

by Barry Burd

Eclipse
FOR

DUMmIES
‰

01_574701 ffirs.qxd 11/29/04 7:30 PM Page i

Eclipse For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail:
brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDER-
STANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004116454

ISBN: 0-7645-7470-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RW/RS/QU/IN

01_574701 ffirs.qxd 11/29/04 7:30 PM Page ii

About the Author
Dr. Barry Burd received an M.S. degree in Computer Science at Rutgers
University and a Ph.D. in Mathematics at the University of Illinois. As a teach-
ing assistant in Champaign-Urbana, Illinois, he was elected five times to the
university-wide List of Teachers Ranked as Excellent by their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics
and Computer Science at Drew University in Madison, New Jersey. When he’s
not lecturing at Drew University, Dr. Burd leads training courses for profes-
sional programmers in business and industry. He has lectured at conferences
in the United States, Europe, Australia, and Asia. He is the author of several
articles and books, including JSP: JavaServer Pages, published by Wiley
Publishing, Inc.

Dr. Burd lives in Madison, New Jersey, with his wife and two children. In his
spare time, he enjoys being a workaholic.

01_574701 ffirs.qxd 11/29/04 7:30 PM Page iii

01_574701 ffirs.qxd 11/29/04 7:30 PM Page iv

Dedication

Author’s Acknowledgments

For
A

br
am

and Katie, Benjamin and Jennie,Sam
andRuth,Harriet,Sam,andJe

nn
ie

,

01_574701 ffirs.qxd 11/29/04 7:30 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Paul Levesque

Acquisitions Editor: Katie Feltman

Copy Editor: Rebecca Senninger

Technical Editor: John Purdum

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Maridee Ennis

Layout and Graphics: Andrea Dahl,
Lauren Goddard, Joyce Haughey,
Barry Offringa, Lynsey Osborn,
Jacque Roth, Heather Ryan, Julie Trippetti,
Mary Gillot Virgin

Proofreaders: Leeann Harney, Joe Niesen,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_574701 ffirs.qxd 11/29/04 7:30 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: The Eclipse Landscape ..7
Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader ..9
Chapter 2: Installing Eclipse..19
Chapter 3: Using the Eclipse Workbench ..41
Chapter 4: Changing Your Perspective..65
Chapter 5: Some Useful Perspectives and Views ...83

Part II: Using the Eclipse Environment103
Chapter 6: Using the Java Editor ..105
Chapter 7: Getting Eclipse to Write Your Code...119
Chapter 8: Straight from the Source’s Mouse ...137
Chapter 9: More Eclipse “Sourcery” ..155
Chapter 10: Refactoring: A Burd’s Eye View ...173
Chapter 11: Refactor This!...189
Chapter 12: Looking for Things in All the Right Places ...225

Part III: Doing More with Eclipse249
Chapter 13: Working with Projects...251
Chapter 14: Running Code...281
Chapter 15: Getting Help ...299
Chapter 16: Squashing Bugs..315

Part IV: The Part of Tens ...323
Chapter 17: Ten Frequently Asked Questions (And Their Answers).......................325
Chapter 18: Ten Great Plug-Ins for Eclipse..331

Index ...335

02_574701 ftoc.qxd 11/29/04 7:32 PM Page vii

02_574701 ftoc.qxd 11/29/04 7:32 PM Page viii

Table of Contents
Introduction...1

Conventions Used in This Book ..2
What You Don’t Have to Read..2
Foolish Assumptions...3
How This Book Is Organized..4

Part I: The Eclipse Landscape..4
Part II: Using the Eclipse Environment ...4
Part III: Doing More with Eclipse ...5
Part IV: The Part of Tens...5
Additional Web Sources! ...5

Icons Used in This Book ...5
Where to Go from Here...6

Part I: The Eclipse Landscape..7

Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader 9
An Integrated Development Environment..10
A Little Bit of History (Not Too Much) ...10
The Grand Scheme of Things in Eclipse...11

The Eclipse project..11
The Eclipse Tools project ...13
The Eclipse Technology project ..13

What’s the Best Way to Create a Window?...14
Here comes Swing..15
The Standard Widget Toolkit ...15

Relax and Enjoy the Ride..17

Chapter 2: Installing Eclipse .19
Setting Up Eclipse on Your Computer ..19

Having enough hardware..20
Getting and installing the Java Runtime Environment......................20
Downloading Eclipse ...24
Installing Eclipse..25

Running Eclipse ...26
Turning the ignition key..26
Revving up before you leave the driveway ..29

02_574701 ftoc.qxd 11/29/04 7:32 PM Page ix

Hello World, and Goodbye Moon ..31
Getting started ...31
Creating a new Java project ...32
Creating a package ..34
Creating and running a Java class ...36
Oops! ...39

Chapter 3: Using the Eclipse Workbench .41
What’s All That Stuff on the Eclipse Workbench?41

Views and editors ..44
What’s inside a view or an editor? ..47
Understanding the big picture ...49
Action sets..50
Juggling among perspectives ...50

Working with Views...53
Using a working set ...53
Using filters ..59
Linking views with the editors...61

Chapter 4: Changing Your Perspective .65
Changing the Way a Perspective Looks..65

Adding views ..65
Repositioning views and editors ...68
Detaching a view..71
Fast views ...72

Changing the Way a Perspective Behaves..76
The Shortcuts page ...76
The Commands page...79

Saving a Modified Perspective...80

Chapter 5: Some Useful Perspectives and Views83
Some Useful Perspectives ..84

Resource perspective ...84
Java perspective ..84
Java Browsing perspective...85
Java Type Hierarchy perspective ..86
Debug perspective...86

Some Useful Views ..86
Navigator view ...86
Package Explorer view ..86
Outline view ...87
Console view ..89
Hierarchy view ...89
Call Hierarchy view ...93

Eclipse For Dummies x

02_574701 ftoc.qxd 11/29/04 7:32 PM Page x

Declaration view ..93
Javadoc view ..96
Problems view..97
Tasks view ..97
Projects, Packages, Types, and Members views100
Search view...101

Part II: Using the Eclipse Environment.........................103

Chapter 6: Using the Java Editor .105
Navigating the Preferences Dialog ..106
Using Keyboard Shortcuts ...106
Using Structured Selections...107
Folding Your Source Code ..111
Letting Eclipse Do the Typing..112

Configuring the smart typing options...112
Using smart typing ..113

Getting Eclipse to Mark Occurrences ...115
Marking and unmarking..116
Some marking magic ...116

Chapter 7: Getting Eclipse to Write Your Code 119
Code Assist...120

Using code assist ...120
Filtering code assist suggestions...124
Auto activation...125

Templates ...126
Using templates ...127
Creating your own template...130

Chapter 8: Straight from the Source’s Mouse .137
Coping with Comments ..137

Slash that line...138
Block those lines..138

Formatting Code..139
Eclipse’s Format menu actions ..140
Configuring Eclipse’s formatting options ...143
Fixing indentation..147
Shifting lines of code ...148

Sorting Members ...150
Dealing with Imports...151

The Organize Imports action ...151
The Add Import action..153

xiTable of Contents

02_574701 ftoc.qxd 11/29/04 7:32 PM Page xi

Chapter 9: More Eclipse “Sourcery” .155
Creating Constructors and Methods ..155

Override and implement methods ..155
Better getters and setters...156
Don’t wait. Delegate!..158
Creating constructors ...160

Creating try/catch Blocks...162
“I18n”...164

Preparing your code for internationalization165
Adding other languages to your code...169

Chapter 10: Refactoring: A Burd’s Eye View .173
Eclipse’s Refactoring Tools ..174
The Three Ps..175

Parameter pages ..175
The preview page ..179
The problem page..182

More Gossip about Refactoring...184
Selecting something ..184
Why is that menu item gray?..186
Calling Eclipse’s bluff ..187

Chapter 11: Refactor This! .189
What Am I Doing Here in Chapter 11?...190
Renaming Things...190
Moving Things ...192

Hiring a mover ...193
Dissecting a parameter page..196
An immovable object meets irresistible source197
Using views to move things..198

Changing a Method’s Signature ...199
Kicking Inner Classes Out...202
Pulling Up; Pushing Down ..206
Extracting an Interface..206

Eclipse dodges bullets ..209
Promoting types ..210

Moving Code In and Out of Methods ..212
Eclipse practices conflict resolution...215
Eclipse becomes stubborn (for good reasons)216

Creating New Variables...218
But I thought I selected an expression!...220
Giving higher status to your variables..220

The Facts about Factories..223

Eclipse For Dummies xii

02_574701 ftoc.qxd 11/29/04 7:32 PM Page xii

Chapter 12: Looking for Things in All the Right Places 225
Finding versus Searching ...225
Finding Text..227

Using the Find/Replace dialog ...227
Using the Selected Lines option ..230

Searching ..231
File Search ..232
Java Search...235
Using the Exception Occurrences action ...247

Part III: Doing More with Eclipse.................................249

Chapter 13: Working with Projects .251
The Typical Java Program Directory Structure...251
Working with Source Folders ...252

Creating a separate source folder ...253
Oops! I forgot to create a separate source folder.256
Working with even bigger projects..258
Renaming your new output folder...261
Working with colossal applications ..263
Adding extra stuff to a project’s build path266

Importing Code..269
Using drag and drop..269
Dragging and dropping selected directories....................................271
Using the Import Wizard...273

Adding Javadoc Pages to Your Project ...276

Chapter 14: Running Code .281
Creating a Run Configuration...281
Using Program Arguments ...284

Running with program arguments...285
Is there such a thing as a rerun configuration?287
Piling on those run configurations ..288

Using Properties ..288
Using Other Virtual Machine Arguments ...290
Using Environment Variables...294

Chapter 15: Getting Help .299
Searching for Help...299

Things you can use in a search expression......................................301
Using a help working set...302
Some useful Search view tricks ...304

xiiiTable of Contents

02_574701 ftoc.qxd 11/29/04 7:32 PM Page xiii

Using the Help View ..305
A ten-cent tour of Eclipse’s Help view ..306
Some useful Help view tricks ...309

Need More Help? ...312

Chapter 16: Squashing Bugs .315
A Simple Debugging Session ..316
The Debug View’s Buttons ...319
Experimenting with Your Code..320

Part IV: The Part of Tens...323

Chapter 17: Ten Frequently Asked Questions
(And Their Answers) .325

I Can’t My New Project..325
A New File Doesn’t Appear ...326
Failure to Format ...326
Renaming Is Broken...327
Searching Is So Complicated..327
Large Isn’t the Same as Maximized ...327
Illegal Imports ..328
Finding a Bookmark...328
The Case of the Missing Javadocs...329
Get Right to the Source...329

Chapter 18: Ten Great Plug-Ins for Eclipse .331
Checkstyle ..332
Cheetah...332
Eclipse Instant Messenger (Eimp)...333
Gild (Groupware enabled Integrated Learning

and Development) ...333
Jigloo ...333
Lomboz ...333
Open Shell...334
PMD ...334
VE (Visual Editor) ..334
XMLBuddy ..334

Index..335

Eclipse For Dummies xiv

02_574701 ftoc.qxd 11/29/04 7:32 PM Page xiv

Introduction

“There’s no such thing as a free lunch.”

That’s what New York City Mayor Fiorello LaGuardia said back in 1934. Not
many people understood the meaning or the impact of Mayor LaGuardia’s
statement, because he said it in Latin. (“E finita la cuccagna,” said the mayor.)
But today, most people agree with the spirit of LaGuardia’s proclamation.

Well, they’re all wrong. I have two stunning examples to prove that there is
such a thing as a free lunch.

� I’m the faculty representative to the Dining Service Committee at Drew
University. During the regular academic year, the committee meets once
every two weeks. We meet in the university commons to evaluate and
discuss the dining facilities. As a courtesy to all committee members,
lunch is free.

� Open source software doesn’t cost a dime. You can download it, use it,
modify it, and reuse it. If you have questions about the software, you can
post your questions for free in online forums. Usually someone answers
your question quickly (and for free).

Many people shy away from open source software. They think open source
software is unreliable. They believe that software created by a community
of volunteers is less robust than software created by organized business.
Again, they’re wrong. The open source Linux project shows that a commu-
nity of volunteers can rival the effectiveness of a commercial software
vendor. And some of my favorite Windows utilities are free for download
on the Web.*

This harangue about open source software brings me to one of my favorite
subjects: namely, Eclipse. When you download Eclipse, you pay nothing,
nada, zip, bupkis, goose egg, diddly-squat. And what you get is a robust,
powerful, extensible Java development environment.

*The free CatFish program from Equi4 software does a better job cataloging
CD-ROMs than any commercial software that I’ve tried. Mike Lin’s Startup
Control Panel and MCL utilities beat the competition without costing any money.
You can find CatFish at www.equi4.com, and Mike Lin’s programs live at
www.mlin.net.

03_574701 intro.qxd 11/29/04 7:31 PM Page 1

In a recent survey conducted by QA Systems, Eclipse has a 45 percent share
in the Java IDE market.* That’s nearly three times the market share of the
highest-ranking competitor — Borland JBuilder. In June 2003, the editors
of the Java Developer’s Journal gave two Editors’ Choice awards to Eclipse.
As one editor wrote, “After being anti-IDE for so long I’ve finally caved in. It
(Eclipse) has nice CVS utils, project frameworks, code refactoring and ‘sensi-
ble’ code generation (especially for beans). Add industry backing and a very
fired up user base and you have one winning product.”**

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Eclipse
For Dummies is no exception. What follows is a brief explanation of the type-
faces used in this book.

� New terms are set in italics.

� If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject
in the text field.”

� You also see this computerese font. I use computerese for Java code,
filenames, Web page addresses (URLs), on-screen messages, and other
such things. Also, if something you need to type is really long, it appears
in computerese font on its own line (or lines).

� You need to change certain things when you type them on your own
computer keyboard. For instance, I may ask you to type

public class Anyname

which means that you type public class and then some name that you
make up on your own. Words that you need to replace with your own
words are set in italicized computerese.

What You Don’t Have to Read
Eclipse For Dummies is a reference manual, not a tutorial guide. You can read
this book from the middle forward, from the middle backward, from the
inside out, upside down, or any way you want to read it.

2 Eclipse For Dummies

* For more information, visit www.qa-systems.com/products/qstudio
forjava/ide_marketshare.html.

** For details, visit www.eclipse.org/org/press-release/
jun92003jdjadv.html.

03_574701 intro.qxd 11/29/04 7:31 PM Page 2

Naturally, some parts of the book use terms that I describe in other parts of
the book. But I don’t throw around terminology unless I absolutely must. And
at many points in the book I include Cross Reference icons. A Cross Reference
icon reminds you that the confusion you may feel is normal. Refer to such-and-
such chapter to rid yourself of that confused feeling.

The sidebars and Technical Stuff icons are extra material — stuff that you can
skip without getting into any trouble at all. So if you want to ignore a sidebar
or a Technical Stuff icon, please do. In fact, if you want to skip anything at all,
feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
incorrect . . . well, buy the book anyway.

� I assume that you have access to a computer. You need a 330 MHz com-
puter with 256MB RAM and 300MB of free hard drive space. If you have
a faster computer with more RAM or more free hard drive space, then
you’re in very good shape. The computer doesn’t have to run Windows.
It can run Windows, UNIX, Linux, or Mac OS X 10.2 or higher.

� I assume that you can navigate through your computer’s common
menus and dialogs. You don’t have to be a Windows, UNIX, or Macintosh
power user, but you should be able to start a program, find a file, put a
file into a certain directory . . . that sort of thing. Most of the time, when
you practice the stuff in this book, you’re typing code on your keyboard,
not pointing and clicking your mouse.

On those rare occasions when you need to drag and drop, cut and
paste, or plug and play, I guide you carefully through the steps. But
your computer may be configured in any of several billion ways, and my
instructions may not quite fit your special situation. So, when you reach
one of these platform-specific tasks, try following the steps in this book.
If the steps don’t quite fit, consult a book with instructions tailored to
your system.

� I assume that you can write Java programs, or that you’re learning
Java from some other source while you read Eclipse For Dummies.
In Chapter 1, I make a big fuss about Eclipse’s use with many different
programming languages. “Eclipse is . . . a Java development environ-
ment, a C++ development environment, or even a COBOL development
environment.”

But from Chapter 2 on, I say “Java this,” and “Java that.” Heck, the begin-
ning of Chapter 2 tells you to download the Java Runtime Environment.
Well, what do you expect? I wrote Java 2 For Dummies. Of course I’m par-
tial to Java.

3Introduction

03_574701 intro.qxd 11/29/04 7:31 PM Page 3

In fact, Eclipse as it’s currently implemented is very biased toward
Java. So most of this book’s examples refer to Java programs of one kind
or another. Besides, if you don’t know much about Java, then many of
Eclipse’s menu items (items such as Add Javadoc Comment and Convert
Local Variable to Field) won’t make much sense to you.

As you read this book, you may not know Java from the get-go. You may
be using Eclipse For Dummies as a supplement while you learn Java pro-
gramming. That’s just fine. Pick and choose what you read and what you
don’t read.

If a section in this book uses unfamiliar Java terminology, then skip that
section. And if you can’t skip a section, then postpone reading the section
until you’ve slurped a little more Java. And . . . if you can’t postpone your
reading, then try reading the Eclipse section without dwelling on the sec-
tion’s example. You have plenty of alternatives. One way or another, you
can get what you need from this book.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped finally into four parts.
(When you write a book, you get to know your book’s structure pretty well.
After months of writing, you find yourself dreaming in sections and chapters
when you go to bed at night.)

Part I: The Eclipse Landscape
To a novice, the look and feel of Eclipse can be intimidating. The big Eclipse
window contains many smaller windows, and some of the smaller windows
have dozens of menus and buttons. When you first see all this, you may expe-
rience “Eclipse shock.”

Part I helps you overcome Eclipse shock. This part guides you through each
piece of Eclipse’s user interface, and explains how each piece works.

Part II: Using the Eclipse Environment
Part II shows you what to do with Eclipse’s vast system of menus. Edit Java
source files, use refactoring to improve your code, search for elements within

4 Eclipse For Dummies

03_574701 intro.qxd 11/29/04 7:31 PM Page 4

your Java projects. Everything you can think of doing with a Java program
lies somewhere within these menus. (In fact, everything that everyone ever
thought of doing with anything lies somewhere within these menus.)

Part III: Doing More with Eclipse
What more is there to do? Lots more. Part III describes ways to customize a
Java project and the run of a Java program. This part also tells you how to
find help on Eclipse’s murkier features.

Part IV: The Part of Tens
The Part of Tens is a little Eclipse candy store. In The Part of Tens, you can
find lots of useful tips.

Additional Web Sources!
One of my favorite things is writing code. But if your idea of a good time isn’t
writing code, I include every code listing in this book on a companion Web
site at www.dummies.com/go/eclipse_fd. Feel free to download any code
listings into Eclipse to follow along with my examples in this book or for any
of your own projects.

And be sure to visit my Web site, www.BurdBrain.com, for any updates to
Eclipse For Dummies and my additional ramblings about Eclipse.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence in my head. Most of the sentences I
mutter several times. When I have an extra thought, a side comment, some-
thing that doesn’t belong in the regular stream, I twist my head a little bit.
That way, whoever’s listening to me (usually nobody) knows that I’m off on a
momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way
of setting a side thought in a corner by itself. I do it with icons. When you see
a Tip icon or a Remember icon, you know that I’m taking a quick detour.

5Introduction

03_574701 intro.qxd 11/29/04 7:31 PM Page 5

Here’s a list of icons that I use in this book.

A tip is an extra piece of information — something helpful that the other
books may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think people are especially prone to make a mistake, I mark it
with a Warning icon.

Sometimes I want to hire a skywriting airplane crew. “Barry,” says the white
smoky cloud, “if you want to rename a Java element, start by selecting that
element in the Package Explorer. Please don’t forget to do this.” Because I
can’t afford skywriting, I have to settle for something more modest. I create a
Remember icon.

“If you don’t remember what such-and-such means, see blah-blah-blah,” or “For
more information, read blahbity-blah-blah.”

This icon calls attention to useful material that you can find online. (You
don’t have to wait long to see one of these icons. I use one at the end of this
introduction!)

Occasionally I run across a technical tidbit. The tidbit may help you under-
stand what the people behind the scenes (the people who developed Java)
were thinking. You don’t have to read it, but you may find it useful. You may
also find the tidbit helpful if you plan to read other (more geeky) books about
Eclipse.

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Eclipse. Think
of me (the author) as your guide, your host, your personal assistant. I do
everything I can to keep things interesting and, most importantly, help you
understand.

If you like what you read, send me a note. My e-mail address, which I created
just for comments and questions about this book, is Eclipse@BurdBrain.com.
And don’t forget you can get the latest Eclipse For Dummies information at
www.BurdBrain.com.

6 Eclipse For Dummies

03_574701 intro.qxd 11/29/04 7:31 PM Page 6

Part I
The Eclipse
Landscape

04_574701 pt01.qxd 11/29/04 7:31 PM Page 7

In this part . . .

I’ll be the first to admit it. When I started working with
Eclipse, I was confused. I saw an editor here, tabs and

panes everywhere, and dozens upon dozens of menu
options. Eclipse is more complicated than your run-of-
the-mill programming environment. So your first taste of
Eclipse can be intimidating.

But if you calm down and take things step by step, then
Eclipse’s options make sense. Eventually you become
comfortable to the point of using Eclipse on autopilot.

So this part of Eclipse For Dummies contains the “calm
down” chapters. This part describes Eclipse’s user inter-
face and tells you how to get the most out of Eclipse’s
grand user interface.

04_574701 pt01.qxd 11/29/04 7:31 PM Page 8

Chapter 1

Reader, Meet Eclipse; Eclipse,
Meet the Reader

In This Chapter
� How I learned to love Eclipse

� How the Eclipse project is organized

� How Eclipse puts widgets on your screen

The little hamlet of Somerset, New Jersey, is home to an official Sun
Microsystems sales office. Once a month, that office hosts a meeting

of the world-renowned Central Jersey Java Users’ Group.

At one month’s meeting, group members were discussing their favorite Java
development environments. “I prefer JBlipper,” said one of the members. “My
favorite is Javoorta Pro,” said another. Then one fellow (Faizan was his name)
turned to the group and said, “What about Eclipse? It’s pretty sweet.”

Of course, Faizan’s remark touched off an argument. Everyone in the group
is attached to his or her favorite Java development tools. “Does Javoorta do
refactoring?” “Does JBlipper support Enterprise JavaBeans?” “Does Eclipse
run on a Mac?” “How can you say that your development environment is
better?” “And what about good old UNIX vi?”

Then someone asked Faizan to demonstrate Eclipse at the next users’ group
meeting. Faizan agreed, so I ended the discussion by suggesting that we go
out for a beer. “I don’t drink,” said one of the group members. “I don’t either,”
I said. So we went out for pizza.

At the next meeting, Faizan demonstrated the Eclipse development environ-
ment. After Faizan’s presentation, peoples’ objections to Eclipse were more
muted. “Are you sure that Eclipse runs well under Linux?” “Can you really
extend Eclipse so easily?” “How does the open source community create
such good software for free?”

05_574701 ch01.qxd 11/29/04 7:32 PM Page 9

A few months later, I ran into a group member at a local Linux conference.
“Does Javoorta Pro run under Linux?” I asked. “I don’t use Javoorta Pro any-
more. I’ve switched to Eclipse,” he said. “That’s interesting,” I said. “Hey, let’s
go out for a beer.”

An Integrated Development Environment
An integrated development environment (IDE) is an all-in-one tool for writ-
ing, editing, compiling, and running computer programs. And Eclipse is an
excellent integrated development environment. In a sense, that’s all ye need
to know.

Of course, what you absolutely need to know and what’s good for you to
know may be two different things. You can learn all kinds of things about Java
and Eclipse, and still benefit by learning more. So with that in mind, I’ve put
together this chapter full of facts. I call it my “useful things to know about
Eclipse” (my “uttkaE”) chapter.

A Little Bit of History (Not Too Much)
In November 2001, IBM released $40 million worth of software tools into the
public domain. Starting with this collection of tools, several organizations cre-
ated a consortium of IDE providers. They called this consortium the Eclipse
Foundation, Inc. Eclipse was to be “a universal tool platform — an open exten-
sible IDE for anything and nothing in particular.”* (I know, it sounds a little like
Seinfeld’s “nothing.” But don’t be lead astray. Eclipse and Seinfeld have very
little in common.)

This talk about “anything and nothing in particular” reflects Eclipse’s ingen-
ious plug-in architecture. At its heart, Eclipse isn’t really a Java development
environment. Eclipse is just a vessel — a holder for a bunch of add-ons that
form a kick-butt Java, C++, or even a COBOL development environment. Each
add-on is called a plug-in, and the Eclipse that you normally use is composed
of more than 80 useful plug-ins.

While the Eclipse Foundation was shifting into high gear, several other things
were happening in the world of integrated development environments. IBM
was building WebSphere Studio Application Developer (WSAD) — a big Java
development environment based on Eclipse. And Sun Microsystems was

10 Part I: The Eclipse Landscape

*Quoted from the eclipse.org Web site: www.eclipse.org.

05_574701 ch01.qxd 11/29/04 7:32 PM Page 10

promoting NetBeans. Like Eclipse, NetBeans is a set of building blocks for
creating Java development environments. But unlike Eclipse, NetBeans is
pure Java. So a few years ago, war broke out between Eclipse people and
NetBeans people. And the war continues to this day.

In 2004, the Eclipse Foundation turned itself from an industry consortium
to an independent not-for-profit organization. Among other things, this
meant having an Executive Director — Mike Milinkovich, formerly of Oracle
Corporation. Apparently, Milinkovich is the Eclipse Foundation’s only paid
employee. Everybody else donates his or her time to create Eclipse — the
world’s most popular Java development environment.

The Grand Scheme of Things in Eclipse
The Eclipse Foundation divides its work into projects and subprojects. The
projects you may hear about the most are the Eclipse project, the Eclipse
Tools project, and the Eclipse Technology project.

Sure, these project names can be confusing. The “Eclipse project” is only one
part of the Eclipse Foundation’s work, and the “Eclipse project” is different
from the “Eclipse Tools project.” But bear with me. This section gives you
some background on all these different projects.

And why would you ever want to know about the Eclipse Foundation’s projects?
Why should I bother you with details about the Foundation’s administrative
organization? Well, when you read about the Foundation’s projects, you get a
sense of the way the Eclipse software is organized. You have a better under-
standing of where you are and what you’re doing when you use Eclipse.

The Eclipse project
The Eclipse project is the Eclipse Foundation’s major backbone. This big
Eclipse project has three subprojects — the Platform subproject, the Java
Development Tools subproject, and the Plug-in Development subproject.

The Platform subproject
The Platform subproject deals with things that are common to all aspects of
Eclipse — things such as text editing, searching, help pages, debugging, and
versioning.

At the very center of the Platform subproject is the platform core. The core
consists of the barebones necessities — the code for starting and running
Eclipse, the creation and management of plug-ins, and the management of
other basic program resources.

11Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

05_574701 ch01.qxd 11/29/04 7:32 PM Page 11

In addition, the Platform subproject defines the general look and feel of Eclipse’s
user interface. This user interface is based on two technologies — one that’s
controversial, and another that’s not so controversial. The controversial tech-
nology is called SWT — the Standard Widget Toolkit. The not-so-controversial
technology is called JFace.

� The Standard Widget Toolkit is a collection of basic graphical interface
classes and methods, including things such as buttons, menus, labels,
and events.

For more chitchat about the Standard Widget Toolkit (and to find out
why the Toolkit is so controversial), see the second half of this chapter.

� JFace is a set of higher-level graphical interface tools, including things
such as wizards, viewers, and text formatters. JFace builds on the work
that the Standard Widget Toolkit starts.

The Java Development Tools (JDT) subproject
The word “Java” appears more than 700 times in this book. (Yes, I counted.) In
many people’s minds, Eclipse is nothing more than an integrated development
environment for Java. Heck, if you start running Eclipse you see the Java per-
spective, Java projects, Java search tools, and a bunch of other Java-specific
things.

But Java is only part of the Eclipse picture. In reality, Eclipse is a language-
neutral platform that happens to house a mature Java development environ-
ment. That Java development environment is a separate subproject. It’s called
the Java Development Tools (JDT) subproject. The subproject includes things
like the Java compiler, Java editor enhancements, an integrated debugger,
and more.

When Eclipse documentation refers to the “core,” it can be referring to a
number of different things. The Platform subproject has a core, and the JDT
subproject has a core of its own. Before you jump to one core or another in
search of information, check to see what the word “core” means in context.

The Plug-in Development Environment (PDE) subproject
Eclipse is very modular. Eclipse is nothing but a bony frame on which dozens
of plug-ins have been added. Each plug-in creates a bit of functionality, and
together the plug-ins make a very rich integrated development environment.

But wait! A plug-in is a piece of code, and the people who create plug-ins use
development environments, too. For these plug-in creators, Eclipse is both
a tool and a target. These people use Eclipse in order to write plug-ins for
Eclipse.

So wouldn’t it be nice to have some specialized tools for creating Eclipse
plug-ins? That way, a programmer can seamlessly use Eclipse while writing
code for Eclipse.

12 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 12

Well, whadaya’ know? Someone’s already thought up this specialized tools
idea. They call it PDE — the Plug-in Development Environment — and they
have an entire subproject devoted to this Plug-in Development Environment.

The Eclipse Tools project
Compared with the main Eclipse project, the Eclipse Tools project houses
subprojects that are a bit farther from Eclipse’s center. Here are some examples.

The Visual Editor subproject
If you’re familiar with products like Visual Basic, then you’ve seen some handy
drag-and-drop tools. With these tools you drag buttons, text fields, and other
goodies from a palette onto a user form. To create an application’s user inter-
face, you don’t describe the interface with cryptic code. Instead you draw the
interface with your mouse.

In Eclipse 3.0, these drag-and-drop capabilities still aren’t integrated into the
main Eclipse bundle. Instead, they’re a separate download. They’re housed in
the Visual Editor (VE) — a subproject of the Eclipse Tools Project.

The CDT and COBOL IDE subprojects
The C/C++ Development Tools (CDT) subproject develops an IDE for the C/C++
family of languages. So after downloading a plug-in, you can use Eclipse to
write C++ programs.

As if the CDT isn’t far enough from Java, the COBOL IDE subproject has its
own Eclipse-based integrated development environment. (COBOL programs
don’t look anything like Java programs. After using Eclipse for a few years to
develop Java programs, I feel really strange staring at a COBOL program in
Eclipse’s editor.)

The UML2 subproject
The Unified Modeling Language (UML) is a very popular methodology for
modeling software processes. With UML diagrams, you can plan a large pro-
gramming endeavor, and work your way thoughtfully from the plan to the
actual code. The tricks for any integrated development environment are to
help you create models, and to provide automated pathways between the
models and the code. That’s what UML2 (another subproject of the Eclipse
Tools project) is all about.

The Eclipse Technology project
The Eclipse Technology project is all about outreach — helping the rest of the
world become involved in Eclipse and its endeavors. The Technology project

13Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

05_574701 ch01.qxd 11/29/04 7:32 PM Page 13

fosters research, educates the masses, and acts as a home for ideas that are
on their way to becoming major subprojects.

As of 2004, this project’s emerging technologies include Voice Tools — tools
to work effectively with speech recognition, pronunciation, and the control of
voice-driven user interfaces.

Another cool item in the Eclipse Technology project is AspectJ. The name
AspectJ comes from two terms — aspect-oriented programming and Java.
In AspectJ, you can connect similar parts of a programming project even
though the parts live in separate regions of your code. AspectJ is an up-
and-coming extension to the Java programming language.

What’s the Best Way to
Create a Window?

According to Sun Microsystems, Java is a “Write Once, Run Anywhere” pro-
gramming language. This means that a Java program written on a Macintosh
runs effortlessly on a Microsoft Windows or UNIX computer. That’s fine for
programs that deal exclusively with text, but what about windows, buttons,
text fields, and all that good stuff? When it comes to using graphical inter-
faces, the “Write Once, Run Anywhere” philosophy comes up against some
serious obstacles.

Each operating system (Windows, UNIX, or whatever) has its own idiosyncratic
way of creating graphical components. A call to select text in one operating
system’s text field may not work at all on another operating system’s text field.
And when you try to translate one operating system’s calls to another operat-
ing system’s calls, you run into trouble. There’s no good English translation for
the Yiddish word schlemiel, and there’s no good Linux translation for
Microsoft’s object linking and embedding calls.

When Java was first created, it came with only one set of graphical interface
classes. This set of classes is called the Abstract Windowing Toolkit (AWT).
With the AWT, you can create windows, buttons, text fields, and other nice
looking things. Like any of Java’s “Write Once, Run Anywhere” libraries, the
AWT runs on any operating system. But the AWT has an awkward relation-
ship with each operating system’s code.

The AWT uses something called peers. You don’t have to know exactly how
peers work. All you have to know is that a peer is an extra layer of code. It’s
an extra layer between the AWT and a particular operating system’s graphical

14 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 14

interface code. On one computer, a peer lives between the AWT code and the
UNIX code. On another computer, the peer lives between the AWT code and
the Microsoft Windows code.

The AWT with its peer architecture has at least one big disadvantage. The
AWT can’t do anything that’s not similar across all operating systems. If two
operating systems do radically different things to display trees, then the AWT
simply cannot display trees. Each of the AWT’s capabilities belongs to the
least common denominator — the set of things that every popular operating
system can do.

Here comes Swing
Somewhere along the way, the people at Sun Microsystems agreed that the
AWT isn’t an ideal graphical interface library. So they created Swing — a newer
alternative that doesn’t rely on peers. In fact, Swing relies on almost nothing.

With the AWT, you write code that says “Microsoft Windows, please display a
button for me.” But with Swing you don’t do this. With Swing you say “draw
some lines, then fill in a rectangle, then put some text in the rectangle.”
Eventually you have all the lines and colors that make up a button. But
Microsoft Windows doesn’t know (or care) that you’ve drawn a button.

To use the official slogan, Swing is “pure Java.” Swing draws everything on
your screen from scratch. Sure, a Swing button may look like a UNIX button, a
Macintosh button, or a Microsoft Windows button. But that’s just because the
Swing developers work hard to replicate each operating system’s look and feel.

Here’s the problem with Swing: Drawing windows and buttons from scratch
can be very time consuming. In my experience, Swing applications tend to run
slowly.* That’s why people who develop Eclipse plug-ins don’t use Java’s Swing
classes. Instead, they use classes from the Standard Widget Toolkit (SWT).

The Standard Widget Toolkit
The word “widget” comes from the play “Beggar on Horseback,” written
in the early 1920s by George Kaufman and Marc Connelly. (I first heard of
widgets when I saw the 1963 James Garner movie The Wheeler Dealers.) In
ordinary usage, the word “widget” means a vaguely described gadget —

15Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

*My friends at Sun Microsystems claim that Swing applications are lightning fast,
but I can’t tackle that debate in this book.

05_574701 ch01.qxd 11/29/04 7:32 PM Page 15

a hypothetical product whose use and design is unimportant compared to
its marketing potential.

In computing, the word “widget” represents a component in a graphical user
interface — a button, a text field, a window, or whatever. That’s why a group
of developers coined the phrase Standard Widget Toolkit (SWT). These devel-
opers were people from Object Technology International and IBM. At first
they created widgets for the language SmallTalk. Later they moved from
SmallTalk to Java.

In contrast to Swing, Eclipse’s SWT is very fast and efficient. When I run Eclipse
under Linux, I don’t wait and watch as my buttons appear on the screen. My
SWT buttons appear very quickly — as quickly as my plain, old Linux buttons.

To achieve this speed, the SWT ignores Java’s “Write Once, Run Anywhere”
philosophy. Like the AWT, the SWT isn’t pure Java. But unlike the AWT, the
SWT has no peer layer.

The SWT isn’t nearly as portable as Swing’s pure Java code, and this lack
of portability drives the “pure Java” advocates crazy. So the big debate is
between Swing and the SWT. Sun’s NetBeans IDE calls Swing classes to dis-
play its dialogs and editors, and Eclipse calls SWT classes. This difference
between NetBeans and Eclipse has several important consequences.

� Eclipse runs noticeably faster than NetBeans (unless you run
NetBeans on a very powerful computer).

� Eclipse’s graphical interface isn’t merely an imitation of your com-
puter’s interface.

The button on a NetBeans panel may look like a Linux button or like a
Microsoft Windows button, but it’s not really one of these buttons. A
NetBeans button is a drawing that’s made to look like a Microsoft
Windows button.

In contrast, the button on an Eclipse panel is the real McCoy. When you
run Eclipse on a Macintosh, you see real Macintosh buttons. When you
run Eclipse in Windows, you see Bill Gates’s own buttons.

Do you want real buttons or simulated buttons? Believe it or not, you
can see the difference.

� Eclipse can use tools that are specific to each operating system.

If you run Eclipse under Microsoft Windows, you can take advantage of
the functionality provided by Windows ActiveX components. But if you
run Eclipse under Linux, then you can’t use ActiveX components. That’s
why certain features of the Eclipse IDE are available in Windows, but not
in Linux.

16 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 16

In stark contrast to the situation with Eclipse, NetBeans doesn’t use
ActiveX components. (Even on a computer that runs Microsoft Windows,
NetBeans doesn’t take advantage of any ActiveX functionality.)

� In theory, Eclipse isn’t as portable as NetBeans.

At www.eclipse.org you can download versions of Eclipse for Microsoft
Windows, Linux, Solaris, QNX, UNIX, and Mac OS X. But if someone creates
the MyNewOS operating system, then the NetBeans/Swing camp has a
slight advantage over the Eclipse/SWT people.

All in all, I prefer Eclipse to NetBeans. And I’m not saying this only because
I have a contract to write Eclipse For Dummies. For my money, the Eclipse
development environment is simply a better tool than NetBeans.

Relax and Enjoy the Ride
As an Eclipse user, you wade through lots of written material about the SWT.
That’s why you want to know about the “SWT versus Swing” issue. But “know-
ing” doesn’t mean “worrying.” The war between the SWT and Swing has the
greatest impact on people who write code for the Eclipse Foundation. The
“SWT versus Swing” controversy comes alive when you try to enhance the
Eclipse development environment. But as a plain, old Eclipse user, you can
just sit back and watch other people argue.

Using Eclipse, you can write Swing, SWT, AWT, and text-based applications.
You can just go about your business and write whatever Java code you’re
accustomed to writing. So don’t be upset by this chapter’s “SWT versus Swing”
harangue. Just remember some of the issues whenever you read other peoples’
stories about Eclipse.

17Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

05_574701 ch01.qxd 11/29/04 7:32 PM Page 17

18 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 18

Chapter 2

Installing Eclipse
In This Chapter
� Downloading Eclipse

� Installing the software

� Testing your Eclipse installation

Several months ago, my wife noticed a warm, musty odor coming from the
clothes dryer. For me, it was a comforting odor. But my wife pointed out

that a defective dryer vent hose is a safety hazard. So I went out and purchased
a brand new vent hose.

When I returned home, I got right to work. Instead of fussing over every detail
(the way I usually do), I just attached the hose and went back to my writing. I
felt so proud. “I must be getting good at this sort of thing,” I said to myself.

Several hours later, I went out to get some groceries. When I returned, I heard
a curious humming noise coming from the basement. I guessed that my house-
hold computer-driven caller ID speaker system was misbehaving. I went down
to the basement to have a look.

Lo, and behold! Everything in my basement office was wet, including my
main Windows computer, my Linux box, my Solaris machine, and my beloved
caller ID computer. I had removed my washer’s drain hose, and forgotten to
reattach it. Of course, my first instinct was to get on the phone and call my
publisher. I wanted to milk this incident as an excuse for missing a deadline.

So that’s the story. I can’t be trusted to install household appliance parts.
Fortunately for everyone, I’m much better at installing computer software.

Setting Up Eclipse on Your Computer
In this chapter, I make a doubtful assumption. I assume that you know very
little about installing software on your computer’s operating system. Chances
are, this assumption is wrong, wrong, wrong. But that’s okay. You can skip
any material that’s too elementary for your tastes. (Unfortunately, I can’t
reimburse you for the price of the pages that you don’t read.)

06_574701 ch02.qxd 11/29/04 7:33 PM Page 19

Installing Eclipse is like installing almost any other software. First you make
sure you have the prerequisite tools, then you download the software, and
finally you deposit the software in a reasonable place on your computer’s
hard drive.

Having enough hardware
No one can tell you exactly how much hardware is enough. The amount of
hardware you need depends upon several factors, such as the kinds of Java
programs you want to run, the amount of time you’re willing to watch Eclipse
work, and so on. The hardware also involves tradeoffs. For instance, if you
have a little more memory, you can get away with a little less processing
power. I’ve installed Eclipse on a Pentium II running at 330 MHz with 256MB
RAM. With this configuration, I wait about a minute for Eclipse to start up,
but it’s worth the wait. When the program runs, the performance is acceptable.

How much hard drive space do you need? Again, it depends on what you’re
doing, but here’s the general idea:

� You need more than 100MB of disk space for the Eclipse code.

� You need another 70MB for the Java Runtime Environment.

� You need space to store whatever code you plan to develop using
Eclipse.

If you’re just tinkering to learn to use Eclipse, the additional space for
this item is negligible. But if you’re creating an industrial-strength appli-
cation, you need gigabytes (or even terabytes).

� You need wiggle room for all the other things your computer has to do.

I become nervous when I have less than 100MB of free disk space. But
that’s a very personal preference.

Taking all four items into consideration, I like to start with at least 300MB of free
disk space. If I don’t have 300MB, then I don’t install Eclipse. (If I don’t have
300MB, I install a disk-cleaning program whether I plan to install Eclipse or not.)

Getting and installing the Java
Runtime Environment
Eclipse comes with almost everything you need to write and run Java pro-
grams. I emphasize “almost” because Eclipse doesn’t come with everything.
In addition to Eclipse, you need the Java Runtime Environment (JRE). You may
already have it on your computer. You need JRE version 1.4.1 or higher.

20 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 20

Java’s version numbering can be really confusing. After version 1.4.1 comes
version 1.4.2 (with intermediate stops at versions like 1.4.1_02). Then, after
1.4.2, the next version is version 5.0. (That’s no misprint. In Javaville, 5.0
comes immediately after 1.4.2.) To make matters worse, versions numbered
1.2 onward have an extra “2” in their names. So the formal name for version
5.0 is “Java 2 Platform, Standard Edition 5.0.” And to make matters even worse,
the people at Sun Microsystems are thinking about removing the extra “2.”
So after “Java 2, 5.1” you may see plain old “Java, 5.2.”

Do you already have the Java Runtime Environment?
Chances are, your computer already has an up-to-date Java Runtime
Environment (in which case, you don’t have to download another one).
Here’s how you check for the presence of the JRE.

1. Choose Start➪Run (Windows only).

The Run dialog makes an on-screen appearance.

2. Call up the command prompt:

In Windows, type cmd, and click OK in the Run dialog’s text field.

21Chapter 2: Installing Eclipse

Java’s alphabet soup
What you normally call “Java” is really a com-
bination of several things:

� A compiler, to turn the source code that
you write into bytecode that your computer
can run.

� A Java Virtual Machine (JVM), to carry out
the bytecode’s instructions when the com-
puter runs your program.

� An Application Programming Interface
(API) containing thousands of pre-written
programs for use by your newly created
Java code.

Of course, the proliferation of terminology
doesn’t end with these three items. If you visit
java.sun.com/j2se, you can download
either the Java Development Kit (JDK) or the
Java Runtime Environment (JRE).

� When you download the JRE, you get the
Java Virtual Machine and the Application
Programming Interface.

� When you download the JDK, you get the
compiler and the Application Programming
Interface. As a separate installation, you
get the JRE, which includes the JVM and
another copy of the API.

The JRE includes everything you need in order
to run existing Java programs. When I say
“existing” Java programs, I mean Java pro-
grams that have already been compiled. The
JRE doesn’t include a compiler. But that’s okay
because in this book, you don’t need the JDK’s
compiler. Throughout most of this book, you use
another compiler — the compiler that comes
with Eclipse.

For more details on compilers, bytecode, and
things like that, pick up a copy of Java 2
For Dummies, 2nd Edition. (It’s a good book.
I wrote it.)

06_574701 ch02.qxd 11/29/04 7:33 PM Page 21

If your computer tells you that it can’t find cmd, you have an older version
of Microsoft Windows. With older Windows versions, type command
instead of cmd.

With Red Hat Fedora with Gnome, right-click a blank area on the
desktop and choose Open Terminal.

With Mac OS X, choose Applications➪Utilities➪Terminal.

3. In the command prompt window, type java -version, and press Enter.

What happens next depends on your computer’s response to the java
-version command:

• If you see an error message such as ‘java’ is not recognized
as an internal or external command or Bad command or
file name, then your computer probably doesn’t have an
installed JRE.

Skip to the instructions for downloading and installing the JRE
(later in this chapter).

• If you see a message that includes text like the following

Java(TM) 2 Runtime Environment (build 5.0)

then your computer has an installed JRE. Check the version
number (a.k.a. the build number) to make sure that the number
is at least 1.4.1.

If the number is at least 1.4.1 (including numbers like 5.0 or 5.0.1),
then your computer has a usable JRE. You can skip this chapter’s
instructions for downloading the JRE.

If the number is lower than 1.4.1 (including numbers like 1.3 or
1.4.0), then follow the instructions for downloading and installing
the JRE (later in this chapter).

Finding the JRE on the Web
If your computer doesn’t already have the JRE, you can get the JRE by visit-
ing java.sun.com/j2se.

If you’re a Macintosh user and you need to download the JRE, don’t bother
visiting java.sun.com. Instead, visit developer.apple.com/java.

When I want the weather to be sunny, I bring an umbrella to work. Bringing
an umbrella tells the weather gods to do the opposite of whatever Barry
anticipates. The same kind of thing happens with the Java Web site. If I want
someone to redesign the Web site, I just write an article describing exactly
how to navigate the site. Sometime between the time of my writing and the
date of the article’s publication, the people at Sun Microsystems reorganize
the entire Web site. It’s as dependable as the tides.

22 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 22

Anyway, the Java Web site is in a constant state of flux. That’s why I don’t put
detailed instructions for downloading the JRE in this book. Instead, I offer some
timeless tips.

To find detailed, up-to-date instructions for downloading the JRE from java.
sun.com, visit this book’s Web site.

1. Visit java.sun.com/j2se.

2. Look for a Download J2SE link (or something like that).

The page may have several J2SE version numbers for you to choose
from. You may see links to J2SE 1.4.2, J2SE 5.0, and beyond. If you’re not
sure which version you want, choosing the highest version number is
probably safe, even if that version number is labeled “Beta.” (The Java
beta releases are fairly sturdy.)

While you wander around, you may notice links labeled J2EE or J2ME.
If you know what these are, and you know you need them, then by all
means, download these goodies. But if you’re not sure, then bypass both
the J2EE and the J2ME. Instead, follow the J2SE (Java 2 Standard Edition)
links.

The abbreviation J2EE stands for Java 2 Enterprise Edition and J2ME
stands for Java 2 Micro Edition. You don’t need the J2EE or the J2ME to
run any of the examples in this book.

3. On the J2SE download page, look for an appropriate download link.

A download link is “appropriate” as long as the link refers to J2SE (Java 2
Platform, Standard Edition), to JRE (Java Runtime Environment), and to
your particular operating system (such as Windows, Linux, or Solaris).
From all possible links, you may have to choose between links labeled
for 32-bit systems and links labeled for 64-bit systems. If you don’t know
which to choose, and you’re running Windows, then you probably have
a 32-bit system.

Another choice you may have to make is between an offline and online
installation:

• With the offline installation, you begin by downloading a 15MB
setup file. The file takes up space on your hard drive, but if you
ever need to install the JRE again, you have the file on your own
computer. Until you update your version of the JRE, you don’t need
to download the JRE again.

• With the online installation, you don’t download a big setup file.
Instead, you download a teeny little setup file. Then you download
(and discard) pieces of the big 15MB file as you need them. Using
online installation saves you 15MB of hard drive space. But, if you
want to install the same version of the JRE a second time, you have
to redo the whole surf/click/download process.

23Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 23

Why would anyone want to install the same version of the JRE a second
time? Typically, I have two reasons. Either I want to install the software
on a second computer, or I mess something up and have to uninstall
(and then reinstall) the software.

4. Download whichever file you chose in Step 3.

5. Execute the file that you’ve downloaded.

With offline or online installation you download an executable file
onto your computer’s hard drive. Execute this file to complete the
JRE installation.

At some point in all this clicking and linking, you’re probably asked to accept
a software license agreement. I’ve accepted this agreement several hundred
times, and nothing bad has ever happened to me. (Well, nothing bad having
anything to do with Java license agreements has ever happened to me.) Of
course, you should accept the software license agreement only if you intend
to abide by the agreement’s terms. That goes without saying.

Downloading Eclipse
To download Eclipse, visit www.eclipse.org. As with all Web sites, this site’s
structure is likely to change between my writing and your reading Eclipse For
Dummies. Anyway, the last time I looked, this Web site’s home page had plenty
of links to the Eclipse download page. The download page lists a zillion mirror
sites, and each mirror site contains (more or less) the latest release-for-the-
public version of Eclipse.

Many software providers use a main-site/mirror-site scheme. The main site
contains the official versions of all files. Each mirror site contains copies of
the main site’s files. A typical mirror site updates its copies every few hours,
or every few days. When you download from a mirror site, you do a good
deed. (You avoid placing a burden on the main site’s server.)

Some mirror sites have visitor-friendly Web pages; others don’t. If you reach a
site whose interface isn’t comfortable for you, then backtrack and try another
site. Eventually, you’ll find a site that you can navigate reasonably well.

Yes, this is another warning! Eclipse is hot stuff. Many Eclipse download sites
are overloaded with traffic. If you get no response when you click links, please
don’t be discouraged. Try a different mirror site, try a different time of day, or
try clicking the same link a second time. Take comfort in the fact that you’re
in good company. Everybody, everywhere wants to download Eclipse.

After picking a mirror site, you may have a choice of several things to down-
load. You can get release builds, stable builds, nightly builds, legacy versions,
and so on. Because you’re reading Eclipse For Dummies (and not Eclipse For

24 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 24

People Who Already Know Everything about Eclipse), I assume that you don’t
want last night’s hot-off-the-press, still-full-of-bugs build. Instead, you want
the latest “regular” release.

So click the link leading to the latest Eclipse release. After clicking the link,
you may see a list of operating systems (Windows, Linux, Mac OS X, and so
on). You may also see alternative download links (http versus ftp). You may
even see md5 checksum links, and links to various other things (things like
the RCP Runtime Binary and the Platform SDK — things that don’t concern a
new Eclipse user).

Click the http or ftp link corresponding to your computer’s operating system.
Clicking either link starts up the usual download process on your computer.
Save the file that you download to a safe place on your hard drive, and then
proceed to this book’s next fun-filled section.

Installing Eclipse
Unlike many other pieces of software, Eclipse doesn’t come with a fancy
installation routine. That’s actually a good thing. Eclipse doesn’t need to have
a fancy installation routine. Eclipse doesn’t tangle itself up with the rest of
your system. Eclipse is just an innocent bunch of files, sitting harmlessly on
your hard drive. If you’re used to things such as Windows DLLs, registry
changes, VB runtime libraries, and other unpleasant debris, then installing
Eclipse is a breath of fresh air.

To “install” Eclipse, you just unzip the downloaded file. That’s all you do. You
can use WinZip, unzip, the Windows XP extraction wizard, or anything else that
sucks material from ZIP files. One way or another, the extracted stuff ends up
in a directory named (lowercase letter e) eclipse. The new eclipse directory
contains everything you need to start running the Eclipse program.

Here are some specific tips for your operating system:

� Microsoft Windows: If you’re a Windows user, you may be tempted to
extract Eclipse into the Program Files directory. While that’s not a ter-
rible idea, it may eventually lead to trouble. Some Java tools don’t work
in directories whose names contain blank spaces.

� UNIX or Linux: After unzipping the Eclipse download, I normally don’t
change any file permissions. The eclipse executable comes with permis-
sions rwxr-xr-x. With all these xs, anyone logged on to the computer can
run Eclipse. If you’re familiar with UNIX or Linux, and you know all about
permissions, you may want to change these permission settings. But if
you don’t know what rwxr-xr-x means, it doesn’t matter. You’re proba-
bly okay with things as they are.

25Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 25

� Macintosh: If you use a Mac with OS X, you don’t even have to unzip the
downloaded file. The file comes to you as a tar.gz archive. The Mac
unpacks the archive automatically, and puts a new Eclipse program icon
on your desktop.

Running Eclipse
The first time around, starting Eclipse is a two-part process. First, you get the
program running; then, you work through a few initial screens and dialogs.

Turning the ignition key
Here’s how you get Eclipse to start running.

With Microsoft Windows
1. Choose Start➪Run.

A Run dialog appears.

2. In the Run dialog, click the Browse button.

A Browse dialog appears.

3. In the Browse dialog, navigate to the directory in which you installed
Eclipse. (See Figure 2-1.)

4. Double-click the eclipse (or eclipse.exe) icon.

Eclipse is the blue icon with a picture of something eclipsing something
else. (See Figure 2-1.)

You can also put a shortcut to Eclipse on your Windows desktop. Here’s how:

1. Find a more-or-less vacant area on the desktop, and right-click your
mouse.

A context menu appears.

Figure 2-1:
The direc-

tory that
contains
Eclipse.

26 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 26

2. On the context menu, choose New➪Shortcut.

A Create Shortcut Wizard appears.

3. In the Create Shortcut Wizard, click the Browse button.

A Browse dialog appears.

4. In the Browse dialog, navigate to the directory in which you installed
Eclipse. (See Figure 2-2.)

5. Select the eclipse (or eclipse.exe) icon.

Once again, Eclipse is the blue icon with a picture of something eclipsing
something else. (See Figure 2-2.)

6. Click OK.

The Create Shortcut Wizard reappears. Now the wizard’s text field con-
tains something like C:\eclipse\eclipse.exe — the location of the
Eclipse program on your computer’s hard drive.

7. Click Next.

Another wizard page appears. This page wants you to assign a friendly
name to your new shortcut. The default name (eclipse.exe) is just
fine. Any other name that reminds you of Eclipse is also fine.

8. Click Finish.

The new shortcut appears on your Windows desktop. To start Eclipse,
just double-click the new shortcut.

With UNIX or Linux
Almost every UNIX/Linux environment has a Run box. If your environment
has such a box, then follow the steps in the previous section, making changes

Figure 2-2:
Browsing

for Eclipse.

27Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 27

here and there to suit your particular system. If your environment doesn’t
have a Run box, follow these steps:

1. Do whatever you normally do to get a command prompt (a.k.a. shell
prompt) on your system.

For instance, on Red Hat Fedora with Gnome, right-click a blank area on
the desktop and then select Open Terminal. In the Solaris 10 Common
Desktop Environment, right-click a blank area on the desktop and then
choose Tools➪Terminal.

2. Navigate to the directory in which you installed Eclipse.

For example, if you unpacked the eclipse-3.0-linux.zip file into
the /usr/local directory, then you created a directory named /usr/
local/eclipse. So in the command prompt window, type cd /usr/
local/eclipse. When you do, the command prompt window displays
the new directory’s name. You see

[/usr/local/eclipse]$

(or something like that) in the command prompt window.

3. Type ./eclipse in the command prompt window to start a run of the
Eclipse program.

If typing ./eclipse gives you a Permission denied or a cannot execute
message, try changing the file’s permissions. Type chmod u+x, and then
press Enter. Then try typing ./eclipse again. If you still get a Permission
denied message, scream (to this book’s Web site) for help.

On a Mac with OS X
1. Double-click the Eclipse icon on your system’s desktop.

Eclipse starts running.

2. There’s no Step 2!

Starting Eclipse on a Mac is really easy. But if you have trouble, consult
this book’s Web site.

After performing the necessary clicks and keystrokes, Eclipse begins its first
run. You see a blue splash screen that displays a picture of some heavenly
body behind another.*

28 Part I: The Eclipse Landscape

*Which two heavenly bodies appear in the big blue splash screen? What’s doing
the eclipsing, and what’s being eclipsed? I searched high and low on the Web,
but I couldn’t find an authoritative answer. Oddly enough, this issue is important.
If the blue splash screen illustrates a lunar eclipse, then everything is okay. But
if the blue splash screen illustrates a solar eclipse, the folks at Sun Microsystems
are offended.

06_574701 ch02.qxd 11/29/04 7:33 PM Page 28

This splash screen stays on your screen an uncomfortably long time while
Eclipse loads its wares. Even with a fast processor, you can watch the pretty
dark-blue splash screen for several seconds. (On a slower machine, I can wait
more than a minute.) If you’re not used to watching Eclipse start, it may seem
as if the program is hung. But most likely, the program is running just fine.
Eclipse is getting ready to rumble, winding up in the bullpen, building up a
good head of steam.

Revving up before you leave the driveway
Sure, you may have gotten Eclipse running. But that doesn’t mean you can
start writing code. Before you create code, you have to do a little housekeep-
ing. This section guides you through the housekeeping.

1. Perform the keystrokes and mouse clicks for starting Eclipse on your
computer.

For the specifics see the previous section.

2. Wait patiently while the Eclipse program loads.

Eventually, you see a Workspace Launcher, as shown in Figure 2-3. A
workspace is a directory in which Eclipse stores your work. You can
choose one directory or another each time you launch Eclipse. You
enter your choice in this Workspace Launcher.

Don’t fuss over your choice in the Workspace Launcher. You can move
from one workspace to another long after Eclipse starts running. Just
choose File➪Switch Workspace on Eclipse’s main menu bar.

Figure 2-3:
The

Workspace
Launcher.

29Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 29

3. In the Workspace Launcher, click OK.

In this section, you accept the default directory shown in the Workspace
Launcher’s text field.

After clicking OK, you see a Welcome screen like the one in Figure 2-4.

By default, this Welcome screen is a one-time thing. The second time
you run Eclipse, you don’t automatically get welcomed.

If you come to miss the Eclipse Welcome screen, don’t fret. You see the
Welcome screen whenever you create a new workspace. And in an exist-
ing workspace, you can still conjure up the Welcome screen. Just choose
Help➪Welcome on Eclipse’s main menu bar.

4. Click the Workbench icon — the icon in the upper right-hand corner
of the Welcome screen.

Clicking this Workbench icon takes you to the main Eclipse screen,
known formally as the Eclipse workbench. (See Figure 2-5.) The work-
bench is divided into several sections. Each section is called an area.

You’re ready to create your first Java project.

Figure 2-4:
Welcome to

Eclipse!

30 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 30

Hello World, and Goodbye Moon
What’s the first thing you do after you install a new piece of software? You
run the software and do something simple with it. This first test drive con-
firms that you properly installed the software, and gives you a feel for the
software’s interface.

This section contains step-by-step instructions for testing your new Eclipse
installation. As you work through each instruction, I prefer that you know
why you’re doing whatever it is that you’re doing. So I break the instructions
into smaller sets, and put each set in its own little section.

Getting started
In this tiny section, you change from one perspective to another. Sure, you
may not yet know what an Eclipse “perspective” is, but that’s okay. Changing
from the Resource perspective to the Java perspective is easy. Besides, you
can read all about perspectives in Chapters 3 through 5.

Figure 2-5:
The Eclipse
workbench.

31Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 31

1. Follow the instructions for starting Eclipse.

See the section titled “Running Eclipse.” After several mouse clicks
and/or keystrokes, the Eclipse workbench appears.

2. On the Eclipse menu bar, choose Window➪Open Perspective➪Java.

In response to your choice, the Eclipse workbench rearranges itself.
(See Figure 2-6.)

Creating a new Java project
How does that old nursery rhyme go? “Each sack had seven cats. Each cat
had seven kittens.” Imagine the amount of cat litter the woman had to have!
Anyway, in this section you create a project. Eventually, your project will con-
tain a Java package, and your package will contain a Java class.

1. On the Eclipse menu bar, choose File➪New➪Project.

You see the New Project dialog, as shown in Figure 2-7.

Figure 2-6:
Opening
the Java

perspective
for the very

first time.

32 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 32

• Formally, a project is a collection of files and folders.

• Intuitively, a project is a basic work unit. For instance, a self-
contained collection of Java program files to manage your CD col-
lection (along with the files containing the data) may constitute a
single Eclipse project.

2. In the New Project dialog, select Java Project, and then click Next.

You see the New Java Project Wizard, as shown in Figure 2-8.

3. In the Project Name field, type a name for your new project.

In Figure 2-8, I typed FirstProject. In the steps that follow, I assume that
you also type FirstProject. Of course, you can type all kinds of things
in the Project Name field. I’m an old stick in the mud so I avoid putting
blank spaces in my project names. But if you insist, you can use dashes,
blank spaces, and other troublesome characters.

You have to type a name for your new project. Aside from typing a name,
you can accept the defaults (the Location and Project Layout stuff) in
the New Java Project Wizard.

4. Click Finish.

When you click Finish, the Eclipse workbench reappears. The leftmost
area contains the Package Explorer view. The view’s list contains your
new FirstProject. (See Figure 2-9.)

Figure 2-7:
The New

Project
dialog.

33Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 33

In Eclipse, a view is one of the things that can fill up an area. A view illus-
trates information. When you read the word “view,” think of it as a “point of
view.” Eclipse can illustrate the same information in many different ways. So
Eclipse has many different kinds of views. The Package Explorer view is just
one way of envisioning your Java programming projects.

Creating a package
In the previous section, you create a project to hold your code. The next
thing to do is add a package to your project.

1. In the Package Explorer, right-click the FirstProject branch. Then,
in the resulting context menu, choose New➪Package.

The New Java Package Wizard appears, as shown in Figure 2-10.

Figure 2-9:
The First
Project in
the Package

Explorer
view.

Figure 2-8:
The New

Java Project
Wizard.

34 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 34

2. In the New Java Package Wizard, type the name of your new package
in the Name text field.

In Figure 2-10, I typed the name com.allmycode.first.

For the package name, you’re supposed to reverse your domain name
and then add a descriptive word. In this example I use com.allmycode.first
because I’ve registered allmycode.com, and this is my first example. If
you follow this naming convention, other Java programmers will like you.
But if you don’t follow this convention, nothing breaks. For your own use,
a package name like almost.anything.atall (or even a one-part mypack
name with no dots) is just fine.

3. Click Finish to close the New Java Package Wizard.

Your new package (along with some other stuff) appears in the Package
Explorer’s tree, as shown in Figure 2-11.

Figure 2-11:
Look!

There’s a
package in

the Package
Explorer!

Figure 2-10:
The New

Java
Package

Wizard.

35Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 35

Creating and running a Java class
Drumroll, please! It’s time to write some code.

1. In the Package Explorer, right-click your newly created package.
Then, in the resulting context menu, choose New➪Class.

The New Java Class Wizard miraculously appears, as shown in Figure 2-12.

2. In the New Java Class Wizard, fill in the Name field.

In Figure 2-12, I typed GoodbyeMoon. You can type whatever you darn
well please (unless you want to stay in sync with these instructions).

3. Select other options in the New Java Class Wizard.

For this example, put a check mark in the public static void
main(String args[]) box. Aside from that, just accept the defaults,
as shown in Figure 2-12.

4. Click Finish.

After some disk chirping and some hourglass turning, you see the
workbench in Figure 2-13. The Package Explorer displays a new
GoodbyeMoon.java file, and the workbench’s middle area displays a
Java editor. The Java editor contains almost all the code in a typical
Hello World program. All you need is the proverbial println call.

Figure 2-12:
The New

Java Class
Wizard.

36 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 36

5. Add System.out.println(“Goodbye Moon!”) to the main method’s body,
as shown in Figure 2-14.

By default, Eclipse adds characters as you type. When you type the open
parenthesis, Eclipse adds its own close parenthesis. When you type the
quotation mark, Eclipse closes the quotation automatically.

With Eclipse templates you can avoid doing lots of routine typing. Instead
of typing System.out.println, you type only a letter or two. Eclipse types
the rest of the code for you. For details on using templates, see Chapter 7.

Figure 2-14:
An addi-

tional line
of code.

Figure 2-13:
Eclipse

creates a
skeletal

Java source
file.

37Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 37

6. Choose File➪Save to save your new GoodbyeMoon.java file.

You don’t have to tell Eclipse to compile your code. By default, Eclipse
compiles as you type.

If the compile-as-you-type feature takes too much precious processor
time, you can turn the feature off. On Eclipse’s main menu bar, choose
Project➪Build Automatically. Choosing once turns automatic building
off. Choosing again turns automatic building back on.

Of course, you want to test your new GoodbyeMoon program. Using Eclipse,
you can run the program with only a few mouse clicks. Choose Run➪Run➪
Java Application. (See Figure 2-15.)

After a brief delay, a new Console view appears in the bottommost area of the
Eclipse workbench. If you click the Console’s tab, you see your program’s
output, as shown in Figure 2-16.

Starting with version 3.1, Eclipse’s Run menu contains two similarly labeled
Run items. If you hover your mouse over one of these Run items, you see a
submenu that contains a Java Application option. If you hover your mouse

Figure 2-16:
The output

of your
Goodbye

Moon.java
program.

Figure 2-15:
Choosing

Run➪

Run➪Java
Application.

38 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 38

over the other Run item, nothing much happens. (That is, nothing happens
unless you click the second Run item.) To make matters more confusing,
the Java Application submenu has its own additional Run item. One way or
another, the item you want to select in Step 7 is a Java Application. (Refer to
Figure 2-15.)

Oops!
In the last step of the “Creating and running a Java class” instructions, you
may get the following unpleasant message:

Errors exist in a required project. Continue launch?

This message probably means that your Java source code doesn’t compile.
Look for tiny icons on the left edge of the Java editor. (See Figure 2-17. Each
icon contains an X surrounded by a red shape, and possibly a light bulb.)
These icons are called error markers, and the whole left edge of the editor is
called a marker bar. Besides error markers, several other kinds of markers
can appear in the editor’s marker bar.

Each error marker represents a place in the code where Eclipse finds a
compile-time error. The error in Figure 2-17 is the use of the word system
(as opposed to System, with a capital S). If you find such an error, you can
either retype the S, or you can use Eclipse’s Quick Fix feature. Here’s how:

1. Right-click the error marker. Then, in the resulting context menu,
select Quick Fix. (See Figure 2-18.)

Figure 2-18:
Invoking

Quick Fix.

Figure 2-17:
Oh, no!

An error
marker!

39Chapter 2: Installing Eclipse

06_574701 ch02.qxd 11/29/04 7:33 PM Page 39

A list with one or more alternatives appears. Each alternative represents
a different way of fixing the compile-time error. When you highlight an
alternative, another box shows what the revised code (after applying
that alternative) looks like, as shown in Figure 2-19.

2. Double-click the alternative that you want to apply. Or if you like
using the keyboard, you can highlight the alternative, and then press
Enter.

Eclipse rewrites your code, and the error marker goes away. What a cool
feature!

In Figures 2-18 and 2-19, the error marker contains a tiny light bulb. The light
bulb reminds you that Eclipse may have some Quick Fix ideas. If you don’t
see the bulb, Eclipse has no ideas. But occasionally, even though you see the
little bulb, Eclipse doesn’t have a clue. Okay, I can live with that.

Figure 2-19:
Eclipse lets
you choose
from among

several
quick fixes.

40 Part I: The Eclipse Landscape

06_574701 ch02.qxd 11/29/04 7:33 PM Page 40

Chapter 3

Using the Eclipse Workbench
In This Chapter
� Understanding perspectives and views

� Using a view’s features

� Making the most of filters and working sets

Believe it or not, an editor once rejected one of my book proposals. In
the margins, the editor scribbled “This is not a word” next to things like

“can’t,” “it’s,” and “I’ve.” To this day, I still do not know what this editor did
not like about contractions. My own guess is that language always needs
to expand. Where would we be without new words — words like dotcom,
infomercial, and vaporware?

Even the Oxford English Dictionary (the last word in any argument about
words) grows by more than 4,000 entries each year. That’s an increase of
more than 1 percent per year. It’s about 11 new words per day!

The fact is, human thought is like a big high-rise building. You can’t build
the 50th floor until you’ve built at least part of the 49th. You can’t talk about
spam until you have a word like e-mail. With all that goes on these days, you
need verbal building blocks. That’s why this chapter begins with a bunch of
new terms.

What’s All That Stuff on
the Eclipse Workbench?

The next few pages bathe you in new vocabulary. Some of this vocabulary
is probably familiar old stuff. Other vocabulary is somewhat new because

07_574701 ch03.qxd 11/29/04 7:35 PM Page 41

Eclipse uses the vocabulary in a very specialized way. This specialization
comes for two reasons:

� As a user, you can customize many aspects of the Eclipse environment.

You may need to check Eclipse’s Help pages for the procedure to cus-
tomize some element in the environment. You can quickly find the right
Help page if you know what the element is called.

� As a programmer, you can customize even more aspects of the Eclipse
environment.

Eclipse is open source. You can dig deeply into the code and tinker as
much as you want. You can even contribute code to the official Eclipse
project. Of course, you can’t mess with code unless you know the exact
names of things in the code.

Before you jump into the next several paragraphs, please heed my advice:
Don’t take my descriptions of terms too literally. These are explanations, not
definitions. Yes, they’re fairly precise; but no, they’re not airtight. Almost
every description in this section has hidden exceptions, omissions, exemp-
tions, and exclusions. Take the paragraphs in this section to be friendly
reminders, not legal contracts.

� Workbench: The Eclipse desktop (see Figure 3-1)

The workbench is the environment in which you develop code.

Figure 3-1:
The Eclipse
workbench

often (but
doesn’t

always) look
like this.

42 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 42

� Area: A section of the workbench

The workbench in Figure 3-1 has four areas. (See Figure 3-2.)

� Window: A copy of the Eclipse workbench

With Eclipse, you can have several copies of the workbench open at
once. Each copy appears in its own window. (See Figure 3-3.)

To open a second window, go to the main Eclipse menu bar and choose
Window➪New Window.

� Action: A choice that’s offered to you, typically when you click
something

For instance, when you choose File➪New on Eclipse’s main menu bar,
you see a list of new things that you can create. The list usually includes
Project, Folder, File, and Other but it may also include things such as
Package, Class, and Interface. Each of these things (each item in the
menu) is called an action.

You can customize the kinds of actions that Eclipse offers to you. For
details, see Chapter 4.

321

4

Figure 3-2:
The

workbench
is divided

into areas.

43Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 43

Views and editors
The next bunch of terms deals with things called views and editors. At first
you may have difficulty understanding the difference. (A view is like an
editor, which is like a view, or something like that.) If views and editors seem
the same to you, and you’re not sure you can tell which is which, don’t be
upset. As an ordinary Eclipse user, the distinction between views and editors
comes naturally as you gain experience using the workbench. You rarely have
to decide whether the thing you’re using is a view or an editor. But if you plan
to develop Eclipse plug-ins, you eventually have to figure out what’s a view
and what’s an editor.

� View: A part of the Eclipse workbench that displays information for you
to browse

In the simplest case, a view fills up an area in the workbench. For
instance, in Figure 3-1, the Outline view fills up the rightmost area.

Many views display information as lists or trees. For example, in Figure 3-1,
the Package Explorer and Outline views contain trees. The Problems view
may contain a list such as the one shown in Figure 3-4.

You can use a view to make changes to things. For instance, to delete the
Account.java file in Figure 3-1, right-click the Account.java branch in
the Package Explorer view. Then, in the resulting context menu, select
Delete.

Figure 3-3:
Having two

Eclipse
windows

open at the
same time.

44 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 44

When you use a view to change something, the change takes place imme-
diately. For example, when you select Delete on the Package Explorer’s
context menu, whatever file you’ve selected is deleted immediately. In a
way, this behavior is nothing new. The same kind of thing happens when
you delete a file using My Computer or Windows Explorer.

� Editor: A part of the Eclipse workbench that displays information for
you to modify

A typical editor displays information in the form of text. This text can be
the contents of a file. For example, an editor in the middle of Figure 3-1
displays the contents of the Player.java source file.

Some editors display more than just text. For instance, Figure 3-5 dis-
plays part of the Plug-in manifest editor. Like many other editors, this
manifest editor displays the contents of a file. But instead of showing
you all the words in the file, the manifest editor displays the file’s con-
tents as a form on a Web page.

Figure 3-5:
The Plug-in

manifest
editor.

Figure 3-4:
The

Problems
view.

45Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 45

To find out what the Plug-in manifest editor is all about, see this book’s
Web site.

When you use an editor to change something, the change doesn’t take
place immediately. For example, look at the editor in the middle of
Figure 3-1. This editor displays the contents of the Player.java source
file. You can type all kinds of things in the editor pane. Nothing happens
to Player.java until you choose File➪Save from the Eclipse menu bar.
Of course, this behavior is nothing new. The same kind of thing happens
when you work in Microsoft Word or UNIX vi.

Like other authors, I occasionally become lazy and use the word “view”
when I really mean “view or editor.” When you catch me doing this, just
shake your head and move onward. When I’m being very careful, I use
the official Eclipse terminology. I refer to views and editors as parts of
the Eclipse workbench. Unfortunately, this “parts” terminology doesn’t
stick in peoples’ minds very well.

� Tab: Something that’s impossible to describe except by calling it a “tab”

That which we call a tab by any other name would move us as well from
one view to another or from one editor to another. The important thing
is, views can be stacked on top of one another. Eclipse displays stacked
views as if they’re pages in a tabbed notebook. That’s why a bunch of
stacked views is called a tab group. To bring a view in the stack to the
forefront, you click that view’s tab.

And, by the way, all this stuff about tabs and views holds true for tabs
and editors. The only interesting thing is the way Eclipse uses the word
“editor.” In Eclipse, each tabbed page of the editor area is an individual
editor. For example, the editor area in Figure 3-6 contains three editors
(not three tabs belonging to a single editor).

� Active view or active editor: In a tab group, the view or editor that’s in
front

In Figure 3-6, the Player.java editor is the active editor. The
Account.java and UseAccount.java editors are inactive.

Figure 3-6:
The editor

area
contains

three
editors.

46 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 46

What’s inside a view or an editor?
The next several terms deal with individual views, individual editors, and
individual areas.

� Toolbar: The bar of buttons (and other little things) at the top of a view
(see Figure 3-7)

47Chapter 3: Using the Eclipse Workbench

Local history
You can right-click a file in the Package
Explorer. Then, when you select Delete, Eclipse
asks for confirmation. Are you sure you want to
delete the file? If you click Yes (you do want to
delete the file), then Eclipse removes the file
from your computer’s hard drive.

Okay, you deleted the file. Now what if you
change your mind? Can you get the file back?
Don’t bother looking for the file in your system’s
Recycle Bin. Eclipse doesn’t use the Recycle
Bin. Instead, Eclipse copies the file in its own
local history.

Eclipse’s local history maintains copies of things
that you modify or delete. To restore a file that
you deleted, do the following:

1. Right-click a package or project branch in
the Package Explorer or the Navigator view.

2. In the resulting context menu, select
Restore from Local History.

The Restore from Local History dialog
appears. The dialog contains a list of
deleted files, along with a check box for
each file in the list.

3. Put a check mark next to the file that you
want to undelete.

4. Click Restore.

Hooray! You have your file again.

With Eclipse’s local history, you can roll back
small changes that you make to your Java
source code. Here’s an example:

1. Use the editor to modify some Java source
code.

2. Choose File➪Save.

3. Right-click the source code in the editor. In
the resulting context menu, choose Replace
With➪Local History.

The Replace from Local History dialog
appears. The dialog’s list contains the dates
and times of any changes that you saved.

4. Select a date and time.

The dialog shows you the changes you’ve
made since the selected date and time.

5. Click Replace.

Eclipse puts the file back the way it was on
the selected date at the selected time.

You can decide how much stuff to save
in Eclipse’s local history. Choose Window➪
Preferences on Eclipse’s menu bar. In the
Preferences dialog’s navigation tree, expand the
Workbench branch. Then, in the Workbench
branch, select Local History. In response,
Eclipse provides Days to Keep Files, Entries per
File, and Maximum File Size text fields.

07_574701 ch03.qxd 11/29/04 7:35 PM Page 47

� Menu button: A downward-pointing arrow on the toolbar

When you click the menu button, a drop-down list of actions appears.
(See Figure 3-8.) Which actions you see in the list vary from one view to
another.

� Minimize and Maximize buttons: Buttons for quickly getting an area’s
views out of your sight or for expanding an area to fill the entire work-
bench

When you minimize an area, the area’s Minimize button turns into a
Restore button. Clicking the Restore button returns the area’s views to
their normal size.

� Close button: A button that gets rid of a particular view or editor (refer
to Figure 3-7)

� Chevron: A double arrow indicating that other tabs should appear in a
particular area (but that the area isn’t wide enough)

The chevron in Figure 3-9 has a little number 3 beside it. The 3 tells you
that in addition to the two visible tabs, three tabs are invisible. Clicking
the chevron brings up a hover tip containing the labels of all the tabs.
(See Figure 3-10.)

Figure 3-8:
Clicking a

view’s menu
button.

Minimize and
Maximize buttonsClose buttonTab

Menu buttonToolbar

Figure 3-7:
The Outline

view’s
toolbar.

48 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 48

� Marker bar: The vertical ruler on the left edge of the editor area

Eclipse displays tiny alert icons, called markers, inside the marker bar.

For an introduction to markers and marker bars, see Chapter 2.

Understanding the big picture
The next two terms deal with Eclipse’s overall look and feel.

� Layout: An arrangement of certain views

The layout in Figure 3-1 has six views, of which five are easily visible:

• At the far left, you see the Package Explorer view.

• On the far right, you have the Outline view.

• Near the bottom, you get the Problems, Javadoc, and Declaration
views.

• Finally, the little chevron next to the Package Explorer tab provides
access to a Hierarchy view.

Along with all these views, the layout contains a single editor area. Any
and all open editors appear inside this editor area.

� Perspective: A very useful layout

If a particular layout is really useful, someone gives that layout a name.
And if a layout has a name, you can use the layout whenever you want.

Figure 3-10:
Clicking the

chevron
reveals the
labels of all
the editors’

tabs.

Figure 3-9:
The chevron

indicates
that three

editor tabs
are hidden.

49Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 49

For instance, the workbench of Figure 3-1 displays the Java perspective.
By default, the Java perspective contains six views, with the arrange-
ment shown in Figure 3-1.

Along with all these views, the Java perspective contains an editor area.
(Sure, the editor area has several tabs, but the number of tabs has noth-
ing to do with the Java perspective.)

Eclipse comes with eight different perspectives, but these perspectives
aren’t cast in stone. You can change all kinds of things about an Eclipse
perspective. You can even create new perspectives. For details, see
Chapter 4.

Action sets
In reality, a perspective is more than just a layout. Each perspective deter-
mines an action set. In this chapter’s first section, I call an action “A choice
that’s offered to you.” When you switch from one perspective to another,
your choices change.

For example, if you go to the Java perspective, and choose File➪New, you see
a list of choices that includes Project, Package, Class, and other items. If you
switch to the Resource perspective and choose File➪New, the list of choices
includes only Project, File, Folder, and Other. Because the Resource perspec-
tive isn’t specifically about Java programs, the perspective’s File➪New action
set doesn’t include Package and Class options.

Of course, you’re not completely tied down. You can still create a package,
a class, or anything else in the Resource perspective. Just select Other from
the File➪New menu. When you do, Eclipse offers you a very wide range of
choices.

Juggling among perspectives
Here’s something strange. . . . Look at Figure 3-1, and guess how many per-
spectives are open in this workbench. One? Two? More than two?

My gut tells me that only one perspective (the Java perspective) is open in the
workbench. But my gut is lying to me. In a single window, you can have several
perspectives open at the same time. Sure, only one perspective is active at a
time, but several other perspectives can be lurking behind the scenes.

Look again at Figure 3-1, and notice the words Java and Resource in the
upper-right corner. These Java and Resource buttons are part of the perspec-
tive bar. With the Java and Resource buttons showing, you know that at least
two perspectives (the Java perspective and the Resource perspective) are
currently open.

50 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 50

Figure 3-11 shows this perspective bar. When you click the Java button, noth-
ing happens. (The Java perspective is already active.) When you click the
Resource button, the workbench morphs to display the Resource perspective.

Now notice the little chevron at the far right in Figure 3-11. When you click
the chevron, you see the names of any other perspectives that happen to be
open. (See Figure 3-12.)

The perspective bar’s leftmost (unlabeled) button is called the Open
Perspective button. When you click this button, Eclipse offers you a list of
some perspectives that you may want to see in the workbench. Some per-
spectives in the list may be open; some may not be open. (See Figure 3-13.)
The list also has an option labeled Other. Selecting Other conjures up the
Select Perspective dialog, shown in Figure 3-14.

Figure 3-13:
Clicking

the Open
Perspective

button.

Figure 3-12:
Seeing the

names of
the open

per-
spectives.

Select another
perspective
from among the
open perspectives

Open another
(as yet unopened)
perspective

Switch from the Java
perspective to the
Resource perspective

Figure 3-11:
The

perspective
bar.

51Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 51

That’s the story on open perspectives. But wait! We just got a call from a
member of our viewing audience. A “Mother from Minnesota” poses the
following question: “In a single workbench window, I can see only one per-
spective at a time. If I can’t see the Resource perspective in Figure 3-1, what
difference does it make if the Resource perspective is open or not?”

Ah, yes! That’s a good question. When a perspective is open, you can make
changes to the perspective. You can resize areas, add and remove views, and
make lots of other changes. If you do nothing special to save your changes,
the changes stay in effect as long as you keep the perspective open. When
you close the perspective (by choosing Window➪Close Perspective), any
unsaved changes go away. At any point in time, you can have several open
perspectives, each with its own temporary changes. You can switch freely
among these momentarily changed perspectives by clicking the perspective
bar’s buttons.

And here’s another thing you can do. You can open a second Eclipse window
by choosing Window➪New Window on the menu bar. In one window, make the
Java perspective active. In the second window, make the Resource perspec-
tive active. With this technique, you can have as many active perspectives as
you want.

You can even make new perspectives open in their own windows. Choose
Window➪Preferences on Eclipse’s menu bar. In the Preferences dialog’s navi-
gation tree, expand the Workbench branch. Then, in the Workbench branch,
select Perspectives. Select the Open a New Perspective in a New Window
radio button.

Figure 3-14:
The Select

Perspective
dialog.

52 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 52

With two perspectives in two separate windows, you resize each window
independently, tile the windows, minimize one window at a time, or do other
fancy things to conveniently display the windows.

So that’s how open perspectives work. For more information on modifying
perspectives, see Chapter 4.

Working with Views
Somewhere in the world, there’s a Feature Density contest. The winner is
the user interface that crams the largest number of features into the smallest
amount of space. If the wide range of features confuses users, the interface is
disqualified.

I don’t know anything else about the Feature Density contest. I don’t even
know if the contest really exists. But if I ever find such a contest, I’ll nominate
Eclipse views for the top award.

Using a working set
When I first discovered Eclipse, I created a simple Hello World project.
Then I wanted to experiment further, so I created MySecondProject and
MyThirdProject. Within a few hours, I had created 17 projects, all fun (but
all useless).

When I create real code in Eclipse, I do the same thing. I build small experi-
mental projects to test concepts and try out new ideas. In addition, I normally
have several projects going at once. One way or another, my Package Explorer
becomes cluttered.

To remove the clutter I create working sets. A working set is just a bunch of
things that you want to be visible. Any item that’s not in the working set is
out of your face and temporarily invisible.

Working sets aren’t only for Java projects. Eclipse supports several different
kinds of working sets. Here are three kinds:

� Java: A Java working set contains items that you see in the Package
Explorer — projects, source folders, source files, packages, libraries,
and other things.

� Resource: A resource working set contains items that you see in the
Navigator view — files, folders, and projects.

53Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 53

� Help: A help working set contains sections from Eclipse’s Help screens.

Use a help working set to narrow the collection of hits when you search
for a particular topic.

To find out more about help working sets, see Chapter 15.

For a better understanding of working sets, try this experiment:

1. Start with a few projects in the Package Explorer.

This experiment works well if you have at least three projects, and if at
least two of those projects contain Java source code. You don’t need any
fancy code — just a class or two. So if you don’t already have at least
three projects, I suggest creating some new ones.

Of course, if you’re impatient, lazy, or both, you can still get something
out of this experiment. You can try this experiment with only one pro-
ject, even if that project contains no code.

To find out how to create a Java project, see Chapter 2.

2. Click the menu button on the Package Explorer’s toolbar. In the result-
ing context menu, choose Select Working Set. (See Figure 3-15.)

The Select Working Set dialog appears.

3. In the Select Working Set dialog, click New.

The New Working Set Wizard appears. In the wizard’s Working Set
Type list you see three entries — Java, Help, and Resource, as shown
in Figure 3-16.

Figure 3-15:
Clicking the

Package
Explorer’s

menu
button.

54 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 54

4. Select a working set type, and then click Next.

In this experiment, select the Java working set. When you click Next, the
Java Working Set page appears, as shown in Figure 3-17.

Figure 3-17:
The Java
Working

Set page.

Figure 3-16:
The Select

page of
the New

Working Set
Wizard.

55Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 55

5. Type something informative in the Working Set Name field.

How about typing My first working set? For now, that’s informative
enough.

6. In the Working Set Content tree, put check marks next to the items
that you want to appear in your view.

In Figure 3-17, I select the entire HelloProject and portions of
MySecondProject. I leave everything else unselected.

7. Click Finish to dismiss the New Working Set Wizard.

The Select Working Set dialog reappears, with the new working set you
just created automatically selected.

8. In the Select Working Set dialog, click OK.

You get plopped back into the Eclipse workbench. Figure 3-18 shows a
new Package Explorer tree with some of its branches expanded.

Figures 3-17 and 3-18 go hand in hand. When I check the boxes that I check
in Figure 3-17, I get the Package Explorer shown in Figure 3-18. Comparing
Figures 3-17 and 3-18, you find some expected things and some surprising
things.

� The Package Explorer contains only two projects — HelloProject
and MySecondProject.

That’s not surprising given the check marks in Figure 3-17.

Figure 3-18:
The working

set of
Figure 3-17.

56 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 56

� In the Package Explorer, the MySecondProject branch doesn’t con-
tain SecondToNone.java.

Again, that’s not surprising given the absence of a SecondToNone.java
check mark in Figure 3-17.

� The Package Explorer displays rt.jar in both the HelloProject and
MySecondProject branches.

That’s surprising because, in Figure 3-17, the rt.jar box is unchecked.

But wait! Figure 3-17 has a nice, dark check mark next to HelloProject.
(Compare the dark HelloProject check mark with the hesitant gray
MySecondProject check mark. You may not be able to see the differ-
ence in Figure 3-17, but you can see the difference on your computer
screen.)

That dark HelloProject check mark indicates that everything in the
HelloProject is part of this working set. By “everything” I mean
“everything including rt.jar.” And because at least one copy of rt.jar
is in the working set, the Package Explorer displays all the rt.jar
branches.

� No file named .classpath appears in the Package Explorer.

That’s certainly surprising. Figure 3-17 has a check mark in the
.classpath branch. So what gives?

Like many other views, you can filter the Package Explorer. By default,
the Package Explorer’s filter masks files with names like .classpath
and .project. For more information, see the section on “Using filters.”

Each view has its own active working set. For instance, your Games working
set can be active in the Package Explorer while your SmallBusiness working
set is active in the Hierarchy view. Later, you can do the old switcheroo. You
can make the SmallBusiness set active in the Package Explorer view while the
Games set is active in the Hierarchy view.

Hey, where’s my new project?
In certain circumstances, working sets can drive you crazy. Imagine that you’ve
selected the working set shown in Figure 3-17. Then, in the Package Explorer,
you create a brand new project. To your amazement, the new project does
not appear in the Package Explorer’s tree. Why? Because the active working
set doesn’t automatically add the new project. To add the new project to the
active working set, follow these steps:

1. Click the Package Explorer’s menu button.

2. In the resulting context menu, choose Edit Active Working Set.

A dialog much like the one in Figure 3-17 appears.

3. Add a check mark next to the new project’s name.

57Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 57

When I’m feeling really lazy, I modify Step 2 by choosing Deselect Working
Set. When I do this, all the projects in my workbench suddenly reappear.

New projects aren’t the only items that working sets hide. Look again at the
My First Working Set group in Figure 3-17. Notice that the topmost MySecond
Project branch has a gray check mark, not a black check mark. (You may
not be able to see the difference between gray check marks and black check
marks in Figure 3-17. But you can see the difference on your computer screen.)
The gray check mark indicates that some items (not all items) from MySecond
Project belong to the working set. So when you add a new class to MySecond
Project, the class doesn’t automatically belong to My First Working Set. If the
My First Working Set group is active, the new class doesn’t appear in the
Package Explorer’s tree.

Closing and opening projects
Tell me anything you want to do. . . . Eclipse gives you at least two ways to do
it. Instead of creating a new working set, you can close some of your projects.

Figure 3-19 shows the Package Explorer with four open projects and three
closed projects. (The MyThirdProject, TryEJB, and TryImportingCode
projects are closed.) You can’t expand a closed project’s branch, so the three
closed projects can’t clutter up the Package Explorer. Of course, if you have
dozens of closed projects, you may as well create a working set.

To close a project, just go to the Package Explorer and right-click the project’s
branch. In the resulting context menu, choose Close Project.

By default, the Package Explorer’s tree contains a branch for each closed proj-
ect. But with a filter you can hide the closed projects’ branches. For details,
see the next section.

Figure 3-19:
Open and

closed
projects.

58 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 58

Using filters
If you click a view’s menu button, you may see a Filters item. What are these fil-
ters all about? The answer is a familiar one. Filters are about reducing clutter.

Filters and working sets complement one another. When you create a working
set, you pick specific files, folders, and other things. When you use a filter, you
tend not to pick specific things. Instead you specify general criteria. Eclipse
checks each file, each folder, each Java element, to see if that element matches
the criteria.

Each view’s filtering mechanism applies uniquely to that view. From one view
to another, the criteria that you use for filtering are different. This chapter
emphasizes the Package Explorer and Problems filters. Other views have
similar — but not identical — filtering mechanisms.

An example: Package Explorer filters
To get some practice with filters, click the menu button on the Package
Explorer’s toolbar. In the resulting menu, choose Filters. When you do all this,
the big Java Element Filters dialog appears on-screen, as shown in Figure 3-20.

Figure 3-20:
The Java
Element

Filters
dialog.

59Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 59

The Java Elements Filters dialog includes a Select the Elements to Exclude
from the View list. In this list, the trickiest thing is the use of check marks.
A check mark indicates a filtered item. That is, anything matching a checked
item does not appear in the Package Explorer view.

Items in the check box list can be descriptions or patterns.

� Descriptions: In Figure 3-20, most of the list’s items contain descriptions
of Java elements. They include Empty Packages, Fields, Import Declara-
tions, and so on. A few items (like the Closed Projects item) contain
descriptions of Eclipse-specific things.

� Patterns: The first item listed in Figure 3-20 bears a hard-to-read .* (“dot
asterisk”) label. In the .* pattern, the asterisk stands for any string of
characters (including the empty string containing no characters). So
any name that starts with a dot matches this pattern. If the .* item is
checked, files with names like .classpath and .project don’t appear
in the Package Explorer view.

The Package Explorer’s menu button keeps track of your most recent filtering
behavior. You can quickly filter and unfilter some items by selecting options
from the menu. For example, in Figure 3-21, I choose to hide inner class files
as well as files whose names begin with a dot. I choose not to hide closed
projects.

In addition to checking and unchecking list items, you can create your own
filter patterns. For example, in Figure 3-22, I hide several kinds of things. I hide

� Things with Bean in their names

� Things whose names end in EJB.java

� XML files whose names include the word Account followed by one addi-
tional character

Figure 3-21:
The menu

button
maintains

a most
recently

used filters
list.

60 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 60

� Things whose names begin with a dot

� Closed projects

Another example: The Problems view’s filters
Not all views have the same kinds of filters. For instance, the Problems view’s
menu button has a Filters option. With this option you can filter by project,
problem severity, and type of problem. (See Figure 3-23.) If you want, you can
limit the number of entries. (After all, when you have 677 problems, a little
ignorance becomes bliss.)

The Filter dialog in Figure 3-23 has some useful radio buttons. With these but-
tons you can filter by resource, by project, or by working set.

Picture yourself glancing at the Package Explorer. You notice a red “problem”
icon on the RescueEntireCompany project branch. You want to find all prob-
lems in the RescueEntireCompany project, and you want to find them fast.
So you open the Problems view’s Filters dialog. And you choose the On Any
Resource in the Same Project radio button.

After clicking OK, you look at the list of Problems view entries. “That’s not the
correct list,” you say to yourself. Looking again at the Package Explorer, you
select a branch (any branch) in the RescueEntireCompany project. “Yes,” you
say. “Now the Problems view displays only problems in the RescueEntire
Company project. That’s great.” And indeed, it is great. I’m proud of you. (Of
course, I become worried when I see you talking to yourself.)

Linking views with the editors
The 1933 film Duck Soup features a legendary mirror scene. First Harpo
crashes through a mirror, leaving an empty space behind him. Then Chico
arrives, thinking that the mirror is still in place. Chico does tricks in front of
the empty space while Harpo mimics Chico’s every move. Chico tries some
unexpected gestures and Harpo copies each one. After a while, Harpo is
copying Chico, and Chico is copying Harpo. In the language of Eclipse, Chico
and Harpo are linked.

Figure 3-22:
Making
up your

own filter
patterns.

61Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 61

By default, some views are linked with the active editor, and others aren’t.
The Package Explorer isn’t normally linked, and neither is the Navigator. But
the Outline view is linked by default. To discover more about linking, try this
experiment:

1. Open two Java source files in the editor area.

For this experiment, any two files will do. Just be sure that these files
appear in the Package Explorer view. (Oh, yes! I almost forgot. At least
one of the Java source files should contain a method or a field.)

2. Tab back and forth between the two files in the editor area.

In the Package Explorer, nothing happens.

3. In the Package Explorer, select one of the two Java source files. Then
select the other.

In the editor area, nothing happens.

4. Click the Package Explorer’s menu button. In the resulting menu,
choose Link with Editor.

After doing this, the Package Explorer is linked with the editor. To verify
this, move on to Step 5 . . .

Figure 3-23:
Filtering

problems by
working set.

62 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 62

5. Tab back and forth between the two files in the editor area.

When you move from one editor to the other, the Package Explorer’s
display changes. Whatever file you select in the editor area is selected
automatically in the Package Explorer.

6. In the Package Explorer, select one of the two Java source files. Then
select the other.

When you move from one file to the other, the editor area changes.
Whatever file you select in the Package Explorer becomes active in the
editor area.

7. Select a method or field in the Package Explorer.

As long as the method or field belongs to a file you’re currently editing,
the editor jumps to that method or field’s declaration.

8. Select a method or field in the editor area.

Sorry! Nothing happens. In at least one respect, Eclipse is less effective
than the Marx Brothers.

Linking does nothing if you haven’t already opened files in the editor, or if
you’ve hidden files in the Package Explorer. Imagine selecting a file in the
Package Explorer — a file that’s not open in the editor area. Then nothing
happens. Similarly, in the editor area you may move to a file that’s not visible
in the Package Explorer. (Either the working set or the filters are hiding this
file from the Package Explorer’s display.) Once again, nothing happens.

63Chapter 3: Using the Eclipse Workbench

07_574701 ch03.qxd 11/29/04 7:35 PM Page 63

64 Part I: The Eclipse Landscape

07_574701 ch03.qxd 11/29/04 7:35 PM Page 64

Chapter 4

Changing Your Perspective
In This Chapter
� Changing the way a perspective looks

� Changing what a perspective does

� Saving perspectives

I understand. You get desensitized. I write about things you can do to
change the look of an Eclipse perspective. I say you can widen an area

by dragging the area’s edges. You say “Big deal!”

Maybe dragging an area’s edges isn’t such a big deal. Nobody’s surprised
about dragging things with a mouse. But Eclipse is filled with surprises. This
chapter covers a just few of them.

Changing the Way a Perspective Looks
Believe me — I’m not big on cosmetic features. One look at the mess in my
office will convince anyone of that. But if you work with Eclipse as much
as I have, you become accustomed to having things exactly the way you
want them.

In this section, you move things around within an Eclipse perspective. With
the right amount of moving, you make Java coding much easier.

Adding views
You can add an additional view to a perspective. For example, the lower
right-hand corner of the Java perspective normally contains only three views
(Problems, Javadoc, and Declaration). Figure 4-1 shows part of the Java per-
spective with an additional Error Log view.

08_574701 ch04.qxd 11/29/04 7:37 PM Page 65

The Error Log displays a list of things that have gone wrong. By default, the
Error Log doesn’t show up in the Java perspective. But you can make a view
appear by following a few steps:

1. On the main Eclipse menu bar, choose Window➪Show View.

A submenu appears. The submenu contains the names of several views.

2. If the view that you want to show appears on the submenu, then select
the view.

When you work in the Java perspective, the Error Log view appears
in the submenu. If you select Error Log, Eclipse displays the view in
Figure 4-1.

Some of Eclipse’s views don’t appear on the submenu. So to dredge up cer-
tain views, you have to perform some extra steps. Here’s what you do:

1. On the main Eclipse menu bar, choose Window➪Show View.

A submenu appears. In addition to the names of several views, this sub-
menu contains an Other option.

2. Select Other.

When you select Other, a Show View dialog appears. (See Figure 4-2.)

3. Expand the Show View page’s navigation tree to find the view that you
want to add to the workbench.

4. Select the view and then click OK.

In many cases, Eclipse opens views automatically. For instance, if you run a
program that calls System.out.println(“Hello”), the Console view
appears. The word Hello shows up in the Console view.

For more info about the Console view, see Chapter 5.

Here’s another interesting trick:

1. Find a method name somewhere in the workbench.

Feel free to track down a method name in an editor, in the Package
Explorer, or in some other view.

2. Select the method name with your mouse.

Figure 4-1:
The Error
Log view.

66 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 66

3. Right-click the selected name. Then, on the resulting context menu,
select Open Call Hierarchy.

A view like the one in Figure 4-3 appears. The Call Hierarchy tree shows
you the methods that, directly or indirectly, call your selected method.
That’s really cool!

In the steps for opening the Call Hierarchy, Step 2 involves your “ordinary”
mouse button (for most people, the left button). At this point, the view-
versus-editor distinction is important. When you poke around on a tree
inside a view, Step 2 is optional. But when you rummage through text inside
an editor, Step 2 is necessary. Sure, Step 2 is an extra mouse click. But some-
times, an extra mouse click is really important.

Figure 4-3:
The Call

Hierarchy
view.

Figure 4-2:
The Show

View dialog.

67Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 67

Repositioning views and editors
You can change the positions of views and editors. Here’s how:

� Grab a view by its tab. Drag the view from place to place within the
Eclipse window.

� Grab an editor by its tab. Drag the editor from place to place within the
editor area.

� Grab a group of stacked views using some empty space to the right of all
the tabs. Drag the entire group from place to place within the Eclipse
window.

Views and editors are like oil and water. They generally don’t mix. You can’t
drag a view into the editor area, and you can’t drag an editor out of the editor
area. (You can drag a view into what was once part of the editor area, but that’s
a different story.)

As you drag items across the workbench, you see two things:

� You see a rectangle, indicating roughly where you can drop the item.

� You see a drop cursor, indicating the way in which you can drop the item.

Figures 4-4 and 4-5 show you what can happen when you drag the Package
Explorer near the top of the Eclipse workbench. In Figure 4-4, a big rectangle
outlines the place where the dropped view is about to land. The fat arrow
(the drop cursor) points downward to the landing place. When the drop
cursor looks like a fat arrow, Eclipse shoves things around to make room for
the item that you drop.

Figure 4-4:
The drop

cursor is a
fat arrow.

68 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 68

Indeed, in Figure 4-5, the Package Explorer lands in the place indicated in
Figure 4-4. Eclipse shoves things downward to make room for the Package
Explorer. After being dropped, the Package Explorer takes up a big area on
its own.

By dragging views to certain places, you can achieve specific effects. In
Figure 4-6, the rectangle covers part of the editor area. So when you release
the mouse button, you get the tiling shown in Figure 4-7. The Package Explorer
takes up space that was once part of the editor area. The editor area shrinks
as the top of the editor area moves downward.

Figure 4-7:
The

Package
Explorer

shoves the
editors

downward.

Figure 4-6:
The

rectangle
covers part

of the editor
area.

Figure 4-5:
The

Package
Explorer

shoves
other parts
downward.

69Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 69

Figures 4-8 and 4-9 tell a slightly different story. In Figure 4-8, the drop cursor
looks like a stack of tabbed pages. This cursor tells you that, if you drop the
view at this spot, the view joins the tab group indicated by the big rectangle.
And, in Figure 4-9, the Package Explorer is playing happily with its newfound
tab group friends.

You can move editors as well as views. Figure 4-10 shows an arrangement of
editors in the workbench’s editor area. You just can’t move an editor outside of
the editor area. Editors are cliquish. They always hang out with other editors.

Figure 4-10:
Stacked and
tiled editors.

Figure 4-9:
The

Package
Explorer

joins
another tab

group.

Figure 4-8:
The stack

drop cursor.

70 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 70

Detaching a view
You can drag a view off of the main window. Try this experiment:

1. Check to make sure that the Eclipse window is not maximized.

Don’t be fooled if the Eclipse window covers the whole computer screen.
Eclipse sometimes takes up the whole screen without being maximized.
The window is just stretched to cover every available pixel.

2. Make sure that the Eclipse window doesn’t cover the entire screen.

If necessary, drag one of the window’s edges.

3. Choose a view in the Eclipse window. Drag the view’s tab away from
the Eclipse window.

In Figure 4-11 the Package Explorer is detached from the main window.
You can make this happen by dragging the Package Explorer’s tab.

You can drag a view off of the main Eclipse window, but you can’t drag
an editor off of the window. Too bad!

4. To continue the experiment, choose another view in the main Eclipse
window. Drag that view’s tab away from the main Eclipse window
(and away from the view that you dragged in Step 3).

Now you have a main window and two detached windows, as shown in
Figure 4-12.

Figure 4-11:
A view

floats on
its own.

71Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 71

5. Choose yet another view in the main Eclipse window. Drag that view’s
tab to the tab of a floating view.

In Figure 4-13, the Hierarchy and Outline views live together in the same
detached window.

To achieve this effect, release your mouse button when the drop cursor
covers the tab (and only the tab) of a floating view.

Fast views
Chapter 3 tells you how to minimize and restore a view. The problem is, mini-
mizing a view isn’t always very useful. Sure, the view disappears, but what’s
left in the view’s place can be empty space. The clutter is gone, but the waste
of space is shameful.

As an alternative to minimizing views, Eclipse provides fast views. In some
ways, a fast view is like the window minimizing that you see on your operat-
ing system’s desktop. For instance, when you reduce a view to a fast view,
you get a handy restore button on a Fast View toolbar. All the reduced views’
buttons live together on this Fast View toolbar. Taken together, these buttons
act like the application buttons on the Windows taskbar. Clicking a button
temporarily restores the view to its full size.

Figure 4-12:
Two views

float on
their own.

72 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 72

In the previous sentence, notice that word “temporarily.” When you’re fin-
ished using a restored fast view, the view re-minimizes itself automatically.
(The view goes back to being a mere button on the Fast View toolbar.) And
how does Eclipse know when you’re finished using a view? To find out, see
the section titled “Temporarily restoring a view.”

Creating a fast view the cool way
To get started using fast views, try the following experiment.

1. Look for a tiny gray box in the workbench’s lower-left corner.

By default, the box appears on the window’s status bar. This box is
called the Fast View toolbar. (See Figure 4-14.)

The Fast View toolbar

Figure 4-14:
The Fast

View toolbar
is currently

empty.

Figure 4-13:
Three views

float apart
from the

main
window.

73Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 73

If you can’t find the Fast View toolbar on the Eclipse status bar, don’t
fret. The toolbar may not be there! The toolbar may be living along the
left edge or the right edge of the Eclipse window. In either case, the tool-
bar is difficult to find. Skip immediately to the next section to move a
button onto the bar, even if you can’t find the bar.

2. Drag an open view’s tab to the Fast View toolbar.

A small rectangle appears in the Eclipse window’s status bar. The drop
cursor looks like a box with an arrow inside it. (See Figure 4-15.)

3. Release your mouse button.

The view that you dragged becomes hidden. An icon representing the
hidden view appears on the Fast View toolbar, as shown in Figure 4-16.

You can have several buttons on the Fast View toolbar. Each button repre-
sents a hidden view.

Eclipse doesn’t label the buttons on the Fast View toolbar. To determine
which view a button represents, let your mouse hover over the button.
Alternatively, you can try to recognize the icon on the face of the button. It’s
the same as the icon that normally appears on the view’s tab. (Go ahead. Try
to remember what each view’s icon looks like. I can’t do it.)

Creating a fast view the lukewarm way
Occasionally, you can’t create a fast view by dragging and dropping. When
this happens, follow two simple steps:

1. Right-click any view’s tab.

A context menu appears.

2. In the context menu, select Fast View.

The view becomes hidden. An icon representing the hidden view
appears on the Fast View toolbar. (See Figure 4-16.)

Figure 4-15:
Dragging a
view to the

Fast View
toolbar.

74 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 74

Temporarily restoring a view
Creating a fast view gets the view out of site quickly. But “out of sight”
doesn’t have to mean “out of mind.” You can restore a fast view very easily.
Here’s how:

1. Click one of the buttons on the Fast View toolbar.

Figure 4-17 shows what happens when you click a Fast View button.
(In Figure 4-17, I click the Problems view’s button.) The view blossoms
to its normal size, but the view doesn’t appear in its usual place. The
view isn’t even inside a traditional workbench area. (In Figure 4-17, the
Problems view covers the Package Explorer’s area, and partly covers
the editor area.)

Look Ma! No Package Explorer!

The Package Explorer's Fast View button

Figure 4-16:
The

Package
Explorer in

fast view
mode.

75Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 75

2. Do some clicking and other stuff inside the view.

Use the view as you normally would.

3. Click anywhere else in the workbench.

For example, in Figure 4-17, click a visible portion of the editor area.
When you do this, the view goes back to its hidden state. In other words,
the view goes back to being a mere button on the Fast View toolbar.

Turning a fast view back into a slow view
You can get rid of a Fast View button and put a view “un-temporarily” back
onto an area of the workbench. Just drag the Fast View button to an area on
the workbench. All the drop cursor ideas (from the section titled “Reposition-
ing views and editors”) apply to dragging Fast View buttons.

Changing the Way a Perspective
Behaves

You can change the actions available in an Eclipse perspective. Start by
choosing Window➪Customize Perspective on Eclipse’s main menu bar.
The Customize Perspective dialog has two pages — a Shortcuts page and
a Commands page.

The Shortcuts page
Life is tough. To begin a new Java project, I have to click at least four times.
First, I choose File➪New➪Project. That’s three clicks. If Java Project is
already selected in the New Project dialog, I have to confirm that choice
by clicking Next. That’s four clicks. Of course if Java Project isn’t already
selected, then selecting Java Project is an additional click.

Yes, life is tough. But with the Customize Perspective dialog’s Shortcuts page,
I can reduce the work to just three clicks. What? You say I’m spoiled? Well,

Figure 4-17:
The

Problems
view,

temporarily
unhidden.

76 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 76

maybe I am. But if you work with the same user interface day after day,
month after month, you get tired of performing the same old sequence of
steps. So here’s what you do:

1. Open the Java perspective.

For details, see Chapter 2.

2. Choose Window➪Customize Perspective to open the Customize
Perspective dialog.

3. In the Customize Perspective dialog, select the Shortcuts tab.

The Shortcuts page has three sections — Submenus, Shortcut
Categories, and Shortcuts. (See Figure 4-18.)

4. Select an item in the Submenus list box.

With the Submenus list box, you choose New, Open Perspective, or Show
View. In this example, you plan to add an item to the Java Perspective’s
New menu, so select New in the Submenus list box. (Refer to Figure 4-18.)

5. Select an item in the Shortcut Categories tree.

The list of available shortcuts is divided into categories and subcate-
gories. These categories and subcategories appear in the Shortcut
Categories tree. I happen to know that the Java Project item (the item
that you add in this example) is part of the Java category. So in this
example, go to the Shortcut Categories navigation tree and select Java.
(Again, refer to Figure 4-18.)

Figure 4-18:
The

Shortcuts
page of the
Customize

Perspective
dialog.

77Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 77

6. Check or uncheck items in the Shortcuts list.

In this example, you want to add Java Project to the New menu. So put a
check mark next to the Java Project item.

7. Click OK.

You knew you’d have to click OK eventually, didn’t you? When you click
OK, the Customize Perspective dialog disappears.

Meanwhile, back at the workbench . . .

8. Check Eclipse’s menu bar for the added or deleted items.

In this example, choose File➪New. If all goes well, the New menu con-
tains the Java Project option. (See Figure 4-19.)

9. Check Eclipse’s toolbar for the added or deleted items.

I’m not a fan of the Eclipse window’s toolbars, but it’s nice to know that
you can customize these things. Figure 4-20 shows what I found when I
poked around aimlessly for the New toolbar button. I found the right
button, clicked it, and saw the Java Project option. Hooray!

