TRICKS OF THE

WINDOWS

GAME PROGRAMMING GURUS

FUNDAMENTALS OF 2D AND 3D GAME PROGRAMMING

ANDRE LAMOTHE

SAMS

201 WEST 103RD STREET,
INDIANAPOLIS, INDIANA 46290 \

Errata
All known errata has been marked with the highlight text tool, and an annotation has been created with the corrected text.
Click on the note icon to view the errata.

Tricks of the Windows Game

Programming Gurus
Fundamentals of 2D and 3D Game Programming
Copyright © 1999 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-31361-8
Library of Congress Catalog Card Number: 98-85491
Printed in the United States of America

First Printing: October 1999

01 00 99 4 3 2

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or

programs accompanying it.

Executive Editor
Don Roche

Acquisitions Editor
Angela Kozlowski

Development Editors
Erik Dafforn
Kezia Endsley

Managing Editor
Charlotte Clapp

Project Editor
Carol Bowers

Copy Editors
Sean Medlock
Aaron Black

Howard Jones

Indexer
Erika Millen

Proofreader
Betsy Smith

Technical Editor
Steve Haines

Software Development
Specialists

John Warriner

Dan Scherf

Interior Design
Gary Adair

Cover Design
Alan Clements

Layout Technicians
Brandon Allen

Tim Osborn

Staci Somers

Contents at a Glance

Part |

Part Il

O 0 9 N W

10

Part il
11
12
13
14

Introduction 1

Windows Programming Foundations 7
Journey into the Abyss 9

The Windows Programming Model 47

Advanced Windows Programming 95

Windows GDI, Controls, and Last-Minute Gift Ideas 165

DirectX and 2D Fundamentals 211

DirectX Fundamentals and the Dreaded COM 213
First Contact: DirectDraw 241

Advanced DirectDraw and Bitmapped Graphics 287
Vector Rasterization and 2D Transformations 401
Uplinking with DirectInput and Force Feedback 537
Sounding Off with DirectSound and DirectMusic 589

Hardcore Game Programming 645

Algorithms, Data Structures, Memory Management, and Multithreading 647
Making Silicon Think with Artificial Intelligence 713

Playing God: Basic Physics Modeling 797

Putting It All Together: You Got Game! 875

Part IV Appendixes 901

What’s on the CD 903

Installing DirectX and Using the C/C++ Compiler 907
Math and Trigonometry Review 911

C++ Primer 925

Game Programming Resources 949

ASCII Tables 955

m o 9 Q w >

Index 961

Table of Contents

Introduction 1

ParT I Windows Programming Foundations 7

1 Journey into the Abyss 9

A Little HIStOTY ..oviiiiiiieiiiiieicnienececeectcccs ettt 9
Designing GamEsccceeeieienienieniiniiniineeeetetererete e eeeneens 13
Types of Games ...
BrainStormingcccceveeeeieieienienenieneneeceeeeee ettt
The Design Document and Storyboards............ccccvevenencnincnineenennne 15
Making the Game Funccccceiiiininininiiiiccrciceeneeeeeeeee 16
The Components of @ GAMEcc.coeveeiririiieieicicencneeeeeeeeeee 16
Section 1: InitialiZation ..o 17
Section 2: Enter Game Loopccocevevvirinininiiiiiiicncncncneeeeee 17
Section 3: Retrieve Player Inputc..cccoeceeviviiiiniinininnnineenns 17
Section 4: Perform Al and Game LOgiCccoecveviieniencnincnicnene 17
Section 5: Render Next Frame ... 18
Section 6: Synchronize Displayc..ccccoovvirviiciiviininninnineenns 18
SeCtion 7: LOOP ..uveuviniiiiniiiieicieicccceeeee e 18
Section 8: Shutdownccooiviiiiiiiiiiiiii 18
General Game Programming Guidelinescccccceeevenencnininniennens 21
USING TOOIS ..ttt 26
C/CH+ COMPIIETS .ottt 26
2D ATt SOFtWATE......cooiviiiiiiiiiicccce e 26
Sound Processing SOftwarec..coeeveverinirieienienencneneneeeeene 26
3D MOAEIETS ... 26
Music and MIDI Sequencing Programsccccceeenencnincneenens 27
Setting Up to Get Down—Using the Compilercccceevinencncnnne 27
An Example: FreakOutcccoevininininininiiiiiciciceencseseceeeene 29
SUMIMATY <.ttt ettt et ens 46

2 The Windows Programming Model 47

The Genesis of WINAOWScccccueviirininininiiicieiccieneseneeeeeeeees
Early Windows Versions
WINAOWS 3.X ittt
WINAOWS 95 ..
WINAOWS 98 ..ot
WINAOWS NT ..o
Basic Windows Architecture: WInOX/NTccocvvviivininncninenne 50

Multitasking and Multithreadingc.ccoceeveeveevenineninininenereceeens 51
Getting Info on the Threads
The Event Modelc.ccooiiiiininininininieieeicceesiese e

vi

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Programming the Microsoft Way: Hungarian Notationc.cc.c..... 55
Variable Namingcocceevuerierieniinieniereeeeseeicesee et 56
Function Naming................56
Type and Constant Namingcccecveveereenieneeniienenieenieeieeie s 57
Class NAMING.....ccveiiiiieeieite ettt s 57
Parameter Namingccocceevieriiiiinieiieiieeccceieee et 58

The World’s Simplest Windows Program............cccceceviiniincenieneennen. 58
It All Begins With WinMain () ...ccccecervomiienioneeneeneneeieseeeee s 59
Dissecting the Programc..ccocevieiiinienieneenieneeceieeeeie e 60
Choosing a Message Box03

Real-World Windows Applications (Without Puck)........c..cccceceviiienins 66

The WIndows Classcccccevirieniiiniiinieieieiccecee e 66

Registering the Windows Classccccovvveveinieneniieniienienieseeseeeeeen 74

Creating the WINAOWcoceiiiiiiiiinieieece e 75

The Event Handler ..o 77

The Main Event LOOPcoouiiiiiiiiieiienieceecece e 84

Making a Real-Time Event Loopc.cccovveveiniiieiiiniiiicieeeeeceen 89

Opening More WIndOWScccuevuerienieniinieeieeiectesiesee e 90

Summary

3 Advanced Windows Programming 95

USING RESOUICES ...ttt 96
Putting Your Resources Togetherccccoceevveiinininninininnennens 98
Using Icon RESOUICEScceeuieiiiiiiniiniiiiiiciciciccscscseeeeeens 99
Using Cursor RESOUICESc.oocvvieieieniiniinininineceeecececiene 102
Creating String Table ReSOUICescccceveerierieriieiiiieeiecieeeeenen 106
Using Sound .WAV RESOUICESccccceeveiiriineninininieieieieienennes 108

