
 

May 7, 2002 23:25 WSPC/Guidelines ExpSums-Intro

EXPONENTIAL SUMS IN CODING THEORY,

CRYPTOLOGY AND ALGORITHMS

Igor E. Shparlinski

Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
E-mail: igor@ics.mq.edu.au

1. Introduction

In these lecture notes we will try to exhibit, in a very informal way, some

useful and sometimes surprising relations between exponential sums, which

is a celebrated tool on analytical number theory, and several important

problems of such applied areas as coding theory, cryptology and algorithms.

One can certainly ask two natural questions:

• Why Exponential Sums?

This is because:

– they are beautiful and I like them;

– exponential sums allow us to show the existence of objects

with some special properties.

• Why Coding Theory, Cryptology and Algorithms?

This is because:

– they are beautiful and I like them as well;

– to design/analyze some codes and cryptographic schemes we

need to find objects with some special properties:

∗ “good” for designs;

∗ “bad” for attacks.

The main goal of this work is to show that exponential sums are very

useful, yet user friendly objects, provided you know how to approach them.

1
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I will also provide a necessary background for everybody who would like

to learn about this powerful tool and to be able to use it in her and his own

work. I do not pretend to give a systematic introduction to the subject but

rather I intend help to get started in making exponential sums an active

working tool, at least in the situation where their application does not re-

quire any sophisticated technique or advanced analytical methods. I hope

that this brief introduction to the theory of exponential sums and their

applications should help to develop some feeling of the kinds of questions

where exponential sums can be useful and if you see that the actual appli-

cation is beyond your level of expertise you can always seek an advise from

one of the numerous experts in number theory (who probably otherwise

would never know about your problem).

It is well know that for many years number theory was the main area

of applications of exponential sums. Such applications include (but are not

limited to)

• Uniform distribution (H. Weyl);

• Additive problems such as the Goldbach and Waring problems

(G. H. Hardy, J. E. Littlewood, R. Vaughan, I. M. Vinogradov);

• Riemann zeta function and distribution of prime numbers (J. Lit-

tlewood, N. M. Korobov, Yu. V. Linnik, E. C. Titchmarsh,

I. M. Vinogradov).

However it has turned out that exponential sums provide a valuable tool

for a variety of problems of theoretical computer science, coding theory and

cryptography, see [86,87].

I will try to explain:

• What we call exponential sums.

• How we estimate exponential sums (and why we need this at all).

• What is current state of affairs.

• What kind of questions can be answered with exponential sums.

• How various cryptographic and coding theory problems lead to

questions about exponential sums.

Unfortunately there is no systematic textbook on exponential sums.

However one can find a variety of results and applications of exponential

sums in [42,60,50,86,98].

Although many sophisticated (and not so) method and applications of
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exponential sums are not even mentioned in this work, I still hope that it

can prepare the reader to start independent explorations of this beautiful

area and maybe even try some open problems, new or old, as well as to look

for new applications. In particular, a little set of tutorial problems at the

end of the notes (a few of them contain some hints) may help to a smooth

transition from learning to pursuing independent research.

As a rule, the choice of examples to demonstrate various methods of

estimation and applications of exponential sums has been limited to ones

admitting a straight forward approach, exhibiting main ideas without gory

technical details. The only opposite example is the result of BCH codes

of Section 7.2. It has been done to show that even with exponential sums

“life is not always easy” (other example can somewhat lead to this false

conclusion) and also to show one very useful trick which is discussed in

Section 7.2.4.

We remark, that there is one more important area of application of expo-

nential sums which unfortunately is not considered in these notes. Namely,

we do not discuss applications to pseudo-random number generators; these

topic is too extensive and requires a separate treatment. We recommend

however to consult [73,74,75] to get some impression how the area has been

developping.
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2. Exponential Sums — Basic Notions

2.1. Getting Started

2.1.1. Exponential Sums — What Are They?

Exponential sums are objects of the form

S(X , F ) =
∑

x∈X

e(F (x))

where

e(z) = exp(2πiz),

X is an arbitrary set, F is a real-valued function on X .

In fact X could be a set of vectors, in this case we talk about multiple

sums.

2.1.2. Exponential Sums — What Do We Want From Them?

Certainly it would be very good to have a closed form expression for the

sums S(X , F ). Unfortunately there very few examples when we have such

formulas. On the other hand, for main applications of exponential sums we

do not need to know S(X , F ) exactly. It is quite enough to have an upper

bound on S(X , F ), which is the main task of this area.

First of all we remark that because |e(z)| = 1 for every real z,

|S(X , F )| ≤ #X .

This is the trivial bound.

We are interested in getting stronger bounds. Of course, to be able to

prove such a bound we need some conditions on X and F . For example, if

F is an integer-valued function then e(F (x)) = 1 and S(X , F ) = #X .

2.1.3. Exponential Sums — How Do We Classify Them?

There are exponentially many different types of exponential sums.

If X is a set of vectors, we talk about multiple sums. In particular in

the two-dimensional case we talk about double sums. Double sum tech-

nique provides an invaluable tool in estimating one-dimensional sums.

A very important class of exponential sums consists of rational sums.

Those are the sums with functions F of the form F (x) = f(x)/m where
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f : X → ZZ is an integer-valued function on X . The number m is called the

denominator of the exponential sum S(X , F ).

It is convenient to introduce one more notation

em(z) = exp(2πiz/m)

(thus e1(z) = e(z)). Therefore we have

S(X , F ) =
∑

x∈X

em(f(x)).

2.2. Timeline

Exponential sums are almost 200 years old. It is a long history of triumphs

and disappointments. Below I tried to outline some most important events

of this dramatic history. It is certainly impossible to give a complete account

of all achievements and contributors in within the frameworks of a few

lectures, so I do apologise for all omissions of many distinguished events

and researchers.

2.2.1. Johann Carl Friedrich Gauss, 1811

Exponential sums were introduced to number theory by Gauss in [28]. The

sums he introduced and studied

G(a, m) =

m−1
∑

x=0

em(ax2)

are called “Gaussian sums” in his honor. Sometimes this name is extended

to more general sums

Gn(a, m) =

m−1
∑

x=0

em(axn)

as well. Gaussian sums G(a, m) is one of very few examples when one can

actually evaluate exponential sums explicitly. It should be noticed that the

way Gauss used these sums is very different from modern applications of

exponential sums.
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2.2.2. Hermann Klaus Hugo Weyl, 1916

Hermann Weyl was probably the first mathematician who understood the

great power and potential of this method. Besides creating the first general

method of bounding exponential sums [103], he also found very important

connections with uniform distribution of sequences which underlie many

further applications of this method.

2.2.3. Godfrey Harold Hardy and John Edensor Littlewood, 1920

Godfrey Hardy and John Littlewood [33] found new applications of

exponential sums to some very important number theoretic problems and

invented their “circle method” which is now routinely used for a large num-

ber of applications [98]. John Littlewood [61] also introduced exponential

sums in studying the Riemann zeta function.

2.2.4. Louis Joel Mordell, 1932

Louis Mordell [66] created a new method of estimating rational expo-

nential sums with polynomials with prime denominator. Despite that the

method is obsolete and superseded by the Andre Weil method [102], it ex-

hibited some very important principles and is has not lost its value as a

teaching tool in the theory of exponential sums.

2.2.5. Ivan Matveevich Vinogradov, 1935

Ivan Vinogradov developed a principally new method of estimating gen-

eral exponential sums with polynomials with irrational coefficients [100]

(much stronger that H. Weyl’s method) and also the method of bounding

exponential sums where the set X consists of prime numbers of a certain

interval [101]. He obtained extremely strong results for such classical prob-

lem as the Waring problem and the Goldbach problem and the bounds for

the zeros of the Riemann zeta function. Even now, 65 years later we do not

have anything essentially stronger.

2.2.6. Loo-Keng Hua, 1947

Loo-Keng Hua [41] created a new method of estimating rational expo-

nential sums with arbitrary denominator. The method is based on Chinese
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Remainder Theorem to reduce the general case to the case of prime power

denominator, and then using a kind of Hensel lifting to reduce the case

of prime power denominator to the case of prime denominator. Almost all

works on exponential sums with arbitrary denominator follow this pattern.

2.2.7. Andre Weil, 1948

Andre Weil [102] invented an algebraic-geometry method of estimating

“rational” exponential sums with prime denominator. In many case the

result are close to best possible. It still remains the most powerful tool in

this area.

2.2.8. Pierre Deligne, 1972

Pierre Deligne [21] has obtained a very important extension of the alge-

braic geometry method to bounds of multiple sums with polynomials and

rational functions with prime denominator.

2.2.9. You, ????

There also have been many other exceptional researchers and outstanding

results and methods but no “ breakthroughs”. An excellent outline of older

results is given by Loo-Keng Hua [42]. Maybe its your turn now! The area

deserves your attention.

2.3. Some Terminology

2.3.1. Rational Exponential Sums

We concentrate on the simplest, yet most useful, well-studied and attractive

class of rational exponential sums. That is, the function F (x) = f(x)/m

takes rational values with integer denominator m > 1.

In fact very often we concentrate only on the case of prime denomina-

tors. Sometimes it is convenient to think that f(x) is defined on elements

of the finite field IFp of p elements.

Examples:

• F (x) = f(x)/p where f is a polynomial with integer coefficients

(alternatively one can think that f is a polynomial with coefficients

from IFp);
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• F (x) = gx/p where g > 1 is an integer (alternatively one can think

that g ∈ IFp).

2.3.2. Complete and Incomplete Exponential Sums

Very often the function f(x) in F (x) = f(x)/m is purely periodic modulo

m with period T . Then the sum

S(f) =

T
∑

x=1

em(f(x))

is called a complete sum.

A shorter sums

S(f, N) =

N
∑

x=1

em(f(x))

with 1 ≤ N ≤ T is called an incomplete sum.

Examples:

• If f(x) a polynomial with integer coefficients then it is periodic

modulo p with period p;

• f(x) = gx where g > 1 is an integer with gcd(g, p) = 1 then it is

periodic modulo p with period t where t is the multiplicative order

of g modulo p.

Typically, incomplete sums (especially when N is relatively small to T )

are much harder to estimate.

3. Simplest Bounds and Applications

3.1. The Basic Case — Linear Sums

Certainly the simplest (and easiest) exponential sums one can think of are

linear exponential sums, that is, exponential sums with

F (x) = ax/p.

The following simple results give a complete description of such sums (a

very unusual situation . . . ). It provides a very good warming up exercise.
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Theorem 3.1:

m−1
∑

x=0

em(ax) =

{

0, if a 6≡ 0 (mod m),

m, if a ≡ 0 (mod m).

Proof: The case a ≡ 0 (mod m) is obvious because each term is equal to

1.

The case a 6≡ 0 (mod m) . . . is obvious as well, because it is a sum of a

geometric progressions with denominator q = em(a) 6= 1 thus

m−1
∑

x=0

em(ax) =

m−1
∑

x=0

qx =
qm − 1

q − 1
=

em(ma) − 1

em(a) − 1
=

1 − 1

ep(a) − 1
= 0.

3.2. Nice Result Almost for Free

The following statement is a very instructive example showing the great

power of the exponential sum method. The result is a rather nontrivial

statement which follows immediately from trivial Theorem 3.1. In fact I

am not aware of any alternative proof of this statement whose formulation

has nothing to do with exponential sums.

Let X be any set of ZZ and let f be function f : X → IFp.

Let Nk(a) be the number of solutions of

f(x1) + . . . + f(xk) ≡ f(xk+1) + . . . + f(x2k) + a (mod p).

where x1, . . . , x2k ∈ X and a is an integer.

Theorem 3.2: Nk(a) ≤ Nk(0).

Proof: By Theorem 3.1

Nk(a) =
∑

x1,... ,x2k∈X

1

p

p−1
∑

c=0

ep

(

c
(

f(x1) + . . . + f(xk)

−f(xk+1) − . . . − f(x2k) − a
)

)

.