Figure 4-20:
Checking for

the Java
Project
toolbar
option.

Figure 4-19:
Checking for

the Java
Project

menu
option.

78 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 78

The Commands page
The Commands page does some of the things you can’t do with the Shortcuts
page. For example, imagine using Eclipse to teach an introductory computer
programming course. Having too many options scares students. The students
become intimidated when they see 19 items on Eclipse’s Run menu. Instead
of 19 scary items, they’d rather see 8 not-so-scary items. So to make students
happy, to get better course evaluations, to reduce tuition hikes, and ultimately,
to raise the nation’s standard of education, you decide to trim Eclipse’s Run
menu. This section’s instructions show you how to do it.

1. Open the Java perspective.

For details, see Chapter 2.

2. Choose Window➪Customize Perspective to open the Customize
Perspective dialog.

3. In the Customize Perspective dialog, select the Commands tab.

The Commands page makes an appearance, as shown in Figure 4-21.

4. Check or uncheck things in the Available Command Groups list.

In this example, you want to remove items from the Run menu. To find
out if a particular group contains Run menu items, select that group in
the Available Command Groups list. Then look at the items in the
Menubar Details list.

Figure 4-21:
The

Commands
page of the
Customize

Perspective
dialog.

79Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 79

According to Figure 4-21, all items in the Breakpoints group are Run
menu items. So uncheck the Breakpoints group. To trim the Run menu
further, uncheck the External Tools and Java Debug groups. (The Debug
and Profile groups contain Run menu items but, in the Java perspective,
these two groups are unchecked by default.)

5. Click OK.

At this point, what else would you expect to do?

6. Check Eclipse’s menu bar and toolbar for the added or deleted items.

The Run menu in Figure 4-22 has only eight items. In a world where less
is more, I call that “progress.”

Saving a Modified Perspective
Most of this chapter tells you how to change a perspective. That’s very nice
but, if you can’t save your changes, the whole business is almost useless.
Fortunately, Eclipse makes it easy to save a perspective’s changes.

1. Make changes to a perspective.

Add views, resize areas, change actions, do all kinds of things.

2. On Eclipse’s main menu bar, choose Window➪Save Perspective As.

The Save Perspective As dialog appears, as shown in Figure 4-23.

3. Make up a new name for your modified perspective.

In Figure 4-23, I make up the name My New Perspective.

Avoid using an existing name for your modified perspective. If you acci-
dentally save changes to an existing perspective, you may have trouble
undoing the changes.

Figure 4-22:
A simplified
Run menu.

80 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 80

4. Click OK.

Your new perspective is a first-class Eclipse citizen. The perspective has
a name. The perspective appears in your Select Perspective dialog. The
perspective appears in the Eclipse’s perspective bar. If you close Eclipse,
and restart Eclipse tomorrow, the perspective is still ready and willing to
serve you.

Some things about Eclipse’s workbench aren’t part of a perspective. For
instance, the collection of open projects and open editors isn’t defined as
part of a perspective. Similarly, the choice of the active view in a tab group
(whether the Package Explorer or the Hierarchy view is in front) isn’t cast in
stone as part of a perspective. Working sets and filters aren’t wedded to the
perspective. Furthermore, the editor area is shared by all perspectives, so
things like editor tiling aren’t affected when you save a perspective.

Sometimes, after I change a perspective, I don’t like the changes. I move this,
add that, and tweak something else. Finally I decide that the perspective
was better before I messed with it. That’s not a problem. Before saving the
changes I choose Window➪Reset Perspective on Eclipse’s main menu bar.
After a brief encounter with an “are you sure” dialog, the perspective is back
to the way it was before my changes. Whew!

Figure 4-23:
The Save

Perspective
As dialog.

81Chapter 4: Changing Your Perspective

08_574701 ch04.qxd 11/29/04 7:37 PM Page 81

82 Part I: The Eclipse Landscape

08_574701 ch04.qxd 11/29/04 7:37 PM Page 82

Chapter 5

Some Useful Perspectives
and Views

In This Chapter
� Choosing the right perspective

� Making use of available views

� Tips and tricks for the Eclipse workbench

Imagine yourself writing a report for tomorrow’s newspaper. As you type
on your computer keyboard, you look back and forth between the com-

puter monitor and a little spiral notepad. The monitor displays your favorite
word processing program, and the notepad has scribbles from a busy day on
the beat.

This combination of paper notepad and word processing program is like an
Eclipse perspective. You have two areas, side by side, each representing a
different aspect of your work. The paper notepad is your On the Scene Facts
view, and the word processor is your Written Article view. You can give this
combination of views a name. Call it the Reporter’s perspective.

After finishing the article, you send it to a copy editor. The Copy Editor’s
perspective has two views. One view, the Written Article view, is exactly
the same as the reporter’s Written Article view. (In fact, the reporter and
the copy editor share this Written Article view.) Another view, the Dictionary
view, is a dusty old book on the editor’s desk. This Dictionary view lists all
the words in the English language, along with their meanings, their origins,
and other strange things.

After mercilessly slashing up your work, the copy editor sends it to a fact
checker. The fact checker verifies the accuracy of your reporting. The Fact
Checker’s perspective has two views — the old Written Article view and a
new Web Browser view. Using a Web browser and some fancy databases,
the fact checker researches each claim in your article, looking for incorrect
or incomplete information. Unlike the other two perspectives, this Fact
Checker’s perspective has an area that displays two different views. Both the

09_574701 ch05.qxd 11/29/04 7:36 PM Page 83

Written Article and the Web Browser views appear on the fact checker’s com-
puter monitor. In Eclipse terminology, the Written Article and Web Browser
views are stacked.

The analogy between writing news articles and using Eclipse isn’t perfect.
But the analogy illustrates some important points. First, a perspective is an
arrangement of views. Some of these views are shared with other perspectives.
Also, as you work within Eclipse, you play many roles. Like the reporter, the
copy editor, and the fact checker, you function in various perspectives as the
analyst, the programmer, the tester, the debugger, and other important people.

Some Useful Perspectives
Eclipse comes bundled with eight perspectives. In this section, I describe five
of them. (I describe the perspectives that are helpful to new Eclipse users.)

To switch from one perspective to another, choose Window➪Open
Perspective on Eclipse’s main menu bar.

Resource perspective
The Resource perspective displays resources in a language-independent way —
a way that has nothing to do with Java, nothing to do with C++, nothing to do
with any programming language in particular.

Eclipse has three kinds of resources — files, folders, and projects. Anything
that falls into one of these three categories is a resource. None of these three
categories is specific to the Java programming language. (You can find proj-
ects in every programming language, and you can find files and folders in every
computer-related situation.) So, for the most part, the Resource perspective
is language-neutral. The Resource perspective is good for managing things on
your computer’s hard drive.

The first time you open Eclipse, you see the Resource perspective. You can
develop Java programs in the Resource perspective, but to use Eclipse’s
convenient Java-specific features, you’re better off switching to the Java per-
spective. (For a closer look at the Resource perspective — including a lovely
figure — see Chapter 2.)

Java perspective
The Java perspective displays things in a way that’s handy for writing Java
code. This is, of course, my favorite perspective. With the Java perspective

84 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 84

I have an editor, the Package Explorer, Outline and Console views, and lots of
other goodies.

Java Browsing perspective
The Java Browsing perspective helps you visualize all the pieces of a chunk
of Java code — packages, types, members, you name it. I use this perspec-
tive in two different ways. First, I keep track of my own code. (See Figure 5-1.)
Second, I probe the code in other peoples’ Java archive files. (See Figure 5-2.)

The ability to probe Java archive (JAR) files is especially handy. A JAR file
is a zip file with a bunch of Java .class files inside it. From time immemorial,
Java programmers have been frustrated by the cumbersome task of exploring
JAR files’ contents. But now, with Eclipse’s Java Browsing perspective, the
task is no longer cumbersome. At times, it can be fun.

Figure 5-2:
Examining

the standard
Java API
with the

Java
Browsing

perspective.

Figure 5-1:
Examining

my code
with the

Java
Browsing

perspective.

85Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 85

Java Type Hierarchy perspective
The Java Type Hierarchy perspective shows you chains of parent classes and
subclasses. This perspective provides a comfortable home for the Hierarchy
view. To find out more about the Hierarchy view, see the “Hierarchy view”
section (farther along in this chapter).

Debug perspective
The Debug perspective displays everything you need in order to step carefully
and thoughtfully through a Java program’s run.

For more information on debugging, see Chapter 16.

Some Useful Views
Eclipse comes stocked with about 40 different views. For your convenience, I
describe about a dozen of them in this chapter.

To display a view that’s not already visible, choose Window➪Show View on
Eclipse’s main menu bar.

Navigator view
The Navigator view displays resources in a language-independent way (a
way that has nothing to do with Java or any other programming language).
Figure 5-3 shows the Accounts project’s file structure in Navigator view.

In Figure 5-3, you see things that you don’t normally see in a Java-specific
view. You see the Eclipse .classpath and .project housekeeping files.
You also see the bin directory, which is of little interest when you work at
the Java source code level.

Notice the lack of any Java-specific information in Figure 5-3. The Account.
java file contains methods, fields, and other interesting doodads, but the
Navigator view shows none of them.

Package Explorer view
For me, the Package Explorer view is Eclipse’s real workhorse. The Package
Explorer displays things in a Java-specific way. Unlike the wimpy Navigator

86 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 86

view, the Package Explorer displays things such as methods and fields —
things that live inside a Java source file.

Contrast the trees in Figures 5-3 and 5-4. The Package Explorer in Figure 5-4
has no Eclipse housekeeping files. Instead, the Package Explorer digs down
inside the Account.java and UseAccount.java source files. The Package
Explorer can also dig inside JAR files, and display classes in the Java runtime
library.

Outline view
The Outline view displays a tree or list of whatever is in the active editor. In
my mind, I liken the Outline view to the Package Explorer view.

� If the active editor contains a Java file, then the Outline view looks
very much like a portion of the Package Explorer view.

Unlike the Package Explorer, the Outline view displays only one file’s
contents at a time.

� With the Outline view, you can drill down to see the elements inside
many different kinds of resources.

The Package Explorer can drill down inside a piece of Java code. The
Outline view looks inside Java code as well. But the Outline view is
more versatile. For example, in Figure 5-5, the active editor displays
an XML file. (The editor displays the file’s contents as a form on a Web
page.) The Outline view follows suit, displaying the XML file’s structure
in tree form.

Figure 5-3:
The

Navigator
view.

87Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 87

When you display a Java class, the Outline view has some nifty toolbar but-
tons. In Figure 5-6, a little hover tip tells you what happens if you click a
particular button. If you click the button containing a little ball, then you
hide any non-public members in the Outline view’s tree. (In Figure 5-6, the
name and average variables are non-public members. Clicking the button
makes those two branches disappear.)

Figure 5-5:
The Outline

view
displays an

XML file’s
contents.

Figure 5-4:
The

Package
Explorer

view.

88 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 88

Console view
The Console view displays whatever may appear in the good old-fashioned
command window. I admit it. I’m a text-output junky. I like System.out.print
and System.err.print. I even enjoy stack traces (when they come from
other peoples’ programs).

Figure 5-7 shows the Console view. For my taste, this view is very cheerful.
Standard output is blue, and error output is red. Anything you type on the
keyboard is green.

You can change the colors (and other things about the Console) by choosing
Window➪Preferences from Eclipse’s main menu. In the Preferences dialog,
expand the Run/Debug branch. Then, in the Run/Debug branch, select Console.
In response, Eclipse shows you a page with options such as Standard Out Text
Color and Displayed Tab Width.

Hierarchy view
The Hierarchy view displays superclasses and subclasses in a useful tree
format. Figure 5-8 shows the Hierarchy view in action.

Figure 5-7:
The Console

view.
(Love it or

leave it.)

Figure 5-6:
A hover tip
describing

the Hide
Non-Public

Members
action.

89Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 89

The Hierarchy view doesn’t display things on its own. To display a class in
the Hierarchy view, you have to put the class (somehow) into the Hierarchy
view. For example, before I could see the stuff in Figure 5-8, I had to get Java’s
Container class into the Hierarchy view.

You can probably put a particular class into the Hierarchy view a million dif-
ferent ways. In this section, I describe two ways.

� Right-click the name of a class in another view, or in an editor. In the
resulting context menu, choose Open Type Hierarchy.

� Drag the name of a class from another view to the Hierarchy view.

The Hierarchy view has lots of interesting quirks, so I devote a little extra
space to this view and its uses.

Using the Hierarchy view’s toolbar buttons
You can change what the Hierarchy view displays using the view’s toolbar but-
tons. With the Show the Type Hierarchy button selected (refer to Figure 5-8),
the Hierarchy view’s tree goes from Object, down through Container, and
downward to the un-extended classes, such as Box and CellRendererPane.

Figure 5-8:
The

Hierarchy
view.

90 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 90

But in Figure 5-9, with the Show the Supertype Hierarchy button selected, the
view’s tree is upside down. Only classes from the Container upward display
in the tree.

Figure 5-9:
The

Hierarchy
view with
Show the

Supertype
Hierarchy
selected.

91Chapter 5: Some Useful Perspectives and Views

Dragging a class to the Hierarchy view
As you drag a class into the Hierarchy view, the
kind of cursor you see makes a big difference. If
you use Microsoft Windows, the cursor in the
figure is usually what you want to see. If you
drop a class when you see that cursor, the class
displays in the Hierarchy view.

The cursor in the figure contains a box with a little
curvy arrow inside it. (It’s like the arrow on a
Windows shortcut icon.) If you don’t see this
curvy boxed arrow, then you may not want to
drop the class. When you drop a class without
seeing the curvy arrow, Eclipse offers to move the
class from one part of your workspace to another
(for example, from one project to another). This is
probably not what you want to do. (If your goal is
to display things in the Hierarchy view, then
moving code around is not your first priority.)

When you drag junk to the Hierarchy view, you
may also see the restricted cursor (a circle with
a diagonal line running through it). This cursor
tells you that you can’t drop the class at that
position in the view. In this case, releasing the
mouse button does absolutely nothing.

Here’s one more hint. If you don’t see whatever
cursor you expect to see, you may be dragging
a class on top of a class that’s already being
displayed. Try moving your mouse to a more
neutral place inside the Hierarchy view. That
trick usually works for me.

Of course, all this stuff about curvy arrows applies
only to Windows users. If you use UNIX, a Mac,
or some other non-Windows system, the cursors
don’t necessarily have curvy arrows inside boxes.
Do a few little experiments to find out what cur-
sors your Hierarchy view displays.

09_574701 ch05.qxd 11/29/04 7:36 PM Page 91

In Figure 5-10, the Show the Subtype Hierarchy button does almost what you
see back in Figure 5-8. Of course with Show the Subtype Hierarchy, you don’t
see superclasses of the Container class.

The active working set influences what you see or don’t see in the Hierarchy
tree. A class that’s not in the active working set may not appear at all in the
Hierarchy tree. (The class may not appear, even if it’s a subclass or superclass
of a class that does appear.) In other cases, a class that’s not in the active work-
ing set can appear as a grayed-out branch of the Hierarchy tree. If you want to
see everything you can possibly see, deselect the working set.

For details on selecting and deselecting working sets, see Chapter 3.

Overriding methods
Imagine yourself sitting in front of your computer, staring at the Eclipse
Hierarchy view. What’s going through your mind? You may be thinking about
all the things one class inherits from another. (Okay, I’m giving you the benefit
of the doubt, but you get the point.) Maybe you’re thinking that MySubclass
shouldn’t inherit myMethod from MyClass. Maybe you want MySubclass to
override myMethod.

Here’s how you override a method using the Hierarchy view:

1. In the bottom half of the Hierarchy view, make sure that the Show All
Inherited Members toolbar button is pressed. Make sure that the other
toolbar buttons in the bottom half of the Hierarchy view are not
pressed. (See Figure 5-11.)

If the wrong buttons are (or aren’t) pressed, you may not be able to find
the method that you want to override.

2. In the top half of the Hierarchy view, select the subclass that will do
the overriding.

I want the PartTimeEmployee class to override the getJobTitle
method. So, in Figure 5-11, I selected the PartTimeEmployee class.

Figure 5-10:
The

Hierarchy
view with
Show the

Subtype
Hierarchy
selected.

92 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 92

3. In the bottom half of the Hierarchy view, right-click the method that
you want to override.

In Figure 5-11, I right-clicked the getJobTitle method.

4. In the resulting context menu, choose Source➪Override in (the class
from Step 2). (See Figure 5-12.)

After making all these choices, a new method magically appears in the
editor. Now the ball is in your court. Shuffle over to the editor and insert
some real code.

Call Hierarchy view
The Call Hierarchy view displays methods that, directly or indirectly, call a
selected method. To find out more about this view, see Chapter 4.

Declaration view
The Declaration view displays Java source code. When you click an identifier
in an editor, the Declaration view displays the identifier’s declaration. (See
Figure 5-13.) If you work with a large project, this view can be very handy.
After all, in a huge pile of source code, any particular use of an identifier can
be very far from the identifier’s declaration.

Figure 5-11:
Preparing to

override a
method.

93Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 93

The Declaration view can display source code that’s inside or outside of your
project and your workspace. For example, with the correct settings, the view
can display declarations in the Java API code.

The instructions that follow don’t work unless your computer contains a
copy of the Java API source code. As far as I know, the only reliable way to
get a copy is to download and install the entire Java SDK. The SDK takes up
at least 90MB on your computer’s hard drive, and of that 90MB you need as
little as 11MB for the source code. If you really need to save space, you can
install the entire SDK and then delete everything except the SDK’s src.zip
file. To download the SDK, visit java.sun.com/j2se/downloads.

Figure 5-13:
The

Declaration
view.

Figure 5-12:
Overriding a

method
using the

Hierarchy
view.

94 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 94

Here’s how you get the Declaration view to display Java API source code:

1. In the Package Explorer, expand a JRE System Library branch.

If you installed the standard JRE in Chapter 2, the JRE System Library
branch contains an rt.jar branch. The letters “rt” stand for “run time.”
This JAR file contains the standard Java runtime library.

The rt.jar file contains .class files, not .java source files. You want
to associate a collection of .java source files with this rt.jar file.

In this step, you pick a branch in one of the Package Explorer’s projects.
The Package Explorer’s display may include many other projects. Don’t
be fooled into thinking that you’re modifying only one project’s proper-
ties. The change you make in this set of instructions affects all projects
in your Eclipse workspace.

2. Right-click the rt.jar branch of the Package Explorer’s tree. In the
resulting context menu, choose Properties.

A Properties dialog appears.

3. On the left side of the Properties dialog, select Java Source
Attachment.

In the main body of the Properties dialog, the Java Source Attachment
page appears.

4. In the Location Path field, enter the path to your Java API source files.

On my computer, the source files live in a directory named C:\Program
Files\Java\jdk1.5.0\src. (See Figure 5-14.) This src directory has
subdirectories named com, java, javax, and others.

5. Click OK.

With this decisive click, the .class files in rt.jar become connected
to a collection of Java source files. The Declaration view is ready to dis-
play Java API source code.

Figure 5-14:
Specifying

the location
of your Java

API source
files.

95Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 95

Using the Declaration view takes a little bit of patience. On occasion this
view is sluggish. Sometimes, whatever change you make to the Java Source
Attachment setting doesn’t take effect right away. Of course, at times you have
a right to be impatient. For instance, you select a new name in the editor and,
after several seconds, you still see the previously selected name’s declaration.
If that keeps happening, the Declaration view probably can’t find the new
name’s source code.

Javadoc view
The Javadoc view displays an “in-between” version of an item’s Javadoc com-
ment. By “in-between,” I mean “better than plain text, but not as good as your
Web browser’s rendering of a Javadoc page.” For instance, in Figure 5-15, I
select String in the editor. Following along with me, the Javadoc view dis-
plays the String class’s Javadoc comment.

As you see in Figure 5-15, the Javadoc view can handle things like the stan-
dard Java API files. But getting this view to work means following the steps in
the “Declaration view” section. And when you get to Step 3, don’t make the
mistake that I often make. To get the Javadoc view working, select Java Source
Attachment, and not Javadoc Location!

Eclipse can open your default browser and jump to an item’s complete
Javadoc Web page. For details, see Chapter 13.

Figure 5-15:
The

Javadoc
view.

96 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 96

Problems view
The Problems view lists things that go wrong. For instance, Figure 5-16 shows
a Problems view containing messages from a failed compilation. If you click a
message in the Problems view, the editor switches to the appropriate place in
your Java code.

You can change what you see in the Problems view. Click the view’s menu
button and, in the resulting context menu, choose Filters.

You can get more information about the Problems view and its filters. If
you’re interested, see Chapter 3.

Tasks view
The Tasks view is a big To Do list. The view displays

� To Do items that Eclipse generates automatically for you

� To Do items that you create on your own

To find out how the Tasks view works, try this experiment:

1. Go to the Java perspective.

To go to the Java perspective, choose Window➪Open Perspective➪Java.

2. Open the Tasks view.

For help with this, see Chapter 4. The Tasks view is on the Basic branch
in the Show View dialog.

3. Click the Task view’s menu button. In the resulting context menu,
choose Filters.

The Task view’s Filters dialog appears. For more information about fil-
ters, see Chapter 3.

Figure 5-16:
The

Problems
view.

97Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 97

4. Remove the check mark from the Enabled box in the Task view’s
Filters dialog.

With filters disabled, the Tasks view displays all your tasks. (The Tasks
view doesn’t censor any of the tasks.)

5. In the active editor, add a comment containing the word TODO to
your code.

Type something like

// TODO Thank the author of Eclipse For Dummies

6. Choose File➪Save.

7. Look at the Tasks view, and scroll down until you find your new entry.

See Figure 5-17.

When you put the word TODO in a comment, Eclipse creates a new task. Eclipse
associates this task with whatever line of code contains the comment. That’s
why, in Figure 5-17, the editor’s marker bar has little icons (little clipboards
with check marks in them). Each of these task markers indicates a point in the
code that’s associated with a Tasks view entry.

Eclipse automatically puts the word TODO into some of your code’s com-
ments. So, to some extent, the Tasks view becomes populated on its own.

Here’s a really picky point. The Tasks view doesn’t necessarily display all
the text on a comment’s TODO line. If the line contains * My code: TODO
Describe the code here, then the new Tasks view entry contains TODO

Figure 5-17:
The Tasks

view.

98 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 98

Describe the code here. If a line contains //TODO date TODO day then
you get two new Tasks view entries — one entry says TODO date; the other
entry says TODO day.

Reminding yourself in more ways about the work you have to do
In the previous set of instructions, you add a TODO comment to your Java
source code. If typing a TODO comment is too “manual” for your taste, don’t
despair. Eclipse gives you many ways to create new tasks:

� Right-click a point in the editor’s marker bar. In the resulting context
menu, choose Add Task.

When you do this, you get a New Task dialog like the one shown in
Figure 5-18. Eclipse fills in the On Resource, In Folder, and Location fields
for you. All you have to do is type something in the Description field.
(Type a friendly reminder to yourself. Don’t make the reminder too
threatening. If it’s threatening, you may scare yourself away.)

After you click OK, Eclipse adds an entry to the Tasks view and adds an
icon to the appropriate place in your code’s marker bar. (Eclipse does
not add a comment to your Java source file. If you look at the source,
you don’t see a new TODO comment.)

� Right-click a row of the Tasks view and, in the resulting context menu,
choose Add Task.

When you do all this, you get a dialog very much like the one shown in
Figure 5-18. In this case, the dialog’s On Resource, In Folder, and Location
fields are empty. When you add a task this way, Eclipse doesn’t associate
the task with a line of code in a file.

When I’m given the choice, I prefer not to type TODO in my code’s comments.
Instead, I add tasks with one of the right-click/dialog techniques. With either
of these techniques, I eventually get the satisfaction of filling in a little “com-
pleted task” check box. This check box is at the leftmost edge of a Tasks view
entry. (Refer to Figure 5-17.)

Figure 5-18:
The New

Task dialog.

99Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 99

Later, if I’m feeling happy and carefree, I remove all of my deleted tasks. I do
this by right-clicking any Tasks view row, and then choosing Delete Completed
Tasks.

Customizing your list of tasks
You can customize virtually everything having anything to do with the
Tasks view:

� You can (and should) customize the text that Eclipse automatically
adds to all your comments.

Choose Window➪Preferences. Then in the resulting Preferences dialog,
expand the Java/Code Style tree branches. Select the Code Templates
branch of the tree. Then, on the right side of the Preferences dialog,
expand the Comments branch of the tree. Select Methods to change
what Eclipse adds automatically in a method’s comment. Select Types to
change what Eclipse adds automatically in a class’s comment. And so on.

� You can add words such as TODO to the Tasks view’s vocabulary.

By default, the Tasks view creates entries for the words TODO, FIXME, and
XXX in Java comments. You can modify this behavior in all kinds of ways.
Start by choosing Window➪Preferences. In the resulting Preferences
dialog, expand the Java tree branch. Then select the Code Task Tags
branch of the tree.

� You can sort and filter tasks.

In this way, the Tasks view is very similar to the Problems view.

Projects, Packages, Types,
and Members views
These four views go hand in hand as part of the Java Browsing perspective.
See the section titled (what else?) “Java Browsing perspective” for more.

The Projects view is like a little Package Explorer, except that branches in the
Projects view don’t expand very much. Instead of seeing branches expand,
you see things appearing and disappearing in the other three views.

For instance, back in Figure 5-2 everything ripples along from left to right. If
you select an item in the Projects view, then the Packages view immediately
displays all the Java packages in that item. At the same time, the Types and
Members views temporarily become blank.

100 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 100

Later, when you select a package shown in the Packages view, the Types view
immediately displays the names of classes defined inside that package. And
so on.

Search view
As the name says, this view displays the results of searches. (See Figure 5-19.)
It’s such an important view that I can’t bear to omit it from this chapter’s list.
But Eclipse’s search mechanisms have tons of interesting options. It would be
unfair for me to summarize the options here. Instead, you can find out more
about searching and the Search view in Chapter 12.

Figure 5-19:
The Search

view.

101Chapter 5: Some Useful Perspectives and Views

09_574701 ch05.qxd 11/29/04 7:36 PM Page 101

102 Part I: The Eclipse Landscape

09_574701 ch05.qxd 11/29/04 7:36 PM Page 102

Part II
Using the Eclipse

Environment

10_574701 pt02.qxd 11/29/04 7:36 PM Page 103

In this part . . .

It’s amazing. People stop me on the street with ques-
tions. They ask questions like “How do you create

an interface from a class using Eclipse?” And they ask
other questions — questions like “Why is your car’s tire
on my foot?”

The chapters in this part answer questions of the first
kind — “how to” questions about Eclipse. For answers to
questions about my car and its tires, don’t read this part
of Eclipse For Dummies. Instead, talk to my lawyer.

10_574701 pt02.qxd 11/29/04 7:36 PM Page 104

Chapter 6

Using the Java Editor
In This Chapter
� Making the most of the Java editor

� Configuring editor settings

� Finding relief for your tired fingers

It happens at so many Java conferences and events. The speaker begins by
taking a quick audience survey.

“How many of you use Borland JBuilder?” A number of people raise their hands.

“And how many use Eclipse?” Again there’s a show of hands.

“And finally, how many of you use a plain old text editor, such as Windows
Notepad or UNIX vi?” Suddenly, discomfort starts rippling throughout the
room. A few raise their hands proudly and noisily (as if that’s possible).
Others raise their hands just to look tough. Some people smirk because
Notepad is so primitive and vi is so old. Someone asks “what’s vi?” and the
rest of the crowd laughs.

Okay, I’ll answer the question. Bill Joy and Chuck Haley created vi at UC
Berkeley in the late 1970s. At the time, vi was a groundbreaking, full-screen
text editor. Instead of typing cryptic commands, you used arrow keys. (Well,
actually, you moved around on a page using the H, J, K, and L keys, but who
cares? In vi, these letter keys behaved as if they were arrow keys.)

Things have changed since the 1970s. We have mice, drag and drop, and
language-aware editors. By a “language-aware editor” I mean an editor that
treats your code as more than just character soup. The editor knows one
Java statement from another, and the editor helps you compose your code.

We’ve come a long way since the 1970s. This chapter is about Eclipse’s Java-
aware editor.

11_574701 ch06.qxd 11/29/04 7:40 PM Page 105

Navigating the Preferences Dialog
Have you ever spent too many hours driving on long boring highways? After
a while, your brain becomes etched. You pull over to rest, but in your mind
you still see the highway going by. You close your eyes and start dreaming
about highway. It’s terrible. You’ve done so much driving that you can’t get
the experience out of your head.

A similar thing happened when I wrote the first draft of this chapter. I spent
so much time writing about Eclipse’s Preferences dialog that I had dreams
about preferences chasing me down long corridors. “That does it,” I said.
“I’m making all my paragraphs shorter.”

So here’s a typical scenario. In the next section, I write about visiting “the
Keyboard Shortcuts tab of the Workbench➪Keys page in the Window➪
Preferences dialog.” Here’s what that long-winded instruction really means:

1. On Eclipse’s main menu bar, choose Window➪Preferences.

The Preferences dialog opens.

2. In the tree on the left side of the Preferences dialog, expand the
Workbench branch. Within the Workbench branch, select the Keys
branch.

The Keys page appears inside the Preferences dialog. The page appears
immediately to the right of the Preferences dialog’s tree.

3. On the Keys page, select the Keyboard Shortcuts tab.

That’s it! See Figure 6-1.

Using Keyboard Shortcuts
I’m not a fan of keyboard shortcuts. I remember a few shortcuts, and quickly
forget all the rest. So I don’t have a long list of shortcuts you can use in
Eclipse’s editor.

But if you need a particular shortcut, I can tell you exactly where to hunt
for it. Visit the Keyboard Shortcuts tab of the Workbench➪Keys page in the
Window➪Preferences dialog. (For details on tabs, pages, and dialogs, see my
“Navigating the Preferences Dialog” section.)

Eclipse divides its shortcuts into categories like Compare, Edit, File, and
Search. Each category contains several functions. For instance, the File cate-
gory contains functions like New, Close, Save As, and Save.

106 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 106

In some cases, you have to fish around among the categories to find a partic-
ular function. For example, the Edit category contains the Copy, Cut, and
Paste functions. The similarly named Text Editing category has functions like
Move Lines Up and To Lower Case. You can get all this information from the
Command group (refer to Figure 6-1).

After finding the function that you want, you can mess with the function’s
keyboard shortcut. You can

� Change an existing shortcut

� Remove an existing shortcut

� Add a shortcut for a function that doesn’t already have a shortcut

You do all this with the Key Sequence group, the When list box, and the
Add/Remove/Restore buttons (refer to Figure 6-1). (When I say “you do this,”
I really mean “you.” Personally, I don’t play with these things very much.)

Using Structured Selections
I don’t remember most keyboard shortcuts, but the shortcuts that I do
remember are the ones for structured selections. Instead of selecting a word or

Figure 6-1:
Configuring

keyboard
shortcuts.

107Chapter 6: Using the Java Editor

11_574701 ch06.qxd 11/29/04 7:40 PM Page 107

a line, these shortcuts select a method call, a Java statement, a block, a
method, or some other meaningful chunk of code.

To use structured selection, place your cursor almost anywhere in the Java
editor. Then follow any of the following instructions:

� Press Alt+Shift+↑ to expand the selection outward.

Figures 6-2 and 6-3 show what can happen when you press Alt+Shift+↑
several times in succession. You start with the cursor in the middle of
the word println. The first time you press Alt+Shift+↑, Eclipse selects
the entire word println. The second time, Eclipse selects the method
call System.out.println(). The third time, Eclipse expands the selec-
tion to include the entire statement. And so on. (Of course, you don’t
have to release the Alt+Shift key combination each time. You can hold
down Alt+Shift while you press ↑ several times.)

� Press Alt+Shift+→ to expand the selection forward.

Compare Figure 6-4 with Figures 6-2 and 6-3. If you select only part
of a statement, pressing Alt+Shift+→ has the same effect as pressing
Alt+Shift+↑. But if you select an entire statement, Alt+Shift+→ expands
more slowly than Alt+Shift+↑. Instead of expanding from a statement to
an entire block, Alt+Shift+→ expands to include the next statement in
the program.

Successive pressing of Alt+Shift+→ expands the selection one statement
or declaration at a time. Finally, when you reach the last statement in a
block, pressing Alt+Shift+→ selects the entire block.

Figure 6-2:
Pressing

Alt+Shift+↑.

108 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 108

Figure 6-4:
Pressing

Alt+
Shift+→.

Figure 6-3:
Continuing

to press
Alt+Shift+↑.

109Chapter 6: Using the Java Editor

11_574701 ch06.qxd 11/29/04 7:40 PM Page 109

� Press Alt+Shift+← to expand the selection backward.

Pressing Alt+Shift+→ and Alt+Shift+← work almost the same way. The
only difference is Alt+Shift+← expands to include the previous statement
or declaration in the program. (See Figure 6-5.)

� Press Alt+Shift+↓ to play a sequence of selection changes in reverse.

If you drag the cursor to select a big block of code, and then press
Alt+Shift+↓, Eclipse does nothing. The Alt+Shift+↓ combination doesn’t
shrink the current selection. Instead, Alt+Shift+↓ acts like an undo for
the other Alt+Shift combinations.

For example, press Alt+Shift+→ and then Alt+Shift+← to expand the
selection forward, and then backward. Immediately afterward, pressing
Alt+Shift+↓ undoes the most recent backward expansion. Pressing
Alt+Shift+↓ a second time undoes the earlier forward expansion.

If your code contains an error, structured selection may not work. For exam-
ple, try removing the semicolon from the end of a Java statement. Then put
your cursor inside that bad line of code. Pressing Alt+Shift+↑ has no effect.

You can access the same structured selection functions by choosing Edit➪
Expand Selection To on Eclipse’s main menu bar. Personally, I never use this
feature. Instead of navigating a bunch of menu items, I just select text the old-
fashioned way. I drag my mouse across a bunch of Java code.

Figure 6-5:
Pressing

Alt+
Shift+←.

110 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 110

As far as I know, Eclipse doesn’t support the dragging and dropping of editor
text. If I select a line, and then try to drag that line with my mouse, the line
doesn’t move. What a pity!

Folding Your Source Code
At some point, the Java editor becomes cluttered. You have to scroll up and
down to see different parts of a file. You can do several things about this:

� (The most mundane . . .) Enlarge the Java editor by dragging its edges
with your mouse.

� (The fastest . . .) Maximize the Java editor by double-clicking the
editor’s tab.

� (The most elaborate . . .) Jump to different parts of your source file by
selecting Package Explorer branches. (For details, see the section on
linking views and editors in Chapter 3.)

� (The most fun . . .) Fold parts of your code by clicking the arrows on the
editor’s marker bar.

You can fold method bodies, comments, and other Java elements. Figure 6-6
shows some getter and setter methods, with various parts folded and
unfolded. In the figure, notice the little arrows on the editor’s marker bar. A
rightward-pointing arrow represents folded code, and a downward-pointing
arrow represents unfolded code.

Figure 6-6:
Folded and

unfolded
code.

111Chapter 6: Using the Java Editor

11_574701 ch06.qxd 11/29/04 7:40 PM Page 111

Here’s a neat trick. You can see folded code without bothering to unfold it.
Hover your mouse over a rightward-pointing arrow. When you do, you see a
tip containing the folded code. (If you’re not convinced, see Figure 6-7.)

Letting Eclipse Do the Typing
This section is about smart typing — Eclipse’s answer to the evils of bad
punctuation. Smart typing saves you time, makes your code clearer, and
keeps you from worrying about all those nasty braces and dots. It’s like
having a copy editor for your Java code.

Configuring the smart typing options
Before you try this chapter’s smart typing tricks, I ask you to change a few of
the smart typing configuration options.

1. Select the Typing tab of the Java➪Editor page in the Window➪
Preferences dialog.

The wording in Step 1 uses my abbreviated way of describing a part of
the Preferences dialog. For details, see the “Navigating the Preferences
Dialog” section near the start of this chapter.

2. Stare at the huge collection of options on this Typing tab’s page.

Repeat after me. Say “Wow!”

3. Add check marks next to my favorite options.

In case you don’t know, my favorite options are Escape Text When
Pasting into a String Literal, Smart Semicolon Positioning, and Smart
Brace Positioning. (See Figure 6-8.) For some reason, these options are
unchecked by default.

4. Click Apply, and then click OK.

Goodbye, Preferences dialog! See you soon.

Figure 6-7:
A tip

displaying
folded code.

112 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 112

Using smart typing
Are you ready to experience the joy of smart typing? This section walks you
through some of Eclipse’s smart typing tricks.

Before you work your way through this section’s experiments, follow the
instructions in the “Configuring the smart typing options” section.

A few parenthetical remarks
Parentheses, brackets, and braces are very gregarious. They hate being alone.
The tricks in this section ensure that things such as open parentheses never
have to be alone — not even for a few seconds.

1. Create a new Java class.

Some skeletal code appears in the editor.

For help creating a Java class, see Chapter 2.

Figure 6-8:
The Smart

Typing
Preferences

page.

113Chapter 6: Using the Java Editor

11_574701 ch06.qxd 11/29/04 7:40 PM Page 113

2. Type the following text:

static void myMethod(

Eclipse inserts the closing parenthesis. (Notice the Close Brackets and
Parenthesis option in Figure 6-8.)

3. Leaving the cursor inside the parentheses, type an open curly brace.

Eclipse adds the curly brace where it belongs — at the end of the current
line. Eclipse is responding to your Smart Brace Positioning preference
(refer to Figure 6-8).

4. With the cursor still positioned at the end of the method’s header line,
press Enter.

Of course, Eclipse adds a close curly brace and indents your next line of
code appropriately.

When you play with smart brace positioning, keep the following things in mind:

� There are many ways to confuse the smart brace positioning mechanism
in Step 3. If at first this trick doesn’t work, please try again.

� With smart brace positioning turned on, you can still manage those
rare situations in which you need a brace in the middle of a line. Just
type an open brace and then, immediately afterward, press Backspace.
In response to the Backspace, Eclipse undoes smart positioning and
returns the brace to the middle of the line.

� Some people prefer having the open curly brace on a brand new line of
code. Eclipse’s smart brace positioning always seems to put the brace at
the end of the current line. But that’s okay. With a few mouse clicks, you
can reposition all the braces in your code. For details, see the section
pertaining to automatic code formatting in Chapter 8.

Pulling strings apart
As an author and conference speaker, I’m always worried about line length.
Does a line of code fit the page width? Does the line fit conveniently on a
PowerPoint slide? This section’s tips help you manage line length (at least,
when a long string literal is involved).

1. Type the following text:

System.out.println(“

Eclipse closes the quotation mark and the parenthesis. By now, you’re
probably not surprised.

2. Type characters inside the quotation marks.

I don’t know about you, but for this experiment, I typed skdfjaldkfjl
skjdfkjskf. It’s my favorite thing to type.

114 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 114

3. Position your cursor anywhere in the middle of the quoted string.
Then press Enter.

This is so cool! Instead of giving you

System.out.println(“skdfjaldkfj
lskjdfkjskf”)

which is illegal in Java, Eclipse gives you

System.out.println(“skdfjaldkfj” +
“lskjdfkjskf”)

That’s exactly what you want! This neat behavior comes from the default
Wrap Java Strings preference (refer to Figure 6-8).

4. Without moving your cursor, type a semicolon.

Eclipse puts the new semicolon at the end of the current line.

Getting Eclipse to Mark Occurrences
You want to see something cool? I’ll show you something that’s cool. An
Eclipse editor can automatically mark occurrences. When you place your
cursor on a variable name, the editor highlights all occurrences of that name
in the file. (See Figure 6-9.)

Eclipse’s mark occurrences mechanism is pretty smart. For instance, in
Figure 6-9, I selected a constructor’s jobTitle parameter. In the body of the
constructor, Eclipse marks the jobTitle parameter without marking the
class-wide jobTitle field.

Figure 6-9:
Eclipse
marks

occurrences
of the

jobTitle
parameter.

115Chapter 6: Using the Java Editor

11_574701 ch06.qxd 11/29/04 7:40 PM Page 115

By default, Eclipse highlights occurrences in yellow. But you can change the
color by visiting the Workbench➪Editors➪Annotations page of the Window➪
Preferences dialog. (Just select the Occurrences item in that page’s Annotation
Presentation list.)

Marking and unmarking
Eclipse gives you a few ways to turn the mark occurrences mechanism on
and off. For my money, none of these ways is very convenient. (But money
has nothing to do with it. After all, Eclipse is free.)

� Press Alt+Shift+O to toggle between marking and not marking
occurrences.

� Press the Mark Occurrences button on Eclipse’s toolbar to toggle between
marking and not marking occurrences. The button’s icon is the picture of
a yellow highlight marker. (See Figure 6-10.)

� When the Mark Occurrences feature is on, press Alt+Shift+U to tem-
porarily remove the highlighting. The highlighting goes away until you
click another name. (When you move to another name, Eclipse marks all
occurrences of the new name.)

You can pick the kinds of names whose occurrences you want marked. Visit
the Java➪Editor➪Mark Occurrences page of the Window➪Preferences dialog.

Some marking magic
When it comes to marking occurrences, Eclipse has two really cute tricks up
its virtual sleeve.

Figure 6-10:
The hard-to

find Mark
Occur-
rences
button.

116 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 116

� Put your cursor on the return type in a method’s header. Eclipse marks
all exit points in the method’s body. (See Figure 6-11.)

� Put your cursor on the name of a Java exception. Eclipse marks any
method calls that throw the exception.* (See Figure 6-12.)

If your code doesn’t compile because it contains errors, Eclipse’s mark
occurrences mechanism may not work.

Figure 6-12:
Eclipse
marks

statements
that throw a

particular
exception.

Figure 6-11:
Eclipse

marks a
method’s

exit points.

117Chapter 6: Using the Java Editor

* When Erich Gamma unveiled this trick at JavaOne 2004, the session’s atten-
dees applauded.

11_574701 ch06.qxd 11/29/04 7:40 PM Page 117

118 Part II: Using the Eclipse Environment

11_574701 ch06.qxd 11/29/04 7:40 PM Page 118

Chapter 7

Getting Eclipse to Write Your Code
In This Chapter
� Using code assist

� Using templates

� Creating your own templates

My wife and kids say that I never finish sentences. “Hey, Sam,” I
say. “What?” he asks. “I found something that’ll really interest you.

I found . . . ” and then several seconds go by.

“You found what?” he says. “What did you find? Finish the @!&(% sentence!”

It’s a simple process. In the middle of a sentence, my mind wanders and I
become interested in something else. Suddenly, the external world fades to
the background and my internal thoughts dance before my eyes. It’s not my
fault. It’s an inherited trait. My mother used to do the same thing.

If I’m lucky, generations of For Dummies readers will analyze this aspect of my
psyche. “What made Burd’s works so unique was the fact that he wrote sev-
eral books while suffering from disosyllabicmonohypotopia. In Eclipse For
Dummies, Burd admits that he paused more often than he spoke.”

Before you make fun of me, picture yourself sitting in front of a computer. You
start typing a line of Java code, say frame.setBackground(Color. “What
color names are available?” you ask yourself. “Can I use Color.DARKGRAY or
do I need Color.DARK_GRAY? And is it GRAY or GREY? I never could spell that
word. My third grade teacher . . . Hey, what was the name of that kid who
used to bully me?” And so on. Your mind wanders.

If Eclipse could talk, it may say “Color dot what? Forget about third grade and
finish typing the @!&(% statement!” But instead, Eclipse opens a hover tip
containing all the static members of the Color class. How thoughtful of
Eclipse to do such a thing!

12_574701 ch07.qxd 11/29/04 7:42 PM Page 119

Code Assist
Imagine staring at someone, and waiting for him to tell you what to say. I
see my friend George. Then George looks back at me and says “Your choices
are ‘Hello, George,’ or ‘How are things, George?’ or ‘You owe me ten bucks,
George.’” So I say, “You owe me ten bucks,” and before I finish, he says
“George.”

That’s what code assist is like. You may have used code assist with other pro-
gramming languages and with other development environments. The idea is,
you type some incomplete Java code, and then Eclipse tells you all the ways
you can complete it.

Using code assist
What follows are some scenarios using code assist (also known as content
assist). In each scenario, you start by positioning your cursor in the Java
editor section of the Eclipse workbench. Then you type some incomplete
code (maybe a few characters, maybe more). At that point, you want to use
code assist. Here’s how you do it:

1. Press Ctrl+Space or go to Eclipse’s menu bar and choose Edit➪Content
Assist.

A list of possible code completions appears. (See Figure 7-1.)

Figure 7-1:
Eclipse

presents a
list of

possible
code

completions.

120 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 120

2. Double-click whichever completion suits you best.

Alternatively, use the arrow keys to select your favorite completion and
then press Enter.

Eclipse pastes the selected completion into your code, and positions
your cursor at a likely place (that is, at a place where your next key-
stroke is likely to be).

If you’re just browsing through the chapters of this book and aren’t quite
sure yet what all this talk of workbenches and Java editors is about, check
out Chapter 3, where you can get sufficiently enlightened.

The next several paragraphs show you the kinds of things you can do with
code assist. And remember:

“When in doubt, press Control+Space.”

-Barry Burd, author of Eclipse For Dummies

Type names, statements, and other things
Between two statements inside a method body, type the letter i. Then press
Ctrl+Space. Code assist offers to complete the line, with suggestions like int,
the keyword if, an entire if statement, and a myriad of other choices. (Refer
to Figure 7-1.)

Variable names
Declare a variable named accountBalance. Then between two statements
inside a method, type the letter a, followed by Ctrl+Space. Among Eclipse’s
many suggestions, you find your accountBalance variable.

Methods declarations and calls
Declare two methods — void myMethod(int i) and void myMess(String
s, double d). Then, somewhere in the same class, type myM and press
Ctrl+Space.

What you get depends on where you type myM. If you type myM where a
method call belongs, then Eclipse offers to call myMethod or myMess. (See
Figure 7-2.) But if you type myM outside of a method body, Eclipse doesn’t offer
you any choices. Instead, Eclipse declares a new myM method. See Figure 7-3.

By default, when code assist has only one possible suggestion, Eclipse doesn’t
offer you a choice. Instead Eclipse just inserts text based on that one sugges-
tion. You can change this behavior by visiting the Java➪Editor➪Code Assist
page of the Window➪Preferences dialog. Near the top of the page, uncheck
the Insert Single Proposals Automatically box.

121Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 121

Parameter lists
Declare two methods — myMethod(int i) and myMethod(boolean b).
Then, in a place where a method call belongs, type myMethod(. That is, type
myMethod, followed by an open parenthesis. Then press Ctrl+Space. Code
assist offers two versions of myMethod — the int version and the boolean
version.

Create constructors; override method declarations;
implement interface methods
Place the cursor inside a class, but outside of any method. Without typing any
visible characters, press Ctrl+Space. Code assist offers to either create a con-
structor, override an inherited method, or to implement an interface’s method.
For instance, if the class extends java.lang.Object, Eclipse offers to override
clone, equals, finalize, and other Object methods. (See Figure 7-4.)

Notice the large hover tip on the left side of Figure 7-4 — the tip containing
the equals method’s Javadoc comment. Eclipse can show you the Javadoc
comment of whatever method you highlight in the code assist list. Before you
can see this hover tip for a method in the Java API, you have to tell Eclipse
the location of the Java API source files. For details, see Chapter 5.

Figure 7-3:
Eclipse

creates a
new

method.

Figure 7-2:
Eclipse

offers to call
a method.

122 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 122

Sometimes, when I type the letter i, code assist offers to insert an if state-
ment even though my cursor isn’t inside a method body. Of course, if I select
that option, Eclipse duly creates an if statement and I get a syntax error. Oh,
well! Nothing’s perfect — not even code assist.

Generate getter and setter methods
Place the cursor inside a class, but outside of any method. Type the word get,
followed by Ctrl+Space. Code assist offers to create a getter method for any of
your class’s fields. The method even includes an appropriate return statement.

In the getter method department, code assist is very smart. If a field already
has a getter method, code assist doesn’t suggest creating an additional getter.

Of course, everything I say about getters holds true of setters also. To create
a setter method, type set and then press Ctrl+Space. The new setter method
has its own this.field = field statement.

Using code assist in Javadoc comments
When you use Eclipse to write Java code, don’t forget to edit the Javadoc com-
ments (the things that start with /**). Eclipse automatically puts Javadoc
comments in all your new classes. But these default Javadoc comments are
just reminders. They contain almost no information about the code that
you’re writing.

You can add useful information when you edit the Javadoc comments. And as
you edit Javadoc comments, Eclipse’s code assist offers suggestions.

Place your cursor inside a Javadoc comment, and press Ctrl+Space. Eclipse
suggests two kinds of tags — HTML tags and Javadoc tags.

� The HTML tags include things like , <i>, <code>, and so on.

� The Javadoc tags include things like @author, @deprecated, and @see.

Figure 7-4:
Eclipse

offers to
override

methods or
to create a
MyClass

constructor.

123Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 123

In some cases, Eclipse’s suggestions include dozens of tags. In other cases,
Eclipse suggests only a few tags. In a few cases, Eclipse offers no suggestions.
Eclipse tries to suggest tags that are appropriate in context. So the tags
that Eclipse suggests depend on where you place your cursor within the
Javadoc comment.

Filtering code assist suggestions
I don’t know about you, but I never use CORBA. I know what CORBA is because
I hear about it occasionally at Java user group meetings. (It’s a way of getting
diverse applications on different kinds of computers to cooperate with one
another. Isn’t that nice?) Yes, I know what problem CORBA is supposed to
solve. Other than that, I know nothing about CORBA.

So when I invoke code assist, I don’t want to see any CORBA-related sugges-
tions. Here’s how I shield these suggestions from my view:

1. Visit the Java➪Type Filters page of the Window➪Preferences dialog.

2. Click New.

The Type Filter dialog appears.

3. In the dialog’s one and only field, type *CORBA*.

This hides anything from any package whose name contains the upper-
case letters CORBA. It hides things like IDLType from the package
org.omg.CORBA.

4. Click OK.

5. Back on the Type Filters page, make sure that the *CORBA* check
box has a check mark in it.

6. Click OK to close the Preferences dialog.

The previous steps take care of org.omg.CORBA, but what about packages
like com.sun.corba.whatever.whateverelse? In Java, case-sensitivity is
more than just a myth. You can repeat Steps 2 through 4 with the lowercase
expression *corba*, but you can also browse for package names. Here’s how:

1. Visit the Java➪Type Filters page of the Window➪Preferences dialog.

2. Click Add Packages.

The Package Selection dialog appears.

3. Double-click the com.sun.corba entry.

After double-clicking, you’re back to the Type Filters page. The page has
a new com.sun.corba.* entry.

124 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 124

4. Make sure that the com.sun.corba.* check box has a check mark in it.

5. Click OK.

After following these steps, nothing in any of the com.sun.corba pack-
ages appear in your code assist lists.

In addition to filtering code assist suggestions, the steps in this section
filter Quick Fix suggestions. For information on Quick Fix, see Chapter 2.

Auto activation
Sometimes you don’t want to beg Eclipse for code assistance. You want Eclipse
to just “know” that you can use a little hint. And sure enough, Eclipse can pro-
vide hints even when you don’t press Ctrl+Space. This feature is called auto
activation.

Position your mouse at a point where you can make a method call. Then
type the word System, followed by a dot. After a brief pause (whose duration
is customizable), Eclipse offers completions like System.out, System.
arraycopy, System.exit, and so on. Eclipse doesn’t wait for you to press
Ctrl+Space.

The same thing happens with the @ sign in a Javadoc comment. Inside a
Javadoc comment, type @. After a brief delay, Eclipse suggests @author,
@deprecated, and so on.

You can customize the way auto activation works. Visit the Java➪Editor➪
Code Assist page of the Window➪Preferences dialog.

� Check or uncheck the Enable Auto Activation box.

� Change the Auto Activation Delay from 500 milliseconds (half a second)
to some other duration.

� Change the triggers.

Notice the little dot in the Auto Activation Triggers for Java box.

• If you insert a plus sign as in Figure 7-5, Eclipse auto activates code
assist whenever you type a plus sign in the editor.

• If you insert a blank space into the Auto Activation Triggers for
Java box, Eclipse auto activates code assist whenever you type a
blank space in the editor.

For your own sanity, insert the blank space immediately before the
dot in the Auto Activation Triggers for Java box. A blank space after
a dot looks exactly like nothing after a dot. If you put the blank space
after the dot, you may wonder later why Eclipse is being so aggres-
sive with auto activation.

125Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 125

With a bit more fiddling, you can auto activate code assist for method call
parameter lists. Here’s how:

1. Visit the Java➪Editor➪Code Assist page of the Window➪Preferences
dialog.

2. Add the open parenthesis character to the Auto Activation Triggers
for Java box. (See Figure 7-6.)

At this point, you may think you’re done. But you’re not. If you don’t
tweak another setting, the auto activation feature for open parenthesis
doesn’t work.

3. Switch to the Typing tab of the Java➪Editor page. In the collection of
options, uncheck the Close Brackets and Parenthesis box.

Auto activation for open parenthesis works only if Eclipse doesn’t close
the parenthesis for you.

Templates
I remember my first paint-by-numbers experience. How relaxing it was! I
painted a cat playing with a ball of yarn. Don’t tell me that I just filled in
someone else’s color pattern. I felt as if I’d created a work of art!

Figure 7-6:
Adding an

open
parenthesis
to the auto
activation

triggers.

Figure 7-5:
Changing

the auto
activation

triggers.

126 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 126

Ah, those were the good old days. Do they even make those paint-by-numbers
sets anymore? I suppose I can check my local crafts store, but that’s too
much physical effort. Instead, I can stay at home and paint online. I visit www.
segmation.com and start filling in the colors with my mouse. The Web site
uses a Java applet to create point-and-click pictures. And with Java running
on my computer, I can convince myself that I’m working!

So what gives? Why this sudden interest in paint by numbers? The answer is
simple. I’m writing about Eclipse templates, and templates remind me of paint-
ing by numbers. With a template, you create code by filling in the blanks. Some
blanks match up with other blanks (like two colored regions containing the
same number).

At first, you think you’re cheating. Eclipse writes most of the code for you, and
then you add a few names of your own. But you’re not cheating. Templates add
consistency and uniformity to your code. Besides, templates relieve the pro-
gramming drudgery. They help you focus your attention on things that really
matter — the design and logic of your application.

Eclipse comes with about 40 of its own ready-made templates. You can change
any of these ready-made templates, or add new templates to suit your needs.
The next section tells you how to use templates (the templates that Eclipse
provides and any templates that you create on your own).

Using templates
To activate a template, type the first few letters of the template’s name, and
then press Ctrl+Space. (The Ctrl+Space key combination does double-duty.
This combination invokes both code assist and templates.) Here are some
examples.