Last, But Not Least—Using the Compiler to Create .RC Files114
Working with Menus ...
Creating a Menu

Loading @ MenU........cccouiviinininiiiiiiicicicnencneceeeeeeeeecenes
Responding to Menu Event Messagescoccoceveveeeeienicnncnnenne. 122
Introduction to GDI ... 128
The WM_PAINT Message Once Againccocevevevueeeeeeveniennennennen 128
Video Display Basics and COlOTc..ccccoevenenininiiiiieicicnene. 133
RGB and Palletized Modes
Basic Text Printingc..cccoceevievirvieiiiniiniininenenenecceecececnenen
Handling Important EVents.........c..coccecieiiiiniinininininieiciercienenienne
Window Manipulationcoceeiirienienienienceneeseee e
Banging on the Keyboardccccoceviiinininninniiice.
Squeezing the MOUSE........cocviviiieiiiiiiieeneeeeeeeeeeeeeseaean
Sending Messages YOurselfccccccooevivinininininnenccccee,

SUMIMATY <ottt sttt et nteenne e

CONTENTS vl

4 Windows GDI, Controls, and Last-Minute Gift Ideas 165

Advanced GDI GraphiCs........coeeeueevieriinienienieniesceseeseesie e 166
Under the Hood with the Graphics Device Context 166
Color, Pens, and Brushes..........cccccovevviininiiniiiiieseeseeeen 167

Timing IS EVerythingcccooceeviiiiiiiiieiiciececee e
The wMm_TIMER Message .
Low-Level TIMINGc.ccoviiiiriiiieiieriesiieteeeeee e

Playing with CONtIolScooviiviiriiiiiiieeieseceses e

BULONS ..ot

Sending Messages to Child Controlscccceeevevveniienieniencennen. 195
Getting INformationocceevieiiiniiiieeeece e 197
The T3D Game COnSOlecovveeriiiiiirieriieieeieeee e 205
SUMIMATY .ttt sttt e st et eebeebeebeenseenneens 210

ParT Il DirectX and 2D Fundamentals 211
5 DirectX Fundamentals and the Dreaded COM 213

DIrectX PIimET ..c..coovieviiiiieiieieeieeieee st 214
The HEL and HAL ...cc.oovoiiiiiiiceeeeeeee e 216
The DirectX Foundation Classes in Depthcc.cccceeviiiiiienienns 216

COM: Is It the Work of Microsoft... or Demons?cccceeveevennenne 218
What Exactly Is @ COM ODbject?........cocueveenieneenieeieeieeieeiesenane 219
More on Interface IDs and GUIDSccccovveveenieniinienieiienies 223
Building a Quasi-COM ODJECtcceevuieriervieiirieeienieeieseesieeneen 224
A Quick Recap of COMc.coviiiiiiiiiiiiiieiiccieceee e 226
A Working COM Programcccceeveeveeiieeiienieeienieseeseeseeeenn 226

Working with DirectX COM Objects... ..231
COM and Function POINLETSccceevieveriiiiiieniiiienieceeseeseeeen 232
Creating and Using DirectX Interfacesc.cccocevveevveneencenennene 236
Querying for INterfacescoceveerieviineriieececee e 237

The Future of COMooiiiiiiiiiiiiiceeee s 238

SUMIMATY ..ttt et e et eteenbeenseenneeas 239

viii

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

6 First Contact: DirectDraw 241

The Interfaces of DIrectDIrawcccecvevvevienininininieieieicienenienne 242
Interface Characteristicsccevveevevienenenenininieieieiciccnenen 242
Using the Interfaces Togethercccocevienieneinieiiiicceeeeeen 244

Creating a DirectDraw ODJECtccceevuieviiriiiiiiiiieniecieseeeseeeene 245
Error Handling with DirectDraw..........ccccceviiviinieienienieiieeieee, 246
Getting an Interface Liftccoocoviiniiniiniiniiicccceee e, 247

Cooperating With WINdOWSc.cceoiriiieririiieieiieeiesieseesee e 250

Getting into the Mode of Thingscccceeveeiiiiieniienienienieseeeeene 255

The Subtleties of COlOT......cc.coeviriiiiiiiiiiiiiiieccceee 259

Building a Display Surface........cccceeeeveevieiieeiieiieniecieseseeneeseeene 263
Creating a Primary Surfacecooevievienienenniceniececeee e 264
Attaching the Paletteccccovvveviiiiiniinieccccceeeee e 272
PIOtting PIXels ...cccueviiiiiiiiiieieeeeeeeee e 272
Cleaning Up

SUMIMATY <ottt sttt et e sene e

7 Advanced DirectDraw and Bitmapped Graphics 287

Working with High-Color Modes..........ccccueeuevininininiinicicicncniennene 288
16-Bit High-Color Mode........cccoocevirieiiiiiiniininenececiciccniceene 289
Getting the Pixel Formatcccoceeeveviiiinininnnncicccee, 290
24/32-Bit High-Color Modecccoveviinininininiiiiiiicicicnene. 299

Double BUFferingcccccevererinininiiiiiiieccseeeeeecerercrereniene 301

Surface Dynamicsc..coevuirinininiiieiciccncreeeeee e 307

Page Flipping

Using the Blitter
Using the Blitter for Memory Fillingc..ccccocevveviiiiiinincncnenne. 320
Copying Bitmaps from Surface to Surfacec..cccceceevvevivincnncnne. 328

Clipper Fundamentals...........ccccoereririeiiiiniinininieeeceeerercenrenienne 332
Clipping Pixels to @ VIEWPOITccoccveviriinininininiiicicicieicnenen 332
Clipping Bitmaps the Hard Wayc..ccccocenininnniiiiiiiicee. 334
Making a DirectDraw Clip with IDirectDrawClipper................ 339

Working with Bitmapsc..ccccoeviriiininiiiiiciccneeececececceee
Loading .BWP files

Working with Bitmaps........cocceeviriiiiiiiniiniiniicieeieerccieniee
Loading an 8-Bit Bitmap.......cccccecveeieviinininnnnccicecceen
Loading a 16-Bit Bitmap.......ccccceceeeieviinininininnccccccceen
Loading a 24-Bit Bitmap.......ccccceceevieiiinininininnccceccieen
Last Word on Bitmapscccceceeieiiieiieniininininneccececcenen

OffSCreen SUfacesccoevereririniiieicieeeeeeeee e
Creating Offscreen Surfaces
Blitting Offscreen Surfacescccceeevenenenininceneienieencnene.
Setting Up the BItter.....co.cviviiiiiiiiiiiiiceeeeeccccccsce
COlOr KEYS ..ttt