Rearranging,

Nk(a) =
1

p

p−1
∑

c=0

ep(−ca)

(

∑

x∈X

ep (cf(x))

)k (

∑

x∈X

ep (−cf(x))

)k

.
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Because for any real u,

ep(−u) = ep(u)

and for any complex z,

zz = |z|2,

we obtain

Nk(a) =
1

p

p−1
∑

c=0

ep(−ca)

∣

∣

∣

∣

∣

∑

x∈X

ep (cf(x))

∣

∣

∣

∣

∣

2k

≤
1

p

p−1
∑

c=0

∣

∣

∣

∣

∣

∑

x∈X

ep (cf(x))

∣

∣

∣

∣

∣

2k

= Nk(0).

It is obvious that
p−1
∑

a=0

Nk(a) = #X 2k.

Indeed, any 2k-tuple (x1, . . . , x2k) ∈ X 2k corresponds to one and only one

congruence and will be counted exactly once.

Using Theorem 3.2 and the previous observation, we immediately obtain

the following inequality:

Nk(0) ≥
1

p

p−1
∑

a=0

Nk(a) ≥
#X 2k

p
.

As we have seen, Theorem 3.2 follows from the explicit expression of

Nk(a) via exponential sums. It also gives a lower bound on Nk(0). Now we

show that having some extra information about exponential sums involved

in this expression one can show that all values of Nk(a) are close to their

expected value #X 2k/p .

In the formula

Nk(a) =
1

p

p−1
∑

c=0

ep(−ca)

∣

∣

∣

∣

∣

∑

x∈X

ep (cf(x))

∣

∣

∣

∣

∣

2k

the term corresponding to c = 0 is #X 2k/p. Assume that we know a non-

trivial upper bound

max
1≤c≤p−1

∣

∣

∣

∣

∣

∑

x∈X

ep (cf(x))

∣

∣

∣

∣

∣

≤ #X∆
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with some 0 ≤ ∆ < 1. Then each of the other p − 1 terms is at most

#X 2k∆2k. Therefore

∣

∣

∣

∣

Nk(a) −
#X 2k

p

∣

∣

∣

∣

≤ #X 2k∆2k

For some k we get ∆2k < p−1 and we have an asymptotic formula.

The smaller the value of ∆, the smaller the value of k is needed. If

∆ = p−δ one can take k = b1/2δc + 1.

Moral:

(1) The expected value of Nk(a) is given by the term corresponding to

c = 0.

(2) The error term depends on the quality of our bound of exponential

sums.

3.3. Gaussian Sums

Here we show that the absolute value of Gaussian sums can be explicitly

evaluated. We consider only the case of prime denominators, but the ar-

guments can easily be carried over to arbitrary denominators (although

the final formula needs some adjustments). So our purpose to evaluate the

absolute value of

G(a, p) =

p
∑

x=1

ep(ax2)

where p is prime

Theorem 3.3: For any prime p ≥ 3 and any integer a with gcd(a, p) = 1,

|G(a, p)| = p1/2.
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Proof: We have

|G(a)|
2

=

p
∑

x,y=1

ep

(

a
(

x2 − y2
))

=

p
∑

y=1

p
∑

x=1

ep

(

a
(

(x + y)2 − y2
))

=

p
∑

y=1

p
∑

x=1

ep

(

a
(

x2 + 2xy
))

=

p
∑

x=1

ep

(

ax2
)

p
∑

y=1

ep (2axy) .

Because p ≥ 3 and gcd(a, p) = 1, from Theorem 3.1 we see that the last

sum vanishes unless x = p in which case it is equal to p and ep

(

ax2
)

=

ep

(

ap2
)

= 1.

Let us make a very important observation that for any polynomial f(x)

of degree n, squaring the sum with ep(f(x)) leads to a sum with ep(f(x +

y) − f(y)) which, for every x, is a polynomial of y of degree n − 1. The

procedure can be iterated until we arrived to to linear sums. This is essential

the method of H. Weyl [103].

3.4. Linear Sums Once Again

In Theorem 3.1 the argument x runs through the whole field IFp of p ele-

ments. A natural question to ask is: What if we take shorter sums

Ta(h) =

h−1
∑

x=0

em(ax)

with 0 ≤ h ≤ p − 1?

It is still the sum of a geometric progression with denominator q =

em(a) 6= 1 thus

|Ta(h)| =

∣

∣

∣

∣

qh − 1

q − 1

∣

∣

∣

∣

≤
2

|q − 1|
.

We have

|q − 1| = |em(a) − 1| = | exp(πia/m) − exp(−πia/m)|

= 2| sin(πa/m)|.
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Let 1 ≤ a ≤ m − 1. Put b = min{a, m − a}. Then

| sin(πa/p)| = | sin(πb/m)| ≥
2b

m

because sin(α) ≥ 2α/π for 0 ≤ α ≤ π/2.

Therefore

|Ta(h)| ≤
m

2 min{a, m − a}

for 1 ≤ a ≤ m − 1.

This immediately implies:

Theorem 3.4:

m−1
∑

a=1

∣

∣

∣

∣

∣

k+h−1
∑

x=k

em(ax)

∣

∣

∣

∣

∣

= O(m log m).

Proof: We have
∣

∣

∣

∣

∣

k+h−1
∑

x=k

em(ax)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

em(ak)

h−1
∑

x=0

em(ax)

∣

∣

∣

∣

∣

≤
m

2 min{a, m − a}
.

Therefore

m−1
∑

a=1

∣

∣

∣

∣

∣

k+h−1
∑

x=k

em(ax)

∣

∣

∣

∣

∣

= m

m−1
∑

a=1

1

2 min{a, m − a}
≤ 2m

∑

1≤a≤m/2

1

2a

and the result follows.

3.5. Distribution of Functions Modulo p

Here we obtain the first general results illustrating how exponential sums

can be used to gain some information about the distribution of functions

modulo p.

Another interpretation of this result is a statement about the uniformity

of distribution of the fractional parts
{

f(x)

p

}

, x ∈ X ,

in the unit interval [0, 1].

Let k and h ≤ p be integer. Denote

Nf (k, h) = # {x ∈ X : f(x) ≡ v (mod p), v ∈ [k, k + h − 1]} .
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Theorem 3.5: If

max
1≤c<p

∣

∣

∣

∣

∣

∑

x∈X

ep (cf(x))

∣

∣

∣

∣

∣

≤ #X∆

then

max
k

max
0≤h≤p−1

∣

∣

∣

∣

Nf (k, h) −
#Xh

p

∣

∣

∣

∣

= O(#X∆ log p).

Proof: We have

Nf (k, h) =
∑

x∈X

k+h−1
∑

v=k

1

p

p−1
∑

c=0

ep (c(f(x) − v))

=
1

p

p−1
∑

c=0

∑

x∈X

k+h−1
∑

v=k

ep (−cv) ep (cf(x))

=
#Xh

p
+

1

p

p−1
∑

c=1

k+h−1
∑

v=k

ep (−cv)
∑

x∈X

ep (cf(x)) .

Therefore
∣

∣

∣

∣

Nf (k, h) −
#Xh

p

∣

∣

∣

∣

≤
1

p

p−1
∑

c=1

∣

∣

∣

∣

∣

k+h
∑

v=k

ep (−cv)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈X

ep (cf(x))

∣

∣

∣

∣

∣

= O

(

#X∆p−1

p−1
∑

c=1

∣

∣

∣

∣

∣

k+h
∑

v=k

ep (cv)

∣

∣

∣

∣

∣

)

= O (#X∆ log p) .

4. More Sophisticated Methods

4.1. Extend and Conquer

Here we show that sometimes it is profitable to extend our sum over a

small set of arbitrary structure to a bigger set (just potentially increasing

the size of the sum) with a nice well-studied structure. Certainly we can not

do this with the original sum because the terms are complex numbers but
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this idea can be combined with some tricks. Very often it is used together

with the Cauchy inequality in the form




m
∑

j=1

sj





2

≤ m

m
∑

j=1

s2
j

which holds for any non-negative s1, . . . , sm.

We demonstrate this principle on the following very important example.

Let X and Y be arbitrary subsets of IFp.

Define

Wc =
∑

x∈X

∑

y∈Y

ep(cxy)

Trivially |Wc| ≤ #X#Y. We show that very simple arguments allow us

to obtain a bound which is better than trivial for #X#Y ≥ p. Thus this

bound improves the trivial bound for very sparse sets of arbitrary structure!

Theorem 4.1: For any sets X ,Y ⊆ IFp,

|Wc| ≤ (#X#Yp)
1/2

.

Proof: We have

|Wc| =

∣

∣

∣

∣

∣

∣

∑

x∈X

∑

y∈Y

ep(cxy)

∣

∣

∣

∣

∣

∣

≤
∑

x∈X

∣

∣

∣

∣

∣

∣

∑

y∈Y

ep(cxy)

∣

∣

∣

∣

∣

∣

.

From the Cauchy inequality,

|Wc|
2 ≤ #X

∑

x∈X

∣

∣

∣

∣

∣

∣

∑

y∈Y

ep(cxy)

∣

∣

∣

∣

∣

∣

2

.

We extend the sums over x to all x ∈ IFp:

|Wc|
2 ≤ #X

∑

x∈IFp

∣

∣

∣

∣

∣

∣

∑

y∈Y

ep(cxy)

∣

∣

∣

∣

∣

∣

2

This is a very important step! We add many more terms to our sums (which

we can do because each term is positive). Of course we lose here but our

gain is that the sum over x (taken from some mysterious set we have no

information about) is now extended to a very nice set.
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Now we Conquer :

∑

x∈IFp

∣

∣

∣

∣

∣

∣

∑

y∈Y

ep(cxy)

∣

∣

∣

∣

∣

∣

2

=
∑

x∈IFp

∑

y1,y2∈Y

ep (cx (y1 − y2))

=
∑

y1,y2∈Y

∑

x∈IFp

ep (cx (y1 − y2))

= p
∑

y1,y2∈Y
y1=y2

1 = #Yp.

Without any assumptions on X and Y this bound remains the best

possible.

4.2. Clone, Extend and Conquer

The previous principle works for double sums. Here we show how we can

create multiple clones of our sum and thus reduce it to a double sum.

As in the previous section we use a very important example to exhibit

this principle.

Let g, gcd(g, p) = 1, be of multiplicative order t modulo p, that is,

gk ≡ 1 (mod p) =⇒ k ≡ 0 (mod t).

Define

S(a, b) =

t
∑

x=1

ep (agx) et(bx).

The term et(bx) is rather unattractive (and unnatural) but we will see

soon why it is needed for some applications, see Theorem 4.3.

Trivially, |S(a, b)| ≤ t.

Theorem 4.2: For any a, b with gcd(a, p) = 1,

|S(a, b)| ≤ p1/2.

Proof: The function ep (agx) et(bx) is periodic with period t. Thus, for
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y = 1, . . . , t,

S(a, b) =

t
∑

x=1

ep

(

agx+y
)

et(b(x + y))

= et(by)

t
∑

x=1

ep (agygx) et(bx)

= et(by)S(agy, b).

Therefore, we can clone:

|S(a, b)| = |S(agy, b)|.

Now we extend :

t|S(a, b)|2 =

t
∑

y=1

|S(agy, b)|2 ≤

p−1
∑

c=0

|S(c, b)|2.

Finally, we conquer :

t|S(a, b)|2 ≤

p−1
∑

c=0

|S(c, b)|2

=

t
∑

x1,x2=1

et(b(x1 − x2))

p−1
∑

c=0

ep (c (gx1 − gx2))

= tp

because

gx1 − gx2 ≡ 0 (mod p)

if and only if

x1 ≡ x2 (mod t).

For some values of t this bound remains the best possible, see also

Theorems 5.2.

4.3. Mordell’s Bound

We are now ready to prove something more complicated and less straight-

forward than our previous estimates.
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For a polynomial f ∈ IFp[X] of degree deg f = n we define

S(f) =

p−1
∑

x=0

ep(f(x)).

Without loss of generality we can assume that f(0) = 0.