Adding a main method
Put your cursor at a place in your code where you can declare a new method.
Type the letters ma, and then press Ctrl+Space.

Among other things, Eclipse offers to apply a main method template. This
template adds a skeletal main method to your code. (See Figures 7-7 and 7-8.)

Figure 7-7:
Eclipse

suggests
adding a

main
method.

127Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 127

Writing to System.out
Put your cursor at a place in your code where you can call a method. Type
the letters Sys or sys, and then press Ctrl+Space.

Among Eclipse’s suggestions, you find sysout - print to standard out.
If you select this suggestion, Eclipse adds a System.out.println call to
your code.

Automatic insertions
Put the cursor at a place in your code where you can call a method. Type the
letters sysout, and then press Ctrl+Space.

Eclipse doesn’t bother to ask you what you want. There’s only one template
named sysout, so Eclipse immediately adds a call to System.out.println
to your code.

You can suppress this automatic insertion behavior, but you have to sup-
press it for both templates and code assist. (You can’t suppress one without
suppressing the other.) Visit the Java➪Editor➪Code Assist page of the
Window➪Preferences dialog. Near the top of the page, uncheck the Insert
Single Proposals Automatically box.

Narrowing choices as you type
Put the cursor at a place in your code where you can call a method. Type the
letters sy, and then press Ctrl+Space.

Eclipse’s suggestions include things like symbol, synchronized, and (way
down on the list) sysout.

Instead of selecting a suggestion, type the letter s, and watch the list’s choices
suddenly narrow. The list includes words starting with sys — words like
System, syserr, sysout, and so on.

Figure 7-8:
Eclipse
creates
a main

method
from a

template.

128 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 128

Don’t select a suggestion yet. Instead, type the letter o. Now the only sugges-
tion is sysout — the System.out.println() template. When you press
Enter, Eclipse adds System.out.println() to your code.

The narrowing-as-you-type trick works with both templates and code assist.

Using template edit mode
Put the cursor at a place in your code where you can create a for statement.
Type the letters for, and press Ctrl+Space.

Eclipse offers several choices, with at least three choices to create for loops.
In this example, choose for - iterate over collection. Eclipse pastes an
elaborate bunch of text, rectangles, and boxes into your code. Congratulations!
You’re in template edit mode. (See Figure 7-9.)

In Figure 7-9, the rectangles and boxes are placeholders. Squint for a long
time at Figure 7-9, and you can see that the cursor is planted firmly inside the
first iter box. The word iter is a placeholder for any variable name that
you type. While you type a variable name, Eclipse substitutes that name for
every boxed occurrence of the word iter. That’s so cool! You type the vari-
able name once, and Eclipse populates the rest of the loop with copies of that
name. It’s like paint-by-numbers (except in this case, it’s create-identifiers-by-
placeholders).

You can click anywhere among the boxes and start editing. Eclipse copies
anything you type into boxes of the same name. You can type characters,
backspace, left-arrow, right-arrow, all that stuff.

You can also move among the boxes by pressing Tab and Shift+Tab. Press-
ing Tab moves you to the next box; pressing Shift+Tab moves you to the
previous box.

You can keep tabbing and typing, tabbing and typing. Finally, you reach the
element box in Figure 7-9. After filling in the element box, you press Tab
one more time. In response to your Tab, the cursor jumps to the vertical line
that’s immediately beneath the type box. This vertical line marks the place
where you add statements to the body of the for loop.

Figure 7-9:
Template

edit mode.

129Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 129

At this point, any character that you type forces Eclipse out of template edit
mode. The boxes disappear. All the names in boxes turn into plain old text.
(Well, as much as anything in Eclipse’s editor is plain old text, these names
become plain old text.)

You can bail out of template edit mode before filling in all the boxes. Just
press Enter or Esc. Pressing Enter jumps your cursor to the little vertical line
(the place in the text where you would normally stop being in template edit
mode). Pressing Esc leaves your cursor where it is, and gets rid of all the
funny-looking placeholder boxes. Alternatively, you can click your way out
of template edit mode. Click anywhere outside of a rectangle or box and tem-
plate edit mode is gone.

Creating your own template
If you don’t like the templates that come with Eclipse, no problem. You can
change any of the pre-written templates, or create templates of your own.
For example, I occasionally write code that looks like this:

int i = 0;
while (i < 100) {

//Do something with i
i++;

}

I want a template for a while loop with a manual counter. When I type the
word while and press Ctrl+Space, I want to see a while loop with
counter choice, as in Figure 7-10.

Then, if I select the while loop with counter template, I want the text and
placeholders shown in Figure 7-11.

Figure 7-10:
Invoking a
user-made

template.

130 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 130

According to Eclipse’s official terminology, the template in Figure 7-11 has
java context. In fact, each template has one of two possible contexts — the
javadoc or java context. When you’re editing a source file, and you press
Ctrl+Space, Eclipse examines each template’s context. If you’re editing a
Javadoc comment, Eclipse offers to apply templates that have javadoc con-
text. When you select one of these templates, Eclipse applies the template to
your source code.

Look again at the while loop template in Figure 7-11. A while loop doesn’t
belong inside a Javadoc comment. So if you’re editing a Javadoc comment,
and you press Ctrl+Space, Eclipse doesn’t offer to apply this while loop tem-
plate. Eclipse knows not to suggest any while loop templates because none
of the while loop templates have javadoc context. (All the while loop tem-
plates have java context.)

With all that stuff about context in mind, you’re ready to create a new tem-
plate. Here’s what you do:

1. Visit the Java➪Editor➪Templates page of the Window➪Preferences
dialog.

2. On the right side of the page, click New.

The New Template Wizard appears. (See Figure 7-12.)

Figure 7-12:
The New
Template

Wizard.

Figure 7-11:
A new

while-
loop

template.

131Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 131

3. Create a name for your template.

In Figure 7-12, I typed the name while. Eclipse already has other tem-
plates named while, but that’s okay.

Eclipse uses template names to decide which templates to include in a
hover tip. For example, in Figure 7-10 I typed the word while and then
pressed Ctrl+Space. In response, Eclipse offers five suggestions. The last
four suggestions represent four different templates — each with the
same name while. (The first suggestion is part of Eclipse’s plain old code
assist mechanism.)

4. Set the context for your template.

If you do nothing in this step, the context is javadoc.

In this example, you create a while loop template. Because a while
loop doesn’t normally belong inside a Javadoc comment, you change the
context from javadoc to java. (Refer to Figure 7-12.)

5. Create a description for your template.

In Figure 7-12, I typed the description while loop with counter. The
description is important. The description shows in the hover tip. The
description also distinguishes this template from any other templates
with the same name. (Refer to Figure 7-10. Each of the templates named
while has its own unique description.)

6. Type a pattern for your template.

In this example, type the stuff in the Pattern field of Figure 7-12. The pat-
tern is a mini-program, telling Eclipse what to do when someone selects
the template. The pattern can include template variables to mark impor-
tant parts of the text. Each template variable is a dollar sign, followed by
a word in curly braces.

When someone uses your template, many of the template variables
become placeholders for plain old Java names or variables. For instance,
Figure 7-12 has a template variable named ${counter}. In Figure 7-11,
when someone uses this template, the word counter becomes a place-
holder for what eventually becomes a Java variable name.

Don’t let the curly braces seduce you into using blank spaces. A template
variable’s name must not contain blank spaces.

7. Click OK.

Eclipse returns to the Preferences dialog.

8. In the Preferences dialog, click OK.

9. Test your new template.

In the Java editor, type all or part of the word while, and then press
Ctrl+Space. Make sure that you get the behavior that’s pictured in
Figures 7-10 and 7-11.

132 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 132

Creating new template variables
The rules governing the names of template variables aren’t complicated.
Here’s a summary:

� You can make up any name on the spot, as long as the name doesn’t
conflict with an existing name.

For instance, Eclipse has a pre-defined ${year} template variable. If you
use the name year, Eclipse inserts 2004 (or 2005, or whatever).

� You can make up a name, and use that name more than once in the
same template pattern. Eclipse keeps identically named placeholders
in sync during template edit mode.

For instance, in Figure 7-11, if you type something in any of the counter
boxes, then Eclipse copies what you type to the other two counter boxes.

� If you make up a name, you don’t have to use that name more than
once in the same template pattern.

In Figure 7-12, I make up the name ${limit}, and I use the name only
once. That’s just fine. In template edit mode, I can tab to the limit
placeholder. (Refer to Figure 7-11.) When I type in the limit box, Eclipse
doesn’t copy my typing to any other boxes.

� You can mix and match variables in a template pattern.

For instance, in a particular template pattern you can use ${myFirstVar}
once, use ${mySecondVar} twice, and use ${myThirdVar} ten times.
When you’re in template edit mode, Eclipse keeps the two mySecondVar
placeholders in sync with each other, and keeps all ten myThirdVar place-
holders in sync with one another.

Some special template variables
Eclipse has a bunch of predefined template variables. To see a list of these
variables, type a dollar sign in the Pattern field of the New Template Wizard.
(See Figure 7-13.) If, for some reason, you don’t like typing dollar signs, you
can get the same list by clicking the wizard’s Insert Variable button.

Figure 7-13:
Get help

selecting a
predefined

template
variable.

133Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 133

Many of Eclipse’s pre-defined template variables have self-explanatory
names. For instance, Eclipse substitutes the name of a package in place of
the ${enclosing_package} template variable. In place of the ${date}
template variable, Eclipse writes something like Aug 22, 2004.

Some other pre-defined template variables are a little more interesting. Here’s
a brief list:

� The ${cursor} template variable marks the spot where template edit
mode ends.

For example, the do template’s pattern looks like this:

do {
${line_selection}${cursor}

} while (${condition});

When you type do and then press Ctrl+Space, you see the stuff in Figure
7-14. The vertical line (above the i in while) marks the place where the
${cursor} template variable lives.

At first, Eclipse positions the cursor in the condition box. You type a
condition and then press Tab. With the pressing of Tab, Eclipse moves
the cursor to the little vertical line and gets ready for you to type a state-
ment or two. As soon as you start typing statements, Eclipse stops being
in template edit mode.

A template’s pattern can contain only one occurrence of the ${cursor}
template variable.

� The ${line_selection} template variable marks text that you can
surround.

Look again at the previous example’s do template. If you select a bunch
of statements and then press Ctrl+Space, Eclipse offers to apply the do
template. (See Figure 7-15.) Eclipse makes this offer because of the
${line_selection} template variable in the do template’s pattern.

If you select the do template in Figure 7-15, you get the result shown in
Figure 7-16. Eclipse substitutes whatever statements you selected for the
template’s ${line_selection} variable.

Figure 7-14:
The do

template in
action.

134 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 134

� The ${word_selection} template variable marks text that you can
surround.

Take, for instance, the template:

${word_selection}${}${cursor}

If you select a part of a line and then press Ctrl+Space, Eclipse offers to
apply the template. (See Figure 7-17.) Eclipse makes this offer because
of the ${word_selection} template variable in the template’s pat-
tern. The template surrounds part of a line with a pair of HTML bold
tags. (See Figure 7-18.)

Figure 7-17:
Eclipse

offers to
apply the

template.

Figure 7-16:
Your code,

after
application

of the do
template.

Figure 7-15:
Surrounding
statements.

135Chapter 7: Getting Eclipse to Write Your Code

12_574701 ch07.qxd 11/29/04 7:42 PM Page 135

But wait! Haven’t you seen all this before? The ${word_selection} and
${line_selection} template variables behave almost the same way.
What’s the difference?

When you press Ctrl+Space, Eclipse asks itself how much text is
selected. If the selected text includes an entire line (or extends from
one line to another), then Eclipse suggests templates containing the
${line_selection} variable. But if the selected text is only part of a
line, Eclipse suggests templates containing the ${word_selection}
variable.

The ${line_selection} and ${word_selection} template variables
are good for afterthoughts — things you think of adding after you’ve
already written a piece of code. I generally know when I’m about to
create a loop, so I seldom select statements and apply the do template.
But I often realize after the fact that I need to enclose statements in
a try block. In such situations, I apply the try template with its
${line_selection} variable.

� The empty ${} template variable stands for a placeholder that ini-
tially contains no text.

Compare the pattern for the template with the result in Figure 7-18.
The figure has two vertical lines:

• One line marks the place where the cursor lands immediately
after you select the template.

That’s where the template’s empty variable lives.

• The other line marks the place where Eclipse ends template edit
mode.

That’s where the template’s ${cursor} variable lives.

When you use the template, the empty variable positions the cursor
immediately after your text selection. That way, you can easily add to
whatever text is between the and tags. Then, when you press
Tab, the ${cursor} template variable takes you past the tag.

What happens if a template contains more than one empty template
variable? Then any text that you type in one of the empty placeholders
copies automatically into all the other empty placeholders. For example,
after applying the template with pattern 1.${} 2.${} 3.${}, you see
the text 1. 2. 3.. Then, if you type the letters abc, Eclipse turns it into
1.abc 2.abc 3.abc.

Figure 7-18:
Application
of the

template.

136 Part II: Using the Eclipse Environment

12_574701 ch07.qxd 11/29/04 7:42 PM Page 136

Chapter 8

Straight from the Source’s Mouse
In This Chapter
� Creating beautiful code with only a few mouse clicks

� Rearranging fields and methods

� Creating import declarations effortlessly

If you watch enough science fiction, you see people controlling things by
grabbing holographic images. People design space ships by moving parts of

wire-frames in three-dimensional, virtual-reality rooms. Other people control
the space ships by moving transparent images on a glossy panel. It reminds me
of the kinds of things you do with Eclipse’s Source menu. Instead of touching
your own code, you move imaginary code fragments by choosing Source menu
actions. It’s very high tech (and it makes Java coding a lot easier).

Eclipse’s Source menu contains about 20 different actions. Each action is
useful in one situation or another. This chapter covers about half of the
Source menu’s actions. (Chapter 9 covers most of the remaining Source
menu actions.)

Coping with Comments
I’m a self-proclaimed pack rat. I never throw anything out until I’m absolutely
sure that I’ll never need it again. (At home, it’s a wonder that I ever take trash
to the curb for pickup.) So when I find some troubling code, I don’t delete it
right away. Instead, I comment out the code.

This section shows you how to comment and uncomment code easily.

13_574701 ch08.qxd 11/29/04 7:40 PM Page 137

Slash that line
If you’ve ever tried to comment out code using a plain old text editor, you
know how cumbersome the job can be. If you use two slashes to create a //
style comment, then the slashes apply to only one line of code. To create
several // style comments, you have to type // on each line. How tedious!

As an alternative to Java’s // style comment, you can create block comments
(comments that begin with /* and end with */). But once again, you can be in
for a long, difficult ride. Block comments don’t nest inside one another very
easily. So when block comments shrink and grow, you have to micromanage
the placement of /* characters and */ characters. It’s really annoying.

Thank goodness! You no longer use a plain old text editor. Instead, you use
Eclipse. To turn an existing line of code into a // style comment, place your
cursor anywhere on the line and choose Source➪Toggle Comment. Do the
same to remove the // characters from the start of a line of code.

To change several lines of code at once, select a bunch of lines and then
choose Source➪Toggle Comment.

No matter where you place your cursor, choosing Toggle Comment changes
an entire line of code. If you start with

// for (int i = 0; i < myArray.length; i++) {

and then apply Toggle Comment, you end up with

for (int i = 0; i < myArray.length; i++) {

But if you start with

for (int i = 0; i < myArray.length; i++) { //main loop

and then apply Toggle Comment, you end up with

// for (int i = 0; i < myArray.length; i++) { //main loop

Block those lines
To surround any text with /* and */ characters, select the text and then
choose Source➪Add Block Comment. This trick operates on characters, not
on lines or statements — which can lead to problems. For example, if you
select just the characters ut.prin in the line

138 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 138

System.out.println();

and then choose Source➪Add Block Comment, you get

System.o/*ut.prin*/tln();

Of course, such a nasty commenting job is easy to fix. Just select all the
System.o/*ut.prin*/tln(); text, and choose Source➪Add Block Comment
once again. (Eclipse removes the original /* and */ characters before creating
a properly placed block comment.)

To get rid of an existing block comment, position your cursor anywhere
inside the comment, and then choose Source➪Remove Block Comment.

Formatting Code
Nothing is more difficult to read than poorly formatted code. (No, not even
Thomas Pynchon’s Gravity’s Rainbow is that difficult to read.) Compared with
poorly formatted code, well-formatted code feels like light, bedtime reading.
When formatting is consistent, your eyes know immediately where to look.
You can see program blocks at a glance. You take in the logical landscape
with one grand pass.

Consistent code formatting is an ideal that some programmers never achieve.
When I write code by hand, my rules tend to drift. One hour I’m using blank
spaces; the next hour I’m not. I try to remember, but I have other things on
my mind. (With any luck, program logic is one of the important things on my
mind.)

So here’s how I use Eclipse. I write code in a reasonably consistent style with-
out being obsessive about it. I try to keep things organized so that I know
where I am in the general flow, but I don’t worry too much about spacing and
other things. Then, once in a while, I use Eclipse’s formatting feature. I choose
Source➪Format on Eclipse’s menu bar. Eclipse rearranges the active editor’s
code according to my preferred style rules.

And what, you ask, are my preferred style rules? Are they the same as your
preferred style rules? Well, it doesn’t matter. If you don’t like mine, you can
use your own. And if you don’t have rules of your own, you can use Java’s
official recommended rules.

139Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 139

Eclipse’s Format menu actions
Listing 8-1 shows you what I have before Eclipse formats my code.

Listing 8-1: Ugly Code

package com.
allmycode.io;

/**
* @author bburd

*/public class EndOfFileChecker
{public static boolean

isEndOfFile (String fileName){FileState
fileState=DummiesIO.open(fileName) ;
while(fileState.tokenBuffer==null){DummiesIO
. fillTokenBuffer(fileState); } return
fileState.isAtEOF ;}}

Listing 8-1 is awful. With Listing 8-1, I can’t see the code’s structure at a glance. I
can’t easily see that the class contains a method, and that the method contains
a single while statement.

That’s enough for Listing 8-1! Listing 8-2 shows what I have after Eclipse
formats my code.

Listing 8-2: Lovely Code

package com.allmycode.io;

/**
* @author bburd
*
*/
public class EndOfFileChecker {

public static boolean isEndOfFile(String fileName) {
FileState fileState = DummiesIO.open(fileName);
while (fileState.tokenBuffer == null) {

DummiesIO.fillTokenBuffer(fileState);
}
return fileState.isAtEOF;

}
}

140 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 140

The formatted version in Listing 8-2 is much better. I can see all the code’s
structure in Listing 8-2. There’s no doubt about it. Well-formatted code is less
expensive. People spend less time and money maintaining easy-to-read code.

Eclipse offers two ways to format your Java source code: Format and Format
Element.

The Format action
When you choose Source➪Format, Eclipse formats an entire file or a whole
bunch of files at once. It depends upon the focus.

And where is your focus? Is the focus squarely on the editor? If so, then choos-
ing Source➪Format affects code in whatever file you’re currently editing.

And what about the old Package Explorer? Is the focus on a branch of the
Package Explorer? If so, then Source➪Format affects all Java files in that
branch. (For example, if you select a package’s branch, then Source➪Format
affects all files in the package.)

In fact, by using the Package Explorer you can quickly format a whole bunch
of files. The files don’t even have to live in the same project. Just do whatever
you normally do to select more than one branch of the tree. In Windows and
in many flavors of Linux, use Ctrl+click to add a branch to your selection. Use
Shift+click to extend your selection from one branch to another (including all
branches in between). After selecting a bunch of branches, choose Source➪
Format.

Whenever I ask Eclipse to format my code I always finish up by choosing
File➪Save. Sometimes the Save action is grayed out, but I don’t care. I try
clicking the Save option anyway. When it comes to saving or not saving my
source code, I’d rather err on the side of “SAVE-tee.” (Groan!) I remember so
many times when I thought I had no need to save the code. I thought Eclipse’s
Format action didn’t change my code at all. But I was wrong. The Format
action deleted blank spaces at the end of a line, or made some other changes
that were difficult to see. So the code on my hard drive wasn’t up to date, and
Eclipse interrupted with all kinds of Save Resources dialogs. So take my
advice, and always Save after you Format.

The Format Element action
When you choose Source➪Format Element, Eclipse formats whatever piece
of code contains your cursor.

For instance, if I put my cursor somewhere inside the while loop in Listing 8-1,
I get partially formatted code. (See Listing 8-3.)

141Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 141

Listing 8-3: Half Ugly (or Half Lovely) Code

package com.
allmycode.io;

/**
* @author bburd

*/public class EndOfFileChecker
{

public static boolean isEndOfFile(String fileName) {
FileState fileState = DummiesIO.open(fileName);
while (fileState.tokenBuffer == null) {

DummiesIO.fillTokenBuffer(fileState);
}
return fileState.isAtEOF;

}}

Eclipse formats the enclosing element (the isEndOfFile method) but not
the entire Java source file.

The Format Element action is handy when most of the code is exactly the
way I want it. For instance, I have a program that works fine, but that needs
a few additional statements. I add the statements, and then call Source➪
Format Element on those statements. I don’t want Eclipse to mess with the
entire source file, so I choose Format Element instead of plain old Format.

If you try to get Eclipse to format code that contains syntax errors, the for-
matting probably won’t work.

142 Part II: Using the Eclipse Environment

Java elements
To get the formatting shown in Listing 8-3, I
place my cursor inside the while statement.
So why doesn’t Eclipse format only this while
statement? Why does Eclipse format the entire
isEndOfFile method?

The answer is, Eclipse has a list of things that it
calls Java elements, and statements aren’t in
that list. Instead, the list includes things like
classes, import declarations, fields, and meth-
ods. When I place the cursor inside the while

loop and choose Source➪Format Element,
Eclipse looks for the smallest enclosing ele-
ment. In Listing 8-1, that element happens to be
the isEndOfFile method.

To find out more about what Eclipse calls (and
doesn’t call) a Java element, read the Eclipse
API Javadoc’s IJavaElement page. You can find
the Eclipse API Javadocs at www.jdocs.
com/eclipse/3.0/api/index.html.

13_574701 ch08.qxd 11/29/04 7:40 PM Page 142

Eclipse’s Format actions change the look of your code, but they don’t check
the code’s content for subtle stylistic errors. They don’t look for unnecessary
if statements, duplicate string literals, empty catch blocks, and other such
things. To apply such rigorous style tests, use a third-party plug-in. The plug-
in that I recommend is called PMD. For more information (which doesn’t
include the origin of the three-letter PMD name) see Chapter 17.

Configuring Eclipse’s formatting options
For many years I put open curly braces on separate lines of code. I wrote
code like this:

if (amount < 100.00)
{

Then one day I read the official Code Conventions for the Java Programming
Language document. (I found the document by visiting java.sun.com/docs/
codeconv.) This document told me not to put open curly braces on separate
lines. According to the document, I should write code like this:

if (amount < 100.00) {

Okay. Now I know. But what if my style preferences differ slightly from the
official rules? (Worse yet, what if my boss’s style preferences differ slightly
from the official rules?) What’s an Eclipse user to do?

The answer is simple. You can customize the way Eclipse formats your code.
Just follow these steps:

1. Visit the Java➪Code Style➪Code Formatter page of the Window➪
Preferences dialog.

A page like the one in Figure 8-1 appears on your screen.

For details about visiting the Preferences dialog, see Chapter 6.

2. Click New.

The New Code Formatter Profile Wizard appears. (See Figure 8-2.)

With Eclipse, you don’t change the formatting settings willy-nilly. Instead,
you combine settings to create a profile. Because each profile has a name,
you can easily switch back and forth among profiles.

By default, Eclipse uses the Java Conventions formatting profile. (The
profile is based on the Code Conventions for the Java Programming
Language document. I mention the document at the beginning of this
section.) In this example, your new profile maintains most of the Java
Conventions rules. Like the old Java Conventions profile, your new pro-
file indents lines by exactly four spaces, puts one blank line between
method declarations, and so on.

143Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 143

But your new profile makes some adjustments for open curly braces.
Unlike the old Java Conventions profile, your new profile puts certain
curly braces on lines of their own.

Back to the New Code Formatter Profile Wizard . . .

3. In the Profile Name field, type a name.

In Figure 8-2, I typed My New Formatting Profile. The Initialize Settings
with the Following Profile field tells Eclipse that my new profile is to be
almost like the existing Java Conventions profile.

Figure 8-2:
The New

Code
Formatter

Profile
Wizard.

Figure 8-1:
The Code
Formatter

page of
Eclipse’s

Preferences
dialog.

144 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 144

4. Click OK.

. . . at which point Eclipse opens an enormous and glorious Edit Profile
dialog.

5. Select a tab in the Edit Profile dialog.

In this example, I selected the Braces tab. (See Figure 8-3.)

6. Make changes on the left. See the effects of your changes in the
Preview pane on the right.

In the Constructor Declaration box in Figure 8-3, I selected the Next Line
option. The instant I make this selection, the curly brace after Example()
jumps down to the beginning of the next line in the Preview pane.

The same kind of thing happens with my ‘switch’ statement selec-
tion. I selected Next Line Indented. Immediately, in the Preview pane, the
curly brace after switch (p) jumps downward and four spaces to the
right. (Of course, you can control the number of indentation spaces.
That’s part of the Edit Profile dialog’s Indentation tab.)

Figure 8-3:
The Braces

tab of the
Edit Profile

dialog.

145Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 145

7. In the Edit Profile dialog, click OK.

8. In Eclipse’s all-encompassing Preferences dialog, click OK.

Back in the workbench, you can choose Source➪Format. Eclipse pretties
up your program according to your new code formatter profile.

For more information about Eclipse’s placement of curly braces, see the sec-
tion on smart typing in Chapter 6.

146 Part II: Using the Eclipse Environment

I give up. What effect does that
formatting option have?

In the Edit Profile dialog, some selections have
no effect on the Preview pane’s puny code
example. For instance, in the Blocks box of
Figure 8-3 I selected the Next Line on Wrap
option. (In the figure, it looks like Next Line on
Wra, or something like that.) Anyway, when I
change from Same Line to Next Line on Wrap, I
see no difference in the Preview pane’s code. I
figure this selection has something to do with
line wrapping, but I don’t know the details. I find
nothing about this option in Eclipse’s documen-
tation, and a Web search for the phrase Next
Line on Wrap comes up completely empty.

So to figure out what Next Line on Wrap means,
I performed some experiments. I created a new
profile that’s almost exactly like the Java
Conventions profile. The only difference is, my
new profile doesn’t use the Same Line option.
Instead, my new profile uses Next Line on Wrap.

I jumped back and forth from Java Conventions
to my new profile, making slight changes to my
code as I go. At first, the two profiles produce
the same formatting results. But after a while, I
stumble on a difference in the two profiles’
behaviors.

The Edit Profile’s Line Wrapping tab has a
Maximum line width field. By default, this field’s

value is 80. If a line of code is 80 characters long
or longer, then the formatter breaks the line in a
convenient place. (This line breaking is fairly
smart. Eclipse doesn’t break at any old blank
space. Instead, Eclipse looks for a logical place
to break the line of code.)

My Next Line on Wrap profile tries hard to keep
a curly brace on the same line of code. But the
two goals — having a maximum line width and
keeping a curly brace on the same line — can
conflict with one another. If a line becomes very
long, and the best place for the break is just
before the curly brace, which rule wins? I tested
each profile’s rules on a line like

while
(booleanVariableThatMakesThe
Line81CharactersLong) {

The Java Conventions profile, with its Same
Line rule, leaves the curly brace in the 81st posi-
tion. The profile refuses to wrap the curly brace
to the next line, even if it means violating the
maximum line width rule. But my Next Line on
Wrap profile drags the curly brace to a new line,
giving the maximum line width rule precedence
over keeping the brace on the same line.

13_574701 ch08.qxd 11/29/04 7:40 PM Page 146

Fixing indentation
Not long ago, I was preparing code for an hour-long presentation. For my spe-
cial audience I needed certain oddball style conventions. I didn’t have time to
configure Eclipse’s formatting preferences. (To be honest, I had neither time
nor interest, but that’s another story.) Halfway through the preparation, I
realized that I’d messed up the code’s indentation. (Somewhere in the middle
of a big source file, I had forgotten to press the spacebar. From that point
downward, everything was slightly misaligned.)

For this situation (and for similar situations), I choose Source➪Correct
Indentation. The Correct Indentation option doesn’t mess with things like line
wrapping, blanks between operators, or braces staying with their header
lines. Instead this option moves entire lines sideways.

As a case study, consider the code in Listing 8-4. If you select the entire main
method, and then choose Source➪Correct Indentation, Eclipse moves the
public static void main line. You end up with the nicely indented code
in Listing 8-5.

Listing 8-4: Poorly Indented Code

public class SecondClass {

public static void main (String[] args)
{

//Well formatted code?
}

}

Listing 8-5: Nicely Indented Code

public class SecondClass {

public static void main (String[] args)
{

//Well formatted code?
}

}

Eclipse may not be completely happy with Listing 8-5. (The placement of
parentheses and braces violates the default style conventions.) But Eclipse
is willing to live with the code in Listing 8-5. After all, you chose Correct
Indentation. You didn’t ask for a complete reformatting.

147Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 147

When you select code, and apply Source➪Correct Indentation, Eclipse uses any
unselected code as a baseline. Look again at Listing 8-4, and imagine that you
select only three lines. You select the comment and the curly braces before and
after the comment. (Your selection doesn’t include the main method header.)
What happens when you choose Source➪Correct Indentation? Eclipse uses the
method header as a guide, and indents the three selected lines accordingly.
(See Listing 8-6.)

Listing 8-6: Strangely Indented Code

public class SecondClass {

public static void main (String[] args)
{

//Well formatted code?
}

}

After seeing the kind of code that’s in Listing 8-6, you may realize that you
goofed. You want the method header to move toward the braces, and not the
other way around. But that’s okay. You still have a good baseline. The first
line in Listing 8-6 is properly aligned, so select everything except that first
line, and then choose Source➪Correct Indentation. In response, Eclipse
moves the main method leftward, giving you the code in Listing 8-5.

Shifting lines of code
In the previous section, Eclipse fixes indentation automatically while you do
other code formatting manually. In this section, even more of the burden is
on you. (That’s okay. Think of it as a form of empowerment.)

Put your cursor on a line of code, or select a chunk of code in the editor. Then,
when you choose Source➪Shift Right, Eclipse moves lines rightward by a pre-
determined amount. But wait! What’s a “predetermined amount?”

The answer comes from a few different Preferences pages. To make things
confusing, the options on these pages seem to overlap one another. These
options include the Insert Spaces for Tab check box and the Tab Size field.
To find these options, follow a few simple steps:

1. In the Window➪Preferences dialog, visit the Java➪Editor page.

2. On the Editor page, select the Appearance tab.

The Displayed Tab Width field lives on this Appearance tab page. (See
Figure 8-4.)

148 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 148

3. Without leaving the Editor page, select the Typing tab.

The Insert Spaces for Tab check box is on this Typing tab page. (See
Figure 8-5.)

4. Leave the Editor page and move to the Java➪Code Style➪Code
Formatter page.

5. On the Code Formatter page, click Show or Edit (whichever button
appears).

6. On the resulting Show Profile or Edit Profile dialog, select the
Indentation tab.

The Tab Size field and the Use Tab Character check box live on this
Indentation tab page. (See Figure 8-6.)

Figure 8-6:
The Tab Size
field and the

Use Tab
Character

check box.

Figure 8-5:
The Insert

Spaces for
Tab check

box.

Figure 8-4:
The

Displayed
Tab Width

field.

149Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 149

Here’s how these options affect the behavior of Source➪Shift Right:

if Insert Sspaces for Ttab is unchecked
Eclipse inserts a tab.
//Take whatever number is in the Displayed Ttab Wwidth
//field. The tab looks like that number of spaces.

else
Eclipse inserts the number of spaces in
the Tab Ssize field.

Notice that the Use Tab Character check box in Figure 8-6 has no effect on
shifting. The Use Tab Character check box affects only the Source➪Format
and Source➪Format Element actions.

With all the noise in this section about the Shift Right action, you’re probably
feeling nonchalant about Shift Left. When you choose Source➪Shift Left,
Eclipse eliminates tabs or spaces from the beginnings of your selected lines.

One strange thing can happen with the Shift Left action. Suppose you select
ten lines of code, and one of these lines starts with only three blank spaces.
(This three space gap is smaller than the value 4 in the Tab Size field. See
Step 6 in this section’s instructions.) In this situation, choosing Source➪Shift
Left has no effect. None of the selected lines get shifted. Oh, well!

A line of code can contain both tabs and blank spaces. If you don’t know
which you have, things can become really confusing when you choose Shift
Right or Shift Left. Unfortunately, the editor in Eclipse Version 3.0 provides no
way to display tabs or spaces as visible characters.

Sorting Members
I don’t have much to say about the Source➪Sort Members action. When you
choose this menu option, Eclipse rearranges the things inside your Java
class’s source code. (By “things” I mean fields, initializers, constructors,
methods, and inner classes.) Sorting things in an agreed upon order makes
code much easier to maintain.

You can change which things Eclipse puts before which other things. Just
visit the Java➪Appearance➪Sort Members Order page of the Window➪
Preferences dialog. Select an item in either of the page’s lists, and press the
corresponding Up or Down button.

150 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 150

All other things being equal, Eclipse sorts things in alphabetical order.
For example, with the boolean isClosed and double accountBalance
fields, Eclipse moves the accountBalance declaration above the isClosed
declaration. (Eclipse doesn’t sort on type names such as boolean and
double. Instead, Eclipse sorts on member names, such as isClosed and
accountBalance.)

The Sort Members action doesn’t work on local variables inside methods. If
your local variables aren’t in the right order, get ready for some good, old-
fashioned cutting and pasting.

Dealing with Imports
Someday soon, someone will extend Eclipse with colorful graphics. Before
you use an import handling action, you’ll see Barbara Eden coming out of a
bottle.

“Jeannie, do anything that needs to be done with import declarations in
my code.”

“Yes, Master.”

That’s how Eclipse’s Import actions work. You can ignore everything having
to do with imports until the very last minute. Then choose Source➪Organize
Imports or Source➪Add Import, and Eclipse performs its magic.

The Organize Imports action
Eclipse provides at least two ways to play with your code’s import declara-
tions (declarations like import java.util.Iterator that you put near the
top your code). This section deals with the first way — choosing Source➪
Organize Imports. Many things happen when you apply this Organize Imports
action:

� Eclipse removes any import declarations that you don’t use.

If your code starts with

import javax.swing.JButton;

but you never use a JButton, then Eclipse deletes the JButton import
declaration. Eclipse deletes the declaration even if you use JButton, but

151Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 151

all of your references to JButton are fully qualified (as in button = new
javax.swing.JButton(“Help”)).

� Eclipse adds any missing import declarations.

If your code includes

button = new JButton(“Help”);

but you have no import declaration for JButton, Eclipse adds

import javax.swing.JButton;

near the top of your code. I’ve even seen Eclipse uncomment a declara-
tion that I’d commented out earlier.

What if your code refers to a mysterious Element type? The Java API has
four different Element types, each in its own little package. Because
Eclipse can’t decide which Element type you want, Eclipse asks. (See
Figure 8-7.)

In Figure 8-7, you can start typing the name of your favorite package, or
you can double-click one of the names in the list.

� Eclipse sorts your code’s import declarations.

By default, java packages come first, then the javax packages, then
the org packages, and finally the com packages. Within each category,
Eclipse sorts declarations alphabetically. (That way, the declarations are
easy to find.)

Of course you can change the sorting order. Visit the Java➪Code Style➪
Organize Imports page of the Window➪Preferences dialog. Move names
up in the list, move names down in the list, add names, or remove
names. It’s all up to you.

Figure 8-7:
The

Organize
Imports
Wizard.

152 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 152

� Eclipse tries to eliminate import-on-demand declarations.

An import-on-demand declaration uses an asterisk instead of a bunch of
class names. Instead of writing many single-type import declarations

import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JCheckBox;
import javax.swing.JFrame;
import javax.swing.Popup;
import javax.swing.Spring;

you can achieve the same effect with just one import-on-demand
declaration:

import javax.swing.*;

Some programmers use import-on-demand too much, and that offends
Java’s style gods. If your code starts with import javax.swing.* but
you use only two Swing classes, Eclipse trades in your import-on-demand
declaration for some single-type import declarations.

Of course, if you have too many of these single-type import declarations,
your code topples from its own weight. That’s why you can configure the
number of single-type declarations that Eclipse tolerates. To configure
this number, visit the Java➪Code Style➪Organize Imports page of the
Window➪Preferences dialog. Then change the value in the page’s Number
of Imports Needed for .* field.

Personally, I think the default number 99 is too many. But who am I to
say? I’m just an author.

The Add Import action
The Source➪Add Import action is a kind of mini Organize Imports command.
But Add Import does things a bit differently:

� Add Import acts on only one name at a time.

Place your cursor on a type name, and then choose Source➪Add Import.
If only one package contains a class or interface with that name, Eclipse
immediately adds an import declaration to your code. If more than one
package contains a class or interface with that name, Eclipse offers you
a choice of packages, as in Figure 8-7.

Before you use Add Import this way, select as little source code as you
can. If you select the entire line

JButton button;

153Chapter 8: Straight from the Source’s Mouse

13_574701 ch08.qxd 11/29/04 7:40 PM Page 153

then Add Import does nothing. If you select the word button, on that
same line, then Add Import still does nothing. But if you select only
JButton (or just click your mouse anywhere inside the word JButton),
then Add Import can create a new javax.swing.JButton import
declaration.

� Whereas Organize Imports removes unnecessary import declarations,
Add Import can turn them into necessary import declarations.

Start with both of the lines

import javax.swing.JButton;

and

panel.add(new javax.swing.JButton(“Help”));

in your code, and make sure that you don’t use the name JButton any-
where else.

• If you choose Source➪Organize Imports, then Eclipse removes the
import declaration.

• If you select the JButton in new javax.swing.JButton, and then
choose Source➪Add Import, Eclipse simplifies the constructor
call. You end up with this statement:

panel.add(new JButton(“Help”));

Add Import simplifies only one name at a time. So if your code contains
the line

javax.swing.JButton button = new javax.swing.JButton();

then one application of Add Import can simplify either the first or the
second javax.swing.JButton, but not both.

Don’t apply Add Import when your cursor is on an import declaration. When
I try it, Add Import turns import javax.swing.JButton into an invalid
import JButton declaration.

154 Part II: Using the Eclipse Environment

13_574701 ch08.qxd 11/29/04 7:40 PM Page 154

Chapter 9

More Eclipse “Sourcery”
In This Chapter
� Creating methods automatically

� Constructing constructors

� Handling exceptions without facing the tedium

The word “boilerplate” comes from nineteenth century typography. The
process for distributing syndicated newspaper articles involved pouring

boiling lead into a prepared mold. (Sounds like fun, doesn’t it?) The result
was a plate that stamped out hundreds of copies of the original newspaper
article.

These days, you can write boilerplate Java code. In fact, if you practice
enough, you can create constructors, getters, and setters in your sleep. But
why interrupt your sleep? Have Eclipse do the work instead.

Creating Constructors and Methods
Constructors and methods are the workhorses of any computer program.
First, the constructors create objects. Then the methods take over and do
useful things with objects.

Eclipse’s Source menu includes several actions for adding constructors and
methods. These actions are fairly smart, so you don’t have to do much work
on your own.

Override and implement methods
Figure 9-1 shows you what happens when you choose Source➪Override/
Implement Methods. The dialog offers to create some skeletal method code.

14_574701 ch09.qxd 11/29/04 7:39 PM Page 155

In Figure 9-1, notice how Eclipse automatically puts a check mark next to a
method like actionPerformed. (When I created Figure 9-1, I was working on
a class that implements ActionListener. Without an actionPerformed
method, my code wouldn’t compile.) Eclipse doesn’t put check marks next to
the other method names (names like clone, equals, and so on). My code can
compile even if I don’t implement these methods.

If I click OK in Figure 9-1, I get code of the kind shown in Figure 9-2.

Better getters and setters
You can find getters and setters in almost every object-oriented program. A
getter method gets an object’s value:

Figure 9-2:
Eclipse

creates a
method.

Figure 9-1:
The

Override/
Implement

Methods
dialog.

156 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 156

public typename getValue() {
return value;

}

A setter method sets an object’s value:

public void setValue(typename value) {
this.value = value;

}

Like the paintings in cheap hotel rooms, most getters and setters are very
much alike. Here and there you find an unusual getter or an atypical setter.
But in general, these getter and setter methods are mechanical copies of one
another. So why write getters and setters by hand? Have Eclipse write these
methods for you.

If you choose Source➪Generate Getters and Setters, you see a dialog like the
one in Figure 9-3. The dialog offers to create methods for each of the fields in
your source file. The resulting methods look like the ones in Figure 9-4.

Figure 9-3:
The

Generate
Getters and

Setters
dialog.

157Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 157

Don’t wait. Delegate!
A delegate does work on behalf of some other piece of code. Here’s a tiny
example. You start with an innocent looking Address class:

public class Address {
private int number;
private String street;
private String city;
private String state;
private int zip;

public void print() {
// Create an address label

}

// Blah, blah, blah...
}

The Address class prints its own mailing labels. Then some new piece of
code comes along and creates an Address instance. So you delegate the work
of printing to one of the new code’s methods:

public class HandleAccount {
public String name;
private double balance;
private Address address;

public void print() {
address.print();

}

// Blah, blah, blah...

}

Figure 9-4:
Eclipse
creates

getter and
setter

methods.

158 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 158

The HandleAccount class’s print method is a delegate method. Delegate
methods can save you from some potentially awkward programming situations.
To make Eclipse write a delegate method, select the class that will contain
the delegate method. (In the example above, select HandleAccount in either
the editor or the Package Explorer.) Then choose Source➪Generate Delegate
Methods.

In response, Eclipse gives you a dialog like the one in Figure 9-5. After clicking
OK, you get a method like the one shown in Figure 9-6. With this new method,
the address object delegates its print functionality to the object that con-
tains the address field.

Figure 9-6:
Eclipse

creates a
delegate.

Figure 9-5:
The

Delegate
Methods

Generation
dialog.

159Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 159

Creating constructors
Eclipse’s Source menu gives you two ways to create constructors.

� When you choose Source➪Generate Constructor Using Fields, Eclipse
gives values to the subclass’s fields.

� When you choose Source➪Add Constructor from Superclass, Eclipse
gives values to the parent class’s fields.

Figure 9-7 illustrates the point. The Generate Constructor Using Fields action
uses assignment statements; the Add Constructor action passes parameters.
Both actions call the parent class’s constructor. So, in some situations, both
actions give you the same result.

For a concrete example, look over the code in Listing 9-1.

Listing 9-1: A Class and a Subclass

class Employee {
private String name;

private String jobTitle;

public Employee() {
super();

}

Call the empty superclass
constructor and assign
values to any of the
subclass’s fields.

Call a superclass
constructor, passing
values for the
subclass’s fields.

Call the empty
superclass
constructor.

Generate Constructor
using Fields

Add Constructor
from Superclass

Figure 9-7:
Things you

can do with
two of

Eclipse’s
Source

menu
actions.

160 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 160

public Employee(String name, String jobTitle) {
super();
this.name = name;
this.jobTitle = jobTitle;

}

... Etc. (No additional constructors)
}

class PartTimeEmployee extends Employee {
private double hourlyRate;

... Etc. (No constructors)
}

If I choose Source➪Generate Constructor Using Fields with the
PartTimeEmployee class in the editor, I see the dialog in Figure 9-8. This
dialog creates one constructor. To create two constructors, I have to choose
Generate Constructor Using Fields twice.

I use this dialog in Figure 9-8 twice — once with hourlyRate unchecked, and
a second time with hourlyRate checked. When the dust settles, I have the
code shown in Figure 9-9.

Some people have strange notions of what it means to have “fun.” Just for
fun, I wiped the slate clean. I deleted the code that I created using Generate

Figure 9-9:
Eclipse

generates
construc-
tors using

fields.

Figure 9-8:
The

Generate
Constructor
Using Fields

dialog.

161Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 161

Constructor, and I returned to the pristine code in Listing 9-1. Then I do it
all again. But this time around, I choose Source➪Add Constructor from
Superclass. As a result, I see the dialog in Figure 9-10.

If I put check marks in both of Figure 9-10’s boxes, I get the constructors
shown in Figure 9-11. One constructor is the same as a constructor created
by the Generate Constructor Using Fields action. The other constructor is
unique to the Add Constructor from Superclass action.

Creating try/catch Blocks
A try/catch block is like a safety net. If anything goes wrong inside the block,
your program can recover gracefully.

Choosing Source➪Surround with try/catch Block is like applying the try tem-
plate. But the Surround with try/catch Block action is much smarter than the
try template.

To find out more about the try template, see Chapter 7.

To see how smart the Surround with try/catch Block action is, march over to
the editor and select the following lines of code:

Figure 9-11:
Eclipse

generates
construc-
tors from

the
superclass.

Figure 9-10:
The Add

Constructor
from

Superclass
dialog.

162 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 162

FileInputStream stream = new FileInputStream(“myData”);
Thread.sleep(2000);

Then choose Source➪Surround with try/catch Block. When you do all this,
you get the following result:

import java.io.FileNotFoundException;
...

try {
FileInputStream stream = new FileInputStream(“myData”);
Thread.sleep(2000);

} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

Eclipse even adds the import declaration for the FileNotFoundException.

If you apply the try template to the same code, you get the following wishy-
washy result:

try {
FileInputStream stream = new FileInputStream(“myData”);
Thread.sleep(2000);

} catch (Exception e) {
// TODO: handle exception

}

It gets even better. If you apply Surround with try/catch Block to code that
contains a super call, Eclipse answers back with a message: Cannot sur-
round a super constructor call. (How about that! Eclipse knows that
you’re not allowed to put a super call inside a try/catch block!)

What if you apply the Surround with try/catch Block action to the following
code?

fib = previous + prePrevious;
prePrevious = previous;
previous = fib;
System.out.println(fib);

The code doesn’t throw any checked exceptions, so Eclipse asks you if really
need a try/catch block. (See Figure 9-12.)

163Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 163

If you ignore Eclipse’s caution and click Yes, Eclipse gives you the following
sensible code:

try {
fib = previous + prePrevious;
prePrevious = previous;
previous = fib;
System.out.println(fib);

} catch (RuntimeException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

Instead of using RuntimeException, the try template would have used a
plain, old Exception. That would be adequate, but for this particular piece
of code, RuntimeException is a better fit.

“I18n”
My high school French courses come in handy at times. After college, I went
bumming around Europe, walking the city streets, hitch-hiking, and taking
odd jobs here and there. (I was young and energetic. The usual tourist sites
didn’t interest me.)

One evening, while I roamed the streets of Paris, some English- speaking
tourists stopped me to ask for directions. Nervously, they pointed to a map.
“Eiffel Tower?” they said. “Oooo essst la Eiffel Tower?” they repeated, using
French that they’d learned from a guidebook that day.

Not wanting to break the illusion, I answered them in French. “Allez vers la
droite,” I said, as I pointed down the street. I probably got it wrong myself, but
it didn’t matter. I was thrilled as they walked away saying “Murcee, murcee.”

As the third millennium moves onward, you need to fine-tune your applica-
tions so that people all over the world can use them. More and more, people
who don’t speak your native language want to use your code, and they’re not
always interested in translating text themselves. That’s why Java comes with
internationalization features.

Figure 9-12:
Would you

care to
catch a

Runtime-
Exception?

164 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 164

And don’t forget . . . If you want to be cool, abbreviate “internationalization”
with the name “i18n.” The name “i18n” stands for “i” plus eighteen more let-
ters, followed by “n.” All the popular geeks use this terminology.

Preparing your code for
internationalization
Eclipse’s string externalizing tools can help you internationalize your code.
(They’re called “externalizing” tools because they move strings outside of
your source code.) Here’s an example to show you how the tools work:

1. Create a new project.

In this example, I called it my HelloProject.

2. Create a new class.

The class name Hello works for me.

3. In the Hello class’s main method, add the usual
System.out.println(“Hello”) statement.

See Figure 9-13.

4. Run the program.

The program prints Hello. Big deal!

5. In the Package Explorer, select the project’s branch.

In this example, select the HelloProject branch.

6. Choose Source➪Find Strings to Externalize.

The Find Strings to Externalize dialog appears with a list of source files
containing strings. (See Figure 9-14.)

Figure 9-13:
Monolingual

code.

165Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 165

Eclipse’s Source menu has two actions for externalizing strings. The Find
Strings to Externalize option works after you select an entire project,
package, or folder in the Package Explorer. The alternative Externalize
Strings action works after you select a Java source file in the Package
Explorer (or after you click your mouse on a file in the editor). In gen-
eral, Externalize Strings is good for small projects and Find Strings to
Externalize is better for large projects. Either way, you get the same
results.

7. In the dialog (refer to Figure 9-14), select a source file whose strings
you want to eventually translate into other languages. Then click
Externalize.

The next thing you see is a page of Eclipse’s Externalize Strings Wizard.
(See Figure 9-15.) In the big Strings to Externalize list, some rows may be
checked, and others may contain an X or an arrow. In this example, the
one and only Hello row is checked.

For now, leave the check mark in the Hello row. For more info about the
check marks in rows, see the next section’s “Marking strings for exter-
nalization” sidebar.

By clicking Configure (in the Externalize Strings Wizard of Figure 9-15)
you can change all kinds of little things about the way externalization
works. I call these things “little” because, even though they may be very
important in some applications, they don’t make a big difference in the
way externalization works.

8. Click Next.

A page like the one in Figure 9-16 appears. On that page, don’t let the
words “Found problems” make you nervous. Eclipse is just telling you
that it’s about to add a file to your project.

Figure 9-14:
The Find

Strings to
Externalize

dialog.

166 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 166

Figure 9-16:
Oh, no!

(Eclipse
warns you

that it’s
about to
create a

file.)

Figure 9-15:
Selecting

strings for
external-

ization.

167Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 167

9. Go with the flow. (That is, click Next again.)

A page like the one in Figure 9-17 appears. This page is handy because it
shows you all the things Eclipse is about to do to your code. If you don’t
like any of these things, you can start removing check marks. But in this
example, leave everything checked.

10. Click Finish to close the Externalize Strings Wizard. Then click Close
to dismiss the Find Strings to Externalize dialog.

Eclipse returns you to your regularly scheduled workbench.

You now have some additional files in your project.

� One file with the default name messages.properties, contains a line like

Hello.0=Hello

This line describes a key/value pair. The Hello.0 key has a Hello value.

� Another file with default name Messages.java acts as an intermediary
between your source code and the messages.properties file.

When your code calls this Messages.java file’s getString method, the
method returns a key’s value. (See Figure 9-18.)

Figure 9-17:
Eclipse tells

you how
your project

is about to
change.

168 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 168

Adding other languages to your code
When you finish following the previous set of steps, Eclipse makes some
changes in your Java source file. To see what I mean, compare Figure 9-13
(“before”) with Figure 9-19 (“after”). In place of an ordinary string (like
“Hello”) Eclipse puts a key (like “Hello.0”).

The key represents the translation of the original string into any number of
languages. To find out how this works, follow the next several steps.

1. Create an alternate version of the messages.properties file.

In this example, I create a file named messages_fr_FR.properties.
The first two letters fr stand for the French language. The next two
letters FR stand for the country France. No matter what language or
country you use, you must include the underscore characters. That’s
the way Java recognizes these internationalization files.

Figure 9-19:
Potentially

multilingual
code.

getString("Hello")

“Hello”
“Hello

”

“Hello.0”Hello.java Messages.java

messages.properties

messages_fr_FR.properties

Hello.0=Hello

Hello.0=Bonjour

What‘s the
default locale?

Figure 9-18:
How your
new code

decides
what to
display.

169Chapter 9: More Eclipse “Sourcery”

14_574701 ch09.qxd 11/29/04 7:39 PM Page 169

For the official list of two-letter language and country codes, visit
www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-
code-lists/list-en1.html. (Wouldn’t you know it? That Web address
includes en, which stands for “English.” You can find other versions of
the page at www.iso.ch.)

2. In your new properties file, add a line that assigns a value to the
original key.

In my messages_fr_FR.properties file, I add the line

Hello.0=Bonjour

With this addition, the original Hello.0 key becomes associated with two
different words — Hello in the messages.properties file and Bonjour
in the new messages_fr_FR.properties file. (Refer to Figure 9-18.)

3. Buy a plane ticket to a country where you can test your new proper-
ties file.

Alternatively, you can change your program’s default locale. In this
example, I add a call to Java’s Locale.setDefault method. (See
Figure 9-20.) When I run the modified code, the program displays the
word Bonjour.

Java’s API has constants for some of your favorite locales. In Figure 9-20,
instead of calling the Locale class’s constructor, you can write Locale.
setDefault(Locale.FRANCE).

Figure 9-20:
When in

Paris, do as
the

Parisian’s
do.

170 Part II: Using the Eclipse Environment

14_574701 ch09.qxd 11/29/04 7:39 PM Page 170

171Chapter 9: More Eclipse “Sourcery”

Marking strings for externalization
The dialog in Figure 9-15 has three interesting buttons — Externalize, Ignore, and Internalize. To
show you what each of the buttons does, I create the code in the following figure. The code con-
tains three strings, and each string tells me what button to push.

When I reach the appropriate page in Eclipse’s Externalize Strings Wizard, I take care to heed each
string’s advice. For instance, in this figure, I select the Ignore me string’s row, and then I click
Ignore. Sure enough, the Ignore button is grayed out. This graying out indicates that I’ve already
clicked the Ignore button for the Ignore me string. (The little X in the Ignore me row’s check
box is further confirmation that I chose to ignore this string.)

But what does it mean to “ignore” or to “internalize” a string? After finishing up with the Externalize
Strings Wizard, I get the code shown in the following figure. Eclipse substitutes a key for the original
Externalize me string, but makes no substitutions for the Ignore me or Internalize me
strings. So that’s Part 1 of the answer to the “ignore and internalize” question.

Part 2 is a little more complicated. In the figure, notice how Eclipse adds //$NON-NLS-1$ com-
ments. A NON-NLS comment reminds Eclipse not to offer to externalize a particular string again.
So, the next time I invoke Eclipse string externalizing on this code, I see the stuff in this figure.
Eclipse knows better than to waste my time on strings like “HelloAgain.0” or “Go ahead.
Ignore me” (strings marked with NON-NLS comments).

(continued)

14_574701 ch09.qxd 11/29/04 7:39 PM Page 171

172 Part II: Using the Eclipse Environment

So that’s the difference. When you tell Eclipse to ignore a string, you mean “ignore this string in all
future externalizations.” Eclipse reminds itself by adding a NON-NLS comment for this string. (A
number inside the comment identifies each such string. For instance, if a line of code has two ignor-
able strings, the line may contain two comments — //$NON-NLS-1$ and //$NON-NLS-2$.)

