
Compressed Image

File Formats

JPEG, PNG, GIF, XBM, BMP

Your guide to graphics
files on the Web

John Miano

Compressed Image

File Formats

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial capital letters
or all capital letters.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Corporate, Government, and Special Sales Group
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Miano, John, 1961-

Compressed image file formats : JPEG, PNG, GIF, XBM, BMP / by John Miano
p. cm.

Includes bibliographical references.
ISBN 0-201-60443-4. — ISBN 0-201-61657-2 (CD-ROM)
1. Image processing—Computer programs. 2. Data compression (Computer
science) 3. Computer programming. 4. File organization (Computer science)
I. Title

TA1637.M53 1999
005.74'6—dc21 99-15179

CIP

Copyright © 1999 by the ACM Press,
a division of the Association for Computing Machinery, Inc. (ACM).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

ISBN 0-201-60443-4
Text printed on recycled and acid-free paper.
1 2 3 4 5 6 7 8 9—MA—04 03 02 01 00 99
First printing, July 1999

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Preface ix

Acknowledgments xi

Introduction
The Representation of Images 1
Vector and Bitmap Graphics 3
Color Models 5
True Color versus Palette 9
Compression 10
Byte and Bit Ordering 13
Color Quantization 16
A Common Image Format 18
Conclusion 21

Windows BMP
Data Ordering 23
File Structure 24
Compression 28
Conclusion 29

XBM
File Format 31
Reading and Writing XBM Files 33
Conclusion 34

Introduction to JPEG
JPEG Compression Modes 36
What Part of JPEG Will Be Covered in This Book? 39
What are JPEG Files? 40
SPIFF File Format 40
Byte Ordering 41

1

23

31

35

V

ContentsVI

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Sampling Frequency 41
JPEG Operation 44
Interleaved and Noninterleaved Scans 45
Conclusion 46

JPEG File Format
Markers 47
Compressed Data 49
Marker Types 49
JFIF Format 55
Conclusion 57

JPEG Human Coding
Usage Frequencies 61
Huffman Coding Example 63
Huffman Coding Using Code Lengths 65
Huffman Coding in JPEG 71
Limiting Code Lengths 72
Decoding Huffman Codes 73
Conclusion 75

The Discrete Cosine Transform
DCT in One Dimension 78
DCT in Two Dimensions 84
Basic Matrix Operations 85
Using the 2-D Forward DCT 87
Quantization 88
Zigzag Ordering 89
Conclusion 90

Decoding Sequential-Mode JPEG Images
MCU Dimensions 91
Decoding Data Units 94
Decoding Example 97
Processing DCT Coefficients 98
Up-Sampling 99
Restart Marker Processing 99
Overview of JPEG Decoding 100
Conclusion 100

Creating Sequential JPEG Files
Compression Parameters 105
Output File Structure 111
Doing the Encoding 111
Down-Sampling 112
Interleaving 113
Data Unit Encoding 115
Huffman Table Generation 117
Conclusion 119

47

61

77

91

105

Contents V I I

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Optimizing the DCT
Factoring the DCT Matrix 121
Scaled Integer Arithmetic 137
Merging Quantization and the DCT 138
Conclusion 148

Progressive JPEG
Component Division in Progressive JPEG 149
Processing Progressive JPEG Files 151
Processing Progressive Scans 152
MCUs in Progressive Scans 153
Huffman Tables in Progressive Scans 153
Data Unit Decoding 154
Preparing to Create Progressive JPEG Files 160
Encoding Progressive Scans 162
Huffman Coding 162
Data Unit Encoding 162
Conclusion 169

GIF
Byte Ordering 172
File Structure 172
Interlacing 178
Compressed Data Format 178
Animated GIF 186
Legal Problems 187
Uncompressed GIF 188
Conclusion 188

PNG
History 190
Byte Ordering 190
File Format 190
File Organization 195
Color Representation in PNG 195
Device-Independent Color 197
Gamma 201
Interlacing 202
Critical Chunks 203
Noncritical Chunks 206
Conclusion 212

Decompressing PNG Image Data
Decompressing the Image Data 215
Huffman Coding in Deflate 221
Compressed Data Format 222
Compressed Data Blocks 223
Writing the Decompressed Data to the Image 227
Conclusion 231

121

149

171

189

215

Contentsviii

Chapter 15 Creating PNG Files
Overview 233
Deflate Compression Process 234
Huffman Table Generation 238
Filtering 241
Conclusion 243

Glossary 245

Bibliography 249

Index 253

233

Preface

The purpose of this book is to instruct the reader on how to write software that
can read and write files using various 2-D image formats. I wanted to write a
book that explains the most frequently used file formats with enough depth for
the reader to implement them, as opposed to one that covered many different for-
mats at a high level or one that avoided the more difficult image formats. As a
result, I chose to cover the image file formats that are associated with Web
browsers. Those covered in this book (BMP, XBM, JPEG, GIF, and PNG) repre-
sent the vast majority of image files that can be found on the Internet. They
employ a wide range of encoding techniques and range in implementation diffi-
culty from simple to very complex.

The inspiration for this book was my own frustration resulting from the lack
of information on how to implement encoders and decoders for the more com-
plex file formats. Most of the information available was at too high a level, left
major gaps, or was very difficult to decipher. I have tried to create a bridge
between the programmer and the standards documents.

One issue I faced at the start of this project was which programming lan-
guage to use for the examples. The intention was to create a book on graphics
file formats rather than one on how to write programs to read and write graph-
ics files in a particular language. Therefore, I debated using a language that is
easy to read (e.g., Pascal or Ada) or the one most people are likely to use (C++).
In the end I felt that its widespread use made C++ the best choice. To make the
examples more understandable for non-C++ programmers, I have carefully
avoided certain C++ language constructs (e.g., expressions with side effects and
integer/boolean interchangeability) that would make the code difficult for them
to understand.

IX

In order to make the encoding and decoding processes as clear as possible, I
have used a Pascal-like pseudo-code. C++ is used for complete function
implementations and pseudo-code for illustrative fragments. These fragments
generally contain no error checking.

Because of their generally large size, it was not possible to include work-
ing source code for the formats in the book itself. Instead, the accompanying
CD-ROM contains the complete source code for encoders and decoders for
almost all of the image formats covered.1 The reader should use the pseudo-
code in the text to learn how processes work and the C++ examples on the
CD to see how to implement them.

Generally, the decoders implement more features than to the encoders. In
the decoders I have implemented all of the features needed to decode files
that a reader will have any likelihood of encountering on the Internet. For the
sake of clarity, the encoders generally implement a smaller feature subset.

In writing the programming examples I have given clarity precedence
over execution efficiency and instant portability. The source examples will
compile, without modifications, on Microsoft Windows using both Borland
C++Builder V3.0 and Microsoft Visual C++ V5.0. Other compilers generally
require some modifications to the code.

The descriptions of the encoders and decoders for the various file for-
mats frequently employ the term "user" to describe the source of certain
input parameters to the encoding or decoding process. By this I mean the user
of the encoder or decoder, not necessarily the person typing at the keyboard.
Since image encoders and decoders are incorporated into other applications,
such as image viewers and editors, the user in this case would most likely be
another piece of software. However, in many situations the "user" application
may get some of these parameters directly from a human.

Just as this is not intended to be a book on C++ programming, it is also
not intended to be a book on programming in a specific environment. For that
information readers will need a book for their particular system.

1The unfortunate exception is GIF because of legal issues.

Prefacex

Acknowledgments

A project as large as producing a book requires the involvement of many peo-
ple. Mike Bailey, Eric Haines, Tom Lane, Shawn Neely, and Glenn Randers-
Pehrson reviewed the manuscript and provided many invaluable suggestions.
Glenn also arranged for me to get the latest proposed PNG standards for the
CD. My fellow aviator, Charlie Baumann, was kind enough to provide sev-
eral of the photographs. Ralph Miano and Margaret Miano assisted with
preparing the manuscript. Jean-Loup Gailley answered all my questions on
ZLIB. Albert "The Chipster" Copper compiled examples on systems I did not
have access to. Most important, Helen Goldstein at AWL guided the process
from start to finish.

John M. Miano
Summit, New Jersey

miano@colosseumbuilders. com

XI

In this chapter we cover the fundamental aspects of image file formats. Here you
will be introduced to bitmap images, the methods used to display images, the
representation of color, and compression methods.

The Representation of Images

In most computer displays, the screen image is composed of discrete units called
pixels. Each pixel occupies a small rectangular region on the screen and displays
one color at a time. The pixels are arranged so that they form a 2-dimensional
array.

Objects are drawn on the screen by adjusting the color of individual pixels.
Figure 1.1 shows an ideal triangle and one broken down into pixels. The pixel
representation has jagged edges and is not very pleasing to the eye. The more
densely pixels are packed on a display device, the less noticeable the jagged
edges become.

Over the years the number of pixels displayed on PC monitors has increased
dramatically. Not too long ago 640 x 480 (307,200 pixels) displays were standard.
Now monitor resolutions of 1024 x 768 (786,432), 1280 x 1024 (1,310,720), and
even higher are common. The amount of video memory and the capabilities of

Figure 1.1
Ideal Image and
Pixel Image

Chapter 1

Introduction

1

the monitor and video adapter limit the number of pixels a computer system can
display.

Figure 1.2 illustrates the components of a typical video system. The frame
buffer is a block of video memory that controls the color of each pixel on the
monitor. Each pixel has a corresponding memory location, usually ranging in
size from 1 to 32 bits. On many systems, video memory can be read from and
written to just like any other memory location. An application can change the
color displayed on the monitor just by changing a memory value. The video con-
troller converts the values in the frame buffer to a signal that can be displayed by
the monitor.

Computer printers are also used to display images. These days most printers
employ a similar mechanism to video systems. They divide the image into a num-
ber of pixels, but with a much higher density than a computer monitor does, typ-
ically 300 or 600 pixels per inch for an office printer. Printers designed for type-
setting applications use even higher densities. The printer contains memory
analogous to the frame buffer, except that data is transmitted over a serial or par-
allel cable rather than directly through the system bus. The image gets built in the
printer's memory and then gets written to the printed page.

Not all printers work by mapping memory to pixels. Plotters used for draft-
ing and other engineering work have pens controlled by commands, such as draw
a line from one point to another, draw an ellipse within a specified rectangle, or
draw text using a specified font at some location.1

1Back in the old days, computer monitors for graphics worked this way as well.

Figure 1.2
Simple Video
System

Introduction2

Vector and Bitmap Graphics

Vector and Bitmap Graphics

Just as display devices have two general methods of operation, graphics file
formats can be divided into two general classes, vector and bitmap.2 Vector
graphics formats use a series of drawing commands to represent an image. A
Windows metafile is a commonly used vector graphics format. Figure 1.3 con-
tains a simple vector image created using commands to draw two arcs and a
rectangle.

Vector graphics formats are not limited to output devices, such as plotters,
that create images through drawing commands. Computer monitors and laser
printers usually have software that converts vector commands into pixels.

There are two main drawbacks with vector graphics. First, they are not suit-
able for reproducing photographs or paintings. A painting such as Whistlers
Mother would require tens of thousands of drawing commands —simply deter-
mining which commands to use to represent the painting would be a monumen-
tal task. Second, complex images take a long time to display. On most display
systems, each vector object has to be converted to a pixel image.

All of the image formats covered in this book are bitmap image formats.
Such formats represent images as 2-dimensional arrays where each array element
represents a color to be displayed at a specific location. When displayed on a
computer screen, each element is generally mapped to a single screen pixel. If
pixels are close enough on the display device, it becomes difficult for the human
eye to detect the array structure that composes the image.

The greatest advantage of bitmap images is their quality. As the amount of
disk space and memory has increased along with the speed of processors, the
use of bitmap images has expanded as well. One of the most visible examples
of this is in the computer game industry. Currently even games that require
high performance, such as flight simulators and shoot-em-ups, use bitmap
graphics. Contrast the graphics in games like Quake and Doom to the vector
graphics of Tank or even the Death Star graphics in the original Star Wars
movie.

A major drawback with bitmap images is the amount of data required to hold
them. The size of an image in bytes (not counting overhead) is

Thus, an 800 x 600 image with 24 bits per pixel requires 1,440,000 bytes of
memory to display or disk space to store. As the amount of memory on comput-
ers has grown, so has the number and size of images that can be displayed at the

2Raster graphics format is a common synonym for bitmap graphics format.

3

Figure 1.3
Simple Vector Image

width × height × bits per pixel + 7
8

Introduction

same time. Compression is usually used to reduce the space an image file occu-
pies on a disk, allowing a larger number of images to be stored.

Another drawback with bitmap images is that they are size dependent and
not suitable for extensive editing. With vector formats, it is easy for drawing pro-
grams to add, delete, and modify individual elements. It is also simple to perform
transformations such as perspective, enlarging, and scaling on a vector image.

With bitmap images, even changing the size causes problems. Reducing
them requires throwing away information; enlarging them produces blocking
effects. Figure 1.4 illustrates the problem with increasing the size of a bitmap
image by duplicating pixels. Smoothing techniques exist to improve the appear-
ance of resized images.

Table 1.1 summarizes the advantages of vector and bitmap graphics. The
important thing to notice is that neither method is better than the other—they
simply have different uses. In fact, some applications use a combination of the
two techniques.

Figure 1.4
Bitmap Image and
an Enlargement

Table 1.1
Bitmap Graphics
versus Vector
Graphics

Display speed
Image quality
Memory usage
Ease of editing
Display independence

Bitmap Graphics

X
X

Vector Graphics

X
X
X

4

Color Models

Color Models

In the previous section we saw that in a bitmap image each pixel has a value that
specifies its color. So, how does a numerical value get translated to a color?

There are many ways to represent colors numerically. A system for repre-
senting colors is called a color model. Color models are usually designed to take
advantage of a particular type of display device.

On most color monitors there are three phosphors (red, green, and blue), or
light emitters, for each pixel. Adjusting the intensity of the individual phosphors
controls the color of the pixel. When all three phosphors are at their minimum
intensity the pixel appears black. At their maximum intensity the pixel appears
white. If the red phosphor is the only one active, the pixel appears red. When the
red and green phosphors are on they combine to produce shades of yellow, and
when all three phosphors are at full intensity the pixel appears white.

The most common color model used in computer applications is known as
RGB (Red-Green-Blue). The RGB model mimics the operation of computer dis-
plays. In RGB, colors are composed of three component values that represent the
relative intensities of red, green, and blue. Figure 1.5 shows the relationship of
colors in the RGB color model. The range of colors that can be represented by a
color model is known as a colorspace. In Figure 1.5, the RGB colorspace is the
cube in the diagram.

In mathematical discussions of color, component values are often repre-
sented as real numbers normalized to the range 0.0 to 1.0. In programming and
image formats, unsigned integer component values are almost always used. The
range of values for a color component is determined by the sample precision,
which is the number of bits used to represent a component. For photographic

Figure 1.5
RGB Color Model

5

Introduction

images, 8 is the most commonly used sample precision. However, 1, 2, 4, 12, and
16 are also common.

Integer component values can range from 0 to 2Sample Precision - 1. To convert
from the normalized real number representation of a color to the integer repre-
sentation you simply multiply by 2Sample Precision - 1.

On Windows the sample precision is almost always 8 bits, so the operating
system (but not necessarily the underlying hardware) recognizes 256 different
shades of each primary color. Other systems may use a larger or smaller sample
precision.

Grayscale

Some display devices, such as laser printers, cannot display colors at all but
rather shades of gray. These are known as grayscale devices. Shades of gray can
be represented by a single component in the range 0 (black) to 2Sample Precision - 1
(white). In Figure 1.5 you can see that shades of gray occur in the RGB model
along the line where R=G=B.

YCbCr Color Model

RGB is not the only color model in use. At one time the HSB (Hue-Saturation-
Brightness) color model was commonly used in computer systems and still is
used by some image processing applications. JPEG images are almost always
stored using a three-component color space known as YCbCr. The Y, or lumi-
nance, component represents the intensity of the image. Cb and Cr are the
chrominance components. Cb specifies the blueness of the image and Cr gives
the redness.

The YCbCr color model is similar to the one used in television sets that
allows color images to be compatible with black and white sets. In the YCbCr
color model, the Y component on its own is a grayscale representation of the
color image.

The relation between the YCbCr and RGB models as used in JPEG is repre-
sented in Equation 1.1.

Figure 1.6 shows a color image that has been separated into its Y, Cb, and Cr
components. You can see that the Y component contributes the most information
to the image. Unlike the RGB color model, where all components are roughly

Equation 1.1
YCbCr/RGB
Color space
Conversion

Y = 0.299R + 0.587G + 0.114B
Cb = -0.1687R - 0.3313G + 0.5B + 2Sample Precision/2

Cr = 0.5R - 0.4187G - 0.0813B + 2Sample Precision/2

R = Y + 1.402Cr
G = Y - 0.34414(Cb-2Sample Precision/2)-0.71414(Cr-2Sample Precision/2)
B = Y + 1.722(Cb - 2Sample Precision/2)

6

Color Models

Figure 1.6
Color Image
Separated into Its
Y, Cb, and Cr
Components

7

Introduction

equal, YCbCr concentrates the most important information in one component.
This makes it possible to get greater compression by including more data from
the Y component than from the Cb and Cr components.

CMYK Color Model

One other color model worth mentioning at this point is a four-component model
known as CMYK (cyan, magenta, yellow, black), which is frequently used in
color printing. Most printing is done on white paper with ink added to create
darker colors. This is the opposite of what happens on a computer monitor. The
CMYK colorspace follows the printing model. The components represent the
four inks commonly used in color printing.

The color models we have looked at so far are known as additive, which
means the components add light to the image. The higher the component values
are, the closer the color is to white. However, in CMYK, larger component val-
ues represent colors close to black. This is known as subtractive. Cyan, magenta,
and yellow are the complements for red, blue, and green. A pure cyan surface
absorbs all the red light directed at it. If yellow and magenta inks are combined,
they absorb the green and blue light, which results in red. Cyan, magenta, and
yellow combine to absorb all light, resulting in black—in theory, anyway.

In practice, cyan, magenta, and yellow inks do not combine on a white piece
of paper to produce a pure black. Even if you could get a good shade of black by
combining colors, it would require three times as much ink as simply using black
alone. Since most printing is done in black anyway, it makes sense to use black
ink to produce black and shades of gray.

On a computer monitor, the relationship between RGB and CMYK can be
approximated as shown in Equation 1.2.

Equation 1.2
CMYK/RGB
Colorspace
Conversion

K = (2Sample Precision/2 - 1) - MAX(R,G,B)
C = (2SamplePrecision/2 - 1) - R - K
Y = (2Sample Precision/2 - 1) - G - K

M = (2Sample Precision/2 - 1) -B -K

R = (2Sample Precision/2 - 1) - K - C

G = (2Sample Precision/2 - 1) - K - Y

B = (2Sample Precision/2 - 1) - K - M

When the C, M, and Y component values are equal, the color is a shade of
gray. Notice how the conversion from RGB to CMYK replaces cyan, magenta,
and yellow ink with shades of gray produced by black ink. The result of this sub-
stitution is that at least one of the CMY components will always be zero if this
conversion process is followed exactly as shown here. The CMYK color model
does not require the value of one component to be zero—this is simply a result

8

True Color versus Palette

of converting from RGB. Applications that use the CMYK color model will
allow any combination of component values to give complete control over the
printed colors and allow for variations among various types of ink.

Another thing to notice about the CMYK color model is that there is not a
one-to-one mapping between it and RGB. Instead, multiple CMYK values map
to the same RGB value.

True Color versus Palette

The examples in this book assume that the output device uses the RGB color
model to display images and that each component is represented using 8 bits and
is in the range 0-255.3 This is the color representation used by most personal
computer systems. Such a system can produce 16,777,216 (2563) distinct colors.
There are computer systems that use more bits to represent color, for example the
12-bit grayscale frequently used for medical images. Some image formats sup-
port data with more than 8 bits per component (12 for JPEG, 16 for PNG). For
the remainder of this discussion we are going to assume that you are working on
a system that uses 8 bits per component.

Two methods are commonly used to assign one of the possible colors to a
pixel. The simplest is to store the color value for each pixel in the compressed
data. For images with 24 bits per pixel, each pixel has a 3-byte color value asso-
ciated with it. Images that use 24 bits or more are called true color because over
the range of colors a monitor can display, 24 bits per pixel is the limit of color
differences that a human can distinguish.

The problem with 24-bit graphics is that while a system may be capable of
displaying 16,777,216 different colors, it may not be able to do so simultane-
ously. Older computers may not even have a video card capable of using a 24-bit
display mode. Newer computers may not have enough video memory to operate
in 24-bit mode at higher screen resolutions. A display on a personal computer set
at a resolution of 1024 × 768 pixels would require 2,359,296 (1024 × 768 × 3 =
2.25 MB) of video memory to display 24-bit images. If the computer had only
2 MB of video memory it could not display 24-bit images at this resolution but
could do so at a lower resolution of 800 x 600 (800 × 600 × 3 = 1.4 MB).

The solution devised to represent colors before the days of displays capable
of 24 bits per pixel was to define a color palette that selects a subset of the pos-
sible colors. Conceptually the palette is a 1-dimensional array of 3-byte ele-
ments that specify the color. Rather than directly specifying the color, each pixel
value is an index into the color palette. The most common size for a palette is
256 entries where each pixel value consists of 8 bits. Most computers today can

3To avoid dealing too deeply with specific system implementations, this section contains some simplifi-
cations as to the behavior of display devices.

9

10 Introduction

display 8-bit graphics in all their display resolutions, but very old computers
were limited to even smaller palette sizes.

Bitmap image file formats represent colors in essentially the same way com-
puter displays do. Some specify the color value for each pixel, some use a color
palette, and others support both methods. Table 1.2 shows the methods used to
represent colors for various image formats.

A file format that uses a palette may use pixel values with fewer than 8 bits
in order to reduce the size of the file. A 4-bit-per-pixel image requires half as
much storage as an 8-bit-per-pixel image of the same size. For images that use a
limited number of colors, such as cartoons, a simple method to reduce the file

Table 1.2
Color
Representation
Methods

BMP
JPEG
GIF
PNG

Palette

X

X
X

Color Value

X
X

X

Compression

Since color bitmap images typically require over a megabyte of storage, most
image file formats incorporate compression techniques. Compression techniques
take advantage of patterns within the image data to find an equivalent represen-
tation that occupies less space. Completely random data cannot be compressed.

The following are brief descriptions of the compression techniques used by
the image formats in this book. Table 1.3 shows the techniques used by each
format.

Table 1.3
Compression
Methods Used by
Various File Formats

RLE
LZ
Huffman
DCT

BMP

X

GIF

X

PNG

X
X

JPEG

X

X
X

Compression 11

Run Length Encoding (RLE). Consecutive pixels with the same value are
encoded using a run length and value pair. For example, an image with the
pixel value 8 repeated 9 times could be represented as the 2-byte sequence

0916 0816

rather than

0816 0816 0816 0816 0816 0816 0816 0816

LZ Encoding. The compressor maintains a dictionary containing pixel
value sequences that have already been encountered. The compressed stream
contains codes that represent entries in the dictionary.

Huffman Coding. Rather than using a fixed number of bits to represent
component values, variable length codes are used. More frequently used val-
ues are assigned shorter codes.

Discrete Cosine Transform (DCT). Blocks of pixels are represented using
cosine functions of different frequencies. The high frequencies, which gen-
erally contribute less information to the image, are discarded.

The effectiveness of a compression technique depends upon the type of data.
Figure 1.7 is a photograph and Figure 1.8 is a drawing. The photograph contains
many areas with small changes in color, while the drawing has large areas with
the same color.

Figure 1.7
IRENE.BMP

12 Introduction

Figure 1.8
STARS.BMP

Figure 1.9 shows the relative file sizes when the photograph in Figure 1.7 is
compressed using various formats: Uncompressed BMP, BMP with RLE encod-
ing, GIF, PNG, and JPEG. Notice that BMP-RLE and GIF produce very little
compression while PNG and, especially, JPEG produce significant reductions in
file size.

Figure 1.10 contains a similar graph, this time using the drawing in Figure
1.8. You can see that the other file formats nearly catch up to JPEG with this
image.

Lossless versus Lossy Compression

Most image file formats use what is known as lossless compression. By this we
mean that if we take an image, compress it using a lossless technique, and expand
it again, the resulting image is bit-by-bit identical to the original.

Some compression methods (notably JPEG) are lossy. Using the compres-
sion sequence described above, lossy compression produces an image that is

Figure 1.9
Percent of Original
Size Compressing
IRENE.BMP

Byte and Bit Ordering 13

Figure 1.10
Percent of Original
Size Compressing
STARS.BMP

close to the original but not an exact match. That is, a pixel with an RGB color
value of (128,243,118) in an image that is compressed may produce
(127,243,119) when it is expanded. In image compression, lossy techniques take
advantage of the fact that the eye has a hard time distinguishing between nearly
identical colors.

The reason for using lossy compression is that it generally gives significantly
greater compression than lossless methods do. In many situations, small losses of
data are acceptable in exchange for increased compression.

Byte and Bit Ordering

All bitmap image files contain integers stored in binary format. For single-byte
integers there is no compatibility problem among different processor types. This
is not the case with multi-byte integers. When reading multi-byte integers there
is the issue of how to order the bytes from the input stream in the integer. Suppose
that an image file contains these two bytes in succession.

0 1 1 0 0 0 1 1 (6316)
0 0 0 1 1 1 0 1 (1D16)

Most Significant Bit Least Significant Bit

If these bytes represent a 2-byte integer should they be interpreted as

0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 (1D6316) 75,2310

or

0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 (631D16) 25,37310

In other words, in a multi-byte integer does the most significant byte occur first
or last in the file?

Introduction

The problem is that different types of processors order integers differently, and
blindly reading raw bytes into an integer variable will not work for all of them.
Most processors in common use, including the Motorola 680x0 and Sun SPARC
families, store integers with the most significant byte first. This byte ordering is
known as big-endian. It is also known as network order because it is used by
Internet protocol. Processors that store integers with the least significant byte
first are known as little-endian. The Intel 80x86 family of processors used in per-
sonal computers is the most common little-endian processor.

This code example produces different output depending upon whether it is
run on a big-endian or a little-endian system.

14

The answer to this question depends upon the type of file. Some formats
require that the most significant byte be stored first; others require that the least
significant be first.

Why not order bytes in an image file so that a simple read operation like this
reads integers correctly?

unsigned int value ;
inputstream.read ((char *) &value, sizeof (value)) ;

#include <iostream>
using namespace std ;
main ()
{

unsigned short value = 1 ;
unsigned char *ptr = (unsigned char *) &value ;
if (*ptr == 1)

cout << "I'm Little-Endian" << endl ;
else

cout << "I'm Big-Endian" << endl ;
return 0 ;

}

Converting between little-endian and big-endian formats is simply a matter of
swapping bytes, and the conversion is the same in either direction. For 2-byte
integers the conversion is

unsigned short SwapBytes (unsigned short source)
{

unsigned short destination ;
destination = ((source & 0xFF) << 8) | ((source & 0xFF00) >> 8) ;
return source ;

}

and 4-byte integers are converted as

Whatever the processor type, when processing an entire byte the ordering of
bits within a byte is the same. However, the ordering of bit strings within indi-
vidual bytes is a more subtle issue. Computer processors deal only with complete
bytes. When processing compressed data one frequently has to process bit strings
that are not aligned on byte boundaries. Bit strings can be extracted from bytes,
but their ordering is determined entirely by the image format.

Suppose that you need to read three 3-bit strings from the 2-byte sequence

1st Byte 0 0 0 1 1 1 0 1
2nd Byte 0 1 1 0 0 0 1 1

Depending upon whether the bit strings are read from the most significant bit to
least significant bit and whether the bits in the second byte are made the most sig-
nificant or least significant, the resulting bit strings could be one of these four
possibilities:

1. 000 111 010
2. 000 111 001
3. 101 011 001
4. 101 011 100

The ordering of bit strings within bytes is specified by the image format.
Except for XBM, in all image file formats in this book that support images

with fewer than 8 bits per pixel, the most significant bits within a byte contain the
values of the leftmost pixel. One should view the bit ordering in these formats as

Data Byte
|7 6 5 4|3 2 1 0| 4 bits per pixel
|7 6 |5 4|3 2 | 1 0| 2 bits per pixel

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 bit per pixel
Leftmost Pixel Rightmost Pixel

In these programming examples we assume that long is 32 bits
and short is 16 bits. This is correct for most environments, but not
for all.

unsigned long SwapBytes (unsigned long source)
{

unsigned long destination ;
destination = ((source & 0X000000FFL) << 24)

| ((source & 0X0000FF00L) << 8)
| ((source & 0X00FF0000L) >> 8)
| ((source & 0xFF000000L) >> 24) ;

return destination ;
}

Byte and Bit Ordering 15

16 Introduction

Color Quantization

The JPEG and PNG formats covered in this book can contain image data that
uses 24 bits or more per pixel. How can you display a 24-bit JPEG image on an
output device that supports only 8 bits per pixel? Likewise, how can you convert
a JPEG file to the GIF format, which supports a maximum of 8 bits per pixel?
The answer is a process known as color quantization, a fancy name for the
process of reducing the number of colors used in an image. The topic of color
quantization falls outside the scope of this book; therefore, we are only going to
cover enough to allow you to display images if you are using a display that does
not support 24-bit images and to convert to such formats.

The method we are going to use is called median cut quantization. In it we
create a three-dimensional count of the number of times each pixel color value
is used. Such a counting would look something like that shown in Algorithm 1.1

Now we have a cubic region containing all the color frequencies. The next
step, shown in Algorithm 1.2, is to divide the cube into two rectangular regions
in such a manner that each part has half the frequency values. This fragment
divides the frequencies in half along the blue axis.

Figure 1.11 shows the result of the first application of the process in
Algorithm 1.2. We apply the process recursively, dividing the rectangular regions
in half using a different color axis until we have 256 boxes with roughly the same
total frequency. Figures 1.12 and 1.13 show sample divisions of the RGB color-
space along the other axes.

Keep in mind that this is a rough outline. If 4-byte integers were used to
store frequency values, the FREQUENCIES array defined in Algorithm 1.1 would

Algorithm 7.7
Gathering
Frequencies in the
Median Cut
Algorithm

Global FREQUENCIES [0..255][0..255][0..255]
Global IMAGE [1..IMAGEHEIGHT][1..IMAGEWIDTH]

Procedure GatherFrequencies
Begin
For II = 1 To IMAGEHEIGHT Do

Begin
For JJ = 1 To IMAGEWIDTH Do

Begin
RED = IMAGE [II][JJ].RED
GREEN = IMAGE [II][JJ].GREEN
BLUE = IMAGE [II][JJ].BLUE
FREQUENCIES [RED][GREEN][BLUE] =

FREQUENCIES [RED][GREEN][BLUE] + 1
End

End
End

Color Quantization 17

Algorithm 1.2
Dividing the
Colorspace in Half

GLOBAL FREQUENCIES [0..255][0..255][0..255]
Function DivideBlueInHalf

Begin
COUNT = 0
For BLUECUT = 0 To 255 Do

Begin
For II = 0 To 255 Do

Begin
For JJ = 0 To 255 Do

Begin
COUNT = COUNT + FREQUENCIES [II][JJ][BLUECUT]
End

End
If COUNT > IMAGEHEICHT * IMACEWIDTH / 2 Then

Return BLUECUT
End

Return 255
End

be 64 megabytes. Even in this era of cheap memory, this is too large for a prac-
tical implementation. In fact, the size of the FREQUENCIES array is larger than
the pixel data for most images, so in practice we have to reduce the precision of
each color value, use dynamic data structures, or use a combination of both. A
simple method to reduce the array size is to drop some of the least significant
bits from each component value. Using 6 instead of 8 bits reduces the size of the
FREQUENCIES array to just 1 megabyte (4 × 26 × 26 × 26).

Figure 1.11
Example of the RGB
Colorspace Being
Divided Using the
Process in
Algorithm 1.2

18 Introduction

Figure 1.12 RGB
Colorspace in Figure
1.11, Now Divided
along the Green
Axis As Well

Figure 1.13 RGB
Colorspace in Figure
1.12, Now Divided
along the Red Axis
As Well

A Common Image Format

A typical application for viewing image files will be able to read and store images
using several file formats, and convert files from one format to another. Rather
than having a function for viewing each type of file and a separate function for
each possible format conversion, it is useful to have a common uncompressed
image format that can be used for all types of files supported by the application.

With a common uncompressed format you need only write one display func-
tion for the common format. If each image file format has a function for reading
into the common format and a function for writing from the common format, you
have everything you need to display, save, and convert among all file formats.

A Common Image Format 19

In addition to supporting all of the anticipated image formats, a common
image format ideally is easy to display and portable across various hardware plat-
forms. Unfortunately, ease of display and portability are somewhat exclusive. You
do not want a common image format and a separate display format. The format
in our examples is a compromise, designed to be as easy as possible to use in the
Windows environment while at the same time concealing Windows-specific
behavior. It is capable of storing images using 1, 4, 8, and 24 bits per pixel. PNG
and JPEG are the only formats that store data using other formats. The PNG
decoder will convert the data to one of the formats above; the JPEG decoder will
only read files with 8-bit sample data.

Datatype Definitions

The source code examples in this book use typedefs for integers that are expected
to be a specific size. Table 1.4 lists the integer types used. They are defined in the
file datatype.h, which also defines a function for performing endian conver-
sions of integers. The existing definitions are suitable for most 32-bit little-endian
systems, so if you are porting the code to another type of system, this is the first
file you need to modify.

Common Image Class

BitmapImage is the name of the common image format class. It is defined in the
file bitimage.h. The general process followed by all of the encoders and decoders
in this book for reading and writing images is

Table 1.4
Types Defined in
datatype.h

BitmapImage image ;
XYZDecoder decoder ;
XYZEncoder encoder ;
ifstream input ("INPUT.XYZ", ios::binary) ;
decoder.ReadImage (input, image) ;
ofstream output ("OUTPUT.XYZ", ios::binary) ;
encoder.WriteImage (output, image) ;

where XYZDecoder and XYZEncoder are the decoder and encoder classes for the
image type.

Type

BYTE1
UBYTE1
BYTE2
UBYTE2
BYTE4

UBYTE4

Use

Signed 8-bit integer
Unsigned 8-bit integer
Signed 16-bit integer
Unsigned 16-bit integer
Signed 32-bit integer
Unsigned 32-bit integer

The implementation of this class is tailored for Microsoft Windows.
However, the interface is designed to conceal system-specific behavior. The
BitmapImage class has two main storage areas: the color map and the pixel data.
An application can store an image in a BitmapImage object by using one of the
image decoders in this book (or one you write yourself) or by using the SetSize,
ColorMap, and [] operators to write store raw image data.

SetSize
The SetSize function allocates the dynamic memory used to store image data
within a BitmapImage object. An application must call this function before
attempting to store image data into the object.

ColorMap
The ColorMap functions are used to access the image's color palette. For images
with a bit depth of 8 or fewer the application must fill in the color map. If the
image has a bit depth of 24 this function should not be used.

[] (Subscript) Operator
The subscript operator is used to access individual bytes in the image pixel data.
The format of this data depends upon the bit depth of the image. For images that
use 8 bits per pixel each data byte is an index into the color map (accessed
through the ColorMap functions). If the bit depth is fewer than 8, multiple color
indices are packed into the data bytes. The higher-order bits contain the leftmost
pixel values. For 24-bit images each pixel is represented by 3 bytes. The usual
ordering for color bytes in a 24-bit image is RGB, but Windows expects the val-
ues in BGR order. The BitmapImage class defines the values RedOffset,
GreenOffset, and BlueOffset used by the programming examples to specify
the ordering of these bytes. If your system does not use BGR ordering, you can
change the values of these offsets.

Another Windows'ism that the subscript operator conceals is Windows
images will be stored starting with the bottommost row. In order to make dis-
playing an image as easy as possible on Windows, this implementation of the
BitmapImage class stores the rows in bottom-to-top order, as Windows expects
them to be. However, the subscript operator reverses the row order so that [0]
returns the topmost row of the image. Windows also expects the length of each
image row to be a multiple of 4 bytes. The subscript operator automatically takes
this padding into account so that [N][0] always returns the first pixel byte for
the Nth row. By making the implementation of BitmapImage independent of the
interface it is possible to change the implementation to support different systems
without affecting the image encoders and decoders.

There are two implementations of the subscript operator. If the CHECK_RANGE
preprocessor symbol is defined, the subscript operator performs range checking
on all values. If CHECK_RANGE is not defined, no range checking is done. The

Introduction20

Conclusion

latter implementation is significantly faster, but the former is better for use while
debugging.

CetRGB
The GetRGB function returns the RGB color value for a given pixel in the image.
An image encoder can use this function to get pixel values without having to deal
with different sample precision values.

EightBitQuantization
The EightBitQuantization function converts a 24-bits-per-pixel image to an
8-bits per pixel image using the mean cut processes. About half of the source
code for the BitmapImage function is devoted to color quantization. This imple-
mentation makes two passes through the image. On the first pass the
FindColorUsage function creates a ColorUsage structure for each color used
in the image. These structures are inserted into three linked lists sorted by the
Red, Green, and Blue component values. Next the recursive SplitAreaInHalf
function repeatedly divides the RGB colorspace into two areas that contain half
of the weighted color values of the original.

At this point we have defined the 256 color areas for the image. The
CreateColor function defines a single color that is the average for a box. This
gives the "best" colors to use for the image. Finally, QuantizeSourceImage
makes a second pass over the image data to replace the colors in the source image
with a color from among the 256 colors that were defined in the preceding passes.

In this chapter we covered the basics of bitmap image formats. We explained the
difference between bitmap and vector image formats and the way images are dis-
played on output devices. We also covered the representation of color and
described some of the color models used by graphics file formats. The chapter
presented a brief introduction to color quantization and the compression tech-
niques used by the file formats covered in this book.

Foley et al. (1996) describes the operation of computer displays in greater
detail than we have here. It also contains excellent descriptions of colorspaces.
Brown and Shepherd (1995) and Murray and van Ryper (1994) contain intro-
ductory descriptions of a large number of graphics file formats.

In this book we will cover only the specific compression techniques used by
file formats under discussion. Nelson (1992) is the best introduction to com-
pression techniques available and an excellent source for their history and rela-
tionships.

The medium cut algorithm is described in Heckbert (1982). Lindley (1995)
and (Rimmer (1993) describe this algorithm and take a different approach to
implementing it.

21Conclusion

Data Ordering

Format: Windows BMP
Origin: Microsoft
Definition: Windows SDK

The first image format we are going to cover is one of the simplest. Windows
BMP is the native image format in the Microsoft Windows operating systems. It
supports images with 1, 4, 8, 16, 24, and 32 bits per pixel, although BMP files
using 16 and 32 bits per pixel are rare. BMP also supports simple run-length
compression for 4 and 8 bits per pixel. However, BMP compression is of use only
with large blocks with identical colors, making it of very limited value. It is rare
for Windows BMP to be in a compressed format.

Over the years there have been several different and incompatible versions
of the BMP format. Since the older forms have completely disappeared, version
incompatibilities are not a problem. The discussion here deals with the BMP for-
mat in use since Windows version 3 (common) and the format introduced with
OS/2 (rare but supported).

Multi-byte integers in the Windows BMP format are stored with the least signif-
icant bytes first. Data stored in the BMP format consists entirely of complete
bytes so bit string ordering is not an issue.

23

Chapter 2

Windows BMP

24 Windows BMP

File Structure

Figure 2.1
Bitmap File
Structure

The BMP file structure is very simple and is shown in Figure 2.1. If you are
developing on Windows, the BMP structures are included from the windows.h
header file. If you are not working on Windows, you can create your own struc-
tures from the tables below. For some reason Microsoft insists on adding confus-
ing prefixes to the names of structure fields. To be consistent with Microsoft's
documentation we have included these prefixes in the field names.

File Header

Every Windows BMP begins with a BITMAPFILEHEADER structure whose layout
is shown in Table 2.1. The main function of this structure is to serve as the sig-
nature that identifies that file format.

Three checks can be made to ensure that the file you are reading is in fact a
BMP file:

• The first two bytes of the file must contain the ASCII characters "B"
followed by "M."

• If you are using a file system where you can determine the exact file size in
bytes, you can compare the file size with the value in the bfSize field

• The bfReserved1 and bfReserved2 fields must be zero.

The file header also specifies the location of the pixel data in the file. When
decoding a BMP file you must use the bfOffbits field to determine the offset
from the beginning of the file to where the pixel data starts. Most applications
place the pixel data immediately following the BITMAPINFOHEADER structure or
palette, if it is present. However, some applications place filler bytes between
these structures and the pixel data so you must use the bfOffbits to determine
the number of bytes from the BITMAPFILEHEADER structure to the pixel data.

Table 2.1
BITMAPFILEHEADER
Structure

Field Name

bfType

bfSize
bfReserved1
bfReserved2
bfOffBits

Size in Bytes

2

4
2
2
4

Description

Contains the characters "BM" that identify the
file type
File size
Unused
Unused
Offset to start of pixel data

Image Header

The image header immediately follows the BITMAPFILEHEADER structure.
It comes in two distinct formats, defined by the BITMAPINFOHEADER and

File Structure 25

BITMAPCOREHEADER structures. BITMAPCOREHEADER represents the OS/2 BMP
format and BITMAPINFOHEADER is the much more common Windows format.
Unfortunately, there is no version field in the BMP definitions. The only way to
determine the type of image structure used in a particular file is to examine the
structure's size field, which is the first 4 bytes of both structure types. The size of
the BITMAPCOREHEADER structure is 12 bytes; the size of BITMAPINFOHEADER,
at least 40 bytes.

The layout of BITMAPINFOHEADER is shown in Table 2.2. This structure gives
the dimensions and bit depth of the image and tells if the image is compressed.
Windows 95 supports a BMP format that uses an enlarged version of this header.
Few applications create BMP files using this format; however, a decoder should
be implemented so that it knows that header sizes can be larger than 40 bytes.

The image height is an unsigned value. A negative value for the biHeight
field specifies that the pixel data is ordered from the top down rather than
the normal bottom up. Images with a negative biHeight value may not be
compressed.

Table 2.2
BITMAPINFOHEADER
Structure

Field Name

biSize
biWidth
biHeight
biPlanes
biBitCount
biCompression

biSizeImage
biXPelsPerMeter
biYPelsPerMeter
biClrUsed

biClrImportant

Size

4
4
4
2
2
4

4
4
4
4

4

Description

Header size—Must be at least 40
Image width
Image height
Must be 1
Bits per pixel—1, 4, 8, 16, 24, or 32
Compression type—BI_RGB=0, BI_RLE8=1,
BI_RLE4=2, or BI_BITFIELDS=3
Image Size—May be zero if not compressed
Preferred resolution in pixels per meter
Preferred resolution in pixels per meter
Number of entries in the color map that are
actually used
Number of significant colors

BITMAPCOREHEADER Structure
The BITMAPCOREHEADER structure is the other image header format. Its layout is
shown in Table 2.3. Notice that it has fewer fields and that all have analogous

Field Name

bcSize
bcWidth
bcHeight
bcPlanes
bcBitCount

Size

4
2
2
2
2

Description

Header size—Must be 12
Image width
Image height
Must be 1
Bitcount—1, 4, 8, or 24

Table 2.3
BITMAPCOREHEADER
Structure

26 Windows BMP

fields in the BITMAPINFOHEADER structure. If the file uses BITMAPCOREHEADER
rather than BITMAPINFOHEADER, the pixel data cannot be compressed.

Color Palette

The color palette immediately follows the file header and can be in one of three
formats. The first two are used to map pixel data to RGB color values when the
bit count is 1, 4, or 8 (biBi tCount or bcBitCount fields). For BMP files in the
Windows format, the palette consists of an array of 2bitcount RGBQUAD structures
(Table 2.4). BMP files in OS/2 format use an array of RGBTRIPLE structures
(Table 2.5).

Table 2.4
RGBQUAD Structure

Table 2.5
RGBTRIPLE Structure

Field

rgbtBlue
rgbtGreen
rgbtRed

Size

1
1
1

Description

Blue color value
Red color value
Green color value

The final format for the color palette is not really a color mapping at all. If
the bit count is 16 or 32 and the value in the biCompression field of the
BITMAPINFOHEADER structure is BI_BITFIELDS (3), in place of an array of
RGBQUAD structures, there is an array of three 4-byte integers. These three values
are bit masks that specify the bits used for the red, green, and blue components
respectively. In each mask the nonzero bits must be contiguous. In addition, no
bit set in one bit mask may be set in any other bit mask. Images using 24 bits as
well as 16- and 32-bit images without the biCompression field set to BI_BIT-
FIELDS do not have a color palette.

In a 32-bit image, the three 32-bit values

Field

rgbBlue
rgbGreen
rgbRed
rgbReserved

Size

1
1
1
1

Description

Blue color value
Red color value
Green color value
Must be zero

0
0
0

0
0
0

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

12
02

02

Red
Green
Blue

specify that that each component is represented by 10 bits. The logical AND of
the three values must be zero, and the bit range for each component must be
contiguous.

File Structure 27

Figure 2.2
Format for 16 Bits
per Pixel

Pixel Data

The pixel data follows the palette or bit masks if they are present. Otherwise, it
follows the BITMAPINFOHEADER or the BITMAPCOREHEADER structure.
Normally the data follows immediately, but there may be intervening fill bytes.
You must use the bfOffBits field in the BITMAPFILE header to determine the
offset from the BITMAPFILEHEADER structure to the pixel data.

Pixel rows are ordered in the file from bottom to top. The number of data
rows is given by the biHeight or bcHeight field in the image header. Row size
is determined from the biBitCount and biWidth or bcBitCount and bcWidth
fields. The number of bytes per row is rounded up to a multiple of four and can
be determined as follows (Using integer division):

The format of the pixel data depends upon the number of bits per pixel.

1 and 4 Bits per Pixel. Each data byte is subdivided into cither eight or two
fields whose values represent an index into the color palette. The most sig-
nificant bit field represents the leftmost pixel.

8 Bits per Pixel. Each pixel in the row is represented by 1 byte that is an
index into the color palette.

16 Bits per Pixel. Each pixel is represented by a 2-byte integer value. If the
value of the biCompression field in the BITMAPINFOHEADER structure is
BI_RGB (0), the intensity of each color is represented by 5 bits, with the
most significant bit not used. The default bit usage is shown in Figure 2.2.

If the biCompression field is set to BI_BITMAP, the three 4-byte bit
masks that follow the BITMAPHINFOHEADER structure specify the bits used
for each color component. The bit masks arc ordered red, blue, green.

24 Bits per Pixel. Each pixel is represented by three consecutive bytes that
specify the blue, green, and red component values, respectively. Note that
this ordering is the reverse of that used in most image file formats.

32 Bits per Pixel Each pixel is represented by a 4-byte integer. If the value
of the biCompression field in the BITMAPINFOHEADER is set to BI_RGB,
the three low-order bytes represent the 8-bit values for the blue, green, and
red components in that order. The high-order byte is not used. This format is
just like 24 bits per pixel with a wasted byte at the end.

bytes per row =

width × bit count + 7
8

4

+ 3

If the biCompression field contains the value BI_BITFIELD, the three
4-byte bit masks that follow the BITMAPINFOHEADER specify the bits to be
used for each component. The bit masks are ordered red, blue, green.

Compression

RLE8

In RLE8, compressed data is broken down into 2-byte pairs. The first byte gives
the count of pixel values, and the second gives the pixel value to be repeated. In
8-bit-per-pixel images the byte sequence

expands to the pixel values

A repeat count of zero is used as an escape code. A zero value followed by
another zero means advance to the next line in the image. A zero value followed
by a 1 marks the end of the image. Zero followed by a byte containing the value
2 changes the current position in the image. The next two bytes are unsigned val-
ues that give the number of columns and rows, respectively, to advance. This code
allows a large number of pixels with the value zero to be skipped. This encoded
sequence:

expands into these two rows:

End of Image

28 Windows BMP

The BMP format supports simple run-length encoding of 4- and 8-bit-per-pixel
images. A 4-bit-per-pixel image is compressed if the value of the
biCompression field of the BITMAPINFOHEADER structure is BI_RLE4 (=2),
and an 8-bit-per-pixel image is compressed if the value is BI_RLE8 (=1). No
other bit depths may be compressed.