Mordell’s method follows the following 3 main stages

Stage I. Cloning: For λ ∈ IF∗
p, µ ∈ IFp, define

fλ,µ(x) = f(λx + µ) − f(µ).

Obviously S(f) = S(fλ,µ) (because x → λx + µ is a permutation on

IFp).

Stage II. Extending: The leading coefficient of fλ,µ is Aλn where

A 6= 0 is the leading coefficient of f . There are at least p(p − 1)/n distinct

polynomials fλ,µ:

p(p − 1)

n
|S(f)|2n ≤

∑

deg g≤n
g(0)=0

|S(g)|2n.

Stage III. Conquering: Finally we obtain
∑

deg g≤n
g(0)=0

|S(g)|2n

=
∑

deg g≤n
g(0)=0

S(g)nS(g)
n

=
∑

deg g≤n
g(0)=0

S(g)nS(−g)n

=
∑

deg g≤n
g(0)=0

p−1
∑

x1,... ,x2n=0

ep

(

n
∑

ν=1

g(xν) −

2n
∑

ν=n+1

g(xν)

)

=

p−1
∑

x1,... ,x2n=0

×

p−1
∑

a1,... ,an=0

ep





n
∑

j=1

aj

(

n
∑

ν=1

xj
ν −

2n
∑

ν=n+1

xj
ν

)





=

p−1
∑

x1,... ,x2n=0

n
∏

j=1

p−1
∑

aj=0

ep

(

aj

(

n
∑

ν=1

xj
ν −

2n
∑

ν=n+1

xj
ν

))

= pnT,
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where T is the number of solutions of

n
∑

ν=1

xj
ν ≡

2n
∑

ν=n+1

xj
ν (mod p), j = 1, . . . , n,

where 0 ≤ x1, . . . , x2n ≤ p − 1.

The first n symmetric functions of x1, . . . , xn and xn+1, . . . , x2n are the

same. Recalling the Newton formulas we see that they are roots of the same

polynomial of degree n. Therefore they are permutations of each other.

There are pn values for x1, . . . , xn and for each fixed values of x1, . . . , xn

there are at most n! values for the other n variables xn+1, . . . , x2n. There-

fore

T ≤ n!pn.

This yields

|S(f)| ≤ c(n)p1−1/n

where c(n) = (n n!)1/2n ≈ (n/e)1/2.

4.4. Shorter Sums . . . but Large Bound

Here we show a general principle how the problem of bounding incomplete

sums to the problem of bounding almost the same complete sums. Unfor-

tunately, we lose a little bit, the bound because bigger by a logarithmic

factor.

For g, gcd(g, p) = 1, of multiplicative order t modulo p, define incom-

plete sums

T (a;N) =

N
∑

x=1

ep (agx) .

Theorem 4.3: For any a with gcd(a, p) = 1 and N ≤ t

|T (a;N)| = O(p1/2 log p).
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Proof: We have

|T (a;N)| =

∣

∣

∣

∣

∣

t
∑

x=1

ep (agx)
1

t

t−1
∑

b=0

N
∑

y=1

et(b(x − y))

∣

∣

∣

∣

∣

=
1

t

∣

∣

∣

∣

∣

t−1
∑

b=0

S(a, b)

N
∑

y=1

et(−by)

∣

∣

∣

∣

∣

≤
1

t

t−1
∑

b=0

|S(a, b)|

∣

∣

∣

∣

∣

N
∑

y=1

et(−by)

∣

∣

∣

∣

∣

≤
p1/2

t

t−1
∑

b=0

∣

∣

∣

∣

∣

N
∑

y=1

et(−by)

∣

∣

∣

∣

∣

= O(p1/2 log p)

by Theorem 4.2 and Lemma 3.4.

5. Some Strongest Known Results

5.1. Weil’s Kingdom

Using algebraic geometry tools due to Andre Weil [102] (an upper bound

for the number of solutions of equations F (x, y) = 0 in finite fields) one can

prove much stronger bounds for various sums with

• polynomials;

• rational functions;

• algebraic functions.

Here we present only one of such bounds in the following form given by

C. Moreno and O. Moreno

Theorem 5.1: For any polynomials g(X), h(X) ∈ IFp[X] such that the

rational function f(X) = h(X)/g(X) is not constant on IFp, the bound
∣

∣

∣

∣

∣

∣

∣

∑

x∈IFp
g(x)6=0

ep (f(x))

∣

∣

∣

∣

∣

∣

∣

≤ (max{deg g ,deg h} + r − 2) p1/2 + δ

holds, where

(r, δ) =

{

(v, 1), if deg h ≤ deg g,

(v + 1, 0), if deg h > deg g,

and v is the number of distinct zeros of g(X) in the algebraic closure of IFp.
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In the special case when f(X) is a not constant polynomial of degree

deg f = n the bound takes its well-known form
∣

∣

∣

∣

∣

∣

∑

x∈IFp

ep (f(x))

∣

∣

∣

∣

∣

∣

≤ (n − 1) p1/2. (1)

Nowadays we have a pure elementary alternative to the algebraic geom-

etry which is due to S. A. Stepanov, N. M. Korobov, H. Stark, W. Schmidt

and to several other researchers.

Surprisingly enough, in some special cases elementary method gives

much stronger results. Such improvements are due to A. Garcia and

F. Voloch, D. Mit’kin, R. Heath-Brown and S. V. Konyagin, for more details

see [34].

It is important to remember that

“elementary” 6= “simple”

”Elementary” merely means that there is no explicit use of any algebraic

geometry notions and tools.

For multivariate polynomials an analogue of (1) is due to P. Deligne [21]

but it requires some special conditions on the polynomial in the exponent

which are not so easy to verify. This limits the range of applications of that

bound, while the Weil bound (1) is very easy to apply.

5.2. Exponential Functions

Exponential functions form another natural family of functions which arise

in many applications. The problem of estimating exponential sums with

exponential functions has a long history, we refer to [50,51,52,60,73,74,86]

for more details.

Using some improvements of the Weil bound due to R. Heath-Brown and

S. V. Konyagin [34], one can improve Theorem 4.2. Namely the following

result has been obtained by S. V. Konyagin and I. E. Shparlinski [50],

Theorem 3.4.

Theorem 5.2: For any a, b with gcd(a, p) = 1,

|S(a, b)| ≤







p1/2, if t ≥ p2/3;

p1/4t3/8, if p2/3 > t ≥ p1/2;

p1/8t5/8, if p1/2 > t ≥ p1/3;
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holds.

The main challenge is to obtain nontrivial bounds for as small values of

t as possible. Theorem 5.2 works only for t ≥ p1/3+ε. For almost all primes

Theorem 5.5 of [50] provides a nontrivial bound for t ≥ pε. We present it

in the form given in [68].

Theorem 5.3: Let Q be a sufficiently large integer. For any ε > 0 there

exists δ > 0 such that for all primes p ∈ [Q, 2Q], except at most Q5/6+ε of

them, and any element gp,T ∈ IFp of multiplicative order T ≥ pε the bound

max
gcd(c,p)=1

∣

∣

∣

∣

∣

T−1
∑

x=0

ep

(

cgx
p,T

)

∣

∣

∣

∣

∣

≤ T 1−δ

holds.

5.3. More Applications

Combining the Weil bound 1 and Theorem 3.5 we obtain that for any

polynomial f of degree n

max
k

max
0≤h≤p−1

|Nf (k, h) − h| = O(np1/2 log p). (2)

We recall that an number a 6≡ 0 (mod p) is called a quadratic residue if

the congruence a 6≡ x2 (mod p) has a solution and is is called a quadratic

non-residue otherwise. Numbers a with a ≡ 0 (mod p) do not belong to

either of these two classes.

Using (2) for the quadratic polynomial f(x) = x2 we see in any inter-

val [k, k + h − 1] the imbalance between the number of quadratic residues

modulo p and non-residues is at most O(p1/2 log p). This is the famous

Polya–Vinogradov inequality.

More precisely, let us denote by Q+(k, h) and Q−(k, h) the numbers of

quadratic residues and non-residues, respectively, in the interval [k, k+h−1].

Theorem 5.4: The bound

max
k

max
0≤h≤p−1

∣

∣

∣

∣

Q±(k, h) −
h

2

∣

∣

∣

∣

= O(p1/2 log p)

holds.
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Proof: Because the residue ring modulo p is a field we see that if a 6≡ 0

(mod p) and the congruence a 6≡ x2 (mod p) has a solution, then it has two

distinct solutions. Taking into account that an interval [k, k + h − 1] with

0 ≤ h ≤ p − 1 contains at most one zero, we obtain the inequalities

1

2
Nf (k, h) − 1 ≤ Q+(k, h) ≤

1

2
Nf (k, h)

and

h − 1 ≤ Q+(k, h) + Q−(k, h) ≤ h.

Using (2) we obtain the desired result.

In fact, our proof of Theorem 5.4 does not really need the Weil bound;

it is quite enough to use Theorem 3.3.

Similarly, Theorems 5.2 and Theorems 5.3 can be used to study the

distribution of the values of gx in short intervals, see [50,86,87] for numer-

ous applications of this type of result to cryptography, coding theory and

computer science.

5.4. What Else Can We Estimate?

There are several other classes of exponential sums which have attracted

much of attention of experts in analytical number theory. Here we present

a short outline of such classes.

• Exponential sums with composite denominator

S(f) =

p−1
∑

x=0

eq(f(x)),

where q ≥ 1 is an integer, f ∈ ZZ[X]. These sums are very well stud-

ied, thanks to works of Hua Loo Keng, Vasili Nechaev, Sergei Stečkin,

see [41,42,95].

• Exponential sums with recurring sequences For linear recurring se-

quences such estimates are due to N. M. Korobov and H. Niederreiter,

see [60,52,73,74,86]. For nonlinear recurring sequences such estimates

are due to H. Niederreiter and I. E. Shparlinski, see [75].

• H. Weyl, P. van der Corput, I. M Vinogradov, N. .M. Korobov : sums

with polynomials with irrational coefficients . . . not much progress since

1947 .
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• It is easy to see that ep(·) is an additive character of IFp. Similar results

are know for additive and multiplicative characters of arbitrary finite

fields and residue rings. Although usually for sums of multiplicative

characters the theory follows the same path as for exponential sums

there are some exceptions. For example, there is no analogue of The-

orem 3.4 for multiplicative character sums. On the other hand, the

celebrated Burgess bound [12] has no analogue for exponential sums.

• Thousands of less general results for various interesting (and not so)

special cases.

6. Twin Brothers of Exponential Sums — Character Sums

6.1. Definitions

A multiplicative character χ of IF∗
q is a function

χ : IF∗
q → {z ∈ C : |z| = 1}

with

χ(ab) = χ(a)χ(b) ∀a, b ∈ IF∗
q

The trivial character χ0 is the character with χ0(a) = 1, a ∈ IF∗
q

It is convenient to put χ(0) = 0 for all characters χ (including χ0).

Characters can be described in term of the index or the discrete loga-

rithm with respect to some fixed primitive root of IFq.

The most “famous” character is the quadratic character or Legendre

symbol modulo a prime p, which for a 6≡ 0 (mod p) is defined by
(

a

p

)

=

{

1, if a ≡ x2 (mod p) is solvable,

−1, otherwise,

or
(

a

p

)

=

{

1, if a is a quadratic residue,

−1, otherwise,

Characters can be extended to residue rings.

Jacobi symbol is the residue ring analogue of the Legendre symbol.

Warning For Jacobi symbol modulo a composite m it is not true that

( a

m

)

=

{

1, if a is a quadratic residue,

−1, otherwise,
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The theory of character sums

T (χ,X ) =
∑

x∈X

χ(x)

is similar to the theory of exponential sums . . . but not quite.

6.2. Polya–Vinogradov Bound Again

Despite that we have just said about great similarities between exponential

sums and character sums, one of the first results of the theory demonstrates

that actually there are some important distinctions as well. Namely, the

Polya–Vinogradov inequality is sometimes formulated as a bound on linear

character sums, which, as this inequality shows, behave very differently

compared with linear exponential sums.