But when you tell Eclipse to internalize a string, you mean “leave the string as internal during this
round of externalization.” Eclipse doesn’t add a NON-NLS comment, so the string is a candidate for
future rounds of externalization.

Now take one more look at the third figure. Notice the NON-NLScomment for the “HelloAgain.0”
string. If you think about it, this makes sense. The HelloAgain.0 key already stands for Hello,
Bonjour, or whatever else you put into your properties files. Only a maniac or a theoretical computer
scientist would consider externalizing a string that’s already been externalized.

(continued)

14_574701 ch09.qxd 11/29/04 7:39 PM Page 172

Chapter 10

Refactoring: A Burd’s Eye View
In This Chapter
� Performing a refactoring operation with Eclipse

� Controlling a refactoring operation’s changes

� (Oops!) Reversing any unwanted effects of refactoring

The Free On-line Dictionary of Computing defines refactoring as “Improving
a computer program by reorganising its internal structure without alter-

ing its external behaviour.”*

According to Paul Furbacher (of the Amateur Computer Group of New
Jersey), the current trend in integrated development environments is to
better one another with useful refactoring features.

Author Barry Burd says “the goal of refactoring is to move seamlessly from
correct code to more correct code.”**

Without refactoring, you improve code by messing with it. You start to edit
your working code. While you edit, you break the code temporarily. Sure,
when the editing is done, your code works again. But this “working, then not
working, then working again” cycle can lead to errors.

With refactoring, you skip the “not working” part of the cycle. You do all the
editing in one big atomic step. During this step, the code doesn’t have time to
be incorrect.

* From The Free On-line Dictionary of Computing, www.foldoc.org/, Editor
Denis Howe

** In fact, in Eclipse For Dummies, Burd says that “Burd says that ‘the goal of
refactoring is to move seamlessly from correct code to more correct code.’” He
goes on to say that “Burd says that ‘Burd says that ‘the goal of refactoring is to
move seamlessly from correct code to more correct code.’’”

15_574701 ch10.qxd 11/29/04 7:41 PM Page 173

Refactoring didn’t originate with Eclipse, or even with Java. Refactoring
started around 1990, when programmers were looking systematically for
ways to improve their code. Many of Eclipse’s refactoring actions are
commonly known tools that stem from computer science research. For an
in-depth look at the world of refactoring, visit www.refactoring.com.

Eclipse’s Refactoring Tools
Figure 10-1 shows Eclipse’s grand Refactor menu. Each menu option represents
a particular refactoring action. For instance, if you select the bottommost
option, Eclipse performs its Encapsulate Field action. The top two actions
are a little bit different. These Undo and Redo things are “actions that affect
other actions.”

Each action does different things to different pieces of code. For instance, the
Rename action changes the names of variables, methods, and other elements.
The Move action relocates methods, classes, and other things from one file to
another or even from one package to another.

Occasionally, I need to distinguish between a refactoring action and a refactor-
ing operation. An operation is one round of performing an action. For example,
you choose Refactor➪Rename to change the variable name rose to the vari-
able name violet. That’s one operation. Later, you choose Refactor➪Rename
again to turn the method name display into the method name show. That’s a
second operation. But both the first and second operations are instances of
the same Rename refactoring action.

Figure 10-1:
The

Refactor
menu.

174 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 174

Each refactoring action has its own special quirks and tricks. But behind all the
quirks lie many common features. This chapter emphasizes those common
features. (The next chapter emphasizes quirks.)

The Three Ps
At first glance, an Eclipse refactoring operation seems to be a big production —
something you’d see in a Busby Berkeley musical. After starting an operation,
you deal with one dialog, then another, and then another. By the time the oper-
ation finishes, you may have forgotten what you were trying to accomplish
when you started the operation.

Fortunately, the refactoring dialogs come in only three different flavors:

� In one or more parameter pages, you select options that control the
refactoring operation’s behavior.

� In a preview page, you selectively approve the changes that the opera-
tion can make in your code.

Sometimes, you can skip the preview page.

� In a problem page, Eclipse tells you a “doom and gloom” story about the
operation’s possible aftereffects.

Thank goodness! You seldom see a problem page.

This chapter covers all three kinds of pages. When you’re used to dealing with
these pages, Eclipse’s refactoring operations no longer feel like big productions.

In the next several sections, I introduce each of the three Ps — parameter,
preview, and problem pages.

Eclipse’s Help files differentiate between the parameter pages that I describe
in this section, and a simpler input page that you see with certain refactoring
actions. I don’t distinguish between parameter pages and input pages. I have
two reasons for calling them all “parameter pages.” First, the distinction isn’t
important to the novice Eclipse user. And second, the word “input” doesn’t
begin with the letter “p.”

Parameter pages
You ask Eclipse to pull declarations out of a class and into a parent class.
Eclipse begins the operation by asking you questions. Exactly which declara-
tions do you want to pull? Exactly where do you want the declarations to go?
The dialogs for all these questions are parameter pages (a.k.a. input pages).
To see how the pages work, try the following experiment:

175Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 175

1. Create a new project containing the code from Listing 10-1.

Remember, you don’t have to retype the code in Listing 10-1. You can
download the code from this book’s Web site.

2. In the editor, place the cursor anywhere inside MyClass. (Alternatively,
select MyClass in the Package Explorer or in the Outline view.) Then
choose Refactor➪Pull Up.

Eclipse responds by showing you a parameter page (the Pull Up page in
Figure 10-2).

Each refactoring action has its own kind of parameter pages. The page in
Figure 10-2 represents only one kind of parameter page — a parameter
page for the Pull Up action.

In the next few instructions, you feed information to parameter pages.

3. Inside the Specify Actions for Members list, check the i and display
boxes. Leave the j box unchecked. (Again, see Figure 10-2.)

Depending on where you put the cursor in Step 2, some of these boxes
may already contain check marks.

4. In the Select Destination Class drop-down list, select MySuperclass.

You can pull members up to a parent, a grandparent, or any ancestor class.

Figure 10-2:
A parameter

page for
Pull Up

refactoring.

176 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 176

5. Click Next.

This click brings you to another parameter page. (See Figure 10-3.)

Eclipse realizes that your request to pull up the display method may
mean two different things. You may want to copy the method from
MyClass, or you may want to move the method from MyClass. In Fig-
ure 10-3, Eclipse offers choices.

• If you leave check marks in the MySuperclass, MyClass, and
display boxes, then Eclipse moves the display method.

That is, Eclipse removes the display method from MyClass.

• If you uncheck the MySuperclass, MyClass, and display boxes,
then Eclipse copies the display method.

In other words, Eclipse doesn’t remove the display method from
MyClass.

The check boxes in Figure 10-3 can be confusing. At first glance, you may
think that you can selectively check the MySuperclass, MyClass, and
display boxes. Would a check mark in only one of the boxes have any
meaning? No, it wouldn’t. In Figure 10-3, the little hierarchy of check
boxes simply shows what’s a subclass or member of what else. If you
uncheck any of these three boxes, Eclipse removes check marks from
the other two. Taken together, these three check boxes settle only one
issue — whether Eclipse removes the display method from MyClass.

In this experiment, leave the boxes in Figure 10-3 checked.

6. Click Finish.

In other words, ignore the Next button at the bottom of Figure 10-3.

Figure 10-3:
The second

parameter
page for the

Pull Up
refactoring

action.

177Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 177

7. Notice how your code has changed.

Eclipse has pulled the declarations of i and display from MyClass up
to the parent MySuperclass. (Compare Listings 10-1 and 10-2.)

Listing 10-1: Before Pull Up Refactoring

class MySuperSuperclass {
}

class MySuperclass extends MySuperSuperclass {
}

class MyClass extends MySuperclass {
int i, j;

void display() {
}

}

class MyOtherClass extends MySuperclass {
}

Listing 10-2: After Pull Up Refactoring

class MySuperSuperclass {
}

class MySuperclass extends MySuperSuperclass {

int i;

void display() {
}

}

class MyClass extends MySuperclass {
int j;

}

class MyOtherClass extends MySuperclass {
}

Look back at Figure 10-2, and notice the unassuming Add Required button.
Clicking Add Required tells Eclipse to put check marks in certain members’
rows. For example, start with these two declarations:

double amount;
double tax = 0.06*amount;

Choose Refactor➪Pull Up. Then, in the preview page, put a check mark in
only the tax variable’s row.

178 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 178

The value of tax depends on the value of amount, so moving the tax declara-
tion without moving the amount declaration makes no sense. (In fact, moving
tax never makes cents. Ha ha!) So if you click Add Required, Eclipse adds a
check mark to the amount check box.

But wait! Have you saved yourself any work by clicking the Add Required
button? Click a button instead of checking a check box? What’s so great
about that? Well, for some programs, the parameter page contains dozens of
check boxes, and figuring out what’s required and what isn’t required can be
a messy affair. With such programs, the Add Required button is very useful.

The preview page
First you initiate an operation by choosing an action from the Refactor menu.
Then you fill in some information on one or more parameter pages. With the
information that you give on the parameter pages, Eclipse can create a pre-
view page. The preview page shows you exactly how Eclipse plans to modify
your code. You can selectively veto any of the proposed modifications. Here’s
an example:

1. Start with the code in Listing 10-2.

This section’s instructions don’t work unless each of the classes is in its
own separate Java source file. You need files named MySuperclass.
java, MyClass.java, and so on.

2. In the editor, place the cursor anywhere inside MySuperclass.
(Alternatively, select MySuperclass in the Package Explorer or
the Outline view.) Then choose Refactor➪Push Down.

Eclipse responds by showing you a parameter page (the Push Down
page in Figure 10-4).

Figure 10-4:
A parameter

page for
Push Down
refactoring.

179Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 179

3. Make sure that the boxes in the i and display rows contain check
marks.

Again, refer to Figure 10-4.

4. Click Preview.

A preview page appears. The top part of the preview page lists the
things that can happen if you go through with the refactoring operation.
The bottom part shows code before and after the proposed refactoring.
In Figure 10-5, notice how MySuperclass goes from containing two dec-
larations to being empty. And, in Figure 10-6, see how MyOtherClass
goes from being empty to containing i and display declarations.

But what if you don’t want MyOtherClass to contain the i and display
declarations? What if you want to go from the code in Listing 10-2 back
to the code in Listing 10-1? In the next step, you veto all MyOtherClass
changes.

5. Uncheck any of the MyOtherClass branch’s check boxes.

Your goal is to return to the original code in Listing 10-1 — the code in
which only MyClass contains i and display declarations. You achieve
the goal by removing some check marks in the preview page.

Figure 10-5:
Selecting
MySuper
class on

the preview
page.

180 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 180

The code in the Refactored Source pane doesn’t necessarily keep up
with things you do to the preview page’s check boxes. For instance, in
Figure 10-6, the Refactored Source pane can contain declarations even
after you uncheck the MyOtherClass branches. Regardless of what you
may see in the Refactored Source pane, the boxes you check in the top
half of the preview page have the final authority. These boxes determine
what Eclipse does (or doesn’t do) with your code.

You can’t edit the code in either the Original Source or the Refactored
Source panes of Figure 10-6. You can copy the code (for the purpose of
pasting it some other place) but you can’t delete or otherwise modify
the code in these panes. To change the way refactoring works, you must
use the check boxes in the top half of the preview page.

6. Click OK.

The preview page disappears.

7. Notice how your code has changed.

Because of the things you do on the preview page, Eclipse restores the
original Java source code of Listing 10-1 — the code in which only
MyClass contains i and display declarations.

This section’s instructions do the opposite of what the “Parameter pages”
section’s instructions do. The “Parameter page” instructions go from Listing
10-1 to Listing 10-2, and this section’s instructions go from Listing 10-2 back
to Listing 10-1. Hey, wait! That sounds like Undo!

Figure 10-6:
Selecting
MyOther
Class on

the preview
page.

181Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 181

In fact, applying Refactor➪Undo can roll back a refactoring operation’s effects.
But remember this: If you change anything after you refactor, then you can
no longer apply the Refactor➪Undo or Refactor➪Redo actions. When I say
“change anything” I mean “change the code with anything other than another
refactoring action.”

For example, imagine that you follow the instructions in this chapter’s
“Parameter pages” section. These instructions take you from Listing 10-1
to Listing 10-2. After following the instructions, you click your mouse inside
the editor and add a blank space somewhere in the code.

That blank space puts the kibosh on any future Undo operation. After adding
the blank space, you can no longer use Refactor➪Undo to go back to the code
in Listing 10-1. No, undoing your addition of the blank space doesn’t help. The
Refactor➪Undo action simply refuses to perform.

The problem page
A refactoring operation can involve three kinds of pages: parameter pages, a
preview page, and a problem page. This section describes a problem page.

Remember, you don’t have to retype the code in Listings 10-3 and 10-4. You
can download the code from this book’s Web site.

1. Create a project containing the code in Listings 10-3 and 10-4.

2. Select the computeTax method in Listing 10-3, and then choose
Refactor➪Move.

Eclipse opens the Move Static Members parameter page. (See Figure 10-7.)

3. Type CashRegister in the Destination Type field.

When you type CashRegister you tell Eclipse that you want to move the
computeTax method to the code in Listing 10-4.

4. Click OK.

Oh, oh! Eclipse shows you the problem page of Figure 10-8. According
to this problem page, moving computeTax to the CashRegister class

Figure 10-7:
Preparing

to move
a static

method.

182 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 182

may not be a good idea. After all, the computeTax method refers to a
taxRate field. The code inside the CashRegister class can’t access
that private taxRate field. And Eclipse isn’t willing to drag the taxRate
declaration to the CashRegister class for you.

5. Live dangerously. In spite of everything that you see in the problem
page, click Continue.

When you click Continue, Eclipse bows reluctantly to your wishes. But
the new refactored code has errors, as you can see in Figure 10-9.

Of course, for a short time, you may be able to tolerate a few errors. If
you cut and paste instead of refactoring, you probably have some errors
to clean up anyway. Good refactoring means going from correct code to
correct code (without having any incorrect code in between). But some-
times you can’t afford to do good refactoring. That’s when the Continue
button on the problem page comes in handy.

Figure 10-9:
The sad
result of

ignoring the
problem

page’s
advice.

Figure 10-8:
A problem

page.

183Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 183

Listing 10-3: The File Bill.java

public class Bill {
private static double taxRate = 0.06;

static double computeTax(double amount) {
return amount * taxRate;

}
}

Listing 10-4: An Empty Cash Register

public class CashRegister {
}

More Gossip about Refactoring
All of Eclipse’s refactoring actions share a few interesting (and sometimes
bothersome) traits. This section lists a few of those traits.

Selecting something
Here’s a quote from an Eclipse Help page: “In a Java view or in the Java editor,
select the method that you want to move.” For my money, this instruction is
a bit vague. What does it mean to “select a method?” If you’re selecting text
in the editor, do you select the method’s header, the method’s name, the
method body, or a method call?

Mind you, I’m not complaining about the Help page instruction. I’m just
making an observation. Whoever wrote the instruction volunteered his or her
time to create Eclipse documentation. So to whoever wrote this instruction I
say “Thanks. Now allow me to clarify.”

� For a Java element, “select” can mean “click a tree branch in a view.”

Eclipse has this notion of Java elements. A Java element is something
that can appear as a branch in a view’s tree. A method is one of Eclipse’s
Java elements. So if I say “select a method,” you can find that method’s
branch in the Package Explorer or Outline view, and click the branch.

For more info on Java elements, see Chapter 8.

� For a Java element or for something that isn’t a Java element, “select”
can mean clicking once inside the editor.

For instance, you click between the a and the i in main, and then choose
Refactor➪Move. Then Eclipse offers to move the main method to a dif-
ferent class.

184 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 184

The same thing happens if you select the main branch of the Package
Explorer’s tree, and then choose Refactor➪Move. Eclipse offers to move
the main method.

You can select a branch or click a word. In this example, it makes no
difference.

� For a Java element or for something that isn’t a Java element, “select”
can also mean highlighting text.

In the editor, you double-click the word main. In response, Eclipse high-
lights that word in the editor. Next, you choose Refactor➪Move. Then
Eclipse offers to move the main method.

Alternatively, you sweep your mouse from the p in public static
void main to the close curly brace that ends the main method’s body.
Again, Eclipse offers to move the main method.

When you sweep your mouse across the main method’s body, don’t
include any characters before the p in public. No, don’t even include
the blank space before the word public. If you include that blank space,
Eclipse thinks you’re trying to move the entire class, not just the main
method.

Here’s another example: A single statement isn’t a Java element, so you
can’t find a statement in the Package Explorer or the Outline view. But
sweep your mouse across a statement and then choose Refactor➪
Extract Method. In response, Eclipse offers to create a new method
containing that statement.

� In many cases, selecting any reference to an item is like selecting the
entire item.

Look again at Listing 10-1, and imagine that both MyClass and MyOther
Class have int i declarations. If you apply Pull Up refactoring to either
MyClass or MyOtherClass, Eclipse offers to pull i out of both MyClass
and MyOtherClass.

� In many cases, selecting text is the same as selecting neighboring text.

For example, you select the word allmycode in the line

import com.allmycode.gui.MyFrame;

and then choose Refactor➪Rename. Then Eclipse offers to rename
com.allmycode. But select the word allmycode in the line

new com.allmycode.gui.MyFrame();

and then choose Refactor➪Rename. Then Eclipse offers to rename
MyFrame.

So be careful what you select, for Eclipse may rename it.

When I describe refactoring, I get tired of writing long-winded instructions —
instructions like “Click your mouse, highlight a word in the editor, or select
a branch in a view’s tree.” What’s worse, you can easily get tired of reading

185Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 185

long-winded instructions. So instead of repeating these alternatives over and
over again, I write simple instructions — instructions like “select a method”
or “select a declaration.” If you want to read about alternative selection tech-
niques, or if you run into trouble selecting anything, just refer back to this
section for all the gory details.

Why is that menu item gray?
A particular refactoring action works on some kinds of Java elements, and
doesn’t work on other kinds. To see this, select a .java file in the Package
Explorer tree, and then choose Refactor from Eclipse’s main menu bar. When
you do this, most actions in the Refactor menu are grayed out. The only
actions that you can apply are the few that aren’t grayed out.

In many instances, actions that aren’t grayed out are still not usable. For exam-
ple, try selecting a method’s name in the method’s header. (Select the word
main in public static void main.) Then choose Refactor➪Generalize Type.
Eclipse responds by telling you that your text selection isn’t suitable for the
Generalize Type action. (See Figure 10-10.)

After making a selection, you can get some information on the permissible
refactoring actions by pressing Alt+Shift+T. This keyboard shortcut creates
a context menu containing (more or less) the refactoring actions that apply
to your selection. (See Figure 10-11.)

Figure 10-11:
Pressing

Alt+Shift+T.

Figure 10-10:
Sorry,

you can’t
generalize
something

that’s not
a type.

186 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 186

The trouble is, some actions that aren’t applicable can creep into the Alt+
Shift+T context menu. Look again at Figure 10-11, and notice the context
menu’s Pull Up option. You can’t use this Pull Up option because the class
in Figure 10-11 has no extends clause. If you want to pull something upward,
you have no place to go. So much for one of the actions in the Alt+Shift+T
menu!

The class in Figure 10-11 extends java.lang.Object. But for the purpose
of Pull Up refactoring, extending java.lang.Object doesn’t count. Eclipse
doesn’t normally store the java.lang.Object source code, so Eclipse isn’t
willing to pull a declaration up to the java.lang.Object level.

Calling Eclipse’s bluff
Some actions that don’t look like refactoring are refactoring actions in dis-
guise. Other Eclipse actions look like refactoring, but aren’t really refactoring.
Here are some examples:

� Select a branch in the Package Explorer. Then choose File➪Rename.

Even though File➪Rename isn’t part of Eclipse’s Refactor menu, File➪
Rename is a refactoring action. Choosing File➪Rename is the same as
choosing Refactor➪Rename. When you choose File➪Rename, you see
the usual parameter, preview, and problem pages. Also, any action you
take as a result of choosing File➪Rename gets placed on Eclipse’s big
Undo stack. (By choosing Refactor➪Undo, you can reverse the effects
of choosing File➪Rename.)

This File➪Rename trick can be confusing. After going to the editor and
selecting a name inside the source code, you can’t use File➪Rename.
Eclipse grays out that option unless your most recent click is on a
Package Explorer branch.

� Select a non-static field declaration, like the int i = 10; declaration.
Then choose Refactor➪Move.

The Move refactoring action can’t move non-static fields. So Eclipse
offers to do a textual move. With this textual move, Eclipse drags the
int i declaration from one class to another. But Eclipse doesn’t do
its usual refactoring chores. In the process of textually moving int i,
Eclipse doesn’t bother to scan your code for references to the variable i.

If things go wrong as a result of a textual move, if some references to i
are left dangling, if moving int i breaks your code, then that’s just too
bad. With a textual move, any undesirable after effects are your fault,
not Eclipse’s fault. You asked for a textual move, so you got one.

Textual changes remind me of alphabet soup. I have thousands of letters
floating around in a greasy, nebulous broth. And if by accident I manage
to spell a word correctly, it’s a miracle.

187Chapter 10: Refactoring: A Burd’s Eye View

15_574701 ch10.qxd 11/29/04 7:41 PM Page 187

� Open the Resource perspective. Right-click a branch in the Navigator
view’s tree. Then, in the resulting context menu, select Rename.

In response, Eclipse does what many operating systems do when you
start renaming something on a branch of a tree. Eclipse creates a tiny,
one-line editor for the label on that branch.

So type a new name inside that little editor, and then press Enter. Eclipse
does a textual rename. That is, Eclipse changes the name of a file or a
folder, but doesn’t update any references to the name. Like the textual
move, the textual rename isn’t a refactoring action. If you want refac-
tored renaming, you can’t start in the Navigator view.

If you stop and think about it, the Navigator view and textual renaming go
hand-in-hand. After all, the Navigator view is part of the Resource perspec-
tive, and the Resource perspective isn’t much like the Java perspective.
Whereas the Java perspective deals with Java elements (classes, methods,
fields, and those kinds of things) the Resource perspective deals with big
lumps on your hard drive — lumps such as files, folders, and projects. The
Resource perspective (along with its friend the Navigator view) isn’t sup-
posed to be smart about package names and other Java-specific things. So
when you rename something in the Navigator view, Eclipse doesn’t bother
to consider the overall Java picture. In other words, Eclipse does textual
renaming, not refactored renaming.

188 Part II: Using the Eclipse Environment

15_574701 ch10.qxd 11/29/04 7:41 PM Page 188

Chapter 11

Refactor This!
In This Chapter
� Using each of Eclipse’s refactoring actions

� Making sense of hard-to-read parameter pages

� Understanding what actions can and cannot do

Imagine yourself working on a large Java application. The application
involves several people or even several teams. Some people are in nearby

cubicles, on opposite sides of those gloomy partitions. Other people working
on the application are halfway around the world. You write code that counts
wombats in Australia. A colleague writes code that analyzes your wombat
count. Then you write code that uses your colleague’s analysis.

What a tangled web you weave! When you change wmbtCnt to wombatCount,
your colleague’s analysis code falls apart at the seams. Your code (which uses
the analysis code) also stops running. Your computer hangs, and that causes
the server in the back office to crash, and that causes your Java-enabled
coffee pot to brew decaf instead of regular. As a result, you fall asleep and
miss a deadline.

Yes, things can be very complicated. But no, things aren’t unmanageable.
When you write small programs or big applications, Eclipse’s refactoring
tools keep track of all the cross-references. If you change things in one part
of an application, Eclipse automatically changes things in another part. With
all the ripple effects under control, you can manage the tangled web of refer-
ences, cross-references, and cross-cross-references in your code. You can
concentrate on the application’s overall logic (or you can have more time to
goof off and surf the other kind of web).

16_574701 ch11.qxd 11/29/04 7:39 PM Page 189

What Am I Doing Here in Chapter 11?
Chapter 10 emphasizes some features that all refactoring actions have in
common. For example, all refactoring operations start with your selection of
something in an editor or a view. And almost all refactoring actions involve
the three Ps: a parameter page, a preview page, and in the worst cases, a
problem page.

This chapter takes a slightly different approach. In this chapter, I list Eclipse’s
refactoring actions, and describe each action in some detail. I gloss over the
things refactoring actions have in common. That way, you don’t have to read
about things like the “parameter, preview, problem page” cycle over and over
again.

Remember, you don’t have to retype the code in this chapter’s listings. You
can download the code from this book’s Web site.

Renaming Things
To rename a Java element, select the element and then choose Refactor➪
Rename. Now, the resulting parameter page differs depending on the kind of
element that you select, but in more than a few cases the parameter page is
going to have the check boxes shown in Figure 11-1.

To see what these check boxes do, look at Listing 11-1.

Figure 11-1:
A parameter

page for
renaming.

190 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 190

Listing 11-1: Rename of the Rose

/*
* MyFrame.java
*
* Thanks to rose friedman for her help in creating this code
*/

import java.awt.Color;
import java.awt.Image;
import java.awt.Toolkit;

import javax.swing.JFrame;

public class MyFrame extends JFrame {

MyImagePanel panel = null;

final Color rose = new Color(255, 0, 100);

public MyFrame() {
Image rose =
Toolkit.getDefaultToolkit().getImage(“rose.jpg”);

panel = new MyImagePanel(rose);
}

public void changeBackground() {
setBackground(rose);

}
}

Suppose you select the word rose in the final Color rose = new
Color(255, 0, 100) declaration. Then you choose Refactor➪Rename, wait
for the parameter page in Figure 11-1 to appear and then enter violet in the
page’s New Name field. Here’s what happens when you check or uncheck the
boxes in Figure 11-1:

� If you leave the Update References box checked and then accept every-
thing in the preview, Eclipse changes the following two lines:

final Color violet = new Color(255, 0, 100);

setBackground(violet);

Eclipse doesn’t change any occurrences of the word rose inside the
MyFrame constructor. (Eclipse understands that you can have different
variables, both named rose.)

� If you uncheck the Update References box and then accept everything
in the preview, Eclipse doesn’t change the name in the call to
setBackground:

191Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 191

final Color violet = new Color(255, 0, 100);

setBackground(rose);

When you don’t check the Update References box, Eclipse modifies only
the occurrence that you select.

� If you check the Update Textual Matches in Comments and Strings box
and accept everything in the preview, Eclipse makes the following
changes:

Thanks to violet friedman for her help in creating ...

final Color violet = new Color(255, 0, 100);

Toolkit.getDefaultToolkit().getImage(“violet.jpg”);

Even with this Update Textual Matches in Comments and Strings box
checked, Eclipse doesn’t change variables inside the MyFrame method.
Eclipse doesn’t change Image rose to Image violet, and doesn’t
change new MyImagePanel(rose) to new MyImagePanel(violet).

While hunting for text in comments and strings, Eclipse ignores every-
thing except whole words. In this example, Eclipse doesn’t consider
changing System.out.print(“rosey”) to System.out.print
(“violety”).

� If you leave the Update Textual Matches in Comments and Strings box
unchecked and accept everything in the preview, Eclipse leaves rose
friedman and her buddy “rose.jpg” alone. In this case, Eclipse doesn’t
change rose words inside comments or strings.

Eclipse’s Rename refactoring is very smart. For example, when you rename
an interface’s abstract method, Eclipse hunts down all implementations of
that method and applies renaming to those implementations.

Moving Things
When I was new to object-oriented programming, I obsessed over questions
about where things should go. For instance, when you pay an employee, you
write a check. You use a PayrollCheck object. Should a PayrollCheck object
contain its own write() method, or should a DoPayroll object contain a
write(PayrollCheck check) method?

These days I don’t worry about those issues so much, but I still change my
mind as I develop a project’s code. I discover things that didn’t occur to me
during the design phase, so I move Java elements from one part of my appli-
cation to another. Fortunately, Eclipse helps.

192 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 192

Hiring a mover
Consider the code in Listings 11-2 and 11-3. The PayrollCheck class defines
what it means to be a check (something that an employee can take to the
bank). And the DoPayroll class writes checks.

Listing 11-2: What Is a PayrollCheck?

package com.allmycode.payroll;

public class PayrollCheck {
public String name;

public double amount;

public PayrollCheck(String name, double amount) {
super();
this.name = name;
this.amount = amount;

}
}

Listing 11-3: Who Writes a PayrollCheck?

package com.allmycode.accounting;

import com.allmycode.payroll.PayrollCheck;

public class DoPayroll {

public static void main(String[] args) {
new DoPayroll().write
(new PayrollCheck(“Barry”, 100.00));

}

public void write(PayrollCheck check) {
drawCompanyLogo();
System.out.print(“Pay “);
System.out.print(check.amount);
System.out.print(“ to “);
System.out.println(check.name);

}

public void drawCompanyLogo() {
System.out.println(“**Our Logo**”);

}
}

193Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 193

The code in Listings 11-2 and 11-3 raises some stylistic questions. Why should
the DoPayroll class take responsibility for writing a check? Why not have the
PayrollCheck class write its own darn check?

After thinking about these issues for three whole seconds, you decide to move
the write method to the PayrollCheck class. To do this, select the write
method, and then choose Refactor➪Move. Eclipse gives you the parameter
page in Figure 11-2. (The parameter page can be confusing, so I give it my
undivided attention in this chapter’s “Dissecting a parameter page” section.)

When you click Preview, you see all the things that happen with just one
application of the Move action. (See Figure 11-3.)

If you leave all the preview page’s boxes checked, you end up with the code
in Listings 11-4 and 11-5.

Figure 11-3:
Many things

change
when you

move a non-
static

method.

Figure 11-2:
Moving a

non-static
method.

194 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 194

Listing 11-4: A Check that Writes Itself

package com.allmycode.payroll;

import com.allmycode.accounting.DoPayroll;

public class PayrollCheck {
public String name;

public double amount;

public PayrollCheck(String name, double amount) {
super();
this.name = name;
this.amount = amount;

}

public void write(DoPayroll payroll) {
payroll.drawCompanyLogo();
System.out.print(“Pay “);
System.out.print(amount);
System.out.print(“ to “);
System.out.println(name);

}
}

Listing 11-5: Streamlined Work for the Payroll Department

package com.allmycode.accounting;

import com.allmycode.payroll.PayrollCheck;

public class DoPayroll {

public static void main(String[] args) {
new DoPayroll().write
(new PayrollCheck(“Barry”, 100.00));

}

public void write(PayrollCheck check) {
check.write(this);

}

public void drawCompanyLogo() {
System.out.println(“**Our Logo**”);

}
}

195Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 195

Dissecting a parameter page
If you look back at the parameter page in Figure 11-2, you see things like “New
receiver” (right there at the top) and “Original receiver” (right around the
middle). Personally, I find this receiver terminology confusing. So in the next
several bullets, I untangle some of the confusion. As you read the bullets, you
can follow along in Figure 11-4.

� A receiver is a class that contains, at one time or another, whatever
method you’re trying to move.

In this example, you’re trying to move the write method so you have
two receivers — the DoPayroll class and the PayrollCheck class.

� The original receiver is the class that contains the method before
refactoring.

In this example, the original receiver is the DoPayroll class.

� The new receiver is the class that contains the method after refactoring.

In this example, the new receiver is the PayrollCheck class. To be con-
trary, I like to call PayrollCheck the destination class. (The write method
is moving, and the PayrollCheck class is the method’s destination.)

Original receiver
(DoPayroll)

New receiver parameter name

write (PayrollCheck check) {
 check.write (this) ;
}

write (DoPayroll payroll) {
payroll.drawCompanyLogo();

Original receiver parameter name

write write

New receiver
(Payroll Check)

Moving the write method

Figure 11-4:
Receivers

everywhere.

196 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 196

With that in mind, you can read about the roles that the fields in Figure 11-2
play:

� The New Receiver list offers a choice of destinations for the method
that you plan to move.

This example has only one possible choice — move the write method
to the PayrollCheck class.

� The New Receiver list also tells you how other classes refer to the des-
tination class.

In Figure 11-2, the Name part of the New Receiver list contains the word
check. Sure enough, after refactoring, the newly formed write method
in Listing 11-5 has a PayrollCheck check parameter. In other words,
Listing 11-5 refers to a PayrollCheck instance with a check parameter.

� The New Method Name field tells you the name of the method after
being moved to the destination.

If you change the name write to the name bubbleblinger in Figure 11-2,
then Eclipse creates a bubbleblinger method in the PayrollCheck
class’s code.

� The Original Receiver Parameter Name field tells you how other classes
refer to the original receiver class (to the class containing the method
before refactoring).

In Figure 11-2, the Original Receiver Parameter Name field contains the
word payroll. Sure enough, after refactoring, the reworked write
method in Listing 11-4 has a DoPayroll payroll parameter. In other
words, Listing 11-4 refers to a DoPayroll instance with a payroll
parameter.

An immovable object meets
irresistible source
The year is 1979. The place is Milwaukee, Wisconsin. I’m moving from a one-
room apartment to a larger place three streets away. Like any other one-room
apartment, my apartment contains an upright piano.

The piano has its own tiny furniture wheels and my friends are collected to
help me roll the thing through busy Milwaukee streets. But it’s a rickety old
piano. Any twisting force will tear the piano apart. (If half the piano is resting
on the sidewalk and the other half is dangling over the edge onto the street,
the piano can bend until it’s in two pieces. That’s how old this piano is.)

197Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 197

So what do I do? I call the Milwaukee Journal and tell the editor to send over
a photographer. Certainly five people rolling a wobbly piano down Prospect
Avenue makes a good human-interest story. Besides, if the piano collapses,
the newspaper gets an even better story.

So what’s the point? The point is, some things are meant to be moved. Other
things aren’t.

The Refactor➪Move action can move only certain kinds of Java elements.
Unfortunately, the list of movable elements isn’t easy to remember until you
get practice moving things. For example, the rules governing the movement
of static methods are quite different from the rules for non-static methods.

But the idea underlying all the rules makes sense. The Move action wants
to turn your valid code into other valid code. So if you ask Eclipse to move
something that can’t easily be kept valid, Eclipse balks. At that point, you fall
back on things like good old cutting and pasting.

Here’s a list of things you can move with Eclipse’s refactoring action:

� Methods

� Static fields

� Classes and interfaces

� Java source files and folders

� Packages and projects

Notice some things that aren’t in the list. The Move refactoring action doesn’t
work on non-static fields or on variables defined inside methods. The action
moves some non-static methods but refuses to move others. (Of course,
Eclipse’s willingness to move a non-static method isn’t arbitrary. It depends
on the method’s context in the Java program.)

The Eclipse Help page titled “Refactor actions” has a more carefully worded
list of things that you can and cannot move.

Using views to move things
You can move Java elements by dragging and dropping things within views.
To see this in motion, try the following:

1. Start with the code in Listings 11-2 and 11-3.

This code lives in two different packages — com.allmycode.payroll
and com.allmycode.accounting.

198 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 198

2. In the Package Explorer, select the PayrollCheck branch.

3. Drag the PayrollCheck branch to the com.allmycode.accounting
package’s branch.

In response, Eclipse opens a parameter page with all the bells and whistles
of any other refactoring action. If you accept everything in the preview
page, Eclipse modifies the project’s package declarations and input dec-
larations. When I look at the new code, I’m really impressed!

When you move a class, file, or folder, you can’t reverse the move’s effects
with Refactor➪Undo. Eclipse simply refuses to apply the Undo action. Of
course, you can still reverse the effects of moving a class. To do so, just do a
second move. Return to the Package Explorer, and drag the class back from
its new package to its old package.

For many kinds of elements, dragging and dropping makes Eclipse do a tex-
tual move, not a refactored move. For example, suppose you start afresh with
the code in Listings 11-2 and 11-3. In the Package Explorer, drag the write
method from the DoPayroll branch to the PayrollCheck branch. Then
Eclipse does something stupid. Eclipse cuts text from the DoPayroll.java
file, and pastes that text into the PayrollCheck.java file. The result is a
bunch of error-ridden code.

For more information on textual moves, see Chapter 10.

Changing a Method’s Signature
The Change Method Signature refactoring action isn’t complicated. It does a
few things very well, but it doesn’t try to do everything you may want it to
do. To see what I mean, try this:

1. Create a project containing the code in Listings 11-6 and 11-7.

2. Select the display method in Listing 11-6 or 11-7. Then choose
Refactor➪Change Method Signature.

Eclipse shows you the parameter page in Figure 11-5.

3. Click Add in the parameter page.

Eclipse adds a new row in the Parameters list in the Change Method
Signature parameter page. The new rows entries are Object, newParam,
and null.

199Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 199

4. Select the word Object in the Type column. Replace Object with the
word String. (See Figure 11-6.)

5. Repeat Step 4 twice. The first time, replace newParam with
whatToDisplay. The second time, replace null with "Goodbye".

6. Click OK to dismiss the parameter page.

Eclipse gives you the code in Listings 11-8 and 11-9.

Listing 11-6: Oh No! Another Hello Program!

public class Class1 {

public static void main(String[] args) {
display();

}

static void display() {
System.out.println(“Hello”);

}
}

Figure 11-6:
Creating a

new
parameter.

Figure 11-5:
A Change

Method
Signature

parameter
page.

200 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 200

Listing 11-7: Invoking the Hello Program

public class Class2 {

public Class2() {
super();
Class1.display();

}
}

Listing 11-8: A Refactored Version of Listing 11-6

public class Class1 {

public static void main(String[] args) {
display(“Goodbye”);

}

static void display(String whatToDisplay) {
System.out.println(“Hello”);

}
}

Listing 11-9: The Refactoring of Listing 11-7

public class Class2 {

public Class2() {
super();
Class1.display(“Goodbye”);

}
}

Eclipse changes the display method’s signature, and fills any display method
call with whatever default value you specify in Figure 11-6. Of course, Eclipse
doesn’t change everything. Eclipse has no way of knowing that you intend to
replace “Hello” with whatToDisplay in the System.out.println call.

Try the same experiment again, this time asking Eclipse to change the display
method’s return type. (See Figure 11-7.)

Figure 11-7:
Changing a

method’s
return type

to int.

201Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 201

When you click OK, Eclipse shows you the problem page of Figure 11-8. The
bad news is, Eclipse doesn’t plan to add a return statement at the bottom of
the display method. And Eclipse doesn’t change the call

display();

to a call like

int returnValue = display();

Kicking Inner Classes Out
This section introduces two refactoring actions that do (more or less) the
same thing. One action starts a trend, and the other action continues the
trend. In this case the trend is to pull class definitions from being inside
things to being outside of things.

Listing 11-10 contains an anonymous inner class named . . . Well, the class
doesn’t have a name. That’s why they call it “anonymous.” Anyway, to my
mind, an anonymous inner class is more “inner” than a named inner class. So
the first step in pulling out the class is to change it from being anonymous to
being an ordinary named inner class.

Figure 11-8:
Excuse me.

Eclipse says
you have a

problem.

202 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 202

Listing 11-10: As “Inner” as Inner Classes Get

package com.allmycode.gui;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JFrame;

class CreateFrame {

static JFrame frame;

public static void main(String args[]) {
frame = new JFrame();
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
frame.dispose();
System.exit(0);

}
});
frame.setSize(100, 100);
frame.setVisible(true);

}
}

Don’t be fooled by Eclipse’s folding mechanism. By default, whenever you
open the code in Listing 11-9, the editor folds any inner classes. In the marker
bar, you see a rightward pointing arrow. And in place of the folded code, you
see a little rectangle. (The rectangle has two dots inside it. See Figure 11-9.) If
you don’t expect the folding, you may not realize that the code has an inner
class. To unfold the class, click the little arrow in the editor’s marker bar. To
make sure that this automatic folding doesn’t happen again, visit the Folding
tab of the Java➪Editor page in the Window➪Preferences dialog. On that page
you can disable auto folding for certain kinds of things, or disable auto fold-
ing altogether.

For details on folding, see Chapter 6.

Figure 11-9:
A folded

inner class.

203Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 203

To give the anonymous class in Listing 11-10 a name, select that anonymous
class, and then choose Refactor➪Convert Anonymous Class to Nested.
In response, Eclipse gives you the mercifully simple parameter page of
Figure 11-10.

Clicking OK in Figure 11-10 gives you the code of Listing 11-11.

Listing 11-11: Your Inner Class Is No Longer Anonymous

package com.allmycode.gui;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JFrame;

class CreateFrame {

private static final class MyWindowAdapter
extends WindowAdapter {

public void windowClosing(WindowEvent e) {
frame.dispose();
System.exit(0);

}
}

static JFrame frame;

public static void main(String args[]) {
frame = new JFrame();
frame.addWindowListener(new MyWindowAdapter());
frame.setSize(100, 100);
frame.setVisible(true);

}
}

Figure 11-10:
A parameter
page for the

Convert
Anonymous

Class to
Nested
action.

204 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 204

If the MyWindowAdapter class doesn’t feel too uncomfortable being exposed
as it is in Listing 11-11, you can take things a step further. You can send the
class out into the world on its own. To do this, select the MyWindowAdapter
class in Listing 11-11, and then choose Refactor➪Move Member Type to
New File.

After choosing this Move Member Type to New File action, you’re in for a real
shock. What? No parameter page? All you get is a preview page!

So click OK in the preview page. In response Eclipse hands you the code in
Listings 11-12 and 11-13.

Listing 11-12: Exposing a Class to the Great Outdoors

package com.allmycode.gui;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

final class MyWindowAdapter extends WindowAdapter {
public void windowClosing(WindowEvent e) {

CreateFrame.frame.dispose();
System.exit(0);

}
}

Listing 11-13: Calling the Newly Created Class

package com.allmycode.gui;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JFrame;

class CreateFrame {

static JFrame frame;

public static void main(String args[]) {
frame = new JFrame();
frame.addWindowListener(new MyWindowAdapter());
frame.setSize(100, 100);
frame.setVisible(true);

}
}

205Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 205

In order for Move Member Type to New File to work, certain names have to
be accessible outside of their classes. Just to be ornery, go back to Listing
11-11, and add the word private to the static JFrame frame; declaration.
Then select MyWindowAdapter, and perform a Move Member Type to New
File operation. When the dust settles, you have bad code. After all, the
MyWindowAdapter class in Listing 11-12 refers to the CreateFrame.frame
field. If the frame field is private, this reference doesn’t work.

Pulling Up; Pushing Down
When I was a young lad, I strengthened my arm muscles doing pull ups and
push ups. But when I reached middle age, I gave up on my arm muscles.
Instead of pull ups and push ups, I did Pull Ups and Push Downs. Eclipse
can’t make me look better on the beach, but it can help me move things from
one Java class to another.

For examples of Pull Up and Push Down refactoring, see Chapter 10.

Extracting an Interface
Here’s a common scenario. You have a class that you use over and over
again. Many other classes use the functionality that this class provides. Your
JFrame subclasses use this class; your Account subclasses use this class; all
kinds of things use this class in new and unexpected situations. So useful is
this class that you want other classes to share its wealth. Somehow, you feel
that this class should be living in a higher plane (whatever that means).

So you decide to create an interface. Each of those other classes can imple-
ment your new interface. Best of all, your MyJFrame class can continue to
extend javax.swing.JFrame while it implements the new interface.

So start with a useful class, like the one in Listing 11-14.

Listing 11-14: Love Nest

package com.allmycode.feelings;

public class Love {

public void happiness() {
System.out.println(“Love me; love my code.”);

}

206 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 206

public void misery() {
System.out.print(“When all else fails,”);
System.out.println(“ become manipulative.”);
startAllOverAgain(new Love());

}

void startAllOverAgain(Love love) {
love.happiness();

}
}

To see how useful the Love class is, look at all the references to Love in
Listing 11-15.

Listing 11-15: Calling the Code of Listing 11-14

import com.allmycode.feelings.Love;

public class MakeLoveNotWar {

public static void main(String[] args) {
Love love = new Love();
love.happiness();
love.misery();

}
}

Select the Love class, and then choose Refactor➪Extract Interface. Eclipse
answers with the parameter page in Figure 11-11. Among other things, the
parameter page offers to declare two methods in the new interface. The page
also offers to change some outside references to the Love class.

Figure 11-11:
An Extract

Interface
parameter

page.

207Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 207

In deciding which methods to propose for the new interface, Eclipse looks for
methods that are public. If a method isn’t already public, then the method
doesn’t appear in the Members to Declare in the Interface list. That’s why, in
Figure 11-11, the happiness and misery methods appear in the list, but the
startAllOverAgain method doesn’t.

In Figure 11-11, I assign the name Lovable to my new interface. I confess, when
I constructed this example, I was looking for parallels to established Java API
interface names — names like Runnable, Cloneable, and Serializable. I got
caught up in the whole Love/Lovable business and the result was the goofy
code in Listing 11-14.

Anyway, click OK to the stuff in Figure 11-11, and you get the code in Listings
11-16 through 11-18.

Listing 11-16: My, You Have a Lovable Interface!

package com.allmycode.feelings;

public interface Lovable {
public abstract void happiness();

public abstract void misery();
}

Listing 11-17: Me? I Have a Lovable Implementation.

package com.allmycode.feelings;

public class Love implements Lovable {

public void happiness() {
System.out.println(“Love me; love my code.”);

}

public void misery() {
System.out.print(“When all else fails,”);
System.out.println(“ become manipulative.”);
startAllOverAgain(new Love());

}

void startAllOverAgain(Lovable love) {
love.happiness();

}
}

208 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 208

Listing 11-18: I Love Both Listings 11-16 and 11-17.

import com.allmycode.feelings.Lovable;
import com.allmycode.feelings.Love;

public class MakeLoveNotWar {

public static void main(String[] args) {
Lovable love = new Love();
love.happiness();
love.misery();

}
}

Eclipse creates the Lovable interface and makes the Love class implement
the Lovable interface. In addition, Eclipse changes Love to Lovable wher-
ever possible in the code. Because interfaces don’t have constructors, and
new Lovable() wouldn’t make sense, Eclipse leaves things like new Love()
alone.

Eclipse dodges bullets
The Extract Interface refactoring action is pretty smart. (This action would get
good grades in a computer programming course.) For example, in Figure 11-11
I check both the happiness and misery boxes. That’s great, but what happens
if I check only the happiness box as in Figure 11-12? Then Eclipse creates a
Lovable interface containing only one method. (See Listing 11-19.)

Listing 11-19: An Interface with Only One Member

public interface Lovable {
public abstract void happiness();

}

Figure 11-12:
Excluding a

member
from the

interface.

209Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 209

With the feeble interface in Listing 11-19, the following code (from Listing 11-18)
isn’t legal:

Lovable love = new Love();
love.happiness();
love.misery();

So Eclipse avoids this pitfall. With only one method in Listing 11-19, the
Extract Interface refactoring action doesn’t change Love to Lovable inside
the MakeLoveNotWar class.

Even with the skimpy interface of Listing 11-19, the following code from
Listing 11-17 is legal:

void startAllOverAgain(Lovable love) {
love.happiness();

}

So with the choices in Figure 11-12, Eclipse changes Love to Lovable in the
startAllOverAgain method’s parameter list.

Promoting types
Suppose your code contains the following declaration

MyFrame frame = new MyFrame();

and that MyFrame is a subclass of Java’s JFrame class. Knowing about all the
code that uses JFrame, you decide to make the declaration a bit more versa-
tile. You change MyFrame to JFrame as follows:

JFrame frame = new MyFrame();

It’s not a big change, but a change like this can make a big difference in the
amount of casting you have to do later.

Eclipse provides two refactoring actions to help with such things. The weaker
of the two actions is Generalize Type, and the stronger is Use Supertype Where
Possible.

To see how this stuff works, look over the code in Listings 11-20 through 11-23.

Listing 11-20: A Parent Class

public class MySuperclass {
int i;

}

210 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 210

Listing 11-21: A Class

public class MyClass extends MySuperclass {
}

Listing 11-22: Another Parent Class

public class OtherSuperclass {
}

Listing 11-23: Help! I’m Running Out of Ideas for Code Listing Titles!

public class OtherClass extends OtherSuperclass {

void doSomething() {
MyClass mine1 = new MyClass();
MyClass mine2 = new MyClass();
OtherClass other1 = new OtherClass();
OtherClass other2 = new OtherClass();
mine1.i = 55;

}
}

Now try these experiments:

� Select mine1 in Listing 11-23. Then choose Refactor➪Generalize Type.

After the usual round of parameter pages and preview pages, Eclipse
gives you the following modified code:

MySuperclass mine1 = new MyClass();
MyClass mine2 = new MyClass();

Eclipse changes the mine1 variable’s type, but doesn’t change any other
types. Heck, Eclipse doesn’t even call the MySuperclass constructor.

� Select other1 in Listing 11-23. Then choose Refactor➪Generalize Type.

Eclipse does the same kind of thing that it does in the previous bullet.
You end up with

OtherSuperclass other1 = new OtherClass();
OtherClass other2 = new OtherClass();

� Starting with the code in Listing 11-23, select OtherClass. Then
choose Refactor➪Use Supertype Where Possible.

After parameter paging and previewing, Eclipse gives you the following
modified code:

MyClass mine1 = new MyClass();
MyClass mine2 = new MyClass();
OtherSuperclass other1 = new OtherClass();
OtherSuperclass other2 = new OtherClass();

211Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 211

Eclipse changes one or more occurrences of OtherClass to
OtherSuperclass. In this case, Eclipse doesn’t fiddle with references
to MyClass.

In my version of Eclipse, the Use Supertype Where Possible action suffers
from a behavioral fluke. If I don’t opt to see the preview page, Eclipse
sends me into what seems to be an unending parameter page loop. After
the first parameter page, I see the words “no possible updates found.”
And Eclipse performs the refactoring action, even if I click Cancel. If I pay
even the most cursory visit to the preview page, none of this strange
behavior happens.

� Move the int i declaration from MySuperclass to MyClass. (That is,
move the declaration from Listing 11-20 to Listing 11-21.) Then redo
the experiment in the first of these four bullets.

Surprise! Eclipse nags you with a page like the one in Figure 11-13.
Because your code contains the line

mine1.i = 55;

Eclipse refuses to change the declaration of mine1. Changing the decla-
ration to MySuperclass mine1 would create invalid code.

This section’s refactoring actions complement the Pull Up and Push Down
actions. After all, with Pull Up, Push Down, and this section’s actions, Eclipse
bounces things back and forth between classes and their superclasses. Often,
when I invoke Generalize Type or Use Supertype Where Possible, I find myself
using Pull Up or Push Down soon afterward.

Moving Code In and Out of Methods
What? You’re tired of retyping code? The old cut-and-paste routine makes you
queasy? Then take heart. Eclipse’s Inline and Extract Method actions come to
the rescue.

Figure 11-13:
Sorry!
In this

example,
you can’t

generalize
a type.

212 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 212

Start with the code in Listing 11-24. Notice the ugly repetition of all the
System.out.println calls.

Listing 11-24: Repetitious Code

public class Account {
String name;

double balance;

void doDeposit(double amount) {
balance += amount;
System.out.println(“Name: “ + name);
System.out.println(“Transaction amount: “ + amount);
System.out.println(“Ending balance: “ + balance);

}

void doWithdrawl(double amount) {
balance -= amount;
System.out.println(“Name: “ + name);
System.out.println(“Transaction amount: “ + amount);
System.out.println(“Ending balance: “ + balance);

}
}

You can repair the ugliness in Listing 11-24. In either the doDeposit or the
doWithdrawl method, select the three System.out.println lines with your
mouse. Then choose Refactor➪Extract Method. In response, Eclipse shows
you the parameter page depicted in Figure 11-14.

Figure 11-14:
An Extract

Method
parameter

page.

213Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 213

In Figure 11-14, notice the little Replace 1 Duplicate Code Fragment check box.
Eclipse sees two identical copies of all the System.out.println code — one
copy in doDeposit, and another copy in doWithdrawl. Because Eclipse aims
to please, it offers to replace both copies with a call to your new method.

If you skip the preview page (or accept everything in the preview), you get
the code in Listing 11-25.

Listing 11-25: An Improved Version of the Code in Listing 11-24

public class Account {
String name;

double balance;

void doDeposit(double amount) {
balance += amount;
report(amount);

}

void doWithdrawl(double amount) {
balance -= amount;
report(amount);

}

private void report(double amount) {
System.out.println(“Name: “ + name);
System.out.println(“Transaction amount: “ + amount);
System.out.println(“Ending balance: “ + balance);

}
}

Sometimes you need to trim every ounce of fat from an application. You want
the application to run quickly, without any unnecessary processing time for
things like method calls. In such cases, you want the opposite of the Extract
Method action. You want Eclipse’s Inline refactoring action.

So in Listing 11-25, select the Account class’s report method. When you
choose Refactor➪Inline, Eclipse answers back with the parameter page
shown in Figure 11-15.

Figure 11-15:
A parameter

page for
Inline

refactoring.

214 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 214

If you check boxes as I do on the parameter page, the Inline refactoring
action takes you right back where you started. You go from the code in
Listing 11-25 back to the code in Listing 11-24. There’s no place like home!

You can select the Account class’s report method in many ways. If you
select either method call in Listing 11-25, then Eclipse gives you an Only the
Selected Invocation option (as in Figure 11-15). But if you select the report
method’s declaration, Eclipse grays out the Only the Selected Invocation
option.

Eclipse practices conflict resolution
When you perform Inline refactoring, you merge one method’s code with
some other method’s code. Occasionally, merging code can lead to conflicts.
Take, for instance, the following snippet:

void display() {
int count = 100;
count = increment(count);
System.out.println(count);

}

int increment(int value) {
for (int count = 0; count < 20; count++) {

value *= 1.15;
}
return value;

}

If you try to move increment inline, and you’re not careful, you may end up
with the following incorrect code:

void display() {
int count = 100;
int value = count;
for (int count = 0; count < 20; count++) {

value *= 1.15;
}
count = value;
System.out.println(count);

}

The code is incorrect because Java doesn’t let you declare a duplicate vari-
able name inside a for loop.

215Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 215

But once again, Eclipse comes to the rescue. When moving increment inline,
Eclipse automatically renames one of the count variables. Here’s what you get:

void display() {
int count = 100;
int value = count;
for (int count1 = 0; count1 < 20; count1++) {

value *= 1.15;
}
count = value;
System.out.println(count);

}

Eclipse becomes stubborn
(for good reasons)
Some code doesn’t want to be moved inline. Either the code is too compli-
cated for Eclipse to move, or the code doesn’t make sense when it moves
inline. Take, for instance, the code in Listing 11-26.

Listing 11-26: I Dare You to Apply Inline Refactoring to getAverage!

void display() {
System.out.println(getAverage(10.0, 20.0, 30.0));

}

double getAverage(double i, double j, double k) {
double avg = (i + j + k) / 3.0;
return avg;

}

If you try to apply the Inline refactoring action to the getAverage method in
Listing 11-26, you get nowhere at all. In fact, you get the problem page of
Figure 11-16. This page tells you that the stuff in Listing 11-26 is too compli-
cated for Eclipse’s Inline refactoring action.