Run-length encoding is one of the simplest compression techniques. In it
data is stored so that repeated values are replaced by a count. This type of com-
pression is suitable only for images that have many repeated values, such as a car-
toon drawing. For many types of images, run-length encoding will produce a
larger file (negative compression). The compressed data format depends upon the
number of bits per pixel.

A zero escape code followed by a value greater than two gives a count of lit-
eral bytes to copy to the image. The literal bytes immediately follow the count. If
the count is odd, one fill byte is stored after the data bytes. This code is used to
store uncompressed data.

It is worth noting from the preceding description that if the image contains
no consecutive bytes with the same value, the resulting image data will be larger
than the equivalent uncompressed data.

RLE4

The RLE4 format is almost identical to the RLE8 format. The major difference
is that when encoding color runs, the data byte that follows the count contains
two pixel values. The value in the four high-order bits is used to encode the first
and all subsequent odd pixels in the run, while the four low-order bits are used to
encode the second and remaining even pixels. Thus, the RLE4 format can encode
runs of the same pixel value or two alternating values. This encoded pair

expands to this sequences of 4-bit values:

All of the escape commands for RLE4 are the same as for RLE8 with the
exception of coding absolute values. A zero escape value followed by a byte
value greater than two gives the number of absolute pixel values that follow.
These values are packed into 4 bits each with the high-order bits coming first. If
the run is not a multiple of four, padding follows so that the number of absolute
data bytes (not pixels) is a multiple of two.

Conclusion

If you are developing software to read and write graphics files in the Windows
environment, Windows BMP is your best choice to use for testing. It is simple to
implement, easy to debug, and can be viewed without special tools.

Unlike all of the other formats in this book, the definition of Windows BMP
is under the complete control of one company. Microsoft can be expected to
make upwardly compatible enhancements to the format in the future. Microsoft's
definition of the BMP format can be found in Microsoft (1993). Murray and van
Ryper (1994) contains a description that includes older BMP versions. Swan
(1993) also has a good explanation of BMP.

The accompanying CD contains source code for a Windows BMP encoder
(BmpEncoder) and decoder (BmpDecoder). The following illustrates how these
classes are used to read and write BMP files:

Conclusion 29

Windows BMP

When you read and write binary image files you must open them in binary
mode. Otherwise, your library may translate the contents of the files in unex-
pected ways.

The CD also contains the source code for a Windows application
(viewer.cpp) that displays a BMP file. This application can be easily modified
to use the decoder for any of the other formats covered in this book.

#include "bitimage.h"
#include "bmpdecod.h"
#include "bmpencod.h"

BitmapImage image ;

ifstream input ("INPUT.BMP", ios::binary) ;
BmpDecoder decoder ;
decoder.ReadImage (input, image) ;
ofstream output ("OUTPUT.BMP", ios::binary) ;
BmpEncoder encoder ;
encoder.WriteImage (output, image) ;

30

File Format

XBM

Format: XBM
Origin: X Consortium
Definition: Informal

XBM is the simplest format covered in this book as well as the most unusual.
Native to the X Windows system and rarely used outside that environment, it is
much more limited than Windows BMP. It only supports two color images. An
XBM file is actually more analogous to an icon file on Windows than to a BMP.1

The XBM image file format is completely unlike the other formats described in
this book. Rather than containing binary data, an XBM file contains C source
code. When writing user interface code for the X-Window system, you can
include predefined icons in the XBM format simply by including a source file in
the application and then compiling and linking the image into the application.
This serves roughly the same function as a resource file in Windows.
Applications containing an XBM decoder, such as web browsers and image edi-
tors, can read XBM files and display the image contained in them without com-
piling and linking to it.

The format of an XBM file is shown in Figure 3.1. The string imagename
represents the unique name assigned to the image in an application that includes

1There is a similar, more capable X-Windows format called XPM.

31

Chapter 3

XBM

many different XBM files. When an XBM file is read to display the image, this
name has no significance.

The image dimensions are defined with a pair of #define preprocessor
directives. The preprocessor symbols with the suffixes _width and _height
specify the image width and height in pixels. These definitions are required.

XBM files can define a hot spot that is used when the image is used as an
icon. The position of the hot spot is specified by two #define directives that cre-
ate preprocessor symbols with the suffixes _hot_x and _hot_y. The definition
of the hot spot is optional within an XBM file, but one symbol may not be pre-
sent without the other symbol.

The last statement in the image definition is an array of bytes that defines
the pixel values for the image. Each byte represents the value for eight pixels in
the image. The image data is stored from top to bottom, left to right; pixel values
are not split across rows. If the image width is not a multiple of eight, the extra
bits in the last byte of each row are not used. The total number of bytes in the
image must be

using integer division. XBM files contains no color information. Bits set to zero
are drawn in the current background color, and bits set to one are drawn in the
current foreground color.

Byte Ordering

Byte ordering is not an issue with XBM files since all the data consists of single
bytes. Within a byte the least significant bit represents the leftmost pixel. This is
the opposite of the Windows BMP format (and all the other formats in the book).

Sample Image

The following code is a sample XBM file that produces the image shown in
Figure 3.2.

#define imagename_width 16
#define imagename_height 2
#define imagename_hot_x 1
#define imagename_hot_y 1
static unsigned char imagename_bits [] = { 0x10, 0x10,
0x10, 0x01 } ;

32

Figure 3.1
XBM File format

#define myimage_height 12
#define myimage_width 12
static unsigned char myimage_bits[] = {

0xF0, 0x00,

Reading and Writing XBM Files

Creating XBM files is a trivial process. All an encoder has to do is output a sim-
ple text file using the format described above.

On the other hand, reading XBM files is rather difficult, especially con-
sidering the limited capabilities of the format. One approach is to apply com-
piler writing techniques. The decoder is logically broken down into two passes:
One breaks the file into a sequence of tokens while the other parses the tokens

Reading and Writing XBM Files 33

Figure 3.2
Sample XBM Image

0xF0, 0x00,
0xF0, 0x00,
0xF0, 0x00,
0xFF, 0x0F,
0xFF, 0x0F,
0xFF, 0x0F,
0xFF, 0x0F,
0xF0, 0x00,
0xF0, 0x00,
0xF0, 0x00,
0xF0, 0x00 } ;

File Syntax

An XBM image file is a C source file. However, no one is going to implement a
complete C preprocessor and parser to read an image file. C is a free-format lan-
guage, making it relatively difficult for a simple parser to handle. Consequently,
a legal XBM file and an XBM file that can be displayed by a given image-view-
ing application are two different things.

Unfortunately, the difference between the two is not specified, so we can
only give some guidelines when creating XBM files:

• Use no blank lines.

• Use no comments.

• Follow the exact statement ordering shown in Figure 3.1.

• Use decimal values for integers in the #define directives.

• Use no spaces between the # and define.

• Use hexadecimal values for integers in the pixel data.

Violating any of these rules, even though it results in perfectly valid C, can
make your XBM image unreadable. Interestingly, there are XBM decoders
that will correctly display images stored in files that contain certain errors in C
syntax.

XBM

Conclusion

to create the image. Tools like LEX and YACC can be used to generate the two
passes, but the format is simple enough to create them by hand.

While the XBM format is very limited outside the X Windows environment, it is
supported by all of the major Web browsers. It also illustrates an unusual
approach to storing images within a file. Scheiffler and James (1990) is the clos-
est thing to an official description of the XBM format. Nye (1988) gives an alter-
nate description.

34

Introduction to JPEG

Format: JPEG
Origin: Joint Photographic Experts Group
Definition: ISO 10918-1

JFIF V1.02

JPEG has become the most commonly used format for storing photographic
images, yet in spite of its widespread use, the inner workings of JPEG compres-
sion remain something of a black art. Since JPEG is a very complex image for-
mat we have divided the JPEG material into eight chapters. In this chapter we will
cover the fundamentals. Subsequent chapters will examine specific aspects.

JPEG is an acronym for "Joint Photographic Experts Group." This organi-
zation created a standard for compressing images under the authority of inter-
national standards bodies. The JPEG standard is fairly complex because, rather
than defining an image file format, it defines a number of related image com-
pression techniques.

The power of the JPEG format is that, for photographic images, it gives the
greatest compression of any bitmap format in common use. A photograph that
takes 1 MB to store in a Windows BMP file can usually be compressed down to
50 KB with JPEG. Although JPEG is computationally intensive, its outstanding
compression generally outweighs the processing required.

As good as JPEG is, it is not suitable for some applications. All of the JPEG
compression methods in general use are lossy, which makes them unsuitable for
an intermediate storage format when you are repeatedly editing an image file.
JPEG is also not as good at compressing text and drawings as it is at compress-
ing photographs.

35

Chapter 4

Introduction to JPEG

JPEG Compression Modes

The original JPEG standard defined four compression modes: hierarchical, pro-
gressive, sequential, and lossless. In addition, the standard defined multiple
encoding processes for the modes. Figure 4.1 shows the relationship of the major
JPEG compression modes and encoding processes. While there is some com-
monality among them, for the most part they must be implemented as completely
different techniques.

Sequential

Sequential is the plain vanilla JPEG mode. As the name implies, sequential-mode
images are encoded from top to bottom. Sequential mode supports sample data
with 8 and 12 bits of precision.

In sequential JPEG, each color component is completely encoded in a single
scan—a block of compressed data that contains a single pass through the image
for one or more components. In most formats, the entire compressed pixel data
is stored in one contiguous region in the file. In JPEG, each pass through the
image is stored in a distinct data block called a scan.

Within sequential mode, two alternative entropy encoding processes are
defined by the JPEG standard: one uses Huffman encoding; the other uses arith-
metic coding. We will speak more of these two processes shortly.

1Huffman tables and quantization tables are described starting in the next chapter.

36

Almost every JPEG file you are likely to come across will use
sequential JPEG with Huffman encoding and 8-bit sample data.

The JPEG standard also defines another sequential encoding process that
uses Huffman encoding. This is the baseline process, a subset of the sequential
mode with Huffman coding. A decoder that can handle the extended process
should be able to handle baseline transparently. Baseline images can have only
8-bit samples and are restricted to fewer Huffman and quantization1 tables than
extended sequential images.

Progressive

In progressive JPEG images, components are encoded in multiple scans. The
compressed data for each component is placed in a minimum of 2 and as many
as 896 scans, although the actual number is almost always at the low end of that
range. The initial scans create a rough version of the image while subsequent
scans refine it. Progressive images are intended for viewing as they are decoded.

Sequential

Huffman

8-Bit 12-Bit

Arithmetic

8-Bit 12-Bit

JPEG

Progressive

Huffman

8-Bit 12-Bit

Arithmetic

8-Bit 12-Bit

Lossless

Original
Lossless

JPEG-LS

Hierarchical

Figure 4.1
JPEG Modes

They are useful when an image is being downloaded over a network or used in a
Web browser because they allow the user to get an idea of what the image con-
tains after as little data as possible has been transmitted.

Figure 4.2 shows an image that has been encoded with four scans using pro-
gressive JPEG. You can see that with each scan the image becomes clearer.
Notice that from only the first scan you can tell that the image is an airplane. Say
you wanted to download the image of a car over a slow network connection. With
progressive JPEG you would be able to determine that you had the wrong picture
after a relatively small amount of data had been transmitted.

The main drawbacks of progressive mode are that it is more difficult to
implement than sequential and that, if the image is viewed as it is downloaded, it
requires much more processing. Progressive JPEG is most suitable when the rel-
ative processing power exceeds the relative transmission speed of the image. In
general, progressive-mode image files tend to be about the same size as their
sequential counterparts.

Progressive mode is rarely used, but Huffman-encoded images
with 8-bit samples are becoming more common.

Hierarchical

Hierarchical JPEG is a super-progressive mode in which the image is broken
down into a number of subimages called frames.2 A frame is a collection of one
or more scans. In hierarchical mode, the first frame creates a low-resolution
version of the image. The remaining frames refine the image by increasing the
resolution.

Advocates claim that hierarchical is better than progressive when low trans-
mission rates are used. If only a low resolution of an image is desired, not all of
the frames are required to get the desired result.

2The other modes have one frame per image.

JPEG Compression Modes 37

38 Introduction to JPEG

Figure 4.2
Sample Progressive
Image

The obvious drawback of hierarchical mode is its complexity. Its implemen-
tation has all of the complexity of the other modes and then some. Hierarchical
JPEG clearly requires much more processing than the other modes, and using
multiple frames increases the amount of data that must be transmitted.

Lossless

The original JPEG standard defined a lossless compression mode that always
preserves the exact, original image. A lossless mode could never hope to com-
press as well as a lossy one. Moreover, for most applications it did not compress
as well as formats that were already available, so there was no compelling rea-
son to use it. A new lossless compression method known as JPEG-LS has been
created that, for all practical purposes, has made the original lossless format
obsolete.

What Part of JPEG Will Be Covered in This Book?

The JPEG standard is so vast that we could not hope to cover it all in one book.
Fortunately, only a small subset of the JPEG standard is in general use. That sub-
set is what we will be covering in the following chapters: sequential and pro-
gressive JPEG with Huffman coding and 8-bit samples.

Twelve-bit data is used in some specialized applications, such as medical
imaging (although it is not used to exchange pictures over the Internet). Our
descriptions of JPEG structures include information on items specific to 12-bit
data, but it is not implemented in the examples because it would require either
duplicate 12-bit versions of many functions or conditional compilation. If you
need to use 12-bit data, the sample programs are structured so that it should not
be difficult to make the modification.

It is worth pointing out some of the reasons that so little of the JPEG stan-
dard is in common use, especially considering how widespread is the use of some
of its pieces. The primary reason is that the JPEG standard simply defines too
many ways to do the same thing—a decoder that can handle every possible JPEG
stream would be a monster.

Another major reason is that the arithmetic coding modes are covered by
patents, and to use them you need to pay licensing fees to the patent holders.
Huffman coding and arithmetic coding are used by different processes to perform
identical functions. If two methods do the exact same thing and one requires
license fees and the other does not, which should you choose? Besides the issue
of licensing fees, patents make it impossible to create freely available implemen-
tations of certain JPEG features.

39What Part of JPEG Will Be Covered in This Book?

Not surprisingly, hierarchical JPEG is not in general use.

Introduction to JPEG

This leads to the most critical reason that most of the JPEG encoding modes
are rarely used in the real world. In order for a graphics file format to gain gen-
eral acceptance someone has to implement software to handle that format and
make it available to others.3 An image format that cannot be used to exchange
data among many different applications is of little use. The implementation prob-
lem is exacerbated by the fact that the JPEG standard is not freely available. The
standards for every other major graphics file format circulate freely; not so with
JPEG.4 You have to purchase a copy from your national representative to ISO and
it is not cheap. If a format is too complex, of limited value, or requires licensing
fees, it is unlikely people will take the trouble to create code for it and make the
code available.

What Are JPEG Files?

One of the most striking things about the JPEG standard, especially considering
how sprawling it is, is what it did not define: a file format. The JPEG standard
does not specify what an application needs to do in order to create images that
can be exchanged among different applications. For example, it says nothing
about how colors are represented, but deals only with how component values are
stored. Nor is there any definition of how the components values are mapped
within a colorspace. An implementer of JPEG software is not told if component
one is red, two is green, three is blue, or even if the RGB color model is used at
all. While a standard that is independent of colorspace is flexible, it is also impos-
sible to implement.

Nature abhors a vacuum, and into this one came JFIF (JPEG File Inter-
change Format), created by Eric Hamilton. This specification fills in the gaps left
by JPEG in creating files that can be exchanged among applications. "JFIF" has
become synonymous with "JPEG File." While other file formats, such as TIFF,
use JPEG compression, a file with a JPG or JPEG extension invariably is in the
JFIF format. JFIF is what we are going to cover in this book.

SPIFF File Format

The JPEG organization recently released a file format standard called SPIFF
(Still Picture Interchange File Format) that is intended to supplant JFIF. Unfortu-
nately, SPIFF is probably a case of too much too late. JFIF has been in use for so
long that it is probably here to stay.

3In the case of JPEG the main force for this was the Independent JPEG Group.
4That is the way it is supposed to be. However, the JPEG standards documents can be found easily on the
Internet.

40

SPIFF presents some issues for implementers of JPEG software, because it
is simply too inclusive. Most formats in use support only one color model. SPIFF
supports thirteen, including three variations on YCbCr. Are JPEG decoders going
to implement this many colorspaces? Clearly not, so what subset of SPIFF should
be implemented for exchanging images among the most applications? Since
JPEG is already in widespread use it is unlikely that a useful SPIFF subset is
going to evolve on its own. From a practical point of view, JFIF remains the best
choice of a file format for implementers of JPEG software.

Byte Ordering

Integers in JPEG files are stored with the most significant byte first, that is, in
big-endian format. Bit-strings are encoded within bytes starting at the most sig-
nificant bits. When a bit string crosses a byte boundary the bits in the first byte
are more significant than the bits in the second.

Sampling Frequency

In JPEG, a sampling frequency is the relative frequency a component is sampled
at. This is probably easiest to understand in the context of converting a photo-
graph to a bitmap. Unlike an image on a computer display, a photograph can have
continuous variations in color. To convert a photograph to a digital image, you
scan the image and measure the component values at regular intervals. Figure 4.3
on page 42 shows a continuous function and samplings of the function at various
frequencies. You can see that the more frequently samples are taken, the better the
approximation of the original image.

So why bother with sampling frequencies, as it appears that they only affect
the resolution of the image? Since most applications deal with data that has
already been scanned there seems to be no need for them.

In most graphics file formats, all the color components are sampled at the
same frequency. JPEG allows individual components to be sampled at different
frequencies. Sampling frequencies allow images to be compressed while varying
the amount of information contributed by each component. You saw in Chapter
1 that in the YCbCr color model the Y component is the most important. Reduc-
ing the amount of information included from the Cb and Cr components is a sim-
ple way to reduce the size of the compressed image.

Suppose you were creating a JPEG file from a color image. By adjusting the
sampling frequencies you could include each pixel's Y component value in the
compressed data and 1 value for every 4 pixels from the other components.
Instead of storing 12 values for every 4 pixels, you would be storing 6—a 50%
reduction.

Sampling Frequency 41

42 Introduction to JPEG

Figure 4.3
An Analog Signal
Sampled at Various
Frequencies Analog

Sampling
Frequency=4

Sampling
Frequency=2

Sampling
Frequency=1

Sampling Frequency 43

What makes sampling frequencies confusing when programming with
graphics files is that generally the data you are dealing with has already been dig-
itized. Instead of converting analog data to digital, in JPEG programming sam-
pling is generally used to reduce the amount of data from one or more compo-
nents. In most applications, what you are really doing with sampling frequencies
is shrinking and stretching component values across multiple pixels.

When an image is compressed using JPEG, each component is assigned a
horizontal and vertical sampling frequency that can range from 1 to 4. The higher
the sampling frequency, the more data used for the component. The number of
samples for a component is relative to the maximum sampling frequency in each
dimension for the image.

Say, for example, that Y has a horizontal sampling frequency of 4, Cb 2, and
Cr 1. This means that in the horizontal direction there are 2 Y component values
for every Cb value and 4 for every Cr value. If, for each component, the verti-
cal sampling frequency were the same as the horizontal sampling frequency,
each Y component value would be mapped to a single pixel, each Cb component
to 4 pixels, and each Cr component to 16 pixels. Figure 4.4 illustrates such a
sampling.

The process of reducing the number of data points a component contributes
is called down-sampling. An encoder can implement down sampling by encod-
ing only every second, third, or fourth pixel or by taking an average value. The
reverse process of stretching down-sampled pixels is called up-sampling. The
simplest method for implementing down sampling is to repeat a data value across
multiple pixels. Sometimes filtering processes are used to reduce blocking
effects.

Figure 4.4
Component
Sampling
Frequencies

Y: H=4, V=4
Cb: H=2, V=2
Cr: H=1, V=1

Y: H=4, V=4
Cb: H=4, V=2
Cr: H=2, V=2

There is no requirement that the Y component be sampled at
higher frequencies than the Cb and Cr components. It is possible
to create a JPEG file with the Cb or Cr component having a higher
sampling frequency than the Y component.

44 Introduction to JPEG

JPEG Operation

Figure 4.5 shows the steps of JPEG encoding. The following are brief descrip-
tions of the steps.

Sampling. The first stage in JPEG encoding is sampling. In this phase
pixel data is converted from the RGB to the YCbCr colorspace and down
sampling is performed.

Discrete Cosine Transform. JPEG images are compressed in 8 8 pixel
blocks called data units. The discrete cosine transform (DCT) converts the
data unit values into a sum of cosine functions.

Quantization. The quantization phase of JPEG compression gets rid of
discrete cosine transform coefficients that are not essential for recreating a
close approximation of the original. Quanitization is the main process that
makes JPEG a lossy compression scheme.

Huffman Coding. The Huffman code phase encodes the quantized DCT
coefficients while eliminating runs of zero values. In the JPEG standard this
phase is referred to as entropy coding because the JPEG standard allows
arithmetic coding to be used in place of Huffman coding.

Figure 4.5
JPEG Encoding
Overview

Note that it is entirely possible to create an image where the Y component is
down-sampled when an image is compressed. This is not normally done except
for experimentation since it tends to produce images that contain flaws when
decompressed. Another sampling trap is that the JPEG standard does not forbid
combinations of sampling frequencies that result in the need to sample fractions
of pixels. Suppose the Y component has a vertical sampling frequency of 3, the
Cb component a sampling frequency of 2. This means that each data value for the
Cb component in the vertical direction represents 1½ pixels. Most JPEG appli-
cations do not permit this kind of fractional sampling.

Interleaved and Noninterleaved Scans 45

Interleaved and Noninterleaved Scans

Earlier in this chapter we said that a scan could contain data for one or more com-
ponents. A scan with one component is referred to as noninterleaved. In a non-
interleaved scan, the data units are encoded one row at a time, top to bottom, left
to right.

If a scan has data from more than one component, it is known as interleaved.
Interleaved scans are encoded as groups of data units known as minimum coded
units, or MCUs. A component's vertical sampling frequency specifics the num-
ber of data unit rows it contributes to an MCU, and its horizontal frequency gives
the number of columns. (In a noninterleaved scan an MCU is always I data unit.)
Within an MCU the data units for each component are encoded from top to bot-
tom, left to right. Components are not interleaved within an MCU.

Figure 4.6 shows how the data units would be encoded in an MCU in an
image with three components and with horizontal and vertical sampling fre-
quencies of 4 × 2, 2 × 4, and 1 × 1. Each tiny square represents a single pixel. The
thick rectangles show how sampling groups the pixels into data units. The num-
bers show the order in which each data unit is encoded within the MCU.

The maximum horizontal and vertical sampling frequency values are both 4,
so each MCU will represent a 32 × 32 (8 × 4 by 8 × 4) block of pixels. The sam-
pling frequencies for each component specify the relationship of the component
to the MCU. The first component has a horizontal sampling frequency of 4, so it
contributes 4 columns of data units. The vertical sampling frequency is 2, so the
component contributes 2 rows of data units.

Scans are always encoded with complete MCUs. If the image height or width
is not a multiple of the MCU size, extra pixel values are inserted into the image
data so that the compressed data always contains complete MCUs. The JPEG

H=4,V=2 H=2,V=4 H=1,V=1

Figure 4.6
MCU Ordering

Introduction to JPEG

standard recommends duplicating the last column or row of pixels to fill out
incomplete data units. Keep in mind that the numbers of MCU rows and columns
are determined from the maximum sampling frequencies for the components in
an image, not from the maximum in a scan.

Suppose we have an image that is 129 × 129 pixels in size. If we were to
encode it with one component having vertical and horizontal sampling frequen-
cies of 4 and the other components having vertical and horizontal sampling fre-
quencies of 1, each MCU would represent a 32 × 32 block of pixels. Four com-
plete rows and columns of MCUs as well as one fractional MCU row and column
would be required to encode the image. Since fractional MCUs are not allowed,
the image would be encoded using five rows and columns of MCUs.

To encode the first components in a noninterleaved scan, each MCU would
consist of 1 data unit. For the first component, each data unit represents an 8 × 8
block of pixels, so 17 rows and columns would be used to encode the scan. Each
data unit for the other components represents a 32 × 32 block of pixels so 5 rows
and columns of data units would be required.

Conclusion

In this chapter we covered the basics of JPEG: sampling frequencies, scans, data
units, MCUs, and interleaving. JPEG is not a single method but rather a collec-
tion of related compression techniques. Only a small subset of the JPEG standard
is in general use.

Because of copyright restrictions, the official JPEG standard (JPEG 1994) is
not included on the CD. The standard comes in two parts: the actual standard and
information about compliance testing. Only the first part is essential for imple-
menting JPEG. (There are moreover ten patents related to arithmetic coding
listed in Annex L of this document.) These documents can be ordered from your
local ISO representative (ANSI, in the United States). Besides containing infor-
mation on JPEG modes not covered in this book, Pennebaker and Mitchell (1993)
includes copies of draft specifications for both parts of the JPEG standard.

At this moment the JPEG-LS standard is in a draft stage and is not included
in any of the sources mentioned above. Because of copyright restrictions we
could not include a copy of this draft standard on the CD, either. However, the
draft JPEG-LS standard is available on the Internet at www.jpeg.org.

46

JPEG File Format

This chapter continues the discussion of the JPEG format. In it we cover
the structure of JPEG files, which includes every part of a file except for the
compressed data. The descriptions here take into account only the subset of
JPEG covered by this book, so you will find some discrepancies with the JPEG
standard.

Markers

Markers are used to break a JPEG stream into its component structures. They are
2 bytes in length, with the first byte always having the value FF16. The second
byte contains a code that specifies the marker type. Any number of bytes with the
value FF16 may be used as a fill character before the start of any marker. A byte
in a JPEG stream with a value of FF16 that is followed by another FF16 byte is
always ignored.

JPEG markers can be grouped into two general types. Stand-alone markers
consist of no data other than their 2 bytes; markers that do not stand alone are
immediately followed by a 2-byte-long value that gives the number of bytes of
data the marker contains. The length count includes the 2 length bytes but not the
marker length itself. JPEG stand-alone markers are listed in Table 5.1 and mark-
ers with data are listed in Table 5.2. You can see from the tables that most of the
markers are not used in the modes we are working with.

The JPEG standard is fairly flexible when it comes to the ordering of mark-
ers within a file. Its strictest rule is that a file must begin with an SOI marker and
end with an EOI marker. In most other cases markers can appear in any order.

47

Chapter 5

48 JPEG File Format

The main requirement is that if the information from one marker is needed to
process a second marker, the first marker must appear before the second. The
specific rules regarding marker ordering are described in the next section.

Table 5.1
Stand-Alone JPEG
Markers

Table 5.2
JPEG Markers with
Data

Value

FFC0
FFC1
FFC2
FFC3*
FFC4
FFC5*
FFC6*
FFC7*
FFC8*
FFC9*
FFCA*
FFCB*
FFCC*
FFCD*

FFCE*

FFCF*
FFDA
FFDB
FFDC*
FFDD
FFDE*
FFDF*
FFE0-FFEF
FFFE
FFF0-FFFD*
FF02-FFBF*

Symbol
Used in JPEG
Standard

SOF0

SOF1

SOF2

SOF3

DHT
SOF5

SOF6

SOF7

JPG
SOF9

SOF10

SOF11

DAC
SOF13

SOF14

SOF15

SOS
DQT
DNL
DRI
DHP
EXP
APP0-APP15
COM
JPG0-JPG13
RES

Description

Start of frame, baseline
Start of frame, extended sequential
Start of frame, progressive
Start of frame, lossless
Define Huffman table
Start of frame, differential sequential
Start of frame, differential progressive
Start of frame, differential lossless
Reserved
Start of frame, extended sequential, arithmetic coding
Start of frame, progressive, arithmetic coding
Start of frame, lossless, arithmetic coding
Define arithmetic coding conditions
Start of frame, differential sequential, arithmetic
coding
Start of frame, differential progressive, arithmetic
coding
Start of frame, differential lossless, arithmetic coding
Start of scan
Define quantization tables
Define number of lines
Define restart interval
Define hierarchical progression
Expand reference components
Application-specific data
Comment
Reserved
Reserved

*Not used by any of the techniques covered in this book.

Value

FF01*
FFD0-FFD7
FFD8
FFD9

Symbol
Used in JPEG
Standard

TEM
RST0-RST7

SOI
EOI

Description

Temporary for arithmetic coding
Restart marker
Start of image
End of image

*Not used by any of the techniques covered in this book.

We use the subscript n when referring to certain markers
collectively. For example, RSTn means any of the restart markers
RST0 to RST7; SOFn means any start of frame marker.

Marker Types

This section describes all of the markers used by the JPEG modes we are work-
ing with. The tables that illustrate marker structure omit the 2-byte marker and
the 2-byte length field.

The individual marker descriptions specify where in the file the marker can
occur. They do not repeat the following restrictions:

• Only RST and DNL markers may appear in compressed data.

• An image must start with an SOI marker followed by an APP0 marker.2

• The last marker in the file must be an EO1, and it must immediately follow
the compressed data of the last scan in the image.

APPn

The APP0-APP15 markers hold application-specific data. They are used by
image-processing applications to hold additional information beyond what is

1The JPEG standard allows DNL markers to appear with compressed data. A DNL marker is used to
define or redefine the image size within the compressed data rather than within the SOFn marker. In prac-
tice DNL markers are not used and most applications cannot handle them. Therefore, we will not con-
sider them further.

2That an APP0 marker immediately follow the SOI marker is a JFIF requirement. Some applications, such
as Adobe Illustrator, can create JPEG files that are not JFIF.

Marker Types 49

Compressed Data

The compressed component data is the only part of a JPEG file that does not
occur within a marker. Compressed data always immediately follows an SOS
marker. Since it has no length information, in order to find the end of the com-
pressed data without expanding it, you have to scan for the next marker (other
than RSTn). RSTn markers are the only ones that can occur within the compressed
data, and they cannot be placed anywhere else.1

The JPEG compression method is designed so that it will rarely produce the
compressed value FF16. When this value is required in the compressed data, it is
encoded as the 2-byte sequence FF16 followed by 0016. This makes it easy for
applications to scan a JPEG file for specific markers.

JPEG File Format

specified in the JPEG standard. The format of these markers is application spe-
cific. The length field after the marker can be used to skip over the marker data.
Except for the APP0 markers used by the JFIF format, an application can ignore
the APP markers it does not recognize. If an application needs to store informa-
tion beyond the capabilities of JPEG and JFIF, it can create APPn markers to hold
this information. An APPn marker may appear anywhere within a JPEG file.

By convention, applications that create APPn markers store their name (zero-
terminated) at the start of the marker to prevent conflicts with other applications.
An application that processes APPn markers should check not only the marker
identifier but also the application name.

COM

The COM (Comment) marker is used to hold comment strings such as copyright
information. Its interpretation is application specific, but a JPEG encoder should
assume that the decoder is going to ignore this information. A COM marker,
rather than an APPn marker, should be used for plain comment text. It may appear
anywhere within a JPEG file.

DHT

The DHT (Define Huffman Table) marker defines (or redefines) Huffman tables,
which are identified by a class (AC or DC3) and a number. A single DHT marker
can define multiple tables; however, baseline mode is limited to two of each type,
and progressive and sequential modes are limited to four. The only restriction on
the placement of DHT markers is that if a scan requires a specific table identifier
and class, it must have been defined by a DHT marker earlier in a file.

The structure of the DHT marker is shown in Table 5.3. Each Huffman table
is 17 bytes of fixed data followed by a variable field of up to 256 additional bytes.
The first fixed byte contains the identifier for the table. The next 16 form an array
of unsigned 1-byte integers whose elements give the number of Huffman codes
for each possible code length (1-16). The sum of the 16 code lengths is the num-
ber of values in the Huffman table. The values are 1 byte each and follow, in order
of Huffman code, the length counts. The structure of Huffman tables is described
in more detail in Chapter 6.

The number of Huffman tables defined by the DHT marker is determined
from the length field. An application needs to maintain a counter that is initial-
ized with the value of the length field minus 2. Each time you read a table you
subtract its length from the counter. When the counter reaches zero all the tables
have been read. No padding is allowed in a DHT marker, so if the counter
becomes negative the file is invalid.

3The significance of AC and DC is explained in Chapter 7.

50

Table 5.3
DHT Format

DRI

The DRI (Define Restart Interval) marker specifies the number of MCUs
between restart markers within the compressed data. The value of the 2-byte
length field following the marker is always 4. There is only one data field in the
marker—a 2-byte value that defines the restart interval. An interval of zero
means that restart markers are not used. A DRI marker with a nonzero restart
interval can be used re-enable restart markers later in the image.

A DRI marker may appear anywhere in the file to define or redefine the
restart interval, which remains in effect unti l the end of the image or until another
DRI marker changes it. A DRI marker must appear somewhere in the file for a
compressed data segment to include restart markers.

Restart markers assist in error recovery. If the decoder finds corrupt scan
data, it can use the restart marker ID and the restart interval to determine where
in the image to resume decoding.

The following formula can be used to determine the number of MCUs to
skip:

Example Assume that the restart interval is 10. After 80 MCUs have been
decoded, the RST7 marker is read from the input stream. If the decoder
encounters corrupt data before reading the next restart marker (RST0), it
stops decoding and scans the input stream for the next restart marker.

If the next marker is RST3, the decoder skips 40 MCUs
(= 10 × ((8 + 3 - 7)MOD8)) from the last known point (80). The decoder
resumes decoding at the 121st MCU in the image.

DQT

The DQT (Define Quantization Table) marker defines (or redefines) the quanti-
zation tables used in an image. A DQT marker can define multiple quantization
tables (up to 4). The quantization table definition follows the markers length

Field Size

1 byte

16 bytes

Variable

Description

The 4 high-order bits specify the table class. A value of 0 means a DC
table, a value of 1 means an AC table. The 4 low-order bits specify the
table identifier. This value is 0 or 1 for baseline frames and 0, 1, 2, or 3
for progressive and extended frames.
The count of Huffman codes of length 1 to 16. Each count is stored in
1 byte.
The 1-byte symbols sorted by Huffman code. The number of symbols
is the sum of the 16 code counts.

MCUs to Skip = Restart Interval × ((8 + Current Marker ID - Last Marker ID)MOD8)

Marker Types 51

52 JPEG File Format

field. The value of the length field is the sum of the sizes of the tables plus 2 (for
the length field).

The format of a quantization table definition is shown in Table 5.4. Each
table starts with 1 byte that contains information about the table. If the 4 high-
order bits of the information byte are zero, the quantization table values are 1 byte
each and the entire table definition is 65 bytes long. If the value is 1, the size of
each quantization value is 2 bytes and the table definition is 129 bytes long. Two-
byte quantization values may be used only with 12-bit sample data.

The 4 low-order bits assign a numeric identifier to the table, which can be 0,
1, 2, or 3. The information byte is followed by 64 quantization values that are
stored in JPEG zigzag order (defined in Chapter 7).

DQT markers can appear anywhere in an image file. The one restriction is
that if a scan requires a quantization table it must have been defined in a previ-
ous DQT marker.

Table 5.4
Quantization Table
Definition in a DQT
Marker

EOI

The EOI (End of Image) marker marks the end of a JPEG image. An EOI marker
must be at the end of a JPEG file and there can only be one EOI marker per file
and no other markers may follow the EOI marker. The EOI marker stands alone.

RSTn

The restart markers RST0-RST7 are used to mark blocks of independently
encoded compressed scan data. They have no length field or data and may only
occur within compressed scan data.

Restart markers can be used to implement error recovery. The interval
between them is defined by the DRI (Define Restart Interval) marker. Thus, if the
restart interval is zero, then restart markers are not used. Restart markers must
occur in the sequence RST0, RST1, ... RST7, RST0, ... in the scan data.

SOI

The SOI (Start of Image) marker marks the start of a JPEG image. It must be at
the very beginning of the file and there can only be one per file. The SOI marker
stands alone.

Field Size

1 byte

64 or 128 bytes

Description

The 4 low-order bits are the table identifier (0, 1, 2, or 3).
The 4 high-order bits specify the quanization value size
(0 = 1 byte, 1 = 2 bytes).
64 1- or 2-byte unsigned quantization values

Marker Types 53

SOFn

The SOFn (Start of Frame) marker defines a frame. Although there are many
frame types, all have the same format. The SOF marker consists of a fixed header
after the marker length followed by a list of structures that define each compo-
nent used by the frame. The structure of the fixed header is shown in Table 5.5,
and the structure of a component definition is shown in Table 5.6.

Components are identified by an integer in the range 0 to 255. The JFIF stan-
dard is more restrictive and specifies that the components be defined in the order
{Y, Cb, Cr} with the identifiers {1, 2, 3} respectively. Unfortunately, some
encoders do not follow the standard and assign other identifiers to the compo-
nents. The most inclusive way for a decoder to match the colorspace component
with the identifier is to go by the order in which the components are defined and
to accept whatever identifier- the encoder assigns.

There can be only one SOFn marker per JPEG file and it must precede any
SOS markers.

Table 5.5
Fixed Portion of an
SOF Marker

Table 5.6
Component-
Specific Area of an
SOF Marker

SOS

The SOS (Start of Scan) marker marks the beginning of compressed data for a
scan in a JPEG stream. Its structure is illustrated in Table 5.7. After the compo-
nent count comes a component descriptor for each component (shown in Table
5.8). This is followed by 3 bytes of data used only in progressive mode. The com-
pressed scan data immediately follows the marker.

Field Size

1 byte
2 bytes
2 bytes
1 byte

Description

Sample precision in bits (can be 8 or 12)
Image height in pixels
Image width in pixels
Number of components in the image

Field Size

1 byte

1 byte

1 byte

Description

Component identifier. JPEG allows this to be 0 to 255. JFIF restricts it
to 1 (Y), 2 (Cb), or 3 (Cr).
The 4 high-order bits specify the horizontal sampling for the compo-
nent. The 4 low-order bits specify the vertical sampling. Either value
can be 1, 2, 3, or 4 according to the standard. We do not support val-
ues of 3 in our code.
The quantization table identifier for the component. Corresponds to
the identifier in a DQT marker. Can be 0, 1, 2, or 3.

54 JPEG File Format

Table 5.7
SOS Marker
Structure

Table 5.8
SOS Marker Scan
Descriptor

The component descriptors are ordered in the same sequence in which the
components are ordered within MCUs in the scan data. While not all of the com-
ponents from the SOFn marker must be present, their order in the SOS marker
and in the SOFn marker must match. The component identifier in the scan des-
criptor must match a component identifier value defined in the SOFn marker. The
AC and DC Huffman table identifiers must match those of Huffman tables
defined in a previous DHT marker.

The JPEG standard allows 1 to 4 components in a scan, but there are some
other restrictions on the number. JFIF limits an image to 3 components. In pro-
gressive scans there can be only 1 component if the spectral selection start is not
zero. The JPEG standard also places a rather low arbitrary limit of 10 on the num-
ber of data units that can be in an MCU, which can limit the number of compo-
nents in a scan.

In a sequential scan, the spectral selection start must be zero, the spectral
selection end 63, and the successive approximation zero. In a progressive
scan, if the spectral selection start is zero the spectral selection end must also
be zero. Otherwise, the spectral selection end must be greater than or equal to
the spectral selection start. These values will be explained in more detail in
Chapter 10.

An SOS marker must occur after the SOFn marker in the file. It must be
preceded by DHT markers that define all of the Huffman tables used by the
scan and DQT markers that define all the quantization tables used by the scan
components.

Field Size

1 byte
2 component count bytes
1 byte
1 byte
1 byte

Description

Component count
Scan component descriptors (see Table 5.8)
Spectral selection start (0-63)
Spectral selection end (0-63)
Successive approximation (two 4-bit fields, each
with a value in the range 0-13)

Field Size

1 byte
1 byte

Description

Component identifier
The 4 high-order bits specify the DC Huffman table
and the 4 low-order bits specify the AC Huffman
table.

JFIF Format 55

JFIF Format

Figure 5.1
Structure of a JFIF
File

For all practical purposes a "JPEG file" means "a JPEG file in the JFIF format."
The JFIF standard defines the following:

• A signature for identifying JPEG files

• Colorspace

• Pixel density for device independent display of an image

• Thumbnails

• The relationship of pixels to sampling frequency

The general layout of a JFIF file is shown in Figure 5.1. Because all of the
JFIF-specific information is stored within APP0 markers, JFIF files are com-
pletely compatible with the JPEG standard. JFIF requires that the SOI that starts
the file be immediately followed by an APP0 marker in the format shown in
Table 5.9.

JFIF specifies that the YCbCr colorspace be used. The conversion between
RGB and YCbCr specified by JFIF was shown in Chapter 1. Color images should
have all three components, and their component identifiers should be Y=l,
Cb=2, and Cr=3. Grayscale images should have only the Y component.

A JFIF file can be identified by reading the first 11 bytes and ensuring that
the first 4 bytes are FF16 D816 FF16 E016 (SOI marker followed by APP0

marker). After skipping 2 bytes the next 5 bytes should be J, F, I, F followed by
0016. A file that starts with this pattern is unlikely to be anything other than a
JFIF file.

The JFIF APP0 header may be followed by another APP0 used to embed a
thumbnail in a format other than the RGB triple format defined by the header.
The format of the data following the length field for the optional APP0 header is
shown in Table 5.10.

If the JFIF extension header has an extension_code of 1016 the
extension_data field contains a JPEG encoded image. Colors are encoded
according to the JFIF standard, but the compressed data does not contain a JFIF
APP0 header. The format for the extension_data when the extension_code
is 1116 is shown in Table 5.11; the format for 1216 is shown in Table 5.12.

Your applications should avoid creating APP0 markers other than those
required by the JFIF standard. There are fifteen other APPn markers available,
and this should be sufficient for any conceivable situation. When applications
create APPn markers, it should place the application name at the start of the data
area. This allows the marker's creator to be identified.

56 JPEG File Format

Table 5.9
JFIF APP0 Header
Format

Table 5.10
JFIF Extension
Header Format

Table 5.11
extension_data
Format for JFIF
Extension Type 1116

Field Name

Xthumbnail

Ythumbnail

Palette
Pixels

Size

1 byte
1 byte
768 bytes
Variable (Xthumbnail ×
Ythumbnail)

Description

Thumbnail width
Thumbnail height
Array of 3-byte RGB color values
Indices into the palette for each
pixel in the thumbnail

Field Name

Identifier
Version major ID

Version minor ID

Units

Xdensity

Ydensity

Xthumbnail

Ythumbnail

Thumbnail

Size

5 bytes
1 byte

1 byte

1 byte

2 bytes
2 bytes
1 byte

1 byte

Variable

Description

The zero-terminated string JFIF
The major ID of the file version. For the current
JFIF version (1.2) this value is 1.
The minor ID of the file version. For the current
JFIF version (1.2) this value is 2.
Units for the X and Y pixel densities. Zero means
that no densities are used. The next two fields
specify the aspect ratio. One means that the next
two fields specify pixels per inch. Two means that
they specify pixels per cm.
Horizontal pixel density
Vertical pixel density
Width of the optional thumbnail image. This value
may be 0.
Height of the optional thumbnail image. This
value may be 0.
An optional thumbnail image. The size of this field
is 3 × Xthumbnail × Ythumbnail. The image is
stored with 3 bytes per pixel with the colors in
RGB order.

Field Name

Identifier
extension_code

extension_data

Size

5 bytes
1 byte

Variable

Description

The zero terminated string JFXX
Specifies the format of the extension_data field
below. 1016 means that the thumbnail is encoded
using JPEG. 1116 means that the thumbnail is
encoded with 1 byte per pixel, 1216 means that
the thumbnail is encoded with 3 bytes per pixel.

Conclusion 57

Table 5.12
extension_data
Format for JFIF
Extension Type 1216

Field Name

Xthumbnail
Ythumbnail
RGB

Size

1 byte
1 byte
Variable (3 × Xthumbnail
× Ythumbnail)

Description

Thumbnail width
Thumbnail height
RGB color values for each pixel in
the image

While most of the structures in the JFIF standard are devoted to
defining formats for thumbnail images, these are rarely used.

Conclusion

After reading this chapter you should understand the internal structure of a JPEG
file. As you go through the subsequent JPEG chapters, you will probably need to
refer to this one frequently. The original JPEG standard did not define a file for-
mat, but the unofficial JFIF format has become universally accepted as such. The
text of the JFIF standard and the text of the official SPIFF standard are included
on the accompanying CD. JPEG (1994) defines the rest of the JPEG format. The
remaining JPEG chapters in this book deal with the compressed data within SOS
markers.

The accompanying CD contains the source code for an application called
JPEGDUMP that analyzes the structure of a JPEG file. It outputs a text version of
the contents of a JPEG file's markers. It supports all JPEG markers to some
degree, even those not covered in this chapter, but it would be surprising if you
ever came across any of these markers in an actual JPEG file.

To run this application enter jpegdump somefile.jpg at the command
prompt.

Figure 5.2 shows sample output from the JPEGDUMP program for a color
image. This is fairly typical of most JPEG images you will encounter. Notice that
the quantization and Huffman tables are defined in pairs and that the Y compo-
nent uses one of the tables in each pair and the Cb and Cr components share the
other. This assignment of tables is not specified by the standard but it is usual
practice.

JPEG File Format

{ Start Of Image }
{ APP0 Marker

Length: 16
Version: 1.1
Density Unit: (pixels per inch)
X Density: 72
Y Density: 72
Thumbnail Width: 0
Thumbnail Height: 0
}
{ Define Quantization Table

Length: 132
Table Index: 0
Table Precision: 0
Table Values:

6 4 4 4 5 4 6 5
5 6 9 6 5 6 9 11
8 6 6 8 11 12 10 10
11 10 10 12 16 12 12 12
12 12 12 16 12 12 12 12
12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12

Table Index: 1
Table Precision: 0
Table Values:

7 7 7 13 12 13 24 16
16 24 20 14 14 14 20 20
14 14 14 14 20 17 12 12
12 12 12 17 17 12 12 12
12 12 12 17 12 12 12 12
12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12

}
{ Start Of Frame
Type: Baseline (Huffman)

Length: 17
Precision: 8
Height: 383
Width: 262
Component Count: 3
Component 1
Horizontal Frequency: 2
Vertical Frequency: 2
Quantization Table: 0
Component 2
Horizontal Frequency: 1
Vertical Frequency: 1
Quantization Table: 1

Component 3
Horizontal Frequency: 1
Vertical Frequency: 1
Quantization Table: 1

}
{ Define Huffman Table

Figure 5.2
Sample JPECDUMP
Output

58

Length: 418
Table Index 0
Table Class: DC
Code Counts: 0 0 7 1 1 1 1 1 0 0 0 0 0 0 0 0
Code Values: 4 5 3 2 6 1 0 7 8 9 a b

Table Index 1
Table Class: DC
Code Counts: 0 2 2 3 1 1 1 1 1 0 0 0 0 0 0 0
Code Values: 1 0 2 3 4 5 6 7 8 9 a b

Table Index 0
Table Class: AC
Code Counts: 0 2 1 3 3 2 4 2 6 7 3 4 2 6 2 73
Code Values: 1 2 3 11 4 0 5 21 12 31 41 51 6 13 61 22

71 81 14 32 91 a1 7 15 b1 42 23 c1 52 d1 e1 33
16 62 f0 24 72 82 f1 25 43 34 53 92 a2 b2 63 73
C2 35 44 27 93 a3 b3 36 17 54 64 74 c3 d2 e2 8
26 83 9 a 18 19 84 94 45 46 a4 b4 56 d3 55 28
1a f2 e3 f3 c4 d4 e4 f4 65 75 85 95 a5 b5 c5 d5
e5 f5 66 76 86 96 a6 b6 c6 d6 e6 f6 37 47 57 67
77 87 97 a7 b7 c7 d7 e7 f7 38 48 58 68 78 88 98
a8 b8 c8 d8 e8 f8 29 39 49 59 69 79 89 99 a9 b9
c9 d9 e9 f9 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da
ea fa

Table Index 1
Table Class: AC
Code Counts: 0 2 2 1 2 3 5 5 4 5 6 4 8 3 3 6d
Code Values: 1 0 2 11 3 4 21 12 31 41 5 51 13 61 22 6

71 81 91 32 a1 b1 f0 14 c1 d1 e1 23 42 15 52 62
72 f1 33 24 34 43 82 16 92 53 25 a2 63 b2 c2 7
73 d2 35 e2 44 83 17 54 93 8 9 a 18 19 26 36
45 1a 27 64 74 55 37 f2 a3 b3 c3 28 29 d3 e3 f3
84 94 a4 b4 c4 d4 e4 f4 65 75 85 95 a5 b5 c5 d5
e5 f5 46 56 66 76 86 96 a6 b6 c6 d6 e6 f6 47 57
67 77 87 97 a7 b7 c7 d7 e7 f7 38 48 58 68 78 88
98 a8 b8 c8 d8 e8 f8 39 49 59 69 79 89 99 a9 b9
C9 d9 e9 f9 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da
ea fa

}
{ Start Of Scan
Length: 12
Scan Count: 3
Component ID: 1
AC Entropy Table: 0
DC Entropy Table: 0

Component ID: 2
AC Entropy Table: 1
DC Entropy Table: 1

Component ID: 3
AC Entropy Table: 1
DC Entropy Table: 1

Spectral Selection Start: 0
Spectral Selection End: 63
Sucessive Approximation High: 0
Sucessive Approximation Low: 0

}
{ End Of Image }

Conclusion 59

JPEG Huffman Coding

In this chapter we continue our discussion of JPEG with an explanation of Huff-
man coding, one of the compression techniques used within JPEG. While the
chapter deals specifically with its application to JPEG, Huffman coding is also
used in the PNG image format.