Theorem 6.1: For any integer N , 1 ≤ N ≤ p,

N
∑

x=1

(

x

p

)

= O(p1/2 log p)

Proof: Following the standard principle, let us estimate the sums

S(a) =

p
∑

x=1

(

x

p

)

ep(ax).

If a ≡ 0 (mod p) then

S(0) =

p
∑

x=1

(

x

p

)

= 0

because for any quadratic non-residue b

−S(0) =

(

b

p

)

S(0) =

p
∑

x=1

(

bx

p

)

=

p
∑

x=1

(

x

p

)

= S(0).
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If gcd(a, p) = 1 then

S(a) =

p
∑

x=1

(

x

p

)

ep(ax) +

p
∑

x=1

ep(ax)

=

p
∑

x=1

(

1 +

(

x

p

))

ep(ax)

=

p−1
∑

x=1

(

1 +

(

x

p

))

ep(ax) + 1

= 2
∑

x quadr. res.

ep(ax) + 1

=

p−1
∑

y=1

ep(ay2) + 1 = G(a, p).

By Theorem 3.3 we have

|S(a)| = p1/2, gcd(a, p) = 1.

Now
∣

∣

∣

∣

∣

N
∑

x=1

(

x

p

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p
∑

x=1

(

x

p

)

1

p

p−1
∑

a=0

N
∑

y=1

ep(a(x − y))

∣

∣

∣

∣

∣

=
1

p

∣

∣

∣

∣

∣

p−1
∑

a=0

S(a)

N
∑

y=1

ep(−ay)

∣

∣

∣

∣

∣

≤
1

p

p−1
∑

a=0

|S(a)|

∣

∣

∣

∣

∣

N
∑

y=1

ep(−ay)

∣

∣

∣

∣

∣

≤
p1/2

p

p−1
∑

a=0

∣

∣

∣

∣

∣

N
∑

y=1

ep(ay)

∣

∣

∣

∣

∣

= O(p1/2 log p).

by Theorem 3.4.

Corollary 6.2: For 1 ≤ N ≤ p, the interval [1, N ] contains N/2 +

O(p1/2 log p) quadratic residues and non-residues

Analysing when the above expression becomes positive we derive:

Corollary 6.3: The smallest positive quadratic non-residue is N0 =

O(p1/2 log p)
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6.3. Let’s Push It Down! – Other Methods are Helpful as

Well

The following nice trick is due to Vinogradov. It shows that if we have a non-

trivial bound for character sums of length M , than we can say something

interesting for much smaller intervals!

Let us fix some M > N0 and count the number T of quadratic non-

residues in the interval [1, M ].

Because each quadratic non-residue must have a prime divisor q ≥ N0

we obtain

T ≤
∑

M≥q≥N0

(bM/qc + 1) ≤ M
∑

M≥q≥N0

1/q + π(M).

We have π(M) = O(M/ log M) and
∑

M≥q≥N0

1/q = ln lnM − ln lnN0 + o(1)

Let M = p1/2 log2 p. Then T = M/2 + o(M). Therefore

ln lnM − ln lnN0 ≥ 1/2 + o(1)

or

lnM

lnN0
≥ e1/2 + o(1)

or

N0 = M1/e1/2+o(1) ≤ p1/2e1/2+o(1).

7. Applications to Coding Theory

7.1. Direct Applications

Many coding theory questions can immediately be formulated as questions

about bound of exponential sums:

• correlation and autocorrelation, see [3,4,5,32,23,35,36,37,38];

• Minimal distance of BCH codes [62];

• Size of Varshamov–Mazur codes for asymmetric channels [50,63,86].

Surprisingly enough, it works the other way as well. Some coding theory

lower bounds can be applied to obtain very tight lower bounds for exponen-

tial sums [6,56,76,79,96,97]. One can certainly argue about the importance
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lower bounds because all known applications are based on upper bounds.

Nevertheless they certainly improve our understanding of the area and are

an intrinsic part of the theory of exponential sums.

Several other interrelations between exponential sums and coding the-

ory, which enrich both areas, can be found in [86].

7.2. Less Obvious Applications: Dimension of BCH Codes

7.2.1. Definitions

Let q be a prime power and let n be an integer with gcd(n, q) = 1.

Denote by t the multiplicative order of q modulo n; and fix an element

α ∈ IF∗
qt of multiplicative order n (it exists because n

∣

∣ qt − 1);.

Let l be an integer. To construct a BCH code with constructive distance

∆ we consider the polynomial g over IFq of the smallest degree such that

g
(

αl+y
)

= 0, y = 1, . . . ,∆ − 1,

and consider the cyclic code of length n with g as the generator polynomial.

That is the linear space of dimension k = n−deg g of n-dimensional vectors

(a0, . . . , an−1) ∈ IFn
q such that

a0 + a1Z + . . . + an−1Z
n−1 ≡ 0 (mod g(Z)).

Generally for every code there are three parameters of interest: the length,

the minimal distance and the dimension. For a BCH code the length n is

given, the minimal distance d is at least the constructive distance ∆ (and

this bound is known to be tight in many cases [62]). The question about

the dimension is more interesting. Of course, t ≤ deg g ≤ Dt, thus the

dimension n− t ≥ k ≥ n− (∆− 1)t. To get something stronger one should

study the structure of the roots of g in more detail.

First of all we make an observation that all roots of g are powers of α

because trivially

g(Z)
∣

∣

∆−1
∏

y=1

t
∏

x=1

(

Z − α(l+y)qx
)

.

We also remark that αj is a root of g is and only if

jqx ≡ l + y (mod n),

for some x = 1, . . . , t and y = 1, . . . ,∆ − 1.
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The code is the linear space of dimension k = n−deg g of n-dimensional

vectors (a0, . . . , an−1) ∈ IFn
q such that

a0 + a1Z + . . . + an−1Z
n−1 ≡ 0 (mod g(Z)).

We have

∆ − 1 ≤ deg g ≤ (∆ − 1)t

and

n − ∆ + 1 ≥ k ≥ n − (∆ − 1)t.

To improve one should study g in more detail.

We make the following observations:

• all roots of g are powers of α because

g(Z)
∣

∣

∆−1
∏

y=1

t
∏

x=1

(

Z − α(l+y)qx
)

;

• αj is a root of g if and only if jqx ≡ l+y (mod n), for some x = 1, . . . , t

and y = 1, . . . ,∆ − 1.

Let us denote by J(q, n, ∆) the largest possible dimension of q-ary gen-

eralized BCH codes of length n and of designed distance ∆ taken over all

l = 0, . . . , n − 1.

From the above discussion we conclude that J(q, n, ∆) is the number of

j = 0, 1, . . . , n − 1 for which the congruence

jqx ≡ l + y (mod n), 1 ≤ x ≤ t, 1 ≤ y ≤ ∆ − 1, (3)

is not solvable.

Thus the original questions has been reduced to a question about the

distribution of values of an exponential function to which our technique can

be applied.

7.2.2. Preparations

For a divisor d of n denote by td the multiplicative order q modulo d (thus

t = tn).

Lemma 7.1: For any d
∣

∣ n, the bound tn/d ≥ t/d holds.
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Lemma 7.2: For any integer a, b, the congruence

aqx ≡ bqy (mod n), 1 ≤ x, y ≤ t

is solvable only when gcd(a, n) = gcd(b, n) = d, and in this case for the

number of solutions N(a, b) the bound

N(a, b) ≤ td

holds.

Proof: As gcd(q, n) = 1, the condition on a and b is evident. Also it is

evident that for any fixed x there are at most t/tn/d possible values for y,

hence N(a, b) ≤ t2/tn/d ≤ td because of Lemma 7.1.

We define the sums

T (a, h) =

h
∑

u=1

en(au), Wd(h) =
∑

gcd(a,n)=d

|T (a, h)|2,

where d is a divisor of n, d
∣

∣ n.

Lemma 7.3: For any d
∣

∣ n with d < n, the bound

Wd(h) ≤ nh/d

holds.

Proof: Denote m = n/d. We have

Wd(h) ≤

n/d−1
∑

a=0

|T (ad, h)|2 − h2 = mM − h2,

where M is the number of solutions of the congruence

u ≡ v (mod m), 1 ≤ u, v ≤ h.

Write h = km + r with 0 ≤ r ≤ m − 1, then M = r(k + 1)2 + (m − r)k2 =

k2m + 2kr + r. Therefore

Wd(h) ≤ mM − h2 = k2m2 + 2kmr + mr − h2

= (h − r)2 + 2r(h − r) + mr − h2 = r(m − r)

≤ rm ≤ hm = nh/d.
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7.2.3. Main Result

Theorem 7.4: The bound

J(q, n, ∆) ≤
4n3

(∆ − 1)2t
.

holds.

Proof: Let h = b∆/2c and let Nj denote the number of solutions of the

congruence

jqx ≡ l + h + u − v (mod n), (4)

where

x = 1, . . . , t, u, v = 1, . . . , h.

Then J(q, n, ∆) ≤ |I(q, n, ∆)| where I(q, n, ∆) is the set of j =

0, 1, . . . , n − 1 for which this congruence is unsolvable, that is, Nj = 0.

Set

S(a) =

t
∑

x=1

e(aqx/n).

Then Nj = th2/n + Rj/n where

Rj =

n−1
∑

a=1

S(aj)|T (a, h)|2en(−a(l + h)).

Let us consider

R =

n−1
∑

j=0

R2
j .

We have

R =

n−1
∑

j=0

n−1
∑

a,b=1

S(aj)S(bj)

×|T (a, h)|2|T (b, h)|2en (−(a + b)(l + h))

=

n−1
∑

a,b=1

|T (a, h)|2|T (b, h)|2en (−(a + b)(l + h))

×

n
∑

j=0

S(aj)S(bj).
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Then,

n−1
∑

j=0

S(aj)S(bj) =

t
∑

x,y=1

n−1
∑

j=0

en (j(aqx + bqy))

= nN(a,−b).

For all divisors d
∣

∣ n we gather together all terms corresponding to a and b

with

gcd(a, n) = gcd(b, n) = d.

Applying Lemma 7.2, we obtain

R = n
∑

d
∣

∣n,d<n

∑

gcd(a,n)=gcd(b,n)=d

|T (a, h)|2|T (b, h)|2

×N(a,−b)en ((a + b)(l + h))

≤ nt
∑

d
∣

∣n,d<n

dWd(h)2

≤ nt max
d
∣

∣n,d<n

dWd(h)
∑

d
∣

∣n,d<n

Wd(h).

From Lemma 7.3 and the identity

∑

d

∣

∣

n

d<n

Wd(h) =

n−1
∑

a=1

|T (a, h)|2 = nh − h2 (5)

we derive

R ≤ n3h2t.

Since Rj = −h2t for j ∈ I(q, n, ∆) then

|I(q, n, ∆)|h4t2 =

n−1
∑

j=0

R2
j ≤ n3h2t.

Taking into account that h ≥ (∆ − 1)/2, we obtain the result.

It is useful to keep in mind that exponential sums do not always win. For

certain values of parameters the following elementary statement provides a

sharper bound.
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Theorem 7.5: The bound

J(q, n, ∆) ≤ 2e1/2n1−αq(δ)

holds, where δ = (∆ − 1)/n and

αq(δ) =
δ

2 ln(3q/δ)
.

Thus this can be taken as an encouragement to study other number

theoretic techniques.

7.2.4. Discussion: Some Lessons to Learn

It is easy to see that the proof of Theorem 7.4 is much more technically

involved that reasonable straight forward proofs of other results presented

here. In fact one of the reasons for presenting here Theorem 7.4 has been

that fact that it provides quite an instructive example of several potential

difficulties which can arise and some technical tricks which can be used to

get around these difficulties.

First of all, one of the reasons for the proof to be so painful has been the

fact that we work with congruences modulo a composite number. As a re-

sult, sometimes the denominator of the exponential sums involved becomes

n/d rather than n, for a divisor d|n.