The question is, what’s “too complicated” for Eclipse to move inline? No single
thing about Listing 11-26 makes the code too complicated. Instead, it’s a com-
bination of two things:

� Inside the display method, the getAverage call is inside a
System.out.println call.

You don’t just assign the call’s return value to a variable.

� The getAverage method’s body contains more than one statement.

216 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 216

Eclipse can overcome either of these stumbling blocks, but not both of them
at once. Here’s what happens if you remove one stumbling block at a time:

� Separate the getAverage and System.out.println calls in Listing 11-26:

void display() {
double average = getAverage(10.0, 20.0, 30.0);
System.out.println(average);

}

double getAverage(double i, double j, double k) {
double avg = (i + j + k) / 3.0;
return avg;

}

Then the Inline refactoring action gives you this reasonable code:

void display() {
double avg = (10.0 + 20.0 + 30.0) / 3.0;
double average = avg;
System.out.println(average);

}

� Turn the display method into a one-liner:

void display() {
System.out.println(getAverage(10.0, 20.0, 30.0));

}

double getAverage(double i, double j, double k) {
return (i + j + k) / 3.0;

}

Figure 11-16:
Eclipse

can’t
perform

this Inline
refactoring
operation.

217Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 217

Then Eclipse gives you even more reasonable code:

void display() {
System.out.println(((10.0 + 20.0 + 30.0) / 3.0));

}

In rare cases, when you try to do Inline refactoring, Eclipse may respond with
a message about a recursive call. This means that the method contains a call
to itself.

void chaseYourTail(int i) {
if (i > 0) {

chaseYourTail(i - 1);
}
System.out.println(i);

}

Moving the chaseYourTail method inline would cause an endless, nonsensical
sequence of statements, like a pair of mirrors facing one another in a carnival
funhouse. So Eclipse can’t apply Inline refactoring to the chaseYourTail
method.

If you know what recursion is, and you’re trying to use it, remember that you
can’t move a recursive method inline. If you don’t know what recursion is,
and you get a “recursive call” message, please examine your code carefully.
Your code probably contains some unintentional bit of self-reference.

Creating New Variables
Often, when I fish for information on the Internet, I find things that are close to
what I want but not exactly what I want. For example, my daughter is taking
high school chemistry. She needs to convert from Fahrenheit to Celsius. So of
course, I reach for my laptop computer. After a quick search, I find the code in
Listing 11-27.

Listing 11-27: A Program Written in Sunny California

public class Converter {

double fahrenheitToCelsius() {
return (70.0 - 32.0) * 5.0 / 9.0;

}
}

218 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 218

In Listing 11-27, 70.0 stands for the Fahrenheit temperature. But that’s silly.
What good is a conversion program if I can apply it to only one temperature?
For plain old room temperature this code works very well. But if I want to
convert values other than 70 from Fahrenheit to Celsius, this code stinks!

Maybe I should turn 70.0 into a parameter. With Eclipse, it’s easy. I select
70.0 in the editor and choose Refactor➪Introduce Parameter. Then after
a few more clicks and keystrokes, I get the following improved code:

public class Converter {

double fahrenheitToCelsius(double fahrenheit) {
return (fahrenheit - 32.0) * 5.0 / 9.0;

}
}

When I get started I can’t stop. The freezing point of water is 32 degrees. That
number hasn’t changed since I was a boy. In fact, it hasn’t changed since the
Big Bang. So I turn that number into a constant. I select 32.0 in the editor,
and then choose Refactor➪Extract Constant. After a quick encounter with
some refactoring dialogs, I get the following code:

public class Converter {

private static final double FREEZING_POINT = 32.0;
double fahrenheitToCelsius(double fahrenheit) {

return (fahrenheit - FREEZING_POINT) * 5.0 / 9.0;
}

}

Later I’ll want to break down the formula inside the fahrenheitToCelsius
method. So for now, I decide to assign the formula’s value to a variable. Once
again, the task is easy. I select the entire (fahrenheit - FREEZING_POINT)
* 5.0 / 9.0 expression, and then choose Refactor➪Extract Local Variable.
Then, after another a little more clicking and typing, I get the following beau-
tiful code:

public class Converter {

private static final double FREEZING_POINT = 32.0;
double fahrenheitToCelsius(double fahrenheit) {

double celsius =
(fahrenheit - FREEZING_POINT) * 5.0 / 9.0;

return celsius;
}

}

219Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 219

But I thought I selected an expression!
Eclipse is picky about the things you can select for this section’s refactoring
actions. For example, in Listing 11-27, select 5.0 / 9.0. Then try to start any
of the three refactoring actions. Eclipse refuses to refactor. You see a dialog
warning An expression must be selected to activate this refac-
toring. Hey! What’s going on?

Eclipse knows that in the big conversion formula of Listing 11-27, you multiply
by 5.0 before you divide by 9.0. It’s as if the formula has hidden parentheses:

((fahrenheit - FREEZING_POINT) * 5.0) / 9.0

So when you select 5.0 / 9.0, Eclipse behaves as if you’re selecting 5.0) /
9.0 — a string of characters that doesn’t quite form a valid expression. That’s
why Eclipse gives you the expression must be selected error message.

Giving higher status to your variables
Here’s a common situation. You declare a variable inside a method. Later, you
realize that other methods need to refer to that variable. You can pass the
variable from one method to another like a hot potato in a children’s game.
Better yet, you can turn that variable into a class-wide field.

To see an example, start with the following incorrect code.

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;

public class MyFrame extends JFrame
implements ActionListener {

public MyFrame() {
JButton button = new JButton(“Click me”);
button.addActionListener(this);
getContentPane().add(button);

}

public void actionPerformed(ActionEvent arg0) {
button.setLabel(“Thanks”);

}
}

220 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 220

This code is incorrect because the actionPerformed method doesn’t know
what button means. To fix the code, you decide to drag the button declara-
tion outside of the MyFrame constructor. And with Eclipse, you can drag the
declaration without doing any typing.

Select the word button in the JButton button declaration. Then choose
Refactor➪Convert Local Variable to Field. After wrestling with a parameter
page, your code is fixed. (See Listing 11-28.)

Listing 11-28: A Local Variable Becomes a Field

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;

public class MyFrame extends JFrame
implements ActionListener {

private JButton button;

public MyFrame() {
button = new JButton(“Click me”);
button.addActionListener(this);
getContentPane().add(button);

}

public void actionPerformed(ActionEvent arg0) {
button.setLabel(“Thanks”);

}
}

Now that you have a button field, you can take the next logical step. You
can surround your field with getter and setter methods. But life’s filled with
interesting choices. Here are three different ways to create getter and setter
methods:

� Place the cursor inside the MyFrame class of Listing 11-28. Type the
word getB, and then press Ctrl+Space.

Eclipse’s code assist offers to create a getButton getter method. If you
go back and type setB, Eclipse can create a setButton setter method.
With this technique, you create one new getter or setter method at a
time.

For details on code assist, see Chapter 7.

� Put the cursor anywhere inside the MyFrame class of Listing 11-28.
Then choose Source➪Generate Getters and Setters.

221Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 221

Eclipse offers to create getters and setters for any of the MyFrame class’s
fields. If you want, you can pick a getter and not a setter, or a setter and
not a getter. When you’re done, Eclipse creates all the getters and set-
ters in one fell swoop.

For details on this Generate Getters and Setters action, see Chapter 9.

� Select any occurrence of the word button in Listing 11-28 (or select
the button branch in a view’s tree). Then choose Refactor➪
Encapsulate Field.

Eclipse prompts you with the parameter page of Figure 11-17. With this
technique, you create both a getter and a setter for exactly one field.
(You can’t create a getter without a setter, or a setter without a getter.)

The interesting thing in Figure 11-17 is the Use Setter and Getter radio
button. If the button remains checked, Eclipse adds setter and getter
calls throughout the MyFrame class’s code. (See Listing 11-29.)

The alternative in Figure 11-17 is to check the Keep Field Reference radio
button. With this other button checked, Eclipse creates getter and setter
methods, but doesn’t sprinkle getButton and setButton calls through-
out the MyFrame class’s code.

Listing 11-29: Using Your Own Getters and Setters

import javax.swing.JButton;
import javax.swing.JFrame;

public class MyFrame extends JFrame
implements ActionListener {

private JButton button;

public MyFrame() {
setButton(new JButton(“Click me”));
getButton().addActionListener(this);

Figure 11-17:
An

Encapsulate
Field

parameter
page.

222 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 222

getContentPane().add(getButton());
}

public void actionPerformed(ActionEvent arg0) {
getButton().setLabel(“Thanks”);

}

private void setButton(JButton button) {
this.button = button;

}

private JButton getButton() {
return button;

}
}

The Facts about Factories
Once upon a time, a factory was a place where machines assembled parts.
These days, a factory is a method that returns a new object. A factory is like
a constructor, except that factories are more versatile than constructors.

Consider the following lovely code:

package com.allmycode.accounts;

public class Account {
String name;

double balance;

public Account(String name, double balance) {
super();
this.name = name;
this.balance = balance;

}
}

To create a factory method, select this code’s Account constructor, and then
choose Refactor➪Introduce Factory. After clicking OK on a modest-looking
parameter page, you get the following cool code:

package com.allmycode.accounts;

public class Account {
String name;

double balance;

223Chapter 11: Refactor This!

16_574701 ch11.qxd 11/29/04 7:39 PM Page 223

public static Account createAccount
(String name, double balance) {

return new Account(name, balance);
}

private Account(String name, double balance) {
super();

this.name = name;
this.balance = balance;

}
}

Eclipse makes a new factory method. (In this example, createAccount is the
new method.) Eclipse can also mask the existing constructor by making the
constructor’s access private.

Sure, this example’s new createAccount factory method doesn’t do any-
thing fancy. But after creating a factory method, you can add fancy code
inside the factory method’s body.

Each application of the Introduce Factory action creates one factory
method from one constructor. If your class has several constructors, and
you want to make a factory method from each of these constructors, you
have to invoke the Introduce Factory action several times.

224 Part II: Using the Eclipse Environment

16_574701 ch11.qxd 11/29/04 7:39 PM Page 224

Chapter 12

Looking for Things in
All the Right Places

In This Chapter
� Finding text in a Java source file

� Searching for things in collections of files

� Conducting Java-aware searches

I love living in the computer age. Yes, I’m an Internet addict and a share-
ware junkie. But more than that, I like not having to look for things. For

example, I’m writing this chapter in early October. In the next two weeks I
have to submit my yearly income tax form. (My two filing extensions are
coming to an end.) The trouble is, I don’t know where my W-2 forms are. I
don’t know what pile of papers currently contains my 1099 forms. I don’t
even want to look for my accountant’s unlisted phone number.

But with a computer, finding something is easy. In the worst case, you type a
few words and then press Search. In the best case, the computer knows what
you need, and finds things without waiting for you to ask.

Finding versus Searching
Eclipse’s “look for things” facilities fall into two categories, and the best way
to distinguish the two is to call one category finding and the other category

17_574701 ch12.qxd 11/29/04 7:47 PM Page 225

searching. I admit it — I often confuse the two words. But when I’m being
careful, I make the following distinction:

� I initiate a finding action from Eclipse’s Edit menu.

See Figure 12-1.

� I initiate a searching action from Eclipse’s Search menu.

See Figure 12-2.

The finding actions are like the kinds of things you do with a word processor.
You type a word, click a Find button, and Eclipse moves to the next occurrence
of that word in the editor. In general, I use a find action to locate something
quickly in just one file.

The search actions are a little bit more elaborate — and I elaborate on that
later in this chapter’s “Searching” section. I use a searching action for an all-
out hunt through many files at once.

Figure 12-2:
Eclipse’s

searching
actions.

Figure 12-1:
Eclipse’s

finding
actions.

226 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 226

Finding Text
Figure 12-3 shows Eclipse’s Find/Replace dialog. To conjure up this dialog,
choose Edit➪Find/Replace. The dialog helps you find things in one file at a
time. To find things that are distributed among several different files, close
the Find/Replace dialog and skip to this chapter’s “Searching” section.

Using the Find/Replace dialog
The Find/Replace dialog’s fields aren’t shocking or unusual. So I give you a
choice. You can read about each field, or you can skip the reading and experi-
ment on your own.

Ah, hah! You’ve chosen to read on! Here are a few words about each of the
Find/Replace dialog’s fields:

� Find: Type the text that you want to find in the Find field. In Figure 12-3,
I’m looking for the word show.

� Replace With: If you intend to replace the Find field’s text, put the
replacement text in the Replace With field. Otherwise, leave the Replace
With field blank. In Figure 12-3, I prepare to replace show with setVisible.

Figure 12-3:
The Find/
Replace

dialog.

227Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 227

The next two bullets refer to something called the insertion point. You proba-
bly know what the insertion point is, even if I don’t explain it. But if you don’t
know, here’s the scoop: When you click somewhere in the editor pane, the
place where you click becomes the insertion point. Later, if you type some-
thing or press your keyboard’s arrow keys, you move the insertion point.
Most systems display a vertical line (or something like that) to mark the
insertion point in the editor.

Returning to Figure 12-3 . . .

� Forward: Finds text from the insertion point downward.

� Backward: Finds text from the insertion point upward.

� All: Finds text anywhere in a file.

� Selected Lines: Limits your results to a specific collection of lines. This
Selected Lines option has quirks that make it difficult to use. For more
information see the section titled “Using the Selected Lines option.”

� Case Sensitive: Distinguishes between things like myObject and
MYoBJECT.

� Wrap Search: Makes Eclipse jump from the bottom of the file to the top.

When you check the Forward radio button:

• With Wrap Search, Eclipse reaches the bottom of a file, and then
jumps to the top to look for more occurrences of the text in the
Find field.

• Without Wrap Search, Eclipse doesn’t jump to the top of the file.
When Eclipse hits the bottom of the file, Eclipse reports String Not
Found.

Of course, if you check the Backward radio button, everything happens
(or doesn’t happen) in reverse. Eclipse jumps to the bottom of the file,
or gets stalled at the top of the file, depending on the status of that Wrap
Search check box.

� Whole Word: Looks for whole words. Avoid finding println when you’re
looking for plain old print.

� Incremental: Looks for text while you type. I’m very proud of Figure 12-4,
so please take a good, long look at it. This figure shows the progression
of selections as you type the partial word ArrayLi with a check mark in
the Incremental box.

Before you start typing, Eclipse selects nothing. (Refer to the frame in
the upper leftmost corner of Figure 12-4.) When you type the letter A,
Eclipse selects the A in Applet (as in the upper rightmost frame). Then,
after you type Ar, Eclipse jumps to highlight the Ar in Area (as in the left
frame on the second row). And so on.

228 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 228

� Regular Expressions: Finds something that matches a pattern.

For example, the pattern ^\t..[a-e]*$ matches an entire line that
starts with a tab, then contains any two characters, followed by any
number of letters (as long as each of those letters are in the range a
through e). To see a list of available pattern symbols (and to find out
what each pattern symbols means), do the following:

1. Choose Edit➪Find/Replace to open the Find/Replace dialog.

2. Put a check mark in the Regular Expressions check box.

3. Click anywhere in the Find field.

4. Press Ctrl+Space.

For a tutorial on the use of regular expressions in Java, visit java.sun.
com/docs/books/tutorial/extra/regex.

The patterns in the Find/Replace dialog are like the patterns in the Java
Element Filters dialog. For more information on the Java Element Filters
dialog, see Chapter 3.

If you check the Regular Expressions box, then you can’t use the Whole
Word or Incremental options. Eclipse grays out these two options.

Figure 12-4:
Using

incremental
search.

229Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 229

The big buttons at the bottom of the Find/Replace dialog do all the heavy
lifting.

� Find: Locates the next occurrence of whatever text is in the Find field.

� Replace: Changes one occurrence of the Find field’s text to the Replace
With field’s text. When you click Replace, Eclipse’s editor highlighting
stays on the newly replaced text. Eclipse doesn’t move on to the next
occurrence of the Find field’s text.

Eclipse can do a Replace operation even if you put nothing in the
Replace With field. When you click the Replace button, Eclipse replaces
the selected text with nothing. (In other words, Eclipse deletes the
selected text.)

� Replace/Find: Does two useful things as once — changes an occurrence
of the Find field’s text, and then moves on to highlight the next occur-
rence of the Find field’s text. To change that next occurrence, click
Replace/Find again. Keep clicking Replace/Find until you reach the end
of the file.

This Replace/Find button is handy if you want to preview (and then
accept or reject) each substitution.

� Replace All: Changes every occurrence of the Find text to the Replace
With text. Use only if you don’t need to preview each text substitution
and you’re feeling very confident.

Using the Selected Lines option
Maybe I’m just dense. I spent an hour figuring out what to do (and what not to
do) to use the Find/Replace dialog’s Selected Lines option effectively. To help
me remember what I learned, I created a brief experiment. Here’s how it works:

1. Create a project with a class containing the code in Listing 12-1.

Your goal is to change the middle two println calls into print calls.
That way, the words Please log in with your username and
password appear along one line on the user’s screen.

2. Select any occurrence of the word println. Then choose Edit➪Find/
Replace.

Selecting println isn’t necessary. It’s just convenient. When you open
the Find/Replace dialog, Eclipse populates the dialog’s Find field with
any text that happens to be selected. So selecting println saves you
the effort of manually typing println in the Find field. (Hey! That’s
worth something.)

230 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 230

Don’t start by selecting the lines in which you want to replace text. If
you select a bunch of lines and then choose Edit➪Find/Replace, then
Eclipse populates the Find field with all the text in those lines. Most of
the time, you have to delete all that text in the Find field.

3. In the Replace With field, type the word print.

4. In the editor, drag your mouse from the Please log in line to the
your username line.

You can select any parts of those two lines. (You don’t have to select the
two lines in their entirety.)

5. Back in the Find/Replace dialog, check the Selected Lines radio
button.

If you checked the Selected Lines radio button before Step 4, you must
check the button again. For some reason, the stuff you do in Step 4 turns
the Selected Lines button off and turns the alternative All radio button on.

6. Click Replace All.

In response, Eclipse changes the middle two println calls (in
Listing 12-1) into print calls.

Listing 12-1: Some Search Worthy Code

public class Greeting {

public static void main(String[] args) {
System.out.println

(“You have reached the AllMyCode server.”);
System.out.println(“Please log in with “);
System.out.println(“your username and “);
System.out.println(“password: “);

}
}

Searching
Eclipse’s Find/Replace dialog works interactively. You click Find and Eclipse
locates text in the editor. Click Find again, and Eclipse locates the next
occurrence.

In stark contrast to this interactive behavior, Eclipse search actions work in
batch mode. These search actions report their results in a separate Search

231Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 231

view. Figure 12-5 has a snapshot of the Search view. The view lists all relevant
occurrences of the name Drawing anywhere in the current workspace. To
jump to a particular occurrence in the editor, you double-click a branch of
the Search view’s tree.

Here’s another difference between search actions and the Find/Replace dialog.
Search actions can cross file boundaries (or even project boundaries). To see
what I mean, look back at Figure 12-2. When you search for Java elements, you
can search within the current project, workspace, class hierarchy, or within a
particular working set.

Eclipse has more than one search facility. It has File Search, Java Search, and
a few other kinds of search. The next several pages describe Eclipse’s most
commonly used search facilities.

File Search
To do a File Search, you start by selecting something. The thing you select
can be text in an editor, or a branch of a view’s tree. After making your selec-
tion, choose Search➪File. In response, Eclipse shows you the dialog in
Figure 12-6.

Pattern matching
File Search supports two kinds of pattern matching mechanisms.

� If you check the Regular Expression box in Figure 12-6, File Search
behaves almost exactly like the Find/Replace dialog. (For details, see
the section on “Using the Find/Replace dialog.”)

Figure 12-5:
The Search

view.

232 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 232

� Without checking the Regular Expression box, you can still use patterns.
The non-regular-expression pattern language is much less powerful, and
uses different symbols to match text, but the non-regular-expression lan-
guage is useful nevertheless.

Table 12-1 presents a few examples to illustrate the differences between
searching with and without regular expressions.

Table 12-1 Using Search Patterns
Searching For . . . With Regular Without Regular

Expressions Expressions

Any single character . a dot ? a question mark

Any string of .* a dot followed * an asterisk
characters by an asterisk

A dot \. a backslash . a dot
followed by a dot

Tab character \t Copy and paste a tab character
from an editor into the
Containing Text field

The end of a line $ As far as I know, there’s no way
to indicate a line end without
using regular expressions

Figure 12-6:
The File

Search tab
of Eclipse’s

Search
dialog.

233Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 233

On some systems, the full label beneath the Containing Text field doesn’t
show up. So in case you can’t read the entire label, the label says (* = any
string, ? = any character, \ = escape for literals: * ? \). In
plain English, typing ? makes Eclipse search for any character, but typing \?
makes Eclipse search for a question mark.

Selecting a search scope
Many items in Eclipse’s File Search tab behave the way their counterparts in
the Find/Replace dialog behave. But unlike the Find/Replace dialog, the File
Search tab has a group of Scope radio buttons. This Scope group represents
the File Search tab’s ability to hunt through several files at once.

When you check one of the Scope radio buttons, you answer the “Which
files?” question. You have four options:

� Workspace: Search in every file in the current workspace.

� Selected Resources: Before you open the Search dialog, select one or
more resources. For instance, you can click a branch on the Package
Explorer tree, and then Ctrl+click another branch on the same tree.
When you do, you’ve selected two resources.

With a check mark next to Selected Resources, Eclipse searches through
the selected files, folders, packages, or projects. Eclipse searches
through all the selected items (and through only the selected items).

After opening the Search dialog, you can no longer select resources. If you
want to change your selection of resources, you must close the Search
dialog, select other resources, and then open the Search dialog again.

Sometimes you find that the Selected Resources radio button is grayed
out. If so, it’s probably because your most recent selection is in an
editor, and not in the Package Explorer or the Outline view. For the pur-
pose of searching, Eclipse doesn’t think of your selection in an editor as
a resource.

� Enclosing Projects: I spent quite a while figuring this one out. Imagine
that you select Class1A.java and Class2B.java as in Figure 12-7.
Then you choose Search➪File and you check Enclosing Projects. Finally,
you type something in the Containing Text field, and click Search.

As a result, Eclipse searches through all files in ProjectA and ProjectB.
It searches all of ProjectA because ProjectA “encloses” Class1A.java.
And it searches all of ProjectB because ProjectB “encloses” Class2B.
java. Looking back at Figure 12-7, Eclipse searches Class1A.java,
Class2A.java, Class1B.java, and Class2B.java.

234 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 234

If, instead of checking Enclosing Projects, you check Selected Resources,
then Eclipse searches only the selected Class1A.java and
Class2B.java files.

� Working Set: Search every file within a particular working set.

For details on working sets, see Chapter 3.

Java Search
The previous section covers Eclipse’s File Search actions. These File Search
actions don’t know parameters from fields, or keywords from strings. In fact,
the File Search actions know almost nothing. If you search for s, then File
Search finds anything containing a letter s — things like class, switch,
case, and swing.

In contrast, Eclipse’s Java Search actions are Java-aware. These actions know
that parameters aren’t the same as fields, that method declarations aren’t the
same as method calls, and all that good stuff.

To see what I mean, imagine that you’re editing the following ArtFrame class:

import javax.swing.JFrame;

public class ArtFrame extends JFrame {
Drawing drawing;

public ArtFrame(Drawing drawing) {
this.drawing = drawing;

}
}

Figure 12-7:
Selecting
two Java

source files.

235Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 235

On Eclipse’s main menu bar, choose Search➪Java. In response, Eclipse dis-
plays the Java Search tab of Eclipse’s Search dialog. (See Figure 12-8.)

Now try the following:

1. In the Search String field, type drawing.

2. In the Search For group of radio buttons, select Field.

3. In the Limit To group, select Write Access.

4. Click Search.

Eclipse’s response is shown in Figure 12-9. Eclipse locates the only place in
the code in which a value is written to the drawing field. (Instead of saying
“written to,” most programmers say that a value is “assigned to” the drawing
field. But let’s not fuss about the wording.)

Figure 12-9:
The result
of a Java

Search.

Figure 12-8:
The Java

Search tab
of Eclipse’s

Search
dialog.

236 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 236

Here’s another example. In Eclipse’s editor, select the word drawing. Select
the entire word in the ArtFrame constructor’s parameter list. (Don’t select
only part of the word. If you do, this experiment doesn’t work.) Then, on the
main menu bar, choose Search➪References➪Project.

Choosing Search➪References➪Project triggers another Java Search action.
Eclipse, with all its wisdom, responds as in Figure 12-10. Eclipse highlights
the drawing parameter on the right side of the line.

this.drawing = drawing;

But Eclipse doesn’t highlight the reference to the drawing field on the left
side of the same line. How about that? It’s not just a rumor. The Java Search
facility is truly Java-aware.

Figure 12-8 shows the Java Search tab of Eclipse’s Search dialog. With the
Search For and Limit To groups, you narrow the search to specific kinds of
Java elements. You can combine selections in the Search For and Limit To
groups in many different ways. Instead of enumerating all the possibilities,
I describe a few examples. In each example, I assume that Eclipse is set to
search the code of Listings 12-2 through 12-4.

Listing 12-2: A Class that Creates a MyFrame Instance

package com.allmycode.apps;

import com.allmycode.frames.MyFrame;

public class MyApp {

public static void main(String[] args) {
new MyFrame(“I like Eclipse!”);

}
}

Figure 12-10:
Eclipse

searches
wisely.

237Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 237

Listing 12-3: The MyFrame Class

package com.allmycode.frames;

import javax.swing.JFrame;

import com.allmycode.util.Chewable;

public class MyFrame extends JFrame implements Chewable {
String title = “”;

public MyFrame(String title) {
this.title = title;
setTitle(title);
setSize(200, 100);
setVisible(true);

}

public void chew() {
}

}

Listing 12-4: The Chewable Interface

package com.allmycode.util;

public interface Chewable {
void chew();

}

� Search for the MyFrame type and limit the search to declarations. (See
Figure 12-11.)

Eclipse finds the MyFrame class. (See Figure 12-12.)

� Search for the MyFrame type and limit the search to references. (See
Figure 12-13.)

Eclipse finds a MyFrame import declaration and a MyFrame constructor
call. (See Figure 12-14.)

Figure 12-11:
Searching

for the
MyFrame

type and
limiting the

search to
declarations.

238 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 238

Figure 12-14:
The result of
the search in
Figure 12-13.

Figure 12-13:
Searching

for the
MyFrame

type and
limiting the

search to
references.

Figure 12-12:
The result

of the
search in

Figure 12-11.

239Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 239

� Search for the MyFrame type and don’t limit the search. (That is, limit
the search to all occurrences, as in Figure 12-15.)

Eclipse finds the MyFrame class, a MyFrame import declaration, and a
MyFrame constructor call. (See Figure 12-16.)

You can quickly search a single file for all occurrences of a particular
name. For example, select the title parameter in the code of Listing 12-3.
Then choose Search➪Occurrences in File. Eclipse finds the three uses
of the title parameter in the MyFrame class’s code. (See Figure 12-17.)

The Search➪Occurrences in File action is Java aware. When you search
for the title parameter, Eclipse doesn’t find any occurrences of the
title field. And like other Java Search actions, the Occurrences in File

Figure 12-16:
The result of
the search in
Figure 12-15.

Figure 12-15:
Searching

for the
MyFrame

type without
limiting the

search.

240 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 240

action searches only for a type, method, package, constructor, or field.
(Refer to the Search For group in Figure 12-15.) If you select the word
public and then choose Search➪Occurrences in File, then Eclipse does
absolutely nothing.

� Search for any *Frame type and limit the search to references. (See
Figure 12-18.)

The asterisk is a wildcard. (The asterisk stands for any sequence of
characters.) So Eclipse finds a MyFrame import declaration, a MyFrame
constructor call, a JFrame import declaration, and an extends JFrame
clause. (See Figure 12-19.)

� Search for the Chewable type and limit the search to references. (See
Figure 12-20.)

Figure 12-18:
Searching

for any
*Frame
type and

limiting the
search to

references.

Figure 12-17:
The result

of a search
for Occur-
rences in

File.

241Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 241

Eclipse finds a Chewable import declaration and an implements
Chewable clause. In other words, searching for an interface yields the
same results as searching for a class. (See Figure 12-21.)

� Search for the Chewable type and limit the search to implementors.
(See Figure 12-22.)

Eclipse finds an implements Chewable clause. (See Figure 12-23.)

Figure 12-20:
Searching

for the
Chewable

type and
limiting the

search to
references.

Figure 12-19:
The result of
the search in
Figure 12-18.

242 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 242

Figure 12-23:
The result of
the search in
Figure 12-22.

Figure 12-22:
Searching

for the
Chewable

type and
limiting

the search
to imple-
mentors.

Figure 12-21:
The result of
the search in
Figure 12-20.

243Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 243

� Search for the com.allmycode.util.Chewable type and limit the search
to implementors. (See Figure 12-24.)

Once again, Eclipse finds an implements Chewable clause. (Refer to
Figure 12-23.)

Unlike the kind of matching you see with the File/Replace dialog or with a
File Search, the Java Search knows about things like fully qualified package
names. So when you perform a Java Search on the entire com.allmycode.
util.Chewable name Eclipse finds the implements Chewable clause.
Eclipse finds this implements Chewable clause even though the clause
doesn’t explicitly contain the words com.allmycode.util.

� Search for any com.allmycode.* packages and limit the search to dec-
larations. (See Figure 12-25.)

Once again, the asterisk is a wildcard. Eclipse finds three packages —
com.allmycode.apps, com.allmycode.frames, and
com.allmycode.util. (See Figure 12-26.)

Figure 12-25:
Searching

for com.
allmy
code.*

packages
and limiting
the search
to declara-

tions.

Figure 12-24:
Searching

for the
com.
allmy
code.
util.

Chewable
type and

limiting the
search to

imple-
mentors.

244 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 244

Eclipse doesn’t associate the packages with Java source files. Even if the
code that you’re examining contains ten package com.allmycode.
util files, the Search view’s tree lists only one com.allmycode.util
item.

� Search for the title field and limit the search to write access. (See
Figure 12-27.)

Eclipse finds places where a title field is given a value. (See Figure
12-28.) This includes places in the JRE system libraries. For example,
the java.awt.Frame class contains a title field, and the Frame class’s
code contains three lines in which title is given a value.

When you limit the search to either write access or read access, Eclipse
grays out its Search the JRE System Libraries check box so you can’t
deselect it. (Refer to Figure 12-27.) This means that Eclipse finds occur-
rences in the JRE system libraries whether you like it or not.

You can’t see the code in any of the JRE system libraries unless you tell
Eclipse where the libraries’ source code lives. To find out how to do this,
see the section about the Declaration view in Chapter 5.

� Search for the title field and limit the search to read access. (See
Figure 12-29.)

Figure 12-27:
Searching

for the
title field
and limiting
the search

to write
access.

Figure 12-26:
The result of
the search in
Figure 12-25.

245Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 245

Eclipse finds places where the code uses a title field’s value. In this
example, the only such places are in the JRE system libraries. Nothing
in Listing 12-3 uses the title field’s value. (Some statements use the
title parameter’s value, but not the title field’s value.)

Suppose Listing 12-3 contained a getter method.

public String getTitle() {
return title;

}

Then searching for read access to a title field would find the getter
method’s return statement.

Figure 12-29:
Searching

for the
title field
and limiting
the search

to read
access.

Figure 12-28:
The result of
the search in
Figure 12-27.

246 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 246

� Search for Chewable and limit the search to references in the
Chewable hierarchy.

What? You say you see nothing about a hierarchy on the Java Search
page? To search for Chewable references in the Chewable hierarchy,
select Chewable (in the editor or in a view). Then choose Search➪
References➪Hierarchy. (See Figure 12-30.)

Eclipse finds an implements Chewable clause. (See Figure 12-31.)

Using the Exception Occurrences action
At the end of Chapter 6, I describe a cool Mark Occurrences feature. If you
select an exception, Eclipse highlights all the statements that can throw the
exception.

You can do the same kind of thing with a Search action. Select an exception
in the editor. Then choose Search➪Exception Occurrences. As with the Mark

Figure 12-31:
The result of
the search in
Figure 12-30.

Figure 12-30:
Searching

for
Chewable
and limiting
the search

to refer-
ences in a
hierarchy.

247Chapter 12: Looking for Things in All the Right Places

17_574701 ch12.qxd 11/29/04 7:47 PM Page 247

Occurrences feature, Eclipse highlights all statements that can throw the
exception. In addition, Eclipse lists all those statements in the Search view.
(See Figure 12-32.)

Figure 12-32:
The result of
a search for

exception
occur-

rences.

248 Part II: Using the Eclipse Environment

17_574701 ch12.qxd 11/29/04 7:47 PM Page 248

Part III
Doing More with

Eclipse

18_574701 pt03.qxd 11/29/04 7:46 PM Page 249

In this part . . .

When I think about this part of Eclipse For Dummies,
the word tweak comes to mind. Tweak your project,

tweak the Java compiler, or tweak the way your program
runs. Parts I and II give you the cake. This part gives you
the icing.

18_574701 pt03.qxd 11/29/04 7:46 PM Page 250

Chapter 13

Working with Projects
In This Chapter
� Working with bigger and bigger projects

� Bringing legacy code into an Eclipse project

� Creating Javadocs for your project

Many years ago I visited a computer store to try out the latest version of
FinalWord. (At the time, FinalWord was my favorite word processing

program.) I was amazed when the salesperson opened a box containing nine
51⁄4-inch floppy disks. “That’s a huge program,” I said. And the salesperson
replied, “That’s the way software comes these days.”

A huge program indeed! At least 100 copies of FinalWord would fit on one of
today’s CD-ROMs. And a program for home use can come packaged as a set of
CD-ROMs. But that’s not all. A program for commercial use can be enormous.
Commercial programs can be divided into parts, with the parts running on
several processors, and on several computers in several geographical locations.

I can’t describe all the tools for managing this size and complexity. But I can
describe a few simple tricks — ways that Eclipse helps you move from chaos
to organization.

The Typical Java Program
Directory Structure

Take a look at Figure 13-1. My hard drive’s JavaPrograms directory contains
a com directory, which in turn contains allmycode\gui and burdbrain\io
directories. At the bottom level, my gui directory contains ShowAFrame.java,
which (take my word for it) begins with the line

package com.allmycode.gui;

19_574701 ch13.qxd 11/29/04 7:44 PM Page 251

The directory structures in Figure 13-1 have nothing to do with Eclipse.
These com\something\somethingelse directory structures are standard
fare. (Well, they’re standard for people who do a lot of Java programming).
In fact, when I created the directories in Figure 13-1, I hadn’t even heard of
Eclipse.

I talk a lot about the kinds of directory structures that you see in Figure 13-1.
So I have handy names for these directories:

� In Figure 13-1, I call JavaPrograms the source directory.

The source directory is the directory where the Java compiler and Java
Virtual Machine begin looking for your Java source files.

� In Figure 13-1, I call com, allmycode, and gui the package directories.

The package directories are all the directories whose names are part of a
dotted package name. Because allmycode is part of the dotted com.
allmycode.gui package name, the allmycode directory in Figure 13-1
is a package directory.

� In Figure 13-1, I call com the top-level package directory. I call gui a
bottom-level package directory.

I use the words “directory” and “folder” to mean exactly the same thing.
Sometimes, one word feels a bit more appropriate, so I use one word instead
of the other. But these feelings of mine about appropriateness and inappro-
priateness don’t mean much. Eclipse’s Help pages tend to favor the word
“folder.” And I, in my capacity as a computer geek, tend to favor the word
“directory.” It doesn’t matter. The two words are interchangeable.

Working with Source Folders
The more elaborate your application, the more your application needs to be
well organized. If your project is a small one, you can keep everything in one
folder. But an industrial-strength project spans dozens, or possibly even hun-
dreds of folders. This section helps you manage a project with several folders.

Figure 13-1:
Java

program
directories.

252 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 252

Creating a separate source folder
In earlier chapters, your project’s source folder is the project folder itself.
This unified folder contains all kinds of code, including .java files and
.class files.

For instance, with a project named MyProject, your eclipse workspace
directory has a subdirectory named MyProject, which in turn has a com sub-
directory, and a few subdirectories below the com directory. In Figure 13-2,
the lowest level stuff directory contains both a .java file and a .class file.

The structure in Figure 13-2 is good for very small projects, but bigger pro-
jects demand a higher level of organization. That’s why all the big-time Java
programmers create separate directories for a project, for the project’s
.java files, and for the project’s .class files.

So in this chapter, you create richer directory structures. Here’s how you
start:

1. On the Eclipse menu bar, choose File➪New➪Project.

2. In the New Project dialog, select Java Project and click Next.

You see the New Java Project Wizard.

3. In the Project Name field, type a name for your new project.

In this example, I typed BigProject.

4. In the Project Layout section of the wizard select the Create Separate
Source and Output Folders radio button. (See Figure 13-3.)

Selecting the “separate folders” option makes this section’s project dif-
ferent from the previous chapters’ projects. In this project, all .java
files go in a src directory, and all .class files go in a bin directory.
That’s what you get (by default) when you select the option. The bin
folder (or any folder that stores all the .class files) is called an output
folder.

Figure 13-2:
The project
folder is the

source
folder.

253Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 253

5. Click Finish.

The New Project Wizard disappears. In the workbench’s Package
Explorer view, you see the newly created BigProject.

6. Expand the new project’s tree.

When expanded, the project tree contains a src folder. (See Figure 13-4.)

7. Create a package and create a class inside the package.

In this example, name the package com.allmycode.bigpackage. And
while you’re at it, name the class BigClass.

In the New Java Package and New Java Class Wizards, Eclipse automati-
cally fills in the Source Folder field. In Figure 13-5, the Source Folder field
contains BigProject/src. In this example, all the files live inside the
BigProject subdirectory of Eclipse’s workspace directory. In particular,
the .java files live in the src subdirectory of that BigProject directory.

Figure 13-5:
Creating

a class in
the Big

Project/
src

directory.

Figure 13-4:
A new
source
folder.

Figure 13-3:
Creating
separate

folders.

254 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 254

Eventually, you click Finish to close the New Java Class Wizard. The
wizard disappears, to reveal your old friend — the Eclipse workbench.

8. Expand branches in the Package Explorer’s tree.

You see a new class inside the src folder. (See Figure 13-6.)

As soon you as you create a .java file, Eclipse compiles the .java file and
creates a corresponding .class file. If you ask for separate folders (Step 4),
the new .class file goes into a bin folder. But in Figure 13-6, the Package
Explorer’s tree doesn’t display the bin folder. If you want to see the bin
folder, you have to open the Navigator view. (See Figure 13-7.)

For tips on opening the Navigator view, see Chapter 4.

Your previous projects don’t have bin directories. If you look at one of these
projects in the Navigator view, you see a much simpler directory structure.
(See Figure 13-8.)

Figure 13-7:
The bin

directory in
the

Navigator
view.

Figure 13-6:
A class in

the src
directory.

255Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 255

Oops! I forgot to create a
separate source folder.
I have a very bad habit. I avoid creating new directories until circumstances
force my hand. I think the habit comes from the olden days — the days of
floppy disks. On a floppy that stores 360K, subdirectories are unnecessary.

So here’s what happens: I start what I think is going to be a small program-
ming task. When I create an Eclipse project, I don’t do all the stuff in the
“Creating a separate source folder” section. (That is, I don’t create a separate
source folder.) As the project grows and I see things becoming more complex,
I start regretting my original decision not to create a separate source folder.

So what can I do? Can I create a separate source folder after I’ve been tinker-
ing with a project for several hours? Of course I can. Here’s how:

1. Create a Java project. In the New Java Project Wizard, don’t create
separate source and output folders.

Leave the creation of separate folders until after the project is
underway.

2. Add a package and a class to your new project.

In this example, I named the package com.allmycode.growing. I named
the class GrowingClass.

3. In the Package Explorer, right-click the project that’s begging to have
a new source folder.

That is, right-click com.allmycode.growing.

4. On the resulting context menu, choose New➪Source Folder.

A New Source Folder dialog appears. (See Figure 13-9.)

Figure 13-8:
A project

with no bin
directory

(in the
Navigator

view).

256 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 256

5. In the Folder Name field of the New Source Folder dialog, type a name
for your new source folder.

In Figure 13-9 I typed src. Notice the innocent looking message in Figure
13-9. In addition to creating the src directory, Eclipse plans to create a
directory named bin (a separate directory for all your .class files).

6. Click Finish.

A message box asks you if you want to remove things like .class files
from the project folder. (See Figure 13-10.) Sure, you want to remove
those .class files.

7. Click Yes.

The Package Explorer displays your new src folder. But the com direc-
tory isn’t inside the new src folder.

Look carefully at the message box in Figure 13-10, and notice what the
message doesn’t say. The message doesn’t say anything about generat-
ing new .class files. Nor does the message say that Eclipse intends to
move the existing .java files. When you click Yes, the only thing Eclipse
does is delete .class files. All the other moving and generating has to
wait until Step 8.

8. In the Package Explorer, drag the com directory to the src directory.

Eclipse moves the source code to the src directory and creates a com-
piled .class file in the bin directory. To see the src directory’s contents,
look over the Package Explorer in Figure 13-11. To see both the src direc-
tory and the bin directory, look at the Navigator view in Figure 13-12.

Figure 13-10:
Do you want

to remove
stuff?

Figure 13-9:
The New

Source
Folder
dialog.

257Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 257

Working with even bigger projects
In the previous section I show you how to create a project with one source
folder and with a separate output folder. That’s fine for a big project. But for a
truly humongous project, you may need more than one source folder. In this
section, you create a project with two source folders and two output folders.

What follows may seem to be a very long sequence of steps. But trust me. If
you create big projects often, you eventually perform these steps on autopilot.

1. Repeat Steps 1 to 4 from the “Creating a separate source folder”
section.

This time, name your project HumongousProject.

2. Instead of clicking Finish, click Next.

The Java Settings page appears. (See Figure 13-13.)

Figure 13-12:
The source

files and the
.class

files in the
Navigator

view.

Figure 13-11:
A new
source

folder
appears in

the Package
Explorer.

258 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 258

3. On the Source tab of the Java Settings page, click the Add Folder
button.

A Source Folder Selection dialog appears. (See Figure 13-14.)

Figure 13-14:
The Source

Folder
Selection

dialog (with
only one

source
folder).

Figure 13-13:
The Java
Settings

page.

259Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 259

4. On the Source Folder Selection dialog, click the Create New Folder
button.

Guess what? A New Folder dialog appears.

5. Type the name of your additional source folder.

In this example, I typed src2.

6. Click OK.

7. Back on the Source Folder Selection dialog, make sure that src2 is
checked.

See Figure 13-15.

8. On the Source Folder Selection dialog, click OK.

Now the Source tab of the Java Settings page displays two source
folders — src and src2.

9. Expand all branches of the Source Folders on Build Path tree.

See Figure 13-16.

At this point, you have a choice to make. If you leave the Allow Output
Folders for Source Folders check box unchecked, the Eclipse compiler
dumps all its .class files into a single bin folder. But if you check the
Allow Output Folders for Source Folders box, you have more control
over the use of output folders.

Figure 13-15:
The Source

Folder
Selection

dialog (with
two, count

’em two)
source
folders.

260 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 260

10. Put a check mark in the Allow Output Folders for Source Folders box.

Notice how the tree grows some new branches. These new branches
represent output folders for each of the project’s source folders. (See
Figure 13-17.)

Renaming your new output folder
In the previous section, you create two output folders — one for each of two
source folders. By default, each output folder is named bin. Of course, you
can override a default name. Here’s how you do it:

1. Work through the instructions in the previous section.

At the end of Step 10 you have the situation illustrated in Figure 13-17.

2. Select an output folder, and then click Edit.

I selected the output folder for src2. When I clicked Edit, the Source
Folder Output Location dialog appears. (See Figure 13-18.)

3. Select the Specific Output Folder radio button, and then click Browse.

The Folder Selection dialog appears.

Figure 13-17:
A separate

output
folder for

each source
folder.

Figure 13-16:
What do

you do with
two source

folders?

261Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 261

4. Click Create New Folder. On the resulting New Folder dialog, type a
name for the new output folder.

In this example, I typed bin2.

5. Click OK to dismiss the New Folder dialog. Then, back on the Folder
Selection dialog, select the new bin2 folder. (See Figure 13-19.)

6. Click OK to dismiss the Folder Selection dialog. Then click OK again
to dismiss the Source Folder Output Location dialog.

After all that clicking, you see the Java Settings page. On the Java
Settings page, the output folder for src2 is now bin2. (See Figure 13-20.)

7. Click Finish to dismiss the Java Settings page.

Figure 13-20:
At last! The

second
source

folder has
an output

folder
named
bin2!

Figure 13-19:
Selecting a
new output

folder.

Figure 13-18:
The Source

Folder
Output

Location
dialog.

262 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 262

After performing all these steps, you probably want to examine the fruits of
your effort. To see the stuff that you’ve created, open Eclipse’s Navigator view.

Better yet, add classes to the src and src2 folders. Have the code from one
source folder call code in the other source folder. Eclipse manages this call
without blinking an eye.

Working with colossal applications
With programs becoming bigger and better, it’s hard to imagine a single Eclipse
project holding an entire industrial-strength application. That’s why Eclipse
lets you link several projects together.

Start with the code in Listings 13-1 and 13-2.

Listing 13-1: A Class in the ReferencedProject

/*
* ReferencedProject
* ReferencedClass.java
*/
package com.allmycode.referenced;

public class ReferencedClass {
public int value = 42;

}

Listing 13-2: A Class in the ReferringProject

/*
* ReferringProject
* ReferringClass.java
*/
package com.allmycode.referring;

import com.allmycode.referenced.ReferencedClass;

public class ReferringClass {

public ReferringClass() {
new ReferencedClass().value = 22;

}
}

According to Figure 13-21, the code in Listings 13-1 and 13-2 lives in two sepa-
rate Eclipse projects — ReferencedProject and ReferringProject. But

263Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 263

the code in Listing 13-2 refers to the value field in Listing 13-1. If you don’t
tell Eclipse that one project’s code can refer to the other project’s field, then
Eclipse displays red error markers. By default, all projects are independent of
one another, even if they live in the same workspace.

To connect one project to another, do the following:

1. In the Package Explorer, right-click the project that refers to the other
project’s code.

In this example, right-click ReferringProject.

2. In the resulting context menu, choose Properties.

A big dialog appears on-screen. This dialog describes all the properties
of ReferringProject.

3. On the left side of the dialog, select Java Build Path.

The build path is what many people call the CLASSPATH — the collection
of folders in which Eclipse looks for classes.

4. On the right side of the dialog, select the Projects tab. (See Figure 13-22.)

You can add an entire project’s folders to another project’s build path.

5. Put a check mark next to the project whose code is referenced.

In Figure 13-22, I put a check mark in the ReferencedProject box.

6. Click OK.

Any red error markers in the referring project’s code disappear. If they
don’t disappear immediately, they disappear the next time you save
the code.

Figure 13-21:
A program

that
straddles

several
Eclipse

projects.

264 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 264

Eclipse gets upset if you create circular build paths. If ProjectA’s build path
includes ProjectB, and ProjectB’s build path includes ProjectA, then Eclipse
displays messages like the ones in Figure 13-23. When you try to run your
code, Eclipse displays a box like the one in Figure 13-24. In spite of the word
“Errors” in Figure 13-24, you can run code that contains a circular build path.
If you click OK in the Errors in Project dialog, Eclipse executes your program.

Figure 13-24:
Errors in

your code.

Figure 13-23:
The

Problems
view.

Figure 13-22:
Adding one

project to
another

project’s
build path.

265Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 265

Adding extra stuff to a project’s build path
Look back at Figure 13-22, and notice how complex a project’s build path can
become. Figure 13-22 has Source, Projects, Libraries, and Order and Export
tabs. Each tab manipulates the build path in one way or another.

In this section, I focus on the Libraries tab. And to stretch the build path’s
muscles, I introduce a JUnit test. The test code is in Listing 13-3.

Listing 13-3: A Really Simple JUnit Test

import junit.framework.TestCase;

public class Arithmetic extends TestCase {

public void testGetName() {
assertEquals(2 + 2, 5);

}
}

If you’re a Java programmer and you’ve never used JUnit, then you’re missing
out on all the fun. JUnit is a “must have” tool for testing Java programs.

The test case in Listing 13-3 is pretty simple. The code fails if 2 + 2 doesn’t
equal 5. (And where I come from, 2 + 2 doesn’t equal 5.)

This section describes the setup in Eclipse for running the code in Listing 13-3.
As you follow the steps, you find out how to mess with the project’s build path.

1. Create a new project.

On the Select a Wizard page, select Java Project. For the project name,
use JUnitDemo.

2. Right-click the JUnitDemo branch of the Package Explorer and choose
Properties.

The project’s Properties page appears.

3. On the left side of the Properties page, select Java Build Path.

4. On the right side of the Properties page, select the Libraries tab.
(See Figure 13-25.)

As part of the Libraries tab, Eclipse displays a list of JARs and class fold-
ers on the build path. At this point, you’re probably not surprised to find
JRE System Library in the Libraries tab’s list. (After all, the JRE System
Library appears in the Package Explorer along with every single project.)

To run a JUnit test, you need an additional JAR file in the project’s
build path.

266 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 266

5. Click the Add External JARs button.

A JAR Selection dialog appears. This dialog looks just like an ordinary
Open dialog that you see when you open any new document.

6. In the JAR Selection dialog, navigate to the eclipse plugins directory.

That is, look in the directory in which you installed Eclipse. Directly
under that installation directory, look for a subdirectory named
plugins.

7. Within the plugins directory, navigate to a directory whose name
begins with org.junit.

In Eclipse 3.1, the directory’s name is org.junit_3.8.1. But by the
time you read this book, the name may be org.junit_99.9.98, or
something like that.

8. Inside the org.junit directory, look for a junit.jar file and double-
click it.

As if by magic, Eclipse returns you to the project’s Properties page. Now
the list of JARs and class folders has an additional entry. Naturally, the
entry’s label is junit.jar. (See Figure 13-26.)

9. Click OK to dismiss the project’s Properties page.

Eclipse returns you to the workbench. In the Package Explorer, you see
the additional junit.jar entry. (See Figure 13-27.)

Figure 13-26:
An

enhanced
Java build

path.

Figure 13-25:
The default
Java build

path.

267Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 267

Now all you need to do is add the code in Listing 13-3. You can add it just
like any other class, but my obsessive/compulsive streak tells me to call
it a JUnit test case.

10. Right-click your project’s branch in the Package Explorer. In the
resulting context menu, choose New➪JUnit Test Case.

Eclipse’s New JUnit Test Case Wizard appears.

11. Type a name for your new test case.

In the wizard’s Name field, type Arithmetic.

12. Click OK to dismiss the New JUnit Test Case Wizard and return to the
workbench.

13. In the editor, type the code from Listing 13-3 (or download the code
from this book’s Web site).

14. On Eclipse’s main menu, choose Run➪Run➪JUnit Test.

After much sound and fury, you see the JUnit view in Figure 13-28. The
number of errors is 0, but the number of failures is 1. If you look down
at the Failure Trace, you can see what failed. The trace says expected:
<4> but was: <5>. How much more explicit can a failure message be?

Figure 13-28:
The JUnit

view
displays a
program’s

failures.

Figure 13-27:
A project
with two
libraries.

268 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 268

Importing Code
In most of this book’s examples, you create brand-new programs using
Eclipse. That’s fine for new code, but maybe you weren’t born using Eclipse.
Maybe you have Java code that you created before you started using Eclipse.
What do you do with all that older Java code? The answer is, you import the
code. You bring existing code into a newly created Eclipse project.

You have two import techniques to choose from. You can drag and drop, or
you can use the Import Wizard.

Using drag and drop
As an importing technique, dragging and dropping works only with certain
operating systems. (With Eclipse 3.0, the technique works only in Windows.)
In addition, this technique is like a blunt instrument. The technique imports
everything from a particular directory on your hard drive. If you want to
import only a few files from a directory, this technique isn’t your best bet.

Of course, if you use Windows, and you like the intuitive feel of dragging and
dropping, then this technique is for you. Just follow these steps:

1. Create a new Java project.

In this example, I named the project MyImportedCode.

2. Double-click My Computer, and then navigate to a source directory
that’s outside of the Eclipse workspace.

In other words, navigate to the directory containing the stuff that you
want to import. For example, take a look back at Figure 13-1. To import
all the stuff in Figure 13-1, navigate to the JavaPrograms directory.

3. Drag the top-level package directory to the new project’s branch in
Eclipse’s Package Explorer.

In plain English, drag the stuff that you want to import to your new
Eclipse project.

You must be careful to drag the proper directory. If you don’t, then your
Eclipse project ends up having the wrong directory structure. For exam-
ple, in Figure 13-29 I drag the top-level com package directory from the
My Computer window into the MyImportedCode project.

The result is in Figure 13-30. Within its own workspace, Eclipse creates a
copy of the com directory (and of everything inside the com directory).
As you may expect, Eclipse ignores the JavaPrograms directory.

269Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 269

I admit it. I find these directory names to be a bit confusing. If I don’t do it for
a while, I forget which directory to drag. I’m usually off by one level. (I select
either the parent or the child of the appropriate directory.) Then my direc-
tory structure doesn’t match my Java package structure, and I have to start
over again. My brain doesn’t process this particular concept very easily. Who
knows? Maybe your brain does a better processing job.

Figure 13-30:
The result of

successful
dragging

and
dropping.

Outside of the Eclipse
Workspace

Drag and drop

Inside the Eclipse
Workspace

MoreImportedCode
(Eclipse project directory)

JavaPrograms
(source directory)

com
(top level package

directory)

ShowAFrame.java
(in package

com.allmycode.gui)

allmycode

gui

io

burdbrain

Figure 13-29:
Dragging a

top-level
package

directory to
a project

directory.

270 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 270

Dragging and dropping
selected directories
In the previous section, I show you how to drag all the code from the
com.anything.anythingelse packages into the Eclipse workspace. That’s
fine if you’re not too picky. But what if you want to drop only some of the
code from a particular directory into the Eclipse workspace?

For instance, from all the stuff in Figure 13-1 I may want com\allmycode\gui,
but not com\burdbrain\io. So which directory do I drag? If I drag the com
directory, then the burdbrain\io directory comes along with it. And if I drag
allmycode, then the new Eclipse directory structure doesn’t match the pack-
age name. (The new Eclipse directory is allmycode\gui, but the package
name in the code is still com.allmycode.gui.)

So here’s what I do. I manually create a com directory in the Eclipse project. I
call com an un-dragged directory because I don’t drag com from My Computer
to the Eclipse project.