Source Color Keyingccceevevevienenenenennene

CONTENTS ix

Destination Color Keyingccecevierienieniineeniieieeieeieeeesiene 364
Using the Blitter (Finally!)coccoooiiiiiiiiiiieeceeee 365
Bitmap Rotation and Scaling366
Discrete Sampling Theoryccoceevieriiriiniiiiiieeiececesee e 368
COlOT EffECLS ..ttt 373
Color Animation in 256-Color Modesccccovvevereeeevienierieienne. 373
Color Rotation in 256-Color Modescccccevuerueeienienienieneeeen 379
Tricks with RGB MOdESoooveriiiniiiiiiieeiecccicceceeee e 381
Manual Color Transforms and Lookup Tables..........cceceeveervevienieniennene 381
The New DirectX Color and Gamma Controls Interface... ...382
Mixing GDI and DIrectXccccoviiviinirniiiienieeienieeeesesee e 383
Getting the Lowdown on DirectDrawcccccocvevvenienieneeneencennens 386
The Main DirectDraw ODJECEcc.eeueeieieieriiiieiieiieiieieieieienieee 386
Surfing on SUIfacesccevirieieieieieieieee e 388
Playing with Palettesccooceveviririeieieieeece e 389
Using DirectDraw in Windowed Modes..........cccoeoeveneeneincnecnennns 390
Drawing Pixels in @ Window.........c.coccoveviiincininiiniencecneene 392
Finding the Real Client Area (51)ccceverieinerineneinciieiccnene 395
Clipping a DirectX Window ..397
Working with 8-Bit Windowed Modesc..cccecevveeneininiecneanne 398
SUMIMATY .ttt et ettt et eaeeeaneeas 400
8 Vector Rasterization and 2D Transformations 401
Drawing LINES.......cooierieriiiiieieeiieieeieeie sttt 402
Bresenham’s AIZOTithmcccoeviiiiiniiiniiiieiecccee e 403
Speeding Up the AIZOrithm..........cccceeviieiiiiiiiienieiieneeie e 409
Basic 2D CIIPPING..c..tiruiiriiiiieieeieeteeie ettt sttt ete s e eas 411
Computing the Intersection of Two Lines Using the Point
SI0PE FOIM ..t 413
Computing the Intersection of Two Lines Using
the General FOrmcccocooiiiiininiiniiiiicicicecs 416
Computing the Intersection of Two Lines Using
the Matrix FOImcccocveiiiiiinininiiiiiiiciciceceeeees 416
Clipping the LiNe.......coviiieiieiieiieieeeee e 419
The Cohen-Sutherland AlZOrithmcccoviiiiiniiiiiiiiieeeees 420
Wireframe Polygonsc.ccceceveennnenee. A7
Polygon Data StruCturesccecceeveeriienierieenieeieeie et seee e 428
Drawing and Clipping Polygonsccccceveieriieriienienienieneecenn 430
Transformations in the 2D Planeccccooeviiiveniiiniiniiiicieeen 432
Translationccceeieieieiieninincneeeeee e 433
ROTALION ..ottt 435
SCALINE 1.ttt 445
Introduction to MAtriCesccceeriiriiriiieieieieieieseeeeeee e 446
The Tdentity MatriXccceeoveeierienieniesieseeseeeee e s 448

Matrix Addition

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Matrix MultipliCationccocverierienienieieeeeeeeeee e 449
Transformations Using MatriCesccceverererereereeienieieieneenes 452
Translation ...
SCANZ. ettt et
ROTAION ...ttt
Solid Filled POLYZONS ...c.covuiiiiiiiiiieiiiciesieteseteeeeeie e 458
Types of Triangles and Quadrilaterals..........c.coccceverveeneinenncnnens 459
Drawing Triangles and Quadrilaterals..........c.ccocevivinininininnnens 461
Triangular Deconstruction Detailscccocooiviviiiiiiiiinininene.
The General Case of Rasterizing a Quadrilateral
Triangulating QuUadsccoeviviiiiiiiiiiiiiinen
Collision Detection with POlygOnscccceoveevieiiiiniinienienieniceeens 478
Proximity AKA Bounding Sphere/Circlecc..ccoevvienieniinnennnn. 478
Bounding BOXcccoueviiiiiiiieieieeeeeee s 481
Point Containmentccoveuirieirieieinicineieeneeeee et 484
More on Timing and Synchronizationccceeceveevveneeneneennens 486
Scrolling and Panning............cceceeveeieieienienenienereseeceeeeeee e 488
Page Scrolling ENginescceccevveievienienieneneneeeeeeeeiesiesesie e 488
Homogeneous Tile Engines....
Sparse Bitmap Tile ENginesccccocevivininieieieieieieiesesienn 494
Fake 3D Isometric ENiNes.........ccccoeeeieieienienienieeeeeeeeteeeie e 496
Method 1: Cell-Based, Totally 2Dcccccevievirniiiiiniecicnieeieen 496
Method 2: Full-Screen-Based, with 2D or 3D
ColliSion NEWOIKScuvvuimiiiiiiiieiinieiinicieceecceeee e 498
Method 3: Using Full 3D Math, with a Fixed Camera View 500
The T3DLIBI LiDIaryc.c.cccccceeoirerininieineiiiceneeecseesieneiennne
The Engine Architecture
Basic Definitionsc.coccoveinieineniiinicincieicceeeecee e
WOTKING MACTOS ...veiuiiiiiiiiieeiieiteeiiecte ettt 502
Data Types and StrUCTUTESc.cecvereiiiiinienienieiinieeercreieeiee 503
Global Dominationc.ccceeeeeerieinieineieineeneeeesee e 506
The DirectDraw Interfaceccccecvevevereneniniineeeeeeeee 507
2D Polygon FUnctionsc..ccceeeveinieineoininieineiecneenieeecnnne 511
2D Graphic Primitivescoccoceerieinieinenieinicinerecneeseeeneene
Math and Error Functions ..
Bitmap FUNCHONS.......coiiiiiiiiiciiccec e
Palette FUNCHONSccooviiiiniiiiiiiiiiciciccccce
Utility FUNCHONS ..ottt 525
The BOB (Blitter Object) Engine...........cccccvevveineincnncnenciecnne 527
SUMMATY ..o 535
9 Uplinking with Directinput and Force Feedback 537
The Input Loop ReviSitedccovieiiiiieiiiiieeiecieeeieseeeeeeeene 538
DirectInput OVEITUTE.......cc.couiviiririiniiiieicieieereeteeteeeee e 539

The Components of DirectInputcccceevveveirieneniieeienieneeeen 541
The General Steps for Setting Up DirectInputccceevevvenuennen. 542