The other reason is more subtle. It may look strange that instead of

studying the congruence (3), directly associated with J(q, n, ∆), we have

studied less attractive and strangely looking congruence (4). Certainly we

could easily study the congruence (3) as well getting a simpler expression

of the form Mj = t(∆ − 1)/n + Qj/n where

Qj =

n−1
∑

a=1

S(aj)T (a,∆ − 1)en(−al)

for the number of solutions of this congruence. The rest would go along the

same lines except that instead of an explicit formula (5) involving squares

of |T (a, h)| we would use Theorem 3.4 to estimate various sum of the first

powers of |T (a,∆−1)|, thus gaining an extra log n in our estimates (I leave

this as an exercise to fill all missing details and obtain an upper bound for

J(q, n, ∆) along these lines). However our saving compared to the trivial

bound is only of order t. Although typically t is much greater than log n,

sometimes, namely when n = qt − 1, t is exactly of order log n. Thus for
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such small values of t even such small losses as log n turn out to be fatal for

the method. On the other hand, the “symmetrisation” trick with adding

one more variable in the congruence we need to study helps to avoid the

appearance of extra logarithms! It is important to remember however, that

there is no direct explicit relation between Mj and Nj , so this approach

does not apply when we want to estimate Mj . However for our purposes

in here we only need to count how often Mj = 0 and thus we can use the

obvious property that if Mj = 0 then Nj = 0.

8. Applications to Cryptography

8.1. Distribution of Some Cryptographic

Primitives

8.1.1. Security of Exponentiation with Precomputation

Let g be an element of order t modulo a prime number p, that is

gT ≡ 1 (mod p) ⇔ t|T.

Let r be the bit length of t, 2r−1 ≤ t ≤ 2r − 1.

Many signature schemes use exponentiation gx (mod p) for a “random”

x.

Using repeated squaring this takes about 1.5r multiplications on average

and about 2r operations in the worst case.

One of the possible ways to speed-up exponentiation is to precompute

the values g2j

(mod p), j = 0, . . . , r. Then computing gx (mod p) takes

0.5r multiplications on average, r multiplications in the worst case.

Main Problem: How can we generate secure pairs (x, gx) faster (for

some special x)?

Secure: Finding x from gx for the values of x generated by this method

should be as hard as for a random x ∈ [0, M − 1].

In 1998, V. Boyko, M. Peinado and R. Venkatesan [10] proposed the

following algorithm

Given n ≥ k ≥ 1:

Preprocessing Step: Generate n random integers α1, . . . , αn ∈ ZZM .

Compute βj ≡ gαj (mod p) and store the values of αj and βj in a

table, j = 1, . . . , n.

Pair Generation: Generate a random set S ⊆ {1, . . . , n} of cardinality
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#S = k. Compute

x ≡
∑

j∈S

αj (mod M), X ≡
∏

j∈S

βj ≡ gb (mod p).

Cost: k − 1 modular multiplications.

It is easy to see that

X ≡ gx (mod p).

In 1999, P. Q. Nguyen, I. E. Shparlinski and J. Stern [70] proposed

the following generalization of this scheme which involved one more integer

parameter h.

Given n ≥ k ≥ 1 and h ≥ 2:

Preprocessing Step: Generate n random integers α1, . . . , αn ∈ ZZM .

Compute βj ≡ gαj (mod p) and store the values of αj and βj in a

table, j = 1, . . . , n.

Extended Pair Generation: Generate a random set S ⊆ {1, . . . , n},

|S| = k and for each j ∈ S select a random integer xj ∈ {0, . . . , h− 1}.

Compute

x ≡
∑

j∈S

αjxj (mod M), X ≡
∏

j∈S

β
xj

j (mod p).

Cost: k + h − 3 modular multiplications.

One verifies that the congruence

X ≡ gx (mod p)

holds. The cost estimate (which is better than naive O(k log h)) follows

from a result of [11].

Finally, using some bounds of exponential sums and to establish some

results about the uniformity of distribution of sums
∑

j∈S

αjxj (mod M), xj ∈ {1, . . . , h − 1},

the security of this scheme was proved in [70]. We present this result in an

informal way and refer to [70] for exact formulations (which formalises the

notion of security).
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Theorem (informally). Let n = γr with some γ > 0 there are values

of k and h with

k + h = O(r/ log r)

and such that the scheme is as secure as the generator x → gx (mod p) for

arbitrary x.

The most important characteristics of this scheme are

Table size: linear in r (say n = r)

Speed-up: log r → ∞.

8.1.2. Diffie-Hellman Triples and RSA Pairs

Let g be a primitive element modulo p.

The following assumption is known as the Diffie–Hellman Indistin-

guishability Assumption: It is feasible to distinguish between Diffie–Hellman

triples (gx, gy, gxy) with random x and y and random triples (u, v, w) ∈ IF3
p?

One of the possible (very naive approaches) to disprove this assumption

would be to find some statistically “visible” singularities in differences in

the distribution of the triples

(gx, gy, gxy), x, y = 1, . . . , p − 1.

However, R. Canneti, J. Friedlander and I. E. Shparlinski [14] in 1997, and

a stronger form, R. Canetti, J. B. Friedlander, S. V. Konyagin, M. Larsen,

D. Lieman and I. Shparlinski [13] in 1999, proved that Diffie-Hellman triples

are uniformly distributed.

Recently, J. B. Friedlander and I. E. Shparlinski [24] obtained similar

statement for Diffie-Hellman triples with “sparse” x and y (one can use

such x and y in order to speed-up computation). It is shown in [24] that

Diffie-Hellman triples with x and y having at most 0.35 log p nonzero digits

are uniformly distributed.

Surprisingly enough, several results of [13] play a central role in studying

a related problem about the distribution of RSA pairs (x, xe) in the residue

ring modulo m, see [91].
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8.2. Lattices and Exponential Sums

8.2.1. Introduction and Notation

In this section we describe how a rather unusual combination of two cel-

ebrated number theoretic techniques, namely, bounds of exponential sums

and lattice reduction algorithms, provides a powerful cryptographic tool. It

can be applied to both proving several security results and designing new

attacks.

For example, it has been used to prove certain bit security results for

the Diffie-Hellman key exchange system, for the Shamir message passing

scheme and for the XTR cryptosystem. It has also been used to design

provable attacks on the Digital Signature Scheme and its modifications,

including the Nyberg–Rueppel scheme, which are provably insecure under

certain conditions.

Here we explain how these two techniques get together, outline several

important applications applications and discuss some open problems on

exponential sums which arise in this context and which need to be solved

before any further progress in this area can be achieved.

Let p denote a prime number and let IFp denote the finite field of p

elements. For integers s and m ≥ 1 we denote by bscm the remainder of s

on division by m. For a prime p and ` > 0 we denote by MSB`,p(x) any

integer u such that

|bxcp − u| ≤ p/2`+1. (6)

Roughly speaking, MSB`,p(x) gives ` most significant bits of x however this

definition is more flexible and suits better our purposes. In particular we

remark that ` in the inequality (6) need not be an integer.

Throughout this paper log z denotes the binary logarithm of z > 0.

The implied constants in symbols ‘O’ may occasionally, where obvious,

depend on the small positive parameters ε and are absolute otherwise.

8.2.2. Hidden Number Problem and Lattices

We start with a certain algorithmic problem, introduced in 1996 by Boneh

and Venkatesan [8,9], which seemingly has nothing in common with expo-

nential sums. Namely we consider the following

Hidden Number Problem, HNP: Recover a number α ∈ IFp

such that for many known random t ∈ IF∗
p we are given MSB`,p(αt)
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for some ` > 0.

The paper [8] also contains a polynomial time algorithm to solve this

problem (with ` of order log1/2 p). The most important ingredient of this

algorithm is lattice reduction.

We briefly review a few results and definitions. For general references

on lattice theory and its important cryptographic applications, we refer to

the recent surveys [71,72].

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRs. The set

of vectors

L =

{

s
∑

i=1

nibi | ni ∈ ZZ

}

,

is called an s-dimensional full rank lattice. The set {b1, . . . ,bs} is called a

basis of L, and L is said to be spanned by {b1, . . . ,bs}.

One of the most fundamental problems in this area is the closest vector

problem, CVP: given a basis of a lattice L in IRs and a target vector

u ∈ IRs, find a lattice vector v ∈ L which minimizes the Euclidean norm

‖u − v‖ among all lattice vectors. It is well know that CVP is NP-hard

(see [71,72] for references). However, its approximate version [2] admits a

polynomial time algorithm which goes back to the lattice basis reduction

algorithm of Lenstra, Lenstra and Lovász [53].

It has been remarked in Section 2.1 of [64] and then in Section 2.4

of [71] and Section 2.4 of [72] that the following statement holds which is

somewhat stronger than that usually used in the literature.

Theorem 8.1: There exists a polynomial time algorithm which, given an

s-dimensional full rank lattice L and a vector r ∈ IRs, finds a lattice vector

v satisfying the inequality

‖v − r‖ ≤ 2O(s log2 log s/ log s) min {‖z − r‖, z ∈ L} .

Proof: The statement is a combination of Schnorr’s modification [80] of the

lattice basis reduction algorithm of Lenstra, Lenstra and Lovász [53] with

a result of Kannan [43] about reduction of the CVP to the approximate

shortest vector problem.

One can also use a probabilistic analogue [1] of Theorem 8.1 which gives

a slightly better constant.
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We are now prepared to sketch the main ideas of [8] to solve the HNP.

Let d ≥ 1 be integer. Given ti, ui = MSB`,p(αti), i = 1, . . . , d, we build the

lattice L(p, `, t1, . . . , td) spanned by the rows of the matrix:
















p 0 . . . 0 0

0 p
. . .

...
...

...
. . .

. . . 0
...

0 0 . . . p 0

t1 t2 . . . td 1/2`+1

















.

and notice

w = (bαt1cp, . . . , bαtdcp, α/2`+1) ∈ L(p, `, t1, . . . , td).

This vector is very close to the known vector u = (u1, . . . , ud, 0) (at the dis-

tance of order p2−`). Thus applying one of the lattice reduction algorithms

one can hope to recover v and thus α. In order to make this algorithm

rigorous one needs to show that (for almost all choices of t1, . . . , td ∈ IFp

there is no other lattice vector which is close to u. Namely, taking into

account the “stretching” factor in the algorithm of Lemma 8.1, we have to

show that there are very few d-tuples (t1, . . . , td) ∈ IFd
p for which the lattice

L(p, `, t1, . . . , td) has a vector v 6= w and such that

‖v − u‖ ≤ p2−` exp

(

O

(

d log2 log d

log d

))

.

The last inequality implies that

‖v − w‖ ≤ p2−` exp

(

O

(

d log2 log d

log d

))

(7)

which is our main tool.

Any vector v ∈ L(p, `, t1, . . . , td) is of the form

v =
(

βt1 − λ1p, . . . , βtd − λdp, β/2`+1
)

,

with some integers β and λ1, . . . , λd. Thus (7) implies that for all i =

1, . . . , d we have

(α − β)ti ≡ yi (mod p) (8)

for some yi ∈ [−h, h] where

h = p2−` exp

(

O

(

d log2 log d

log d

))

.
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The probability

Pr
y∈IFp

[γt = y (mod p) | y ∈ [−h, h]] ≤
2h + 1

p
(9)

for any γ 6= 0.

Therefore the probability P that the condition (8) holds for all i =

1, . . . , d and at least one β 6= α, is at most

P ≤ (p − 1)

(

2h + 1

p

)d

≤ p(3h/p)d = p2−`d exp

(

O

(

d2 log2 log d

log d

))

.

Thus if

` =

⌈

C
log1/2 p log log log p

log log p

⌉

and d = 2

⌈

log p

`

⌉

with some absolute constant C > 0 then the lattice reduction algorithm

returns v with probability exponentially close to 1.