After creating this un-dragged directory inside the Eclipse project, I can drag
allmycode into the Eclipse project. To do all this on your own, follow these
steps:

1. Create a new Java project.

If you want to follow along with my clicks and keystrokes in this set of
steps, name your project MoreImportedCode.

2. In the Package Explorer, right-click your new project’s branch.

To follow along with me word for word, right-click the
MoreImportedCode branch.

3. On the resulting context menu, choose New➪Folder.

Be sure to choose New➪Folder, and not New➪Source Folder. The Source
Folder option is for creating a source directory. And in this example, com
is a package directory, not a source directory. (See the discussion of
source directories and package directories in my section titled “The
Typical Java Program Directory Structure.”)

A New Folder dialog appears.

4. In the Folder Name field of the New Folder dialog, type the un-
dragged directory’s name.

In this example, I typed com.

271Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 271

5. Click Finish.

The New Folder dialog disappears. In the Eclipse workbench, your pro-
ject tree contains a new com entry.

6. On your Windows desktop, open My Computer.

7. Drag the stuff that you want to import, and drop it in Eclipse’s
Package Explorer. Drop it into the un-dragged directory.

In Figure 13-31, I drag allmycode from My Computer into the
MoreImportedCode project’s com directory (in the Package Explorer).

8. Check your work by looking for error markers in the Package
Explorer.

Figure 13-32 shows the results of two attempts to import files. One
attempt is successful; the other isn’t.

• In the successful attempt, I dropped allmycode in the com direc-
tory of the MoreImportedCode project. The resulting com.
allmycode.gui directory contains the ShowAFrame.java file.

• In the unsuccessful attempt, someone else (who shall remain
nameless) makes a mistake. This person manually creates a com
directory, but doesn’t drop allmycode into the com directory.
Instead, this poor programmer drops allmycode directly into the
PoorlyImportedCode branch of the Package Explorer’s tree.

Outside of the Eclipse
Workspace

Drag and drop

Inside the Eclipse
Workspace

MoreImportedCode
(Eclipse project directory)

JavaPrograms
(source directory)

com
(top level package

directory)

ShowAFrame.java
(in package

com.allmycode.gui)

allmycode

gui

io

burdbrain

com
(un-dragged

directory)

Figure 13-31:
Dragging a

package
directory

into the un-
dragged

directory.

272 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 272

So unfortunately, the newly copied allmycode directory isn’t a
subdirectory of the com directory. Eclipse immediately attempts to
compile the code. But the directory structure doesn’t match the
com.allmycode.gui package name inside the ShowAFrame.java
file. To indicate the error, Eclipse displays tiny red error markers.

Using the Import Wizard
If you don’t use Microsoft Windows, or if you want to carefully pick and
choose what you import, you can’t use drag-and-drop. Instead, you have to
use the Import Wizard.

1. Create a new Java project.

In this example, name your project ImportWizardTest.

2. In the Package Explorer, right-click your newly created project. Then,
on the resulting context menu, choose Import.

An Import Wizard appears.

3. In the Import Wizard, select File System. Then click Next. (See
Figure 13-33.)

The File System page appears.

4. In the From Directory field, enter the name of a Java source directory.

In this example, I’m importing some of the stuff in Figure 13-1. In that
figure, the source directory’s name is JavaPrograms. So in Figure 13-34,
I typed JavaPrograms in the From Directory field.

This source directory (a.k.a. the From Directory) is the immediate
parent of the top-level package directory. For instance, in Figure 13-34,
the JavaPrograms source directory is the immediate parent of com (the
top-level package directory).

Figure 13-32:
Successful
and unsuc-

cessful
importing.

273Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 273

Figure 13-34:
Selecting

the files you
want to
import.

Figure 13-33:
The first

page of the
Import

Wizard.

274 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 274

To fill in the From Directory field, you can either browse or type char-
acters. If you type characters, then Eclipse may exhibit some slightly
peculiar behavior. The two white panes directly beneath the From
Directory field stay empty until you do something else (whatever “doing
something else” means). After typing a name in the From Directory field,
I clicked my mouse inside one of the big white panes. As soon as I click,
Eclipse starts to populate these panes with check box structures.

5. Expand the left check box tree, looking for a directory containing the
code that you want to import. When you find such a directory, select
it with your mouse.

In this example, I selected the gui directory.

6. In the list on the right, put a check mark next to any file that you want
to import.

In Figure 13-34, I put a check mark next to the ShowAFrame.java file. In
response, Eclipse automatically puts check marks next to some of the
directories in the left check box tree.

7. In the Options group, select the Create Selected Folders Only radio
button.

With Create Selected Folders Only checked, you import the com, allmy
code, and gui directories. With the alternative Create Complete Folder
Structure box checked, you import the JavaPrograms directory as well.
(That’s bad, because JavaPrograms isn’t part of the package name.)

8. Click Finish.

The Import Wizard disappears. In the Eclipse workbench, your project
tree contains new entries. In Figure 13-35, these new entries are in the
com.allmycode.gui package.

Figure 13-35:
The newly

imported
com.all
mycode.

gui
package.

275Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 275

Adding Javadoc Pages to Your Project
When you create a new Java class, Eclipse puts Javadoc comments in the
newly generated code. That’s good because some programmers forget to add
Javadoc comments of their own. (Of course, you never forget to add Javadoc
comments, and I never forget either. But some programmers forget, so
Eclipse creates the comments automatically.)

Of course, Javadoc comments aren’t very useful until you sift the comments
out of your code. As a result of the sifting, you get a bunch of nice looking
Web pages. These Web pages (which also happen to be called Javadoc pages)
are indispensable for anyone who uses the names defined in your code.

Eclipse associates each collection of Javadoc pages with a particular project.
To sift out a project’s Javadoc comments and create Javadoc Web pages,
follow these steps:

1. Create a Java project, and add a class with Javadoc comments to your
project.

2. On the Eclipse menu bar, choose Project➪Generate Javadoc.

The Generate Javadoc Wizard appears. If this is your first time using
Eclipse to generate a Javadoc, the Javadoc Command field is empty.
(See Figure 13-36.)

3. If the Javadoc Command field is empty, click the Configure button.

In the Generate Javadoc Wizard, what you normally call the Browse
button is labeled Configure. Navigate to a file on your computer named

276 Part III: Doing More with Eclipse

Getting rid of unwanted directories
In this chapter, you create one directory after
another. Occasionally, you make a mistake and
create a directory that you don’t really want.
Who knows? Maybe you create a whole set of
directories within directories that you don’t
really want.

If you create a bad directory, you can delete the
directory and try again. To delete a directory,
right-click the directory’s branch in the Package
Explorer and choose Delete.

At some point, when you try to delete a direc-
tory, you may see an annoying out of sync
with file system message. Chances are,
you’re trying to get rid of something that’s
already been deleted. Just click the message’s
OK button. Then in the Eclipse workbench,
choose File➪Refresh. When you do, the non-
existent directory disappears from the Package
Explorer.

19_574701 ch13.qxd 11/29/04 7:44 PM Page 276

javadoc or javadoc.exe. This javadoc file (an executable) sifts com-
ments out of your code for insertion into Web pages.

The javadoc executable is part of the JDK (Java Development Kit). You
don’t need the JDK to do most of the things you do in this book, so you
may not have the JDK on your computer. To get the JDK, visit java.
sun.com. After you install the JDK, look for a bin directory inside another
jdk5.0 directory (or something like that). The bin directory contains
lots of other javasomething filenames — names like javac, javah,
javaw, and (yes!) javadoc. The directory also contains some non-java
names — names like appletviewer and jarsigner.

After you successfully browse for the javadoc executable, the top of the
Generate Javadoc Wizard looks something like the page in Figure 13-37.

4. Click Finish to bypass the wizard’s other pages.

The Generate Javadoc Wizard gives you lots and lots of options. As for
me, I often accept the defaults.

Clicking Finish gives you a dialog in which you’re asked to confirm the
location of the new documents.

Figure 13-37:
The

Generate
Javadoc
Wizard,

after filling
in the

Javadoc
Command

field.

Figure 13-36:
Your first

visit to the
Generate
Javadoc
Wizard.

277Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 277

5. Click Yes to accept the default Javadoc document location (unless you
don’t like the default location, in which case click No).

The Eclipse workbench reappears. Then after lots of hard drive spinning
and chirping, a new Console view shows up in the workbench. This
Console view contains a blow-by-blow description of the Javadoc gener-
ating process. (See Figure 13-38.)

Eclipse doesn’t generate Javadoc pages quickly, so be patient. You may
think that your computer isn’t doing anything. But if you wait a few min-
utes, you’ll see some action in the Console view.

When the dust settles, you have some brand-new Javadoc pages. If you
want to be sure that the pages exist, look at the Package Explorer (as it’s
pictured in Figure 13-39.)

Figure 13-39:
The

Package
Explorer
displays

the names
of your

project’s
Javadoc

pages.

Figure 13-38:
Eclipse

keeps you
posted as it

generates
Javadoc

pages.

278 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 278

In Figure 13-39, all the filenames are very nice. But you may want to view your
new Javadoc pages. Here’s how you do it:

1. Select your project’s branch in the Package Explorer.

Alternatively, select a class inside your project in either the Package
Explorer or the editor.

2. On Eclipse’s main menu, choose Navigate➪Open External Javadoc.

A bright, new Javadoc page appears in your computer’s Web browser.

You can get more from your Javadoc pages if you tell Eclipse where the Java
System Library’s pages live. To do this, right-click an rt.jar branch of the
Package Explorer’s tree, and choose Properties. On the resulting Properties
page, select Javadoc Location. Then in the Javadoc Location Path field, type
the name of a directory that contains the package-list and index.html files.

279Chapter 13: Working with Projects

19_574701 ch13.qxd 11/29/04 7:44 PM Page 279

280 Part III: Doing More with Eclipse

19_574701 ch13.qxd 11/29/04 7:44 PM Page 280

Chapter 14

Running Code
In This Chapter
� Using main method arguments

� Using virtual machine arguments

� Using environment variables

Back in 2002, I wrote Java & XML For Dummies. As part of my research, I
joined a local Special Interest Group on XML. The meetings were inter-

esting. People argued for hours over the most esoteric issues. Should a certain
piece of information be expressed as an element attribute or should that
information be the element’s content? The term “religious wars” came to
mind, but I never uttered that term aloud in any of the group’s discussions.

Every field of study has its religious wars. In the world of Java programming,
people argue over all kinds of things. For instance, you want a program to get
a small piece of information at runtime. Where do you put this piece of infor-
mation? Do you make it a program argument or a virtual machine argument?
And what if you don’t know the difference between these two kinds of argu-
ments? (And what if you don’t care?)

This chapter covers program arguments, virtual machine arguments, and a
few other tricks. The chapter tells you how to use each of these things in
Eclipse.

Creating a Run Configuration
A run configuration is a set of guidelines that Eclipse uses for running a partic-
ular Java program. A particular run configuration stores the name of a main
class, the values stored in the main method’s args parameter, the JRE ver-
sion to be used, the CLASSPATH, and many other facts about a program’s
anticipated run.

20_574701 ch14.qxd 11/29/04 7:48 PM Page 281

Whenever you run a program, Eclipse uses one run configuration or another.
In the previous chapters, Eclipse uses a default run configuration. But in this
chapter, you create customized run configurations. Here’s how you do it:

1. Select a class that contains a main method.

You can select any class you want. Select this class by clicking a branch
in the Package Explorer or the Outline view. Alternatively, you can click
the class’s editor tab.

2. On Eclipse’s menu bar, choose Run➪Run.

The big Run dialog appears. (See Figure 14-1.)

Starting with Eclipse version 3.1, the Run menu has two Run items that
look almost identical. One of the Run items has an ellipsis (three dots)
and the other Run item doesn’t. In this example, the Run item you want
is the one with the ellipsis. If, after choosing Run➪Run, you don’t get the
dialog shown in Figure 14-1, then you’ve chosen the wrong Run item.

3. In the Configurations pane (on the left side of the Run dialog), double-
click the Java Application branch.

Double-clicking Java Application creates a brand new item. The
item’s name comes from whatever class you selected in Step 1.

Figure 14-1:
The Run

dialog.

282 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 282

When I selected a class in Step 1, the class’s name was DeleteEvidence.
So in Figure 14-2, the Configurations pane has a new item named
DeleteEvidence. This DeleteEvidence item represents a brand-new
run configuration.

Eclipse’s run configurations come in five different flavors. In Eclipse version
3.0, these “flavors” are named Java Applet, Java Application, JUnit, JUnit Plug-
in Test, and Run-time Workbench. (Again, see Figure 14-2.) By the time ver-
sion 3.1 rolled in, someone had replaced Run-time Workbench with Eclipse
Application.

Anyway, each flavor of run configuration stores certain kinds of information.
For example, a Java Applet configuration stores applet tag parameters — things
like Width and Height. (See Figure 14-3.) A Java Application configuration
doesn’t store any applet tag parameters because a stand-alone application
doesn’t use an applet tag.

Figure 14-3:
An applet’s
run config-

uration.

Figure 14-2:
A new item
in the Con-
figurations

pane.

283Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 283

Using Program Arguments
Listing 14-1 contains a very useful program. The program deletes a file of
your choosing. To choose a file, you send the file’s name to the args
parameter.

Listing 14-1: How to Delete a File

package com.allmycode.monkeybusiness;

import java.io.File;

public class DeleteEvidence {

public static void main(String[] args) {

if (args.length > 0) {
File evidence = new File(args[0]);
if (evidence.exists()) {

evidence.delete();
System.out.print(“Evidence? “);
System.out.println(“What evidence?”);

}
}

}
}

In the old days of plain, white-on-black command windows, you invoked this
DeleteEvidence program by typing the following line of text:

java DeleteEvidence books

That was the original idea behind this String[] args business. You typed a
program’s name, and then typed extra words on the command line. Whatever
extra words you typed became part of the args array. Each extra word (like
the word books) was called a program argument.

Even now, in the third millennium, you can run a Java program by typing a
command like java DeleteEvidence books. When you run Listing 14-1
this way, your computer hands the word “books” to args[0]. So if your
hard drive has a books file, the program of Listing 14-1 deletes the file. (Of
course, the books file has to live in a certain directory on your hard drive.
Otherwise, the program of Listing 14-1 can’t find the books file. For more
details, read on.)

284 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 284

Running with program arguments
Eclipse isn’t just a plain, white-on-black command window. So with Eclipse,
you don’t type a command like java DeleteEvidence books. Instead, you
click buttons and fill in fields when you want to send “books” to the args
parameter. Here’s how you do it:

1. Create a new Java project.

In this example, call your project CoverUpProject.

2. Create a new Java class containing the code of Listing 14-1.

3. Create a file of any kind in the project directory.

Select the CoverUpProject branch in the Package Explorer and choose
File➪New➪File. In the New File dialog’s File Name field, type a name for
your file (a name like books). Then click Finish.

If all goes well, the new books file appears in the Package Explorer. It
appears at a level immediately beneath the CoverUpProject branch
itself. (See Figure 14-4.) The books file also appears in an editor. If you
want, you can add text to the books file by typing stuff in the editor. Or
if you’re lazy, you can skip the typing. In this example, it doesn’t matter
one way or the other.

Next you run the DeleteEvidence code, and you give args[0] the
value “books”.

4. Create a run configuration for the DeleteEvidence class.

At first, the run configuration contains a bunch of defaults. So in the next
several steps you change some defaults.

If you don’t know how to create a run configuration, see the section
“Creating a Run Configuration.”

Figure 14-4:
The books

file is part of
the Package

Explorer’s
tree.

285Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 285

5. On the right half of the Run dialog, select the Arguments tab.

A page containing some empty fields appears.

If you can’t find the Run dialog’s Arguments tab, don’t panic. You may
have glossed over Step 3 in this chapter’s “Creating a Run Configuration”
section. On the left side of the Run dialog, look for an DeleteEvidence
item. If you find such an item, select it. If you can’t find such an item,
double-click the Java Application branch.

6. Type values in the Arguments tab’s fields.

In this example, type books in the Program Arguments field. (See Figure
14-5.) That way, when Eclipse runs the code, args[0] will refer to the
String value “books”.

Anything you type in the Program Arguments field becomes part of the
args array when Eclipse runs the code. For example, if you type cooked
books in the Program Arguments field, then args[0] is “cooked” and
args[1] is “books”. Any blank spaces between cooked and books sep-
arate args[0] from args[1].

To circumvent the business about blank spaces, enclose words in quota-
tion marks. For instance, if you type “freeze dried” books (with one pair
of quotation marks), then args[0] is “freeze dried” and args[1] is
“books”.

7. Near the lower-right corner of the Run dialog, click Apply.

Though it’s not necessary in this example, clicking Apply is a good habit
for you to have.

8. Near the lower-right corner of the Run dialog, click Run.

Eclipse runs the code of Listing 14-1. Because args[0] stands for
“books”, the program’s run deletes the books file.

9. Look at the Package Explorer’s tree.

Hey, what gives? You can still see the books branch. The Package Explorer
doesn’t update its listing unless you specifically call for a refresh.

Figure 14-5:
Typing a

value in the
Program

Arguments
field.

286 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 286

10. Select the project’s branch of the Package Explorer tree. Then, on the
menu bar, choose File➪Refresh.

In this example, select the CoverUpProject branch. When you choose
File➪Refresh, the books branch disappears.

Is there such a thing as a
rerun configuration?
A run configuration stays attached to a project. And what in the world does it
mean for a configuration to be “attached?”

Imagine that you perform all the instructions in the “Running with program
arguments” section. Then you redo Step 3, creating the books file anew. To
delete the books file a second time, you don’t have to repeat all the run con-
figuration steps. Instead, march over to the menu bar and choose Run➪Run➪
Java Application. Eclipse automatically reuses the run configuration that you
created in the “Running with program arguments” section.

Of course, you can always change a project’s run configuration. Just return to
the Run dialog and make whatever changes you want to make. (To return to
the Run dialog, follow the “Creating a Run Configuration” section’s steps.)

Starting with Eclipse version 3.1, the Run menu has two Run items that look
almost identical. One of the Run items has an ellipsis (three dots) and the
other Run item doesn’t. In this example, the Run item you want is the one
without the ellipsis. If, after choosing Run➪Run, you get the dialog shown in
Figure 14-1, then you’ve chosen the wrong Run item.

287Chapter 14: Running Code

Finding the elusive Refresh action
Where’s the File menu’s Refresh item when I
need it? More often than not, that Refresh item
is grayed out. What nerve! Who do these vol-
unteer Eclipse developers think they are?

But wait! Maybe it’s my fault. Ah, yes! The thing
I just selected is outside of the Package Explorer.
(I clicked my mouse on a word in the editor.)
Then there’s nothing to refresh. So naturally, the
Refresh item is grayed out.

Occasionally, when I select a branch in the
Package Explorer’s tree, the Refresh item is
grayed out. For instance, if I select JRE System
Library, then Eclipse refuses to do a refresh. I
guess that’s reasonable. The JRE System Library
doesn’t change often enough to need a refresh.

20_574701 ch14.qxd 11/29/04 7:48 PM Page 287

Piling on those run configurations
You can create several different run configurations for the same project.
Return to Step 3 of this chapter’s “Creating a Run Configuration” section, and
double-click the Java Application branch several times. Each time you
double-click, Eclipse creates an additional run configuration. And each run
configuration can have different argument values.

So what if you create ten run configurations for the code in Listing 14-1?
When you choose Run➪Run➪Java Application, which run configuration does
Eclipse use?

If the code you’re trying to run is associated with more than one run configu-
ration, Eclipse displays a Launch Configuration Selection dialog. The dialog
lists all applicable run configurations. You just select a configuration, and
then “run with it.”

Using Properties
The “Running with program arguments” section shows you how to use the
main method’s parameter list. So to balance things out, this section’s exam-
ple uses something else — a property. A property is like a program argument,
except that it’s different. (How’s that for a clear explanation?)

In ancient times, program arguments were things you typed on the command
line at runtime. In contrast, properties were pieces of information that you
stored in a little file. These days, with things like Eclipse run configurations,
the distinction between program arguments and properties is quickly fading.

Just like the example in the “Running with program arguments” section, this
section’s example deletes a file. In the “Running with program arguments”
section, the program gets the file’s name through the main method’s parame-
ter list. But in this section’s example, the program gets the file’s name using a
property.

A property is something with two parts — a name and a value. Speaking for
myself, I have a property with name sex and value male. I have another prop-
erty with name citizenOf and value United States. Another person’s
citizenOf property may have value Australia.

When you start running a Java program, you can feed properties to the Java
Virtual Machine (JVM). In this section’s example, I give the JVM a property

288 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 288

whose name is file_name, and whose value is books. In turn, the JVM hands
that property to my Java program. Here’s how it works:

1. Create a new Java project.

In this example, call your project CoverUpProject2.

2. Create a new Java class containing the code of Listing 14-2.

3. Create a file of any kind in the project directory.

Name this file books. For details, see the “Running with program argu-
ments” section.

4. Type -Dfile_name=books in the VM Arguments field. (See Figure 14-6.)

The abbreviation “VM” stands for “Virtual Machine.” No, it doesn’t stand
for any old Virtual Machine. It stands for the Java Virtual Machine. So in
this example, the abbreviations “VM” and “JVM” stand for the same
thing. I can live with that.

In this step, you type -Dfile_name=books in the VM Arguments
field. This -Dfile_name=books stuff creates a property with name
“file_name” and with value “books”. So far, so good.

5. Follow Steps 7 through 10 in the “Running with program arguments”
section.

When you use this example’s run configuration, you hand that “file_
name”/”books” property to the Java Virtual Machine. Then, when you
run the code in Listing 14-2, the code retrieves the property’s value with
a call to System.getProperty. At last, the cycle is complete. The code
in Listing 14-2 gets the needed file_name=books information.

Whether it’s a program argument or a VM argument, the word books
represents a file. The code in Listing 14-2 deletes that books file.

Figure 14-6:
Creating a

runtime
property.

289Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 289

Listing 14-2: How to Use a Property

package com.allmycode.monkeybusiness;

import java.io.File;

public class DeleteEvidence {

public static void main(String[] args) {
File evidence =

new File(System.getProperty(“file_name”));
if (evidence.exists()) {

evidence.delete();
System.out.print(“Evidence? “);
System.out.println(“What evidence?”);

}
}

}

Using Other Virtual Machine Arguments
In the “Using Properties” section, I use virtual machine arguments to feed a
property to a program. That’s great, but virtual machine arguments are good
for all kinds of things, not just for creating properties. Here’s an example.

I have a program that’s supposed to generate a number from 1 to 6. The pro-
gram is in Listing 14-3. This program better not give me a number like 0 or 7.
If it does, I’ll accuse the program of cheating (in the style of an old western
barroom brawl).

Listing 14-3: Did I Use the nextInt Method Correctly?

import java.util.Random;

public class RollEm {

public static void main(String[] args) {
int dieRoll = new Random().nextInt(6);

//Between 0 and 5 or between 1 and 6 ??
System.out.println(dieRoll);
assert 1 <= dieRoll && dieRoll <= 6;

}
}

Because I’m not absolutely sure that the program creates numbers from 1 to
6, I add an assert statement. The assert statement is a feature of Java 1.4,
and by default this feature is not normally available.

290 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 290

So if you run the RollEm program from the command line, you have to type
some extra stuff.

java -enableassertions RollEm

The extra -enableassertions business activates one of the virtual
machine’s many options. In other words, -enableassertions is an argu-
ment that you pass to the virtual machine. To do the same thing without a
command line, you can tweak Eclipse’s run configuration. The next set of
instructions gives you all the details.

1. Create a new Java project.

2. Add the RollEm class of Listing 14-3 to your project.

3. Notice how Eclipse seems to despise the assert statement.

Eclipse puts an ugly red blob in the editor’s marker bar. The blob’s
hover tip tells you that you shouldn’t use assert as an identifier.
(See Figure 14-7.)

Before you can use an assert statement, you have to clear two hurdles.
The first hurdle is the compiler; the second is the Java Virtual Machine.

By default, Eclipse’s compiler treats assert statements like pariahs. To
fix this problem, you have to dig in to the big Preferences window.

4. Visit the Java➪Compiler page of the Window➪Preferences dialog.
Within that page, select the Compliance and Classfiles tab.

See Figure 14-8. In the figure, the Use Default Compliance Settings box
contains a check mark. That check mark is the assert statement’s
enemy.

You can tweak the compiler’s settings on a project-by-project basis. To
do so, right-click a project’s branch on the Package Explorer tree. On
the resulting context menu, choose Properties. Then, on the project’s
Properties page, select Java Compiler.

Figure 14-7:
An error

indicates
that the

word
assert is

problematic.

291Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 291

Don’t confuse a project’s Properties page with any of the properties in
this chapter’s “Using Properties” section. A project’s Properties page
describes features of an Eclipse project. In contrast, the properties in
the VM Arguments field feed short strings of information to a running
program. These two kinds of properties have very little in common.

5. Remove the check mark from the Use Default Compliance Settings
box. Then change the Generated .class Files Compatibility and Source
Compatibility lists to values 1.4 or higher.

See Figure 14-9. When you insist on compatibility with Java 1.4, you tell
Eclipse to accept things like assert statements — things that creep into
Java with version 1.4.

Figure 14-9:
Setting the

compiler for
Java 1.4.

Figure 14-8:
Using the

default
compiler

compliance
settings.

292 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 292

6. Click Apply.

Eclipse responds with a dialog about rebuilding the source code.

7. Click Yes to rebuild the source code.

After a brief rebuild, you see the Preferences dialog.

8. Click OK to dismiss the Preferences dialog.

The editor’s marker bar no longer displays a nasty red blob. Eclipse hap-
pily compiles the assert statement in Listing 14-3.

But wait! Remember the two hurdles in writing code with assert state-
ments. The first hurdle is the compiler, and the second is the Java Virtual
Machine. You still have to tell the Java Virtual Machine about that assert
statement.

9. Select the RollEm class, and follow the steps in the “Creating a Run
Configuration” section.

10. On the right half of the Run dialog, select the Arguments tab.

Congratulations! You’ve arrived at a page like the one in Figure 14-10. In
the Configurations pane, the highlighted item is named RollEm.

11. In the VM Arguments field, type -enableassertions.

Again, see Figure 14-10.

12. Click Apply.

13. Click Run.

The RollEm program’s output is random. So chances are good that your
first run puts a number between 1 and 5 in Eclipse’s Console view. But
run the program again (by choosing Run➪Run➪Java Application). Keep
running the program until you see a zero in the Console view.

Figure 14-10:
Adding the
-enable
asser
tions

argument.

293Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 293

When the value of dieRoll is 0, the Java Virtual Machine throws an
AssertionError. (See Figure 14-11.) This happens because, in Step 11,
you tell the virtual machine to enable exceptions. If you don’t add this
virtual machine argument, then the virtual machine simply ignores the
assert statement. You get an output of 0, with no AssertionError
message.

Using Environment Variables
In their purest form, environment variables are pieces of information that an
operating system stores. Running processes use these variables to coordi-
nate activities, and to communicate with the rest of the system.

For example, on my Windows XP computer, I can open a command window.
When I type

set user

in the command window, I get back the following list of environment vari-
ables and values:

USERDOMAIN=GROUCHO
USERNAME=bburd
USERPROFILE=C:\Documents and Settings\bburd

My Windows XP system has a USERDOMAIN environment variable. And the
value of my USERDOMAIN variable is GROUCHO.

In their less-than-pure form, environment variables are just name/value pairs.
(They’re a lot like the properties in the “Using Properties” section.) For
instance, in the same command window, I can type

lunch=cheeseburger

Figure 14-11:
Adding the
-enable
asser
tions

argument.

294 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 294

and then every program on my computer knows what I had for my noontime
meal. With tools like Eclipse, I can change environment variables from one
run to another. So one Java program can think I had a cheeseburger for lunch,
and another can think I had pizza. (Please Note: No program thinks that I had
salad for lunch.)

The material in this section is controversial. The section’s example works
on some versions of Microsoft Windows, but not on Linux or other operating
systems. To make matters worse, Java experts discourage the use of environ-
ment variables (the principle point of this section’s example). So enjoy this
section if you want, and by all means, skip this section if you’re not interested.

The code in Listing 14-4 uses some Windows XP environment variables and
some variables that I can create on my own. In Listing 14-4, calls to System.
genenv grab the values of these environment variables.

Listing 14-4: Displaying the Values of Some Environment Variables

package com.allmycode.env;

public class ShowEnvironment {

public static void main(String[] args) {
System.out.println(System.getenv(“USERNAME”));
System.out.println(System.getenv(“COMPUTERNAME”));
System.out.println(System.getenv(“PATH”));
System.out.println(System.getenv(“CLASSPATH”));
System.out.println(System.getenv(“TEMP”));
System.out.println(System.getenv(“SETUPS”));

}
}

The output from a run of Listing 14-4 is shown in Figure 14-12.

Well whadaya’ know! My system has no SETUPS variable! So, in Figure 14-12,
System.getenv(“SETUPS”) is null.

Figure 14-12:
A run of the

code in
Listing 14-4.

295Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 295

That’s okay. Eclipse gives you the ability to create new environment variables
on a run-by-run basis. You can even change the values of existing environ-
ment variables. Here’s how:

1. Create a project containing the code in Listing 14-4.

2. Follow the steps in the “Creating a Run Configuration” section.

3. On the right half of the Run dialog, select the Environment tab.

At first, you may not be able to see the Environment tab. To find this tab,
click the little scroll arrow to the right of all the other tabs.

In the next several steps, you create a brand new environment variable.
This variable applies only to runs that use the current run configuration.

4. Click New.

The New Environment Variable dialog appears.

5. Type a name and a value for your new variable.

In Figure 14-13, I created a variable with name SETUPS and value
c:\Setups.

6. Click OK to dismiss the New Environment Variable dialog.

Your new SETUPS variable appears in the Environment Variables to Set
list. (See Figure 14-14.)

Next, you modify the value of an existing environment variable.

Figure 14-14:
The Run

dialog
displays

your new
environment

variable.

Figure 14-13:
Creating

a new
environment

variable.

296 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 296

7. Click Select.

The Select Environment Variables dialog appears. (See Figure 14-15.)

8. Put a check mark next to TEMP.

9. Click OK.

Back in the Run dialog, the Environment Variables to Set list now
contains a TEMP row. The TEMP row’s value is your system’s default
temporary folder. (See Figure 14-16.)

10. Select the TEMP row, and then click the Edit button.

An Edit Environment Variable dialog appears. The dialog looks very
much like the dialog in Figure 14-13.

Figure 14-16:
The TEMP
variable’s

default
value.

Figure 14-15:
The Select

Environment
Variables

dialog.

297Chapter 14: Running Code

20_574701 ch14.qxd 11/29/04 7:48 PM Page 297

11. Change the Value field in the Edit Environment Variable dialog.

On my computer, I have a c:\Junk folder. So I type c:\Junk in the Value
field.

12. Click OK to dismiss the Edit Environment Variable dialog.

13. Back in the Run dialog, notice the change in the Environment
Variables to Set list.

On my computer, the value of TEMP is now c:\Junk.

14. Click Apply, and then click Run.

The output of Listing 14-4 includes a value for SETUPS, and includes a
brand new TEMP value. (See Figure 14-17.) In this experiment, you simply
display variables’ values on-screen. But in real life, the values of environ-
ment variables can be very useful.

Figure 14-17:
Updated

values
of the

environment
variables.

298 Part III: Doing More with Eclipse

20_574701 ch14.qxd 11/29/04 7:48 PM Page 298

Chapter 15

Getting Help
In This Chapter
� Finding Help pages

� Using Eclipse’s handy Help view

� Moving beyond Eclipse’s Help pages

I know. It’s hard to believe. You have a question that Eclipse For Dummies
doesn’t answer. If that happens, what do you do? Where do you go for

help? How do you keep from going crazy?

One thing you can do is read Eclipse’s Help documents. The documents
answer all kind of questions — questions that I can’t begin to answer in this
350-page book. These documents are fairly comprehensive, mostly up to
date, and above all, authoritative.

But Eclipse has its own built-in Help system, and navigating the Help system
can be somewhat confusing. So to help you find help when you need help, I
provide this chapter’s help about Help. (I hope it helps.)

Searching for Help
To search within Eclipse’s Help pages, you have two options. Fortunately,
both options lead to the same results.

� Choosing Search➪Search opens either File Search or Java Search. Either
way, select the Help Search tab at the top of the Search dialog. When you
do, Eclipse reveals the Help Search page shown in Figure 15-1.

� Choosing Help➪Help Contents opens a window like the one in Figure 15-2.
This window is called the Help view.

With either option, you can enter a search string, use Boolean searching, and
narrow the results to a particular help working set. The next few pages have
all the details.

21_574701 ch15.qxd 11/29/04 7:45 PM Page 299

Figure 15-2:
The Help

view.

Figure 15-1:
The Help

Search
page.

300 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 300

Things you can use in a search expression
The Search Expression and Search fields in Figures 15-1 and 15-2 obey the
rules that you use with many search engines on the Web.

� You can combine terms using OR, AND, NOT.

For instance, the expression refactor OR parameter searches for all
Help pages containing either refactor or parameter (or both refactor
and parameter).

Eclipse pastes an unseen AND between any two words that you type in
the search field. So the expression refactor parameter along with refac-
tor AND parameter yield the same results. In either case, each page in
the results list contains both refactor and parameter.

You can use the word NOT to block results. For instance, if you type
refactor NOT parameter in the search field, you get a list of pages that
contain refactor but don’t contain parameter.

A NOT phrase with nothing before the word NOT does absolutely noth-
ing. For example, if you type NOT parameter (and nothing else) in a
search field, you get a disappointing Nothing found message. When
you use the word NOT, you have to type words both before and after the
NOT (as in refactor NOT parameter).

� You can use quotation marks to create search phrases.

Searching for “refactoring actions” (with quotation marks) finds pages
containing the phrase refactoring actions.

But searching for refactoring actions (without quotation marks) finds
pages containing both the words refactoring and actions. (That is, in
order to be found, a page must contain both words refactoring and
actions, but not necessarily together.)

� You can use a question mark to represent any character, or use an
asterisk to represent any sequence of characters.

Searching for Abstract*Editor looks for things like AbstractTextEditor
and AbstractDecoratedTextEditor (names that happen to be part of
Eclipse’s own API).

� You don’t have to worry about capitalizing words (or about not capi-
talizing words).

Eclipse’s search strings are not case-sensitive.

� You get similar results searching for edit, editor, editing, edited, or for
other word variants.

Eclipse’s Help search uses something called stemming. With stemming,
Eclipse takes a word like editing and looks for occurrences of the stem
word edit. If you really, really need to search for editing and not for edit,
editor, or edited, type the word “editing” in quotation marks inside the
search field.

301Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 301

Using a help working set
Chapter 3 introduces the three kinds of Eclipse working sets — Java, resource,
and help. A help working set is a collection of Help pages that you want
included in a Help search. Creating a help working set narrows the search’s
results. That way, the list of pages in the Search view doesn’t include dozens
of pages that you know ahead of time are irrelevant.

With the following steps, you create an important help working set — a work-
ing set for people who use Eclipse, and who don’t modify or enhance Eclipse’s
behavior.

1. Choose Search➪Search.

Eclipse’s Search dialog appears.

2. Select the Search dialog’s Help tab.

A page like the one in Figure 15-1 appears.

3. Select the Working Set radio button, and then click Choose.

The Select Working Set dialog appears. If you’ve already created Java
working sets, they appear in this Select Working Set dialog.

For information on Java working sets, see Chapter 3.

4. Click New.

The New Working Set Wizard appears. If you’ve created a Java working
set (Chapter 3), you’re familiar with this page of the wizard.

5. Under Working Set Type, select Help. Then click Next.

The Help Working Set page appears. (See Figure 15-3.) The page lists sec-
tions and subsections of Eclipse’s Help documentation.

6. Type a name for your new help working set.

In Figure 15-3, I typed Eclipse User Working Set.

7. Select the sections and/or subsections that you want included in the
Help Search results.

In Figure 15-3, I selected the Workbench User Guide and the Java
Development User Guide. Remember: I only selected sections that are
relevant for people who use Eclipse; these sections don’t concern
people who modify or enhance Eclipse’s behavior (sections specifically
for Eclipse plug-in developers).

8. Click Finish.

The Select Working Set dialog reappears. Your new Eclipse User Working
Set is in the dialog’s list of working sets. (See Figure 15-4.)

302 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 302

9. In the Select a Working Set list, select your new working set. Then
click OK.

Now the Help Search page reflects your choice of the Eclipse User
Working Set. (See Figure 15-5.)

Figure 15-4:
A newly

created help
working set
appears in

your list.

Figure 15-3:
The Help

Working Set
page.

303Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 303

In the previous list of instructions, you start with the Help Search page and
create a help working set. You can do the same thing if you start with the
Help view (refer to Figure 15-2). Clicking the Search Scope link gives you a
dialog similar to the Select Working Set dialog (refer to Figure 15-4). From
there, you can select an existing help working set, or create a brand new
help working set.

Some useful Search view tricks
You want to know something about Eclipse’s refactoring actions. So you choose
Search➪Search, select the Help Search tab, and then type refactoring actions
in the Search Expression field.

Finally, you click Search. After a brief waiting period, you see the Search view
in Figure 15-6. This view lists all the Help pages that match your refactoring
actions search expression.

When you double-click an item in the Search view, Eclipse opens the Help view
(refer to Figure 15-2). The right side of the Help view contains a big browser
pane, and that browser pane visits the page that you double-clicked. From that
point on, you can continue to visit pages in the Help view, or you can return
to the Search view for more tinkering.

Figure 15-6:
The Search

view.

Figure 15-5:
You have

chosen
a help

working set.

304 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 304

Returning to the Search view, you look over the view’s list of Help pages.
You remember seeing some of these pages in previous help searches. You
know that certain pages don’t contain the information that you want. So
you eliminate some pages from the list. To do so, Ctrl+click the items that
you want to eliminate. Then click the X button in the Search view’s toolbar.
(See Figure 15-7.)

Clicking the X button cleans up the current list. But it doesn’t blacklist any
pages. The pages that you remove can appear in future search lists.

Eventually you decide that one of your previous searches yielded better
results. To retrieve an earlier search’s results, click a button on the Search
view’s toolbar. (See Figure 15-8 for the exact location of that particular button.)

Sometimes I have trouble locating the toolbar button that lists previous
searches. If you have trouble finding this button, let your mouse hover over
the buttons on the Search view’s toolbar. The button you’re looking for has
a hover tip that reads Show Previous Searches.

Using the Help View
The heart of Eclipse’s Help system is the Help view (refer to Figure 15-2). The
Help view has four tabs on the left side, a browser pane taking up two-thirds
of the view’s window, and some other miscellaneous stuff. Unlike other Eclipse
views, the Help view is a loner. You can’t drop the Help view into another view’s
area. The Help view lives in a window of its own.

Figure 15-8:
Returning to

a previous
search.

Figure 15-7:
Selecting

items in the
Search view
for removal.

305Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 305

A ten-cent tour of Eclipse’s Help view
Figure 15-2 shows the Help view as it first appears on your screen. The lower
left-hand corner of the view has four tabs — Contents, Search Results, Links,
and Bookmarks.

The word tab has two meanings, and I use both meanings in this section. In
fact, I probably use both meanings in a single sentence. First, a tab is a little
button that looks like the edge of a piece of paper. (The lower left-hand corner
of Figure 15-2 contains four of these tabs.) And second, a tab is a page that
you see after you click one of the little buttons. (The left side of Figure 15-2
displays a tall tab labeled Contents.) I’d like to use two different words for the
little tab and the tall tab. But if I did, I’d clash with the terminology in Eclipse’s
documentation pages.

The Contents tab
The Contents tab displays a table of contents for Eclipse’s Help pages. Fig-
ure 15-2 shows the table’s five main headings. Figure 15-9 shows what you
get when you start expanding the headings.

Figure 15-9:
Expanding

the Help
table of

contents.

306 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 306

The Search Results tab
If you enter something in the Search field and click the GO button, a list of
pages appears in the Search Results tab, which is similar to the Search view
(refer to Figure 15-6).

The Links tab
The Links tab is like the Search Results tab. The big difference is, the Links
tab shows the results of context-sensitive help requests.

Here’s how it works: At any point in your Eclipse experience, you can press F1.
In response, Eclipse shows you a list of help topics that apply to your current
activity. (See Figure 15-10.) Although I can’t imagine why, Eclipse’s documenta-
tion calls this list an infopop.

If you’re a Linux user, press Ctrl+F1 to access context-sensitive help. If you’re
a Mac user, press the Help key.

Eclipse can’t read your mind. Sometimes, the topics in the infopop don’t
apply to your current activity. For example, in Figure 15-10, my cursor is
planted on the word System inside the editor. So Eclipse offers help on vari-
ous aspects of the editor. But if you’re looking for help on the selected word
System (or if you’re not thinking about Java and you’re looking for advice to
the lovelorn), then pressing F1 does you no good at all. (For info on the System
class, just hover your mouse over the word System in the editor. For advice
to the lovelorn, read Dear Abby.)

When you select a topic from the infopop, Eclipse opens the big Help view.
The big browser pane of the Help view shows whichever documentation page
you selected. And the left side of the Help view displays the Links tab. (See
Figure 15-11.) This Links tab contains the same list of topics as the infopop.
That’s good because the infopop is no longer visible. You can browse the
original list of topics without having to hunt for the infopop.

Figure 15-10:
Context-
sensitive

help.

307Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 307

The Bookmarks tab
This tab had me fooled for a long time. Figure 15-12 shows the Bookmark
Document button. This button lives in the upper-left corner of the Help view.
If you click this button, nothing much seems to happen. Lights don’t flash
and rockets don’t fire. Heck, you don’t even see an “Eclipse bookmarked the
page” message box.

But when you click the Bookmark Document button, Eclipse adds the current
page to your favorites list. To view the list in its entirety, select the appropriate
tab in the Help view’s lower-left corner. (The tab you want has a picture of a
bookmark on it. That makes sense.) When you click this little tab, Eclipse dis-
plays the big Bookmarks tab.

Figure 15-13:
Barry’s

bookmarks.

Figure 15-12:
The

Bookmark
Document

button.

Figure 15-11:
The Links

tab and the
Help view’s

browser.

308 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 308

Figure 15-13 shows a portion of my Bookmarks tab. To revisit a page that you
bookmarked, click the page’s title in the Bookmarks tab.

To remove a page from the Bookmark tab, right-click the page’s entry in the
tab and choose Delete.

Some useful Help view tricks
I’m interested in Eclipse’s renaming facilities. So I choose Help➪Help Contents
to open the browser (refer to Figure 15-2). I typed renaming in the Search
field, and then clicked the GO button.

After clicking GO, I see a message about indexing. The message reminds me
that the indexing process may take a few minutes, and that the process runs
only once after I install Eclipse. So I wait patiently. Eventually, I see a list of
search results. It’s a list like the one in Figure 15-6, except that this new list
appears in the Help view’s Search Results tab. Each item in the list represents
an Eclipse Help page. If I click an item in the list, the Help view’s browser
visits the corresponding page.

Eclipse uses a little built-in Web server to manage all the browser’s Help
pages. Sometimes this server is a bit sluggish. You click an item in the list of
search results, and then nothing happens for several seconds. My advice is,
be patient. You may not see the Help page right away, but rest assured that
the page eventually appears.

Sometimes, I type a word or phrase in the Search field, click GO, and then I
see a strange message — a message like the one in Figure 15-14.

The message in Figure 15-14 is very misleading. The message tells me to do
something that I’ve already done. The message makes me think I didn’t type
anything in the Search field. Instead of saying type a query in the
Search field, this message should say please wait while Eclipse
works on fulfilling your search request. Anyway, after a few sec-
onds, Eclipse replaces this message with a list of Help pages.

Figure 15-14:
A misleading

message in
the Search

Results tab.

309Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 309

Finding words and phrases in the Help view’s browser
Here’s another scenario. I search for the word renaming. Among its results,
Eclipse lists a Renaming Java Elements page. (Eclipse gives the page a 68%
rating, whatever that means.) When I click that item in the list, I see the
Renaming Java Elements page shown in Figure 15-15.

Notice how Eclipse highlights the word I typed in the Search field. (In fact,
with stemming, Eclipse highlights any word that’s like the word renaming.)
I didn’t type the word “preferences” in the Search field, so Eclipse doesn’t
highlight occurrences of the word “preferences.”

As an afterthought, I decide to hunt for the word preferences on the Renaming
Java Elements page. How can I hunt for a word on a page? To find the word
“preferences” on the Renaming Java Elements page, do the following:

1. Click anywhere in the browser pane.

That is, click in the right side of the Help view window, which puts the
focus on the browser pane.

2. Press Ctrl+F.

A Find dialog appears. (See Figure 15-16.)

3. Type the word preferences in the Find What field.

Figure 15-16:
The Find

dialog.

Figure 15-15:
Eclipse

highlights
words in the

search
expression.

310 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 310

4. Click Find Next.

Eclipse locates the first occurrence of the word preferences on the cur-
rent Help page. (See Figure 15-17.)

Finding a page’s place in the table of contents
Look again at the Renaming Java Elements page (refer to Figure 15-15), and
notice the wording at the top of the Help page. “In this section, you will
rename . . .” This section? What section? All you did was click something in
the Search Results tab.

The Renaming Java Elements page is part of a tutorial. When writing “In this
section,” the tutorial’s author assumes that you’re working your way sequen-
tially from one tutorial page to another. But you’re not doing that. You’re just
parachuting into the middle of the tutorial, wondering where you are and
how you got there.

If only you knew which page comes before this page in the tutorial! Reading the
previous page could help you make sense of this Renaming Java Elements page.

Looking back at the Search Results tab doesn’t help at all. The Search Results
tab says nothing about pages coming after other pages. To find the previous
page in the tutorial, you need a table of contents . . .

Well, you’re in luck. You can tell Eclipse to display a table of contents. In the
upper-right corner of the Help view, you can find a button with the Show in
Table of Contents hover tip. (See Figure 15-18.) My eyesight isn’t very
good, but I think the picture on the button has a little tree and a couple of
rounded arrows.

Figure 15-18:
The Show in

Table of
Contents

button.

Figure 15-17:
Using the

Find dialog
pays off.

311Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 311

Anyway, when you click this Show in Table of Contents button, Eclipse acti-
vates the Contents tab and highlights the current Help page in the table of
contents. (See Figure 15-19.) You can click entries above and below the high-
lighted entry to see the current Help page’s context.

Need More Help?
I have nothing but admiration for people who write Help documents. It’s
tedious work, and it seldom garners praise. A good Help document goes into
just the right amount of detail — not too little, and not too much. Of course,
some people need more detail than others, so what’s good for one reader can
be bad for another.

As for me, I like to read details, more details, and even more details. That’s
why I need more information than I find in Eclipse’s Help pages. So after lots
of poking around, I’ve found the following useful resources:

� The newsgroups at www.eclipse.org

Search for answers written by Eclipse experts. If you don’t find the answer
you need, then post a new question. In most cases, some knowledgeable
person responds within 24 hours.

Access to these newsgroups requires a one-time registration. But don’t
worry. No one sells the registration list or bothers you with annoying
e-mail. It’s just a group of professionals sharing useful ideas.

� Articles and newsletters from www.eclipsenews.com

Find up-to-date information on new developments. Subscribe to the
newsletter or read articles online.

Figure 15-19:
Eclipse

locates a
page in the

Help
system’s
table of

contents.

312 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 312

� Eclipse API Javadocs at www.jdocs.com/eclipse/3.0/api/
index.html

If you want the barebones facts, this resource is for you. These API
Javadocs describe the inner workings of Eclipse. Even if you never con-
tribute to the Eclipse open source project, you’ll probably find these
docs useful.

At jdocs.com you find multifaceted documentation. Visitors annotate
the Javadocs with their own comments and insights. No longer must you
read between the lines. Thanks to this innovative Web site, you can easily
get the inside scoop on All Things Java.

� A repository of Eclipse plug-ins at eclipse-plugins.2y.net/eclipse/
index.jsp

In Chapter 1, I describe Eclipse’s ingenious plug-in architecture. If Eclipse
doesn’t support drag-and-drop form design, no problem! You can add
plug-ins that take care of all that.

At this superb Web site you can search for plug-ins, browse plug-ins by
category, find the newest plug-ins, and even download the most popular
plug-ins. It’s a big toy store for Eclipse users.

313Chapter 15: Getting Help

21_574701 ch15.qxd 11/29/04 7:45 PM Page 313

314 Part III: Doing More with Eclipse

21_574701 ch15.qxd 11/29/04 7:45 PM Page 314

Chapter 16

Squashing Bugs
In This Chapter
� Using Eclipse’s basic debugging features

� Stepping through your code

� Discovering some cool debugging tricks

When you write a computer program, many kinds of things can go
wrong. Here are some possibilities:

� Eclipse can’t build your code. You’ve violated Java’s grammar rules.
Eclipse puts an error marker (an X and maybe a light bulb) next to one
or more lines of code.

Errors of this kind are called compile-time errors. A typical compile-time
error involves only a line or two of code. Usually, you don’t have to look
hard to find the error. If you right-click the error marker, Eclipse may be
able to apply a quick fix. (For details on error markers and the Quick Fix
feature, see Chapter 2.)

� Your program compiles. But when you run the program, it doesn’t do
what you expect it to do. Chances are, the program has a logic error.
The program’s instructions tell the computer to do the wrong thing.

Logic errors can be nasty beasts. They can involve long, complicated
chains of lines, spanning one or more Java source files. In the simplest
case, you can stare at your code and figure out what’s wrong. But in
thorny situations, you need an automated debugger. (For details, see
Chapter 16. Hey, wait! This is Chapter 16! See this chapter!)

22_574701 ch16.qxd 11/29/04 7:48 PM Page 315

� Your program compiles and runs correctly. But your boss or your
client makes last-minute changes in the program’s requirements.
You’ve fallen victim to a no win situation error.

Next time, try to set up better communication with your boss or your
client from the very start of the project. (For details, read Software
Project Management Kit For Dummies, by Greg Mandanis.)

This chapter helps you through the second kind of error by introducing you
to Eclipse’s automated debugging tools.

A Simple Debugging Session
Consider the code in Listing 16-1. This code is supposed to exchange two
values in an array named stuff. (Starting with values 15, 4, 9, 3, 0, the stuff
array should end up with values 4, 15, 9, 3, 0.)

Listing 16-1: Buggy Code

public class Swapper {

int stuff[] = { 15, 4, 9, 3, 0 };

public static void main(String[] args) {
new Swapper();

}

public Swapper() {
swap(0, 1);

for (int i = 0; i < stuff.length; i++) {
System.out.print(stuff[i]);
System.out.print(“ “);

}
}

/*
* THIS METHOD DOESN’T WORK.
*/
public void swap(int i, int j) {

stuff[i] = stuff[j];
stuff[j] = stuff[i];

}
}

316 Part III: Doing More with Eclipse

22_574701 ch16.qxd 11/29/04 7:48 PM Page 316

If you run this code, you get the following unpleasant output:

4 4 9 3 0

Instead of swapping the values 15 and 4, this code replaces 15 with 4.

You may already know what’s wrong with the swap method in Listing 16-1. But
that doesn’t matter. What matters is the way you can examine a run of the
Swapper class. You use Eclipse’s debugging facilities. Here’s how you do it:

1. Create a new project containing the code of Listing 16-1.

2. On Eclipse’s main menu bar, choose Window➪Open Perspective➪
Debug.

The Debug perspective opens. (In some situations, you have to choose
Window➪Open Perspective➪Other. Then, in the resulting Select
Perspective dialog, double-click Debug.)

3. Select the editor area’s Swapper.java tab.

4. Find the point in the editor’s marker bar that’s immediately to the left
of the swap(0, 1) call.

5. Double-click that point in the editor’s marker bar.

Eclipse marks the point with a tiny blue ball. You’ve created a breakpoint
at a particular line of code.

Eclipse can suspend a program’s execution at each breakpoint. And
while execution is suspended, you can do some useful detective work.
For instance, you can examine and change the values of the program’s
variables. For more info, follow the next several steps.

6. On Eclipse’s main menu bar, choose Run➪Debug➪Java Application.

Eclipse begins running the Swapper class’s code. Instead of continuing
to the very last statement, Eclipse pauses at the swap(0, 1) call.

Eclipse has suspended execution of the program at the breakpoint
that you created in Step 5. Your computer hasn’t yet executed the
swap(0, 1) call. Instead, the computer waits for your next command.

Just above the editor area, Eclipse’s Debug view displays information
about the Swapper class’s run. In particular, the Debug view displays
any threads of execution that are currently running, and any method
calls that are currently in progress. (In this context, each method call
is known as a stack frame.)

Not sure anymore how a Debug view might differ from Debug perspec-
tive? Refresh your memory by reading Chapter 3.

317Chapter 16: Squashing Bugs

22_574701 ch16.qxd 11/29/04 7:48 PM Page 317

7. On the Debug view’s toolbar, click the Step Into button, as shown in
Figure 16-1.

The Step Into button tells Eclipse to execute the swap(0, 1) call, and
to suspend execution at the first statement inside the swap method.
(In a way, the Step Into button creates an ad hoc breakpoint inside the
swap method.)

8. In the upper-right area of the workbench, select the Variables tab.

Eclipse’s Variables view comes to the fore.

9. Expand all branches of the Variables view tree.

The tree in Figure 16-2 displays the values of the program’s variables.
That’s useful information.

10. Click the Step Into button again.

The computer executes stuff[i] = stuff[j].

The Variables view tree shows the result of this statement’s execution.
(You can’t see colors in Figure 16-3, but on your computer screen,
[0]= 4 is red. The red color tells you that the stuff[i] = stuff[j]
statement assigned a value to stuff[0].)

Figure 16-2:
The

Variables
view (before

executing
stuff
[i] =

stuff[j]).

Figure 16-1:
The Debug

view’s
toolbar.

318 Part III: Doing More with Eclipse

22_574701 ch16.qxd 11/29/04 7:48 PM Page 318

In the Variables view, both stuff[0] and stuff[1] have a value of 4,
and the number 15 has disappeared. That’s bad. Now you can’t put the
number 15 anywhere. If you’re trying to swap the values 4 and 15, you’re
out of luck.

So the trouble starts when you execute stuff[i] = stuff[j]. Instead of
stuff[i] = stuff[j], you need a statement that stores 15 for safekeeping.
Here’s a better version of the swap method:

public void swap(int i, int j) {
int safekeeper = stuff[i];
stuff[i] = stuff[j];
stuff[j] = safekeeper;

}

The Debug View’s Buttons
The Debug view’s toolbar has some very useful buttons. This section
describes a few of them.