CONTENTS Xi

Data Acquisition MOdEScocvevueeriiiniiinierieiieeiecte st 544
Creating the Main Directlnput Object..........cccevvverviiriiinierienienen. 544
The 101-Key Control Padccceeneee ...546
Problem During Reading: Reacquisition...........ccccceveevieriieniiennenns 554
Trapping the MOUSE........cooveriirierieiteeeee e 556
Working the JOYSHCKeviiiiiiiiiieieeeecee e 561
Massaging Your INPULccceevieiiiniiniinieececceece e 576
Going Deeper with Force Feedbackc.ccoooeviiniiniiniiniiniciciee 579
The Physics of Force Feedback.........cceoeviivieninininieieieieiee, 580
Setting Up Force Feedback
A Force Feedback Demo.........cccoocoeviiiiiiiniiniininiiiiiccee
Writing a Generalized Input System: T3DLIB2.CPPc..cccceceeeeurennene 582
The T3D Library at @ Glancecceceveenieneenieeneeieeieeeesee 588
SUMIMATY ..ttt ettt ebeeareeaeeeas 588
10 Sounding Off with DirectSound and DirectMusic 589
Sound Programming on the PCcccocoiiiininininiiien 589
And Then There Was Sound...c..cocceceviiiiiinininininiieeereen 590
Digital versus MIDI—Sounds Great, Less Filling..............c.cccococo.. 594
Digital Sound—TLet the Bits Begin
Synthesized Sound and MIDIcccccevinininininniiiicce.
I8 MIDI TIme! ..coooviiiiiiiiiiieteeceee e 597
Sound Hardwareccocveoviviinininininiiiciccccceeee e 598
Wave Table SYNthesisccoecereerierierieeeeeeee e 598
Wave Guide SYNthesiscoecverierierienierieeeeee e 598
Digital Recording: Tools and Techniques.........c..cccceceeieieieiinencnenne 599
Recording Soundsc..ccccoevinininiiiiiiiiiiicnneeeeeen 600
Processing Your Soundscoceceeceeieienienieneneninineneeeeeeen 600

DirectSound on the Mic
Starting Up DirectSound

Understanding the Cooperation Level
Setting the Cooperation Levelccccoeviviiininiiiiienieciesieseeeen
Primary and Secondary Sound Bufferscccoeveviiiniininninncnnnns
Working with Secondary Buffersccccoovevieniiiinniniiiienes
Creating Secondary Sound Bufferscccovevviiiiniincenenienen.
Writing Data to Secondary Buffers....
Rendering SOUNASoc.eoviiiiiiiriiiieieeecese e
Playing @ Sound.........cocevieiiinieniieiieeecee e
StOPPINg @ SOUNM...c..viiiiiiieiieiieieee e
Controlling the VOIUMEcccoeviiiiiniiiiiiieeiecece e
Freaking with the Frequencyccoccoovevieiiiniiiiiceiieeseeeen
Panning in 3D ...ooiiiiiiii e
Making DirectSound Talk Backcccoevueviiiniiiiiniiieniececeeens
Reading Sounds from DisK........cccoeceriieriiniiiniinieneeeeeceeieeee
The .wAv Format
Reading .wAv Files

Xii

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

DirectMusic: The Great EXperimentc.ccocceevevvieriieniieneenieneeneens 622
DirectMusic ATChItECTULEcoivvieiiiiiiiiiiiieiieeeeereee e 622
Starting Up DIir€CtMUSIC.......eovievieuieeieieieieiesiesie et 624
Initializing COMoiiiiiiiiiieieieeeee et 624
Creating the Performancecoccecevevereveneneneeeeeeeiee 625
Adding a Port to the Performance...........ccooceveveeervienienienieene. 626
Loading a MIDI S€ZMENLcc.eoviruireienieieieieieeieeieeie et 626
Creating the Loader........ccoeieieieieieieiesiesieee e 627
Loading the MIDI Filecccccooiiiiiiiiiiiiiieeeeceeceeeee 627
Manipulating MIDI SEZMENLSc.cccecvvuivreeneniiinieiniereieneeneeeienene 630
Playing a MIDI Segment..........cccecueverierieneneneneececeieeeee e 630
Stopping a MIDI Segment...........cccuevuerierienenieieieieieieniese e 631
Checking the Status of a MIDI Segmentcccccecvevevienienuennne. 631
Releasing a MIDI SeZmentcccccuevuerierierereneeeeeeieieieseeienes 631
Shutting Down DirectMUSICcccevveierieriininiieieiieieieie e 631
A Little DirectMusic EXamplecccoocevevenenieiniieieieieeee. 632
The T3DLIB3 Sound and Music Libraryccccoeceeieieieiienienenienens 632
The Header ..ot 633
THE TYPES ettt ettt 633
Global Dominationc.ccceeoeruerieinieinieieincereeeesee e 634
The DirectSound APLI Wrapperccceeevevereneeeeieieieeseiene 635
The DirectMusic API Rapper—Get It?........ccocovvevieiieienienieinne, 640
SUMMATY ...ttt ettt st ettt e e e b e beenes 643
Hard Core Game Programming 645
Algorithms, Data Structures, Memory Management,
and Multithreading 647
Data SIIUCIUTESooveuiriiiciiieieiitccetetetc ettt 648
Static Structures and AITAYScccceeveeriierieriieniienieniesee e 648
Linked Lists............ . ettt ettt ettt et et e te st naens 649
Algorithmic ANALYSIS ..cvevveriiriiriiriieiieiieieierteet ettt 657
RECUISION ..eiiiiiiiciieiee ettt 659
TICES ettt 662
BUilding BSTS c..vcueuiiiieiiiieieiceresieiesiete ettt 666
Searching BSTScoeviviiiiiiiieieeeeeee e 668
Optimization THEOTYccvevverieriiriieiieiieieieriete ettt 671
Using Your Headcocoviiiiiiiiiiiiceeeececese e 671
Mathematical TTICKSc.ooieieieieieieieiecese e 672
Fixed-Point Math.........ccccooiiiiiiiiiiiieniccecceccee e 673
Unrolling the LoOP ..cc.ooieieieieieieieieeee e 677
LOOK-UP TabIEs ...uveeiiiiiiiiiiieiieeiesteeeteeeee s 678
Assembly Languagecoccovvverieniinieniiiceececeee e 679
MaKing DEIMOScceeuieieieiinieriieieeiteee ettt 680
Prerecorded DemoOSccooieieiiiiiiiiniiiinicnccecceee 680

AT-Controlled Demosccceeevvieriieeiiieeiieeeieeeiee e 682

CONTENTS il

Strategies for Saving the GaAmecccevvevierierienenieieieieieieieie e 682
Implementing Multiple Playersccccoccvvieriiniiiniieniinieneeneeeeens 683
Taking Turns
SPLit-Screen SELUPS ...ccvevieriierieieieeiee e
Multithreaded Programming Techniquesccccceevevveeviienienieneennen. 685

