	Glossary
	References
	Index
	Team DDU