� The leftmost button (a vertical yellow strip and a green wedge) is the
Resume button. Click this button for a more-or-less normal run of the
rest of the program. (With the Resume button, Eclipse doesn’t suspend
the program’s run at every new statement; Eclipse suspends the run
only at the breakpoints.)

� The red square is the Terminate button. If you click this button, your
program stops running. To start another run (starting at the beginning
of the main method), choose Run➪Debug➪Java Application again.

Figure 16-3:
The

Variables
view (after
executing

stuff[i]
=

stuff[j]).

319Chapter 16: Squashing Bugs

22_574701 ch16.qxd 11/29/04 7:48 PM Page 319

� The leftmost yellow arrow is the Step Into button. See the section titled
“A Simple Debugging Session,” earlier in this chapter, for more on the Step
Into button.

� Moving from left to right, the second yellow arrow is the Step Over
button. See Figure 16-4. When you click the Step Over button, Eclipse
executes the current statement. What Eclipse does next depends on the
current statement’s form.

• Suppose the current statement isn’t a method call. Then Eclipse
suspends execution at the start of the very next statement. If the
current statement is stuff[i] = stuff[j], then Eclipse suspends
execution at the start of the stuff[j] = stuff[i] statement.
(See Listing 16-1.)

• Suppose the current statement is a method call. Then Eclipse
suspends execution after executing the entire method call. If the
current statement is swap(0, 1), then Eclipse zips through the
statements inside the swap method. Eclipse suspends execution at
the start of the for statement. (See Listing 16-1.)

Compare the Step Over button with the old Step Into button. If the
current statement is swap(0, 1) and you click Step Into, then
Eclipse suspends execution inside the swap method.

Experimenting with Your Code
While a program’s run is suspended, you can fiddle with the program’s values.
For instance, in the Variables view of Figure 16-3, right-click the [0]= 4 branch.
In the resulting context menu, choose Change Value. Eclipse displays a Set
Value dialog. Type a new number (such as 15) in the Set Value dialog, and
then click OK. After doing all that, you can click the Step Into button again.
You can see what would happen if stuff[0] had a value of 15.

Here’s another trick you can try:

1. Follow Steps 1 to 9 in the section titled “A Simple Debugging Session.”

2. Type stuff[0] + stuff[1] in the lower half of the Variables view.

Figure 16-4:
The Step

Over button.

320 Part III: Doing More with Eclipse

22_574701 ch16.qxd 11/29/04 7:48 PM Page 320

The lower half of the Variables view is called the Detail pane. (See
Figure 16-5.)

3. Select the stuff[0] + stuff[1] text in the Detail pane.

4. Right click the stuff[0] + stuff[1] text. Then, in the resulting con-
text menu, choose Inspect.

A big hover tip appears. On the face of the tip you see “stuff[0]+
stuff[1]”= 19. That’s pretty cool. The information on the tip inspires
you to write a brand new version of the swap method (a version that
doesn’t involve an additional safekeeper variable). To find out exactly
what you write when you’re inspired, visit this book’s Web site.

Figure 16-5:
Inspecting

an
expression.

321Chapter 16: Squashing Bugs

22_574701 ch16.qxd 11/29/04 7:48 PM Page 321

322 Part III: Doing More with Eclipse

22_574701 ch16.qxd 11/29/04 7:48 PM Page 322

Part IV
The Part of Tens

23_574701 pt04.qxd 11/29/04 7:43 PM Page 323

In this part . . .

If you can say only ten things about your family, what
ten things do you say? What about your living quarters?

And what about your life? What are the ten most important
ideas about your story from birth to the present moment?

That’s the game I play in this part’s chapters. If I can say
only ten things about some aspect of Eclipse, what ten
things do I say? Read on and find out.

23_574701 pt04.qxd 11/29/04 7:43 PM Page 324

Chapter 17

Ten Frequently Asked Questions
(And Their Answers)

In This Chapter
� Solving some common problems

� Working with Eclipse’s less intuitive features

Some features of Eclipse are simple and intuitive. Others aren’t. That’s
true of any piece of software. (In fact, it’s true of anything — not just

software.)

But what happens if you stumble upon too many unintuitive features? If you
don’t watch out, you can become frustrated. Then you miss out on Eclipse’s
many benefits.

That’s why I wrote this chapter. The chapter helps you use some of Eclipse’s
less unintuitive features.

I Can’t See My New Project
I just created a new project. Why can’t I see my project in the Package Explorer’s
tree? — Albert from Albuquerque

Dear Albert, When you create a Java working set, you choose the projects
that belong to the working set. Any projects that aren’t in the working set
don’t show up in the Package Explorer. So when you select a working set,
some of the projects disappear from the Package Explorer. That’s okay
(because it’s what you expect to happen when you select a working set).

24_574701 ch17.qxd 11/29/04 7:45 PM Page 325

But when you create a brand new project, you’re probably not thinking about
that working set. You expect the new project to appear in the Package Explorer,
but it doesn’t. New projects aren’t added to the active working set. So after
you create a new project, the project seems to be invisible.

To see the new project visible in the Package Explorer, edit the working set.
(Add the new project to the existing working set.)

A New File Doesn’t Appear
I used Windows Notepad to create a new file. I put the file in a project folder, but
the file doesn’t show up in the Package Explorer’s tree. Why not? — Curious in
Canarsie

Dear Curious, The Package Explorer doesn’t watch for changes in your com-
puter’s file system. If you sneak away from Eclipse and create a new file,
then Eclipse isn’t aware of the change. So the new file doesn’t appear in the
Package Explorer’s tree.

You can force Eclipse to update the Package Explorer’s contents. Select the
project whose directory contains the new file. Then choose File➪Refresh.
In response, Eclipse examines the contents of the project’s directory and
updates the display in the Package Explorer’s tree.

Failure to Format
After choosing Source➪Format, my code’s indentation looks really strange.
Why? — Tex from Louisiana

Dear Tex, Eclipse can’t format code that it doesn’t understand. If your code
has a missing semicolon, unmatched parentheses, or some other abnormal-
ity, then Eclipse’s formatting mechanism can choke. Sure, you may think your
code makes perfectly good sense. But a missing semicolon can confuse a
compiler.

When your code has compile-time errors, Eclipse’s formatter does its best to
interpret what you’ve written. But the errors keep the formatter from seeing
the code’s real structure. So you end up with some very strange formatting.
The solution is, go back and fix those compile-time errors.

326 Part IV: The Part of Tens

24_574701 ch17.qxd 11/29/04 7:45 PM Page 326

Renaming Is Broken
I’m trying to rename something. I can’t use File➪Rename because the Rename
option is grayed out. Why? — Rhoda from Rhode Island

Dear Rhoda, The Rename action works only when you select something in
the Package Explorer. What’s more, your most recent selection must be a
selection in the Package Explorer.

Imagine that you can select something in the Package Explorer and then click
somewhere in the editor. Sorry, the Rename action is grayed out. Your most
recent selection is in the editor rather than the Package Explorer, so renam-
ing isn’t available.

If you must select a name in the editor, then right-click the name. In the
resulting context menu, select Show in Package Explorer. In response, Eclipse
selects the corresponding branch in the Package Explorer. With the branch
selected, you’re free to choose File➪Rename.

Searching Is So Complicated
I choose Search➪Java to find something in a Java source file. Instead of an
easy-to-use search dialog, I get a complicated window with a thousand options.
When I finally click Search, I get a long list of stuff (and no guidance telling me
what to do with this list). Whatever happened to user-friendly interfaces? — Phil
from Philadelphia

Dear Phil, Eclipse has several searching and finding dialogs. The most intu-
itive of these dialogs is the Find/Replace dialog. You can get to that dialog
by choosing Edit➪Find/Replace. The dialogs that you get when you choose
Search➪Java or (Search➪Whatever Else) are much more complicated.

So for now, stick with Edit➪Find/Replace. When you become more comfort-
able using Eclipse, and you become bored with the Find/Replace dialog, then
move on to the Search➪Java action.

Large Isn’t the Same as Maximized
No matter what I do, my Eclipse window seems to be maximized. Am I doing
something wrong? — Max from Minnesota

327Chapter 17: Ten Frequently Asked Questions (And Their Answers)

24_574701 ch17.qxd 11/29/04 7:45 PM Page 327

Dear Max, On many people’s screens, Eclipse starts in a peculiar state.
Eclipse’s workbench window takes up the entire screen, but the window isn’t
maximized. Instead, the workbench window is just stretched to fit the entire
screen.

To make the window smaller, do two things. First, look at the picture on
the window’s Maximize button. Make sure that the picture indicates an un-
maximized window. Then, move your mouse cursor to the very edge of the
window (on the very edge of your screen). Watch carefully to see the mouse
cursor turn into an arrow of some kind. When the mouse cursor becomes an
arrow, hold down the mouse button and drag the edge of Eclipse’s window to
another place on your screen.

Illegal Imports
I have code that compiles and runs correctly. But when I import the code into
my Eclipse workspace, I see dozens of red error markers. What gives? —
Indignant in Indiana

Dear Indignant, This symptom may have many different causes. But the first
thing to check is the way you imported the code. Did you import from the
correct directory to the correct directory? For instance, if you dragged a com
directory into your Eclipse workspace, did you drag this directory into a Java
source folder? If you dragged a subdirectory of a com directory, did you drag
this directory into a com directory in your workspace?

This stuff can be pretty complicated. For more details, see Chapter 13.

Finding a Bookmark
I find a Help page that I really like. When I click the Bookmark button, nothing
happens. Is the button broken? — Clueless in Kalamazoo

Dear Clueless, The button isn’t broken. To see your bookmarks, you have to
visit the Bookmarks tab. To find this tab, look at the lower left-hand corner
of the Help view. Notice the four tabs, all containing tiny, hard-to-decipher
icons.

The icon on one of these tabs resembles an open book. There’s even a book-
mark dangling on the open page. Hover your mouse over this icon, and you
can see Bookmarks in the hover tip. Finally, if you click this icon’s tab, Eclipse
displays a list of bookmarked pages.

328 Part IV: The Part of Tens

24_574701 ch17.qxd 11/29/04 7:45 PM Page 328

The Case of the Missing Javadocs
I select something in the editor and then choose Navigate➪Open External
Javadoc. Instead of seeing the Javadoc pages, I see a message telling me that a
documentation location has not been configured. What’s up with this? — Larry
from Tarrytown

Dear Larry, You’re probably requesting one of the JRE System Library’s
Javadoc pages. Eclipse doesn’t automatically know where the JRE System
Library’s Javadoc files live.

To fix this, expand a JRE System Library branch in the Package Explorer’s
tree. Then right-click an rt.jar branch. In the resulting context menu, select
Properties. A Properties dialog appears. On the left side of the Properties
dialog, select Javadoc Location. Then on the right side of the dialog, fill in the
Javadoc Location Path field.

On my computer, the Javadoc Location Path field contains file:/C:/
Program Files/Java/jdk1.5.0/docs/api/. Your field may point to a
different location. One way or another, the location that you choose must
contain files named package-list and index.html. If the location contains
these two files, then you’re probably all set.

Get Right to the Source
I select something in the editor and then choose Navigate➪Open Declaration.
Instead of seeing source code, I see a “Source not found” message. What does a
guy have to do to see some source code? — Harry from Tarrytown

Dear Harry, Are you related to Larry by any chance? Your problem is very
similar to Larry’s. Eclipse can’t display the JRE System Library’s source code
unless you tell Eclipse where the source code is.

Expand a JRE System Library branch in the Package Explorer’s tree. Then
right-click an rt.jar branch. In the resulting context menu, select Properties.
A Properties dialog appears. On the left side of the Properties dialog, select
Java Source Location. Then on the right side of the dialog, fill in the Location
Path field.

On my computer, the Location Path field contains C:/Program Files/Java/
jdk1.5.0/src. Your field may point to a different location. One way or
another, the location that you choose must contain directories named com,
java, and javax.

And please give Larry my regards.

329Chapter 17: Ten Frequently Asked Questions (And Their Answers)

24_574701 ch17.qxd 11/29/04 7:45 PM Page 329

330 Part IV: The Part of Tens

24_574701 ch17.qxd 11/29/04 7:45 PM Page 330

Chapter 18

Ten Great Plug-Ins for Eclipse
In This Chapter
� Finding plug-ins

� Adding cool tools to Eclipse

In a way, the word “plug-in” is misleading. When you hear “plug-in” you
think of an add-on — an extra piece of software that doesn’t come with the

regular product.

But with Eclipse, almost everything is a plug-in. The user interface is a plug-
in, the compiler is a plug-in, the whole kit and caboodle is a plug-in. The rock
bottom, bare bones Eclipse product is just an empty frame — a place to put
plug-ins.

This chapter isn’t about the run-of-the-mill plug-ins — the ones you get when
you download Eclipse itself. Instead, this chapter deals with the extras, the
additions, the things you download separately.

Each plug-in has its own Web site, but you can find pointers to most plug-ins
at eclipse-plugins.2y.net. This Web site is an official repository for the
world’s Eclipse gadgetry.

Most plug-ins are easy to install and run. Here’s what you do:

1. Download the compressed file containing the plug-in.

2. Uncompress the file.

3. Copy the file’s contents to your Eclipse directory’s plugins
subdirectory.

The stuff you’re copying has a name like com.allmycode.myplugin_
1.2.0. In some cases, you find several of these com.allmycode.blah-
blah_1.1.1 folders inside the uncompressed download. You can find
many similarly named things in the plugins directory. (So you know
you’re copying these folders to a place where they’re welcome.)

In some instances, you find plugins and features folders inside the
uncompressed download. If you do, then installing the plug-in is a two-
step process. First, copy everything from the downloaded plugins

25_574701 ch18.qxd 11/29/04 7:44 PM Page 331

folder into your Eclipse directory’s plugins subdirectory. Then, copy
everything from the downloaded features folder into your Eclipse
directory’s features subdirectory.

4. Restart Eclipse.

If Eclipse is already running, you can do a quick restart by choosing
File➪Switch Workspace. When the Workspace Launcher appears, leave
the name of the workspace as it is, and then click OK.

Eclipse stops running, and then starts running again.

5. Poke around for signs of the new plug-in’s existence.

Many plug-ins provide new views. So choose Window➪Show View➪
Other and look for new items in the Show View dialog. You may also
find new options in the Preferences dialog, in the Help view’s table of
contents, and in other places within the Eclipse environment.

Of course, when poking around doesn’t get you anywhere, check the
plug-in developer’s Web site for useful documentation.

Checkstyle
sourceforge.net/projects/eclipse-cs

Eclipse’s Format action fixes your code’s stylistic anomalies. But sometimes
you need an extra layer of style protection. Checkstyle is the number one
style checking tool for Java. You can use Checkstyle on its own, or use it as
an Eclipse plug-in.

Cheetah
dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/jdt-core-

home/r3.0/main.html#updates

I don’t know when you’re reading Eclipse For Dummies, but as I write this
chapter, my calendar is open to the October 2004 page. For the time being,
Eclipse doesn’t support the new Java language features in JDK 5.0. If you
want to experiment with things like generics, enum types, and autoboxing,
you have to install some extra support.

The extra support comes as a plug-in named Cheetah. This plug-in is still in
its early development stages, but if you’re anxious to get started with Java
5.0, then download Cheetah and give it a try.

332 Part IV: The Part of Tens

25_574701 ch18.qxd 11/29/04 7:44 PM Page 332

If Cheetah isn’t ready to meet your needs, you can still run JDK 5.0 in Eclipse.
Create an Ant project that bypasses Eclipse’s compiler, and run the Ant pro-
ject in Eclipse’s Ant view. For details, visit this book’s Web site.

Eclipse Instant Messenger (Eimp)
eimp.sourceforge.net

Use Eclipse’s workbench to exchange messages with your buddies. Move
seamlessly from your Eclipse code to Eimp’s Multi-Session Board view.

Gild (Groupware enabled Integrated
Learning and Development)
gild.cs.uvic.ca

As an educator, I use Eclipse to teach Java programming courses. Along with
Eclipse’s standard features, I use features designed specifically for students
and teachers. I get these features with the Gild plug-in.

Jigloo
www.cloudgarden.com/jigloo

Some integrated development environments support drag-and-drop design
tools. To create a graphical user interface, you drag text fields and buttons
from a tools palette onto an empty form. Eclipse doesn’t come with tools of
this kind. But the Jigloo plug-in adds drag-and-drop tools to Eclipse. Try it.
It’s fun.

Lomboz
forge.objectweb.org/projects/lomboz

Are you a J2EE developer? Do you like creating EJBs from scratch? Do you
enjoy all the routine coding that J2EE requires?

Or are you tired of organizing J2EE applications on your own? Do you want
some tools to take the drudgery out of EJB code creation? If you do, then
download and install the Lomboz plug-in.

333Chapter 18: Ten Great Plug-Ins for Eclipse

25_574701 ch18.qxd 11/29/04 7:44 PM Page 333

Open Shell
coderush.org/projects/OpenShellPlugin

This cute plug-in does one thing and does it well. Open Shell adds a new item
to some of the Package Explorer’s context menus. Clicking this Open Shell
item starts a Command Prompt or a Shell window. The window’s working
directory is whatever directory houses the selected Eclipse project. For a
command line veteran like me, Open Shell is a dream come true.

PMD
pmd.sourceforge.net

The PMD plug-in goes beyond style checking. This plug-in analyzes code for
things like unused variables, empty statements, the use of classes when inter-
faces are available, excessive statement nesting, methods that contain too
much code, statements that are more complicated than they need to be, and
much more.

VE (Visual Editor)
www.eclipse.org/vep

The Visual Editor is Eclipse’s official entry in the drag-and-drop design depart-
ment. Like Jigloo, VE provides visual design capabilities for graphical inter-
faces. Jigloo has been around longer than VE, and Jigloo is easier to install,
but Jigloo costs slightly more than VE. (Jigloo is free for non-commercial use,
but a professional license costs $75. In contrast, VE is just plain free.)

My advice is, try both Jigloo and VE. Find out which plug-in you like better.

XMLBuddy
www.xmlbuddy.com

When I first started using Eclipse, I was amazed to learn that Eclipse doesn’t
have its own XML code editor. At the time, I was doing some heavy-duty
deployment descriptor development, so I needed some good XML tools.
No problem! I downloaded XMLBuddy, and I’ve been using it ever since.

334 Part IV: The Part of Tens

25_574701 ch18.qxd 11/29/04 7:44 PM Page 334

•Symbols•
* (asterisk), 153, 301
[] (brackets), 113–114
{} (curly braces), 113–114
{ (curly braces, open), 143
/** (forward slash, double asterisk),

123, 138
() (parentheses), 113–114
+ (plus sign), 125
? (question mark), 301
“” (quotation marks), 301

•A•
Abstract Windowing Toolkit (AWT), 14–15
action, 43
action sets, 50
active view or editor, 46
ActiveX, 16
Add Import action, 153–154
Add Required button, 179
Address class, printing, 158–159
alphabetical sort, members, 151
Alt+Shift+T context menu, 187
AND, modifying search with, 301
anonymous inner classes, 202–206
API (Application Programming Interface)

declarations, displaying, 94–95
described, 21
hover tips, 122
internalizing code, 170
Javadocs, 313

appearance
Console view, 89
workbench, 49–50

Application Programming Interface.
See API

area, workbench
defined, 30, 43
individual, 47–49

articles, help, 313
AspectJ extension, Java programming language,

14
asterisk (*), 153, 301
attached configuration, program arguments, 287
author’s e-mail address, 6
auto activation, Code Assist, 125–126

automatic debugger, 315
automatic insertions, turning off

sole code suggestion, 121
templates, 128

AWT (Abstract Windowing Toolkit), 14–15

•B•
black check marks, 58
blank spaces

selecting elements, 185
separating from tabs, 150

block
comments, creating, 138
shortcuts selecting, 107–111

boilerplate code
better getters and setters, 156–158
constructors, 160–162
delegate, 158–159
externalization, marking strings for, 170–171
internationalization, 164–170
override and implement methods, 155–156
try/catch blocks, 162–164

bookmark
finding, problems with, 328
Help, 308–309

Boolean expressions, search terms, 301
brackets ([]), 113–114
browser, opening Javadoc Web page, 96
build path

circular, 265
source folders, adding, 266–268

Burd, Barry (Java 2 For Dummies, 2nd Edition),
21

buttons
drawing from scratch, 15
Fast View toolbar, 74
mouse, opening Call Hierarchy with, 67
Outline view toolbar, 88–89
SWT, 16

•C•
Call Hierarchy, 93
case sensitivity

searching, 302
text, finding, 228

catch blocks, 162–164

Index

26_574701 bindex.qxd 11/29/04 7:47 PM Page 335

CatFish software, 1
CD-ROM cataloging software, 1
CDT (C/C+ Development Tools), 13
changing

automatic insertion suggestions, 121
Console view, 89
cursor, 91
elements in views, 45
environment variables, 296
items in editor, 46
method signature, 199–202
perspective, 31–32

check marks, black and gray, 58
Checkstyle plug-in, 332
Cheetah plug-in, 332–333
chevron

perspectives, hidden, 51
tabs, hidden, 48, 49

choices, template, 128–129
circular build paths, 265
classes

adding to Hierarchy view, 90
custom run configuration, 282–283
dragging in Hierarchy view, 91
interface, extracting, 206–212
Java-aware searches, 235–245
moving things, 192–194, 198
receivers, 196–197
separate file, preview page and, 179

close button, 48
COBOL IDE, 13
code

chunk, shortcut selecting, 107–111
chunks, viewing, 85
peer layer, 14–15
preparing for internationalization, 165–169
work on behalf of other piece, 158–159
writing, perspective best for, 84–85
XML editor, 335

Code Assist
auto activation, 125–126, 128
completions, listing possible, 120–121
create constructors, override method

declarations, implement interface methods,
122–123

filtering suggestions, 124–125
getter and setter methods, generating, 123
in Javadoc comments, 123–124
methods declarations and calls, 121–122
names and statements, 121
parameter lists, 122
starting, 120
variable names, 121

Code Conventions for the Java Programming
Language document, 143, 146

color
Console view, changing, 89
static members, suggesting, 119

colossal application source folder, 263–265
Commands page, 79–80
comments

block, creating, 138
customizing text, 100
editing, 131
Javadoc, showing, 122
lines, blocking, 138–139
sifting, 276–279
TODO line text, 98–99
updating, 192

compiler
described, 21
settings, tweaking, 291–292

compile-time errors
described, 315
markers, 39–40, 117
messages, viewing, 97

completions, listing Code Assist, 120–121
conflict resolution, Inline and Extract Method

actions, 215–216
Console views, 89
constructors

boilerplate code, 160–162
Code Assist, 122–123

content assist. See Code Assist
Contents Help view, 306, 307
context-sensitive help, 307
copy, workbench. See window
CORBA, 124–125
core

JDT subproject, 12
Platform subproject, 11

cross-references, tracking with refactoring, 189
Ctrl+Space, 121
curly braces ({}), 113–114
curly braces, open ({), 143
cursor, changing, 91

•D•
debugging

perspectives, 86
session, 316–319
when to use, 315

delegate, boilerplate code, 158–159
deleting

completed tasks, 100
files, 47, 284

336 Eclipse For Dummies

26_574701 bindex.qxd 11/29/04 7:47 PM Page 336

descriptions, Java Elements filter, 60
desktop, Eclipse. See workbench
destination class, 196
detaching views, 71–72
directories

importing code, 271–273
structures, enriching, 253–256

disk drive space required for Eclipse, 20
double quotes (“), 301
downloading Eclipse, 24–25
drag and drop

editor text, 111
fast views, creating, 73–74
importing code, 269–270
items, moving, 68–69
textual versus refactored moves, 199
tools, adding to Eclipse, 333, 334–335

drive space required for Eclipse, 20
drop cursor

described, 68
tabbed pages, stack of, 70

•E•
Eclipse Foundation, Inc.

described, 10–11
Eclipse project, 11–13

Eclipse Instant Messenger (Eimp) plug-in, 333
Eclipse project

JDT subproject, 12
PDE subproject, 12–13
Platform subproject, 11–12

Eclipse Technology project, 13–14
Eclipse Tools project

CDT and COBOL IDE, 13
UML, 13
Visual Editor, 13

Edit menu, finding, 226
edit mode, template, 129–130
editor, text, 106
editor, workbench

active, 61–63
described, 45–46
individual, 47–49
Java source code, displaying, 93–96
linking files, 61–63
moving, 70
Outline view, 87–89
tasks, reminding of, 99

effects, code formatting, 146
Eimp (Eclipse Instant Messenger) plug-in, 333
elements

immovable, 197

renaming, 190–192
selecting, 184–185

e-mail address, author’s, 6
environment variables, 294–298
Error Log view, 66
error markers, 39–40
errors

compile-time, 315
formatting code, 142
illegal imports, 328
JUnit testing, 266–268
logic, 315
no win situation, 316
refactoring code, 183
structured selection, nonworking, 110
syntax, created by Code Assist, 123
textual move, 187

Exception Occurrences, 247–248
exceptions, method call, 117
experimenting with code, 320–321
expressions

debugging, 321
variables, creating new, 220

externalization, marking strings for, 170–171
Extract Method actions

conflict resolution, 215–216
problems, resolving, 216–218
repetitious code, trimming, 213–215

•F•
factory, 223–224
Fahrenheit/Celsius converter, 218–219
fast views

described, 72–73
drag and drop creating, 73–74
temporarily restoring, 75–76
toolbar creating, 74–75
turning back into slow view, 76

fields, displaying, 86–87
file searches

pattern matching, 232–234
scope, selecting, 234–235

files. See also resources
deleting, 47, 284
moving, 199
name, highlighting occurrences, 115–117
saving formatted, 141

filters
Code Assist suggestions, 124–125
described, 59
Package Explorer, 59–61
Problems view’s, 61
tasks, 100

337Index

26_574701 bindex.qxd 11/29/04 7:47 PM Page 337

finding
JRE on computer, 20, 21–22
searching versus, 225–226
text, 227–231

flavor, run configuration, 283
folders. See also resources

directories versus, 252
moving, 199

folding source code
inner classes, viewing, 203
Java editor, 111–112

for loops, 129
Format action, 141
Format Element action, 141–143
formatting code

benefits, 139
effects, 146
failure, 326
Format action, 141
Format Element action, 141–143
indentation, 147–148
line of code, shifting, 148–150
menu actions, 140–141
options, 143–146

forward slash, double asterisk (/**), 123, 138
Furbacher, Paul (member of Amateur Computer

Group of New Jersey), 173

•G•
Generalize Type, 210–212
getter methods

boilerplate code, 156–158
generating with Code Assist, 123

Gild (Groupware enabled Integrated Learning
and Development) plug-in, 333

graphical user interface. See GUI
gray check marks, 58
grayed out menu items, refactoring, 186–187
Groupware enabled Integrated Learning and

Development (Gild) plug-in, 333
GUI (graphical user interface)

JFace tools, 12
multiple operating systems, writing for, 14–17
SWT classes, 16

•H•
Haley, Chuck (vi text editor creator), 105
hardware requirements, Eclipse, 20
help

articles and newsletters, 312
newsgroups, 312
plug-ins, 313

refactoring, parameter versus input pages, 175
searching for, 299–306
selecting, unclear language on, 184
working set, 54, 302–304

Help view
Bookmarks, 308–309
Contents, 306, 307
indexing, 309
Links, 307–308
page, finding in table of contents, 311–312
Search Results, 307
sluggishness, 310
words and phrases, finding, 310–311

Hierarchy view
active working sets, switching, 57
class, dragging, 91
described, 89–90
overriding methods, 92–93
toolbar buttons, 90–92

highlighting
occurrences of name in file, 115–117
statements that can throw exception, 247–248

hover tips, 122
HTML (HyperText Markup Language) tags, 123

•I•
IBM

Java development environment, 10
software released into public domain, 10

IDE (integrated development environment)
CDT and COBOL, 13
described, 10

identifier, displaying declaration, 93–96
i18n (internationalization), 164–165
illegal imports, 328
immovable elements, 198
implement interface methods, Code Assist,

122–123
implement method, boilerplate code, 155–156
import handling

Add Import action, 153–154
Organize Imports action, 151–153

importing code
directories, selected, 271–273
drag and drop, 269–270
illegal, 328
specifying with Import Wizard, 273–275
unwanted directories, deleting, 276

incremental text finding, 228–229
indenting code, 147–148
indexing view of Help, 309
infopop list, 307–308
information display. See views

338 Eclipse For Dummies

26_574701 bindex.qxd 11/29/04 7:47 PM Page 338

Inline and Extract Method actions
conflict resolution, 215–216
problems, resolving, 216–218
repetitious code, trimming, 213–215

inner class
folded, 204
naming, 205

insertion, automatic template, 128
insertion point, text, 228
installing Eclipse

downloading, 24–25
error markers, 39–40
hardware requirements, 20
housekeeping, 29–31
Java class, creating and running, 35–39
Java project, creating new, 32–34
JRE, getting and installing, 20–24
in Macintosh, 26
in Microsoft Windows, 25
package, adding to project, 34–35
perspective, changing, 31–32
starting, 26–29
in UNIX or Linux, 25
unzipping file, 25

Instant messenger (Eimp) plug-in, 333
integrated development environment (IDE)

CDT and COBOL, 13
described, 10

interface extraction
new, creating, 206–209
one member, 209–210
promoting types, 210–212

interface methods, Code Assist implementation,
122–123

internationalization, code boilerplate, 164–170

•J•
JAR (Java archive) file

JRE System Library, 95, 279
probing, 85, 87

Java
class, creating and running, 35–39
knowledge of, 4
perspectives, 84–85
program directory structure, 251–252
project, creating new, 32–34
source code, displaying in views, 93–96
terminology, 21
working set, 53

Java archive (JAR) file
JRE System Library, 95, 279
probing, 85, 87

Java Browsing, 85

Java button, 50
Java Conventions, formatting, 143, 146
Java Development Kit (JDK), 21, 277
Java Development Tools (JDT) subproject, 12
Java editor

folding source code, 111–112
keyboard shortcuts, 106–107
occurrences, marking, 115–117
Preferences dialog box, 106
smart typing, 112–115
structured selections, 107–111

Java Runtime Environment (JRE), getting and
installing

finding on your computer, 20, 21–22, 329
numbering scheme, 21
from the Web, 22–24

Java Runtime Environment (JRE) System
Library

JAR file, 95
Refresh action, 287

Java Search actions, 235–247
Java 2 Enterprise Edition (J2EE), 23, 334
Java 2 For Dummies, 2nd Edition (Burd), 21
Java 2 Micro Edition (J2ME), 23
Java 2 Standard Edition (J2SE), 23
Java Type Hierarchy, 86
Java Virtual Machine (JVM)

described, 21
properties, feeding, 288–290

Javadoc
API, 313
comments in Code Assist, 122, 123–124
missing, finding, 329
pages, adding to projects, 276–279
template context, 131
views, 96
Web page, opening, 96

JBuilder, 2
JDK (Java Development Kit), 21, 277
JDT (Java Development Tools) subproject, 12
JFace graphical interface tools, 12
Jigloo plug-in, 333
Joy, Bill (vi text editor creator), 105
JRE (Java Runtime Environment), getting and

installing
finding on your computer, 20, 21–22, 329
numbering scheme, 21
from the Web, 22–24

JRE (Java Runtime Environment) System
Library

JAR file, 95
Refresh action, 287

J2EE (Java 2 Enterprise Edition), 23, 333
J2ME (Java 2 Micro Edition), 23

339Index

26_574701 bindex.qxd 11/29/04 7:47 PM Page 339

J2SE (Java 2 Standard Edition), 23
JUnit test, 266–268
JVM (Java Virtual Machine)

described, 21
properties, feeding, 288–290

•K•
keyboard shortcuts

Java editor, 106–107
starting project, 76–78

•L•
language-aware editors, 105
layout, 49
left mouse button, opening Call Hierarchy with,

67
licensing Java editions, 24
light bulb, error marker with or without, 40
Lin, Mike (Startup Control Panel and MCL

utilities creator), 1
line length, managing in smart typing, 114–115
line of code

shifting in format, 148–150
text, finding, 228

lines, comments, 138–139
Links view of Help, 307–308
Linux

environment variables, 295
installing Eclipse, 25
JRE, finding on existing computer, 22
Package Explorer branch, adding, 141
starting Eclipse, 27–28

listing
possible completions, Code Assist, 120–121
previous searches, 305

lists, information displayed in. See views
local history, Package Explorer, 47
logic errors, 315
Lomboz plug-in, 333

•M•
Mac OS X

installing Eclipse, 26
JRE, finding on existing computer, 22
JRE Web site, 22
starting Eclipse, 28–29

main method, adding to templates, 127–128
main site, 24
Mandanis, Greg (Software Project Management

Kit For Dummies), 316

marker bar
defined, 49
folding code, 111
tasks, reminding of, 99

markers
error, 39–40
occurrences, 116
task, 98

maximize button, 48
maximized window, 327–328
Members view, 100–101
menu actions

formatting code, 140–141
structured selections, 110

menu button, 48
method signature, changing, 199–202
methods

custom run configuration, 282
debugging, 320
declarations and calls, Code Assist, 121–122
destination class, 197
direct or indirect calls, showing, 67, 93
displaying, 86–87
exit points, marking, 117
Javadoc comments, showing, 122
moving to different class, 193–195
narrowing choices, 128–129
overriding, 94
selecting in refactoring, 184–186
shortcuts selecting calls, 107–111
suggesting, 122

mid-project, creating source folders, 256–25
Milinkovich, Mike (Eclipse Foundation executive

director), 11
minimize button, 48
mirror site, 24
missing file, 326
mouse button, opening Call Hierarchy with, 67
moving things

anonymous inner classes, 202–206
classes, 193–195
immovable elements, 198
interface, extracting, 206–212
method signature, changing, 199–202
parameter page, dissecting, 196–197
Pull Up and Push Down refactoring, 206
reasons to, 192
refactoring, 192–199
with views, 198–199

multiple operating systems, writing for, 14–17
multiple source folders, 258–261

340 Eclipse For Dummies

26_574701 bindex.qxd 11/29/04 7:47 PM Page 340

•N•
names

anonymous classes, 202
Code Assist, 121
highlighting occurrences, 115–117
layout, 49–50
perspectives, modified, 80
properties, 288
template, 133, 134

Navigator views
directory structure, enriching, 255–256
displaying, 86
linking, 62
resource working set, 53
textual rename, 188

NetBeans (Sun Microsystems)
described, 10–11
Eclipse versus, 17
Swing classes, 16

new object, refactoring method returning,
223–224

new project
shortcut starting, 76–78
working set, adding, 57–58

new receiver class, 196, 197
newsgroups, 312
newsletters, 312
no win situation error, 316
non-static fields, refactoring, 187
NOT search modifier, 301
Notepad text editor, 105
numbering scheme, JRE (Java Runtime

Environment), 21

•O•
objects, creating

boilerplate code, 160–162
Code Assist, 122–123

objects, doing useful things with. See methods
occurrences, marking

described, 115–116
marking and unmarking, 116
tricks, 116–117

one member interface, extracting, 209–210
open curly braces ({), 143
Open Perspective button, 51
Open Shell plug-in, 334
open source software, 1
opening perspectives in separate windows,

52–53
operating systems, writing GUI for multiple,

14–17. See also Linux; Mac OS X; Windows
(Microsoft)

operation, refactoring, 174
options, code formatting, 143–146
OR search modifier, 301
Organize Imports action, 151–153
original receiver class, 197
Outline view

described, 87–89
linking, 62

overall look and feel, workbench, 49–50
overriding methods

boilerplate code, 155–156
Code Assist, 122–123
described, 94
Hierarchy view, 92–93

•P•
package, adding to project, 34–35
package directory, 252
Package Explorer

closing and opening projects, 58
compiler settings, tweaking, 291–292
creating packages, 34–35
deleting and undeleting files, 47
described, 33
dragging and dropping selected directories,

271–273
filters, 59–61
formatting from, 141
Java working set, 53, 54–57
linking files, 62–63
missing projects, 57–58
moving, 69
new project, viewing, 325–326
renaming files, 327
shell window, 334
source folders, creating, 256–258
views, 86–87, 88

Packages view, 100–101
page, finding in Help table of contents, 311–312
parameter lists, Code Assist, 122
parameter page

dissecting, 196–197
refactoring, 175–179
renaming, 190

parentheses (()), 113–114
pattern matching

file searches, 232–234
Java Elements filter, 60
text, 229

PDE (Plug-in Development Environment)
subproject, 12–13

peers, AWT, 14–15

341Index

26_574701 bindex.qxd 11/29/04 7:47 PM Page 341

perspective
adding views, 65–67
Commands page, 79–80
customizing Shortcuts, 76–78
Debug, 86
described, 49–50
detaching views, 71–72
Eclipse installation, changing, 31–32
fast views, 72–76
Java, 84–85
Java Browsing, 85
Java Type Hierarchy, 86
juggling on workbench, 50–53
repositioning views and editors, 68–70
resource, 84
saving, 80–81
three usual views, 65

phrases, finding in Help view, 310–311
placeholders, template edit mode, 129, 136
Platform subproject, 11–12
Plug-in Development Environment (PDE)

subproject, 12–13
Plug-in manifest editor, 45–46
plug-ins

Checkstyle, 332
Cheetah, 332–333
editors displaying, 45–46
Gild, 333
help, 313
installing and running, 331–332
Instant messenger, 333
Jigloo, 333
Lomboz, 334
Open Shell, 334
PMD, 143, 334
repository, 313
subproject for creating, 12–13
VE, 334–335
XMLBuddy, 335

plus sign (+), 125
PMD plug-in, 143, 334
predefined variables, templates, 133–136
Preferences dialog box, Java editor, 106
preview page, refactoring, 175, 179–182
printing
Address class, 158–159
templates System.out.println call, 128

problem page, refactoring, 175, 182–184
problems, resolving. See troubleshooting
Problems view

described, 97
filters, 61

profile, formatting, 143

program arguments
attached configuration, 287
described, 284
environment variables, 294–298
properties, 288–290
Refresh item, 287
run configurations, multiple, 288
running, 285–287
virtual machine arguments, 290–294

project. See also resources; source folders
closing and opening working set, 58
defined, 33
importing code, 269–276
Java program directory structure, 251–252
Javadoc pages, adding, 276–279
missing from Package Explorer tree, 325–326
search scope, 234–235
starting, shortcut to, 76–78

Projects view, 100–101
promoting types, 210–212
properties, program argument, 288–290
public domain, IBM software release, 10
Pull Up and Push Down refactoring

described, 187
Generalize Type or Use Supertype Where

Possible, 210–212
moving things, 206

•Q•
question mark (?), 301
Quick Fix feature, 39–40
quotation mark (“), 301

•R•
receiver class, 196
recursive call message, 218
Red Hat Fedora, 22
Redo action, 174
reduced view sizes. See fast views
refactoring

benefits of using, 189
described, 173–174
elements, renaming, 190–192
files, renaming, 187
grayed out menu items, 186–187
Inline and Extract Method actions, 212–218
moving things, 192–199
new object, method returning, 223–224
non-static fields, 187
parameter pages, 175–179
preview page, 175, 179–182
problem page, 175, 182–184

342 Eclipse For Dummies

26_574701 bindex.qxd 11/29/04 7:47 PM Page 342

selecting a method, 184–186
textual rename, 188
tools, 174–175
variables, creating new, 218–223

references, selecting, 185
Refresh item, program arguments, 287
regular expressions, 229, 232
renaming

described, 174
elements in refactoring, 190–192
files in refactoring, 187
moved methods, 197
output folders, 261–263
troubleshooting, 327

repetitious code, trimming, 213–215
repositioning perspective views and editors,

68–70
Resource button, 50
resources

language-independent, displaying, 86
perspectives, 84
search scope, 234
working set, 53

restoration, fast view, 75–76
restore button, 48
Resume button, debugger, 319
ruler, vertical, 49
run configuration

creating, 281–283
multiple, program argument, 288

Run menu, 38–39

•S•
saving

formatting code files, 141
perspective, 80–81

Scope buttons, file search, 234–235
scope, file search, 234–235
SDK, 94
search actions

described, 231–232
Exception Occurrences, 247–248
files, 232–235
Java Search, 235–247

Search views, 101
searching

finding versus, 225–226
troubleshooting, 327

searching Help
help working set, 302–304
options, 299–301
rules, 301–302
view tricks, 304–306

Selected Lines option, finding text, 230–231
selecting a method, refactoring, 184–186
setter methods

boilerplate code, 156–158
generating with Code Assist, 123

shell window, 334
Sing, SWT versus, 17
slow view, restoring, 76
sluggishness

dark blue splash screen, 29
hard drive space, 20
Help pages, 310
Javadoc pages, generating, 278

smart typing
configuring, 112–113
Java editor, 112–115
line length, managing, 114–115
parentheses, brackets, and braces, 113–114

Software Project Management Kit For Dummies
(Mandanis), 316

Sort Members action, 150–151
sorting

import declarations, 152
tasks, 100

source code
compiling, 21
displaying, 93–96
folding, 111–112
rebuilding, 293
troubleshooting, 329

source directory, 252
source files

linking, 62–63
searching, 327

source folders
benefits of using, 252–253
build path, adding to, 266–268
colossal applications, 263–265
creating mid-project, 256–25
multiple, 258–261
renaming output folders, 261–263
separate, creating, 253–256

Source menu, externalizing strings, 166
square brackets ([]), 113–114
standard widgets toolkit (SWT), 12, 15–17
starting Eclipse

on Mac with OS X, 28–29
with Microsoft Windows, 26–27
with UNIX or Linux, 27–28

starting project, shortcut to, 76–78
statement

Code Assist, 121
Java, shortcuts selecting, 107–111

343Index

26_574701 bindex.qxd 11/29/04 7:47 PM Page 343

status, higher, 220–223
stemming, searches with, 302
Step Into button, debugger, 320
Step Over Button, debugger, 320
strings

internationalization, preparing code for,
165–169

marking, 170–171
updating, 192

structure, reorganizing. See refactoring
structured selections, Java editor, 107–111
student features, 333
Sun Microsystems

Java version numbering, 21
JRE Web site, 22–23
NetBeans, 10–11
“Write Once, Run Anywhere” philosophy, 14

Swing GUI, 15
SWT (standard widgets toolkit), 12, 15–17
System.out.println call, adding to template,

128

•T•
tab

blank spaces, telling from, 150
chevron indicating other, 48, 49
defined, 46
terminology, 306
views and editors, repositioning, 68

tags
HTML, 123
Javadoc, 123

Tasks view
described, 97–99
list, customizing, 100
TODO comment, 99–100

teachers, features for, 333
templates

automatic insertions, 128
choices, narrowing as type, 128–129
creating, 130–132
described, 37, 126–127
edit mode, 129–130
main method, adding, 127–128
predefined variables, 133–136
System.out.println call, adding, 128
variables, creating, 133

Terminate button, debugger, 319
testing

Java programs with JUnit, 266–268
new program, 38

text
comments, customizing, 100
selecting, 185
sole suggestion, changing automatic insertion,

121
statements, marking, 134–135

text editors, 105
text, finding

dialog box fields, 227–230
dialog box illustrated, 227
Selected Lines option, 230–231

textual move, 187
textual rename refactoring, 188
tiling, 69
To Do list, 97–100
toolbar

described, 47–48
fast views, 72–75

toolbar buttons
Hierarchy view, 90–92
previous searches, listing, 305
troubleshooting, 319–320

tools
Eclipse Tools project, 13
JFace GUI, 12
operating systems, borrowing under Swing, 16
refactoring, 174–175
SWT, 12, 15–17

top-level package directory, 252
tracking cross-references with refactoring, 189
tree, information displayed in. See views
troubleshooting

bookmark, finding, 328
compile-time errors, 315
debugging session, 316–319
experimenting with code, 320–321
formatting failure, 326
illegal imports, 328
Inline and Extract Method actions, 216–218
Javadocs, missing, 329
logic errors, 315
maximized window, 327–328
missing file, 326
no win situation error, 316
project missing from Package Explorer tree,

325–326
renaming, 327
searching, 327
source code, 329
structured selection, nonworking, 110
toolbar buttons, 319–320

try/catch blocks, 162–164

344 Eclipse For Dummies

26_574701 bindex.qxd 11/29/04 7:47 PM Page 344

two-letter language and country codes, 169
Types view, 100–101
typing

reducing, 37
template choices, narrowing, 128–129
text, finding while, 228–229

•U•
UC Berkeley, 105
UML (Unified Modeling Language), 13
undeleting files in Package Explorer, 47
Undo action

moving classes, files, or folders, 199
refactoring, 174

Unified Modeling Language (UML), 13
UNIX

installing Eclipse, 25
starting Eclipse, 27–28

unmarking occurrences, 116
unwanted directories, deleting from imported

code, 276
unzipping file, 25
Update References box, renaming, 191–192
Update Textual Matches in Comments and

Strings, 192
Use Default Compliance Settings box, 291, 292
Use Supertype Where Possible, 210–212
Use Supertype Where Possible action, 212
user interface

drawing from scratch, 15
GUI, 12, 14–17
implement interface methods, Code Assist,

122–123
voice-driven, 14

•V•
values

environment variables, changing, 296
properties, 288

variable
names in Code Assist, 121
refactoring, creating new, 218–223
templates, creating, 133

variables, creating
expressions, 220
Fahrenheit/Celsius converter example,

218–219
status, higher, 220–223
templates, 133

VE (Visual Editor) plug-in, 13, 334

versions numbering scheme, JRE, 21
vi text editor, 105
views

active, 46
adding, 65–67
Call Hierarchy, 93
Console, 89
described, 34, 44–45
editors, linking, 61–63
filters, 59–61
help, searching for, 304–306
Hierarchy, 89–93
individual workbench, 47–49
Java source code, displaying (Declaration),

93–96
Javadoc, 96
moving things, 198–199
Navigator, 86
Outline, 87–89
Package Explorer, 86–87
Problems, 97
Projects, Packages, Types, and Members,

100–101
refactoring actions, permissible, 186–187
Search, 101
stacked, 46
Tasks, 97–100
Tasks list, customizing, 100
working set, 53–58

virtual machine arguments, 290–294
Visual Editor (VE) plug-in, 13, 334–335
vocabulary

Java, 21
workbench, 41–44

Voice Tools technology, 14

•W•
Web

companion sites, 5
HTML tags, 123
Javadoc page, opening, 96
JRE, getting and installing, 22–24

WebSphere Studio Application Developer
(WSAD), 10

Welcome screen, 30
while loops, 130–131, 141–142
wildcard characters, searching with, 301
window

defined, 43, 44
opening perspectives in separate, 52–53
views, dragging off, 71–72

345Index

26_574701 bindex.qxd 11/29/04 7:47 PM Page 345

Windows (Microsoft)
cursor, dragging in Hierarchy view, 91
environment variables, using, 295
installing Eclipse, 25
JRE, finding on existing computer, 21–22
Package Explorer branch, adding, 141
starting Eclipse, 26–27

wizards
Externalize Strings, 166, 170–171
Import, 273–275
New Code Formatter Profile, 143
New Java Project, 34–36, 256
New JUnit Test Case, 268
New Template, 133

words, finding
Help view, 310–311
text search, 228

workbench
action sets, 50
described, 30–31, 42–43
full screen window, 327–328
individual views, individual editors, and

individual areas, 47–49

items outside perspective, 81
local history, 47
overall look and feel, 49–50
perspectives, juggling, 50–53
views and editors, 44–46
vocabulary, 41–44

working set
creating, 325–326
described, 53–54
new project, adding, 57–58
projects, closing and opening, 58

Wrap Search, 228
WSAD (WebSphere Studio Application

Developer), 10

•X•
X button, 305
XMLBuddy plug-in, 334

•Z•
zipped file, opening, 25

346 Eclipse For Dummies

26_574701 bindex.qxd 11/29/04 7:47 PM Page 346

	000001.pdf
	000002.pdf
	000003.pdf
	000004.pdf
	000005.pdf
	000006.pdf
	000007.pdf
	000008.pdf
	000009.pdf
	000010.pdf
	000011.pdf
	000012.pdf
	000013.pdf
	000014.pdf
	000015.pdf
	000016.pdf
	000017.pdf
	000018.pdf
	000019.pdf
	000020.pdf
	000021.pdf
	000022.pdf
	000023.pdf
	000024.pdf
	000025.pdf
	000026.pdf
	000027.pdf
	000028.pdf
	000029.pdf
	000030.pdf
	000031.pdf
	000032.pdf
	000033.pdf
	000034.pdf
	000035.pdf
	000036.pdf
	000037.pdf
	000038.pdf
	000039.pdf
	000040.pdf
	000041.pdf
	000042.pdf
	000043.pdf
	000044.pdf
	000045.pdf
	000046.pdf
	000047.pdf
	000048.pdf
	000049.pdf
	000050.pdf
	000051.pdf
	000052.pdf
	000053.pdf
	000054.pdf
	000055.pdf
	000056.pdf
	000057.pdf
	000058.pdf
	000059.pdf
	000060.pdf
	000061.pdf
	000062.pdf
	000063.pdf
	000064.pdf
	000065.pdf
	000066.pdf
	000067.pdf
	000068.pdf
	000069.pdf
	000070.pdf
	000071.pdf
	000072.pdf
	000073.pdf
	000074.pdf
	000075.pdf
	000076.pdf
	000077.pdf
	000078.pdf
	000079.pdf
	000080.pdf
	000081.pdf
	000082.pdf
	000083.pdf
	000084.pdf
	000085.pdf
	000086.pdf
	000087.pdf
	000088.pdf
	000089.pdf
	000090.pdf
	000091.pdf
	000092.pdf
	000093.pdf
	000094.pdf
	000095.pdf
	000096.pdf
	000097.pdf
	000098.pdf
	000099.pdf
	000100.pdf
	000101.pdf
	000102.pdf
	000103.pdf
	000104.pdf
	000105.pdf
	000106.pdf
	000107.pdf
	000108.pdf
	000109.pdf
	000110.pdf
	000111.pdf
	000112.pdf
	000113.pdf
	000114.pdf
	000115.pdf
	000116.pdf
	000117.pdf
	000118.pdf
	000119.pdf
	000120.pdf
	000121.pdf
	000122.pdf
	000123.pdf
	000124.pdf
	000125.pdf
	000126.pdf
	000127.pdf
	000128.pdf
	000129.pdf
	000130.pdf
	000131.pdf
	000132.pdf
	000133.pdf
	000134.pdf
	000135.pdf
	000136.pdf
	000137.pdf
	000138.pdf
	000139.pdf
	000140.pdf
	000141.pdf
	000142.pdf
	000143.pdf
	000144.pdf
	000145.pdf
	000146.pdf
	000147.pdf
	000148.pdf
	000149.pdf
	000150.pdf
	000151.pdf
	000152.pdf
	000153.pdf
	000154.pdf
	000155.pdf
	000156.pdf
	000157.pdf
	000158.pdf
	000159.pdf
	000160.pdf
	000161.pdf
	000162.pdf
	000163.pdf
	000164.pdf
	000165.pdf
	000166.pdf
	000167.pdf
	000168.pdf
	000169.pdf
	000170.pdf
	000171.pdf
	000172.pdf
	000173.pdf
	000174.pdf
	000175.pdf
	000176.pdf
	000177.pdf
	000178.pdf
	000179.pdf
	000180.pdf
	000181.pdf
	000182.pdf
	000183.pdf
	000184.pdf
	000185.pdf
	000186.pdf
	000187.pdf
	000188.pdf
	000189.pdf
	000190.pdf
	000191.pdf
	000192.pdf
	000193.pdf
	000194.pdf
	000195.pdf
	000196.pdf
	000197.pdf
	000198.pdf
	000199.pdf
	000200.pdf
	000201.pdf
	000202.pdf
	000203.pdf
	000204.pdf
	000205.pdf
	000206.pdf
	000207.pdf
	000208.pdf
	000209.pdf
	000210.pdf
	000211.pdf
	000212.pdf
	000213.pdf
	000214.pdf
	000215.pdf
	000216.pdf
	000217.pdf
	000218.pdf
	000219.pdf
	000220.pdf
	000221.pdf
	000222.pdf
	000223.pdf
	000224.pdf
	000225.pdf
	000226.pdf
	000227.pdf
	000228.pdf
	000229.pdf
	000230.pdf
	000231.pdf
	000232.pdf
	000233.pdf
	000234.pdf
	000235.pdf
	000236.pdf
	000237.pdf
	000238.pdf
	000239.pdf
	000240.pdf
	000241.pdf
	000242.pdf
	000243.pdf
	000244.pdf
	000245.pdf
	000246.pdf
	000247.pdf
	000248.pdf
	000249.pdf
	000250.pdf
	000251.pdf
	000252.pdf
	000253.pdf
	000254.pdf
	000255.pdf
	000256.pdf
	000257.pdf
	000258.pdf
	000259.pdf
	000260.pdf
	000261.pdf
	000262.pdf
	000263.pdf
	000264.pdf
	000265.pdf
	000266.pdf
	000267.pdf
	000268.pdf
	000269.pdf
	000270.pdf
	000271.pdf
	000272.pdf
	000273.pdf
	000274.pdf
	000275.pdf
	000276.pdf
	000277.pdf
	000278.pdf
	000279.pdf
	000280.pdf
	000281.pdf
	000282.pdf
	000283.pdf
	000284.pdf
	000285.pdf
	000286.pdf
	000287.pdf
	000288.pdf
	000289.pdf
	000290.pdf
	000291.pdf
	000292.pdf
	000293.pdf
	000294.pdf
	000295.pdf
	000296.pdf
	000297.pdf
	000298.pdf
	000299.pdf
	000300.pdf
	000301.pdf
	000302.pdf
	000303.pdf
	000304.pdf
	000305.pdf
	000306.pdf
	000307.pdf
	000308.pdf
	000309.pdf
	000310.pdf
	000311.pdf
	000312.pdf
	000313.pdf
	000314.pdf
	000315.pdf
	000316.pdf
	000317.pdf
	000318.pdf
	000319.pdf
	000320.pdf
	000321.pdf
	000322.pdf
	000323.pdf
	000324.pdf
	000325.pdf
	000326.pdf
	000327.pdf
	000328.pdf
	000329.pdf
	000330.pdf
	000331.pdf
	000332.pdf
	000333.pdf
	000334.pdf
	000335.pdf
	000336.pdf
	000337.pdf
	000338.pdf
	000339.pdf
	000340.pdf
	000341.pdf
	000342.pdf
	000343.pdf
	000344.pdf
	000345.pdf
	000346.pdf
	000347.pdf
	000348.pdf
	000349.pdf
	000350.pdf
	000351.pdf
	000352.pdf
	000353.pdf
	000354.pdf
	000355.pdf
	000356.pdf
	000357.pdf
	000358.pdf
	000359.pdf
	000360.pdf
	000361.pdf

		2005-03-14T16:41:25+0800
	TeAm YYePG
	I attest to the accuracy and integrity of this document