Multithreaded Programming Terminologyc.ccocceeveevienniernennns 686
Why Use Threads in @ Game?..........ccooveveeneinieenieniienienieneeneene 687
Conjuring a Thread from the Plasma Poolcccocevinininnnee. 689
Sending Messages from Thread to Threadccccoceveveeieiennnee. 697
Waiting for the Right Moment
Multithreading and DirectXccocevieniinieneenieiieeieeieeeeee
Advanced Multithreadingccooeeviiniriiiieniiiieiieeeeeeen 711
SUMIMATY ..ttt sttt et ettt e be et eareeaneeas 711

12 Making Silicon Think with Artificial Intelligence 713

Artificial Intelligence Primercccooceeveviiieiiiienienieseeeseeeene
Deterministic AL AIOTTtMS....c..coeriiiiiiiiiiiiiiiinecceeccrciciee
Random Motion........cc.ccueviiviininininiiicicciccneeeeeeeee e
Tracking AIGOTIthmSccccoceviririiiiiiiiiiiceeeeceeee
Anti-Tracking: Evasion Algorithms
Patterns and Basic Control Scriptingcccceceevevininieieiiecienienienenne
Basic Patternsccccoevviviininininiiicicicccenee e
Patterns with Conditional Logic Processingc..c.ccoceecevveeeunneee 727
Modeling Behavioral State SyStems........c.ccceevevvirininieieiecienienienenne 729
Elementary State Machinesccooceevieriernierienieeienieeee e 730
Adding More Robust Behaviors with Personality...........cc.ccoc....... 734
Modeling Memory and Learning with Softwareccceeeeeiennens 736
Planning and Decision TIEeSccccevveevieriieriieriienierienceseeieeeeeeeens 740
Coding Plansccccceevvveiennen. ..742
Implementing a Real Plannercccooceviieviniiiniinienienienceeen 745
Pathfindingccooieviiniiieeece e 747
Trial and EITOTc.cocoeoiiiiiiiiiininiiiicccceceee e 748
CONLOUT TTACINZ .c..veeeveiieitiesiierieet ettt 749
Collision Avoidance Tracks........cccecvecvevienenenininininieeieicicenes 749
Waypoint Pathfindingcccoooeriiniiniiniiccceeeeece e 750
A Racing Example
Robust Pathfinding
Advanced AL SCIIPUNE ..c.eevvieriieiieieeieeteeee et 759
Designing the Scripting Languagecccceeveeeveevieniieneeniencenneen 759
Using the C/CH+ Compilercocvovierienienieieieeeceeeeee e 762
Artificial Neural NetWorksc.ccoceviviiiiiiniiniiniininieieeeicreecieniene 767
Genetic AIZOTIRIMSouiiiieiieiieeeeeee e 770
FUZZY LLOZIC eeiiiieiiieee e e 772
Normal Set TREOTYocviviiiiiiieiiee e 773

Fuzzy Set Theory

Xiv

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Fuzzy Linguistic Variables and Rulescccccoceeveniinicnieniennn. 776
Fuzzy Manifolds and Membership
Fuzzy Associative Matrices........coccoevverveneennnen.
Processing the FAM with the Fuzzified Inputs............cccoccvvencne 787
Warm and FUZZYcoocoiiiiiiiiiiieeeeeee e 794
Building Real AT for Gamescceveeeieienienieniieiieiieeeeceieieie e 794
SUMIMATY <ottt ettt et et 795
13 Playing God: Basic Physics Modeling 797
Fundamental Laws of PhySiCSccccovieviiiiiiiiieeieieceeeeeee 798
IMASS (IM1) oeeiiiiiieeiie ettt ettt ettt e e eave e s be e et e e etaeeeabeeennee s

TIME (1) weenveeneieieeie ettt ettt et et e s naeas
Position (s)
Velocity (v)

ACCEIETAtION () .oovvvieeiieeiieeiie ettt eae e ere e 804
FOICE (F) oo 807
Forces in Higher DIMensionsccccccevencneninenienicnieniencnnenne. 808
Momentum (P)......c.oooiiiiiiiciiecieeeeeee e 809
The Physics of Linear Momentum: Conservation and Transfer 810
Modeling Gravity Effectscococevviiiiiiiniininiiiiciccrcrcicnienee
Modeling a Gravity Well
Modeling Projectile Trajectoriescoevererereneeievenieieienene. 818
The Evil Head of Friction........c.ccocovieiiiiiiiiniiniiniininicicicrcrciceniee 821
Basic Friction CONCEPLS.......cuevverierieniieniieiieieeieeie e 821
Friction on an Inclined Plane (Advanced)ccccooevvevviienniennnnnn. 823
Basic Ad Hoc Collision ReSponseccceecvervienienienieneenieneeniens 828
Simple X,y Bounce PhySiCscccooieviiniiiiiiieiieiieseceeeeeee 828

Computing the Collision Response with Planes of
Any Orientationc.cceceeeveueee
An Example of Vector Reflection

Intersection of Line SeZments...........ccceeveerierirniienienieeiesieeie e
Real 2D Object-to-Object Collision Response (Advanced)................ 841
Resolving the n-t Coordinate SYStemceecvevvierierienieneeniiereeneens 846
Simple KinematiCsccceevierieriiiieeiieie et 853

Solving the Forward Kinematic Problemccccoocvvveinieninnnens 854

Solving the Inverse Kinematic Problem
Particle SYSEMSoo.veviiiieiieieeeeeeeeee e

What Every Particle Needscccoeveriinienienienieeeieeceie e

Designing a Particle Enginec.ccoocevieiieninnieiiniecienieeeeeen

The Particle Engine SOftwarecccccevveevieneenieieiieeieeieeeeen

Generating the Initial Conditionsc.ccoevveveeriieneniieeienieeieeeen

Putting the Particle System Togetherccccooveviiiieceniieniennen.
Playing God: Constructing Physics Models for Games....................... 870
Data Structures for Physics Modeling...........ccccoeveveviincienieniennen.

Frame-Based Versus Time-Based Modeling

SUMIMATY <ottt sttt entesnne e

CONTENTS xv
14 Putting It All Together: You Got Game! 875
The Initial Design of QUIPOSEccoeveeeciieiiiriiiiiiiiceeeeee 876
THE STOTY ittt 876
Designing the Gameplayccocceeveerieneriinieniecienesee e 877
The Tools Used to Write the Gamecccceevveeveerieniienienienieneeeen 877
The Game Universe: Scrolling in Space........c.ccoecvevvereenveneenieenieenens 878
The Player’s Ship: “The Wraith”cccccoviriiiniiiiicieceeeen 880
The Asteroid Field ...
The ENemIEScc.coveriiiiiiiiiiiiiiiiiiiieeeeeccrce e
The OULPOSES ..eevveeirieiieeieeiie ettt ettt
The Predator MINEScoceeverieriinienieiceeeieee e 886
The GUNSRIPS ..ccuvieiiiiieiece e
The POWET-UPS ...oouviiieiiiiiieniieiteieee ettt
The HUDS ..ottt