Usage Frequencies

In English, certain letters are used much more frequently than others. E and T are
used with great frequency, while X and Q are quite rare. Table 6.1 shows the nor-
malized frequency for each letter as it is used in the King James version of the
Bible. You can see that E, the most frequently used letter, occurs about 5 times
more often than U and M in the middle of the pack, and about 400 times more
often than Q, which brings up the rear.

Table 6.1
Letter Frequencies
in the King James
Bible

Frequency

0.1272
0.0981
0.0875
0.0852
0.0750
0.0695
0.0598
0.0587
0.0525

Letter

E
T
H
A
O
N
I
S
R

Frequency

0.0489
0.0401
0.0258
0.0257
0.0247
0.0202
0.0181
0.0170
0.0169

Letter

D
L
F
U
M
W
Y
G
C

Frequency

0.0151
0.0133
0.0094
0.0069
0.0027
0.0009
0.0004
0.0003

Letter

B
P
V
K
J
Z
X
Q

61

Chapter 6

62 JPEG Huffman Coding

Table 6.2
Morse Code

Morse Code Letter

E
T
H
A
0
N
I
S
R

Morse Code Letter

D
L
F
U
M
W
Y
G
C

Morse Code Letter

B
P
V
K
J
Z
X
Q

The frequency of letter usage was taken into account in the design of Morse
Code (Table 6.2), in which the more frequently used letters tend to have shorter
codes. Thus, E and T, have 1-character codes while the least frequently used let-
ters have 4-character codes.

In the computer world, character sets for Western alphabets are almost
always represented using fixed-length encoding methods, such as ASCII or
EBCDIC, that do not take usage into account. Each character takes up a fixed
number of bits no matter how frequently it is used. For the fastest execution
speed, this is very efficient. However, in applications such as image compression,
where data size is the most important consideration, variable-length codes make
a lot of sense.

The best known scheme for generating variable-length codes for symbols
based upon usage is called Huffman coding, invented by D. A. Huffman in 1952.
The procedure for creating Huffman codes for a set of values based on their fre-
quency of usage is quite simple. It involves creating a binary tree containing the
symbols from the bottom up, with the least frequently used symbols being far-
thest from the root. First, we create a pool that contains either values or tree
nodes. Initially this pool contains all the values and no nodes. The following pro-
cedure is repeated until the pool contains one tree node and no more symbols.

1. Locate the two values or tree nodes with the lowest frequencies and remove
them from the pool. If more than one item has the lowest frequency, the tie
can be broken using an arbitrary choice.1

2. Create a new tree node and make the items in the previous step its two
branches.

3. Make the frequency of the new tree node the sum of the frequencies of the
children.

4. Add the new node to the pool.

1Choices made to break ties affect only the codes generated for the values. They do not affect
compression.

Huffman Coding Example 63

After all of the values have been joined into a single tree, we assign the
value 0 to one branch of each tree node and the value 1 to the other. The Huff-
man code for each value is found by following the path from the root of the tree
to the value appending the code of each branch in the path. Keep in mind that
with Huffman codes we are working with bit strings. A Huffman code consists
of a variable number of bits—in other words, it is a variable-length string that
can consist of 0s or 1s. The set of values and their associated codes are known
as a Huffman table.

Huffman Coding Example

We will use the following palindrome as an example of how Huffman coding
works. It consists of eight different characters with the frequencies shown in
Table 6.3.

A MAN A PLAN A CANAL PANAMA.

In Table 6.3 the symbols C and the period are the least frequently used. To
begin the Huffman coding process we use these two symbols to create a tree
node. Assign a frequency value for the node using the sum of all the leaves
below it.

Among the remaining items in the pool, four are tied at the lowest frequency
of 2. We take P and the tree node and join them together to create a new tree node
with a combined frequency of 4.

A L M N <space>
10 2 2 4 6

Table 6.3
Frequencies for
Symbols in the
Palindrome

Value

A
C
L
M

Frequency

10
1
2
2

Value

N
P
SPACE
. (period)

Frequency

4
2
6
1

A L M N P <space>
10 2 2 4 1 6

64 JPEG Huffman Coding

L and M now have the lowest frequency. Since all of the existing branches
in the tree have greater frequencies, we have to start a new tree node using these
letters.

Now we have the two tree nodes and N tied with the lowest frequency. We
choose to join N to the tree.

The space character and the L-M tree have the lowest frequency, so we
join them.

There are now two tree nodes and the letter A remaining. We arbitrarily
choose to join the two trees.

Finally we add the letter A to complete the tree and then mark each left
branch with 0 and each right branch with 1.

Huffman Coding Using Code Lengths 65

We create the Huffman code for each symbol by appending the 0 or 1 code
on the path from the root to the value. Table 6.4 shows the Huffman codes gen-
erated for each value. Using the Huffman coding shown in Table 6.2 the palin-
drome can be encoded using 74 bits, whereas if we were to use fixed-length
codes, it would require 3 bits to represent each character and 84 (3 x 28) to rep-
resent the entire string. While the compression in this example is a modest 12%,
keep in mind that we have a fairly short text and there is not a large variation in
frequencies among the symbols. You cannot have frequency variations on the
order of 300:1 in a 28-character text string.

Notice in Table 6.4 that no code is a prefix to any other code. For example,
the code for N is 110, and no other code in the table starts with the bit-string 110.
The same is true for all the other codes. This is an important property because
without it, it would be impossible to decode a Huffman-encoded string.

Value

A
C
L
M
N
P
Space
. (period)

Huffman Code

0
11110
1010
1011
110
1110
100
11111

Length

1
5
4
4
3
4
3
5

Frequency

10
1
2
2
4
2
6
1

Total

Bit Usage

10
5
8
8

12
8

18
5

74

Huffman Coding Using Code Lengths

While a tree structure makes it easy to understand how Huffman coding works,
this is not the simplest way to generate Huffman codes. Another method is to
generate the code length for each symbol and from these generate the Huffman

Table 6.4
Huffman Codes for
Symbols in the
Palindrome

66 JPEG Huffman Coding

codes. In this method we have symbols with an associated code length and lists
of values with an associated frequency. Initially we assign each value a code
length of 0 and place each value in a separate list whose frequency is assigned
the frequency of its value. For the palindrome this gives us a structure like

To generate the code lengths, join the two lists with the lowest frequencies.
When we join two lists, the frequency of the new list is the sum of the frequen-
cies of the two old ones. Each time we join a list we increment the frequency of
each symbol in the list by one. We repeat the process until we have one list of
codes. In case of ties for the lowest frequency we always select the list that is
nearest the end.

The lists with the period and the C have the lowest frequencies, so we join
them and increment the code length for the two symbols.

This leaves four lists tied with 4 as the lowest frequency. We select the two
lists closest to the bottom and join them, giving:

Repeating the process results in the following steps.

Huffman Coding Using Code Lengths 67

If we sort the symbols by code length, we get the code lengths shown in
Table 6.5. We can generate Huffman codes from the sorted list by using
Algorithm 6.1 (page 70). The input to this function is an array of Huffman code
lengths, such as the one in Table 6.5 and the number of elements in the array. The
output is an array of Huffman codes generated for the code lengths. Figure 6.1
shows the process of generating the Huffman codes from the sorted list of
Huffman code lengths shown in Table 6.5.

You can see that the Huffman codes in Figure 6.1 are not identical to the
codes in Table 6.4, but this does not matter. It takes the same number of bits to
encode the palindrome using either Huffman table. The differences in the code
values are a result of arbitrary choices made during the encoding processes.

The number of Huffman values will be larger than the length of the longest
code. The code lengths can be represented in a more compact manner if, instead

Table 6.5
Palindrome Symbols
Sorted by Code
Length

Symbol

A
Space
N
L
M
P
C
. (period)

Code Length

1
3
3
4
4
4
5
5

68 JPEG Huffman Coding

Figure 6.1
Generation of
Huffman Codes
from Code Lengths

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 1

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman
Huffman
Huffman

Code
Code
Code

= 0
= 100
= 101

Huffman Coding Using Code Lengths 69

Code Length Counter = 5,
Huffman Code Counter = 100000

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101
Huffman Code = 1100
Huffman Code = 1101
Huffman Code = 1110
Huffman Code = 11110
Huffman Code = 11111

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101
Huffman Code = 1100

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101
Huffman Code = 1100
Huffman Code = 1101

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101
Huffman Code = 1100
Huffman Code = 1101
Huffman Code = 1110

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101
Huffman Code = 1100
Huffman Code = 1101
Huffman Code = 1110

A
N

L
M
P
C

Code Length = 1
Code Length = 3
Code Length = 3
Code Length = 4
Code Length = 4
Code Length = 4
Code Length = 5
Code Length = 5

Huffman Code = 0
Huffman Code = 100
Huffman Code = 101
Huffman Code = 1100
Huffman Code = 1101
Huffman Code = 1110
Huffman Code = 11110

Code Length Counter = 5,
Huffman Code Counter = 11111

Code Length Counter = 5,
Huffman Code Counter = 11110

Code Length Counter = 4,
Huffman Code Counter = 1111

Code Length Counter = 4,
Huffman Code Counter = 1100

Code Length Counter = 4,
Huffman Code Counter = 1101

Code Length Counter = 4,
Huffman Code Counter = 1110

70 JPEG Huffman Coding

of maintaining a code length for each value, we maintain the count of codes for
each code length. It is easy to convert a list of Huffman code lengths to a list con-
taining the count of codes of a given length, as shown in Algorithm 6.2.

The codes generated in Figure 6.1 create the code length counts shown in
Table 6.6.

Algorithm 6.1
Generation of
Huffman Codes
from Code Lengths

Procedure GenerateHuffmanCodes (NUMBEROFCODES,
CODELENGTH5[0..NUMBEROFCODES-1],
CODES [0..255])

Begin
HUFFMANCODECOUNTER = 0
CODELENGTHCOUNTER = 1
For INDEX = 0 TO NUMBEROFCODES - 1 Do

Begin
If CODELENGTHS [INDEX] = CODELENCTHCOUNTER Then

Begin
CODES [INDEX] = HUFFMANCODECOUNTER
HUFFMANCODECOUNTER = HUFFMANCODECOUNTER + 1
End

Else
Begin
HUFFMANCODECOUNTER = HUFFMANCODECOUNTER LeftShift 1
CODELENGTHCOUNTER = CODELENGTHCOUNTER + 1
End

End
End

Algorithm 6.2
Converting Code
Lengths to Length
Counts

Procedure LengthsToCounts (CODELENGTHS [1..CODECOUNT],
CODECOUNT,
LENGTHCOUNTS [1..16])

Begin
For INDEX = 1 TO CODECOUNT Do

Begin
LENGTHCOUNTS [CODELENGTHS [INDEX]]

= LENGTHCOUNTS [CODELENGTHS [INDEX]] + 1
End

End

Table 6.6
Count of Code
Lengths for
Palindrome Symbols

Code Length

1
2
3
4
5

Count

1
0
2
3
2

Huffman Coding in JPEG 71

Converting backwards, from the code length counts to a list of code lengths,
is just as easy, as shown in Algorithm 6.3.

In Chapter 5 we looked at how Huffman tables are stored in a JPEG file.
Each table in a DHT marker is stored with a 16-byte list of code counts followed
by a variable-length list of Huffman values sorted by increasing Huffman codes.
We can convert the information in the DHT marker to a Huffman code and code
length using Algorithms 6.1 and 6.3.

Algorithm 6.3
Converting Length
Counts to Code
Lengths

Procedure CountsToLengths (LENGTHCOUNTS [1..MAXIMUMLENGTH],
MAXIMUMLENGTH,
CODELENGTHS [0..255])

Begin
INDEX = 1
For II = 1 To MAXIMUMLENGTH Do

Begin
For JJ = 1 To LENGTHCOUNTS [II] Do

Begin
CODELENGTHS [INDEX] = II
INDEX = INDEX + 1
End

End
End

Huffman Coding in JPEG

In the JPEG modes we will be using in this book, the possible Huffman values
are the integers 0 to 255. We have seen that, depending upon how the Huffman
coding algorithm is applied, different codes can be generated from the same sym-
bol values and frequency data. The JPEG standard does not specify exactly how
Huffman codes are generated. The Huffman codes for values in JPEG files do not
have to be optimal. In fact, as we shall see in a moment, there are times when
they cannot be. It is possible to define the Huffman tables so that the least fre-
quently used values have the shortest code. The result would be terrible com-
pression, but it is not illegal.

The JPEG standard puts two restrictions on Huffman codes. A Huffman-
encoded bit-string consisting of all 1-bits must be a prefix to a longer code. This
means that no Huffman code can consist of all 1-bits. In Table 6.4 and Figure
6.1 you can see that the only code consisting of all 1-bits is the one generated
for the period. If we got rid of the period, the problem with all 1-bit codes would
go away.

Using Algorithm 6.1, the only code that will consist of all 1-bits is the one
for the last value when the values are sorted by code length. If we insert a dummy
value with a usage frequency of 1 at the start of Huffman coding and sort the val-

72 JPEG Huffman Coding

ues so that the dummy value winds up at the end of the list, the dummy value will
be the only one assigned a code consisting of all 1-bits. At the end of the coding
process we simply discard the dummy code. In the palindrome example, our
dummy code is the period.

Limiting Code Lengths

Limiting code lengths to 16 bits is a little more difficult, even though in practice
the Huffman code generation process does not often result in codes longer than
that. On those rare occasions when the Huffman algorithm generates longer
codes you must use a less than optimal coding.

The longest Huffman code length we generated for the palindrome was 5,
but suppose we wanted to limit the maximum code length to 4. We could easily
accomplish this by shifting nodes in the tree. Figure 6.2 is a representation of the
tree generated for the results in Figure 6.1, showing how nodes could be moved
to reduce the maximum code length to 4.

It is much simpler to do the transform shown in Figure 6.2 on an array of
length counts than on an actual tree structure. The basic method is to find a sym-
bol with a code length of at least 2 less than the code you want to reduce. You

Figure 6.2
Shifting Tree Nodes
to Reduce Code
Length

Decoding Huffman Codes

When we read a JPEG image file we get a set of counts for each Huffman code
and a list of symbol values sorted by Huffman code. From this information we
need to set up tables for converting the Huffman codes in the input stream to the
correct symbol. Since Huffman codes vary in length, we have to read them one
bit at a time. Our first problem is how to tell when we have read a complete
Huffman code.

The obvious method for decoding Huffman values is to create a binary tree
containing the values arranged according to their codes. Start at the root of the
tree and, using the value of bits read from the input stream to determine the path,
search for the values in the tree.

A simpler method to implement is to use the list of values sorted by Huffman
code in conjunction with an array of data structures with one element per
Huffman code length. Each structure contains the minimum and maximum
Huffman code for a given length and the index of the first value with a Huffman
code of that length in the sorted value array. Figure 6.3 shows how these struc-
tures would look for the Huffman table in Figure 6.1.

Algorithm 6.5 shows how to decode Huffman-encoded values using this data
structure. This algorithm relies on the Huffman codes for a given length being
consecutive.

Procedure LimitTo16Bits (LENGTHCOUNTS [1..32])
Begin
For II = 32 DownTo 17

Begin
While LENGTHCOUNTS [II] <> 0 Do

Begin
JJ = II - 2
While LENGTHCOUNTS [JJ] = 0 Do

JJ = JJ - 1
// Replace a tree node with a value.
LENGTHCOUNTS [II] = LENGTHCOUNTS [II] - 2
LENGTHCOUNTS [II - 1] = LENGTHCOUNTS [II-1] + 1
// Replace a value with a tree node.
LENGTHCOUNTS [JJ + 1] = LENGTHCOUNTS [JJ + 1] + 2
LENGTHCOUNTS [JJ] = LENGTHCOUNTS [JJ] - 1
End

End
End

Algorithm 6.4
Limiting Code
Lengths to 16 Bits

replace the symbol with a branch and then shift all the longer codes across. The
complete process is shown in Algorithm 6.4.

Decoding Huffman Codes 73

74 JPEG Huffman Coding

Figure 6.3
Huffman Decoding
Data

Sorted Values
1.
2.
3.
4.
5.
6.
7.
8.

A
N
<space>
L
M
P
C

Length
1
2
3
4
5

Minimum Code
0

100
1100
11110

Maximum Code
0

101
1110
11111

First Value
1

2
4
7

Algorithm 6.5
Decoding Huffman
Values

GLOBAL VALUES [256]
GLOBAL MINCODE [1..16]
GLOBAL MAXCODE [1..16]
GLOBAL FIRSTDATA [1.16]
FUNCTION HuffmanDecode

Begin
CODE = 0
CODELENGTH = 1
While CODELENGTH <= 16 Do

Begin
CODE = CODE LeftShift 1
CODE = CODE Or NextBitFromInput ()
CODELENGTH = CODELENGTH + 1
If CODE <= MAXCODE [CODELENGTH] Then

Begin
INDEX = FIRSTCODE [CODELENGTH] + CODE - MINCODE [CODELENGTH]
Return VALUES [INDEX]
End

End
// Error If We Get Here
End

Using the Huffman codes in Figure 6.3, suppose the next bits in the input
stream are 110100. During the next passes through the loop, the code value and
maximum code lengths will be:

Length
1
2
3
4

Code
1
11
110
1101

Maximum
0

101
1110

Conclusion

In this chapter we introduced Huffman coding and covered it's implementation in
JPEG compression. Huffman coding is also used in PNG compression, and the
basic method is the same in both formats. In Chapter 14 we will cover the spe-
cific requirements for implementing Huffman coding in PNG. Nelson (1992) has
a more general description of Huffman coding. Huffman (1952) contains its orig-
inal description. The JPEG standard JPEG (1994) is the source for the JPEG-spe-
cific requirements of Huffman coding.

The source code for this chapter on the accompanying CD-ROM contains
classes for JPEG Huffman encoding (JpegHuffmanEncoder and
JpegHuffmanDecoder). There is also an application called HUFFCOMP for com-
pressing a file using Huffman coding, in which the command

HUFFCOMP SOURCE-FILE COMPRESSED-FILE

creates a compressed output file. This application reduces the size of the King
James Bible by about 44 percent.

The CD contains a corresponding application for expanding files, in which
the command

HUFFDECO COMPRESSED-FILE DESTINATION-FILE

expands a file compressed with HUFFCOMP to its original state.

Conclusion

After we have read 4 bits the code value is less than or equal to the maxi-
mum value for length 4. This means we have read in the entire Huffman code.
Since the minimum code value of length 4 is 11002, 11012 is the second Huff-
man code of length 4 (11012 - 11002 = 1). The first value with a Huffman code
of length 4 is the fourth value in the value array, so the value we are looking for
is the fifth, which is M. If you look back at Figure 6.1 you can see that this is
correct.

75

The Discrete

Cosine Transform

The Discrete Cosine Transform (DCT) is the heart of JPEG compression. This
chapter describes the forward and inverse DCTs as they are used in JPEG and
how to perform them using matrix operations.

A transform is an operation that maps members of one set to members of
another set.1 A simple example is the mapping of letters to integers using ASCII
codes; a more complicated one is the rotation of geometric figures around the
z-axis.

The input to the DCT is a set of numeric values and the output is a set of the
same size. The DCT is an invertible transform, which means that its output coef-
ficients can be used to recreate the original input values. The reverse of the DCT
is called the Inverse Discrete Cosine Transform (IDCT). The DCT is often
referred to as the Forward DCT (FDCT).

The DCT transforms the set of input values into a set of coefficients to
cosine functions with increasing frequencies. Each of the original values is trans-
formed into the sum of cosines. In this the DCT is closely related to the Fourier
transform.

The DCT is commonly used to process data organized in either one or two
dimensions. The number of input values is usually a power of two. In JPEG the
DCT and IDCT are always in two dimensions on data arranged in 8 x 8 blocks. To
show how the DCT and IDCT work we will first look at the 1-dimensional case.

1In mathematics a transform or mapping is indistinguishable from a function. In the computer world we
generally think of a function as an operation that returns a single numeric value.

Chapter 7

77

78 The Discrete Cosine Transform

DCT in One Dimension

Equation 7.1
The 1-D Discrete
Cosine Transform

Equation 7.2
The 1-D Inverse
Discrete Cosine
Transform

The 1 -dimensional DCT of an array V of N numbers into an array T of N num-
bers is defined as

where

void DCT (unsigned int NN, double input [], double output [])
{
double cc = 1.0 / sqrt (NN) ;
for (unsigned int ii = 0 ; ii < NN ; ++ ii)
{

output [ii] = 0 ;

for (unsigned int jj = 0 ; jj < NN ; ++ jj)
{
output[ii] += cc * (input [jj])

* cos ((2*jj+1)*ii * M_PI/2.0/NN) ;
}
cc = sqrt (2.0/NN) ;
}
return ;

}

void IDCT (unsigned int NN, double input [], double output [])
{

for (unsigned int ii = 0 ; ii < NN ; ++ ii)
{

double cc = 1 / sqrt (NN) ;
output [ii] = 0.0 ;
for (unsigned int jj = 0 ; jj < NN ; ++ jj)
{
output [ii] += cc * input [jj]

* cos((2*ii+1)*jj*M_PI/2.0/NN) ;
cc = sqrt (2.0/NN) ;
}

}
return ;

}

The 1-dimensional 1DCT is used to reverse the process. It is defined as

The following code examples show the definitions of the DCT and IDCT
converted into a form more familiar to programmers.

DCT in One Dimension 79

The value of the function

y = cos (x¶)

is shown in Figure 7.1. The cosine function is cyclic so that as x increases the
function values start over each time x reaches a multiple of 2¶. We can change
the frequency with which the cosine function repeats itself by including a con-
stant value n in the function.

y = cos (xn¶)

The larger the value of n, the more often the cosine function repeats. Thus, it
repeats twice as often when n is 2 than when n is 1.

By multiplying the cosine function by another value, the amplitude of the
cosine wave can be adjusted. Since the value of the function ranges from -1 to 1,
in the function

y = A cos (xn¶)

the constant value A is the amplitude of the cosine wave.
If you substitute

and

A = c(n)T[n]

into the IDCT function in Equation 7.2, you can clearly see that the 1DCT is sum-
ming cosine functions of increasing frequency where the DCT coefficient is the
amplitude of each cosine function in the summation. Figure 7.2 shows a con-
trived group of eight input values and the resulting DCT coefficients. This is fol-
lowed by the IDCT calculation for n = 1.

In the JPEG modes we will be using in this book, sample values are repre-
sented using 8-bits so they can range from 0 to 255. JPEG requires that 128 be
subtracted from each input value to bring it into the range -128 to 127 before per-

Figure 7.1
The Cosine
Function

80 The Discrete Cosine Transform

n
Input
DCT

n
Input
DCT

0
128
181.0

1
88
0.0

2
40

136.6

3
0
0.0

4
0
0.0

5
40
0.0

6
88
4.6

7
128

0.0

= 64.0 + 0.0 + 26.1 + 0.0 + 0.0 - 2.1 + 0.0

= 88.0

forming the DCT calculation. This has the effect of reducing the magnitude of
the first DCT coefficient, but it does not affect the value of any of the others.
After performing the IDCT we have to add 128 to bring the results back into the
correct range.

If the DCT and IDCT are performed in sequence using infinite precision, the
result will always be exactly the same as the input. Unfortunately, computers do
not work with infinite precision. In addition, during JPEG compression all DCT
values are rounded to integers, which means that the DCT process used in JPEG
introduces a rounding error when we compress and then decompress an image.
The error is small, but exists nonetheless.

Table 7.1 contains a set of eight sample values extracted from a row at the
middle of the image IRENE.JPG (Figure 7.3) and the DCT coefficients calcu-
lated from them. We can use the DCT coefficients to recreate the original sam-
ple values (with rounding errors), but they take up no less space than those val-
ues. Why then use the DCT in image compression at all?

The clue to the value of the DCT can be seen in the decreasing magnitude of
the coefficient values in Table 7.1. The magnitudes of the coefficients for the
lower values of n are much smaller than those for the higher values.

Graphing the IDCT should make the purpose of the DCT in JPEG much
clearer. Figure 7.4 on pages 82 and 83 shows eight graphs of the data from
Table 7.1 plotted with the IDCT value calculated using 1 to 8 DCT coefficients.

Table 7.1
DCT Values
Calculated from a
Set of Samples in
IRENE.JPG

Input

n
DCT coefficients

190 184

0
38.5

1
143.81

186

2
-67.76

182 167

3
-16.33

4
7.42

123

5
-4.73

63

6
5.49

38

7
0.05

Figure 7.2
Sample Values,
Their 1-D DCT
Coefficients, and
the IDCT for n = 1

DCT in One Dimension

Figure 7.3
IRENE.JPG

In the first graph only the first DCT coefficient is used. In the second, the first
two coefficients are used, and in the last all eight are used.

Notice that in the first graph in Figure 7.4 the IDCT function is a horizontal
line while in all the other graphs it is a curve. The first DCT coefficient is known
as the DC coefficient; all the others are called AC coefficients. (The names come
from electrical engineering. DC current has a constant voltage while AC voltage
varies according to a sinusoidal curve.) In JPEG compression, DC and AC coef-
ficients are encoded differently. In Chapter 5 you saw references to DC and AC
Huffman tables in the DQT and SOS markers. This is where the DC and AC
come from.

As you move from the first graph to the last, the IDCT function gets closer
and closer to the original data. In the first graph the IDCT passes through the
middle of the general area containing the data points, hitting none of them. In the
last graph the IDCT function goes right through the middle of all the data points.
The interesting thing here is that on the third graph the IDCT is pretty close to
all of the data points. From the fourth graph onward, the subsequent improvement
is almost imperceptible.

This is the key to JPEG compression. Since the higher-order DCT coeffi-
cients tend to contribute less information to the image, they can be discarded
while still producing a very close approximation to the original. Using the data
in Table 7.1 we could get rid of half the DCT data and still achieve a good result.

Does this work all the time? For any data set, can we throw away high-order
coefficients and retain a close approximation of the original data? If only things
were that easy.

81

82 The Discrete Cosine Transform

Figure 7.4
IDCT Values for the
Set of Samples in
IRENE.JPG

Table 7.2 on page 84 shows a set of input values and the DCT values calcu-
lated from them. Figure 7.5 on page 84 shows these values plotted against the
IDCT function using seven and eight DCT coefficients. You can see that if we use
this input data we cannot throw out any DCT coefficients and get a good result.

Is the data in Table 7.1 or Table 7.2 more typical in real images? That
depends upon the image. In a photographic image sharp changes in data, as in

DCT in One Dimension 83

Table 7.2, are not normal. In a drawing sharp changes like this can occur fre-
quently. This is one of the reasons that JPEG compresses photographs better than
drawings. With drawings the tradeoff between compression and image quality is
a greater concern, so you are generally better off using another image format,
such as PNG.

84 The Discrete Cosine Transform

Table 7.2
DCT Values
Calculated from an
Arbitrary Data Set

Figure 7.5
Data from Table 7.2
Plotted against the
IDCT Function

DCT in Two Dimensions

Equation 7.3
2-Dimensional DCT

Equation 7.4
2-Dimensional IDCT

Not surprisingly, it turns out that you can get better compression using the DCT
if you take into account the horizontal and vertical correlation between pixels
simultaneously. In Chapter 4 we described how JPEG breaks images to 8 8
square blocks called data units. The first step in compressing a data unit is to per-
form a 2-dimensional DCT, which for a square matrix of size N is defined as

Input

n
DCT coefficients

0

0
-91.57

0

1
70.84

255

2
-384.4

255

3
-125.1

255

4
90.1

0

5
24.87

0

6
20.21

0

7
106.0

where

The 2-dimensional IDCT is

In JPEG compression the value for N is always

Basic Matrix Operations 85

Equation 7.5
2-Dimensional DCT

Equation 7.6
2-Dimensional 1DCT

A more convenient method for expressing the 2-dimensional DCT is with
matrix products. The forward DCT is

T = MVMT

and the inverse DCT is

V = MTTM

where V is an 8 × 8 data unit matrix and M is the matrix shown in Equation 7.7.

Equation 7.7
The Discrete Cosine
Transform Matrix

Basic Matrix Operations

For those of you who are unfamiliar with matrices we provide a brief introduc-
tion. For more information you should find an introductory textbook on linear
algebra. A matrix is simply an array of numbers. Generally, when we refer to a
matrix we mean a two-dimensional array. In giving the dimensions of a matrix,
the number of rows is traditionally specified first. An N × M matrix is a matrix
with N rows and M columns. Elements within a matrix are specified using sub-
scripts. Thus, AMN refers to the element in row N and column M in matrix A.

A one-dimensional array of numbers is known as a vector, on which a fre-
quently used operation is the dot product. The dot product operation takes two
vectors with the same dimension as input and produces a number. To generate the
dot product from two vectors you multiply the corresponding entries in the two
vectors together and add all the products. This is an example of taking the dot
product of two vectors A and B:

86 The Discrete Cosine Transform

Matrices can be multiplied only when they are compatible. Two matrices are
compatible if the number of columns in the first matrix is equal to the number of
rows in the second. All of the matrices we will be dealing with are square with
the dimensions 8 × 8, so compatibility is not an issue. Matrix multiplication is
performed by separating each matrix into a set of vectors. Each row in the first
matrix forms a vector; each column in the second does also. To create the ele-
ment in the Nth row and Mth column of the destination matrix we take the dot
product of the vectors in the Nth row of first matrix and the Mth column of the
second matrix. This is an example of multiplying the 2 × 2 matrices A and B:

Matrix multiplication is not commutative. If A and B are matrices, we can-
not say that AB = BA.

Matrix multiplication is associative. If A, B, and C are matrices, then

(AB)C = A(BC)

The matrix transpose operation is denoted by AT. If B = AT, then for every
element in B, BNM = AMN as in the following example.

A matrix is multiplied by a number by multiplying each clement in the
matrix by the number.

Using the 2-D Forward DCT 87

That is all the linear algebra we need to get through the rest of the chapter.
However, before we move on I would like to point out an interesting property
of the DCT matrix M shown previously. M is what is known as an orthogonal
matrix. If you take the dot product of any row or column with itself the result
is 1. If you take the dot product of any row with any other row or any column
and any other column the result is 0. If you multiply M by its transpose you get

MMT =

Any square matrix with values of 1 on the diagonal running from the upper
left to the bottom right and values of 0 everywhere else is known as an identity
matrix. Multiplying any matrix A by the identity matrix results in A.

Using the 2-D Forward DCT

Now we return to the image IRENE.JPG to show what happens to an image using
the 2-dimensional DCT. Figure 7.6 contains an 8 8 block of Y component sam-
ples from the area around Irene's eye and the 2-dimensional DCT coefficients
generated from them.

In the figure the larger coefficient values are concentrated in the upper left
corner. The trend is that the farther you get from the DC coefficient in the upper
left corner, the smaller the values become. The DC coefficient is nearly three
times as large as any of the AC coefficients.

Figure 7.6
Sample Data Unit
from IRENE.JPG
and Its DCT
Coefficients

Y Component Samples
from IRENE.BMP

DCT Coefficients

58
62
48
59
98

115
99
74

45
52
47
78
138
160
137
95

29
42
49
49
116
143
127
82

27
41
44
32
78
97
84
67

24
38
40
28
39
48
42
40

19
30
36
31
24
27
25
25

17
22
31
31
25
24
24
25

20
18
25
31
27
21
20
19

-603
-108
-42
56
-33
-16
0
8

203
-93
-20
69

-21
-14
-5
5

11
10
-6
7

17
8
-6
-6

45
49
16
-25
8
2

-1
-9

-30
27
17

-10
3
-4
2
0

-14
6
9
-5
-4
-2
3
3

-14
8
3
-2
-5
1
1
3

-7
2

3
-2
-3

1
1
2

88 The Discrete Cosine Transform

Quantization

We saw with the 1-dimensional DCT that you do not always need to use all the
of the DCT coefficients with the Inverse DCT to reconstruct a close approxima-
tion of the original data. We also saw that there are situations when we need to
use most, if not all, of the coefficients to reproduce something that is close. The
same is true with the 2-dimensional DCT. After calculating the DCT, the next
step is to find and discard the coefficients that contribute the least to the image.

The JPEG standard defines a simple mechanism for doing this known as
quantization, which is a fancy name for division. To quantize the DCT coeffi-
cients we simply divide them by another value and round to the nearest integer.

To reverse the process multiply

Coefficient = Quantized Value × Quantum value

Choosing a quantum value as small as 20 would convert over half the coef-
ficients in Figure 7.6 to zeros.

JPEG uses a 64-element array called a quantization table to define quantum
values for an image. Quantization tables are defined in the DQT marker
described in Chapter 5. It is possible to use multiple quantization tables so that
not all components need be quantized using the same values. Each value in a
quantization table is used to quantize the corresponding DCT coefficient.

The JPEG standard does not specify the quantization values to be used. This
is left up to the application. However, it does provide a pair of sample quantiza-
tion tables that it says have been tested empirically and found to generate good
results. These tables are shown in Figure 7.7.

Figure 7.7
Sample
Quantization Tables
from the JPEG
Standard

Cb and Cr Component
Quantization Table

16
12
14
14
18
24
49
72

17
18
24
47
99
99
99
99

11
12
13
17
22
35
64
92

18
21
26
66
99
99
99
99

10
14
16
22
37
55
78
95

24
26
56
99
99
99
99
99

16
19
24
29
56
64
87
98

47
66
99
99
99
99
99
99

24
26
40
51
68
81
103
112

99
99
99
99
99
99
99
99

40
58
57
87
109
104
121
100

99
99
99
99
99
99
99
99

51
60
69
80
103
113
120
103

99
99
99
99
99
99
99
99

61
55
56
62
77
92

101
99

99
99
99
99
99
99
99
99

Y Component
Quantization Table

Zigzag Ordering

-38
-9
-3

4
-2
-1
0
0

18
-8
-2
4

-1
0
0
0

1
1
0
0
0
0
0
0

-3
3
1

-1
0
0
0
0

-1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

The result from quantizing sample values from Figure 7.6 with the sample Y
quantization table in Figure 7.7 is shown in Figure 7.8. After quantization only
19 out of 64 DCT coefficients values are nonzero. Chapter 8 covers how JPEG
compresses runs of zero AC coefficient values.

Zigzag Ordering

In order to group as many of the quantized zero-value coefficients together to
produce the longest runs of zero values, AC coefficients in a data unit are
encoded using a zigzag path.

Figure 7.9 shows the zigzag order defined by the JPEG standard. This was
briefly mentioned in Chapter 5 in the section on the DQT marker. Quantization
values within quantization tables are stored in JPEG files using this zigzag order-
ing also. This is the ordering of the quantized AC coefficients in Figure 7.8:

18 -9 -3 -8 1 -3 1 -2 4 -2 4 0 3 -1 0 1 1 0 -1 -1 0 0 0 -1 (39 Zeros)

Figure 7.9
Zigzag Order for AC
Coefficients

Figure 7.8
Quantized DCT
Coefficients from
Figure 7.6

89

The Discrete Cosine Transform

Conclusion

In this chapter we described the Discrete Cosine Transform (DCT) and quantiza-
tion. The DCT is used to represent an 8 x 8 block of sample values as a sum of
cosine functions. The DCT coefficient in the upper left corner represents a con-
stant value and is known as the DC coefficient. All other coefficients are AC
coefficients.

We used matrix operations to calculate the DCT and its inverse. In Chapter
10 we will take another look at the DCT and show how it is possible to make
it faster.

More information on the DCT can be found in Rao and Yip (1990), an entire
book devoted to the subject. Nelson (1992) presents a simplified, JPEG-like ver-
sion of DCT compression. The sample quantization tables in this chapter come
from JPEG (1994). Any introductory book on linear algebra, such as Anton
(1981), will contain more information on basic matrix operations.

The source code for this chapter consists of classes for representing quanti-
zation tables and data units during compression. These classes use matrix opera-
tions to implement the DCT.

90

Decoding Sequential-
Mode JPEG Images

We dealt with most of the JPEG preliminaries in previous chapters. This chapter
puts the pieces together and shows how to implement a sequential-mode JPEG
decoder.

We will cover SOF0 (baseline DCT) frames and a subset of SOF1 (extended
sequential DCT) frames. These are identical except that extended sequential
frames can use 12-bit or 8-bit samples and up to four DC or AC Huffman tables,
whereas baseline DCT JPEG supports only 8-bit samples and up to two DC and
AC Huffman tables. If we limit ourselves to 8-bit samples and permit up to four
DC or AC Huffman tables, these two frame types are decoded in exactly the same
manner.

MCU Dimensions

JPEG compressed data consists of a sequence of encoded MCUs arranged from
top to bottom, left to right. The first step in decoding scan data is to determine
the number of data units from each scan that make up each MCU and the num-
ber of MCUs required to encode the scan.

For any component, the number of pixels a data unit spans is

Pixelsx = 8 ×

Pixelsy = 8 ×

where

91

Chapter 8

Decoding Sequential-Mode JPEG Images

= Component horizontal sampling frequency

= Maximum of all component horizontal sampling frequencies

= Component vertical sampling frequency

= Maximum of all component vertical sampling frequencies

If the scan is noninterleaved (i.e., it has only one component), each MCU
in the scan consists of 1 data unit. The number of MCUs in the scan is
MCUsx × MCUsy where

If the scan is interleaved, MCUsx and MCUsy are

Keep in mind that for an interleaved scan, Fx max and Fy max are the maximum
sampling frequencies of all the components in the image rather than the maxi-
mum frequencies of the components in the scan.

In an interleaved scan the number of data units each component contributes
to an MCU is the product of the component's sampling frequencies. Suppose you
have a color image with the Y component having vertical and horizontal sam-
pling frequencies of 2 and the Cb and Cr components having vertical and hori-
zontal frequencies of 1. If an interleaved scan contains all three components,
there are a total of 6 data units in each MCU.

The JPEG standard imposes a rather low limit of 10 data units per MCU.
This places restrictions on the sampling frequencies and on the placement of
components within scans. Suppose the Y component had horizontal and vertical
sampling frequencies of 4. In an interleaved scan it alone would contribute 16
data units to each MCU, thereby exceeding JPEG's limit. Using such a sampling,
the Y component would have to be in a noninterleaved scan.

Within a scan there are no partial MCUs or data units. If the image's dimen-
sions are not an exact multiple of the MCU size, the compressed data includes
padding to round up to the next complete MCU.

Figure 8.1 illustrates the positional relationship between the MCUs and an
image. It shows an image whose dimensions are 50 × 50 pixels, with the Y com-
ponent sampled with a horizontal and vertical frequency of 2 and the other com-
ponents sampled with frequencies of 1. When the Y component is in a nonin-
terleaved scan, the scan is composed of 7 MCU rows and 7 MCU columns, each
MCU consisting of 1 data unit. The image area covered by each MCU is out-
lined in white.

92

MCU Dimensions 93

Figure 8.1
Relationship of
MCU Size to Image
Size

In an interleaved scan there are 4 rows and columns of MCUs. The area of
the image covered by each MCU is outlined with a thin black line. In this exam-
ple, the last MCU row and column represent mostly dead space.

Each MCU is encoded as a sequence of data units. Its components are
encoded in the order they are listed in the SOS marker and are not interleaved.
The data units from each component are ordered from top to bottom, left to right.

Algorithm 8.1 shows the procedure for decoding the MCUs within a scan.

For Each MCU In The Scan
Begin
For Each Component In the Scan

Begin
For I = 1 To Component Vertical Sampling Frequency

Begin
For J = 1 To Component Horizontal Sampling Frequency

Begin
Decode Data Unit
End

End
End

End

Algorithm 8.1
MCU Decoding

94 Decoding Sequential-Mode JPEG Images

Decoding Data Units

After determining the number of MCUs and data units within each scan, the next
step is to decode the individual data units. What is actually encoded for each data
unit are quantized DCT coefficients. Thus, the first step is to create the DCT
coefficient values. The DC coefficient is encoded first using Huffman coding.
Then the AC coefficients are encoded as a group using Huffman and run-length
encoding. The DC and AC coefficients are encoded with different Huffman
tables, as specified on the SOS marker.

Decoding DC Coefficients

DC coefficients are stored in a JPEG file as the difference between the previous
DC value encoded for the component and the current DC coefficient value. The
advantage of using the difference is that it takes fewer bits to encode smaller val-
ues. Unless there are dramatic shifts in a component's DC coefficient value from
one data unit to the next, the magnitudes of the differences between adjacent DC
values will generally be smaller than the magnitude of the DC values themselves.

For each component the last DC value is initialized to zero at the start of a
scan and reset to zero whenever a restart marker is read. This means that the first
DC value in a scan and the first value following a restart marker are absolute
DC values.

DC coefficients are encoded in two parts. The first part is a 1-byte Huffman
encoded value that specifies the magnitude of the DC difference. Table 8.1 lists
the DC magnitude code values and the corresponding coefficient values.

To convert the magnitude value to an actual DC difference value the decoder
has to read a number of unencoded, literal bits from the input stream. The num-
ber of literal bits is the same as the magnitude value. When the magnitude value
is zero, there are no additional bits.

Table 8.1
DC Difference
Magnitude Codes
and Ranges

Encoded Value DC Value Range

0
1
2
3
4
5
6
7
8
9

10
11

0
-1, 1

-3, -2, 2, 3
-7 . . -4, 4 . . 7

-15 . . -8, 8 . . 15
-31 . . -16, 16 . . 31
-63 . . -32, 32 . . 63

-127 . . -64, 64 . . 127
-255 . . -128, 128 . . 255
-511 . . -256, 256 . . 511

-1023 . . -512, 512 . . 1023
-2047 . . -1024, 1024 . . 2047

Decoding Data Limits 95

The first bit following the magnitude specifies the sign of the difference
value. A sign bit of zero means a negative difference; a sign bit of one, a positive
difference. Algorithm 8.2 defines a function for converting a magnitude value
and additional bits to the difference value. This function is translated directly
from the JPEG standard.

The overall procedure for decoding DC coefficients is shown in
Algorithm 8.3.

Algorithm 8.2
Extend() Function

Function Extend (ADDITIONAL, MAGNITUDE)
Begin
vt = 1 LeftShift (MAGNITUDE - 1)
If ADDITIONAL < vt Then

return ADDITIONAL + (-1 LeftShift MAGNITUDE) + 1
Else

return ADDITIONAL
End

Algorithm 8.3
DC Coefficient
Decoding

Global LASTDC
Function DecodeDC

Begin
CODE = HuffmanDecode ()
BITS = ReadBits (code)
DIFFERENCE = Extend (BITS, CODE)
DC = DIFFERENCE + LASTDC
LASTDC = DC
Return DC
End

Decoding AC Coefficients

Decoding AC coefficient values is a little more complicated than decoding DC
coefficients. The AC coefficients in each data unit are stored in the zigzag order
defined in Chapter 7. The decoder uses the AC Huffman table to decode a 1-byte
value. Unlike with DC differences, this value is divided into two 4-bit fields. The
4 low-order bits contain the magnitude value, and the 4 high-order bits contain
the number of zero-valued coefficients to skip before writing this coefficient. For
example, the Huffman-encoded value 5616 specifies that the next five AC coef-
ficients are zero and they are followed by a nonzero coefficient with a magnitude
of 6 bits.

Table 8.2 lists the possible AC magnitude values and their corresponding
coefficient ranges. Notice that for AC coefficients there is no entry for magnitude
0. This is because zero-valued AC coefficients are encoded using zero runs. AC
magnitude values are converted to coefficient values by reading raw bits and
using the Extend(), just as DC coefficients are. The only difference is that for
AC coefficients the actual value, not a difference, is encoded.

96 Decoding Sequential-Mode JPEG Images

Table 8.2
AC Magnitude
Codes and Ranges

Magnitude Value

1
2
3
4
5
6
7
8
9

10

AC Value Range

-1, 1
-3, -2, 2, 3

-7 . . -4, 4 . . 7
-15 . . -8, 8 . . 15

-31 . . -16, 16 . . 31
-63 . . -32, 32 . . 63

-127 . . -64, 64 . . 127
-255. . -128, 128 . . 255
-511 . . -256, 256 . . 511

-1023 . . -512, 512 . . 1023

Two special codes are used for encoding AC coefficient values. The code
0016 is used when all remaining AC coefficients in the data unit are zero. The
code F016 represents a run of 16 zero AC coefficients. Neither of these codes is
followed by any raw bits.

For each data unit, the AC coefficient decoding process is repeated until all
AC coefficients have been decoded. A data unit is complete when either an end-
of-block code is decoded or the last AC coefficient is expanded. Algorithm 8.4
shows the process for decoding the AC coefficients of a data unit.

Algorithm 8.4
AC Coefficient
Decoding

For II = 1 To 63 Do
COEFFICIENTS [II] = 0

II = 1
While II <=63 Do

Begin
VALUE = DecodeUsingACTable ()
LOBITS = VALUE And 0F16
HIBITS = (VALUE And F016) RightShift 4

If LOBITS <> 0 Then
Begin
EXTRABITS = ReadRawBits (LOBITS)
II = II + HIGHBITS
COEFFICIENTS [II] = Extend (EXTRABITS, LOBITS)
II = II + 1
End

Else
Begin
If HIGHBITS = F16 Then

II = II + 16 // Run of 16 Zeros
Else If HIGHBITS = 0 Then

II = 64 // All Done
End

End

Decoding Example 97

Decoding Example

Figure 8.2 and Figure 8.3 are examples of the decoding of the first two data units
for a component within a scan. In Figure 8.2, which shows the decoding of the
first data unit, the last DC value for the scan is initialized with 0. First we decode
the DC coefficient. Using the DC Huffman table for the component we find that
the next Huffman-encoded value is 0416. This magnitude value tells us that we
need to read 4 raw bits (10102) from the input stream. The DC coefficient value
is the sum of the result of the Extend () function (10) and the last DC coefficient
value (0).

Now we decode the AC coefficients using the AC Huffman table for the
component. The next Huffman-encoded value is 0316. The four high-order bits
specify the zero run (0); the low-order bits specify the magnitude value (3). We
then read the next three raw bits from the input stream (0102) and call the
Extend () function, which gives -3 as the value for the first AC coefficient.