8.2.3. Extended Hidden Number Problem, Lattices

and Exponential Sums

It has turned out that for many applications, including some results

about the bit security of Diffie-Hellman, Shamir and some other cryp-

tosystems [30,31,59,89,90,92] and rigorous results on attacks (following

the heuristic arguments of [40,67]) on the DSA and DSA-like signature

schemes [22,68,69], the condition that t is selected uniformly at random

from IFp is too restrictive.

It has been systematically exploited in [22,30,31,59,68,69,89,90,92] that

the method of [8] can be extended to the case where t is selected from a

sequence T having some uniformity of distribution property.

Accordingly, we consider the following:

Extended Hidden Number Problem, EHNP: Recover a

number α ∈ IFp such that for many known random t ∈ T we are

given MSB`,p(αt) for some ` > 0.

If T = IFp then rather simple counting arguments of Section 8.2.2 show

that the number of d-tuples (t1, . . . , td) ∈ IFd
p for which the algorithm of

Lemma 8.1 returns a false vector is exponentially small. However for other

sequences T one needs a result about the uniformity of distribution of T .
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In the quantitative form which is based on best known lattice reduction

algorithms [1,2,43,44,53,71,72,80] this has been obtained in [68].

Recall that the discrepancy of an N -element sequence Γ = {γ1, . . . , γN}

of elements of the interval [0, 1] is defined as

D(Γ) = sup
J⊆[0,1]

∣

∣

∣

∣

A(J, N)

N
− |J |

∣

∣

∣

∣

,

where the supremum is extended over all subintervals J of [0, 1], |J | is

the length of J , and A(J, N) denotes the number of points γn in J for

0 ≤ n ≤ N − 1.

We say that a finite sequence T of integers is ∆-homogeneously dis-

tributed modulo p if for any integer a, with gcd(a, p) = 1 the discrepancy of

the sequence {batcp/p}t∈T is at most ∆.

In this case the arguments of Section 8.2.2 go through with only one

change, namely (9) becomes

Pr
y∈T

[γt = y (mod p) | y ∈ [−h, h]] ≤
2h + 1

p
+ ∆.

This leads to the following result from [68] which extends the algorithm

of [8] to the EHNP with a general sequence T .

Theorem 8.2: For a prime p, define ` = dlog1/2 pe + dlog log pe, and

d = 2
⌈

log1/2 p
⌉

. Let T be a 2− log1/2 p-homogeneously distributed mod-

ulo p sequence of integer numbers. There exists a deterministic polynomial

time algorithm A such that for any fixed integer α in the interval [0, p− 1],

given a prime p and 2d integers

ti and ui = MSB`,p (αti) , i = 1, . . . , d,

its output satisfies for sufficiently large p

Pr
t1,... ,td∈T

[A (p, t1, . . . , td;u1, . . . , ud) = α] ≥ 1 − 2−(log p)1/2 log log p

if t1, . . . , td are chosen uniformly and independently at random from the

elements of T .

It follows from Corollary 3.11 of [74], that T is ∆-homogeneously dis-

tributed modulo p with

∆ = O

(

log p

#T
max

c=1,... ,p−1

∣

∣

∣

∣

∣

∑

t∈T

exp (2πict/p))

∣

∣

∣

∣

∣

)

. (10)
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The proof follows the same lines as the proof of Theorem 3.5 and is

rather standard if one does not care about the hidden constant in the

‘O’-symbol. However in order to get a small constant there one has to go

through some technical complications, we refer to [74] for more details.

Therefore, in order to apply this result one can establish the uniformity

of distribution of various sequences of T arising in cryptographic applica-

tions and thus one needs to estimate exponential sums with elements of T .

Thus bounds of exponential sums enter the problem. It has turned out that

in some cases relevant exponential sums are well studied in number theory,

and thus the corresponding cryptographic result follows immediately, for

example, see Section 8.2.4. On the other hand, in some case the exponen-

tial sums are of very unusual structure which has no meaningful number

theoretic interpretations and thus they have required special treatment, for

example, see Section 8.2.5.

8.2.4. Bit Security of the Diffie–Hellman Secret Key

We recall the problem which underlies the Diffie–Hellman key exchange

system: given an element g of order τ modulo p, find an efficient algorithm

to recover Diffie–Hellman secret key K = bgxycp from bgxcp and bgycp.

Typically, either τ = p − 1 (thus g is a primitive root) or τ = q, a large

prime divisor of p − 1.

The size of p and τ is determined by the present state of art in the

discrete logarithm problem. Typically, p is at least about 500 bits, τ is at

least about 160 bits.

However after the common DH key K = bgxycp is established, only a

small portion of bits of K will be used as a common key for some pre-agreed

private key cryptosystem.

Thus a natural question arises: Assume that finding K is infeasible, is

it still infeasible to find certain bits of K?

In 1996, Boneh and Venkatesan [8] found very elegant links between the

EHNP and the above problem.

Indeed, assume there is an efficient algorithm to find ` most significant

bits of bgxycp from from X = bgxcp and Y = bgycp. Then, given A = bgacp

and B =
⌊

gb
⌋

p
one can select a random u ∈ [0, τ − 1] one can apply the

above algorithm to A and U = bBgucp getting

MSB`,p

(

ga(b+u)
)

= MSB`,p (αgu
a )
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where α =
⌊

gab
⌋

p
and ga = ga. Thus we have a special case of the EHNP.

Unfortunately the paper [8] has a minor gap in the proof of Theorem 2 of

that paper. It is claimed that if g is a primitive root (that is, if τ = p − 1)

then the obtained problem is exactly the HNP. However, this is true only

if ga is a primitive root as well, thus if gcd(a, p − 1) = 1.

To fix this gap and to extend the result to the case of τ < p − 1,

M. I. Gonzalez Vasco and I. E. Shparlinski [30] have used the bounds of

exponential sums from [50] which we have presented in Theorem 5.2 and

Theorem 5.3.

Using (10) we see that under the conditions of Theorem 5.2 and Theo-

rem 5.3 the sequence gx, x = 0, . . . , T−1, is p−δ-homogeneously distributed

modulo p.

Combining this result with the above arguments and Theorem 8.2, one

can obtain the following statement about the bit security of the Diffie–

Hellman secret key.

For each integer ` ≥ 1 define the oracle DH` as an ‘black box’ which

given the values of X = bgxcp and Y = bgycp outputs the value of

MSB`,p (gxy).

Theorem 8.3: Let Q be a sufficiently large integer. The following state-

ment holds with ϑ = 1/3 for all primes p ∈ [Q, 2Q], and with ϑ = 0

for all primes p ∈ [Q, 2Q] except at most Q5/6+ε of them. Let k =
⌈

log1/2 p
⌉

+ dlog log pe. For any ε > 0, sufficiently large p and any ele-

ment g ∈ IF∗
p of multiplicative order T ≥ pϑ+ε, there exists a probabilistic

polynomial time algorithm which for any pair (a, b) ∈ [0, T − 1]2, given the

values of A = bgacp and B =
⌊

gb
⌋

p
, makes O

(

log1/2 p
)

calls of the oracle

DHk and computes
⌊

gab
⌋

p
correctly with probability 1 + O

(

2− log1/2 p
)

.

8.2.5. Attack on the Digital Signature Algorithm

On the other hand, in some cases the corresponding exponential sums are

new and require a separate study. For example, in [68] the sequence arising

in the attack on the Digital Signature Algorithm (DSA) has been studied.

We recall the DSA settings. Assume that q and p are primes with q|p−1 and

that g ∈ IFp is a fixed element of multiplicative order q. Let M be the set of

messages to be signed and let h : M → IFq be an arbitrary hash-function.

They all (that is, p, q, g, M, h) are publicly known.



  

May 7, 2002 23:25 WSPC/Guidelines ExpSums-Intro

44 Igor E. Shparlinski

The secret key is an element α ∈ IF∗
q which is known only to the signer.

To sign a message µ ∈ M, the signer chooses a random integer k ∈ IF∗
q

usually called the nonce, and which must be kept secret. We define the

following two elements of IFq:

r(k) =
⌊

⌊

gk
⌋

p

⌋

q
, s(k, µ) =

⌊

k−1 (h(µ) + αr(k))
⌋

q
.

The pair (r(k), s(k, µ)) is the DSA signature of the message µ with a nonce

k.

The attack on the DSA which has been developed in [67] (and which

simplifies and improves the attack from [40]) is based on the solving the

HNP with the sequence

t(k, µ) =
⌊

2−`r(k)s(k, µ)−1
⌋

q
, (k, µ) ∈ S, (11)

where S is the set of pairs (k, µ) ∈ [1, q − 1] ×M with s(k, µ) 6= 0.

Denote by W the number of solutions of the equation h(µ1) = h(µ2),

µ1, µ2 ∈ M. Thus W/|M|2 is probability of collision and expected to be of

order q−1 for any practically usable hash function.

In [69] the heuristic results of [67] have been made rigorous.

The central problem is bounding the exponential sums

T (c) =
∑

(k,µ)∈S

eq (ct(k, µ))

where S the set of pairs (k, µ) ∈ [1, q − 1] × M with s(k, µ) 6= 0 (that is,

the set of pairs (k, µ) for which t(k, µ) is defined).

The following bound of these sums uses

• bounds of exponential sums with exponential functions of S. V. Konya-

gin and I. E.Shparlinski [50] given by Theorems 5.2 and 5.3;

• Weil’s bound given by Theorem 5.1;

• Vinogradov’s method of estimates of double sums [100,101].

The main difficulty is that the double reduction erases any number

theoretic structure among the values of r(k).

Theorem 8.4: Let Q be a sufficiently large integer. The following state-

ment holds with ϑ = 1/3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for

all primes p ∈ [Q, 2Q] except at most Q5/6+ε of them. For any ε > 0 there
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exists δ > 0 such that for any g ∈ IFp of multiplicative order q ≥ pϑ+ε the

sequence (11) the bound

max
gcd(c,q)=1

|T (c)| = O
(

W 1/2q3/2−δ
)

holds.

Proof: For λ ∈ IFq we denote by H(λ) the number of µ ∈ M with h(µ) =

λ.

We also define the integer a ∈ [1, q − 1] by the congruence a ≡ 2−`c0

(mod q).

We have

|T (c)| ≤
∑

λ∈IFq

H(λ)

∣

∣

∣

∣

∣

∣

∣

q−1
∑

k=1
αr(k)6≡−λ (mod q)

eq

(

a
kr(k)

λ + αr(k)

)

∣

∣

∣

∣

∣

∣

∣

.

Applying the Cauchy inequality we obtain

|T (c)|2 ≤
∑

λ∈IFq

H(λ)2

×
∑

λ∈IFq

∣

∣

∣

∣

∣

∣

∣

q−1
∑

k=1
αr(k)6≡−λ (mod q)

eq

(

a
kr(k)

λ + αr(k)

)

∣

∣

∣

∣

∣

∣

∣

2

.

The second sum does not depend on h anymore! (Vinogradov’s trick)

First of all we remark that
∑

λ∈IFq

H(λ)2 = W. (12)

Furthermore,

∑

λ∈IFq

∣

∣

∣

∣

∣

∣

∣

q−1
∑

k=1
αr(k)6≡−λ (mod q)

eq

(

a
kr(k)

λ + αr(k)

)

∣

∣

∣

∣

∣

∣

∣

2

=
∑

λ∈IFq

q−1
∑

k=1
αr(k)6≡−λ (mod q)

q−1
∑

m=1
αr(m)6≡−λ (mod q)

eq (aFk,m(λ))

=

q−1
∑

k,m=1

∑

λ∈IFq

∗eq (aFk,m(λ)) ,
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where

Fk,m(X) =
kr(k)

X + αr(k)
−

mr(m)

X + αr(m)

and the symbol
∑∗

means that the summation in the inner sum is taken

over all λ ∈ IFq with

λ 6≡ −αr(k) (mod q), λ 6≡ −αr(m) (mod q),

thus Theorem 5.1 applies ( Weil’s bound) unless Fk,m(X) is constant in

IFq.

The function Fk,m(X) is constant only if k = m or r(k) = r(m) = 0 (in

which case we use the trivial bound).