The Particle System

Playing the Gamecccceeviiriiiiiieieiiecieseeee et
Compiling Outpost
Compilation Filescccocoviiiiiniiniieieeeceece e 897
Runtime Files.......cocooiiiiiiiniiiniiiiiiiicecceeee 898
EPIOZUE .o 898

PArRT IV Appendixes 901
A What's on the CD 903

B Installing DirectX and Using the C/C++ Compiler 907

Using the C/C++ COMPILET....cceruiriiriniiiieiiiieicicerereneseeeeeeeene

C Math and Trigonometry Review 911

TTIZONOMEIIY ..euviieiiiieiieiienietetet ettt ettt ettt st sbe bt ese e e eneeneens
VBCLOTS. ...ttt ettt sttt be et b e

Vector Lengthoocoeieieiiiininirieeeeee e
NOrmalizationcccoveeeiieiiiieieie e

Scalar Multiplication

Vector AddItionccveeveeieeiecieeiecee e
Vector SUDLIACHONecuvieeieeeiiciieeieciee et
The Inner Product, or the “Dot” Productcccceeevvvvuvieeeicnenennn.
The Cross Productc.cccveeveeieeieiieeieceeceeeeie e
The Zero VECLOTveeuiieieeeieeieeiie ettt
POSIHON VECLOTS ..vviiiiieeieciieeeieeiee ettt

Vectors as Linear Combinations

XVi

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

D C++ Primer 925

E

F

WHhaL IS CH? oot 925
The Minimum You Need to Know About C++ ...cccovievievveniencennenns 928
New Types, Keywords, and Conventionscceceevuerveneeneeneennens 929
COMIMEILS .e.vvieutienteeiteeiie ettt et et et et et e e esbeetessteeaeesenesaeeneees
CONSLANES .eenvieiiienieeite ettt ettt et et e e e enbeete st e eatesenesaeenaees
Referential Variablescccoooveviiiiiniiniiieccccece e
Creating Variables On-the-Fly...
Memory Management........cc.eerueerierieenieerieeieereseesieesinesieeseeesieeseeenseens
Sream IO ..o
LSS vttt sttt ettt ettt ettt ettt sttt st a e beeae et ens
The New Struct in TOWNcccovieviiniinieiieeeeceece e
Just @ STIMPIE Class ...eeveeieriiiieiieeieeese e

Public Versus Privatecccoooveriirienienieieiececece e
Class Member Functions (A.K.A. Methods) ...
Constructors and Destructorscoeeeveereereenieenienieeiesieeee e
WIIting @ CONSIIUCLOTevuveeiieeieriieeireriieste e sre e
WIING @ DESIIUCIOT ..ovviiiiieiiiiieriieeiie et
The Scope Resolution OPeratorceceevveeverierienienieneeneeseeneeens
Function and Operator Overloadingcceceevervienienieneenieneennens

SUMIMATY <ottt ettt

Game Programming Resources 949

Game Programming SIeScoceveririeiiriiniininiinieieeererererenienienee 949
Download Points

2D/3D ENZINES ..viviiieiieiiiienienienieeiteiectctetetet ettt
Game Programming BOOKS.........cccceciviiiiniininininiicccrcccniee 951
Microsoft DirectX Multimedia EXpOSItion.......c..cceeeeieveieciencnenenne 951
Usenet NEWSZIOUPSc.oecveriirieririiniiieieeteiententesteereereeseeenenenennesrenee 951
Keeping Up with the Industry: Blues Newsc.ccocevevvevieciinininnenne. 952
Game Development Magazinescccccoveveveneneninieieciecrenienenenne 952
Game Web Site Developersccoceeeevierienieninininieieiercrcrenicnene 953
Xtreme Games LLC ... 953

ASCIl Tables 955
Index 961

Foreword

I remember first falling in love with computers back in 1983 while programming
Logo on an Apple Ile (thanks, Woz!). The sense of power I got from that experience
was very addicting and mind-shaping. The computer would do whatever I told it. It
didn’t get tired after countless repetitions or question my reasoning behind having it
perform any particular task. The machine just did it. I owe much of my career to that
experience, the movie War Games, and an author by the name of André LaMothe.

I bought my first book by André LaMothe, Sams Teach Yourself Game Programming
in 21 Days, back in 1994. It had never occurred to me that people could make a career
out of programming video games. It was then that I saw the connection between my
love for programming and my addiction to video games. Who would have ever
thought that all those hours of playing Galaga could now be considered research?
André’s writing and teaching style inspired me and gave me the confidence to believe
that I could program video games. I remember calling him up on the phone (I still
can’t believe he actually talks to people and gives out his phone number) and asking
for his help with a simple program I was making for my physics class based on his
gas model demo. I couldn’t get the program to work. Well, he instantly reviewed my
program and in seconds said something like, “Rich, you’re killing me, you need to put
a semicolon at the end of each line!” Well, that was it, and my first game program
was up and running.

A few years later, I had the pleasure of working with André on a video game called
Rex Blade as the tools programmer and a level designer. It was a tremendous learning
experience for me. We worked amazingly hard (André is a slave driver), had a lot of
fun (going to movies, gun shooting, skiing, and a lot more—can anyone say, “Desert
Eagle 51 caliber”? <GRIN>), and ended up with a 3D interactive video game trilogy.
We took Rex Blade from the concept to the shelves in an unbelievable six months
(Rex would make an interesting postmortem to be sure). Working on Rex taught me
what really went into making a real video game, and working with André showed me
what it really meant to work around the clock—and I do mean around the clock. I
thought he was kidding when he said he worked 100+ hours a week!

There are few areas of software engineering that push the limits of the hardware, the
software, and the programmer himself as much as game programming does. There are
so many intricate pieces that have to work together perfectly: math, physics, Al,
graphics, sound, music, GUI, data structures, and so forth. This is where Tricks of the
Windows Game Programming Gurus proves itself to be an essential tool in the art of
programming the video games of today and tomorrow.

This book takes you to the next level in game programming technology. The artificial
intelligence coverage alone is enough to make your mouth water—the demos are
killer. Where else can you get detailed coverage of fuzzy logic, neural nets, and
genetic algorithms and how to apply them to video games? The book also takes you

through all the major components of DirectX, including DirectDraw, DirectInput
(with force feedback coverage—Yes!), DirectSound, and the latest and greatest tech-
nology of DirectMusic.

Then there’s the physics modeling coverage. Finally, someone who knows what he’s
talking about has taken the time to delve into full collision response, momentum
transfer, and forward kinematics, and how to simulate them in real-time. Imagine
creatures that learn, objects that collide like in the real world, and enemies who
remember how you defeated them in your last encounter. These are the basics that
will make the great games of tomorrow.

I really have to hand it to André for writing this book. He always says that if he
didn’t, who would? It’s true: For someone to give away 20+ years of hard work,
secrets, and tricks to help others is really cool.