The decoding of the second AC coefficient is nearly identical to that of the
first. The third Huffman decoding returns the value E316, which means a zero run
of 14 is followed by a coefficient with a magnitude of 3 bits. We read the next
3 raw bits from the input stream (1002) and call the Extend () function, which
returns 8. We set the next 14 AC coefficients to zero followed by a coefficient
with the value 8.

The next two values decoded using the AC Huffman table are the special
code F016. No additional bits follow this code. Each time we read it we set the
next 16 AC coefficients to 0.

The next code in the input stream and the raw bits that follow tell us to set
the next 12 AC coefficients to zero, then set the next coefficient to 1. This is

Figure 8.2
Decoding a
Component's First
Data Unit in a Scan

DC Coefficients
Block

A

DC Table
Decode

0416

Raw
Bits

10102

DC
Difference

10

Last
DC Value

0

New
DC Value

10

AC Coefficients
Block

B
C
D
E
F
G
H

AC Table
Decode

0316

0416

E316

F016

F016

C116

0116

Zero
Run

0
0

14
16
16
12
0

Raw
Bits

0102

10012

1002
None
None
12
02

Coefficient
Value

-1
9
8

None
None
1

-1

98

Figure 8.3
Decoding a
Component's
Second Data Unit in
a Scan

followed by a sequence that tells us to set the next AC coefficient to -1. Since
this is AC coefficient 63 the decoding of the data unit is complete.

Figure 8.3 shows the decoding of the next data unit for the component. If this
were an interleaved scan, then, depending upon the component sampling fre-
quencies, data units for other components would be decoded before this one. First
we decode the DC coefficient for the data unit. Using the DC Huffman table we
find that the next magnitude value is zero, which means that are no additional raw
bits. The DC difference value is simply zero. We add the difference value to the
last DC value (10), which gives 10 for the coefficient value. The last DC value
remains 10.

The first two AC coefficients are decoded as before. When we use the AC
table to decode the magnitude value for the next coefficient we read the special
code 0016, which tells us to set the remaining AC coefficients to zero. The data
unit is now complete.

Processing DCT Coefficients

After all of the DCT coefficients for the data unit have been read, we have to per-
form dequantization and the IDCT on the data unit, as described in Chapter 7.
For dequantization we simply multiply each coefficient value by the correspond-
ing entry in the quantization table. After that we perform the IDCT on the coef-
ficients which gives the sample values.

AC Coefficients
Block

B
C
D

AC Table
Decode

0216

0116

0016

Zero
Run

0
0
End of
block

Raw
Bits

102

02
None

Coefficient
Value

2
-1
None

DC Coefficients
Block

A

DC Table
Decode

0016

Raw
Bits

None

DC
Difference

0

Last
DC Value

10

New
DC Value

10

Decoding Sequential-Mode JPEG Images

Restart Marker Processing

Up-Sampling

At this stage we have down-sampled YCbCr values. From these we need to cre-
ate an RGB image. For a grayscale image we are finished, since the Y value cor-
responds to an index into a color palette where red = green = blue. For a color
image the first thing we need to do is up-sampling.

If any component has been sampled, either vertically or horizontally, at less
than 1:1 (in other words, either sampling frequency is less than the maximum
value of all the components in the image), the component needs to be up-sampled,
by which we mean increasing the resolution of the component data.

Suppose we have a JPEG compressed color image where the Y component
has a horizontal and vertical sampling frequency of 2 while the Cb and Cr com-
ponents have a frequency of 1 in both dimensions. When the image was com-
pressed one Y component sample was taken for each pixel, but for the Cb and
Cr components one sample was taken for every 4 pixels. After the image is
decompressed we need to spread the Cb and Cr component values across
multiple pixels.

There are several ways to do this. The easiest method and the one we are
going to use in the sample code, is to simply duplicate the Cb and Cr component
values so that the sample gets stretched to a number of adjacent pixels. The draw-
back with this method is that it produces blocking effects. An alternative is to
apply a filtering algorithm during the up-sampling process.

After up-sampling we have a Y, Cb, and Cr sample value for each pixel of a
color image. The last step is to convert the YCbCr components to RGB using the
conversions shown in Chapter 1.

Restart Marker Processing

One small step we omitted in the preceding discussion is the handling of restart
markers. If the last DRI (Define Restart Interval) marker in the input stream
before the SOS defined a nonzero value for the restart interval, the scan data
should have restart markers (RST0-RST7) embedded within it. The restart inter-
val specifies the number of MCUs between restart markers.

A JPEG decoder needs to maintain a counter of MCUs processed between
restart markers. Whenever the counter reaches the restart interval the decoder
needs to read a restart marker from the input stream.

Restart markers are placed on byte boundaries. Any fractional bits in the
input stream that have not been used are discarded before the restart marker is
read. The only processing that takes place after the reading of a restart marker is
resetting the DC difference values for each component in the scan to zero.

99

Decoding Sequential-Mode JPEG Images

Overview of JPEG Decoding

We have covered the process for decoding individual data units from start to fin-
ish. Now we are going to take a step back and look at the overall process for
decoding a sequential-mode JPEG image. Keep in mind that since we are not
supporting JPEG hierarchical mode, we make no distinction between a frame and
an image. The overall decoding process for JPEG file is

1. Read the SOI and JFIF APP0 markers to ensure that we have a valid JPEG
file.

2. Read the DRI, DQT, and DHT markers and use them to define the restart
interval, quantization tables, and Huffman tables.

3. Read a SOF marker and use it to define the image dimensions.

4. Read all the SOS markers and process the scan data following them.

5. Read the EOI marker.

This overall plan needs to be able to handle variations. The SOI and JFIF
APP0 marker must be at the beginning of the file and the EOI marker must be at
the end. SOS markers must occur after the SOF marker, but DRI, DQT, and DHT
markers can occur anywhere in the file before the EOI marker.

Conclusion

In this chapter we covered the representation of compressed image data within
the SOS markers of a sequential-mode JPEG file. JPEG (1994), the JPEG stan-
dard, is the official source for the JPEG format. The JPEG source code contains
extensive references to this document, so you can match the section numbers in
the source code to the corresponding section in the standard.

The code example for this chapter is a functional JPEG decoder that can read
baseline sequential and extended sequential JPEG files and convert them to
Windows BMP files. Some of the components of this decoder were presented in
previous chapters, so they will not be repeated here.

This application has two restrictions in the types of sequential JPEG files it
can process, but neither should present much of a problem. First of all, DNL
markers are not supported. Since they are not in common use, however this is a
minor limitation. Second, fractional data sampling is not supported. If a color
image is encoded with a component having a horizontal or vertical sampling fre-

100

If the decoder does not find a restart marker at the specified restart interval,
the stream is corrupt. The decoder should ensure that the restart markers are in
the order RST0, RST1 ... RST7, RST0, RST1 ... RST7.

quency of 3 and any other component having a corresponding frequency other
than 1, this will cause fractions of bits to be sampled. Fractional sampling is not
used in the real world, so, again, this is not a major problem.

Component Class

The decoder uses JpegDecoderComponent to represent a single component.
This class maintains an array (data_units) that contains the component's
decoded data units. It is possible to implement a sequential decoder without
buffering all the data units. However, this buffering is required for progressive
decodings. In order to have the maximum commonality between the progres-
sive decoder presented in Chapter 11 the sequential decoder buffers the data
units as well.

DecodeSequential
The DecodeSequential member function decodes the next data unit within the
input stream and stores the value in the data_units array. This function follows
the decoding process presented earlier in this chapter.

Upsample
The Upsample function stretches the component's sample data by duplicating
values. The amount of stretching is based upon the component's sampling fre-
quencies relative to the maximum sampling frequencies for the image. There are
two execution paths. One handles the simplest case where the horizontal and ver-
tical sampling frequencies are equal to the maximum values for the image. The
other path handles the stretching of components.

Color Conversion
The RGBConvert function converts YCbCr sample values from three compo-
nents to the equivalent RGB values and stores them in a BitmapImage object.
Since RGB conversion requires three separate components, the RGBConvert
function is static. The GrayscaleConvert function does the same for grayscale
conversion. For consistency this function is static as well, even though it uses
only one component.

Decoder Class

The JpegDecoder class is the JPEG decoder. It reads a JPEG image from an input
stream and then stores it in a BitmapImage object.

ReadImage
The ReadImage function reads a JPEG image from an input stream. It calls the
ReadMarker repeatedly to process markers with the input stream until the EOI

101Conclusion

Decoding Sequential-Mode JPEG Images

marker is read. ReadMarker determines the marker type and then calls functions
that decode specific markers.

ReadQuantization
The ReadQuantization function processes a DQT marker. The
JpegDecoderQuantizationTable objects read the actual quantization tables
from the input stream. A DQT marker may define multiple quantization tables,
so this function determines how many tables the marker contains and the identity
of each one.

ReadHuffmanTable
This function is very similar to ReadQuantization except that it reads DHT
markers. The actual Huffman table data is read by the JpegHuffmanDecoder
objects. This function reads Huffman tables until no more remain in the marker
data.

ReadStartOfFrame
The ReadStartOfFrame function reads SOFn markers. All SOFn markers have
the same format, so the same function is used to read all types. The decoder relies
upon the ReadMarker function to determine if the SOFn marker is one supported
by the decoder.

ReadStartOfScan
The ReadStartOfScan reads an SOS marker from the input stream.
It determines the components that make up the scan and then stores a list of
pointers to the corresponding JpegDecoderComponent objects within the
scan_components array.

ReadSequentialInterleavedScan and
ReadSequentialNonInterleavedScan
The ReadSequentialInterleavedScan and ReadSequentialNonlnter-
leavedScan functions control the reading of data units from the input stream.
The former is used when the current scan contains more than one component; the
latter is used when there is only one component in the scan. The individual com-
ponent objects read the DCT coefficients into the data units. However, this func-
tion determines the ordering of the components and which data unit is read for
each component. They also keep track of the number of data units read and com-
pare this to the restart interval in order to determine when a restart marker must
be read.

102

Using the Decoder Class

The JpegDecoder class is used in the same manner as the other decoder classes
presented in this book. The following fragment illustrates how to use it to convert
a JPEG file to a Windows BMP file.

Decoding Application

The DECODER application converts a JPEG image to BMP format. The command-
line format for this application is

DECODER input.jpg output.bmp

DECODER creates a JpegDecoder object and then calls its ReadImage function
to read the input file into a BitmapImage object. It creates the BMP file by call-
ing the WriteImage function of a BmpEncoder object.

Conclusion 103

#include "jpgdecod.h"
#include "bmpencod.h"

ifstream input ("INPUT.JPG", ios::binary)
ofstream output ("OUTPUT.BMP", ios::binary) ;
BitmapImage image ;
JpegDecoder decoder ;
decoder.ReadImage (input, image) ;
BmpEncoder encoder ;
encoder.WriteImage (output, image) ;

Creating Sequential
JPEG Files

In this chapter we cover the implementation of sequential-mode JPEG encoders.
In general, the process for creating a JPEG file is the reverse of the decoding
process. A major difference between encoding and decoding is that encoding
requires several choices to be made while in decoding you take what you get. The
endcoding choices include compression parameters, Huffman code generation,
and block ordering.

Chapter 9

Compression Parameters

In compressing an image using sequential-mode JPEG compression, we have
several choices. These include

• The composition and number of quantization tables and the assignment of
tables to components

• The number of Huffman tables, their assignment to components, and the
method for their creation

• The number of scans and the components in each

• The frequency of restart markers

• Component sampling frequencies

• Whether to create a color or grayscale image

• Whether to use baseline or extended frames

An encoder can make these choices either on a per-image basis or globally.

105

Creating Sequential JPEG Images

Two frame types can be used for sequential JPEG with Huffman encoding:
baseline sequential (SOF0) or extended sequential (SOF1). The only difference
between the two is that baseline sequential supports only 8-bit samples and a
maximum of two DC and two AC Huffman tables; extended sequential supports
8-bit and 12-bit samples and up to four DC and four AC Huffman tables. Baseline
sequential is the JPEG mode implemented by most JPEG decoders; thus, for the
greatest compatibility, an encoder should use it when possible. The encoder at the
end of this chapter encodes only 8-bit sample data and, since there is no need to
for more than two of each type of Huffman table, it uses baseline sequential.

Extended sequential is upwardly compatible with baseline
sequential JPEG. If an encoder were to simply replace the SOF0

marker with an SOF1 marker, it would create a perfectly valid
extended sequential file.

Huffman Tables

Since color images have three components and baseline mode allows only two
Huffman tables of each type, an encoder has to share its Huffman tables among
components or split the components among multiple scans. Our encoder always
uses the Huffman tables with the identifier 0 to encode the Y component and the
table with the identifier 1 to encode the Cb and Cr components. If the Cb and Cr
components are encoded within the same scan, they share a Huffman table.

If an image is divided into two or more scans it is possible for the
encoder to assign a different Huffman table for each scan. Our
encoder only assigns the Cb and Cr components different
Huffman tables when they are encoded in different scans. If they
are encoded within the same scan, even if the Y component is not
part of the scan, they share Huffman tables.

Quantization Tables

Both baseline and extended sequential modes allow up to four quantization tables
defined for an image. Our sample encoder is only going to use two. One table
(ID=0) is used for the Y component and the other (ID=1) is used for the Cb and
Cr components. These table assignments are an arbitrary choice.

The next problem is how to create the quantization tables. We could allow a
user to specify all the elements of the quantization table, but this would make
using the decoder a little tedious, especially for people who do not know the inner
workings of JPEG. Having a fixed set of quantization values would not be a good

106

Compression Parameters 107

idea, either, since different types of images require different quantization values
in order to decompress without noticeable defects.

Our solution originates with the Independent JPEG Group's JPEG library.
We start with the sample quantization values from the JPEG standard (Figure
7.7), then scale these values down for higher quality and up for lower quality. The
caller selects a quality value that ranges from 1 to 100. Quality level 50 uses the
unmodified quantization values from the JPEG standard. Quality values below
25 produce quantization values so large that the resulting compressed image will
be all black. Using quantization values near 100 produces quantization values
close to 1, resulting in extremely poor compression.

The sample encoding uses this formula to calculate a scaling factor for quan-
tization values:

scale factor =

There is no derivation behind this formula. It is simply one that that gives a scale
factor of 1 when the quality value is 50 and gives a decent scaling across the
range 1-100. If you are implementing a JPEG encoder you can come up with
your own scaling or use any other method you want for generating quantization
values. For example, you may have quality values ranging from 1 to 4 and select
from among four sets of predefined quantization tables.

An important point to take from this discussion is that quality val-
ues are all relative. The concept of a quality value does not exist
within the JPEG standard but rather was developed with the
implementation of JPEG encoders. The same quality value will
more likely than not produce different results among different
encoders even when the quality value range is the same.

Scans

In sequential JPEG the data for each component is stored in a single scan. For a
color image one to three scans can be used. The five possible component group-
ings are shown in Figure 9.1. The individual scans can be encoded in any order,
which means that there are actually thirteen different ways to group and order the
components in a sequential image. A grayscale image will naturally only have
one scan.

Figure 9.1
Possible
Component
Groupings for a
Color Image

108 Creating Sequential JPEG Images

There are few reasons why an encoder would divide the image into multiple
scans. If the image is being transmitted over a network and displayed on the fly,
encoding the Y component by itself in the first scan allows the user to view a
grayscale version of it before all the data is received. This gives some of the bene-
fits of progressive JPEG without the implementation difficulties.

Separate scans can overcome the limitations in the number of Huffman
tables allowed. Baseline JPEG allows only two Huffman tables of each type. If
for some reason a separate table were needed for each component, multiple scans
could be used. Figure 9.2 shows a marker ordering that would allow a color base-
line JPEG image to use a different Huffman table for each component.

An encoder can allow the user to specify the component grouping into scans,
or it can use a predefined grouping. The decision on which to use depends on
whether flexibility or ease of use is desired. If the user is not allowed to specify
the component grouping, the encoder needs to automatically divide components
into multiple scans when this is required by the sampling frequencies.

Figure 9.2
Baseline Marker
Ordering That Gives
Each Component
Different Huffman
Tables

DHT
SOS
DHT
DHT
SOS

Defines Table 0
Y Component Uses Table 0
Redefines Table 0
Defines Table 1
Cb Component Uses Table 0, Cr Component Uses Table 1

Sampling Frequencies

The sample encoder allows the user to assign horizontal and vertical sampling
frequencies (1-4) to each component, but this is not a requirement. A simpler
method that almost always produces good results is for an encoder to allow the
user to specify the sampling frequencies for the Y component while always using
the value 1 for the Cb and Cr components.

If the user is permitted to specify any possible sampling frequency for any
component, the encoder must then deal with the problem of fractional sampling.
If all of the sampling frequencies are powers of 2 (1, 2, 4), during the down-sam-
pling process entire pixels (1, 2, 4, 8, or 16) will be mapped to a single sample
value. If, on the other hand, any component has a horizontal or vertical sampling
frequency of 3 and any other component has a corresponding sampling frequency
of 2 or 4, the down-sampling process will map fractional pixels to sample values.
While this is legal in the JPEG standard, it is not widely supported. If you create
images that use fractional sampling, very likely they will not be readable by many

other applications. The sample JPEG encoder generates an exception during the
compression process if the user has specified fractional sampling.

The JPEG standard (Section B.2.3) specifies that an MCU within a scan may
contain a maximum of 10 data units:

HFy × VHy + HFcb × VHcb + HFCr × VHCr 10

This is an arbitrary limit, but it is easy to overlook. The encoder must therefore
ensure that this limit is not exceeded, or else the files it produces will not be
readable by decoders that conform to the JPEG standard. Suppose that the
Y component has horizontal and vertical sampling frequencies of 4. Since the Y
component would contribute 16 data units to an MCU in an interleaved scan,
with these sampling frequencies the Y component would have to be encoded by
itself in a noninterleaved scan.

The sample encoder throws an exception if the user tries to create scans
with more than 10 data units per MCU. An alternative would be for the encoder
to limit the user's options to sampling frequencies that will not exceed this limit.
For instance, the encoder could give the user a choice of making all the sampling
frequencies 1 (3 data units per MCU) or allow the Y component to have sam-
pling frequencies of 2 and the other components to have sampling frequencies
of 1 (6 data units per MCU). Yet another possibility would be for the encoder to
automatically assign components to separate scans if the number of data units
in an MCU is too large.

Restart Markers

Restart markers are used to create independently encoded blocks of MCUs. In a
sequential JPEG file the DC coefficient is encoded as a difference value rather
than as an absolute value. When an image contains no restart markers, every
MCU, except for the first, depends upon the previous MCU being decoded cor-
rectly.1 If the encoded data for an MCU gets corrupted (e.g., while the file is
being transmitted over a telephone line), each subsequent MCU will be incor-
rectly decoded.

If an image contains restart markers, a decoder can use them to recover from
corrupt compressed data. Since restart markers are placed in the output stream in
sequence, decoders can compare the last one read before the corrupt data was
encountered to the current one and use the restart interval to determine where in
the image the decoding should resume. This works as long as the corruption in
the compressed stream does not span eight restart markers. If it does, the decoder
will not be able to match the remaining compressed data to its correct location
within the image.

1In progressive JPEG there can be dependencies among the data units from the AC coefficients as well.

Compression Parameters 109

Creating Sequential JPEG Images

Obviously, the smaller the restart interval, the sooner the decoder can recover
from an error. Having a restart interval so large that only one or two restart mark-
ers get written in the scan is usually of little value. Having too small a restart
interval is not a good idea, either. Each restart marker adds two bytes of overhead
to the compressed stream and can reduce the amount of data compression, espe-
cially in progressive-mode JPEG. A tiny restart interval also makes it more likely
that corruption will extend past eight restart markers.

When creating JPEG files that are used on a single system or a reliable net-
work, restart markers are rarely necessary. If you need them for error recovery, a
good restart interval is the number of MCUs that make up a row.

Color or Grayscale

The JFIF standard allows either three-component color images or one-compo-
nent (Y) grayscale images. A JPEG encoder can be written so that it always
uses three components, but the drawback is that the grayscale images will be a
bit larger and the processing required to decode them significantly more than
necessary. In the RGB colorspace, shades of gray are represented with compo-
nent values where R = G = B. If you look closely at the RGB-to-YCbCr con-
version functions in Chapter 1 you will see that, with 8-bit samples, for any
grayscale color (R = X, G = X, B = X), the corresponding YCbCr color repre-
sentation is Y = X, Cb = 128, Cr = 128. Since 128 is subtracted from the com-
ponent values before the DCT is performed, the coefficients for the Cb and Cr
components in a grayscale image will all be zero. In a grayscale image the Cb
and Cr components obtain outstanding compression since each data unit
requires only 2-bits to encode, not counting the overhead from markers. While
the amount of compressed data from the Cb and Cr components is relatively
small, it is still completely useless.

An encoder can automatically determine if the incoming image is in
grayscale by checking to see if the RGB color value for each pixel is such that
R = G = B. This causes a problem if an image contains RGB values where the
component's values are very close but not exactly equal—an RGB value of (101,
100, 102), for example, would look gray on the screen. An encoder could use a
small delta value instead of equality to make the test:

abs(R - B) <
abs(R - G) <

abs(G - B) <

However, this raises the question of how large to make the delta and, more impor-
tant, whether or not the user wants images with colors close to pure gray to be
converted to grayscale. Probably the safest way to deal with grayscale images is
to have the user specify to the encoder whether to compress the image using
grayscale or color.

110

Doing the Encoding 111

Output File Structure

Figure 9.3
Encoder Block
Ordering

The JPEG standard is fairly flexible when it comes to the ordering of markers
within an output stream. Three major marker ordering restrictions must be
followed:

• The file must start with an SOI marker, follow with a JFIF APP0 marker, and
end with an EOI marker.

• For the JPEG modes we are using there can be only one SOF marker and it
must occur before any SOS markers.

• All Huffman and quantization tables used by a scan must be defined by DHT
and DQT markers that come before the SOS marker.

Figure 9.3 shows a block ordering for a JPEG file that will work in most sit-
uations. The sample JPEG encoder follows this scheme. Encoders that need to
store application-specific information need to insert APPn blocks containing this
data into the output file.

Doing the Encoding

Validations

The first step in creating a JPEG file is to validate the compression parameters.
The encoder should ensure that

• The sampling frequencies do not result in scans with MCUs containing more
than 10 data units.

• The sampling frequencies do not result in fractional sampling.

• All of the components in the image will be written in some scan.

Outputting the Blocks

With the exception of the compressed data that follows the SOS marker and the
generation of Huffman tables for the DHT markers, creating the markers is a sim-
ple matter of filling in the values for the fields shown in Chapter 5. The only dif-
ficult part is creating the compressed data, which will be dealt with in the next
few sections.

Creating Sequential JPEG Images

Down-Sampling

Horizontal
Vertical

Y
2
2

Cb
1
1

Cr
1
1

Horizontal
Vertical

Y
1
1

Cb
2
2

Cr
2
2

For II = 0 To IMAGEHEIGHT - 1 Step VERTICALINTERVAL
Begin
For JJ = 0 To IMAGEWIDTH - 1 Step HORIZONTALINTERVAL

Begin
COMPONENTDOWNSAMPLE [II/VERTICALINTERVAL]

[JJ/HORIZONTALINTERVAL] = COMPONENTPIXELDATA [II][JJ]
End

End

The first step in the compression process is down-sampling. That is, if a compo-
nent has either a horizontal or a vertical sampling frequency of less than the max-
imum value of all the components, it is shrunk. Suppose we have a color image
whose components have the following sampling frequencies:

This means that for every two samples taken for the Y component in each direc-
tion, one sample is taken for the Cb and Cr components. Another way to look at
this is to convert the sampling frequencies to intervals where each interval is the
maximum frequency value divided by a component's frequency value. For the
previous example the horizontal and vertical intervals are

Conceptually, the down-sampling process for a component would be

This process divides the component's pixel data into blocks whose dimensions
are the sampling intervals, and takes one sample from each block. While this
method works, a better one is to take the average sample value for each block
rather than the value from one pixel.

The preceding example shows all of the component's data being down-sam-
pled into a buffer, which in reality need not be anything other than 8 × 8. If the
down-sampling process is organized to produce one data unit at a time, the DCT
and quantization processes shown in Chapter 7 can be performed immediately,
eliminating the need to buffer a component's down-sampled data.

At this point in the encoding process, an encoder can take one of two paths.
It can be structured so that as soon as it has performed the DCT and quantization
it immediately encodes the data unit. Or it can store in a buffer all of the DCT
coefficients for the components within a scan, then handle the interleaving and
data unit encoding in a separate pass.

112

The first option has the advantage of requiring significantly less memory
than the second. The second option makes sense only if the encoder is going to
support progressive JPEG (Chapter 10). Then it has to maintain a buffer con-
taining all of the DCT coefficients for a component; otherwise, it must repeat-
edly down-sample and perform the DCT on the same data. If the encoder is to
share as much of the same code as possible for sequential and progressive JPEG,
buffering all of the component's DCT coefficients makes a lot of sense. Buffering
the scan's DCT coefficients also makes it possible to generate Huffman tables
from usage frequencies.

The rest of this discussion assumes that the encoder buffers the DCT coeffi-
cients. If it maintains a two-dimensional array of 8 × 8 DCT coefficient buffers,
the size of the array will be

Buffer Width =

Buffer Height =

Interleaving

At this point the encoder has created buffers containing the DCT coefficients for
the components in the scan. The next step is to determine the order in which the
data units within the buffers are encoded. If the scan is noninterleaved (i.e., it
contains one component), the ordering is simple as shown in Algorithm 9.1.

Global RESTARTINTERVAL
Procedure EncodeNonInterleaved

Begin
RESTARTCOUNTER = 0
For II = 0 To BUFFERHEIGHT - 1 Do

Begin
For JJ = 0 To BUFFERWIDTH - 1 Do

Begin
If RESTARTINTERVAL <> 0 And RESTARTCOUNTER = RESTARTINTERVAL Then

Begin
OutputRestartMarker ()
RESTARTCOUNTER = 0
End

EncodeDataUnit (BUFFER [II][JJ])
RESTARTCOUNTER = RESTARTCOUNTER + 1
End

End
End

113Interleaving

Algorithm 9.1
Noninterleaved
Scan Encoding

Creating Sequential JPEG Images

If the scan is interleaved, the decoder needs to determine the number of
MCU rows and columns that make up the image. The process is almost the same
as that used for decoding JPEG images in Chapter 8. The only difference is that
in decoding the sampling frequencies are read from the JPEG file whereas in
encoding the sampling frequencies are input parameters. The number of MCU
rows and columns is determined using the sampling frequencies for all compo-
nents that make up the image, not just the components in the current scan.

The ordering of data units within an interleaved scan was illustrated in
Chapter 5. Algorithm 9.2 illustrates how the ordering is implemented within an
encoder. The order of components within the scan is the order in which they are
listed in the SOS marker.

Global RESTARTINTERVAL
Procedure EncodeInterleaved (COMPONENTCOUNT, COMPONENTS [1..COMPONENTCOUNT])

Begin
RESTARTCOUNT = 0
For II = 0 To MCUROWS - 1 Do

Begin
For JJ = 0 To MCUCOLUMNS - 1 Do

Begin
// This block processes a single MCU
If RESTARTINTERVAL <> 0

And RESTARTCOUNT = RESTARTINTERVAL Then
Begin
OutputRestartMarker ()
RESTARTCOUNT = 0
End

For KK = 0 To COMPONENTCOUNT - 1 DO
Begin
For LL = 0 To COMPONENTS [KK].VERTICALFREQUENCY - 1 Do

Begin
For MM = 0 To COMPONENTS [KK].HORIZONTALFREQUENCY - 1 DO

Begin
ROW = II * COMPONENTS [KK].VERTICALFREQUENCY + LL
COLUMN = JJ * COMPONENTS [KK].HORIZONTALFREQUENCY + MM
EncodeDataUnit (COMPONENTS [KK].BUFFER [ROW][COLUMN])
End

End
End
RESTARTCOUNT = RESTARTCOUNT + 1

End
End

End

114

Algorithm 9.2
Noninterleaved
MCU Encoding

Data Unit Enconding

Data Unit Encoding

void ReverseExtend (int value,
unsigned int &magnitude,
unsigned int &bits)

{
if (value >= 0)
{

bits = value ;
}
else
{

value = -value ;
bits = ~value

}
magnitude = 0 ;
while (value != 0)
{

value >>= 1 ;
++ magnitude ;

}
return ;

}

115

The encoding of data units is essentially the reverse of the decoding process
shown in Chapter 8. There the Extend() function converted a magnitude value
and extra bits into a coefficient value. ReverseExtend() does the opposite,
converting a coefficient value into a magnitude and extra bits.

For each data unit, the DC coefficient is encoded first, followed by the AC
coefficients in zigzag order. The encoded DC value is actually the difference
between the DC coefficient value in the current data unit and the DC value from
the last data unit processed for the same component. The DC coefficient is
encoded as a Huffman-encoded magnitude value (Table 9.1) followed by a
string of unencoded bits. The magnitude value specifies the number of literal
bits to follow.

Only nonzero AC coefficients are encoded. They are stored as a Huffman-
encoded byte value followed by a number of literal bits. The encoded byte is
divided into two 4-bit fields, with the 4 low-order bits giving the coefficient
magnitude value (Table 9.2) and the 4 high-order bits giving the number of zero-
valued coefficients to skip. Both bit fields are set to zero when all the remaining
AC coefficients are zero. The code F016 is used to represent a run of 16 zero-
valued coefficients and is not followed by any literal bits.

Algorithm 9.3 shows how a data unit is encoded using sequential JPEG. The
input parameter is an array of quantized DCT coefficients arranged in the JPEG
zigzag order.

116 Creating Sequential JPEG Images

Table 9.1
DC Difference
Magnitude Codes
and Ranges

Encoded Value

0
1
2
3
4
5
6
7
8
9

10
11

DC Difference Range

0
-1, 1

-3, -2, 2, 3
-7 . . -4, 4 . . 7

-15 . . -8, 8 . . 15
-31 . . -16, 16 . . 31
-63 . . -32, 32 . . 63

-127 . . -64, 64 . . 127
-255 . . -128, 128 . . 255
-512 . . -256, 256 . . 511

-1023 . . -512, 512 . . 1023
-2047 . . -1024, 1024 . . 2047

Algorithm 9.3
Sequential-Mode
Data Unit Encoding

Global LAST_DC_VALUE
Procedure EncodeDataUnit (DATAUNIT [0..63])
Begin
DIFFERENCE = DATAUNIT [0] - LAST_DC_VALUE
LAST_DC_VALUE = DATAUNIT [0]
ReverseExtend (DIFFERENCE, MAGNITUDE, BITS)
HuffmanEncodeUsingDCTable (MAGNITUDE)
WriteRawBits (MAGNITUDE, BITS)

ZERORUN = 0
II = 1
While II < 64 Do
Begin
If DATAUNIT [II] <> 0 Then
Begin
While ZERORUN >= 16 Do
Begin
HuffmanEncodeUsingACTable (F016)
ZERORUN = ZERORUN - 16
End

ReverseExtend (DATAUNIT [II], MAGNITUDE, BITS)
HuffmanEncodeUsingACTable ((ZERORUN LeftShift 4) Or MAGNITUDE)
WriteRawBits (MAGNITUDE, BITS)
End

Else
Begin
ZERORUN = ZERORUN + 1
End

End
If ZERORUN <> 0 Then
Begin
HuffmanEncodeUsingACTable (0016)
End

End

Huffman Table Generation

Table 9.2
AC Magnitude
Codes and Ranges

Encoded Value

1
2
3
4
5
6
7
8
9

10

AC Difference Value Range

-1, 1
-3, -2, 2, 3

-7 . . -4, 4 . . 7
-15 . . -8, 8 . . 15

-31 . . -16, 16 . . 31
-63 . . -32, 32 . . 63

-127 . . -64, 64 . . 127
-255 . . -128, 128 . . 255
-511 . . -256, 256 . . 511

-1023 . . -512, 512 . . 1023

Huffman Table Generation

The code in the previous section makes use of Huffman coding, but where do
we get the Huffman tables used to encode the coefficients? The JPEG standard
does not specify how Huffman codes are generated. Any set of Huffman codes,
where no code is longer than 16-bits and no code consists of all 1-bits, can be
used. There is no requirement that the codes be assigned to values based upon
usage frequencies. Thus, the simplest method for Huffman encoding is to use
a predefined Huffman table. The JPEG standard includes two sets of sample
Huffman codes for use with DC and AC coefficients,2 and an encoder can be
implemented so that it uses these or any other set of predefined tables.
Nevertheless, while this method has the advantage of being fast and easy to
implement, it obviously does not compress as well as using Huffman codes
based upon usage frequencies.

Unless compression speed is a major issue, it makes sense to create the
Huffman tables from usage frequencies, which requires the encoder to make two
passes over the DCT coefficients in a scan. The obvious implementation method
is to have separate functions for gathering statistics and outputting codes. The
problem with this method is that this requires two sets of nearly identical func-
tions that must be kept in strict synchronization. The slightest implementation
change made to one set of functions would have to be made to the other, creating
a maintenance nightmare.

A better solution is to use separate functions for processing individual codes.
An encoder could implement two pairs of procedures similar to those shown in
Algorithm 9.4.

2Section K.3 in the JPEG standard.

117

118 Creating Sequential JPEG Images

Algorithm 9.4
AC and DC
Coefficient
Functions

Procedure GatherDC (VALUE, EXTRABITS)
Begin
// EXTRABITS is not used
IncrementFrequency (VALUE)
End

Procedure PrintDC (VALUE, EXTRABITS)
Begin
FindHuffmanEncode (VALUE, CODE, CODELENGTH)
WriteRawBits (CODELENGTH, CODE)
If VALUE <> 0 Then

WriteRawBits (VALUE, EXTRABITS)
End

Procedure GatherAC (VALUE, EXTRABITS)
Begin
// EXTRABITS is not used
IncrementFrequency (VALUE)
End

Procedure PrintAC (VALUE, EXTRABITS)
Begin
FindHuffmanEncode (VALUE, CODE, CODELENGTH)
WriteRawBits (CODELENGTH, CODE)
If (VALUE And 0F16 <> 0 Then

WriteRawBits (VALUE And 0F16, EXTRABITS)
End

Each procedure has an identical interface, so the encoding process code can
be modified to look the procedures in Algorithm 9.5, where DCPROCEDURE is a
pointer to either GatherDC or PrintDC and ACPROCEDURE is a pointer to either
GatherAC or PrintAC.

Using pointers to procedures allows the same function to be used both for
gathering Huffman usage statistics and for encoding the actual data.

Global LAST_DC_VALUE
Procedure EncodeDataUnit (DATAUNIT [0..63], DCPROCEDURE, ACPROCEDURE)

Begin
DIFFERENCE = DATAUNIT [0] - LAST_DC_VALUE
LAST_DC_VALUE = DATAUNIT [0]
ReverseExtend (DIFFERENCE, MAGNITUDE, BITS)
DCPROCEDURE (MAGNITUDE, BITS)

ZERORUN = 0
II = 1
While II < 64 Do

Begin
If DATAUNIT [II] <> 0 Then

Begin
While ZERORUN >= 16 Do

Begin
ACPROCEDURE (F016, 0)
ZERORUN = ZERORUN - 16
End

ReverseExtend (DATAUNIT [II], MAGNITUDE, BITS)
ACPROCEDURE ((ZERORUN LEFTSHIFT 4) Or MAGNITUDE), BITS)
End

Else
Begin
ZERORUN = ZERORUN + 1
End

End
If ZERORUN <> 0 Then

Begin
ACPROCEDURE (0016)
End

End

Algorithm 9.5
Data Unit Encoding
Using Function
Pointers

Conclusion

This chapter covered the process for encoding sequential-mode JPEG images.
The process for encoding baseline sequential and extended sequential files is
basically the same for 8-bit images, except for restrictions on the number of
tables that can be defined. The JPEG standard (JPEG 1994) contains sample
Huffman and quantization tables.

119Conclusion

Creating Sequential JPEG Images

The source code example for this chapter is an encoder for sequential JPEG
images. The encoder application is a simple one for converting a Windows BMP
file to a sequential JPEG file. The command format is

ENCODER input.bmp output.jpg

to create a color JPEG file or

ENCODER -g input.bmp output.jpg

to create a grayscale file.

Component Class

The JpegEncoderComponent class represents a single component during the
encoding process. Its main functions are sampling and data unit encoding.

The EncodeSequential member function encodes data units. Two of its
parameters are pointers to member functions that process codes generated from
the image. This allows the same function to be used both for gathering value
usage statistics for Huffman code generation and for Huffman encoding the
data. These parameters will be pointers to either the GatherDcData and
GatherAcData functions or the PrintDcData and PrintAcData functions.
The first pair gathers statistics; the second writes Huffman-encoded values to the
output stream.

Encoder Class

The encoder class is JpegEncoder. Two of its member functions control image
compression. The compression-versus-quality tradeoff is specified using
SetQuality. The quality value can be in the range 1-100 and determines the
amount to scale the sample quantization table values. SetSampIingFrequency
sets the horizontal and vertical sampling frequency (1-4) for a component.

By default the encoder places all components in a single scan. The
SetScanAttributes member function can be used to place components in dif-
ferent scans. The last two parameters to this function are used only for progres-
sive JPEG (Chapter 10). For now they should always be 0.

The InterleavedPass and NoninterleavedPass functions are the heart
of the encoder. They control the order in which data units are encoded and when
restart markers are written. These functions use pointers to member functions;
thus, they can be used for both gathering Huffman usage statistics and Huffman
encoding.

120

Optimizing the DCT

At the start of the book we stated that we would strive for clarity rather than pro-
gramming efficiency. This is the only chapter that deals with execution effi-
ciency. Calculating the IDCT is the most time-consuming part of decoding a
JPEG image file. Therefore, this is the best place to optimize for speed. The tech-
niques for optimizing the IDCT work for the DCT as well. However, speed is
generally more of an issue when decoding JPEG files than when encoding them.

To optimize the IDCT and DCT calculations we are going to use mathemat-
ics, not programming tricks. A basic knowledge of linear algebra and trigonom-
etry will be very useful in getting through the derivations. Many people find it
frustrating when explanations of mathematical processes leave out just enough
steps to get you lost, so the explanations are rather detailed. If you have no inter-
est in the mathematics or find this tedious, you can simply skip to the end of the
chapter to find the end result.

Factoring the DCT Matrix

In Chapter 6 we explained that two matrices are multiplied by taking the dot
product of the rows of the first matrix with the columns of the second matrix.
When we use a matrix to calculate the IDCT we use Equation 10.1, where Mis
the transform matrix and T is the input data to the transform.

Equation 10.1 V = MTTM
Inverse DCT

Since matrix multiplication is associative, we can perform the two multi-
plication operations in either order. For consistency, in this chapter we are
going to perform the multiplication as V = MT(TM). In other words, we are

121

Chapter 10

122 Optimizing the DCT

Equation 10.2

going to multiply the rows of T by the columns of M to create a temporary
matrix. Then we are going to multiply the columns of the temporary matrix by
the rows of MT.

When we multiply T × M each output row depends only on the correspond-
ing row in T so we can treat the calculation of each row separately. Similarly,
when we multiply MT and the temporary matrix, each column in the output
depends only on the corresponding column in the temporary matrix.

The DCT transform matrix as originally presented in Chapter 7 is repeated

with the substitution in Equation 10.2. Each row/column dot product

requires 8 multiplication operations and 7 additions; therefore, transforming each
row requires 64 multiplication operations and 56 additions.

Notice that there is much symmetry in the matrix. We will exploit these sym-
metries by factoring the DCT transform matrix into the product of several sparse
matrices.

The first transformation we are going to make is to factor out the constant

value from each element in the matrix and redefine the IDCT using the equiv-

alent definition shown in Equation 10.3.

Equation 10.3 V = MTTM

M =

Equation 10.4

Factoring the DCT Matrix 123

M =

The next few simplifications take advantage of the symmetries in the values
of the cosine function to reduce the number of unique values in the transform
matrix. The properties of the cosine function can be found in any mathematical
handbook.

If you refer to Figure 10.1 you can see that the cosine function is cyclical
such that

cos x = cos (x + 2¶)

Using Equation 10.5 we can replace every occurrence of in Equation 10.4

with , giving Equation 10.6.

Equation 10.5

Figure 10.1
Cosine Function

For now we will ignore the factor and simply work with the matrix shown
in Equation 10.4.

124 Optimizing the DCT

Equation 10.6

Equation 10.7

Equation 10.8

M =

Equation 10.9

Again referring to Figure 10.1, the cosine function is symmetric along the
x-axis such that

Using Equation 10.7 we can replace all the matrix elements in Equation 10.6
with arguments to the cosine function that are greater than ¶, giving Equation
10.8.

The cosine function is also symmetric along the y-axis such that

M =

Using Equation 10.9 we can replace all arguments to the cosine function in

Equation 10.8 that are greater than , giving Equation 10.10.

Factoring the DCT Matrix 125

Equation 70.70

The value of the cosine function at is well known.

Substituting Equation 10.11 in to Equation 10.10 gives Equation 10.12.

Equation 10.11

Equation 10.12

M =

M =

Optimizing the DCT

Disregarding the sign, only seven distinct values remain in the transform
matrix. Now that the values within the transform matrix have been simplified we
will factor the matrix into the product of several sparse matrices. The primary
goal in the factorization of the transform matrix is to create matrix factors with
as many zero values as possible. The secondary goal is to create matrices with the
values +/-1. Zeros are great, ones are so-so, and everything else is bad.

The process used to factor the matrix is called Gaussian elimination.
Gaussian elimination is beyond the scope of this book. However we have
attempted to include enough steps for a reader with a basic knowledge of linear
algebra to clearly see how the factors are obtained.

Notice that if the matrix in Equation 10.12 is divided in half vertically, the
left half of each row is either a mirror image of the right or a negative mirror
image. We can factor the matrix to group the mirror image rows together and the
negative mirror image rows together (Equation 10.13). This first factorization is
not strictly necessary. Its only purpose is to make the remaining factorization
steps clearer.

The following examples of matrix multiplication operations illus-
trate the principles of row reduction used to factor the DCT matrix.

126

=

=

=

=

=

=

Row Interchange

Row Addition

Column Interchange

Column Addition

M =

Equation 70.73

127Factoring the DCT Matrix

128 Optimizing the DCT

In Equation 10.14, notice that the nonzero elements at the upper left corner
of the center matrix form the same mirror pattern as the rows of the matrix in
Equation 10.13. We factor again in a similar manner to attack that corner
(Equation 10.15).

Equation 10.14

M =

Factoring the DCT Matrix 129

Take a look at the 4 × 4 submatrix at the lower right corner of the second
matrix in Equation 10.15 and in Equation 10.16.

Equation 10.15

M =

Equation 10.16

S =

Optimizing the DCT

Equation 10.18

Equation 7.11

Equation 7.20

130

This matrix can be factored out even more if we take advantage of these
relations, which can be found in any book of standard mathematical formulas.

Using Equation 10.17 we find that

A derivation from Equation 10.18. The other values are derived in
a similar manner.

Equation 10.17

Factoring the DCT Matrix 131

S =

S =

Equation 10.21

Equation 10.20

Equation 10.19

S =

Substituting Equation 10.18 into Equation 10.16 gives the results in
Equation 10.19.

Equation 10.19 can be factored into Equation 10.20.

132 Optimizing the DCT

Putting Equation 10.21 into Equation 10.15 gives the matrix shown in
Equation 10.22.

Equation 10.22

M =

Factoring the DCT Matrix 133

Equation 10.22 appears to be much more complicated than the original in
Equation 10.2, but it actually requires fewer steps to calculate. Multiplying a row
vector and M requires 64 multiplication and 56 addition operations. In the fac-
tored matrices any nonzero value that is not equal to +/-1 represents a multipli-
cation and all but one nonzero value in each column represents an addition.
A zero in a factor represents no operation and almost all of the array elements are
zeros. Table 10.1 shows the operations required for each matrix multiplication
with the factored matrices.

Table 10.1
Operations
Required After
Factorization

Matrix

1
2
3
4
5
6
7
Total

Addition

0
8
4
2
0
4
8

26

Multiplication

0
12
0
0
2
0
0

14

Equation 10.23

Most processors take longer to execute multiplication instructions than addi-
tions. For example, on my system the speed advantage is about 4:1 in favor of
addition. Therefore, it is usually advantageous to replace multiplication opera-
tions with addition. In the factored matrix most of the multiplication operations
are in groups of the form

X = A cos + B sin

Y = A sin - B cos

This form is well known in computer graphics because it represents the rota-
tion of the point (A, B) by an angle. A rotation uses four multiplication operations
and two additions, but if it is calculated as shown in Equation 10.23, it requires
3 multiplications and 3 additions. If this method is used for multiplying the
matrix, the total number of operations required to multiply a row by the DCT
matrix becomes 11 multiplications and 29 additions.

134 Optimizing the DCT

Equation 10.24
T = cos (A + B)

X = T - (cos - sin)B

Y = -T + (cos + sin)A

The following code example is an implementation of an IDCT function that
slavishly follows the factorization in Equation 10.22 so that you can clearly see
how the factored matrix multiplications are implemented in code.

typedef double MATRIX [8][8] ;
const double C1 = (sqrt (2.0) * cos (M_PI/16.0)) ;
const double C2 = (sqrt (2.0) * cos (2.0*M_PI/16.0)) ;
const double C3 = (sqrt (2.0) * cos (3.0*M_PI/16.0)) ;
const double S1 = (sqrt (2.0) * sin (M_PI/16.0)) ;
const double S2 = (sqrt (2.0) * sin (2.0*M_PI/16.0)) ;
const double S3 = (sqrt (2.0) * sin (3.0*M_PI/16.0)) ;
const double SQRT2 = (1.0 / sqrt(2.0)) ;
unsigned int Limit (double input)
{

double value = input + 128.5 ;
if (value < 0)

return 0 ;
else if (value > 255)

return 255 ;
else

return (unsigned int) value ;
}

void InverseDCT (MATRIX input, MATRIX output)
{

double tmp[SampleWidth][SampleWidth] ;
for (int row = 0 ; row < 8 ; ++ row)
{

double a0 = input[row][0]
double a1 = input[row][4]
double a2 = input[row][2]
double a3 = input[row][6]
double a4 = input[row][1]
double a5 = input[row][5]
double a6 = input[row][3]
double a7 = input[row][7]

double b0 = (a0 + a1) ;
double b1 = (a0 - a1) ;

// b2 = S2 * 2 - C2 * a3 ;
// b3 = C2 * a2 + S2 * a3 ;

double r0 = S2 * (a2 + a3) ;
double b2 = r0 - (S2+C2) * a3 ;
double b3 = r0 - (S2-C2) * a2 ;

// b4 = S1 * a4 - C1 * a7 ;
// b7 = C1 * a4 + S1 * a7 ;

Factoring the DCT Matrix 135

double r1 = S1 * (a4+a7) ;
double b4 = r1 - (S1+C1) * a7 ;
double b7 = r1 - (S1-C1) * a4 ;

// b5 = C3 * a5 - S3 * a6 ;
// b6 = S3 *a5 + C3 * a6 ;

double r2 = C3 * (a5 + a6) ;
double b5 = r2 - (C3+S3) * a6 ;
double b6 = r2 - (C3-S3) * a5 ;

double c0 = b0 ;
double c1 = b1 ;
double c2 = b2 ;
double c3 = b3 ;
double c4 = b4 + b5 ;
double c5 = b5 - b4 ;
double c6 = b7 - b6 ;
double c7 = b7 + b6 ;

double d0 = c0 ;
double d1 = c1 ;
double d2 = c2 ;
double d3 = c3 ;
double d4 = c4 ;
double d5 = c6 + c5 ;
double d6 = c6 - c5 ;
double d7 = c7

double e0 = d0
double e1 = d1
double e2 = d2
double e3 = d3
double e4 = d4
double e5 = SQRT2 * d5 ;
double e6 = SQRT2 * d6 ;
double e7 = d7 ;

double f0 = e0 + e3
double f1 = e1 + e2
double f2 = e1 - e2
double f3 = e0 - e3
double f4 = e4
double f5 = e5
double f6 = e6
double f7 = e7

tmp [row][0] = (f0 + f7)
tmp [row][1] = (f1 + f6)
tmp [row][2] = (f2 + f5)
tmp [row][3] = (f3 + f4)
tmp [row][4] = (f3 - f4)

136 Optimizing the DCT

tmp [row][5] = (f2 - f5)
tmp [row][6] = (f1 - f6)
tmp [row][7] = (f0 - f7)

}

for(int col = 0 ; col < 8 ; ++ col)
{
double a0 = tmp [0][col]
double a1 = tmp [4][col]
double a2 = tmp [2][col]
double a3 = tmp [6][col]
double a4 = tmp [1][col]
double a5 = tmp [5][col]
double a6 = tmp [3][col]
double a7 = tmp [7][col]

double b0 = (a0 + a1) ;
double b1 = (a0 - a1) ;

// b2 = S2 * a2 - C2 * a3 ;
// b3 = C2 * a2 + S2 * a3 ;

double r0 = S2 * (a2 + a3) ;
double b2 = r0 - (S2+C2) * a3 ;
double b3 = r0 - (S2-C2) * a2 ;

// b4 = S1 * a4 - C1 * a7 ;
// b7 = C1 * a4 + S1 * a7 ;

double r1 = S1 * (a4+a7) ;
double b4 = r1 - (S1+C1) * a7 ;
double b7 = r1 - (S1-C1) * a4 ;

// b5 = C3 * a5 - S3 * a6 ;
// b6 = S3 * a5 + C3 * a6 ;

double r2 = C3 * (a5 + a6) ;
double b5 = r2 - (C3+S3) * a6 ;
double b6 = r2 - (C3-S3) * a5 ;

double c0 = b0 ;
double c1 = b1 ;
double c2 = b2 ;
double c3 = b3 ;
double c4 = b4 + b5 ;
double c5 = b5 - b4 ;
double c6 = b7 - b6 ;
double c7 = b7 + b6 ;

double d0 = c0 ;
double d1 = c1 ;
double d2 = c2 ;
double d3 = c3 ;
double d4 = c4 ;
double d5 = c6 + c5 ;
double d6 = c6 - c5 ;
double d7 = c7 ;

Scaled Integer Arithmetic 137

Scaled Integer Arithmetic

On most processors, floating-point operations take much longer than integer
operations. Another method for speeding up the IDCT and DCT calculations is
to use only integer operations. To simulate real numbers we scale the integer val-
ues by multiplying them by a power of 2.