The condition r(k) = 0 is equivalent to

gk ≡ qx (mod p), k ∈ [1, q − 1], x ∈ [0, L].

where

L =

⌊

p − 1

q

⌋

.

Using Theorems 5.2 and 5.3 and the method of proof of Theorem 3.5, one

can now prove that under the conditions of Theorem 8.4 the last congruence

has O(q1−δ) solutions for some δ > 0.

There are also q pairs k = m.

Putting everything together gives

|T (c)|2 = O
(

W
(

q2 · q1/2 + (q + q2−2δ)q
))

and the desired result follows.

Using (10) we see that under the conditions of Theorem 8.4 the se-

quence (11) is q−δ/3-homogeneously distributed modulo q provided that

W ≤
(#M)

2

q1−δ
. (13)

This result is based on a combination of the bounds of exponential sums

with exponential functions from [50] given in Theorem 5.2 and Theorem 5.3,

with the Weil bound, see [60] and the Vinogradov method of estimates of

double sums. As we have mentioned, the inequality (13) usually holds in

the stronger form W = O
(

|M|2/q
)

.



  

May 7, 2002 23:25 WSPC/Guidelines ExpSums-Intro

Exponential Sums In Coding Theory, Cryptology And Algorithms 47

Then the above arguments together with Theorem 8.2 imply the follow-

ing statement.

For an integer ` we define the oracle DSA` which, for any given DSA

signature (r(k), s(k, µ)), k ∈ [0, q−1], µ ∈ M, returns the ` least significant

bits of k.

Theorem 8.5: Let Q be a sufficiently large integer. The following state-

ment holds with ϑ = 1/3 for all primes p ∈ [Q, 2Q], and with ϑ = 0 for

all primes p ∈ [Q, 2Q] except at most Q5/6+ε of them. For any ε > 0 there

exists δ > 0 such that for any element g ∈ IFp of multiplicative order q,

where q ≥ pϑ+ε is prime, and any hash function h satisfying (13), given

an oracle DSA` with ` =
⌈

log1/2 q
⌉

+ dlog log qe, there exists a proba-

bilistic polynomial time algorithm to recover the DSA secret key α, from

O
(

log1/2 q
)

signatures (r(k), s(k, µ)) with k ∈ [0, q−1] and µ ∈ M selected

independently and uniformly at random. The probability of success is at

least 1 − 2−(log log q) log1/2 q.

The same result holds for most significant bits and (in a marginally

weaker form) for bit strings in the middle.

Practically: Numerical experiments, see [67,68] show that

• 4 bits of k are always enough,

• 3 bits are often enough,

• 2 bits are possibly enough as well.

Moral

(1) Do not use small k (to cut the cost of exponentiation in r(k)). This can

be very tempting because there is no K1/2-attack (Shank’s Baby–step–

Giant–step and Pollard’s Rho do not apply) on r(k) with k ∈ [0, K].

(2) Protect your software/hardware against timing/power attacks when

the attacker measures the time/power consumption and selects the sig-

natures for which this value is smaller than “on average” – these sig-

natures are likely to correspond to small values of k (because they

correspond to faster exponentiation in r(k), timing for other parts of

the algorithm is about the same for all k and µ).

(3) Use quality pseudorandom number generators to generate k, bi-

ased generators are dangerous.
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(4) Do not use Arazi’s cryptosystem which combines DSA and Diffie-

Hellman key exchange protocol – it leaks some bits of k (has been just

noticed by Don Brown & Alfred Menezes, 2001).

(5) Do not buy CryptoLib from AT&T: it always uses odd values of k

thus one bit is leaked immediately, one more and . . . . This was observed

by Daniel Bleichenbacher and actually was the main motivation for

studying this problem.

8.2.6. Other Applications and Open Questions

The method of the proof of Theorem 8.3 can be used to establish the bit

security of several other exponentiation based cryptographic algorithms.

Several such schemes, including the ElGamal cryptosystem (see Section 8.4

in [65]) and the Shamir message passing scheme (see Protocol 12.22 of [65]),

have been outlined in [8,9]. As yet another example we also mention

the Matsumoto–Takachima–Imai key-agreement protocol , see Section 12.6

of [65]. In fact the treatment of the Shamir message passing scheme in [8]

has the same gap as the treatment of the Diffie-Hellman scheme. Accord-

ingly, using exponential sums this gap has been fixed in [30].

In [90] several results on the recently introduced in [54,55] the XTR

cryptosystem. However these results are substantially weaker than those

known for the aforementioned. The main reason for this is that in study-

ing the XTR the corresponding character sums are over small subgroups

of extension fields arise and for such sums there is no analogue of Theo-

rem 5.2 and Theorem 5.3. Accordingly, the paper [90] uses a different way

of estimating the distribution of multipliers t of the corresponding EHNP.

Unfortunately this leads to a substantially weaker result. To be more pre-

cise, to apply an analogue of the approach of Section 8.2.4 the XTR one

needs to improve the bounds of the exponential sums

max
γ∈IF∗

p6

∣

∣

∣

∣

∣

∑

t∈G

exp (2πiTr (γt) /p)

∣

∣

∣

∣

∣

≤ p3

where Tr(z) = z + zp + . . . + zp5

is the trace of z ∈ IFp6 in IFp and G is a

subgroup of IF∗
p6 , see Theorem 8.78 in [60] (combined with Theorem 8.24

of the same work) or the bound (3.15) in [50]. This bound is trivial for

#G ≤ p3 while the subgroups relevant to XTR are of size of order p2. Thus

in [90] an alternative approach has been used which is based on the fact,
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even if the sequence T is not known to be homogeneously distributed but

at least admits a non-trivial upper bound for the number of its elements

in an interval one can still obtain some analogues of (9). Then the upper

bound from [13] on the number of zeros of sparse polynomials can used to

extract such information. However, the ball is now back to the exponential

sum technique. Using some new bounds of short exponential sums in finite

fields, W. W.-C. Li, M. Näslund and I. E. Shparlinski [59] proved for XTR

a result of about the same strength as that know for the Diffie-Hellman

scheme.

The result of Theorem 8.5 has been extended to other DSA-like sig-

nature schemes, including the elliptic curve version of DSA in [22,69]. In

particular, the bound of [49] provides an analogue of Theorem 5.2 for ex-

ponential sums over an orbit generated by a point on an elliptic curve,

see [69]. However some interesting questions still remain open. For exam-

ple, for the Nyberg–Rueppel signature scheme the range of p and q in which

the results of [22] are nontrivial are narrower than in practical applications.

It is shown in [22] that the attack designed in that paper on the Nyberg–

Rueppel signature scheme can be reduced to EHNP with the sequence of

multipliers

r(k, µ) =
⌊

⌊

h(µ)gk
⌋

p

⌋

q
, (k, µ) ∈ [1, q − 1] ×M.

Unfortunately it is not clear how to estimate the exponential sums
∑

µ∈M

∑

k∈IF∗
q

exp (2πicr(k, µ)) , c ∈ [1, q − 1],

and obtaining such a bound is an interesting open question. Using a rather

indirect method, it has been shown in [22] that the sequence r(k, µ) is

2− log1/2 q homogeneously distributed modulo q, provided that

W ≤
(#M)

2
q3−δ

p3

for some δ > 0. We remark that in the settings of the Nyberg–Rueppel

signature scheme it is natural to assume that h is bijective, that is, W =

#M. Also, if the message set M is “dense” (that is, #M is of order p)

then the above result holds for q ≥ p2/3+δ. It would be very interesting to

lower this bound.

Yet another modifications of the HNP has recently been introduced

in [39]. Namely, that paper introduces the following
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Hidden Number Problem with Hidden Multiplier, HNP-

HM: Recover a number α ∈ IFp such that for many unknown

random t ∈ T we are given MSB`,p(αt), MSB`,p(t) and MSB`,p(α)

for some ` > 0.

In the case T = IF∗
p and ` ≥ (4/5 + ε) log p the paper [39] provides a

polynomial time algorithm for the HNP-HM. In fact it also works in more

general residue rings (which is important for applications to [78]). As one

can see this result is substantially weaker than those known for HNP and

EHNP where one can take ` of order log1/2 p. However, using exponential

sums, it has been shown in [39] that indeed for HNP-HM to have a unique

solution the value of ` must be very large. Namely for ` ≤ (1/2 + ε) log p

there can be exponentially many possibilities for α.

The aforementioned algorithm has been used in [39] to establish a cer-

tain bit security result for the “timed-release crypto” introduced by Rivest,

Shamir and Wagner [78] and also to design a “correcting” algorithm for

noisy exponentiation black-boxes.

It is an interesting and challenging problem to study HNP-HM for

more general sequences T , in particular for subgroups of IF∗
p.

In the case T = IF∗
p the paper [9] provides a non-uniform polynomial

time algorithm for the HNP which works with ` = O(log log p). We recall

that non-uniformity means that the algorithm exists but to actually design

this algorithm one may need exponential time (thus such algorithms are

of rather limited value). Nevertheless it would be of interest to extend this

result to subgroups of IF∗
p. In order to get such a generalisation one needs an

analogue of Lemma 2.4 for subgroups and this seems to be a rather feasible

task taking into account the bounds of exponential sums of Theorem 5.2

and Theorem 5.3.

Finally, several more modifications of the HNP have been considered in

the papers [7,29,48,59,93,94,99]. However they are of more algebraic than

geometric nature and lattices have not been involved in their study.

9. Applications to Algorithms

9.1. Primitive Roots

The main problem in this area can be described as follows: Given a finite

field IFq, find a primitive root of IFq.

Unfortunately obtaining a deterministic polynomial time algorithm for
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this problem seems to be out of reach nowadays. In particular, just primitiv-

ity testing is already seems infeasible without the knowledge of the integer

factorization of q − 1.

Thus one can try to compromise and consider a presumably simpler

problem: Given a field IFq, find a small set M ⊂ IFq containing at least one

primitive root of IFq.

In fact for many applications one can just use all elements from M

without testing which one is primitive.

Fortunately, for this problem some efficient algorithms have been de-

signed by Shoup [82] and Shparlinski [83] who proved that for any p and

n, in time pnO(1) one can find a set M ⊆ IFpn of size

|M | = O(pn6+ε)

containing at least one primitive root of IFpn .

This result has been slightly improved in [45] where it has been shown

that for any p and n, in time p1/2nO(1) one can find a set M ⊆ IFpn of size

|M | = O(p1/2nO(1))

containing at least one primitive root of IFpn .

Several more related results can also be found in [85].

In particular, if p is fixed (for example, p = 2) then the set M in the

above constructions is of polynomial size.

Certainly there is no need to stress that exponential and character sums

play a central role in the aforementioned constructions.

More precisely, they rely on the following bound obtained by Carlitz [15]

and the rediscovered by Katz [46].

Let r be a prime power and let α be a root of an irreducible polynomial

of degree k over IFr and let χ be a multiplicative character of IFrk . Then
∣

∣

∣

∣

∣

∑

t∈IFr

χ(α + t)

∣

∣

∣

∣

∣

≤ kr1/2. (14)

The bound is nontrivial for k ≤ r1/2−ε. For k of this order the sum is

very short compared to the field size. Therefore, we have a “small” set with

a non-trivial bound of character sums; thus we can study the distribution of

primitive roots in such sets. In [77] this bound has been extended to sums

over sequences of consecutive integers of length h < r (where r is a prime

number).
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It is very tempting to try to fix a small subfield IFr ⊂ IFq (with, say, r ∼

log6 q), find an irreducible polynomial f ∈ IFr[X] of degree k = log q/ log r

and put M = IFr + α, f(α) = 0.

Certainly this naive way has an obvious flaw — the required subfield

may not exist.

However, there is a way go get around this problem.

Let q = pn. Select

k =

⌊

log q

6 log log q

⌋

,

find an irreducible polynomial f ∈ IFq[X] of degree k and construct IFqk .

Then we have IFpk ⊂ IFqk and the field IFpk is of the required size, so our

naive approach applies to the field IFqk producing a small set R containing

a primitive root of IFqk . And wow we “return” to IFq by putting

M = {ρ(qk−1)/(q−1) : ρ ∈ R}.