With technology advancing by leaps and bounds, I think it’s a great time to be alive,
especially if you’re a game programmer. It seems like every few months there’s a new
CPU, video card, or other piece of hardware that pushes the boundaries of what we
believe to be technologically possible. (I mean, it’s crazy to think that Voodoo III does
70 billion operations a second.) This great gift of technology comes with a price,
though. With it comes the expectation that the games we create will use this technol-
ogy, which raises the bar on what’s expected of tomorrow’s video games. It seems as
though in the very near future, the only limiting factors will be our knowledge and our
imagination.

It excites me to know that the next generation of game programmers will have this
book to inspire and educate them. And I think André hopes that somewhere, someone
will take his place in the 21st century and continue this work of disseminating the
black magic, because he needs a vacation!

Richard Benson
3D Game Programmer

DreamWorks Interactive

About the Author

André LaMothe (a.k.a. Lord Necron) has been programming for over 22 years and
holds degrees in mathematics, computer science, and electrical engineering. He has
written numerous articles on the subjects of graphics, game programming, and artifi-
cial intelligence. He is the author of Tricks of the Game Programming Gurus, Sams
Teach Yourself Game Programming in 21 Days, The Game Programming Starter Kit,
The Black Art of 3D Game Programming, and Windows Game Programming for
Dummies, all bestsellers. In addition, he coauthored Ciarcia’s Circuit Cellar I and I1.
Mr. LaMothe has also taught at the University of Santa Cruz Extension Multimedia
Department.

Last, but not least, André is the founder and CEO of Xtreme Games LLC, a think tank
and the world’s largest virtual game company, composed of over 250+ independent
developer studios.

He can be reached at ceo@xgames3d. com.

Contributing Authors of Online Books in Digital
Form
Location on CD: T3DGAME\ONLINEBOOKS

Matthew Ellis, author of Direct3D Primer

Matthew is a teenage 3D game programmer and author. He lives in Las Vegas, NV,
and is interested in all aspects of 3D game programming and graphics. He is currently
creating a new 3D engine, as well as publishing articles and working on a book of his
own.

He can be reached at matt@magmagames.com.
Sergei Savchenko, author of General 3D Graphics

Sergei is a graduate student of computer science at McGill University in Montreal.
Sergei hails from the city of Kharkov (XAPbKOB), Ukraine, in the former Soviet
Union.

In addition to his computer science studies, Sergei also studied aircraft design at the
Kharkov Aviation Institute. He also teaches computer science classes and performs
active research in automated reasoning.

He can be reached at savs@cs.mcgill.ca or at his Web page,
http://www.cs.mcgill.ca/~savs/3dgpl/.

David Dougher, author of Genesis 3D Engine Reference, Tool, and API Function
Manuals

David has been programming and gaming for over 25 years, creating his first com-
puter games on paper tape for use on the PDP-8 systems at Syracuse University in
1974. His collection of gaming magazines goes back to Strategic Review, Issue
Number 1 (the precursor to Dragon magazine). He is currently employed full-time as
a release engineer by Parlance Corp. and loves Babylon 5, Myst, Riven, Obsidian,
game design, teaching ballroom dancing, and his wife, although not in that order.

He can be reached at ddougher@ids.net.

Contributing Authors of Articles and Papers

Location on CD: T3DGAME\ARTICLES

Bernt Habermeier, author of Internet Based Client/Server Network Traffic
Reduction. Email: bert@bolt.com. Web page: http://www.bolt.com.

Ivan Pocina, author of KD Trees. Email: ipocina@aol.com.

Nathan Papke, author of Artificial Intelligence Voice Recognition and Beyond. Email:
nathan.papke@juno.com.

Semion S.Bezrukov, author of Linking Up with DirectPlay. Email: deltree@rocket -
mail.com.

Michael Tanczos, author of The Art of Modeling Lens Flares. Email:
webmaster@logic-gate.com.

David Filip, author of Multimedia Musical Content Fundamentals. Email:
grimlock@u.washington.edu.

Terje Mathisen, author of Pentium Secrets. Email: terjem@hda.hydro.com.

Greg Pisanich and Michelle Prevost, authors of Representing Artificial Personalities
and Representing Human Characters in Interactive Games. Email: gp@garlic.com,
prevost@sgi.com.

Zach Mortensen, author of Polygon Sorting Algorithms. Email:
mortensi@nersc.gov.

James P. Abbott, author of Web Games on a Shoestring. Email:
jabbott@longshot.com. Web page: http://www.longshot.com.

Mike Schmit, author of Optimizing Code with MMX Technology. Email:
mschmit@zoran.com, mschmit@ix.netcom.com.

Alisa J. Baker, author of Into the Grey Zone and Beyond. Email:
abaker@gcounsel.com.

Dan Royer, author of 3D Technical Article Series. Email: aggravated@bigfoot.com.
Web page: http://members.home.com/droyer/index.html.

Tom Hammersley, author of Viewing Systems for 3D Engines. Email:
tomh@globalnet.co.uk.

Bruce Wilcox, author of Applied Al: Chess is Easy. Go is Hard. Email:
brucewilcox@bigfoot.com.

Nathan Davies, author of Transparency in D3D Immediate Mode. Email:
alamar@cgocable.net.

Bob Bates, author of Designing the Puzzle. Email: bbates@legendent.com.

Marcus Fisher, author of Dynamic 3D Animation Though Traditional Animation
Techniques. Email: mfisher@avalanchesoftware.com.

Lorenzo Phillips, author of Game Development Methodology for Small Development
Teams. Email: pain19@ix.netcom.com.

Jason Mclntosh, author of Tile Graphics Techniques 1.0..

In addition, the CD contains a number of selected articles from the Game
Programming MegaSite at http://www.perplexed.com/. The articles are authored by

*Matt Reiferson, *Geoff Howland, Mark Baldwin, John De Goes, *Jeff Weeks, Mirek,
*Tom Hammersley, Jesse Aronson, Matthias Holitzer, Chris Palmer, Dominic Filion,
JiiQ, Dhonn Lushine, David Brebner, Travis “Razorblade” Bemann, Jonathan Mak,
Justin Hust, Steve King, Michael Bacarella II, Seumas McNally, Robin Ward,
Dominic Filion, Dragun, Lynch Hung, Martin Weiner, Jon Wise, and Francois
Dominic Larame.

*Contributed more than one article.

Acknowledgments

I always hate writing acknowledgements because there are simply too many people
involved in a book to mention everybody and give them proper thanks. However, here
goes once again, in no particular order.

I would first like to thank my parents for having me late in life, causing me to have so
many genetic mutations that I don’t need to sleep and I can work continuously with-
out a break. Thanks, Mom and Dad!