If we were to scale all values by the 2, then we could represent the values
... -2, -1.5, 1, -.5, 0, .5, 1, 1.5, 2 ... using integers. If we scale them by 4, we
can represent ... -1.25, -1, -.75, -.5, -.25, 0, .25, .5, .75, 1, 1.25. The more we
scale the integers, the more precision we get in the calculation. Unfortunately,

double e0 = d0 + (128*8) ;
double e1 = d1 + (128*8) ;
double e2 = d2
double e3 = d3
double e4 = d4
double e5 = SQRT2 * d5 ;
double e6 = SQRT2 * d6 ;
double e7 = d7 ;

double f0 = e0 + e3 ;
double f1 = e1 + e2 ;
double f2 = e1 - e2 ;
double f3 = e0 - e3 ;
double f4 = e4 ;
double f5 = e5 ;
double f6 = e6 ;
double f7 = e7 ;

double g0 = f0 + f7
double g1 = f1 + f6
double g2 = f2 + f5
double g3 = f3 + f4
double g4 = f3 - f4
double g5 = f2 - f5
double g6 = f1 - f6
double g7 = f0 - f7

output [0][col] = Limit (g0/8.0)
output [1][col] = Limit (g1/8.0)
output [2][col] = Limit (g2/8.0)

output [3][col] = Limit (g3/8.0)
output [4][col] = Limit (g4/8.0)

output [5][col] = Limit (g5/8.0)
output [6][col] = Limit (g6/8.0)
output [7][col] = Limit (g7/8.0)

}
}

Optimizing the DCT

The problem with using scaled integers rather than floating-point values is
that unless you have a system with 64-bit integers you can never get the same pre-
cision you can with floating-point numbers. Generally the difference between the
two methods is very small, but a difference does exist that can produce greater
rounding errors.

If you are implementing a JPEG application, you may wish to use floating-
point values when you are compressing images and scaled integers when you are
decompressing them. Generally speed is more important when you want to view
a compressed image than when you are compressing one. This would give you
more accuracy when you create an image and more speed when you are view-
ing one.

138

const int scale = 5 ;
long v1 = 2 << scale ;
long v2 = 3 << scale ;
// Addition
long v3 = v1 + v2 ;
// Multiplication
long v4 = (v1 * v2) >> scale ;
// Division
long v5 = (v1 << scale) / v2 ;
cout << (double) v3 / (1 << scale) << endl ;
cout << (double) v4 / (1 << scale) << endl ;
cout << (double) v5 / (1 << scale) << endl ;

if we scale the integers so much that an integer overflow occurs, we get incor-
rect results.

The sample code below illustrates how to use scaled integers. In this exam-
ple the integer values are scaled by a factor of 25, which is implemented using a
left shift. To convert from a scaled integer to a regular integer you would use
a right shift operation with the scale factor. Here we used division to convert to
a floating-point value in order to preserve fractions.

Merging Quantization and the DCT 139

Merging Quantization and the DCT

Equation 10.25

Something we did not account for in the operation totals in Table 10.1 is that we

factored out the value from the IDCT equation. As you can see in Equation

10.3, this means that we have another 64 multiplication operations to add in at
the end. If the IDCT is implemented using scaled integers, then dividing by 8 can
be done as a bit shift that can be combined with descaling the final result.
Unfortunately, this does not work with floating-point numbers.

Another way to get rid of the term is to merge this value with the quan-
tization values. In fact, if we factor the DCT matrix a little differently, it is pos-
sible to save even more than the 64 operations resulting from this term. For this
factorization of the DCT matrix we are going to follow the same steps as in the
previous one until we get to Equation 10.15. From there we will branch off on
another path.

A formula that will play a key role in the factorization is the product of
cosines formula shown in Equation 10.25.

In the factored matrix in Equation 10.15 the cosine terms in each row or
column can be grouped into pairs

whose sum is , where the value of the cosine function is zero.

If we extract this submatrix from Equation 10.15 (Equation 10.26) it can be
factored as in Equation 10.27 using the cosine sum formula in Equation 10.25.

Equation 10.26

140 Optimizing the DCT

Equation 10.27

Merging Quantization and the DCT 141

The trick in this factorization is to choose the cosine row scaling values in
such a way that the cos (0) terms end up in the same column.

If we create another submatrix for the remaining cosine terms in Equation
10.15, we can follow a similar factorization process (Equation 10.28).

Equation 10.28

Table 10.2
Operations
Required for the
New Factorization

Matrix

1
2
3
4
5
6
7
8
9

10
Total

Addition

0
0
6
2
2
2
1
4
4
8

29

Multiplication

6
0
0
2
0
3
0
0
0
0

11

142 Optimizing the DCT

Once again, the cosine scaling terms have been chosen so that all of the
cos (0) terms end up in the same column. Equation 10.29 is the remainder of the
factorization.

Equation 10.29

Merging Quantization and the DCT 143

We can repeat the factorization process with the matrix with the cosine terms
to give Equation 10.30.

Equation 10.30

Putting it all together by substituting Equation 10.27, Equation 10.28, and
Equation 10.30 into Equation 10.15 gives Equation 10.31.

144 Optimizing the DCT

M =

Equation 10.31

Equation 10.32

Since Equation 10.32 holds true, the matrix multiplication operation can be
reordered so that the scaling is the first step when calculating the IDCT and the
last step when calculating the FDCT.

Substituting Equation 10.32 into Equation 10.31 gives Equation 10.33.
The number of operations needed to calculate each row or column using the

factorization in Equation 10.33 is shown in Table 10.2 (page 141).

Merging Quantization and the DCT 145

148 Optimizing the DCT

Equation 10.36

In JPEG decoding, the IDCT is immediately preceded by dequantization
which multiplies each of the elements in T by a constant value. If we merge the
IDCT and dequantization processes by scaling each quantization value by Sij,
then the steps in Equation 10.35 can be eliminated. In the FDCT the operations
in Equation 10.35 become the final step before quantization. If each element in
the quantization table used for encoding is divided by Sij, then these operations
can be eliminated from the DCT as well. This leaves 29 addition operations and
5 multiplication operations per data unit.

Conclusion

In this chapter you have seen how matrix factorization can be used to dramati-
cally reduce the number of operations required to implement the DCT and IDCT.
Efficiency is a product of design; not a result of coding. Before cluttering up your
code with performance enhancements, be sure to do measurements to ensure that
the performance benefit, if any, is worth the lack of clarity.

The code examples for this chapter are new implementations of the
JpegEncoderDataUnit, JpegDecoderDataUnit, JpegEncoderQuantiza-
tionTable, and JpegDecoderQuantizationTable classes that were origi-
nally presented in Chapter 7. The new classes merge the DCT and IDCT with
quantization using the process described in this chapter.

These new classes are structured so that they can replace the previous ver-
sions in the JpegDecoder (Chapter 8) and JpegEncoder (Chapter 9) classes
with few modifications. JpegDecoder needs no modifications to use the new
classes. JpegEncoder needs to add a call to the Bui1dScaledTables member
function of the quantization table class before performing the DCT.

The effect of this expression is to multiply each element in the matrix V by
the constant value Sij, where

Sij = F(i)F(j)

F(0) = 1

F(n) = , n=1,2, 3, 4, 5, 6, 7

Merging Quantization and the DCT 147

The additional benefit in this factorization is that we can eliminate the six
multiplication operations in the first matrix by merging them with the quantiza-
tion or dequantization processes. Matrix multiplication is associative and matrix
multiplication by a scalar is commutative. Therefore, if M is factored as shown in
Equation 9.31, the matrix operations in the IDCT calculation (Equation 10.34)
can be ordered so that these three operations take place first (Equation 10.35).

Equation 10.34

Equation 10.35

V = MTTM IDCT

T = MVMT FDCT

× T

Progressive JPEG

This chapter covers the encoding and decoding of progressive JPEG images,
which, while infrequently used, are becoming more common. One driving force
behind the use of progressive JPEG is the World Wide Web, an ideal use for pro-
gressive JPEG images. Using progressive images in Web pages makes it possible
for users to get a good idea of the contents of a Web page before the images are
completely downloaded. The other major force behind progressive JPEG is the
increasing availability of software and libraries (notably the IJG's library) that
support it.

Component Division in Progressive JPEG

A sequential JPEG file may contain a single scan, or the data may be organized
into multiple scans, each containing one or more components. However, in
sequential JPEG, each component is completely encoded within one scan. In pro-
gressive JPEG, components are encoded across multiple scans. Each component
is contained in at least two scans and possibly in as many as 896.1

Components are divided across scans in two distinct ways. One of these is
known as spectral selection. Spectral selection refers to the division of the com-
ponent into bands of DCT coefficients. Each band is a continuous range of DCT
coefficients using the zigzag order. The only restriction on the coefficients in a
band, other than that the band must contain a continuous range, is that the DC
component must be in a band by itself. At a minimum, a component will be
divided into two scans: one containing the DC coefficient and the other the AC

1In practice the number of scans is never anywhere near the high end of this range.

Chapter 11

149

150 Progressive JPEG

coefficients. At the most extreme the component can be divided into 64 bands
with one coefficient in each.

The first scan for a component must contain the DC coefficients. The bands
containing the AC coefficients may be encoded in any order. Progressive scans
containing the DC coefficient may be interleaved while scans containing AC
coefficients must be noninterleaved. Figure 11.1 shows an example of a data
unit divided into four bands.

The other component division in progressive scans is known as successive
approximation, which is used in conjunction with spectral selection to divide
individual bands into a number of scans. Unlike spectral selection, successive
approximation in a progressive image is completely optional. When it is used, the
precision of the initial band is reduced by a number of bits. Subsequent scans for
the band increase the precision one bit at a time.

The conversion function used with successive approximation is called the
point transform in the JPEG standard. For DC coefficients the point transform is
simply a right shift by the number of bits specified by the successive approxima-
tion value. For AC coefficients the point transform is

Output =

At first glance it may appear that the AC and DC point transforms are the
same, but this is not the case. Table 11.1 shows the AC and DC point transforms
with a successive approximation value of 1. Notice that the AC and DC point

Figure 11.1
Example of a Data
Unit Divided into
Spectral Selection
Bands

Processing Progressive JPEG Files 151

Table 11.1
DC and AC Values
with a Successive
Approximation
Value of 1

Input

5
4
3
2
1
0

-1
-2
_3
-4
-5

DC

2
2
1
1
0
0

-1
-1
-2
-2
-3

AC

2
2
1
1
0
0
0

-1
-1
-2
-2

Figure 11.2
Sample Scan
Division by Spectral
Selection and
Successive
Approximation

transform values may be different for negative values and, for the AC point trans-
form, F(X) = -F(-X).

Figure 11.2 is an example of a component divided into 12 scans using a com-
bination of spectral selection and successive approximation. The spectral selec-
tion division is the same as that shown in Figure 11.1. The first scan in this exam-
ple contains the DC coefficient with a successive approximation of 3. The
remaining three spectral selection bands can be output in any order. However,
within each band, the scans that refine coefficients using successive approxima-
tion must be in strict order.

Processing Progressive JPEG Files

The overall processing of Progressive JPEG files can be implemented in the
same manner that is commonly used for sequential files. The major difference is
in the processing of the scans. Figure 11.3 illustrates the difference between the
processing of sequential files and progressive files.

It should be apparent that displaying progressive JPEG files on the fly
requires significantly more processing than displaying sequential files or even
displaying progressive files only after they have been completely decoded. This
is why displaying progressive JPEG files on the fly only makes sense if the data

Su
cc

es
si

ve
A

pp
ro

xi
m

at
io

n
Bi

ts
0

13

0 Coefficients 63

is being received over a network at a relatively slow rate compared to the speed
of the processor.

Figure 11.3 shows progressive JPEG images being updated after every scan
but this is not necessary. It is possible for a decoder to be implemented so that
it updates and displays the image only when the decoder determines that it has
received enough new data for updating. When displaying the image on the fly,
the process for updating is the same as for a sequential file. If a progressive
image is not displayed on the fly, the overall decoding process is basically the
same as for sequential JPEG and there is little difference in the amount of pro-
cessing required.

Processing Progressive Scans

The first step in decoding a progressive scan is to determine which of these types
the scan is. There are four types of progressive scans and each is processed in a
different manner.

2See Chapter 5.

152

Figure 11.3
Sequential and
Progressive JPEG
Processing

Progressive JPEG

Sequential Process Progressive Process

First scan for a band
Refining scan for a band

DC
1. First DC scan
2. Refining DC scan

AC
3. First AC scan
4. Refining AC scan

All of the information needed to determine the scan type is stored in the SOS
marker,2 where the spectral selection start and end fields specify the coefficients
in the band. If both of these values are zero, the scan is a DC scan. If both values
are nonzero, then it is an AC scan.

The successive approximation value is stored in two 4-bit fields packed into
1 byte. If the 4 high-order bits are zero, the scan is the first scan for the band.
Otherwise, when this field is nonzero it is a refining scan. If both of these bit
fields are zero, then successive approximation is not used for the band.

Huffman Table Usage In Progressive Scans

The validations on these fields that decoders should perform include the
following:

• If the spectral selection start is zero, the spectral selection end must be zero.

• If the spectral selection end is zero, the spectral selection start must be zero.

• The spectral selection start must not be greater than the spectral selection
end.

• If the spectral selection start is not zero, the scan may contain only one
component.

• The spectral selection end may not be greater than 63.

• The low-order and high-order successive approximation bit fields may not
be greater than 13.

• The high-order successive approximation bits must be either zero or one
greater than the low-order bits.

MCUs in Progressive Scans

Data in progressive scans is organized into MCUs in exactly the same manner as
in sequential scans. DC progressive scans can be interleaved or noninterleaved.
AC scans are always noninterleaved so there will always be one data unit per
MCU. For progressive scans containing AC data, the number and position of the
data units are the same as for a noninterleaved sequential scan.

Progressive scans may include restart markers. The restart interval specifies
the number of MCUs between restart markers just as in sequential scans. In DC
scans, restart marker processing is the same as in sequential scans. For AC scans,
the end-of-band runs may not cross restart markers. End-of-band runs will be
explained shortly.

Huffman Table Usage In Progressive Scans

The SOS marker specifies the numeric identifier of the Huffman tables used by
each component in the scan. The JPEG standard requires that all of the Huffman
tables required by a scan be defined before the SOS marker. When a decoder is
handling progressive scans it must validate the existence of the Huffman tables
used by the scan differently from the way it does with a sequential scan.

153

154 Progressive JPEG

Each component in a sequential scan requires two Huffman tables (DC and
AC). In progressive JPEG a scan will use either DC tables or AC tables, but not
both. In fact, a refining progressive DC scan does not use Huffman tables at all.
It is entirely possible for a progressive DC scan to occur in a JPEG file before
any AC Huffman tables have been defined, something that is illegal in sequential
JPEG.

Data Unit Decoding

First DC Scans

The process for decoding the first scan for DC coefficients is nearly identical to
that for DC coefficients in a sequential scan (see Chapter 8). The only difference
is that the point transform is applied to the decoded DC value (left-shifted by the
successive approximation value) before being stored as a coefficient value.
Algorithm 11.1 illustrates the decoding of a data unit.

Algorithm 11.1
Decoding
Progressive DC
Coefficients

GLOBAL SUCCESSIVEAPPROXIMATION
GLOBAL LAST_DC_VALUE

Procedure FirstDCDataunit (COEFFICIENTS [0..63])
Begin
BITCOUNT = DecodeUsingDCHuffmanTable ()
BITS = ReadLiteralBits (BITCOUNT)
DCDIFFERENCE = Extent (BITS, BITCOUNT)
DCVALUE = DCDIFFERENCE + LAST_DC_VALUE
LAST_DC_VALUE = DCVALUE
COEFFICIENTS [II] = DCVALUE LeftShift SUCCESSIVEAPPROXIMATION
End

Refining DC Scans

Refining DC scans are the simplest of all JPEG scans to handle. The scan's com-
pressed data consists entirely of raw data bits, one bit per data unit. Algorithm
11.2 shows all the processing required to process a data unit in this type of scan.

Algorithm 11.2
Refining DC
Coefficients

GLOBAL SUCCESSIVEAPPROXIMATION

Procedure RefineDCDataUnit (COEFFICIENTS [0..63])
Begin
BIT = ReadLiteralBits (1)
DCCOEFFICIENTS [0] = DCCOEFFICIENTS [0]

Or (BIT LeftShift SUCCESSIVEAPPROXIMATION)
End

Table 11.2
AC Codes and
Corresponding EOB
Run Length

First AC Scans

The simplicity of decoding DC coefficients is more than compensated for by the
complexity of decoding AC coefficients. For the first scan of an AC band the
encoding is similar to sequential with some additions.

Progressive JPEG adds the concept of an end-of-band (EOB) run. This is a
run of data units where the AC coefficients within the band are all zero. In
sequential JPEG each data unit is encoded independently from every other.
Because of EOB runs, data units are not independent in AC scans.

In sequential JPEG the Huffman-encoded value 0016 is used to set the
remaining coefficients in a data unit to zero. This is equivalent to an EOB run
of 1. Progressive scans can contain much longer EOB runs. Table 11.2 lists the
EOB codes and the possible EOB run lengths associated with them.

Raw bits following the Huffman-encoded byte are used to specify EOB runs
just as they are with literal values. The 4 high-order bits specify the number of
additional bits when used as part of an EOB code. Since EOB runs are always
positive, the Extend() function is not used. Instead, the conversion from raw bits
to the EOB run length is

EOBRUN = (1 LeftShift HIGHBITS) + ReadRawBits (HIGHBITS)

If an EOB code occurs in the compressed stream when a band has been par-
tially processed, the current band becomes the first data unit in the EOB run and
the remaining coefficients are set to zero. Be sure to count the current band when
processing an EOB run.

Code Value

0016
1016
2016
3016
4016
5016
6016
7016
8016
9016
A016
B016
C016
D016
E016

EOB Run Length

1
2-3
4-7
8-15

16-31
32-63
64-127

128-127
256-511
512-1023

1,024-2047
2,048-4095
4,096-8191
8,192-16,383

16,384-32,767

Data Unit Decoding 155

Progressive JPEG

Algorithm 11.3 shows how the first scan for an AC band is decoded. The
main differences between sequential and progressive processing are:

• Only coefficients within the spectral selection band are updated.

• Coefficient values are left-shifted by the successive approximation value.

• EOB run processing

Refining AC Scans

Refining AC scans is the nightmare of progressive JPEG decoding. The imple-
mentation problem is that these scans contain data to refine all previously
nonzero coefficients that are skipped as a result of a zero run or EOB run.

In a refining AC scan, the 4 low-order bits of the Huffman-encoded values
can be only 1 or zero. This should make sense since a refining scan only adds
1 bit per coefficient. If a coefficient needed more than 1 bit it would have been
encoded in earlier scans.

The processing of refining AC scans is nearly identical to that of initial scans.
Whenever the value of the 4 low-order bits of the Huffman-encoded value is 1, a
coefficient is being made nonzero for the first time. This value is immediately fol-
lowed in the input stream by 1 raw sign bit. The new coefficient value is

156

If SignBit = 1 Then
CoefficientValue = 1 LeftShift ScanSuccessiveApproximation

Else If SignBit = 0 Then
CoefficientValue = -1 LeftShift ScanSuccessiveApproximation

This is essentially the same as using the Extend function.
The major difference in refining scans is the processing of zero and EOB

runs. Zero runs in a refining scan only count zero-valued coefficients. This
sequence of coefficients would be skipped by a zero run of 4 (not 6):

0 0 4 0 2 0

Whenever a nonzero coefficient is skipped, as a result of a zero or EOB run, the
input stream contains 1 raw bit to refine that coefficient.

In our previous example, suppose that the Huffman-encoded value were
4116. Three raw bits would follow this code: The first bit would be the sign bit
for the coefficient being made nonzero; the next bit would refine the coefficient
with the value 4, and the last would refine the coefficient with the value 2.

Algorithm 11.4 shows the process for refining a previously nonzero
coefficient.

Once the correct number of zero-valued coefficients has been skipped, the
next coefficient is assigned the value found at the start of the procedure. Notice
that the data for coefficients is not stored strictly in order. The data for the last
coefficient comes first in the input stream.

Global EOBRUN
Global SSS // Spectral Selection Start
Global SSE // Spectral Selection End
Global SUCCESSIVEAPPROXIMATION
Global EOBRUN

Procedure ACFirstDataUnit (COEFFICIENTS [0..63])
Begin

For II = SSS To SSE Do
COEFFICIENTS [II] = 0

If EOBRUN > 0 Then
Begin
EOBRUN = EOBRUN - 1
Return
End

II = SSS
While II <= SSE Do

Begin
VALUE = DecodeUsingACTable
LOBITS = VALUE And 0F16
HIBITS = (VALUE And F016) RightShift 4

If LOBITS <> 0 Then
Begin
EXTRABITS = ReadRawBits (LOBITS)
II = II + HIGHBITS
COEFFICIENTS [II]

= Extend (EXTRABITS, LOBITS) LeftShift SUCCESSIVEAPPROXIMATION
II = II + 1
End

Else
Begin
If HIGHBITS = F16 Then

II = II + 16 // Run of 16 Zeros
Else If HIGHBITS = 0 Then

II = SSE + 1
Else

// We subtract one to account for ending the current block.
EOBRUN = (1 LeftShift HIGHBITS) + ReadRawBits (HIGHBITS) - 1

Return
End

End
End

Algorithm 11.3
Decoding
Progressive AC
Coefficients

Data Unit Decoding 157

158 Progressive JPEG

Algorithm 11.4
Refining AC
Coefficient Values

Procedure RefineAC (COEFFICIENT)
Begin
If COEFFICIENT > 0 Then

Begin
If ReadRawBits (1) <> 0 Then

Begin
COEFFICIENT = COEFFICIENT

+ (1 LeftShift SUCCESSIVEAPPROXIMATION)
End

End
Else if COEFFICIENT < 0 Then

Begin
If ReadRawBits (1) <> 0 Then

Begin
COEFFICIENT = COEFFICIENT

+ (-1 LeftShift SUCCESSIVEAPPROXIMATION)
End

End

If the 4 low-order bits of the Huffman-encoded byte are zero, the code does
not create any new nonzero coefficients. However, the process of updating
existing nonzero coefficients still takes place. When the value of the Huffman-
encoded byte is F016 the next 16 zero-valued coefficients are skipped but
all intervening nonzero-valued coefficients are updated using the previous
procedure.

As with initial scans, the code values 0016, 1016, ... E016 instruct the decoder
to skip to the end of a number of bands. The 4 high-order bits specify the num-
ber of additional bits to read and the EOB count is calculated in the same way as
before. All nonzero-valued coefficients that are skipped as a result of an EOB
skip are refined using raw bits.

An important thing to remember when skipping zero-valued coefficients is
that the decoder should end up either at the end of a band or on a zero valued
coefficient.

Suppose a band contained 20 coefficients with these values

00000800080800000088

at the start of a scan. If the first byte decoded for this band were the value 8116,
this would instruct the decoder to skip 8 zero-values. After skipping 5 coefficients
the decoder would read 1 raw bit to refine the first value of 8.

Refined

0 0 0 0 0 8 0 0 0 8 0 8 0 0 0 0 0 0 8 8

Data Unit Decoding 159

The decoder would skip the next 3 zero-valued coefficients (for a total of 8), at
which point it would be positioned here.

00000800080800000088

Since this coefficient is already nonzero, all we can do is refine it. The decoder
should advance to the next zero-valued coefficient while refining the nonzero
coefficients it skips.

Refined New Coefficient

0 0 0 0 0 8 0 0 0 8 4 8 0 0 0 0 0 0 8 8

Algorithm 11.5 illustrates the process for refining AC coefficients in a pro-
gressive scan.

Algorithm 11.5
Refining AC
Progressive AC
Coefficients

Global SSS // Spectral Selection Start
Global SSE // Spectral Selection End
Global SUCCESSIVEAPPROXIMATION
Global EOBRUN

Procedure ACRefineDataUnit (COEFFICIENTS [0..63])
Begin
II = SSS
While II <= SSE Do

Begin
If EOBRUN > 0 Then

Begin
While II <= SSE Do

Begin
If COEFFICIENT [II] <> 0 Then

RefineAC (COEFFICIENT (II)
II = II + 1
End

EOBRUN = EOBRUN - 1
Return
End

VALUE = DecodeUsingACTable
LOBITS = VALUE AND 0F16
HIBITS = (VALUE AND F016) RightShift 4

If LOBITS = 1 Then
Begin
EXTRABIT = ReadRawBits (1)
While HIGHBITS > 0 OR COEFFICIENTS [II] <> 0 Do

Begin
If COEFFICIENTS [II] <> 0 Then

RefineAC (COEFFICIENTS [II]) (continued)

Progressive JPEG

Else
HIGHBITS = HIGHBITS - 1

II = II + 1
End

If EXTRABIT <> 0
COEFFICIENTS [II] = 1 LeftShift SUCCESSIVEAPPROXIMATION

Else
COEFFICIENTS [II] = -1 LeftShift SUCCESSIVEAPPROXIMATION

II = II + 1
End

Else If LOBITS = 0 Then
Begin
If HIGHBITS = F16 Then // Run of 16 Zeros

Begin
While HIGHBITS >= 0 Do

Begin
If COEFFICIENTS [II] <> 0 Then

RefineAC (COEFFICENTS [II])
Else

HIGHBITS = HIGHBITS - 1
End

End
Else If HIGHBITS = 0 Then

EOBRUN = 1
Else

EOBRUN = (1 LeftShift HIGHBITS) + ReadRawBits (HIGHBITS)
End

End
End

Preparing to Create Progressive JPEG Files

The biggest issue in implementing a progressive JPEG encoder is figuring out
how to specify what goes into each scan. For each scan, the encoder needs to
identify:

• The components to include (multiple components in DC bands only)

• The spectral range

• The successive approximation

Requiring the user to specify all the parameters for each scan would be
tedious and error prone. A possible approach would be to predefine a set of scan
sequences that the user could select from. A method that we have found works
well is to define a default scan sequence for progressive scans and allow the user
to make modifications if desired. For each scan, the user can assign the compo-
nents, the last value in the spectral range, and the initial successive approxima-

Algorithm 11.5
Continued

160

tion value. At the start of the encoding process, the spectral range of the earlier
scans is used to determine the initial spectral range of later scans. If the user has
defined the scans for a component with the last values in the spectral range set to

0 5 20 63

then the encoder automatically assigns these ranges

0-0 1-5 6-20 21-63

as the spectral bands for the scan.
The encoder processes the scans in the order defined by the user. If spectral

selection is specified for any of the scans, the decoder repeats the scan list and
reduces the spectral selection by 1. It then outputs all the scans that contain spec-
tral bands that still have to be refined. This process is intermediate in complex-
ity. It gives the user many options for outputting progressive scans, but it does not
allow the user to have complete control over scan content and ordering.

An encoder should not be overzealous when it comes to breaking image data
into scans. Each scan in a progressive image should contribute meaningful data
to it. Since the last AC coefficient is almost always zero, creating scans with a
spectral range of 63 to 63 or even 61 to 63 is not very useful. The deeper into the
zigzag order you go, the more coefficients should be included in a scan. As a gen-
eral guideline, the larger the quantization values, the larger the number of coef-
ficients per band.

Successive approximation has even greater potential for abuse. Using spec-
tral selection, a band can be divided into up to 14 bands, where the last 13 scans
contribute 1 bit to each coefficient in the band. With 8-bit sample data, DC coef-
ficients require no more than 11 bits to encode (for 12-bit samples this number
is 15). Using a successive approximation value of 13 to encode 8-bit data makes
no sense since many scans will contribute no data to the image.

Because the magnitude of AC coefficients is generally much smaller than
that of DC coefficients, using successive approximation to divide AC coefficients
into a large number of scans makes even less sense. Reasonable successive
approximation values are determined by the magnitude of the quantization val-
ues and how far the band is into the zigzag order.

If the encoder allows the user to specify the contents of the scans, it needs to
perform several validations to ensure that the output file will contain a valid
JPEG image. In addition to the sequential validations, a progressive encoder
should ensure that:

• The scans contain the entire spectral range for each component.

• The spectral bands for a component do not overlap.

• Spectral bands containing the DC coefficient do not contain any AC
coefficients.

• The sucessive approximation value is in the range 0-13.

Preparing to Create Progressive JPEG Files 161

Progressive JPEG

Encoding Progressive Scans

Encoding a progressive JPEG image is very similar to encoding a sequential
image using multiple scans. As with progressive decoding, the significant differ-
ences are in the encoding of data units.

As you saw earlier in this chapter, there are four distinct types of scans
within a progressive JPEG file. The JPEG encoder in Chapter 9 used
InterleavedPass() and Noninterleaved() to drive the creation of scans.
These functions handled division of the image into MCUs and the processing of
restart markers. They were implemented so that they took pointers to member
functions to do the actual data unit encoding. This may have looked odd with
sequential images, but this same function is used to control progressive DC scans
once integrated with progressive JPEG code, thus allowing the same code to
drive a total of three types of scans.

Huffman Coding

Progressive images may have up to four DC and four AC Huffman tables defined
at any time. The progressive JPEG source code at the end of this chapter only
uses a maximum of two of each type, just like the baseline sequential code pre-
sented earlier. As before, two passes are made to encode each scan: the first is
used to gather Huffman frequency statistics, and the second is used to encode and
output the data. The same driver code is used for each pass, with pointers to func-
tions controlling which of these two operations is performed for a given pass.

Data Unit Encoding

DC First Scans

With the exception of applying the point transform to the coefficient value, the
encoding of DC coefficients in the first scan of a band is identical to the encod-
ing of DC coefficients in a sequential scan. DC coefficients are encoded as the
difference between the current coefficient and the value of the last encoded value
for the same component. The difference is encoded as a Huffman-encoded mag-
nitude value followed by a number of literal bits.

For simplicity, the example below shows only one last-DC-value variable.
An actual implementation requires a separate variable for each component. Just
as with sequential JPEG, the last DC coefficient value for each component
should be set to zero at the start of the scan and whenever a restart marker is
processed.

Algorithm 11.6 illustrates the process for encoding a data unit in a first DC
scan.

162

Data Unit Encoding 163

Algorithm 11.6
Encoding DC
Coefficients in
Initial Scans

Global SUCCESSIVEAPPROXIMATION
Global LAST_DC_VALUE

Function CountBits (VALUE)
Begin
COUNT = 0
While VALUE <> 0 Do

Begin
COUNT = COUNT + 1
VALUE = VALUE RightShift 1
End

End

Procedure EncodeDCFirst (COEFFICIENTS [0..63])
Begin
// Point Transform
VALUE = COEFFICIENTS [0] RightShift SUCCESSIVEAPPROXIMATION
DIFFERENCE = VALUE - LAST_DC_VALUE
LAST_DC_VALUE = DIFFERENCE
If DIFFERENCE >= 0 Then

Begin
BITCOUNT = CountBits (DIFFERENCE)
HuffmanEncode (BITCOUNT)
OuputLiteralBits (BITCOUNT, DIFFERENCE)
End

Else
Begin
BITCOUNT = CountBits (-DIFFERENCE)
HuffmanEncodeDC (BITCOUNT)
OuputLiteralBits (BITCOUNT, DIFFERENCE Xor FFFFFFFF16)
End

End

Refining DC Scans

Encoding refining DC coefficients for a data unit is trivial as shown in Algorithm
11.7. A scan contains a single bit for refining a DC coefficient. No Huffman cod-
ing is required.

Algorithm 11.7
Encoding DC
Coefficients in
Refining Scans

Global SUCCESSIVEAPPROXIMATION

Procedure EncodeDCRefine (COEFFICIENTS [0..63])
Begin
VALUE = (COEFFICIENTS [0] RightShift SUCCESSIVEAPPROXIMATION) And 1
OutputLiteralBits (1, VALUE)
End

Progressive JPEG

AC First Scans

AC coefficients are encoded using a sequence of Huffman-encoded bytes fol-
lowed by a string of literal bits. The Huffman-encoded byte is divided into two 4-
bit fields. If the 4 low-order bits are not zero, the code represents a nonzero lit-
eral coefficient. The low-order bits are the magnitude of the code and specify the
number of literal bits that follow. The 4 high-order bits specify the number of
zero-valued coefficients to skip before writing the nonzero coefficient.

The byte code F016 means that the next 16 coefficient values are zero. Any
other value with the 4 low-order bits set to zero represents the magnitude of a run
of bands that are all zero (see Table 11.2). The 4 high-order bits specify the num-
ber of raw bits written to the output stream used to specify the exact EOB run
length.

An encoder processes a data unit by starting at the first coefficient in the
band and working to the last coefficient, proceeding in zigzag order. Only
nonzero coefficients are processed in AC encoding. The encoder needs to main-
tain a count of the number of consecutive zero-valued coefficients within the data
unit and a count of blocks where all the coefficients are zero.

Algorithm 11.8 illustrates how to encode a data unit in a progressive AC first
scan. The EncodeACRefine procedure calls the PrintEOBRun procedure to out-
put any outstanding EOB runs right before encoding a literal coefficient. What is
not shown in this example is that PrintEOBRun must be called whenever a
restart marker is output. EOB runs may not cross restart markers. PrintEOBRun
must also be called at the end of the data unit encoding to ensure that all EOB
runs have been flushed to the output stream.

Global SUCCESSIVEAPPROXIMATION
Global SSS
Global SSE
Global EOBRUN

Procedure PrintEOBRun
Begin
If EOBRUN = 0 Then

Return
BITCOUNT = CountBits (EOBRUN RightShift 1)
HuffmanEncodeAC (BITCOUNT LeftShift 4)
OutputLiteralBits (BITCOUNT, EOBRUN)
End

Procedure EncodeACFirst (COEFFICIENTS [0..63])
Begin
ZERORUN = 0 // Number of sequential zero coefficients

164

(continued)

Algorithm 11.8
Encoding AC Initial
AC Scans

For II = SSS To SSE
Begin
// Point Transform
VALUE = COEFFICIENTS [II] / (1 LeftShift SUCCESSIVEAPPROXIMATION)
If Value = 0 Then

ZERORUN = ZERORUN + 1
Else

Begin
// We have literal value so any EOB run started with a
// previous block is over as well as a zero run within
// this block.
PrintEOBRun
// The longest zero run we can put out with a literal
// is 15. If we have a longer run then we need to
// output the code for 16 zeros before we write
// the literal
While ZERORUN >= 16 Do

Begin
HuffmanEncodeAC (F016)
ZERORUN = ZERORUN - 16
End

If VALUE > 0 Then
Begin
BITCOUNT = CountBits (VALUE)
HuffmanEncodeAC ((ZERORUN LeftShift 4) Or BITCOUNT)
OutputLiteralBits (BITCOUNT, VALUE)
End

Else
Begin
BITCOUNT = CountBits (-VALUE)
HuffmanEncodeAC ((ZERORUN LeftShift 4) Or BITCOUNT)
OutputLiteralBits (BITCOUNT, VALUE Xor FFFFFFFF16)
End

ZERORUN = 0
End

End

// If the band ended in a run of zero then convert them
// into an EOB run.
If ZERORUN <> 0 Then

Begin
EOBRUN = EOBRUN + 1
// Make sure we do not exceed the maximum EOB run.
If EOBRUN = 7FFF16 Then

PrintEOBRun
End

End

Algorithm 11.8
Continued

Data Unit Encoding 165

Progressive JPEG

Refining AC Scans

Refining AC scans is one of the most complex processes in JPEG encoding. The
encoding process for refining AC scans follows the basic pattern used by the first
scan for a band. An important issue with refining scans is that Huffman-encoded
value/literal bits sequences are used only to encode coefficients that the current
scan will make nonzero for the first time. Coefficients that were made nonzero
in a previous scan are not included in zero runs. Instead, any code that causes zero
values to be skipped is followed by a refining bit for each of the intervening
nonzero values.

Algorithm 11.9 illustrates the process for encoding refining AC scans. The
RefineBand procedure contains most of the logic specific to refining scans. It
outputs a refining bit for each nonzero code that is skipped.

The codes used to encode the scans are identical to those used with the first
AC scan for a band. The only difference in the encoded data is that Huffman-
encoded value/literal bits pairs are followed by a series of bits that refine each
coefficient value skipped. If a zero or EOB run causes the coefficients from M
to N to be skipped, RefineBand (M, N) outputs the refining bits.

The RefineEOBRun procedure for refining scans is slightly different than
that for first scans because it has to refine all of the nonzero coefficients that are
skipped. The skipping of coefficients because of EOB runs requires additional
global data. The example uses the variables RUNSTARTDATAUNIT and
RUNSTARTCOEFFICIENT to mark the data unit and coefficient where the EOB
run began. (An EOB run can start in the middle of a data unit)

The encoding of data units is also more complicated. Since the zero run is
the count of zero-valued coefficients, not the number of coefficients skipped in
the zero run, the code for processing zero runs of greater than 16 is a bit more
complicated as well.

Global DATAUNITS [0..*][0..63]
Global CURRENTDATAUNIT // Index of the current data unit in DATAUNITS
Global EOBRUN
Global RUNSTARTDATAUNIT
Global RUNSTARTCOEFFICIENT
Global SSS // Spectral Selection Start
Global SSE // Spectral Selection End
Global SUCCESSIVEAPPROXIMATION

166

(continued)

Algorithm 11.9
Encoding Refining
AC Scans

Procedure RefineBand (COEFFICIENTS [0..63], START, END)
Begirt
For II = START To END

Begin
VALUE = COEFFICIENTS [II] / (1 LeftShift SUCCESSIVEAPPROXIMATION)
If VALUE <> 0 Then

Begin
If VALUE < 0 Then

VALUE = - VALUE
OutputLiteralBits (1, VALUE And 1)
End

End
End

Procedure PrintEOBRun
Begin
If EOBRUN = 0 Then

Return
BITCOUNT = CountBits (EOBRUN RightShift 1)
HuffmanEncodeAC (BITCOUT LeftShift 4)
OutputLiteralBits (BITCOUNT, EOBRUN)

For II = 1 To EOBRUN DO
Begin
RefineBand (DATAUNITS [RUNSTARTDATAUNIT + II - 1],

RUNSTARTCOEFFICIENT, SSE)
RUNSTARTCOEFFICIENT = SSS
End

EOBRUN = 0
End

Procedure EncodeACRefine (COEFFICIENTS [0..63])
Begin
ZERORUN = 0
For II = SSS To SSE DO

Begin
VALUE = COEFFICIENTS [II] / (1 LeftShift SUCCESSIVEAPPROXIMATION)
If VALUE = 0 Then

Begin
If ZERORUN = 0 Then

ZEROSTART = II
ZERORUN = ZERORUN + 1
End

Else If Value = 1 Or Value = -1 Then
Begin
PrintEOBRun

Data Unit Encoding 167

Algorithm 11.9
Continued

(continued

Progressive JPEG

While ZERORUN >= 16 Do
Begin
ZEROLIMIT = ZER0START
ZEROCOUNT = 0
While ZEROCOUNT < 16 Do

Begin
OLDVALUE = COEFFICIENTS [ZEROLIMIT]

/ (1 LeftShift SUCCESSIVEAPPROXIMATION)
If OLDVALUE = 0 Then

ZEROCOUNT = ZEROCOUNT + 1
ZEROLIMIT = ZEROLIMIT + 1
End

HuffmanEncodeAC (F016)
RefineBand (COEFFICIENTS, ZEROSTART, ZEROLIMIT - 1)
ZEROSTART = ZEROLIMIT
ZERORUN = ZERORUN - 16
End

If VALUE > 0 Then
Begin
BITCOUNT = CountBits (VALUE)
HuffmanEncodeAC ((ZERORUN LEFTSHIFT 4) Or BITCOUNT)
OutputLiteralBits (BITCOUNT, VALUE)
End

Else
Begin
BITCOUNT = CountBits (-VALUE)
HuffmanEncodeAC ((ZERORUN LEFTSHIFT 4) Or BITCOUNT)
OutputLiteralBits (BITCOUNT, VALUE Xor FFFFFFFF16)
End

RefineBand (COEFFICIENTS, ZEROSTART, II - 1)
ZERORUN = 0
End

End

If ZERORUN <> 0 Then
Begin
If EOBRUN = 0 Then

Begin
RUNSTARTDATAUNIT = CURRENTDATAUNIT
RUNSTARTCOEFFICIENT = ZEROSTART
End

EOBRUN = EOBRUN + 1
If EOBRUN = 7FFF16 Then

PrintEOBRun
End

End

Algorithm 11.9
Continued

168

Conclusion 169

Conclusion

This chapter on progressive mode brings to a close our coverage of JPEG. In this
and preceding chapters, we have discussed all of the JPEG features that are in
common use. The material presented covers all of the JPEG modes that you are
likely to encounter in JPEG files on the Internet.

The source code for this chapter is not a complete example, but rather the
additional code required to expand the sample applications from Chapters 8 and
9 to include progressive encoding and decoding.

Chapter 12

GIF

This chapter describes the CompuServe GIF format and the LZW compression
method used to compress image data in this format. Until recently, CompuServe
GIF (Graphics Interchange Format) was the most widely used format for image
storage.

In 1987 CompuServe published the first GIF specification called GIF87a.
This specification was freely distributed, and the format was adopted by practi-
cally every image processing application. CompuServe later released an
enhanced, upwardly compatible version of the standard known as GIF89a.
However, most GIF images use only the features in GIF87a.

The main features of GIF are:

• Up to 256 colors using 1 to 8 bits per pixel

• Multiple images per file

Because of its better compression and greater color depth, JPEG has gen-
erally replaced GIF for photographic images. GIF continues to be used for
other applications, but legal entanglements have certainly condemned it to
obsolescence.

171

172 GIF

Byte Ordering

The GIF format stores multi-byte integers with the least significant byte first (lit-
tle-endian). Bit strings are read from the least significant bit to the most signifi-
cant bit. In bit strings that cross byte boundaries, the bits in the second byte are
more significant than the bits in the first byte.

File Structure

Figure 12.1
GIF File Structure

A GIF file consists of a fixed area at the start of the file, followed by a variable
number of blocks and ending with an image trailer. In the GIF87a format the
variable area consists solely of image definitions. In the GIF89a format these can
be either images or extension blocks. The general format of a GIF file is shown
in Figure 12.1.

GIF Header

The GIF header is required and must occur at the very start of the file. The header
allows an application to identify the format as GIF and determine the version.
Table 12.1 shows the structure of the GIF header. It is still common for applica-
tions that do not use the features added in GIF89a to create GIF87a headers in
order to insure the image is compatible with older decoders.

Logical Screen Descriptor

The global screen description defines the logical screen area in which the indi-
vidual images in the GIF file are displayed. It specifies the dimensions of the area
as well as the background color (selected from the global color table). The indi-
vidual image descriptors specify where the image is to be placed within the log-
ical screen. The screen descriptor structure is 7 bytes and is shown in Table 12.2.

Figure 12.2 illustrates the relationship between the logical screen and the
individual images in a GIF file.

Global Color Table

The individual images within the file can either use the global color table or
define a color table of their own. Having the images in a file share the global

Table 12.1
GIF Header
Structure

Field Name

Signature
Version

Size

3 bytes
3 bytes

Description

Must be the ASCII string GIF.
Must be the ASCII string 87a or 89b.

File Structure 173

Figure 12.2
Logical
Screen/Image
Relationship

Images

Logical Screen

Field Name

Logical Screen Width

Logical Screen Height
Bit Fields
Global Color Table Size

Color Table Sort Flag

Bits Per Pixel
Global Color Table Flag

Background Color
Pixel Aspect Ratio

Size

2 bytes
2 bytes
1 byte
Bits 0-2

Bit 3

Bits 4-6
Bit 7
1 byte
1 byte

Description

2(N+1) gives the number of entries in
the global color table.
Set when the colors in the global color
table are sorted in order of importance.
Bits per pixel minus 1.
Set when there is a global color table.
Index into the global color table.
If this value is nonzero, the pixel width
and height are not equal. (N+15)/64 is
the pixel width divided by the pixel
height.

Table 12.2
Logical Screen
Descriptor Format

174 GIF

Field Name

Red
Green
Blue

Size

1 byte
1 byte
1 byte

Description

Red component value
Green component value
Blue component value

Table 12.4
Block Codes

Figure 12.3
Image Definition
Structure

color table reduces the file size and makes it easier for systems that can display
a limited number of colors. In addition, the global color table specifies the back-
ground color for the logical screen.

If the global color table bit is set in the screen descriptor, the global color
table immediately follows the screen descriptor. The global color table is an
array of structures whose format is shown in Table 12.3. The number of entries
in the array is determined from the Global Color Table Size field in the
screen descriptor.

Block Types

After the global color table, the variable part of the GIF file begins. The file con-
tains a sequence of blocks that are identified by a 1-byte code at the start of the
block. Table 12.4 lists the block types and the associated block code.

Terminator

The terminator block marks the end of the GIF file. This block is 1 byte long and
consists solely of the block code.

Image Block

An image block defines an image within the GIF file. The image starts with an
image header structure that defines its size and placement. The format of this
structure is given in Table 12.5. If the Local Color Table flag in the image
header is set, the image uses a local color table rather than the global color table.
Just like the global color table, the local color table is an array of color entries
(Table 12.3). The number of elements in the array is determined from the Local
Color Table Size field in the header.

Figure 12.3 shows the general layout of an image definition within a
GIF file.

Table 12.3
Color Table Entry
Format

Code

2116
2C16

3B16

Type

Extension
Image block
GIF terminator

File Structure 175

Figure 12.4
Extension Block
Format

The colortable (or the image header if there is no color table) is followed by
one byte that contains the initial code size used in the compressed data. The value
in this field is usually 8.

Data Blocks

The code size byte is immediately followed by an uninterrupted series of data
blocks that contain the compressed image data. A data block consists of a 1-byte
count field, followed by 1 to 255 data bytes.