Obviously, if ρ is primitive root of IFqk then ρ(qk−1)/(q−1) is primitive

root of IFq. Hence M contains a primitive root.

Despite that we still cannot identify this primitive root among the ele-

ments of M , the above approach can be useful for several problems in coding

theory, cryptography, graph theory, combinatorial designs, pseudorandom

number generators, sparse polynomial interpolation and some other areas.

9.2. Pseudorandom Regular Graphs

One of the most challenging problems in this area is finding explicit con-

structions of “sparse” regular graphs of small diameter. This problem is

closely related to the problem of constructing “sparse” regular graphs with

small second largest eigenvalue.

Such graphs have numerous applications in combinatorics, networking,

coding theory, complexity theory . . . and they are just nice.

Let us fix a set S = {s1, . . . , sr} ∈ ZZ/mZZ.

The difference graph G(S, m) is an m-vertex directed graph such that

vertices i and j are connected if and only if the residue of i − j modulo m

is in S.

Similarly one can define undirected the sum graphs.

Here we consider only difference graphs.
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It is easy to show by using the properties of circulant matrices that the

eigenvalues of G(S, m) are given by

λk+1 =

r
∑

ν=1

exp(2πiksν/m), k = 0, . . . , m − 1.

The following construction has been proposed by F. R. K. Chung [16],

see also [17]

Let f ∈ IFq[x] be an irreducible polynomial of degree deg f = n. Fix a

root α ∈ IFqn of f , thus IFq(α) = IFqn .

Then one the graph G(f, n, q) is defined as follows: We identify the

vertices of G(f, n, q) with elements of IF∗
qn and we connect the vertices

τ, µ ∈ IF∗
qn if and only if τ = µ(α + t) for some t ∈ IFq.

It has been shown in [16] that the bound (14) implies the following

result:

Theorem 9.1: If q1/2 > n − 1 then G(f, n, q) is a connected q-regular

graph with |G(f, n, q)| = qn − 1 vertices and the diameter

D(G(f, n, q)) ≤ 2n + 1 +
4n log n

log q − 2 log(n − 1)
,

Moreover, for the second largest eigenvalue the bound

λ(G(f, n, q)) ≤ (n − 1)q1/2

holds.

The above construction has been generalised in [84]. For a prime number

p and an integer h with 1 ≤ h < p the graph G(f, n, p, h) is defined as

follows: We identify the vertices of G(f, n, p, h) with elements of IF∗
pn and

we connect the vertices τ, µ ∈ IF∗
qn if and only if τ = µ(α + t) for some

t ∈ {0, . . . , h − 1}.

It has been shown in [84] the bound of exponential sums of [77], gener-

alising (14), allows to obtain non-trivial results for such graphs, provided

that p1/2+ε ≤ h ≤ p. In particular, for the second largest eigenvalue of

G(f, n, p, h) the bound

λ(G(f, n, p, h)) = O(np1/2 log p)

holds.

Despite these and many other important applications of exponential

sums to graph theory. Sometimes other number theoretic methods give



  

May 7, 2002 23:25 WSPC/Guidelines ExpSums-Intro

54 Igor E. Shparlinski

more exact results. For example, for very large q a better bound on the

diameter (about n rather than 2n has been obtained by S. D. Cohen [18,19].

The method is based on more sophisticated tools, namely on the Lang–Weil

bound for algebraic varieties rather than on the Weil bound for curves, see

also [47].

Several more exciting links between exponential sums and graph theory

can be found in [57,58].

9.3. Polynomial Factorisation

A nice application of bounds of character sums to polynomial factorisation

over finite fields has been found by V. Shoup [81].

It is well known that the polynomial factorisation problem can be easily

be reduced factorization of squarefree polynomials over prime fields.

The algorithm is very simple, to factor a squarefree polynomial f ∈

IFp[X] we compute

Lt(X) =
(

(X + t)(p−1)/2 − 1, f(X)
)

, t = 0, 1, . . . , Q,

where Q is the main parameter of the algorithm, hoping that at least one

polynomial Lt is nontrivial , that is, is equal to neither 1 nor f .

For each t the polynomial Lt can be computed in a very efficient way,

if one uses repeated squaring to compute

gt(X) ≡ (X + t)(p−1)/2 (mod f(X)), deg gt < deg f

and then computer

Lt(X) = gcd (gt(X) − 1, f(X))

via the Euclid algorithm.

We recall that for x ∈ IFp, the equation x(p−1)/2 = 1 holds if and only

if x is a quadratic residue modulo p.

Hence, if Lt is trivial then for any two distinct roots a, b of f we have

χ(a + t) = χ(b + t), t = 0, 1, . . . , Q,

where χ is the quadratic character. Because a 6= b, the case χ(a + t) =

χ(b + t) = 0 is not possible. Therefore, if all out attempts fail then

Q
∑

t=0

χ ((a + t)(b + t)) = Q + 1.
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On the other hand, V. Shoup [81] has noticed that the Weil bound implies

that sums of this type are of order p1/2 log p.

Therefore, for some Q = O(p1/2 log p) one of the Lt is nontrivial!

It has been shown in [86] that in fact the same statement holds for some

Q = O(p1/2). This leads to the best known deterministic polynomial

factorization algorithm.

Moreover J. von zur Gathen and I. E. Shparlinski [26] have shown that

the same technique leads to a deterministic algorithm for finding all ra-

tional points of a plane curve in polynomial time “on average” per point.

This may have applications to algebraic-geometry codes and maybe to some

other areas.

9.4. Complexity Lower Bounds

Exponential sums can be an efficient tool not only in algorithm design and

analysis, but in establishing lower complexity bounds of some problems as

well.

For example, it has been shown by J. von zur Gathen and I. E. Shpar-

linski [27] that, for some absolute constant c > 0, if the modulus m is not

highly composite (for example, if m is prime) then computing the inversion

x−1 (mod m) takes at least c log log m for the parallel time on an exclusive-

write parallel random access machine (CREW PRAM). It is remarkable

that if m has many small prime divisors (that is, it is highly composite).

then one can compute x−1 (mod m) in O(log log m) on a CREW PRAM,

see [25]. Despute that generaly speaking these lower bounds and algorithm

require somewhat opposite properties of the moduli, there is a wide class

of moduly where they both apply and match each other, thus giving a very

rare example of a nontrivial complexity theory problem where the lower and

upper bounds coincide. For example, this holds for moduli m = p1 · · · pk,

where p1, . . . , pk are any k = ds/ log se prime numbers between s3 and 2s3.

Applications of exponential sums to estimating Fourier coefficient of

various Boolean functions related to several cryptographic and number the-

oretic problmes can be found in [20,87,88].
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10. Tutorial Problems

Problem 10.1: Let

S(a) =

p−1
∑

x=1

ep(axn).

From the bound

max
1≤a≤p−1

|S(a)| ≤ np1/2

derive that the number of the n-th degree residues (that is, integers a 6≡

0 (mod p) for which the congruence a ≡ zn (mod p) is solvable) in any

interval [k + 1, k + h] of length 1 ≤ h ≤ p is h/n + O(np1/2 log p).

Problem 10.2: Show that for a fixed n and sufficiently large p and c can

be represented as

c ≡ xn + yn + zn (mod p), 0 ≤ x, y, z ≤ p − 1.

Hint: For c ≡ 0 (mod p) this is obvious. For c 6≡ 0 (mod p) the last

congruence is solvable if and only if cwn ≡ xn + yn + zn (mod p), with

some 0 ≤ x, y, z ≤ p − 1, 1 ≤ w ≤ p − 1.

Problem 10.3: Let

S(a, b) =

p−1
∑

x=1

ep(axn + bx)

Prove that

p−1
∑

u,v=0

|S(u, v)|4 ≤ 2np4

Problem 10.4: Show that for b 6≡ 0 (mod p)

|S(a, b)| ≤ 2n1/4p3/4.

Hint: For any y 6≡ 0 (mod p), S(a, b) = S(ayn, by), therefore

(p − 1)|S(a, b)|4 ≤

p−1
∑

u,v=0

|S(u, v)|4
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Problem 10.5: Let n|p − 1. Prove that for b 6≡ 0 (mod p)

|S(a, b)| ≤ p/n1/2

Hint: Let k = (p − 1)/n. For y 6≡ 0 (mod p),

S(a, b) =

p−1
∑

x=1

ep

(

a(xyk)n + bxyk
)

=

p−1
∑

x=1

ep

(

axn + bxyk
)

.

Thus

(p − 1)|S(a, b)| =

∣

∣

∣

∣

∣

p−1
∑

x=1

ep (axn)

p−1
∑

y=1

ep

(

bxyk
)

∣

∣

∣

∣

∣

≤

p−1
∑

x=1

∣

∣

∣

∣

∣

p−1
∑

y=1

ep

(

bxyk
)

∣

∣

∣

∣

∣

≤



p

p−1
∑

x=1

∣

∣

∣

∣

∣

p−1
∑

y=1

ep

(

bxyk
)

∣

∣

∣

∣

∣

2




1/2

.

Problem 10.6: Combine the previous bound with the Weil bound

|S(a, b)| ≤ np1/2

and show that that for any n|p − 1

|S(a, b)| ≤ p5/6.

Problem 10.7: Show that for any quadratic character χ and a 6≡ b

(mod p)

p
∑

x=0

χ(x + a)χ(x + b) = −1.

Problem 10.8: Show that for any nontrivial multiplicative character χ

and a 6≡ b (mod p)

p
∑

x=0

χ(x + a)χ(x + b) = −1.

where z denotes the complex conjugation.
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Problem 10.9: Show that for any arbitrary subsets X ,Y ∈ IFp and any

nontrivial multiplicative character χ,
∣

∣

∣

∣

∣

∣

∑

x∈X

∑

y∈Y

χ(x + y)

∣

∣

∣

∣

∣

∣

≤ (p#X#Y)
1/2

.

Problem 10.10: Show that for any nontrivial multiplicative character χ

and a 6≡ 0 (mod p)
∣

∣

∣

∣

∣

p
∑

x=0

χ(x)ep(ax)

∣

∣

∣

∣

∣

= p1/2.

Hint: For any y 6≡ 0 (mod p),

p
∑

x=0

χ(x)ep(ax) =

p
∑

x=0

χ(xy)ep(ayx).

therefore

(p − 1)

∣

∣

∣

∣

∣

p
∑

x=0

χ(x)ep(ax)

∣

∣

∣

∣

∣

2

=

p−1
∑

b=1

∣

∣

∣

∣

∣

p
∑

x=0

χ(x)ep(bx)

∣

∣

∣

∣

∣

2

.

Problem 10.11: Let n|p − 1 and Ωn be the set of all multiplicative char-

acters χ for which χn is the trivial character, χn = χ0. Prove that |Ωn| = n

and that

∑

χ∈Ωn

χ(u) =

{

n, if u ≡ x2 (mod p) is solvable,

0, otherwise.

Problem 10.12: Let n|p − 1. Prove that

max
1≤a≤p−1

∣

∣

∣

∣

∣

p−1
∑

x=1

ep(axn)

∣

∣

∣

∣

∣

≤ np1/2

Hint: Show that

p−1
∑

x=1

ep(axn) =

p−1
∑

x=1

ep(ax)
∑

χ∈Ωn

χ(x).

Problem 10.13: The following sums are known as Kloosterman sums

K(a, b) =

p
∑

x=1

ep(ax + bx−1)
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where x−1 is the inverse modulo p of x. Using the Weil bound

max
gcd(a,b,p)=1

|K(a, b)| ≤ 2p1/2,

derive an upper bound on incomplete sums

KM,N (b) =

M+N
∑

x=M+1

ep(bx
−1)

and then the asymptotic formula for the number of x ∈ [M +1, M +N ] for

which

x−1 (mod p) ∈ [k + 1, k + h],

for integers M, N, k, h, 1 ≤ h, N ≤ p.
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