The chain of data blocks for an image is always terminated by a data block
with zero data bytes—in other words, a single zero-valued byte. We will postpone
the discussion of the compressed block format until later in the chapter.

Extension Blocks

Extension blocks were added to GIF in the GIF89a specification. The layout of
an extension block is shown in Figure 12.4. The first byte in the extension block
contains the code 2116. This is followed by a second byte that contains a code that
specifies the extension type. The extension type codes are listed in Table 12.6.

The format of the extension header is specific to the extension type. The first
byte in the header gives the size of the header not including the size byte. The
header is followed by a list of data blocks. Each block consists of a count byte
followed by 1 to 255 data bytes. The list of data blocks is terminated by a zero
byte (data block with zero data bytes).

The structure of the extension blocks is such that an application can skip over
them without having to understand the structure of each individual extension
type. Algorithm 12.1 illustrates how to skip over an extension.

Table 12.5
Image Header
Structure

Field Name

Left Position

Right Position

Image Width
Image Height
Bit Field
Local Color Table Size

Reserved
Sort Flag

Interlace Flag
Local Color Table Flag

Size

2 bytes

2 bytes

2 bytes
2 bytes
1 byte
Bits 0-2

Bits 3-4
Bit 5

Bit 6
Bit 7

Description

Left offset of the image within the
logical screen.
Top offset of the image within the
logical screen.

(N+1)2 is the number of entries in the
local color table.
Unused.
If set, the colors in the local color table
are sorted in order of importance.
If set, the image data is interlaced.
If set the image uses a local color table.

176 GIF

Table 12.6
Graphic Extention
Type Codes

Algorithm 12.1
Skipping GIF
Extension Blocks

DATA = ReadByte () // Extension Type
DATA = ReadByte () // Count
While DATA <>0

Begin
For II = 1 To DATA

ReadByte ()
End

Plain Text Extension

The plain text extension block is used to draw a grid of fixed-spaced text on the
logical screen. This extension consists of a header followed by a series of data
blocks containing the text to draw. The data blocks following the header contain
the text to display. The format of the plain text extension header is shown in
Table 12.7.

Graphic Control Extension

The graphic control extension affects how the next image in the GIF file is to
be drawn. Graphic control extensions are commonly used to specify how the

Table 12.7
Plain Text Extension
Format

Code

1
F9
FE
FF

Type

Plain text extension
Graphic control extension
Comment extension
Application extension

Field Name

Block Size

Text Grid Left

Text Grid Right

Text Grid Width

Text Grid Height

Character Cell Width

Character Cell Height

Text Foreground Color

Text Background Color

Size

1 byte
2 bytes
2 bytes
2 bytes
2 bytes
1 byte
1 byte
1 byte

1 byte

Description

The value 12
Text position in the logical screen
Text position in the logical screen
Size of the text block in pixels
Size of the text block in pixels
Width in pixels of each character
Height in pixels of each character
Index into the global color table for the
text color
Index into the global color table for the
background color

File Structure 177

Table 12.8
Graphic Control
Extension Header

individual frames in a GIF animation are drawn. There can only be one graphic
control extension per image. This GIF extension block has no data, so a termi-
nating data byte with a value of zero immediately follows the header. The
graphic control extension header is shown in Table 12.8.

Comment Extension

The comment extension allows an encoder to store information of any type within
a GIF file. An application should not use a comment extension to store data that
it uses to control how the GIF stream is to be processed. The comment extension
has no header, not even a count byte. The data blocks containing the comment
text immediately follow the extension type code.

Application Extension

An encoder can use an application extension block to store data within a GIF
stream that is specific to the application. Its purpose is similar to that of a com-
ment extension except that it may be used to hold data that affects the decoding
processes. The application-specific data is stored within the data blocks that fol-
low the header. The format of the application header is shown in Table 12.9.

Field Name

Block Size

Bit Fields

Transparent Color Flag

User Input Flag

Disposal Method

Reserved

Delay Time

Transparent Color Index

Size

1 byte
1 byte
Bit 0
Bit 1

Bits 2-4

Bits 5-7
2 bytes

1 byte

Description

Must be 4.

Set when the Transparent Color Index is used.
When set, the application should wait for user input before
displaying the next image.
Specifies what the decoder is to do after the image is displayed.
0—No action.
1—Leave the image In place.
2—Restore the background color.
3—Restore what was in place before the image was drawn.

The amount of time the decoder should wait before continuing
to process the stream in 1/100ths of a second.
If Transparent Color Flag is set, pixels with this color value
are not written to the display.

178 GIF

Interlacing

In general, GIF images are stored from top to bottom, left to right. However, if
the interlace flag in the image header is set, the rows of pixel data are not trans-
mitted in strict top-to-bottom order. Instead, the image is transmitted in four
passes. The first pass contains the pixel data for every eighth row starting with
the topmost row (row zero). The remaining passes fill in the rows omitted in the
previous passes. Table 12.10 shows the rows included in each pass.

The interlacing process serves the same function as progressive JPEG.
When an image is transmitted across a network it allows the user to get an idea
of what it contains before all the image data is downloaded. Applications that
display interlaced GIFs on the fly will usually fill in the missing rows in a pass
with copies of the rows already received. On the first pass it will copy each row
eight times, four times on the second pass, and once on the third pass. This gives
the effect of having the image fading in rather than having disconnected rows on
the screen.

Table 12.10
Interlacing Row
Interlacing

Pass

1
2
3
4

Starting Row

0 (Top row)
4
2
1

Interval

8
8
4
2

Compressed Data Format

The pixel data within a GIF image is compressed using a process known as
LZW. LZW is what is known as a dictionary-based compression scheme. By
that, we mean a compression method that maintains a list or dictionary of
sequences within the uncompressed data. During compression, when these
sequences occur in the uncompressed data they are replaced by a code that ref-

Field Name

Block Size

Application ID

Authentication Code

Size

1 byte
8 bytes

3 bytes

Description

11
An ASCII string that identifies the application
that created the block
Three bytes an application may use to
authenticate the block

Table 12.9
Application
Extension Header

erences the sequence in the dictionary. The longer the dictionary sequences are
and the more frequently they are repeated in the uncompressed data, the greater
the compression.

The trick in dictionary-based compression is how to transmit the dictio-
nary in the compressed data. The most common dictionary-based compression
schemes in use are based upon those described by Abraham Lempel and Jacob
Ziv (1977 and 1978), and known as LZ77 and LZ78, respectively. LZ77 uses a
sliding window into the uncompressed data to implement the dictionary.1 LZ78
builds a dictionary dynamically from the uncompressed data.

GIF Compression

LZW is a variant of the LZ78 process that was described in a paper by Terry
Welsh of Sperry (now Unisys) in 1984. CompuServe adopted it for use in the
GIF format shortly afterwards. In the LZW method, the compressed data
stream consists entirely of codes that identify strings in a dictionary. The dic-
tionary is initialized so that it contains each possible data value as a predefined
string. For example, if 8-bit data is being encoded, the dictionary initially con-
tains 256 1-byte strings containing the values 0-255.

The compression reads characters from the input stream and appends them
to the current string until the current string no longer has a match in the dictio-
nary. At that point it outputs the code for the longest matching string, adds the
nonmatching string to the dictionary (the matching string plus one character),
and finally starts a new string that contains the first nonmatching character. Each
time a code is written to the output stream, an entry is added to the dictionary.

Algorithm 12.2 illustrates how the dictionary is created in the LZW process.
Here we are assuming that 8-bit data is being used and that the function Output
writes 9-bit codes to the output stream.

Figure 12.5 shows how a sample string would be compressed using the LZW
process. The first column shows the string at each stage in the compression
process; the second column shows the value written to the output stream at each
stage; and the third column shows the new code that is created.

This input string in Figure 12.5 consists of 27 characters. Using 8 bits per
character, the string requires 216 bits. The LZW process uses 20 literal values
and dictionary codes to represent the string, so 9 bits are required to encode each
LZW value, giving a total of 180 bits—a reduction of 17% in the compressed
version. It takes only 33 codes to encode the same string repeated twice (a 31%
reduction) and 42 codes to encode it repeated three times (a 41% reduction). The
more repetition in the input stream, the greater the compression the LZW
process gives.

1The LZ77 method will be described in greater detail in the chapters on PNG.

Compressed Data Format 179

180 GIF

Algorithm 12.2
Simplified LZW
Compression

Global String DICTIONARY [0..511]
Global NEXTCODE = 256

Procedure Initialize
Begin
For I = 0 To NEXTCODE - 1 Do
DICTIONARY [I] = CHARACTER (I)
End

Function SearchDictionary (String SEARCH)
Begin
For I = 0 To NEXTCODE - 1 Do

Begin
If DICTIONARY [I] = SEARCH Then

Return I
End

Return -1
End

Procedure Compress (String DATA)
Begin
Initialize
LASTSTRING = NULL
For I = 1 To Length (DATA) Do

Begin
CurrentString = LASTSTRING + DATA [I]
CODE = SearchDictionary (CURRENTSTRING)
If CODE < 0 Then

Begin
// Me now have a string with no match in the
// dictionary. Output the code for the longest
// string with a match.
CODE = SearchDictionary (LASTSTRING)
Output (CODE)
// Add the nonmatching string to the dictionary.
DICTIONARY [NEXTCODE] = CURRENTSTRING
NEXTCODE = NEXTCODE + 1
// Start a new string, beginning at the point
// where we no longer had a match.
LASTSTRING = DATA [I]
End

Else
Begin
// The current string has a match in the dictionary.
// Keep adding to it until there is no match.
LASTSTRING = CURRENTSTRING
End

End
// Output what is left over.
Output (SearchDictionary (LASTSTRING))
End

Compressed Data Format 181

Figure 12.5
LZW Compression
Example

A MAN A PLAN A CANAL PANAMA

Input

A MAN A PLAN A CANAL PANAMA
MAN A PLAN A CANAL PANAMA
MAN A PLAN A CANAL PANAMA
AN A PLAN A CANAL PANAMA
N A PLAN A CANAL PANAMA
A PLAN A CANAL PANAMA
A PLAN A CANAL PANAMA
PLAN A CANAL PANAMA
LAN A CANAL PANAMA
AN A CANAL PANAMA
A CANAL PANAMA
CANAL PANAMA
CANAL PANAMA
ANAL PANAMA
AL PANAMA
L PANAMA
PANAMA
PANAMA
ANAMA
MA

Output

A
<SPACE>
M
A
N
<SPACE>
256
P
L
259
261
<SPACE>
C
259
A
L
<SPACE>
P
269
258

New Code

256='A<SPACE>'
257='<SPACE>M'
258='MA'
259='AN'
260='N<SPACE>'
261='A'
262='A<SPACE>P'
263='PL'
264='LA'
265='AN<SPACE>'
266='<SPACE>A<SPACE>'
267='<SPACE>C'
268='CA'
269='ANA'
270='AL'
271='L<SPACE>'
272='<SPACE>P'
273='PA'
274='ANAM'

GIF Decompression

An LZW decompressor reads one code at a time from the compressed stream
while maintaining the dictionary in the same way the compressor does. Each
code simply gets translated from the dictionary.

The only subtlety in decompression is that it is possible for the compressed
stream to contain codes that have not been defined in the dictionary. Figure 12.6
contains a compression example that illustrates how this situation can occur.
Notice that the code 259 is output at the same time the code is defined. A decoder
processing this sequence would read 259 before code 259 is defined.

This situation can only occur when the new dictionary string consists of the
string for the last code processed with the last character of the last code defined
added. In Figure 12.6, the last code output before 259 is 256, whose value is
'AB'. The last character of the previous code (258) is 'A', so the dictionary string
for 259 is 'AB' + 'A' = 'ABA'.

Algorithm 12.3 illustrates the LZW expansion process.

182 GIF

Algorithm 12.3
Simplified LZW
Expansion

Code Sizes

Up to now we have assumed that we are using 9 bits to represent dictionary codes
and literal values in the compressed data stream. If we have an input stream larger
than 256 bytes we need to use 10 bits to represent each value. Larger input
streams can require even larger code sizes. Since choosing a code size that is too
large gives poor compression, how would you select a code size that is suitable
for most situations?

The solution to this problem in LZW compression is to use varying code
sizes. At the start of the compression process, each value is stored using the

Figure 12.6
LZW Example with a
Code Used Before it
is Defined

Procedure Expand
Begin
LASTCODE = InputCode ()
Output (LASTCODE)
While NOT EndOfStream DO

Begin
CODE = InputCode ()
If CODE < NEXTCODE Then

Begin
Output (Dictionary [CODE])
Dictionary [NEXTCODE] = Dictionary [LASTCODE]

+ Dictionary [NEXTCODE -1][1]
NEXTCODE = NEXTCODE + 1
LASTCODE = CODE
End

Else
Begin
// Special Case where the code is used before it is defined.
Dictionary [NEXTCODE] = Dictionary [LASTCODE]

+ Dictionary [LASTCODE][1]
NEXTCODE = NEXTCODE + 1
Output (DICTIONARY [CODE])
LASTCODE = CODE
End

End
End

ABYABABAX

Input

ABYABABAX
BYABABAX
YABABAX
ABABAX
ABAX
X

Output

A
B
Y
256
259
X

New Code

256='AB'
257='BY'
258='YA'
259='ABA'
260='ABAX'

Compressed Data Format 183

Figure 12.7
Tree Represenation
of an LZW
Dictionary

smallest possible number of bits (almost always 9). When the number of codes
becomes too large to be represented by the current code size, the code size is
increased by 1 bit. If the initial code size is 9, codes are output using 9 bits until
code 512 is created. Then the code size is automatically bumped up to 10 bits.
Likewise, after reaching 1024 it is increased to 11 bits. Twelve bits is the maxi-
mum code size allowed by GIF. When the code values reach 212-1, GIF encoders
and decoders stop adding to the dictionary.

A GIF encoder can output a special clear code to instruct the decoder to reset
the dictionary to its initial state. An encoder may wish to output a clear code
whenever it detects a situation where compression would be improved by using
a new dictionary. An obvious situation where this might be desirable is after the
maximum code sized is reached. Repeated clear codes are legal, but wasteful.

The value for the clear code is not fixed, but rather depends upon the mini-
mum code size that followed the image header. The minimum code size gives the
number of bits used to encode the pixel data. Usually this value is 8 bits per pixel,
but pixel values for images that do not use 256 colors can be compressed using
fewer bits.

Table 12.11 shows the relationship of the minimum code size to the code
usage within a GIF image. The end code is used to mark the end of a compressed
stream.

Dictionary Structure

In the GIF compression and decompression examples we used an array of strings
to represent the dictionary. Normally the dictionary is represented as a tree struc-
ture. Figure 12.7 shows how the strings generated from compressing the string
ABABCABD can be arranged in a tree structure. A code can be translated to a
string by starting at the tree node for the code and working to the tree root.

Translating the code by walking the tree from a leaf to the root produces the
string in reverse order. In Figure 12.7, following the code 260 gives "DBA". A
stack is used to put the string in the correct order. While walking the tree, each
time a leaf node is reached, the corresponding character is pushed on the stack.
When you reach the root of the tree, you pop characters off in the correct order.

The tree can be represented as an array of structures. Since the maximum
code length is 12 bits, the maximum number of tree nodes is 212. The size of the
stack is also 212 characters.

Table 12.11
GIF Code Usage

Encoded Value Range
0-2Minimum Code Size - 1
2Minimum Code Size

2Minimum Code Size + 1
2Minimum Code Size + 2-212 - 1

Usage

Literal codes
Clear code
End code
String codes

GIF

Algorithm 12.4 illustrates how LZW decompression can be implemented
using a tree structure for a dictionary and using variable length codes.

Global Structure DICTIONARYTREE Array [0..212-1]
Begin
Byte CHARACTER
Integer PARENT
End

Global STACK Array [1.. 212] Of Byte
Global STACKPOINTER
Global MINIMUMCODESIZE = 8
Global CODESIZE
Global ENDCODE
Global CLEARCODE
Global NEXTCODE
Global FIRSTCHARACTER

Procedure InitializeDictionary
Begin
For II = 0 TO 2CodeSize-1 DO

Begin
DICTIONARYTREE [II].CHARACTER = II
DICTIONARYTREE [II].PARENT = 0
End

STACKPOINTER = 0
CODESIZE = MINIMUMCODESIZE
CLEARCODE = 2MINIMUMCODESIZE

ENDCODE = CLEARCODE + 1
NEXTCODE = ENDCODE + 1
End

Procedure OutputCode (CODE)
Begin
// Push the characters of the dictionary entry
// on the stack in reverse order.
Do

Begin
STACK [STACKPOINTER] = DICTIONARYTREE [CODE].CHARACTER
STACKPOINTER = STACKPOINTER + 1
CODE = DICTIONARYTREE [CODE].PARENT
End

While DICTIONARYTREE [CODE].PARENT <> 0

// The tree structure makes it more difficult to
// find the first character in the last code processed.
// We remember it here.

FIRSTCHARACTER = STACK [STACKPOINTER]

184

(continued)

Algorithm 12.4
GIF Expansion

Compressed Data Format

// Pop the value off the stack in reverse order.
While STACKPOINTER > 0 Do

Begin
Output (STACK [STACKPOINTER])
STACKPOINTER = STACKPOINTER - 1
End

End

Procedure Expand (OUTPUT : String)
Begin
InitializeDictionary ()

CODE = ReadBits (CODESIZE)
While CODE = ClearCode Do

CODE = ReadBits (CODESIZE)

OutputCode (CODE)
While TRUE Do

Begin
LASTCODE = CODE
If NEXTCODE >= 2CODESIZE And CODESIZE < 12 Then

CODESIZE = CODESIZE + 1
CODE = ReadBits (CODESIZE)
If CODE = ENDCODE Then

Return
Else If CODE = CLEARCODE Then

Begin
InitializeDictionary ()
CODE = ReadBits (CODESIZE)
While CODE = CLEARCODE Do

CODE = ReadBits (CODESIZE)
If CODE = ENDCODE Then

Return
OutputCode (CODE)
End

Else If CODE < NEXTCODE Then
Begin
OutputCode (CODE)
DICTIONARYTREE [NEXTCODE].PARENT = LASTCODE
DICTIONARYTREE [NEXTCODE].CHARACTER = FIRSTCHARACTER
NEXTCODE = NEXTCODE + 1
End

Else
Begin
// Special Case of an Undefined Code
DICTIONARYTREE [NEXTCODE].PARENT = LASTCODE
DICTIONARYTREE [NEXTCODE].CHARACTER = FIRSTCHARACTER
NEXTCODE = NEXTCODE + 1
OutputCode (CODE)
End

End
End

185

Algorithm 12.4
Continued

186 GIF

Animated GIF

Unlike all of the other formats discussed in this book, GIF allows multiple
images to be stored in a single file. Web browsers have taken advantage of this
capability to store simple animations. There is no official standard that describes
how multi-image GIF files should be displayed. Many image viewers will just
display the first image in a GIF file. However, among the major Web browsers,
there is some consistency in how GIF animations are displayed.

Figure 12.8 shows a series of four frames that compose a simple animation
sequence. To store this as a GIF animation, the four images are encoded one after
another in separate image blocks. Typically a Web browser will display each
image in sequence as rapidly as it can. You can use a graphic control extension
(Table 12.8) to control the amount of time between the individual frames. A
graphic control extension only affects the image that immediately follows it, so
you will probably need one for each image in the animation sequence.

Most applications will only play an animation once. To create an animation
that repeats in a loop you have to include a special application extension (Table
12.9), whose format is shown in Table 12.12. Although the application ID is
"NETSCAPE," this only reflects the creator of the block. Other Web browsers
recognize this block format as well.

The Repeat Count field in the application extension gives the number of
times the animation is played. A value of zero specifies that the animation is
repeated indefinitely. Since displaying images can take up a significant amount

Figure 12.8
Sample GIF
Animation

Table 12.12
Loop Application
Extension Format

Field Name

Block Size
Application ID
Authentication Code
Block Size
Extension Type
Repeat Count
Terminator

Size

1 byte
8 bytes
3 bytes
1 byte
1 byte
2 bytes
1 byte

Description

11
"NETSCAPE"
"2.0"
3
1
Number of times the animation should repeat
0

Legal Problems 187

Figure 12.9
An Animation That
Partially Updates
the Logical Screen

of CPU time on home computers, especially those with no delays, it is generally
not a good idea to have animations loop forever.

The logical screen descriptor (Table 12.2) specifies the dimensions of the
animation. Each image does not have to update the entire logical screen. The
dimensions and position fields in the image header (Table 12.5) can specify a
region within the logical screen for an image to update. Not updating the screen
in every image can reduce the size of the GIF file significantly.

Figure 12.9 shows how the previous animation can be set up so that it only
updates part of the logical screen.

Legal Problems

Welsh did not mention in his 1984 paper, "IEEE Computer," that he had filed for
a patent in 1983 on the process he described. The patent was subsequently
granted (4,558,302) in 1985 and assigned to Sperry (now Unisys). For whatever
reason (software patents were new and untested legal territory at the time),
CompuServe never checked to see if LZW was patented when it issued the GIF
specification.

Over time the use of GIF grew and the patent issues remained theoretical
until 1994, when Unisys started to demand licensing fees for LZW from GIF
users. This made the use of GIF impossible in freely distributed applications.

Solving the GIF patent issue is not simply an issue of getting a license from
Unisys. There are numerous other patents related to LZ compression that an
implementation could infringe upon. A notable GIF-related patent was awarded
to Victor Miller and Mark Wegman of IBM in 1989 (4,814,726). Their patent
describes a process that is almost identical to the LZW process. As a result of the
patent situation, anyone using GIF in any type of application needs the advice of
an attorney.

The fundamental problem is that the LZW process itself is a derivative of
earlier work. With the patent database full of LZ derivations, it is impossible to
determine what patents an innovative GIF implementation might infringe upon.

GIF

Worse than simply their numbers, these patents are written in legalese, making
them difficult to understand. With the legal mess surrounding GIF, the best solu-
tion for developers is to use other formats. Unlike JPEG, the patent situation with
GIF is unlikely to be satisfactorily resolved.

Uncompressed GIF

It is the LZW process, not GIF, that is covered by patents, and it is entirely pos-
sible to create GIF files that do not use LZW compression. The easiest way to
implement a GIF encoder without using LZW is to simply encode each data byte
using 9 bits and output a clear code after every 254 codes. While this gives neg-
ative compression, a conforming GIF decoder will correctly interpret the data.

Other GIF-compatible compression schemes have been implemented. It is
possible to count runs of the same pixel value or alternating pixel values and
compress them in the GIF format. What is unknown is when these methods cross
the bounds of any of the various patents.

Conclusion

The GIF format was the first image format to be universally accepted.
Unfortunately, legal problems have ended GIF development. Unlike other major
graphics formats, no enhancements to GIF are under way. This, coupled with
inherent limitations compared to other formats, has made it essentially dead.

Nelson (1992) gives a excellent introduction to the LZ compression methods
and their general implementation. The LZ77, LZ78, and LZW algorithms were
originally described in Ziv (1977, 1978) and Welsh (1984).

We can tell you how GIF works. Unfortunately, we cannot show you as well.
Because of the patent issue, there is no GIF source code on the accompanying
CD. Simply writing about GIF in a book requires involving lawyers in the
process. Shakespeare was right.

188

PNG

Portable Network Graphics (PNG) is the newest graphics format in this book. It
is just now starting to receive widespread use by the Internet community, and is
already supported by any image viewing application worth using.

The PNG format uses a lossless compression process and supports the fol-
lowing:

• Up to 48 bits per pixel in color images

• 1-, 2-, 4-, 8-, and 16-bit sample precision

• Alpha channel for full control of transparency

• Sophisticated color matching

Because of the legal issues surrounding the use of GIF, PNG should now be
used instead of GIF in those applications where JPEG is not a suitable alterna-
tive. In situations where you need lossless compression for 24-bit images, such
as the intermediate format for images that are repeatedly edited, PNG is much
better suited than JPEG.

189

Chapter 13

190 PNG

In this chapter we are going to cover the structure of PNG files and the for-
mat of the individual chunks that are defined by the PNG standard. In the two
following chapters we will cover the format of the compressed data and how to
read and write PNG files.

When Unisys began demanding license fees from users of GIF it became impos-
sible to use GIF in many situations, notably in free software. After Unisys's
action, the JPEG format quickly replaced GIF for photographic images.
However, JPEG does not compress certain types of images well, so it could not
replace GIF for all applications.

Thomas Boutell organized what was to be called the PNG Development
Group, started within days of Unisys's announcement that they would demand
licenses for GIF usage. Development of the PNG standard proceeded at a rapid
pace, with several drafts issued to the public. The final version was released on
October 1, 1996, just over a year and half after the project began.

The PNG format stores multi-byte integers with the most significant byte first
(big-endian). Bit strings are read from the least to the most significant bit.
When a bit string crosses a byte boundary the bits in the second byte are the
most significant.

Huffman codes within compressed data are stored with the code bits in
reverse order. The most significant bits of the Huffman code are stored in the
least significant bits of the data bytes.

File Format

A PNG file is organized into a sequence of blocks referred to as chunks in the
PNG standard. Chunk types are defined by three sources. Some are defined by
the PNG standard; these are the most important chunks a decoder has to deal
with. The PNG Development Group also maintains a list of registered public
chunk types. If someone creates a chunk type that may be of use to the general
public, the creator can submit it to be considered for addition. Finally, there are
private chunks defined by applications.

Chunks follow the format shown in Table 13.1. This format allows a decoder
to skip over those chunks that it does not know how to process and those that the

Byte Ordering

History

File Format 191

Table 13.1
PNG Chunk Format

Field

Length

Type

Data

CRC

Size

4 bytes

4 bytes
Length bytes
4 bytes

Description

Number of bytes in the Data field 0-2,147,483,647
(231-1) bytes.1

Chunk name.
Chunk data. The format depends upon the chunk type.
CRC-32 value calculated from the data.

implementers feel are not important enough to implement. Being able to ignore
unknown chunks is essential because decoders need to be able to process files
containing private chunks created by other applications and new public chunks.

Chunk Naming

PNG chunks are given unique names that consist of four ASCII letters. The first,
second, and last characters in a chunk type can be either upper or lower case. The
case used for these characters follows the convention described below, which
allows a decoder to determine information about the chunk from the name alone.

The third character in the chunk name must be in upper case. If an appli-
cation encounters a chunk type containing any values other than ASCII letters,
it should consider it invalid. Figure 13.1 shows some sample chunk names and
their meanings.

Critical Chunks
If the first character of the chunk type is in upper case (bit 5 clear), the chunk is
referred to as critical. A critical chunk is one that the decoder absolutely must
process in order to decode the image. If a decoder encounters a critical chunk that
it does not recognize, it should report an error. The PNG standard only defines
four critical chunks: IHDR, PLTE, IDAT, and IEND.

Public and Private Chunks
The second character in the chunk type is upper case for chunks that are publicly
defined. Public chunks types include all those defined by the PNG standard as
well as additional chunk types that are registered with the PNG Development
Group.

Applications can create private chunks of their own to store data that is spe-
cific to the application. These should have the second character in lower case to
ensure that they do not conflict with publicly defined chunks.

1The size limitations in the PNG specification take into account programming languages that cannot han-
dle unsigned integers.

192 PNG

Figure 13.1
Sample PNG Chunk
Names

IHDR
gAMA
pHYs
apPx
A1PX
ApPx
apPX
aaaX

Critical, public, unsafe to copy
Noncritical, public, unsafe to copy
Noncritical, public, safe to copy
Noncritical, private, safe to copy
Invalid
Critical, private, safe to copy
Noncritical, private, unsafe to copy
Invalid

Safe-to-Copy Chunks
The last character in the chunk type should be in lower case if the chunk is safe
to copy and in upper case if it is not. An application should not copy chunks that
it does not recognize if the fourth character in the chunk type is in upper case.

Suppose you are developing a PNG editor application that automatically puts
a border and logo on an image and then saves the image to a new file. If the appli-
cation encounters an unknown chunk it has two choices: it could pass that chunk
on to the output file without making any modifications to it or discard it.

If the editing application encountered a private chunk created by an archiv-
ing program that stored indexing information within the image (e.g., subject,
date, and photographer), it would not know how to interpret the information with
it. However, copying the chunk to the output file would produce perfectly valid
results. Such a private chunk would probably be made a safe-to-copy chunk.

On the other hand, suppose editor encountered a private chunk that contained
information on the usage of colors with the image. After the border was added,
the information in the chunk would no longer be valid. Such a private chunk
should be unsafe to copy.

Cyclic Redundancy Check

Each PNG chunk contains a 32-bit CRC (Cyclic Redundancy Check) value that
has been calculated from the chunk type code and chunk data. The CRC is a
mathematical function that is commonly used in networking software to ensure
that data in a network packet has been received correctly. Before sending a data
packet the transmitter applies the CRC function to the data and then appends the
CRC value to the packet. The receiver of the packet applies the CRC function to

While it is legal for an application to create private critical chunks,
using such chunks will most likely make the images unreadable by
other applications.

Critical
Public Reserved

Safe to Copy

the data and then compares the calculated CRC value to the value in the packet.
If the two values are not the same, the receiver can send a negative acknowledg-
ment to the transmitter to request that the packet be resent.

The PNG file format applies the CRC function to each chunk so that
decoders can verify that the data in the chunk has not been corrupted since the
file was created. A decoder should calculate the CRC value for every chunk in
a PNG file and ensure that the calculated value matches the CRC value stored
in the chunk. A chunk where these two values do not match should be consid-
ered invalid.

The CRC function is based upon performing modulo 2 polynomial division
on the input data, where each bit in the input stream is treated as a coefficient in
a giant polynomial. The CRC function value is the remainder from the division
operation. The choice of the polynomial determines the type of bit errors that can
be detected. Both 16-bit and 32-bit CRC functions are in common use. A 32-bit
CRC can detect more errors in larger packet sizes. PNG uses the 32-bit version,
which is known as CRC-32. The polynomial used by PNG is

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

which is essentially the value

1 0000 0100 1100 0001 0001 1101 1011 01112

Software implementations of the CRC function invariably use a table lookup
to calculate the CRC function. As each byte in the input stream is processed, a
value known as the CRC register is updated using a value in the table. In the CRC
function used by PNG, the CRC register is initialized with all bits set to 1. After
the last byte has been processed the final CRC value is the 1s-complement of the
value in the CRC register.

The CRC process used by PNG, when implemented using a lookup table,
looks like this.

unsigned long CrcRegister ;

void CrcByte (unsigned char data)
{

unsigned int index = (CrcRegister ^ data) & 0xFF ;
CrcRegister = CrcTable [index] ^ ((CrcRegister >> 8) & 0X00FFFFFF) ;
return ;

}

unsigned long Crc (unsigned char buffer [], unsigned int length)
{

CrcRegister = 0xFFFFFFFFL ;
for (unsigned int ii =0 ; ii < length ; ++ ii)
CrcByte (buffer [ii]) ;
return ~CrcRegister ;

}

193File Format

PNG

unsigned long CrcTable [256] ;
void MakeCrcTable ()
{

for (unsigned int ii = 0 ; ii < 256 ; ++ ii)
{
CrcTable [ii] = ii ;
for (unsigned int jj = 0 ; jj < 8 ; ++ jj)
{

if ((CrcTable [ii] & 0x1) == 0)
CrcTable [ii] >>= 1 ;

else
CrcTable [ii] = 0xEDB88320L ^ (CrcTable [ii] >> 1) ;

}
}
return ;

}

The mathematics of the CRC process is outside the scope of this
book. However, to give you some idea of how it is done, compare
the constant

EDB8832016 = 1110 1101 1011 1000 1000 0011 0010 00002

used in generating the CRC lookup table to the value that we said
was equivalent to the CRC. If you take this value, reverse the order
of the bits, then prepend a 1-bit, you have the CRC-32 polynomial
value

1 0000 0100 1100 0001 0001 1101 1011 01112.

Chunk Processing

Most PNG decoders will probably be implemented with a common function
for reading the chunk data into memory. This common process would follow
these steps:

1. Read the chunk data size.

2. Read and save the chunk type.

3. If the chunk data size is larger than the data buffer, allocate a larger buffer.

4. Read the chunk data.

5. Calculate the CRC value of the chunk data.

6. Read the chunk CRC from the file.

194

Before making any CRC calculations, the lookup table containing precalcu-
lated values for each possible byte integer value needs to be initialized using a
function like this.

Color Representation in PNG 195

7. Compare the calculated CRC to the CRC read from the file. If they are not
the same, the chunk is invalid.

After the last step the decoder can call a function to handle the specific
chunk type.

File Organization

Figure 13.2 shows the general organization of a PNG file. A PNG file must start
with a PNG signature followed by an IHDR chunk and end with an IEND chunk.
The ordering of the other chunks within a file is somewhat flexible. The ordering
restrictions are covered in the discussions of chunk formats.

The PNG signature consists of 8 bytes that must have the values 137, 80, 78,
71, 13, 10, 26, and 10. These are the ASCII values 137, P, N, G, <RETURN>,
<LINEFEED>, <CTRL/Z>, and <RETURN>. There is a bit of hidden logic in using
these values in the signature. Other than the obvious device of including the
string "PNG" to identify the format, most of the reasoning is rather subtle.

On Unix, a <LINEFEED> character is used to separate records in a text file.
In MS-DOS, records are separated by a <RETURN><LINEFEED> pair. Many file
transfer programs can operate in either binary or text mode. In binary mode these
applications make a byte-to-byte copy, but in text mode they replace <LINE-
FEED> characters with <RETURN><LINEFEED> pairs when going from Unix to
DOS and replace <RETURN><LINEFEED> pairs with <LINEFEED> characters
when going from DOS to Unix. If a PNG file is transferred employing text mode
using one of these programs, either <RETURN><LINEFEED> or <LINEFEED> will
be corrupted, so a decoder will have to go no further than the signature to know
it has a bad file.

The first byte in the signature is not a displayable ASCII value, making it less
likely that a decoder will confuse a text file with a PNG file. If you accidentally
type a PNG file at the DOS command line, the <CTRL/Z> in the header stops it
from printing beyond the signature.

Figure 13.2
PNG File
Organization

Color Representation in PNG

The PNG format supports five different color types or methods for representing
the color of pixels within an image. The method for representing color is speci-
fied in the file's IHDR chunk.

196 PNG

RGB Triple

Like BMP, PNG can represent colors as an RGB triple. Each pixel is represented
by three component values of either 8 or 16 bits. The components are stored in
red, green, blue order (the opposite of BMP). RGB triples may only be used when
the bit depth is 8 or 16 bits.

Palette

PNG images can also use a color palette in the same way BMP and GIF do. The
size of the palette depends upon the sample precision. Images that use a palette
must contain a PLTE chunk that defines the palette. Palettes may only be used
when the bit depth is 1, 2, 4, or 8 bits.

Grayscale

In the grayscale color type there is one component per image, and it represents
the relative intensity of the pixel. The grayscale color type can be used for all
PNG bit depths. On most systems a decoder will need to create a palette to dis-
play grayscale images using a process like the one shown in Algorithm 13.1.

Algorithm 13.1
Grayscale Palette
Creation

MAXPIXELVALUE = 2DISPLAYBITDEPTH-1

For II = 0 To MAXPIXEVALUE Do
Begin
PALETTE [II].RED = II
PALETTE [II].GREEN = II
PALETTE [II].BLUE = II
End

RGB with Alpha Channel

PNG images support the use of an Alpha channel to control the transparency of
the image. The Alpha channel allows an image to be combined with its back-
ground. Each pixel value has an additional Alpha value whose size in bits is the
same as the image bit depth. The RGB with Alpha color type can only be used
with bit depths of 8 and 16.

An Alpha value of zero means that the pixel is fully transparent, in which
case the background shows completely through. A value of 2Image Bit Depth-1 is
fully opaque, which means that the background is completely covered by the
image. When the Alpha channel has an intermediate value, the pixel is merged
with the background using the process in Algorithm 13.2.

MAXPIXELVALUE = (1 LeftShift BITDEPTH) - 1
OUTPUT.RED = (ALPHA * IMAGEVALUE.RED

+ (MAXPIXELVALUE - ALPHA) * BACKGROUND.RED) / MAXPIXELVALUE
OUTPUT.GREEN = (ALPHA * IMAGEVALUE.GREEN

+ (MAXPIXELVALUE - ALPHA) * BACKGROUND.GREEN) / MAXPIXELVALUE
OUTPUT.BLUE = (ALPHA * IMAGEVALUE.BLUE

+ (MAXPIXELVALUE - ALPHA) * BACKGROUND.BLUE) / MAXPIXELVALUE

Algorithm 13.2
Alpha Channel
Merging

Grayscale with Alpha Channel

An Alpha channel can also be used with grayscale images, but the image bit
depth is restricted to 8 or 16. Each pixel using this color type is represented using
two values containing the same number of bits, with the Alpha value following
the pixel intensity value. The merging process for this color type is the same as
for RGB with Alpha except that there is only one image color component.

Device-Independent Color

All of the colorspaces we have dealt with until now have been relative color
spaces where color components have values from 0 to 2N-1, where N is the num-
ber of bits used to represent a component. Zero represents the minimum compo-
nent value for the device, and 2N-1 is the maximum value. Suppose that you
worked for Coca-Cola and needed labels printed for bottles with the background
color the same bright red used on all Coke bottles. If you told the printer you
wanted the color to be (230,0,0) using the RGB colorspace with a sample preci-
sion of 8 bits, the color of the labels would depend upon the printing equipment.
What you really need is a method to specify the absolute color.

The CIE 1931 standard (CIE stands for Committee Internationale de
L'Eclairage, International Lighting Committee) has served exactly that purpose
in photography, printing, and film since 1931. It uses three components that are
usually designated XYZ. The Y component represents luminance, as it does in
the YCbCr colorspace; the X and Z components represent chrominance. These
are analogous to the Cb and Cr components, but the implementation is different.

If an application knows the XYZ color values for red, blue, green, and
white for the device where the image was originally created, it is possible to
convert the RGB values in the image to XYZ values giving absolute color. If

Device-Independent Color 197

PNG

these color values are known for the display image as well, it is possible to con-
vert them to the corresponding RGB values for the display device so that the
image will be displayed using the original colors. This assumes that the display
device can actually display all of the XYZ colors in the image—something that
is not always the case.

To make things even more confusing, the makers of monitors list the colors
using a colorspace related to XYZ, known as xyY, which is a projection of the
XYZ colorspace into two dimensions. The relationship between the xyY and
XYZ colorspace is

Equation 13.1
xyY/XYZ Colorspace
Conversion

Projecting the XYZ colorspace into two dimensions allows all possible col-
ors to be represented on a piece of paper, although with the loss of luminance or
brightness possibilities.

Figure 13.3 illustrates the xyY colorspace. The black triangle in the center
represents the gamut, or range, of colors that can be displayed by a typical com-
puter monitor. This triangular range is only a small subset of the visible colors.
The gamut available to a particular device can vary substantially. For example,
the gamut that can be displayed by the typical desktop color printer is a bit dif-
ferent than that for a computer monitor.

One of the reasons colors are not generally encoded within image files using
XYZ colorspace is that it requires much more precision in the data. Using RGB,
the data precision is only such that the possible colors for the device can be rep-
resented. Since XYZ covers all possible visible colors rather than the small sub-
set a device can show, it requires more data bits to encode. The solution used by
PNG is to encode values using RGB and create chunks that allow a decoder to
determine the colors that were actually used at the source.

When I contacted the manufacturer of my monitors, the information they
gave me was:

Vendors of monitors for personal computers rarely include the
monitors' XYZ values with the documentation. They generally have
this information available if you ask them directly.

198

Device-Independent Color 199

Figure 13.3
xyY Colorspace

Display devices are normally built so that the white point falls on or close to
a set of data points known as the black body curve. 9300K is a standard white
point value for a computer monitor that has an xy value of (0.285, 0.293). The
Y value is implicitly 1.0. The white point in the XYZ colorspace is, then,

X = 0.973
Y = 1
Z = 1.440

for both monitors.

Monitor 2

Red
Green
Blue

x
.625
.280
.155

y
.340
.595
.070

White Point: 9300K

Monitor 1

Red
Green
Blue

x
.612
.293
.149

y
.353
.595
.068

White Point: 9300K

200 PNG

Equation 13.2
RGB to XYZ
Conversion

The conversion from RGB to XYZ is a matrix multiplication of the form

where CR, CG, and CB are constants and the RGB values have been scaled to the
range 0-1.0. The trick now is to find the values of these three constants.

If we substitute the xy values for the first monitor into Equation 13.2 we get

Equation 13.3

We already calculated the white point XYZ coordinate and we know that the
RGB value of the white point is (1.0, 1.0, 1.0). If we substitute that into the pre-
vious equation we get

Equation 13.4

Equation 73.5

This is a set of three linear equations with three unknown variables. We can
now solve for CR, CG, and CB, which gives (0.698, 1.094, 1.512). This makes the
transform from RGB to XYZ for this monitor

Equation 73.6

To convert from XYZ back to RGB you have to invert the transform matrix.
The easiest method is to use a Gaussian elimination. Row reduction and matrix
inversions are beyond the scope of this book, but you will find an explanation of
these techniques in any book on linear algebra, such as Anton (1981). This is the
inverse function for the first monitor.

Equation 13.7

which can be factored into

Gamma 201

Gamma

Equation 13.8
Gamma
Combination

The color models used with image files assume that there is a linear relationship
between a component value and the color that appears on the screen. In reality,
the display devices in use do not tend to respond in a linear manner to the input
supplied to them. Gamma approximates the nonlinear behavior of these devices.
It is simply a power function:

(x) = x
where
0 x 1

> 0

Adjusting the Gamma of an image can be used in conjunction with convert-
ing to the XYZ colorspace or on its own. Gamma adjustments have a greater
effect on the appearance of an image on a computer monitor than does conver-
sion to XYZ and back.

The effect of the Gamma function is to make component values generally
darker or lighter. Gamma values greater than 1 make the image darker and those
less than 1 make it lighter. Notice that the domain and range of the Gamma func-
tion are the same. If the input to the function is between 0 and 1 the output will
always be in that range as well.

The Gamma value for a display system is the combined Gamma of the
components.

In other words, the Gamma value for a display system is the product of the
Gamma values for all of its components.

The gAMA chunk allows an encoder to store the Gamma value for a system
used to create the image. The implementer of a PNG decoder is faced with two
issues:

• What Gamma values should be used to view the image?

• What is the Gamma of the system being used to display the image?

There is really no way for an application to determine what the viewing
Gamma should be. In a well-lighted room it should probably be around 1.0. In a
dark room it should be higher, around 1.5 or so. The problem here is that, unless
the decoding software has access to a light sensor, there is no way for it to deter-
mine this. The best choice is either to allow the user to input a Gamma or to use

202 PNG

Equation 13.9

a viewing Gamma of 1.0. Many image display programs allow the user to adjust
the viewing Gamma after the image is displayed to get the best results.

Some high-end display systems allow the system's Gamma to be queried or
even adjusted through software. If you are writing software for personal comput-
ers, you should assume that the Gamma for all of the components other than the
monitor is 1. The PNG standard recommends a Gamma value of 2.5 for monitors
if the exact value is unknown.2 Most monitor vendors have this information avail-
able even though it is not in the printed documentation. The manufacturer says
the Gamma value for the monitors in the previous section is 1.8.

Unless you have a high-end display system, a PNG viewing application can-
not change the Gamma. If the PNG file contains a gAMA chunk giving the
Gamma value for the image, that value is fixed as well. Since the total Gamma
of the display system is

Desired Viewing Gamma = Application Gamma × Display Gamma × File Gamma

an application can adjust it by adjusting the pixel values. The Gamma correction
the application should use is, then

Application Gamma =

Applications should only apply Gamma correction to color components. Gamma
correction is not applied to the Alpha channel.

Equation 13.10

Interlacing

Just as in GIF, PNG supports interlacing of images. The interlacing method used
in the current PNG standard is called Adam 7.3 Other interlacing methods may
be added in the future, but this is the only one supported now. Adam 7 interlaces
the image by pixels rather than by rows. It divides the image into 8 × 8 pixel
blocks and updates it over seven passes. The Adam 7 interlace pattern is shown
in Figure 13.4.

Adam 7 is considerably more difficult to implement than GIF's row inter-
lacing. Fortunately the pattern contains regular intervals that can be exploited by
a decoder. Figure 13.5 shows how a decoder would display an 8x8 block of pix-
els on the fly using the Adam 7 pattern. This illustration makes the regular pat-
tern of the sequence more clear.

2The next version of the PNG standard is expected to recommend a value of 2.2 in order to be compatible
with the sRGB standard.
3After the pattern's creator Adam M. Costello.

Critical Chunks 203

Figure 13.4
Adam 7 Interlace
Pattern

1
7
5
7
3
7
5
7

6
7
6
7
6
7
6
7

4
7
5
7
4
7
5
7

6
7
6
7
6
7
6
7

2
7
5
7
3
7
5
7

6
7
6
7
6
7
6
7

4
7
5
7
4
7
5
7

6
7
6
7
6
7
6
7

Figure 13.5
Adam 7 Interlace
Display

Critical Chunks

The PNG standard defines four critical chunks (IHDR, PLTE, IDAT, and IEND).
Most PNG files need not contain any chunks other than these. The IHDR, IDAT,
and IEND chunks must appear in every PNG file. For the critical chunks we have
listed the general steps a decoder should take to process the chunk.

IHDR

Every PNG file contains one IHDR chunk, which must immediately follow the
PNG signature. The IHDR block specifies the image dimensions, bit depth, and

204 PNG

color type. The structure of the data block within an IHDR chunk is shown in
Table 13.2. The length of the IHDR chunk data is 13 bytes. Decoders should con-
sider any other length invalid.

A decoder needs to ensure that the bit depth and color type combination is
valid. As discussed earlier, not every combination of bit depth and color type is
legal. RGB and color types with Alpha channel are only valid with bit depths of
8 and 16; palette color types are invalid when the bit depth is 16.

The Compression Method and Filter Method fields are for future
extensions of the PNG standard. Currently the only compression method sup-
ported is Deflate with a 32K-byte or smaller sliding window, and only one filter-
ing method is defined. A decoder should ensure that these values are zero.

To process this chunk a decoder should

• Ensure that no other chunks have been processed.

• Validate the following:

- Chunk data length should be 13.

- Compression method and filter method should be 0.

- Interlacing method should be 0 or 1.

- Color type must be 0, 2, 3, 4, or 6.

- Sample precision must be 1, 2, 4, 8, or 16.

- Sample precision and color type must be consistent.

- Storage for the image buffer and palette has been allocated.

Table 13.2
IHDR Data Format

Field Name

Width

Height

Bit Depth

Color Type

Compression Method

Filter Method

Interlace Method

Field Size

4 bytes
4 byte
1 byte
1 byte

1 byte
1 byte
1 byte

Description

Image width in pixels.
Image height in pixels.
Sample precision (1, 2, 4, 8, or 16).
Method for interpreting image data:
0—Grayscale image.
2—RGB triple.
3—Palette.
4—Grayscale with Alpha channel.
6—RGB with Alpha channel.
Must be zero.
Must be zero.
0—The image is not interlaced.
1—Adam 7 interlacing.

PLTE

The PLTE chunk defines a color palette for the image. There may only be one
PLTE chunk per image and it must occur before the first IDAT chunk. When the
image's color type is palette the file must contain a PLTE chunk. The data within
the PLTE chunk is an array of palette entry structures shown in Table 13.3. The
number of palette entries is the number of data bytes in the PLTE chunk divided
by 3, and is limited to a maximum of 2Bit Depth. The palette can contain fewer
entries than the maximum allowed by the bit depth. The color values in the PLTE
chunk are in the range 0-255 no matter what the image bit depth or color type is.

When the color type is RGB or RGB with Alpha channel, the PLTE chunk
is optional. An encoder may include a palette for images with these color types
in order to provide a recommended palette to use if the image needs to be quan-
tized to 256 colors. A PLTE chunk is legal in this situation even when the bit
depth is 16 bits. However, its component values are 8 bits no matter what the bit
depth is. Grayscale images may not contain a PLTE chunk.

To process this chunk a decoder should

• Make sure that no other PLTE chunk has been processed.

• Ensure that the image color type is not grayscale or grayscale with Alpha.

• Validate chunk data:

- The number of data bytes in a PLTE is a multiple of 3.

- The number of palette entries is not greater than 2Bit Depth.

- The number of palette entries is not greater than 256.

• Store the chunk's RGB values in the palette used to decode the chunk.

IDAT

IDAT chunks contain the compressed image data. All of the IDAT chunks within
a PNG file must be consecutive with no intervening chunks. The IDAT blocks
may occur anywhere after the IHDR block and before the IEND block. If the
PNG file contains a PLTE block, the IDAT blocks must come after it. The size of
the block data in an IDAT block can be in the range 0 to 231 - 1. The usual num-
ber of data bytes within an IDAT block is between 4K and 16K bytes. Of course,

Table 13.3
Palette Entry
Structure Format

Field Name

Red

Green

Blue

Size

1 byte
1 byte
1 byte

Description

Red component intensity value (0-255)
Green component intensity value (0-255)
Blue component intensity value (0-255)

Critical Chunks 205

PNG

the last IDAT block in a chain may have substantially fewer bytes. A PNG file
that does not contain an IDAT block is invalid. The organization of the com-
pressed data within IDAT blocks is covered in Chapter 13.

Unlike all other chunk types, most decoders will probably treat all the IDAT
blocks as a group rather than process them independently. This makes the decom-
pression process simpler and helps to ensure that all the IDAT blocks in the file
are consecutive. When the first block in an IDAT block chain is encountered, the
decoder should

• Ensure that no other IDAT block chains have been encountered.

• If the color type is Palette then make sure that a PLTE chunk has been
processed.

• Decompress the image data.

IEND

The IEND chunk marks the end of PNG, so it obviously must be the last chunk
in a PNG file.

To process this chunk a decoder should

• Ensure that at least one IDAT block has been processed.

• Make sure that the chunk data length is zero.

• Conclude the decoding process.

Noncritical Chunks

The PNG standard defines several noncritical or ancillary chunks. These are
chunks that are not absolutely essential within a PNG file. An encoder does not
have to create any of these chunks and a PNG decoder can simply ignore them.
However, if you were writing a PNG decoder it would be desirable to implement
as many of these standard chunks as possible. Likewise, an encoder should use
them when applicable, rather than create application private chunks, in order to
ensure the greatest portability. Many of the noncritical chunks are really only
appropriate for specialized applications or when used for intermediate storage.
For files that are going to be transmitted over the Internet or embedded in Web
pages, a tEXt chunk or two and possibly a gAMA chunk are all that is appropri-
ate in most cases.

bKGD

The bKGD chunk suggests a background color for the image. If the image is
being displayed in a window that is larger than it is, a decoder can use this color

206

Noncritical Chunks 207

to display the areas outside the image. If the image contains an Alpha channel the
decoder can merge the background color with the image. The bKGD chunk must
appear before the IDAT chunks in the image. If the image contains a PLTE
chunk, then it must precede that bKGD chunk.

The format of the data within a bKGD chunk depends upon the image's
color type.

Palette Color Type. The chunk data consists of single byte that is an index
into the color palette.

Grayscale or Grayscale with Alpha Channel. The chunk data contains a
single 2-byte integer that specifies the intensity of the background.

RGB or RGB with Alpha Channel. The chunk data contains three 2-byte
integers that specify the values for the red, green, and blue components of the
background.

cHRM

An encoder can create a cHRM chunk to store the device-independent (1931
CIE) specification of the colors used to view the image on the source display.
These values can be used to convert the RGB pixel values to absolute colors
using the process described earlier in the chapter. The format of the cHRM chunk
is shown in Table 13.4.

gAMA

If a PNG encoder knows the correct Gamma value used to view the original
image, it can store this information in a gAMA chunk so the decoder can recre-
ate the image as it was seen on the device that created it. The gAMA chunk data
contains a 4-byte integer that holds the product of the Gamma value and
100,000. Thus, a Gamma value of 2.1 would be stored in the gAMA chunk as

Table 13.4
cHRM Chunk Data
Format

Field Name

White Point X

White Point Y

Red X

Red Y

Green X

Green Y

Blue X

Blue Y

Size

4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

Description

White point value × 100,000
White point value × 100,000
Red point value × 100,000
Red point value × 100,000
Green point value × 100,000
Green point value × 100,000
Blue point value × 100,000
Blue point value × 100,000

208 PNG

210,000. A gAMA chunk must precede any PLTE and IDAT chunks in the file.
The format of the gAMA chunk is shown in Table 13.5.

hIST

An encoder can place a hIST chunk in any PNG file that contains a PLTE chunk
in order to supply decoders with the approximate usage frequencies for each
color in the palette. The hIST chunk can assist a decoder in selecting the colors
to use if it is unable to display all the colors in the palette. If an image contains a
hIST chunk, it must follow the PLTE chunk and precede the IDAT chunks.

The hIST chunk data is an array of 2-byte, unsigned integers. The number of
array elements in the hIST chunk must be the same as the number of color entries
in the PLTE chunk. Each entry in the hIST array reflects the approximate rela-
tive usage of the corresponding color in the PLTE chunk.

If the encoder knows the absolute usage frequency of the colors within the
palette, it can scale the values to fit into 16 bits. However, a zero frequency value
should only be used when a color is not used at all. In the case of an RGB image,
the frequency values will always be approximate and none should be zero.

pHYs

The pHYs chunk is used to store the absolute or relative pixel size of the device
used to view the image when it was created. If a PNG file does not contain a
pHYs chunk, the decoder should assume that the pixels are square and that the
original physical size is unknown. A pHYs chunk must precede the IDAT chunks
in the file. The format of the data for the pHYs chunk is shown in Table 13.6.

When the Unit Specifier field is 0, the X and Y pixel dimensions in
the pHYs chunk give the relative sizes of the pixels on the source display. The
decoder can use this information to scale the image on the output display. If the

Table 13.5
gAMA Chunk Data
Format

Table 13.6
pHYs Chunk Data

Field Name

Gamma Value

Size

4 bytes

Description

File Gamma x 100,000

Field Name

Pixels Per Unit X

Pixels Per Unit Y

Unit Specifier

Size

4 bytes
4 bytes
1 byte

Description

0—The X and Y values give a ratio.
1—Unit is meters.

Uni t Specifier field is 1, the X and Y dimensions give the number of pixels
per meter on the source display. The decoder can use this information to output
the image in the same size it was on the source display.

sBIT

An encoder can use an sBIT chunk to store the number of significant bits in the
original sample data. If the original data uses a bit depth that is not supported by
PNG—for example, 12—a decoder can use the information in an sBIT chunk to
recreate the original sample values.

The format of the data within the sBIT depends upon the color type of the
image.

Grayscale. The chunk data contains 1 byte giving the number of signif-
icant bits.

RGB and Palette. The chunk data contains 3 bytes giving the number of
significant bits for the red, green and blue components.

Grayscale with Alpha Channel. The chunk data contains 2 bytes giving
the number of significant bits for the grayscale data and Alpha channel.

RGB with Alpha Channel. The chunk data contains 4 bytes that specify
the number of significant bits in the source for the red, green, and blue com-
ponents and Alpha channel, respectively.

All data values within the sBIT chunk must be greater than zero and less than
or equal to the bit depth.

A decoder can use a procedure like this to convert a sample value from a
PNG file to the value at the original bit depth.

tEXt

An encoder can use a tEXt chunk to store text information that does not affect
the decoding of an image. The tEXt chunk can appear anywhere between the
IHDR and IEND chunks (except among the IDAT chunks) and there can be any
number of them in a file.

unsigned int sourcemax = 1 << sBITvalue ;
unsigned int filemax = 1 << BitDepth ;
sourcevalue = (filevalue * sourcemax + filemax - 1) / filemax ;

Noncritical Chunks 209

unsigned int sourcemax = 1 << SourceBitDepth ;
unsigned int filemax = 1 << FileDepth ;
filevalue = (sourcevalue * filemax + sourcemax - 1) / sourcemax ;

The process for an encoder is almost exactly the same.

210 PNG

The chunk data contains a keyword and a keyword value. The chunk data
format is shown in Table 13.7. The length of the Keyword field is determined by
locating the N U L L (0) terminator. This length may not be zero. The length of the
Text field is the length of the chunk data minus the length of the Keyword and
the Terminator. This length may be zero. Line breaks within the text should be
represented with a single <LINEFEED> character.

The PNG standard defines the keywords shown in Table 13.8. An encoder
can use these or create new keywords; however, a decoder should use the prede-
fined keywords when they are applicable to maximize portability. Keywords are
case sensitive.

tIME

The tIME chunk is used to store the last time the image was modified. The tEXt
chunk is used to store the creation time. The format of the tIME chunk data is
shown in Table 13.9. Zulu (or Greenwich) time should be used rather than local
time. Applications that do not modify the image data should not create a new
tIME chunk. The tIME chunk may appear anywhere after the IHDR chunk and
before the IEND chunk, except within the IDAT chunks.

Table 13.7
tEXt Chunk Format

Field Name

Keyword

Terminator

Text

Size

Variable 1-79 bytes
1 byte
Variable

Description

ASCII string
A zero terminator for the keyword
ASCII string

Table 13.8
tEXt Pre-defined
Keywords

Keyword

Author

Comment

Copyright

Creation Time

Description

Disclaimer

Software

Source

Title

Warning

Description

Name of the image's creator
Generic comment; conversion from GIF comment
Copyright notice
Time the image was originally created
Extended image description
Legal disclaimer
Application that created the image
Device used to create the image
Brief image description or title
Content warning

Noncritical Chunks 211

Field Name

Year

Month

Day

Hour

Minute

Second

Size

2 bytes
1 byte
1 byte
1-byte
1 byte
1 byte

Description

Gregorian year (2020, not 20)
1-12
1-31
1-23
0-59
0-60

tRNS

The tRNS chunk is used to implement transparency without using an Alpha
channel. Using this mechanism, the Alpha values are associated with colors
rather than per pixel. A tRNS chunk must appear after the PLTE chunk, if pre-
sent, and before the IDAT chunks. The format of the data within the tRNS chunk
depends upon the color type used to store the image.

Palette. The chunk data contains an array of bytes that specify the Alpha
value to be associated with the color entries in the PLTE chunk. Each pixel
with a color index of N has the Nth entry in the tRNS data as its Alpha value.
The number of entries in the tRNS chunk must be less than or equal to the
number of color entries in the PLTE chunk. Palette entries without an entry
in the tRNS chunk have an Alpha value of 255.

Grayscale. The chunk data contains a 2-byte integer that defines a trans-
parent color. All pixels with this color value are fully transparent; pixels with
any other value are fully opaque.

RGB. The chunk data contains three 2-byte integers that specify an RGB
color value. All pixels of this color are fully transparent; pixels of any other
color are fully opaque.

The tRNS chunk may not be used when the color type has an Alpha
channel.

zTXt

The zTXt chunk performs the same function as the tEXt chunk except that the
text data is compressed using the Deflate compression method (the same method
used to compress the image data). Just like the tEXt chunk, there can be any num-
ber of zTXt chunks and they can occur anywhere after the IHDR chunk and
before the IEND chunk, except among the image's IDAT chunks. The format of
the zTXt chunk is shown in Table 13.10.

Table 13.9
tIME Chunk Format

212 PNG

Table 13.10
zTXt Chunk Format

Field Name

Keyword

Separator

Compression Method

Compressed Text

Size

1-79 bytes
1-byte
1-Byte
Variable

Description

Uncompressed text string
Zero value keyword terminator
Must be zero.
Deflate compressed text.

Conclusion

In this chapter we have introduced the PNG format and described its file and
chunk structure. The PNG format contains support for device-independent color
through Gamma correction and the XYZ color model. It is superior to GIF in all
respects except one: animations. Unlike GIF, PNG files can only contain a sin-
gle image. As this is being written a new multiple image standard called MNG
is under development that will remove the final barrier to PNG completely
replacing GIF.

The PNG file and block format is defined in the PNG standard, which is
included on the accompanying CD-ROM. Foley et al. (1996) contains more
information on Gamma correction, Alpha channel, and the XYZ colorspace.
Blinn (1998) and Porter and Duff (1984) contain useful information on Alpha
channel and compositing. Campbell (1987) and Ramabadran and Gaitonde
(1988) give introductory descriptions of CRC calculations.

The source code example for this chapter is an application called PNGDUMP
that displays the name, chunk data length, and CRC value for each chunk in a
PNG file. The organization of this application is very similar to that of a func-
tioning PNG decoder. For the critical chunks defined by the PNG standard,
PNGDUMP performs appropriate validations. The major piece that a decoder
would add is the decompression of the image data stored in the IDAT blocks
(covered in the next chapter).

To run this application type

> PNGDUMP somefile.png

at the command line. Sample output from this program is shown in Figure 13.6.

213

{ IHDR
Data Length: 13
Data CRC: 9cc69707
File CRC: 9cc69707
Image Size: 383 x 262
Bit Depth: 8
Color Type: Palette Index
Compression Method: deflate/inflate - 32k Sliding Window
Filter Method: adaptive
Interlace Method: none

}
{ PLTE
Data Length: 768
Data CRC: 9fe76824
File CRC: 9fe76824
Palette Color Count: 100

}
{ IDAT
Data Length: 2000
Data CRC: 710a2c5b
File CRC: 710a2c5b

}
{ IDAT
Data Length: 2000
Data CRC: d857c86a
File CRC: d857c86a

}
{ IDAT
Data Length: 2000
Data CRC: 119cab52
File CRC: 119cab52

}
{ IDAT
Data Length: 2000
Data CRC: 1ab5b934
File CRC: 1ab5b934

}
{ IDAT
Data Length: 2000
Data CRC: 610914db
File CRC: 610914db

}
{ IDAT
Data Length: 5b7
Data CRC: cee96fbe
File CRC: cee96fbe

}
{ IEND
Data Length: 0
Data CRC: ae426082
File CRC: ae426082

}

Figure 13.6
Sample PNGDUMP
Output

Conclusion

Decompressing
PNG Image Data

The previous chapter explained how to decode a PNG file up to the point where
the image data within the IDAT blocks is interpreted. This chapter covers the
remaining topics needed to decode a PNG file. The main focus is the Deflate
compression process that PNG uses to store pixel data in IDAT chunks.

Decompressing the Image Data

The first step in processing the image data is to decompress it. During the decom-
pression process we treat the chunk data from the IDAT chunks in the image file
as a continuous stream of bytes; then we pass them to a decompressor for the
Deflate/Inflate processes. The segmentation of the compressed stream into IDAT
chunks is irrelevant to the decompression processes. The sequence of com-
pressed data bytes would be the same if one IDAT were used to hold the entire
compressed block, if each compressed byte were placed in a separate IDAT
chunk, or any combination between these two extremes.

ZLIB, Deflate, and PNG

Before Unisys started to demand licenses for its use in software, LZW had not
been confined to GIF. It had also been used in many types of compression appli-
cations including the Unix compress program. When LZW could no longer be
used in free software, there was an immediate need for a freely usable compres-

215

Chapter 14

Decompressing PNG Image Data

sion method to replace it. The solution came in the form of a general-purpose
compression library known as ZLIB.

ZLIB employs an LZ77-based compression process known as Deflate,
which had its origins in the ZIP and PKZIP programs. The compression source
code within ZIP was too tightly bound to the application for general use, so Jean-
Loupe Gailly and Mark Adler created ZLIB to implement Deflate compression
in a manner that can be used by other applications. ZLIB has been used not only
in PNG but in the GZIP archiving program as well. Currently, Deflate is the only
compression method supported by ZLIB, but the ZLIB format has provisions for
other methods to be added in the future.

For this discussion we are going to describe ZLIB and Deflate only as they
apply to PNG. Not all settings that are valid in ZLIB/Deflate are legal when used
in PNG files. The source code examples in this and the following chapters con-
tain implementations of the PNG subset of Deflate.

LZ77 Compression

The LZ77 process uses a sliding window to maintain a dictionary of recently
processed text. The compressed stream is a sequence of codes that are either lit-
eral values or commands for the decompressor to copy text from the window to
the output stream.

An LZ77 decompressor reads each code in the compressed stream in
sequence. Codes that represent literal values are copied directly to the output
stream. Command codes are replaced in the output stream with text copied from
the LZ window. In either case, the LZ window is advanced so that the last char-
acter copied to the output stream is included in the window. The big advantage of
dictionary compression over Huffman coding is that compression can be done on
the fly without having to process the entire stream, making it suitable for appli-
cations such as compression of data streams in a computer network.

Figure 14.1 contains a simplified example of LZ77 decompression using a
16-byte window. The data consists of 7-bit ASCII text, so by using 1 bit to dif-
ferentiate a literal value from a command, each code in the compressed stream
can be encoded using 8 bits. In this example copy commands are represented as
<Offset:Length> where the offset is the number of bytes from the start of the
LZ77 window and the length is the number of bytes to copy.

In this example the first six codes are literal values that are copied to the out-
put stream. The seventh code copies two characters from the tenth position in the
LZ Window ("A") to the output stream. As new codes are read, the window fills
up and text starts to become lost to the compression processes. Notice that the
final "MA" in the text could have been compressed into a code had that string
not slid out of the window.

216

Decompressing the Image Data

Figure 14.1
LZ77 Compression
Example

Deflate Compression

Data in the Deflate format is stored in blocks that are either uncompressed or
compressed using a variation of the LZ77 process. For the moment we will con-
centrate on the format of compressed Deflate blocks. Deflate uses a 32K-byte (or
smaller power of 2) sliding window into the most recently decoded text. During
the decompression process this window holds the most recently decompressed
data bytes.

The compressed stream contains codes that represent literal values or dis-
tance/length codes. When the decompressor encounters a literal value, it copies
it to the output stream and then advances the sliding window by one position.
When a distance/length code is read from the compressed stream, the decom-
pressor uses the distance to locate the start of a previously decompressed string
to copy to the output stream.

When copying a string from the sliding window you need to maintain two
pointers or indices into the sliding window: one to the source text being copied

A MAN <10:2>PL<9:5>C<3:2>AL<3:2><l0:3>MA
MAN <10:2>PL<9:5>C<3:2>AL<3:2><l0:3>MA

MAN <10:2>PL<9:5>C<3:2>AL<3:2><10:3>MA
AN <10:2>PL<9:5>C<3:2>AL<3:2><l0:3>MA
N <10:2>PL<9:5>C<3:2>AL<3:2><l0:3>MA
<10:2>PL<9:5>C<3:2>AL<3:2><l0:3>MA

<10:2>PL<9:5>C<3:2>AL<3:2><l0:3>MA
PL<9:5>C<3:2>AL<3:2><10:3>MA
L<9:5>C<3:2>AL<3:2><10:3>MA
<9:5>C<3:2>AL<3:2><10:3>MA
C<3:2>AL<3:2><l0:3>MA
<3:2>AL<3:2><10:3>MA
AL<3:2><l0:3>MA
L<3:2><10:3>MA
<3:2><10:3>MA
<10:3>MA
MA
A

Ti
m

e 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

A
A M

A MA
A MAN

A MAN A P
A MAN A PL

A MAN A PLA

217

Decompressing PNG Image Data

and the other to the destination. Since the size of the window is a power of 2, it
is easy to implement the window as a circular buffer rather than one that physi-
cally moves. Wrapping of indices in a 32K buffer is accomplished by perform-
ing a bitwise AND operation with an index and the value 7FF16 (2

15-1).
Algorithm 14.1 shows how a copy operation is implemented. It assumes that

there is a function called OutputByte that processes each byte as it is decom-
pressed. The arguments to the CopyData function are the number of bytes to
copy and the distance from the current output position in the window.

Deflate uses codes in the range 0-285 in the compressed stream. The codes
in the range 0-255 naturally represent literal bytes in the compressed stream.
The code 256 is a special value that is used to mark the end of a compressed
block, and codes 257-285 are used to start a command to copy from the sliding
window.

The format for a copy command is shown in Figure 14.2. The codes
257-285 are part of the specifier for the length component of the copy com-
mand. Each length code has a base length value and a number of extra bits asso-
ciated with it. After reading the code, the decoder reads the specified number of
extra bits. The value of the extra bits is added to the base value to give the final
copy length. The base values and number of extra bits for each length code are
shown in Table 14.1.

Global OUTPUTPOSITION
Constant WINDOWSIZE = 1 LeftShift 15
Constant WINDOWMASK = WINDOWSIZE - 1 // 7FF
PROCEDURE CopyData (LENGTH, DISTANCE)

Begin

// We add the window size to ensure the index is always positive.
// The AND operation will get rid of any extras distance from
// this addition.
COPYPOSITION = (WINDOWSIZE + OUTPUTPOSITION - DISTANCE)
COPYPOSITION = COPYPOSITION AND WINDOWMASK

For II = 1 To LENGTH Do
Begin
WINDOW [OUTPUTPOSITION] = WINDOW [COPYPOSITION]
OutputByte (WINDOW [OUTPUTPOSITION])
// Advance to the next output position
OUTPUTPOSITION = OUTPUTPOSITION + 1
OUTPUTPOSITION = OUTPUTPOSITION And WINDOWMASK
// Advance to the next byte to copy
COPYPOSITION = COPYPOSITION + 1
COPYPOSITION = COPYPOSITION And WINDOWMASK
End

End

Algorithm 14.1
LZ77 Data Copying

218

Decompressing the Image Data 219

Figure 14.2
Copy Command
Format

<Length Code>[Length Extra Bits]<Distance Code>[Distance Extra Bits]

The extra bits are followed by another distance code in the range 0-29. This
value specifies the base value for the distance from the current location in the
buffer and the number of additional bits. The extra bits and base values for dis-
tance codes are shown in Table 14.2.

Length Code

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

Base Value

3
4
5
6
7
8
9

10
11
13
15
17
19
23
27
31
35
43
51
59
67
83
99

115
131
163
195
227
258

Extra Bits

0
0
0
0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
0

Possible Length Values

3
4
5
6
7
8
9

10
11-12
13-14
15-16
17-18
19-22
23-26
27-30
31-34
35-42
43-50
51-58
59-66
67-82
83-98
99-114

115-130
131-162
163-195
195-226
227-257
258

Table 14.1
Length Code Base
Values and Extra Bits

220 Decompressing PNG Image Data

Example

1. Read Length Code 275
From Table 14.1 the Base Value is 51 and there are 3 extra bits.

2. Read 3 Bits giving 1012 (5)
Length Value is 5 + 51 = 56

3. Read Distance Code 14
From Table 14.2 the Base Value is 129 and there are 6 extra bits.

4. Read 6 Bits giving 0011002 (12).
The Distance value is 12 + 129 = 141

This command copies the 56 characters located 129 positions before the
current buffer position.

Table 14.2
Distance Code Base
Values and Extra Bits

Distance Code

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Base Value

1
2
3
4
5
7
9

13
17
25
33
49
65
97

129
193
257
385
513
769

1,025
1,537
2,049
3,073
4,097
6,145
8,193

12,289
16,385
24,577

Extra Bits

0
0
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9

10
10
11
11
12
12
13
13

Possible Distance Values

1
2
3
4
5-6
7-8
9-12

13-16
17-24
25-32
33-48
49-64
65-96
97-128

129-192
193-256
257-384
385-512
513-768
769-1,025

1,025-1,536
1,537-2,048
2,049-3,072
3,073-4,096
4,097-6,144
6,145-6,145
8,193-12,288

12,289-16,384
16,385-24,575
24,577-32,768

One would normally expect value ranges that are limited by powers of 2.
However, in Table 14.1 and Table 14.2 we have the values 0-285 and 0-29. So
how are the lengths and distances efficiently coded?

The answer is Huffman coding. Two Huffman tables are used during most of
the decompression process. One is used to decode length and literal values and
the other is used to decode distance values.

Huffman Coding in Deflate

The Huffman coding process used in PNG with Deflate is almost identical to the
one used in JPEG (Chapter 6). In fact, for the PNG decoder on the CD-ROM, we
will only have to make small modifications to the JPEG Huffman decoder class.
These are the differences you need to be aware of between Huffman coding in
JPEG and in PNG:

• In JPEG, the Huffman codes containing all 1 bits are invalid. In PNG they
are legal.

• In JPEG, the maximum Huffman code length is 16 bits. In PNG, lengths and
distance codes are a maximum of 15 bits while the tables are encoded using
a maximum of 4 bits.

• In PNG, if values of X and Y have Huffman codes of the same length and X
is greater than Y, the Huffman code for X is greater than the Huffman code
for Y. In JPEG, the ordering of Huffman codes matches the ordering of the
values in the file.

• In PNG, the Huffman codes are stored with their bits reversed. The Huffman
code 11002 (6) is stored as 01112 (3) in the compressed data.

• In PNG, Huffman table definitions contain the Huffman code length for
every possible value. Unused values are given a code length of zero. In
JPEG, code lengths are only given for values that are actually used.

As with JPEG, the input to the Huffman table generation process is an array
of values and an array of Huffman code lengths. In PNG, the values are sorted
by value rather than code length and the array contains zero length codes. We
have to add a step to sort these arrays by code length, and during the Huffman
code generation we have to take into account the values with zero length codes.

Algorithm 14.2 illustrates the process for decoding a compressed block. The
procedures DecodeUsingLengthTable and DecodeUsingDistanceTable
are assumed to Huffman decode the next value in the input stream using the lit-
eral/length and distance Huffman tables, respectively. ReadLiteralBits (n)
is a function that returns the next n bits from the input stream and CopyData is
the function defined in Algorithm 14.1.

Huffman Coding in Deflate 221

Decompressing PNG Image Data

Algorithm 14.2
Deflate Process

Procedure DecodeBlock
Begin
While True Do

Begin
CODE = DecodeUsingLengthTable ()
If CODE = 256 Then

Return
Else If CODE < 256 Then

OutputByte (CODE)
Else

Begin
EXTRA = LENGTHEXTRABITS [CODE]
BASE = LENGTHBASES [CODE]
LENGTH = BASE + ReadLiteralBits (EXTRA)
CODE = DecodeUsingDistanceTable ()
EXTRA = DISTANCEEXTRABITS [CODE]
BASE = DISTANCEBASES [CODE]
DISTANCE = BASE + ReadLiteralBits (EXTRA)
CopyData (LENGTH, DISTANCE)
End

End
End

Compressed Data Format

Until now we have dealt with the PNG compression from the top down. Now we
are going to back up and examine the ZLIB/Deflate compressed data format.

The structure of the compressed data is shown in Table 14.3. Notice that
most of the fields are not complete bytes and that when used with PNG most have
mandatory values. The Compression Level field is an advisory field. It gives
a clue as to whether there may be any benefit in recompressing the data. The
value in the Check Bits field is used to ensure that the header value is a multi-
ple of 31. A 2-byte header that is not evenly divisible by 31 is invalid.

The Adler-32 checksum serves the same function the CRC-32 does for PNG
blocks. The major difference is in how it is used. The CRC-32 value for a PNG
block is calculated using the bytes stored in the file. The Adler-32 value for a
compressed stream is calculated on the uncompressed bytes. As each byte is
decompressed, the decoder should update the Alder-32 value. After all the data
has been decompressed, a decoder should compare the Adler-32 calculated from
the decompressed data with the value stored in the field. If the two values are not
the same, the decoder should assume that the data has been corrupted.

The following source code illustrates how to implement the Adler-32 check-
sum. The UpdateAdler function updates the value in the AdlerRegister vari-
able for each byte as it is decompressed. The Adler register is initialized to 1

222

Compressed Data Blocks 223

Table 14.3
Compressed Data
Format

Field Name

Header

Compression Method

Window Size

Check Bits

Preset Dictionary

Compression Level

Compressed Blocks

Adler Checksum

Size

2 bytes
4 bits
4 bits
5 bits
1 bit
2 bits

Variable
4 bytes

Description

Must be 8.
Must be 7 or less.
Makes the first 2 bytes a multiple of 31.
Must be zero.
0—Fastest compression used.
1—Fast compression used.
2—Default compression used.
3—Maximum compression used.

Adler-32 Checksum calculated from the
uncompressed data.

unsigned long AdlerRegister = 1 ;
const unsigned long PRIME = 65521L ;
void UpdateAdler(unsigned char value)
{
unsigned long low = AdlerRegister & 0X0000FFFFL ;
unsigned long high = (AdlerRegister >> 16) & 0X0000FFFFL ;
low = (low + value) % PRIME ;
high = (low + high) % PRIME ;
AdlerRegister = (high << 16) | low ;

}

Compressed Data Blocks

The compressed data can be divided into any number of compressed blocks. It is
possible for the encoder to compress the entire image into a single block, but in
some cases using multiple blocks can improve compression. Each block starts
with a 3-bit header with the format shown in Table 14.4. The header specifies the
method used to compress the block and if more blocks follow this one. If the
Final bit is set, the Adler-32 value follows this block.

before calculating the checksum. The Adler value stored in the file is the value
of the Adler register after the last byte has been processed. No modification needs
to be made, as with CRC-32.

224 Decompressing PNG Image Data

Table 14.4
Compressed Block
Header Format

Field Name

Final

Type

Size

1 bit

2 bits

Description

1—This is the last compressed block.
0—There are additional compressed blocks after this one.
0—The data is uncompressed.
1—Compressed with fixed Huffman codes.
2—Compressed with dynamic Huffman codes.
3—Invalid.

Uncompressed Block Format

If the Type field in the block header specifies that the data is uncompressed, the
remaining data in the block is byte aligned. Any unused bits following the header
are discarded. The format of an uncompressed data block is shown in Table 14.5.
A decompressor simply copies the uncompressed bytes to the output stream.

Dynamic Huffman Codes

Dynamic Huffman codes is the most useful compression method. The bit fields
shown in Table 14.6 immediately follow the compressed block header. These val-
ues give the number of values that are actually used in the compressed data.
While two Huffman tables are used to decompress the data, there are three
lengths defined here. The reason for the extra field is that the code lengths for the
length/literal and distance Huffman tables themselves are Huffman encoded.

The structure in Table 14.6 is followed by a sequence of up to 19 3-bit fields.
The actual number of bit fields is the value of the Lengths field plus 4. These
bit fields contain the Huffman code lengths for the values 0-18. The lengths are
stored in the order

Table 14.5
Uncompressed
Block Format

Field Name

Length
NLength
Block Data

Length

2 bytes
2 bytes
Length bytes

Description

The number of data bytes in the block.
The 1's-complement of Length. Used for validation.
The uncompressed data bytes.

Table 14.6
Dynamic Huffman
Code Fields

16 17 18 0 8 7 9 6 10 5 11 4 12 3 13 2 14 1 15

Field Name

Literals
Distances
Lengths

Length

5 bits
5 bits
4 bits

Description

Number of length/literal codes-257 (257-286).
Number of distance codes-1 (1-32).
Number of code length codes-4 (4-19).

Compressed Data Blocks

Entries at the end of the list are less likely to have a corresponding length
value stored in the file. Values without an entry are assigned a code length of
zero. Using these length codes, a decompressor creates the Huffman table used
to decode the code lengths for the other literal/length and distance Huffman
tables.

The Huffman-encoded values 0-18 are used to encode the literal/length and
distance Huffman tables. Table 14.7 shows the meanings of these codes. The
codes 16, 17, and 18 have a number of extra bits associated with them. When a
decoder encounters one of these codes, it is followed by the specified number of
literal bits.

Example

Decoder reads the Huffman encoded value 17 from the input stream.
Following Algorithm 14.7, the decoder reads the 3 extra bits 1012 (5).
This value is added to the base value giving 8 (= 3 + 5).
This command sets the next 8 code lengths to zero.

The code lengths for the literal/length Huffman table come next in the input
stream. The number of code lengths is the value of the Literals field in Table
14.6 plus 257. A decompressor reads Huffman-encoded command values (0-18)
and processes them according to Table 14.7 until the specified number of code
lengths has been read.

The distance Huffman table code lengths immediately follow. The number of
distance codes is the value of the Distance field in Table 14.7 plus 1. Distance
table length codes are encoded in the same manner as they are in the literal/length
table.

Algorithm 14.3 illustrates how to read the code lengths for a Huffman table
from the input stream. The parameters to the ReadLengths function are the
number of code lengths to read (from Table 14.6) and an output array of code
lengths where LENGTHS [n] is the Huffman code length for the value n.

After the code lengths have been read, they are used to generate the
literal/length and distance Huffman tables. The compressed data format is iden-
tical to that used with fixed Huffman codes.

Table 14.7
Length Encodings

Code

0-15
16
17
18

Description

Literal value.
Repeat the previous code 3-6 times.
Repeat length 0 3-10 times.
Repeat length 0 11-138 times.

Base Value

N/A
3
3

11

Extra Bits

0
2
3
7

Decompressing PNG Image Data

Procedure ReadLengths (LENGTHCOUNT, LENGTHS [])
Begin
INDEX = 0
While INDEX < LENGTHCOUNT DO

Begin
CODE = HuffmanDecodeInputStream ()
If CODE < 16 Then

Begin
LENGTHS [INDEX] = CODE
INDEX = INDEX + 1
End

Else If CODE = 16 Then
Begin
COUNT = 3 + ReadRawBitsFromInputStream (3)
For I = 1 To COUNT Do

Begin
LENGTHS [INDEX] = LENGTHS [INDEX - 1]
INDEX = INDEX + 1
End

End
Else If CODE = 17 Then

Begin
COUNT = 3 + ReadRawBitsFromInputStream (3)
For I = 1 To COUNT Do

Begin
LENGTHS [INDEX] = 0
INDEX = INDEX + 1
End

End
Else If CODE = 18 Then

Begin
COUNT = 11 + ReadRawBitsFromInputStream (7)
For I = 1 To COUNT Do

Begin
LENGTHS [INDEX] = 0
INDEX = INDEX + 1
End

End
End

End

Fixed Huffman Codes

When fixed Huffman codes are used, the compressed data in the block immedi-
ately follows the block header. The compressed data may or may not be byte
aligned. This block uses a predefined set of Huffman codes rather than codes
generated from usage frequencies.

A block that uses fixed Huffman codes is decompressed in the same man-
ner as is one with dynamic Huffman codes. The only difference in processing

226

Algorithm 14.3
Reading
Compressed
Huffman Tables

Writing the Decompressed Data to the Image 227

Table 14.8
Literal/Length
Huffman Code
Lengths for Fixed
Huffman Codes

is that the Huffman table lengths are not stored in the input stream. The
Huffman table for length/literal codes is generated using the code lengths
shown in Table 14.8. The Huffman table for distance code uses a length of 5 for
all possible values (0-29).

Writing the Decompressed Data to the Image

The process described in the previous sections in this chapter shows how to con-
vert a stream of compressed bytes contained in a sequence of IDAT blocks into
a stream of uncompressed data bytes. We need to perform interlacing, filtering,
and color conversion on this stream before writing it to the image.

Interlacing

When an image is interlaced, it is divided into a series of seven passes. We can
exploit the regularities in the Adam 7 interlace pattern to create a structure like
the one shown in Table 14.9. This structure gives the location of the first pixel
within an 8 × 8 block that is updated by each pass and the row and column
intervals between the next pixels. All of the row and column intervals are main-
tained across adjacent 8 × 8 blocks. This example shows how the information
in Table 14.9 would be used to determine the sequence of pixels to process in
a pass of an interlaced image.

Algorithm 14.4
Interlace Processing
Using a Table

Procedure ProcessPass
Begin
ROW = FirstRow
While ROW < IMAGEHEIGHT Do

Begin
COL = FirstColumn
While COL < IMAGEWIDTH Do

Begin
ProcessDataForPixel (ROW, COL)
COL = COL + ColumnInterval
End

ROW = ROW + RowInterval
End

End

Value

0-143
144-255
256-279
280-287

Code Length

8
9
7
8

228 Decompressing PNG Image Data

Using Table 14.9, the number of pixels per row in a given pass in an inter-
laced image is

Pixels per Row =

If the image is not interlaced, the number of pixels per row is simply the image
width and there is only one pass. The number of bits required to represent a pixel
for each color type is shown in Table 14.10. The number of bits to represent each
row is, then,

Bits per Row = Bits per Pixel × Pixels per Row

and the number of bytes per row is

Pixels per Row =

Filtering

A filter is a function that transforms the data in a pixel row into a format that is
more compressible. The pixel data for each row is preceded by a single byte that
specifies the filtering method applied to each row. Table 14.11 lists the possible
values for the filter byte and the corresponding filter type. Values outside the
range 0-4 are invalid. If the filter type is zero, the row was not filtered, so the
row data contains the actual pixel values.

Table 14.10
Bits per Pixel for
PNG Color Types

Pass

1
2
3
4
5
6
7

First Row

1
1
5
1
3
1
2

First Column

1
5
1
3
1
2
1

Row Interval

8
8
8
4
4
2
2

Column Interval

8
8
4
4
2
2
1

Table 14.9
Adam 7 Pixel
Update Intervals

Color Type

RGB
RGB with Alpha
Grayscale
Grayscale with Alpha
Palette

Bits per Pixel

3 × Bit depth
4 × Bit depth
Bit depth
2 × Bit depth
Bit depth

Some of the filters are calculated from the unfiltered data generated for the
previous row. A PNG decoder needs to maintain two buffers large enough to hold
the pixel data for an entire row. One buffer contains the data for the current row
and the other contains the data for the previous row.

The filtering process involves calculations based upon values of adjacent
pixels. Filtering is performed on a per-byte basis rather than per pixel and filter-
ing is performed relative to corresponding bytes within pixels. For example, if
you are processing an image using the RGB color type with a bit depth of 16, the
high-order byte for the red component of one pixel is always used with the high-
order byte for the red component of another pixel. If the bit depth is less than 8,
filtering is performed on adjacent bytes. Table 14.12 gives the intervals between
corresponding bytes for the possible bit depth and color type combinations.

The following sections describe how the filtering process is reversed for
the various filter types. In these descriptions buffer [previous] contains
the unfiltered bytes from the previous row and buffer [current] contains
the filtered bytes for the current row. The variable interval is obtained from
Table 14.12.

Table 14.12
Interval between
Corresponding
Bytes When Filtering

Color Type

Grayscale
Grayscale
Grayscale with Alpha
Grayscale with Alpha
Palette
RGB
RGB
RGB with Alpha
RGB with Alpha

Bit Depth

1, 2, 3, 4, 8
16
8

16
1, 2, 3, 4, 8
8

16
8

16

Interval

1
2
2
4
1
3
6
4
8

Code

0
1
2
3
4

Filter Type

Unfiltered
Sub filter
Up filter
Average filter
Paeth filter

Table 14.11
Row Filter Codes

229Writing the Decompressed Data to the Image

230 Decompressing PNG Image Data

If X is the first byte in a row, the value of buf fe r [N] [X-1] is zero.
Likewise, if the current row is the first row for the pass, all of the values of
buf fe r [previous] are implicitly zero.

All filters are performed using integer arithmetic and the data bytes are
treated as signed (Algorithms 14.5-14.8). If the result from reversing a filter is
greater than 255, only the least significant byte in the result is used.

Algorithm 14.5
Reverse Sub Filter

Function ReverseSub (X)
Begin
Return buffer [current][X] + buffer [current][X-Interval]
End

Algorithm 14.6
Reverse Up Filter

Function ReverseUp (X)
Begin
Return buffer [current][X] + buffer [previous][X]
End

Algorithm 14.7
Reverse Average
Filter

Function ReverseAverage (X)
Begin
Return buffer [current][X] +

(buffer [current][X-Interval]
+ buffer [previous][X]) / 2

End

Algorithm 14.8
Reverse Paeth Filter

Function PaethPreductor (Left, Above, UpperLeft)
Begin
pa = abs (above - upperleft)
pb = abs (left - upperleft)
pc = abs (left - upperleft + above - upperleft)

If pa <= pb AND pa <= pc Then
Return Left

Else if pb <= pc
Return Above

Else
Return UpperLeft

End

Function ReversePaeth (X)
Begin
Return buffer [current][X] + PaethPredictor (

buffer [current][X-Interval],
buffer [previous][X],
buffer [previous][X-Interval])

End

Conclusion 231

Color Correction

In many cases, after the reverse filtering process is complete the data is ready to
display. If an application has the required information, the decoder can color cor-
rect the pixel data. If the PNG file contains a cHRM chunk, the decoder can con-
vert the pixel data to CIE 1931 format to get the exact colors shown on the source
display, then correct the data for the destination display. If the file contains a
gAMA chunk, the data can be Gamma corrected for the output display.

Equation 14.1
Bit Depth
Conversion

16- to 8-bit Conversion

Most current computer systems only support bit depths of up to 8. Unless you are
writing a decoder for a specialized system that supports greater bit depths, you
are going to have to convert 16-bit data values to 8 bits. The technically correct
method to convert pixel values from one bit depth to another is

New Value = Old Value

The easiest method to convert from 16 to 8 bits is to discard the low-order
byte of each 16-bit color value after applying color correction (if applicable). The
results are virtually indistinguishable from that of Equation 14.1.

Either of these two methods could create large, solid blocks of colors that
could look odd, especially in photographs. In some situations you may wish to
apply dithering during the color conversion.

Transparency

If the color type is RGB with Alpha or grayscale with Alpha, or if the PNG file
contains a tRNS chunk, transparency can be applied if desired. If the image is
being drawn on a background and the decoder has access to the background's
color data, the image in the PNG file can be combined with the background pix-
els using the process described in the previous chapter. Another possibility is to
combine the image with a solid background that is specified by the application
or from a bKGD chunk.

Conclusion

In this chapter we have covered the remaining aspects of PNG that are required
to implement a PNG decoder. Besides explaining the Deflate compression
process, we have covered the format of the pixel data, including the filtering
process.

The compressed data format for PNG is defined in Deutsch and Gailley
(1996a) and Deutsch (1996b). Both of these documents are on the accompany-

Decompressing PNG Image Data

ing CD-ROM. Blinn (1998) contains a description of a dithering process suitable
for 16-bit to 8-bit conversion.

The source code example for this chapter on the accompanying CD-ROM is
a complete PNG decoder class, PngDecoder. This class uses the same process
all of the other decoders covered in this book use to read a PNG file and convert
it to a BitmapImage object.

There is also a sample PNG decoding application that converts a PNG file
to the Windows BMP format.

The command format for this application is

DECODER input.png output.bmp

232

Creating PNG Files

This is the last chapter on the PNG format. It covers the process for creating files
in the PNG format, which is essentially the reverse of the one used in the previ-
ous chapter to read PNG files.

Overview

The basic process for creating a PNG file is fairly simple.

1. Write the PNG signature.

2. Write the PNG IHDR chunk.

3. Create a PLTE chunk if the image requires a palette.

4. Compress the image data into a series of IDAT blocks.

5. Write an IEND chunk.

An encoder can be designed so that it adds optional PNG chunks if needed.
The optional chunks can be either predefined public chunks or application spe-
cific. However, in most situations the steps listed above are all that is needed.

With the exception of creating the IDAT blocks, all of the steps listed above
are trivial. This chapter will deal almost exclusively with storing data in the IDAT
chain. For information on the other chunks refer to Chapter 13.

233

Chapter 15

Creating PNG Files

Deflate Compression Process

The previous chapter covered the format of the Deflate compressed data within
a chain of IDAT blocks. While clearly a compressor uses the same structures
for the data a decompressor does, compression is not simply a reversal of
decompression.

The Deflate specification gives an outline of a compression process. It rec-
ommends that this process be followed because of the patent minefield that sur-
rounds any LZ compression process.

To implement Deflate compression we need to maintain a 32K or smaller
power-of-2 window into the most recently processed uncompressed data bytes,
just like the one used with decompression. The compression process requires an
additional lookahead window into the data yet to be compressed. Starting from
the beginning of the lookahead buffer we try to find the longest substring that has
a match in the LZ77 sliding window. Since the longest match allowed by Deflate
is 258 bytes, the lookahead window needs to be at least this long to get the
longest possible matches. Rounding the lookahead window up to the next power
of 2 (512) makes wrapping in the window simpler.

Algorithm 15.1 illustrates the general compression process for PNG image
data. This is roughly the inverse of the DecodeBlock function shown in the pre-
vious chapter. The length and distance values are converted to codes and literal
bits using the code also shown in the previous chapter.

There are two significant omissions in Algorithm 15.1. In a PNG file the
Huffman tables precede the image data, so the encoder needs to generate them
first. The other missing piece is the method the encoder uses to locate matching
strings in the LZ77 windows.

Finding Matching Strings in the LZ77 Window

Finding the best match for the start of the lookahead buffer is the most time-con-
suming part of compressing PNG files. A simple linear search would require 32K
searches per string being compressed, which could easily amount to billions of
search operations to compress an image file. Instead of brute force, the approach
recommended by the Deflate specification is to use a hash table where hash val-
ues are calculated using 3-byte sequences.

A hash table is a structure used to store objects that are accessed using a key,
when the number of possible key values greatly exceeds the number of table
entries at any given time. Hash tables are most commonly used with string keys.
Many compiler implementations use hash tables to store variables defined by a
module. A typical source module for a compiler may have a few hundred vari-
able names out of the billions upon billions of possibilities. During PNG com-
pression we have 32,768 entries with a maximum of 16 million possible values.

234

Deflate Compression Process 235

Algorithm 15.1
Deflate
Compression
Process

While MOREIMAGEDATA Do
Begirt
FindLongestMatchInLZ77Window (LENGTH, DISTANCE)
If LENGTH < 3 Then

Begin
ConvertLengthToCode (LENGTH, CODE, EXTRABITS, BITCOUNT)
HuffmanEncodeLength (CODE)
OutputLiteralBits (EXTRABITS, BITCOUNT)
ConvertDistanceToCode (DISTANCE, CODE, EXTRABITS, BITCOUNT)
HuffmanEncodeDistance (CODE)
OutputLiteralBits (EXTRABITS, BITCOUNT)
CopyFromLookaheadBuffer (LENGTH)
End

Else
Begin
HuffmanEncodeLength (FirstLookahead ())
CopyFromLookaheadBuffer (1)
End

End

Entries in a hash table are referenced using a hash value. Figure 15.1 illus-
trates the structure of a hash table. The hash value is generated from a key by
using a hash function. A hash function takes a key as input and returns an inte-
ger value within some fixed range. The hash value is used as an index into an
array that contains a list of objects with the same hash value. A good hash func-
tion should distribute the possible key values evenly across the range of index
values.

Since we are dealing with pixel values that have an equal probability of
occurring, we can use a simple hash function which returns values in the range
0...23N - 1.

const int mask = (1<<N) - 1 ;
unsigned int Hash (unsigned char v1,

unsigned char v2,
unsigned char v3)

{
return (v1 & mask) | ((v2 & mask) << N)

| ((v3 & mask) << (2 * N)) ;
}

The big problem with a hash table, especially in PNG compression, is how
to handle entries with the same hash value. This is known as a hash collision.
Unless we create a hash table with 16 million entries, something that may be fea-
sible in a few years, we are going to have different 3-byte sequences with the
same hash value. In addition, we are counting on having identical 3-byte

236 Creating PNG Files

Figure 15.1
Hash Table
Structure

Hash Table Buffer

sequences appear within the LZ77 window to be able to replace strings with
length/distance codes. Identical sequences will have identical hash values.
Imagine an image with a solid background. It is entirely possible that the entire
LZ77 window will contain entries with the same hash value.

To resolve collisions we chain entries with identical hash values. For storing
3-byte sequences we can define the hash table as something like this.

Structure HashEntry
Begin
INDEX : Unsigned Integer
NEXT : Pointer To HashEntry
End

Global HashTable [0..(1 LeftShift (3 * N) - 1] Of Pointer To HashEntry

The hash function returns an index to the first entry in the hash table. The
other entries with the same hash value are located by following the pointer to the
next entry. Algorithm 15.2 illustrates the basic procedure for finding the best
match within the LZ77 window.

A compressor can use additional criteria for determining the best match.
For example, it may take the distance into consideration as well as the code
length. As the distance value becomes larger so does the number of additional
bits required to encode it. If the distance value for a 3-byte match is large
enough to require 13 additional bits, it is most likely that the compressor can
encode the string with fewer bits using three literal values rather than a length
and distance code.

Think about what happens when the procedure just described is used with an
image containing relatively few colors. The hash chains could become quite
large, which would make searching them end to end very slow. A good solution
to this problem is to put a limit on the number of entries in a hash chain that the
compressor will search for the best match. This limit can be configured to allow
the amount of compression to be traded off against compression time. Limiting
the number of entries searched in each hash chain does not have a significant
negative impact on compression. However, it can result in a major reduction in
compression time. The search limit can be made a configurable parameter so that
the user can trade off time for compression.

Procedure BestMatch (BESTLENGTH, BESTOFFSET)
Begin
BESTLENGTH = 0
BESTOFFSET = 0

HASHVALUE = Hash (LOOKAHEAD [0], LOOKAHEAD [1], LOOKAHEAD [2])
HASHENTRY = HashTable [HashValue]
If HASHENTRY = NULL Then
Return // No possible Match

While HASHENTRY <> NULL Do
Begin
II = 0
While LZWINDOW [HASHENTRY.INDEX + II] = LOOKAHEAD [I] Do
II = II + 1

If II > BESTLENGTH Then
Begin
BESTLENGTH = II
BESTOFFSET = HASHENTRY.INDEX
End

HASHENTRY = HASHENTRY.NEXT
End

End

237Deflate Compression Process

Algorithm 15.2
Matching Entries in
the Hash Table

Creating PNG Files

Each time we move a character from the lookahead buffer to the LZ77 win-
dow, we need to create a hash table entry that references the character's position
when added to the buffer. The hash value for the new hash entry needs to be cal-
culated using values in the lookahead buffer because the hash function requires
the value of the next two characters, which will not yet have been added to the
LZ77 window.

A PNG encoder should maintain a fixed pool of hash table entries
rather than constantly allocating and freeing them. Since there are
215 characters in the LZ77 window, that is the size of the hash entry
pool as well.

If the compressor adds a hash entry to a hash chain that is not empty, it
should be at the start of the chain rather than the end. This causes the most
recently processed string to be matched first when searching the LZ77 for
strings. Strings with smaller distance values can be encoded using fewer bits.

Huffman Table Generation

A PNG encoder can either use the fixed Huffman codes shown in Table 14.9 or
generate Huffman codes based on usage frequencies. It is simpler to implement
fixed Huffman codes but there is obviously a penalty when it comes to compres-
sion. Unless you are working with an application where compression speed is
critical, there is really no reason to use fixed Huffman codes.

Chapter 6 covered Huffman coding as it applies to JPEG. The same process
with a few modifications will work with a Huffman encoder. The differences
between Huffman table generation in JPEG and PNG were listed in the previous
chapter.

When we used Huffman coding in JPEG, we generated the Huffman table by
making two nearly identical passes over the image data. The first pass gathered
usage frequencies. After generating the Huffman tables from the usage frequen-
cies, the second pass repeated the steps of the first pass except that the data was
Huffman encoded.

Such a scheme can be used to encode PNG image data but there are a cou-
ple of significant drawbacks. The main problem with having two nearly identical
passes is the time required to compress an image. The process of searching the
LZ77 window for matching strings is significantly more processing intensive
than is JPEG entropy encoding. Performing PNG compression process twice
lengthens the compression time noticeably.

A good solution to this problem is to store the literal/length and distance
codes in a buffer. A simple method for implementing such a buffer would be to

238

Huffman Table Generation 239

use an array of 2-byte integers. A length/distance code would be stored in the
buffer using 2 bytes while a literal value would use only 1 byte. The first pass
through the data gathers usage statistics and writes to this buffer. After generat-
ing the Huffman tables, the second pass simply encodes the values stored in the
buffer. Algorithm 15.3 illustrates how the first pass would be implemented.

How large does a buffer need to be to encode an entire image? The answer
is that we do not need to hold the entire image in the buffer. The Deflate process
allows the compressed data to be stored in multiple compressed blocks. The com-
pressor can allocate a buffer at the start of image compression. When the buffer
is full, the compressor ends the first pass. After the data is encoded in the second
pass, the encoder starts a new Deflate block and resumes the first pass where it
left off. In other words, instead of having two passes that process the entire
image, we have multiple alternating passes.

Naturally the size of the buffer affects the size of the resulting image file.
The smaller the buffer, the greater the number of compressed blocks, which
results in more overhead from additional Huffman tables in the compressed
stream. However, making the buffer too large can actually make the compressed
image larger. When too much image data is written to a single compressed block,
so many Huffman codes get defined that the overhead from the Huffman code
lengths becomes greater than the overhead from additional Huffman tables. The
optimal buffer size varies from image to image. A compressor could conceivably
determine when it should create a new block from the Huffman code usage. This,
in conjunction with a large buffer, would produce the best compression.

Once the Huffman codes have been generated for the length/literal and dis-
tance tables, the tables have to be written to the compressed output stream. The

Algorithm 15.3
Gathering Huffman
Usage Statistics

Procedure GatherData
Begin
While MOREIMAGEDATA And COUNT + 1 < BUFFERSIZE Do
If LENGTH > 3 Then

Begin
IncrementLengthFrequency (ConvertLengthToCode (LENGTH))
IncrementDistanceFrequency (ConvertDistanceToCode (DISTANCE))
BUFFER [COUNT] = LENGTH + 256
COUNT = COUNT + 1
BUFFER [COUNT] = DISTANCE
COUNT = COUNT + 1
End

Else
Begin
BUFFER [COUNT] = CopyFromLookaheadBuffer (1)
COUNT = COUNT + 1
End

End

240 Creating PNG Files

Huffman tables stored are Huffman encoded using the codes shown in the previ-
ous chapter. The easiest method for generating the Huffman codes for encoding
the code lengths is a function that takes pointers to functions as parameters like
the ones we used for JPEG. This function is called twice each time lengths are
written to the output file—the first time it is called with a function for gathering
Huffman statistics; the second time it is called with a function that outputs the
Huffman-encoded lengths.

Algorithm 15.4 illustrates the process for compressing Deflate blocks using
a buffer.

One oddity of PNG compression is that Huffman codes within the com-
pressed data are stored with the bits in reverse order. The Huffman decoding

Algorithm 15.4
Deflate
Compression

Procedure OutputDataBlock
Begin
II = 0
While II < COUNT Do

Begin
If BUFFER [II] > 255 Then

Begin
ConvertLength (BUFFER [II], CODE, EXTRABITS, BITCOUNT)
HuffmanEncodeUsingLengthTable (CODE)
OutputLiteralBits (EXTRABITS, BITCOUNT)
II = II + 1
ConvertDistance (BUFFER [COUNT], CODE, EXTRABITS, BITCOUNT)
HuffmanEncodeUsingDistanceTable (CODE)
OutputLiteralBits (EXTRABITS, BITCOUNT)
II = I + 1
End

Else
Begin
HuffmanEncodeUsingLengthTable (BUFFER [COUNT])
II = II + 1
End

End
HuffmanEncodeUsingLengthTable (ENDCODE)
End

Procedure CompressImage
Begin
While MOREIMAGEDATA Do

Begin
CatherData
CenerateHuffmanTables
WriteDeflateBlockHeader
OutputDataBlock
End

End

Filtering

process reads the most significant bit of the code first and then adds the least sig-
nificant bits. However, within PNG compressed data, bits are read from the least
significant bit to the most significant. If the Huffman codes were stored in the
normal order, the decompressor would read their least significant bits first, which
would defeat the entire Huffman coding process. This example illustrates the
reversal of bits in a Huffman code.

Each data row in a PNG file is preceded by a byte that specifies the filter method
applied to the row data before compression. The possible values for this byte and
the corresponding filter method were given in the previous chapter. The filter
functions are similar to their inverses shown previously.

unsigned short ReverseHuffmanCode (unsigned short input)
{

unsigned short value = 0 ;
for (unsigned int ii = 0 ; ii < 16 ; ++ ii)
{
if ((input & (1 << (15 - ii))) != 0)
value |= (1 << ii) ;

}
return value ;

}

Sub Filter
filteredvalue = image [row][X] - image [row][X-Interval]

Up Filter
filteredvalue = image [row][X] - image [row-1][X]

Average Filter
filteredvalue = image [row][X] - (image [row][X-Interval]

+ image [row-1][X]) / 2

Paeth Filter

filteredvalue = buffer [row][X] - PaethPredictor (
image [row][X-Interval],
image [row-1][X],
image [row-1][X-Interval])

where PaethPredictor and Interval are as defined in the previous chapter.

Filtering 241

Creating PNG Files

Why Use Filtering?

The purpose of applying row filters is to make the image data more compress-
ible. Suppose you have an image containing a gradient background where the
color of each pixel varies by a fixed amount from the pixel next to it. This is
familiar to Windows users from its use in software installation screens. For a blue
to black gradient, the color data of a typical row would look something like

0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 ...

While the data has a very orderly pattern, there are no repeating strings of 3
bytes or greater, thus reducing its compressibility through the Deflate process. If
this same data row were to be run through the sub filter defined above, the data
would become

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 ...

which compresses much better in a PNG file. It turns out that filtering is gener-
ally the best method for improving the compression of an image file. Using fil-
ters can generally reduce the image size by about 30-40%.

On the other hand, filtering can increase the size of a PNG file. For images
that use a color palette, no filtering should be used. Filtering takes advantage of
similar adjacent color values, but palette indices have no relation to the actual
color value. Since filtering operates on bytes rather than bits, using filters with
images with bit depths of fewer than 8 does not produce the same sort of results
as it does with larger bit depths. Consequently, filtering would be effective with
these images only in the rarest of cases.

What Filter to Use?

Filters are applied on a row-by-row basis and can be changed from row to row.
This raises the question of which filter is best for a given row, the answer to
which is that we really do not know. This remains an area for experimentation
and discovery.

The PNG specification suggests performing all filters on each row. Each fil-
tered value is treated as a signed byte (-128..127) and all are then summed
together. The filter that produces the smallest sum is selected. Another possibil-
ity is to find the filter that produces the longest repetitions of the same values.

The simplest method for an encoder to automatically select a filter is to not
use filtering for images that use a palette or for images with a bit depth of fewer
than 8 bits. For other image types, the sub filter should be used for the first row
and the Paeth filter for the remaining rows. In most situations, this method does
not produce results that are significantly worse than either of the methods
described earlier.

242

243

Conclusion

In this chapter we have covered the process for creating PNG files, which is
essentially the reverse of the one used to read them. As in JPEG, the implementer
of a compressor has to make arbitrary choices about the how to do the compres-
sion process, such as how big to make the IDAT chunks, when to create a new
Deflate block, how far to search in the hash chains, and which filters to use.
Methods for selecting the best filter are still an area of exploration. The PNG for-
mat should become more common in the near future.

The source code for this chapter on the accompanying CD-ROM is a PNG
encoding class, PngEncoder, which uses a PNG Huffman encoding class that is
nearly identical to the equivalent JPEG class shown in Chapter 6. The only sig-
nificant differences are in the BuildTable function. The PNG version does not
have a special value to ensure that no Huffman code consists of all 1-bits and it
ensures that the ordering of Huffman codes matches the ordering of the values.

The encoder class's SetUseFiIters function specifies whether or not fil-
ters are used in the compression process. The SetCompressionLevel function
controls the maximum depth to which the hash chains are searched and the
SetBlocksize function controls the size of the compression buffer.

There is also a sample encoder that converts Windows BMP files to PNG
format. The command sequence for this application is

ENCODER [-f -F -M] input.bmp output.png

-f Use Filters
-F Use Fastest Compression
-M Use Maximum Compression

This brings to an end our discussion of the PNG format and with it an end
to the book. We hope that you have learned how to read and write images using
the most common formats.

Conclusion

Glossary

AC Coefficient In JPEG, all of the DCT coefficients except for the single lowest-
order coefficient. These coefficients represent the addition of cosine functions of
increasing frequency.

Additive Color Model A color model where component values add color to black.
Higher component values produce colors closer to white.

Alpha Channel A pixel value (in addition to the color components) that represents
the transparency of the pixel.

Baseline JPEG A subset mode of sequential JPEG where the number of tables is
restricted and the sample precision must be 8 bits.

Big-Endian The representation of integers with the individual bytes ordered from
most to least significant. See Little-Endian.

Bitmap Format An image format where the data consists of a set of values that
represents the color at discrete points or pixels.

Coefficient See DCT Coefficient.

Chrominance A component in a color model that represents the color of a pixel
as opposed to its intensity. In the YCbCr color model Cb and Cr are chrominance
components.

Chunk The basic division of a PNG file.

Color Model A method for specifying how colors are represented. Most color
models represent colors using three dimensions or components. RGB, YCbCr, and
CMYK are examples of color models.

Color Quantization The process of reducing the number of colors in an image.
Usually quantization is used to allow an image to be displayed on a device with a lim-
ited number of colors or to store the image in a file format that does not support as
many colors as the original image.

245

Glossary

Colorspace The set of all colors that can be represented using a particular color
model.

Component One of a set of values used to represent a pixel in a particular color
model. Most color models represent a color value using three component values.

CRC Cyclical Redundancy Check. A polynomial-based method for detecting
corrupted data.

Data Unit In JPEG, an 8 × 8 block of sample values for a single component.

DC Coefficient The lowest-order DCT coefficient. It represents a constant value.

DCT Discrete Cosine Transform. A mathematical process that converts a set of val-
ues into an equivalent representation as the sum of cosine functions.

Deflate The compression process used in PNG. It is a variant of the LZ77 process
that incorporates Huffman coding.

Down-Sampling The process of reducing the resolution of a component in an
image.

Frame In JPEG, a group of one or more scans. For the JPEG modes in common
use a frame is indistinguishable from an image.

Gamut The range of colors that can be displayed on a particular output device.

Gamma A model commonly used to correct colors in an image based upon the
properties of the system and the viewing environment.

Hierarchical JPEG A little used JPEG mode where the image is broken into a
number of frames that refine the image.

Huffman Coding A compression technique that uses variable-length codes to rep-
resent data.

Inflate The decompression process used in PNG. It is the reverse of the Deflate
process.

Interleaved Scan In JPEG, a scan that consists of more than one component.

Interlaced Image An image that is not displayed sequentially, but rather by using
a pattern of lines or pixels.

JFIF JPEG File Interchange Format. The format used for JPEG files.

JPEG-LS A new JPEG lossless compression technique.

Little-Endian A format for representing integers where the individual bytes arc
ordered from least to most significant.

Logical Screen In GIF, a logical display area for the images stored in the file. The
individual images specify their size and location within the logical screen.

Lossy Compression A compression method that creates a close approximation of
the original data. Lossy compression methods discard information that is considered
less important in order to increase compression.

246

Lossless Compression A compression method that allows an exact copy of the
original image to be retrieved.

Lossless JPEG A rarely used JPEG mode that implements a lossless compression
technique. Lossless JPEG is now considered obsolete.

Luminance A color component that represents brightness.

LZ A family of compression algorithms named after their creators, Abraham
Lempel and Jacob Ziv.

LZW (Lempel-Ziv-Welch) The LZ variant used in GIF.

MCU (Minimum Coded Unit) In JPEG, the number of data units that are encoded
as a group.

Median Cut Algorithm Heckbert's algorithm for color quantization.

Network Order Identical to "big-endian." It refers to the fact that in Internet
Protocol integers are transmitted with the most significant byte first.

Noninterleaved Scan In JPEG, a scan that contains only one component.

Pixel A discrete location on a display device or an individual point within a bitmap
image format.

Point Transform The process used to reduce the precision of data in progressive
JPEG when successive approximation is used. For DC coefficients, the point trans-
form is a bit shift. For AC coefficients, the point transform is integer division.

Progressive JPEG A JPEG mode where the image is divided into multiple scans.
The initial scans are a coarse representation of the image. Subsequent scans refine
the image.

Quantization In JPEG, the process for reducing the number of DCT coefficients
used to represent a data unit. See also Color Quantization.

Raster Format Identical to "bitmap format."

RGB Colorspace A colorspace where the components represent the relative
amounts of red, green, and blue light to be added to black.

RLE (Run Length Encoding) A compression method where consecutive runs of
the same value are encoded using run-length/value pairs.

Sampling Frequency In JPEG, the relative frequency at which a component is
sampled with respect to the other components in the image.

Sample Precision The number of bits used to represent a component value.

Scan In JPEG, a set of compressed data that represents a single pas through the
image for one or more components.

Sequential JPEG A JPEG mode where the image is stored from top to bottom, left
to right.

247Glossary

Glossary

Spectral Selection In Progressive JPEG, the process of dividing components
into a range of spectral bands or DCT coefficients, used by all progressive JPEG
images. Spectral selection can optionally be used in conjunction with successive
approximation.

SPIFF (Still Picture Interchange File Format). The official JPEG file format. It is
intended to replace JFIF.

Subtractive Color Model A color model where components subtract color from
white. Higher component values create colors closer to black.

Successive Approximation In Progressive JPEG, the process of dividing compo-
nents into multiple scans by reducing the precision of the data in the initial scan and
using subsequent scans to refine the data. Successive approximation is not required
in progressive JPEG.

Truecolor Any system where 224 or more colors can be represented simultane-
ously. The name reflects the fact that this is approximately the limit of colors humans
can distinguish.

Up-Sampling The process of increasing the resolution of a color component.

Vector Format A graphics format where images consists of a sequence of drawing
commands.

XYZ Colorspace The three-component color model defined by the Commission
Internationale de l'Eclairage (CIE) in 1931. It defines absolute, rather than relative,
colors.

YCbCr Colorspace The color model used in JPEG. YCbCr uses three components
that represent luminance (Y) and chrominance (Cb and CR).

248

Bibliography

Anton, Howard, Elementary Linear Algebra, John Wiley & Sons, New York, NY,
1981.

Blinn, Jim, Jim Blinn's Corner: Dirty Pixels, Morgan Kaufmann, San Francisco,
CA, 1998.

Boutell, Thomas et al., "PNG Specification," Version 1.0, PNG Development
Group, October 1996.

Brown, C. Wayne and Shepherd, Barry J., Graphics File Formats, Manning,
Greenwich, CT, 1995.

Burden, Richard L., Faires, J. Douglas, Reynolds, Albert C., Numerical Analysis,
Prindle, Weber & Schmidt, Boston, MA, 1981.

Campbell, Joe, C Programmer's Guide to Serial Communications, Howard W.
Sams & Company, Carmel, IN, 1987.

Deutsch, L. Peter and Gailly, Jean-Loup, "ZLIB Compressed Data Format
Specification," Version 3.3, RFC 1950, 1996.

Deutsch, L. Peter, "DEFLATE Compressed Data Format Specification," Version
1.3, RFC 1951, 1996.

Foley, James D., van Dam, Andries, Feiner, Steven K., and Hughes John F.,
Computer Graphics Principles and Practice, Addison-Wesley, Reading, MA,
1996.

CompuServe, Inc, "Graphics Interchange Format (GIF) Specification,"
CompuServe, Columbus, OH, 1987.

CompuServe, Inc, "Graphics Interchange Format (GIF) Specification," Version
89a, CompuServe, Columbus, OH, 1989.

249

Bibliography

Graham, Ian S., The HTML Source Book, John Wiley & Sons, New York, NY,
1997.

Hamilton, Eric, "JPEG File Interchange Format," Version 1.02, C-Cube
Microsystems, September 1, 1992.

Heckbert, Paul, "Color Image Quantization for Frame Buffer Display," ACM
Computer Graphics Journal, Volume 16, Number 3, July 1982.

Huffman, D. A., "A Method for the Construction of Minimum Redundancy
Codes," Proceedings of the IRE, Volume 40, Number 9, pages 1098-1101.

JPEG (1994), Digital Compression and Coding of Continuous-tone Still Images,
Part I: Requirements and Guidelines. ISE/IEC IS 10918-1, American National
Standards Institute, New York, NY, 1994.

Lindley, Craig A., Photographic Imaging Techniques in C++, John Wiley & Sons,
New York, NY, 1995.

Microsoft Corporation, Win32 Programmer's Reference Volume 5: Messages,
Structures, and Macros, Microsoft Press, Redmond, WA, 1993.

Murray, James D. and vanRyper, William, Encyclopedia of Graphics File Formats,
O'Reilly & Associates, Sebastopol, CA, 1994.

Nelson, Mark, The Data Compression Book, M&T Books, San Mateo, CA, 1992.

Nye, Adrian, Xlib Programming Manual, O'Reilly & Associates, Sebastopol, CA,
1988.

Pennebaker, William B. and Mitchell, Joan L., JPEG Still Image Data
Compression Standard, Van Nostrand Reinhold, New York, NY, 1993.

Porter, Thomas and Duff, Tom, "Compositing Digital Images," Computer
Graphics, Volume 18, Number 3, July 1984.

Ramabadran, Tenkasi V. and Gaitonde, Sunil S., "A Tutorial on CRC
Computations," IEEE Micro, August 1988, pages 62-75.

Rao, K. R. and Yip, P., Discrete Cosine Transform, Academic Press, New York,
NY, 1990.

Rimmer, Steve, Windows Bitmapped Graphics, Windcrest Books, Blue Ridge
Summit, PA, 1993.

Scheifler, Robert W. and Gettys, James, X Window System, Digital Press, Bedford,
MA, 1990.

Stroustrup, Bjarne, The C++ Programming Language, Third Edition, Addison-
Wesley, Reading, MA, 1997.

Swan, Tom, Inside Windows File Formats, SAMS, Indianapolis, IN, 1993.

Welsh, Terry, "A Technique for High-Performance Data Compression," IEEE
Computer, Volume 17, Number 6, June 1984, pages 8-19.

250

Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression,"
IEEE Transactions on Information Theory, Volume 23, Number 3, May 1977,
pages 337-343.

Ziv, J. and Lempel, A., "Compression of Individual Sequences via Variable-Rate
Coding," IEEE Transactions on Information Theory, Volume 24, Number 5,
September 1978, pages 530-536.

Internet Sites

Since Web sites have a tendency to move or disappear, rather than creating an
exhaustive list, we are only listing those sites that we consider the most useful.

JPEG

www.jpeg.org—Home of the JPEG committee

www.ijg.org—Independent JPEG Group

PNG

www.cdrom.com/pub/png/—The PNG Home Page

www.cdrom.com/pub/infozip/zlib/—ZLIB Home Page

www.cdrom.com/pub/mng—Multiple Image Network Graphics

GIF

www.geocities.co.jp/SiliconValley/3453/gif_info/index_en.html—GIF Info Page

members.aol.com/royalef—GIF Animation on the WWW

General

www.wotsit.org—Wotsit's Format Page

www.dcs.ed.ac.uk/~mxr/gfx/—The Graphics File Formats Page

Bibliography 251

Index

AC class, 50
AC coefficients

for DCT values, 81-83
in progressive JPEG

in decoding, 155-160
in spectral selection, 149-150

in sequential-mode JPEG
in decoding, 95-98
in encoding, 115, 117

zigzag ordering for, 89
AC point transforms, 150
AC scans, 163-168
ACFirstDataUnit procedure, 157
ACRefineDataUnit procedure, 159-160
Adam 7 interlacing, 202-203, 227-228
Addition, efficiency of, 133
Additive color models, 8
Adler, Mark, 216
Adler Checksum field, 222-223
Alpha channels, 196-198
Ancillary chunks, 206-212
Animated GIF format, 186-187
APP markers, 48-50, 111
Application extension blocks, 177
Application ID field, 178, 186
Application-specific data, markers for, 49-50, 111
Arithmetic in DCT optimization, 137-138

Associativity of matrix multiplication, 86
Authentication Code field, 178, 186
Author field, 210

Background color
in GIF format, 173
in PNG format, 206-207

Background Color field, 173
Baseline process, 36
Baseline SOF frames, 106
bcBitCount field, 25-27
bcHeight field, 26-27
bcPlanes field, 26
bcSize field, 26
bcWidth field, 26-27
BestMatch procedure, 237
bfOffbits field, 24, 27
bfReserved1 field, 24
bfReserved2 field, 24
bfSize field, 24
biBitCount field, 25
biClrImportant field, 25
biClrUsed field, 25
biCompression field, 25-28
Big-endian ordering, 14-15
biHeight field, 25, 27
biPlanes field, 25

253

254 Index

biSize field, 25
biSizeImage field, 25
Bit Depth conversion, 231
Bit Depth field, 204
Bit Field field, 175
Bit Fields field, 173, 177
Bit ordering, 13-15
bitimage.h file, 19
Bitmap images, 3-4, 23

color models for, 10
compression in, 11, 28-29
data ordering in, 23
file structure for, 24-28

BITMAPCOREHEADER structure, 25
BITMAPFILEHEADER structure, 24
BitmapImage class, 19-21
BITMAPINFOHEADER structure, 24-25
Bits per Pixel field, 173
biWidth field, 25, 27
biXPelsPerMeter field, 25
biYPelsPerMeter field, 25
bKGD chunks, 206-207
Black body curve, 199
Block Data field, 224
Block Size field, 176-178, 186
Block types in GIF format, 174
Blue field

in GIF format, 174
in PNG format, 205

Blue X field, 207
Blue Y field, 207
BlueOffset value, 20
BmpDecoder program, 29-30
BmpEncoder program, 29-30
Boutell, Thomas, 190
BuildScaledTables function, 148
Bui1dTable function, 243
BYTE datatypes, 19
Byte ordering, 13-15

in GIF format, 172
in JPEG format, 41

in PNG format, 190
in Windows BMP format, 23
in XBM format, 32

C source code for XBM format, 31-32
Cb component

in JPEG sampling frequency, 41, 43-44
quantization table for, 88

Character Cell Height field, 176
Character Cell Width field, 176
Check Bits field, 222-223
CHECK_RANGE preprocessor symbol, 20-21
cHRM chunks, 207
Chrominance in YCbCr color model, 6
Chunks in PNG format, 190-192, 194-195

critical, 203-206
noncritical, 206-212

CIE 1931 standard, 197
Classes for common image formats, 19-21
Clear code, 183
CMYK (cyan, magenta, yellow, black) color

model, 8-9
Code lengths, generating, 65-73
Code sizes in GIF format compression, 182-183
Coding, Huffman. See Huffman coding
Collisions in hash tables, 235-237
Color

color models for, 5-10
in GIF format, 171-174
in JPEG format, 110
in PNG format

correction of, 231
device-independent, 197-200
Gamma value in, 201-202
representation of, 195-197

in Windows BMP format, 25-26
Color maps in BitmapImage, 20
Color quantization, 16-18
Color Table Sort Flag field, 173
Color tables in GIF format, 172-174
Color Type field, 204

Index 255

ColorMap function, 20
Colorspace, 5, 55
ColorUsage structure, 21
Columns in matrices, 85-86
COM (comment) markers, 48, 50
Comment extension blocks, 177
Comment field, 210
Comments

in GIF format, 177
JPEG markers for, 48-50
in PNG format, 210

Common image formats, 18-21
Commutativity of matrix multiplication, 86
Compatibility, matrix, 86
Component division in JPEG format, 149-151
Compress procedure, 180
Compressed Blocks field, 223
Compressed Text field, 212
CompressImage procedure, 240
Compression and compressed data, 10-12

in GIF format, 178-179
code sizes in, 182-183
compression methods, 179-181
decompression methods, 181-182
dictionary structure in, 183-185

in JPEG format, 36-39, 49, 105-111
lossless vs. lossy, 12-13
in PNG format, 222-227
in Windows BMP format, 28-29

Compression Level field, 222-223
Compression Method field, 204, 212, 223
Converting

byte order, 14-15
for common image formats, 18-19

CopyData function, 218-219
Copyright field, 210
Cosine function

in matrix factoring, 122-126
in quantization, 139

CountBits function, 163
CountsToLengths procedure, 71

Cr component
in JPEG sampling frequency, 41, 43-44
quantization table for, 88

CRC (Cyclic Redundancy Check), 192-194
CRC field, 191
Crc function, 193
CrcByte function, 193
Creation Time field, 210
Critical chunks, 191, 203-206
Cyan, magenta, yellow, black (CMYK) color

model, 8-9
Cyclic Redundancy Check (CRC), 192-194

DAC markers, 48
Data blocks, 175
Data field, 191
data_units array, 101
Data units in JPEG format

progressive
decoding, 154-160
encoding, 162-165

sequential-mode
decoding, 94-96
encoding, 115-117

Datatype definitions, 19
datatype.h file, 19
Day field, 211
DC class, 50
DC coefficients

for DCT values, 81-83
in progressive JPEG

in decoding, 154
in spectral selection, 149-150

in sequential-mode JPEG
in decoding, 94-95, 97-98
in encoding, 115-116

DC point transforms, 150
DC scans, 162-163
DCT (discrete cosine transform), 11

in JPEG format, 44, 77, 98
matrix operations in, 85-87

256 Index

DCT (discrete cosine transform) (continued)
in one dimension, 78-84
quantization in, 88-89
in two dimensions, 84-85, 87
zigzag ordering in, 89

optimizing, 121
matrix factoring in, 121-137
quantization in, 138-148
scaled integer arithmetic in, 137-138

DCT function, 78
DecodeBlock procedure, 222
DecodeDC function, 95
DECODER application, 103
DecodeSequential function, 101
Decoding

Huffman coding, 73-75
progressive JPEG

AC scans in, 155-160
DC scans in, 154

sequential-mode JPEG, 91
data units, 94-96
DCT coefficient processing in, 98
examples, 97-98, 100-103
MCU dimensions in, 91-93
overview, 100
restart marker processing in, 99-100
up sampling in, 99

Decompressing
GIF format, 181-182
PNG format

compressed data blocks in, 223-227
compressed data format in, 222-223
filtering in, 228-230
Huffman coding in, 221-222, 224-227
image data, 215-221
writing decompressed data to images in,

227-231
Define Huffman Table (DHT) markers, 48, 50-51,

111
Define Quantization Table (DQT) markers, 48,

51-52, 111

Define Restart Interval (DRI) markers, 48, 51
Deflate compression process, 216-222, 234-238
Delay Time field, 177
Description field, 210
Device-independent color, 197-200
DHP markers, 48
DHT (Define Huffman Table) markers, 48, 50-51,

111
Dictionary-based compression schemes, 178-179
Dictionary structure in GIF format, 183-185
Disclaimer field, 210
Discrete Cosine Transform. See DCT (discrete

cosine transform)
Disposal Method field, 177
Distances field, 224
DivideBlueInHalf function, 17
DNL markers, 48-49
Dot product operations, 85
Down sampling, 43-44, 112-113
DQT (Define Quantization Table) markers, 48,

51-52, 111
DRI (Define Restart Interval) markers, 48, 51
Dynamic Huffman codes, 224-226

EightBitQuantization function, 21
EncodeACFirst procedure, 164-165
EncodeACRefine procedure, 164-165, 167-168
EncodeDataUnit procedure, 116, 119
EncodeDCFirst procedure, 163
EncodeDCRefine procedure, 164
EncodeInterleaved procedure, 114
EncodeNonInterleaved procedure, 113
EncodeSequential function, 120
Encoding in JPEG format

progressive, 162-165
sequential-mode, 111, 115-117

End code in GIF format compression, 183
End-Of-Band (EOB) runs, 155-156
End of Image (EOI) markers, 47-48, 52
Escape codes in RLE8 compression, 28-29
EXP markers, 48

Index 257

Expand procedure, 182, 185
Extend function, 95, 97
Extended SOF frames, 106
Extension blocks, 175-178
extension_code field, 55-56
Extension code in GIF format, 174
extension_data field, 55-57
Extension header format, 57
Extension Type field, 186

Factored DCT (FDCT), 139-148
File headers in Windows BMP format, 24
File processing in JPEG format, 151-152
File structure

in GIF format, 172-178
in JPEG format, 47-54, 111
in PNG format, 190-195
in Windows BMP format, 24-28
in XBM format, 31-33

Filter Method field, 204
Filtering in PNG format, 228-230, 241-242
Final field, 224
FindColorUsage function, 21
FindLongestMatchInLZ77Window function, 235
First scans in progressive JPEG

AC, 155-156, 163-164
DC, 154, 162

FirstDCDataunit procedure, 154
Fixed Huffman codes, 226-227
Frame buffers, 2
Frame markers in JPEG format, 53
Frames in JPEG hierarchical compression mode,

37

Gailly, Jean-Loupe, 216
gAMA chunks, 201-202, 207-208
Games, 3
Gamma Value field, 208
Gamma value in PNG format, 201-202, 208
GatherC procedure, 118
GatherData procedure, 239

GatherDC procedure, 118
GatherFrequencies procedure, 16
Gaussian elimination, 126
GenerateHuffmanCodes procedure, 70
GetRGB function, 21
GIF format, 171

animated, 186-187
byte ordering in, 172
color models for, 10
compressed data format in, 178-179

code sizes in, 182-183
compression methods, 11, 179-181
decompression methods, 181-182
dictionary structure in, 183-185

file structure in, 172-178
interlacing in, 178
legal problems in, 187-188
uncompressed, 188

Global Color Table Flag field, 173
Global Color Table Size field, 173-174
Global color tables in GIF format, 172-174
Global screen description in GIF format, 172-173
Graphic control extension blocks, 176-177
Grayscale

in JPEG format, 110
in PNG format, 196-197

Grayscale devices, 6
GrayscaleConvert function, 101
Green field

in GIF format, 174
in PNG format, 205

Green X field, 207
Green Y field, 207
GreenOffset value, 20

Hamilton, Eric, 40
Hash tables, 234-238
Header field, 223
Headers

in GIF format, 172
in JFIF format, 56

258 Index

Headers (continued)
in PNG format, 223

Height field, 204
Hierarchical JPEG compression mode, 37, 39
hIST chunks, 208
Horizontal sampling frequency in JPEG format,

43
Hot spots in XBM format, 32
Hour field, 211
HSB (Hue-Saturation-Brightness) color model, 6
HUFFCOMP program, 75
Huffman coding, 11

in JPEG format, 44
code lengths in, 65-73
decoding, 73-75
example, 63-65
progressive, 162
restrictions in, 71-73
sequential-mode, 36
usage frequencies in, 61-63

in PNG format, 221-222, 224-227
Huffman tables

in JPEG format
markers for, 50-51
progressive, 153-154
sequential-mode, 106, 117-119

in PNG format, 238-241
HuffmanDecode function, 74

IDAT chunks, 191, 195, 205-206
IDCT (Inverse Discrete Cosine Transform), 77-78
Identifier field, 56
Identity matrices, 87
IEND chunks, 191, 195, 206
IHDR chunks, 191, 195, 203-204
Image blocks in GIF format, 174-175
Image data in PNG format, decompressing,

215-221
Image headers in Windows BMP format, 24-25
Image Height field, 175
Image Width field, 175

Images, representation of, 1-2
Initialize procedure, 180
InitializeDictionary procedure, 184
Integer arithmetic in DCT optimization, 137-138
Interface Flag field, 175
Interlace Method field, 204
Interlacing

in GIF format, 178
in PNG format, 202-203, 227-228

InterleavedPass function, 120
Interleaving in JPEG format, 45-46

MCU dimensions in, 92-93
sequential-mode, 113-114

Inverse Discrete Cosine Transform (IDCT), 77-78
InverseDCT function, 134-137
IRENE.BMP file, 11-12
IRENE.JPG file, 80-83, 87

JFIF (JPEG File Interchange Format), 40, 55-57
JPEG format, 35

byte ordering in, 41
color models for, 10
compression methods for, 11, 36-39
DCT in, 44, 77, 98

matrix operations in, 85-87
in one dimension, 78-84
optimizing. See Optimizing DCT
quantization in, 88-89
in two dimensions, 84—85, 87
zigzag ordering in, 89

file format in, 47-54
Huffman coding in, 44

code lengths in, 65-73
decoding, 73-75
example, 63-65
restrictions in, 71-73
usage frequencies in, 61-63

interleaved and noninterleaved scans in, 45-46
JFIF file format for, 40, 55-57
operation of, 44
progressive, 149

Index 259

JPEG format (continued)
component division in, 149-151
data unit decoding in, 154-160
data unit encoding in, 162-165
Huffman coding in, 162
Huffman tables in, 153-154
MCUs in, 153
preparing for, 160-161
processing files in, 151-152
processing scans in, 152-153

sampling frequency in, 41-44
sequential-mode, 91

color and grayscale in, 110
compression parameters for, 105-111
data unit decoding in, 94-96
data unit encoding in, 115-117
DCT coefficient processing in, 98
decoding examples in, 97-98, 100-103
decoding overview, 100
down sampling in, 112-113
encoding in, 111
example for, 120
Huffman tables for, 106, 117-119
interleaving in, 113-114
MCU dimensions in, 91-93
output file structure in, 111
quantization tables for, 106-107
restart markers in, 99-100, 109-110
sampling frequencies in, 108-109
scans in, 107-108
up sampling in, 99

SPIFF file format for, 40-41
JpegDecoder class, 101-103
JpegDecoderComponent class, 101
JpegDecoderDataUnit class, 148
JpegDecoderQuantizationTable class, 102, 148
JPEGDUMP program, 57-59
JpegEncoder class, 120
JpegEncoderComponent class, 120
JpegEncoderDataUnit class, 148
JpegEncoderQuantizationTable class, 148

JpegHuffmanDecoder class, 75, 102
JpegHuffmanEncoder class, 75
JPG markers, 48

Keyword field, 210, 212

Left Position field, 175
Legal problems in GIF format, 187-188
Lempel, Abraham, 179
Length field, 191, 224
Lengths field, 224
LengthsToCounts procedure, 70
Limit function, 134
LimitTo16Bits procedure, 73
Literals field, 224
Little-endian ordering, 14-15
Local Color Table Flag field, 174-175
Local Color Table Size field, 175
Logical screen descriptors, 172-173, 187
Logical Screen Height field, 173
Logical Screen Width field, 173
Loop application extension in GIF format,

186-187
Lossless compression, 12-13, 39
Lossy compression, 12-13
Luminance in YCbCr color model, 6
LZ encoding, 11
LZ77 compression, 216-217
LZW compression, 178-185

MakeCrcTable function, 194
Markers in JPEG format, 47-49

APP, 49-50
COM, 50
DHT, 50-51
DQT, 51-52
DRI, 51
EOI, 52
RST, 52
SOF, 53
SOI, 52

260 Index

Markers in JPEG format (continued)
SOS, 53-54

Matrix operations and factoring
in DCT, 85-87, 121-137
in quantization, 138-148

Matrix transpose operation, 86
MCUs (minimum coded units) in JPEG format,

45-46
markers for, 51
progressive, 153
sequential-mode, 91-93

Median cut quantization, 16-18
Memory

for bitmap graphics, 3-4
for video, 1-2

Miller, Victor, 187
Minimum coded units (MCUs) in JPEG format,

45-46
markers for, 51
progressive, 153
sequential-mode, 91-93

Minute field, 211
Month field, 2 1 1
Morse Code, 62
Multiplication

efficiency of, 133
in matrices, 85-86

N × M matrices, 85
Names for PNG chunks, 191
Network order, 14
NLength field, 224
Noncritical chunks, 206-212
Noninterleaved scans, 45-46
NoninterleavedPass function, 120

One dimension, DCT in, 78-84
Optimizing DCT, 121

matrix factoring in, 121-137
quantization in, 138-148
scaled integer arithmetic in, 137-138

Ordering bytes and bits, 13-15
in GIF format, 172
in JPEG format, 41
in PNG format, 190
in Windows BMP format, 23
in XBM format, 32

Orthogonal matrices, 87
Output file structure in JPEG format, 1 1 1
OutputCode procedure, 184-185
OutputDataBlock procedure, 240
Overflow in scaled integer arithmetic, 138

PaethPreductor function, 230
Palette field, 56
Palettes

in JFIF format, 56
in PNG format, 196, 205
vs. true color, 9-10

Patents for GIF format, 187-188
PNGDUMP program, 212-213
pHYs chunks, 208-209
Pixel Aspect Ratio field, 173
Pixel density, 55
Pixels and pixel data, 1-2

in BitmapImage, 20
in JFIF format, 55-56
in Windows BMP format, 27-28
in XBM format, 32

Pixels field, 56
Pixels per Unit X field, 208
Pixels per Unit Y field, 208
Plain text extension blocks, 176
PLTE chunks, 191, 195, 205
PNG Developmental Group, 190
PNG format, 189-190

byte ordering in, 190
chunks in, 190-192, 194-195

critical, 203-206
noncritical, 206-212

color in, 10
correction of, 231

Index 261

PNG format (continued)
device-independent, 197-200
Gamma value in, 201-202
representation of, 195-197

compression methods for, 11
creating files in, 233

Deflate process for, 234-238
filtering in, 241-242
Huffman table generation in, 238-241

decompressing
compressed data blocks in, 223-227
compressed data format in, 222-223
filtering in, 228-230
Huffman coding in, 221-222, 224-227
image data, 215-221
writing decompressed data to images in,

227-231
file format of, 190-195
history of, 190
interlacing in, 202-203, 227-228

PngDecoder program, 232
PngEncoder class, 243
Point transforms, 150
Precision

sampling, 5-6
in scaled integer arithmetic, 138

Preset Dictionary field, 223
PrintAC procedure, 118
PrintDC procedure, 118
PrintEOBRun procedure, 164, 167
Printers, images displayed by, 2
Private chunks, 190-192
Processors, byte and bit ordering in, 14-15
ProcessPass procedure, 227
Progressive JPEG format, 36-38, 149

component division in, 149-151
data unit decoding in, 154-160
data unit encoding in, 162-165
Huffman coding in, 162
Huffman tables in, 153-154
MCUs in, 153

preparing for, 160-161
processing files in, 151-152
processing scans in, 152-153

Public chunks, 190-191

Quantization and quantization tables, 16-18
in DCT, 88-89, 139-148
in JPEG format, 44

creating, 106-107
markers for, 51-52

QuantizeSourceImage function, 21

Raster graphics. See Bitmap images
ReadHuffmanTable function, 102
ReadImage function, 101-102
Reading XBM format files, 33-34
ReadLengths procedure, 225-226
ReadMarker function, 101-102
ReadQuantization function, 102
ReadSequentialInterleavedScan function, 102
ReadSequentialNonInterleaved-Scan function,

102
ReadStartOfFrame function, 102
ReadStartOfScan function, 102
Red field

in GIF format, 174
in PNG format, 205

Red-Green-Blue (RGB) color model, 5-6, 110
Red X field, 207
Red Y field, 207
RedOffset value, 20
RefineAC procedure, 158
RefineBand procedure, 166-167
RefineDCDataunit procedure, 154
RefineEOBRun procedure, 166
Refining scans in progressive JPEG

AC, 156-160, 166-168
DC, 154, 163

Repeat Count field, 186
Representation of images, 1-2
RES markers, 48

262 Index

Restart (RST) markers, 48, 52, 99-100, 109-110
ReverseAverage function, 230
ReverseExtend function, 115
ReverseHuffmanCode function, 241
ReversePaeth function, 230
ReverseSub function, 230
ReverseUp function, 230
RGB (Red-Green-Blue) color model, 5-6, 110
RGB field, 56
RGB triples, 196
rgbBlue field, 26
RGBConvert function, 101
rgbGreen field, 26
RGBQUAD structure, 26
rgbRed field, 26
RGBTRIPLE structure, 26
Right Position field, 175
RLE (run length encoding) compression, 10-11
RLE4 compression, 29
RLE8 compression, 28-29
Rotations in matrix factoring, 133
Rows in matrices, 85-86
RST (Restart) markers, 48, 52, 99-100, 109-110
Run length encoding (RLE) compression, 10-11

Safe-to-copy chunks, 192
Sample precision, 5-6
Sampling

in JFIF format, 55
in JPEG format, 41-44, 99, 108-109, 112-113

sBIT chunks, 209
Scale factors for quantization values, 107
Scaled integer arithmetic in DC optimization,

137-138
Scans and scan processing in JPEG format

progressive, 152-153
sequential-mode, 36, 107-108

Screen descriptors, 172-173, 187
SearchDictionary procedure, 180
Second field, 211

Separator field, 212
Sequential-mode JPEG format, 36

creating
color and grayscale in, 110
compression parameters for, 105-111
data unit encoding in, 115-117
down sampling in, 112-113
encoding in, 111
Huffman tables for, 106, 117-119
interleaving in, 113-114
output file structure in, 111
quantization tables for, 106-107
restart markers in, 109-110
sampling frequencies in, 108-109
scans in, 107-108

decoding, 91
data units, 94-96
DCT coefficient processing in, 98
examples, 97-98, 100-103
MCU dimensions in, 91-93
overview, 100
restart marker processing in, 99-100
up sampling in, 99

SetBlocksize function, 243
SetCompressionLevel function, 243
SetQuality function, 120
SetScanAttributes function, 120
SetSize function, 20
SetUseFilters function, 243
Signature field, 172
Signatures

in GIF format, 172
in JFIF format, 55
in PNG format, 195

Significant bits in PNG format, 209
Size of bitmap graphics, 3-4
SOF (Start of Frame) markers, 48, 53, 106
Software field, 210
SOI (Start of Image) markers, 47-48, 52, 1 1 1
Sort field, 175

Index 263

SOS (Start of Scan) markers, 48, 53-54
in progressive JPEG format, 152-153
in sequential-mode JPEG format, 111

Source field, 210
Sparse matrices, 126
Spectral selection, 149-150, 161
SPIFF (Still Picture Interchange File Format),

40-41
SplitAreaInHalf function, 21
Stand-alone markers, 47-48
STARS.BMP file, 12-13
Start of Frame (SOF) markers, 48, 53, 106
Start of Image (SOI) markers, 47-48, 52, 111
Start of Scan (SOS) markers, 48, 53-54

in progressive JPEG format, 152-153
in sequential-mode JPEG format, 111

Still Picture Interchange File Format (SPIFF),
40-41

Subscript operator, 20-21
Subtractive color models, 8
Successive approximation, 150-151, 161
SwapBytes function, 14-15

TEM markers, 48
Terminator blocks, 174
Terminator field

in GIF format, 186
in PNG format, 210

Text Background Color field, 176
tEXt chunks, 209-210
Text field, 210
Text Foreground Color field, 176
Text Grid Height field, 176
Text Grid Left field, 176
Text Grid Right field, 176
Text Grid Width field, 176
Thumbnai1 field, 56
Thumbnails in JFIF format, 55-56
tIME chunks, 210-211
Title field, 210

Transparency
in GIF format, 177
in PNG format, 196-197, 211, 231

Transparent Color Flag field, 177
Transparent Color Index field, 177
Transpose operation, 86
tRNS chunks, 211
True color vs. palettes, 9-10
Two dimensions, DCT in, 84-85, 87
Type field, 191, 224

UBYTE datatypes, 19
Uncompressed GIF format, 188
Unit Specifier field, 208-209
Units field, 56
Up-sampling, 43, 99
UpdateAdler function, 222-223
Upsample function, 101
Usage frequencies in Huffman coding, 61-63
User Input Flag field, 177

Validation in JPEG encoding, 111
Vector graphics, 3-4
Vectors, 85
Version field, 172
Version major ID field, 56
Version minor ID field, 56
Vertical sampling frequency in JPEG format, 43
Video controllers, 2
Video memory, 1-2
viewer.cpp program, 30

Warning field, 210
Wegman, Mark, 187
Welsh, Terry, 179
White Point X field, 207
White Point Y field, 207
Width field, 204
Window Size field, 223
Windows BMP format, 23

Y component
in JPEG sampling frequency, 41, 43-44
quantization table for, 88

YCbCr color model, 6-8, 110
Ydensity field, 56
Year field, 211
Ythumbnail field, 56-57

Zigzag ordering in DCT, 89
Ziv, Jacob, 179
ZLIB compression library, 216
zTXt chunks, 211-212

Windows BMP format (continued)
compression in, 28-29
data ordering in, 23
file structure for, 24-28

Windows metafiles, 3
Writing

PNG decompressed data to images, 227-231
XBM format files, 33-34

www.jpeg.org site, 46

XBM format, 31-34
Xdensity field, 56
Xthumbnail field, 56-57
XYZ color values, 197-200

264 Index