Next, I want to thank all the people at Macmillan Computer Publishing (MCP) for let-
ting me have my way with the book. Making corporate America do anything different
is surely a strain, and I am Mr. Nonconformist, but that’s what it takes if you want to
break new ground. Particularly, I want to thank the acquisitions editor, Angela
Kozlowski, for listening to my artistic/marketing concepts and making them happen;
Carol Bowers, the project editor, for making sure that my policy of “less editing is
more” was taken seriously; Dan Scherf, the media and permissions manager, for mak-
ing sure that all the programs made it to the CD; and Erik Dafforn, the development
editor, for making sure that the hundreds of figures and thousand-plus pages of manu-
script didn’t get mangled.

And of course, thanks to all the other editors and formatters that worked on the book,
including Steven Haines, Sean Medlock, Carol Ackerman, Kezia Endsley, and Howard
Jones. It seemed like all of you were playing musical chairs during editing, but you all
did a fantastic job. Steve and Sean especially caught me making stupid mistakes!

Next I want to thank the DirectX group at Microsoft, especially Kevin Bachus, for
helping with the acquisition of the latest DirectX SDK stuff, along with making sure
that I was sent to all the major DirectX parties. Very important to send me to parties;
that’s a good thing.

The next group I want to thank are all the companies that had something to do with
this book in one way or another, whether it was a piece of software or whatever. The
major players are Caligari Corporation for the use of TrueSpace, JASC for the use of
Paint Shop Pro, and Sonic Foundry for the use of Sound Forge. I would also like to
thank Matrox and Diamond Multimedia for demo 3D accelerators, Creative Labs for
sound cards, Intel Corporation for VTune, Kinetics for 3D Studio Max, and Microsoft
and Borland for their compiler products.

I’d like to thank all of my friends that I made contact with during this hellish produc-
tion. To all the guys at Gold’s Gym: Armand, Andrew, Paul, and Dave. To Mike
Perone, for always getting me that hard-to-find piece of software at a moment’s
notice. Oh yes, to my friend Mark Bell—or as I like to think of him, Mr. Happy—you
still owe me $180 from that ski trip eight years ago! (And I can’t stand always being
right anymore; please try harder, Mark. I can’t keep taking your money.)

Next I want to thank all the contributing editors who allowed me to put their articles
on the CD. If it weren’t for you guys, these poor readers would have nothing more
then my eccentric prose to read. A special thanks goes to Matthew Ellis, the author of
the Direct3D book on the CD, and to Richard Benson (Keebler) for doing the fore-
word to the book.

And finally, I have to thank the one person who was with me every day and always
supported me—my girlfriend Jennifer. I think I have finally met my match.

Thanks to everyone!

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

As the Publisher for Sams, I welcome your comments. You can fax, email, or write
me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: (317) 581-4770
Email: mstephens@mcp.com
Mail: Michael Stephens
Publisher
Sams

201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

“Dead or alive, you're coming with me.”
—Robocop

A long time ago, in a galaxy far, far, away, I wrote a book about game programming
called Tricks of the Game Programming Gurus. For me, it was an opportunity to cre-
ate something that I had always wanted—a book that taught the reader how to make
games. Anyway, it’s been a few years and I'm a little older and wiser, and I have defi-
nitely learned a lot of tricks <BG>. This book is going to continue where the old book
left off. I'm going to cover every major topic in game programming that I can fit
within the binding of this bad boy!

However, as usual, I’'m not going to assume that you are already a master programmer
or that you even know how to make games. This book is for beginners as well as
advanced game programmers. Nonetheless, the tempo is going to be fierce, so don’t
blink!

Today is probably the coolest time in history to be in the game business. I mean, we
now have the technology to create games that do look real! Imagine what will come
next? But all this technology isn’t easy to understand or trivial—it takes hard work.
These days the bar has definitely been raised on the skill set needed to make games.
But if you’re reading this, you are probably one of those people who like a challenge,
right? Well, you came to right place, because when you’re done with this book you
will be able to create a full 3D, texture-mapped, professionally lit video game for the
PC. Moreover, you will understand the underlying principles of artificial intelligence,
physics modeling, game algorithms, 2D/3D graphics, and be able to use 3D hardware
today and in the future.

What You're Going to Learn

In this book you’re going to learn about 100 teraquads of information! I'm going to
fill your neural net so full of information that you might have synaptic leakage!
Seriously, though, this volume covers all the elements necessary to create a Windows
9X/NT-based game for the PC:

e Win32 programming

 DirectX Foundation

* 2D graphics and algorithms

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

* Game programming techniques and data structures
e Multithreaded programming

* Artificial intelligence

* Physics modeling

e Using 3D acceleration hardware (on the CD)

And more...

This book is primarily about game programming. There are two cyber-books on the
CD that cover Direct3D Immediate mode and General 3D.

What You Need to Know

This book assumes that you can program. You are going to be fairly lost if you can’t
write C code. However, the book uses some C++—enough to make a C coder just a
little uneasy. But I will warn you if I'm doing anything weird. Also, there’s a decent
C++ primer in Appendix D, so check it out if you need a crash course. Basically, C++
is only needed here and there for examples when using DirectX.

Nevertheless, I've decided that I'm going to use C++ a little more on this book
because there are so many things in game programming that are object-oriented, and
it’s sacrilege to force them to be C-like structures. Bottom line—if you can program
in C, you should be fine. If you program in C/C++, you shouldn’t trip out at all.

Everyone knows that a computer program is nothing more than logic and math. Well,
3D video games put the emphasis on the math part! 3D graphics is all math. Luckily
for us, it’s cool math! (Yes, math can be cool.) About the only thing you need to know
is basic algebra and geometry. The vector and matrix stuff I will teach you along the
way. Heck, if you can add, subtract, multiply, and divide, you will be able to under-
stand 90 percent of what’s going even though you may not be able to rederive it. As
long as you can use the code, that’s all the matters. (Well, that and if 7 of 9 is on
Voyager tonight.)

That’s really all you need to know. Of course, you’d better call all your friends and
tell them that they won’t see you for about two years, because you’re going to be a
little busy. But just think of all the movies you’ll get to rent when you’re done with
your training!

INTRODUCTION

How This Book Is Organized

Tricks of the Windows Game Programming Gurus is divided into four parts, covering
14 chapters and six appendixes.

Part I: Windows Programming Foundations

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Journey into the Abyss
The Windows Programming Model
Advanced Windows Programming

Windows GDI, Controls, and Last-Minute Gift Ideas

Part II: DirectX and 2D Fundamentals

Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

DirectX Fundamentals and the Dreaded COM
First Contact: DirectDraw

Advanced DirectDraw and Bitmapped Graphics
Vector Rasterization and 2D Transformations
Uplinking with DirectInput and Force Feedback

Sounding Off with DirectSound and DirectMusic

Part Ill: Hardcore Game Programming

Chapter 11

Chapter 12
Chapter 13
Chapter 14

Algorithms, Data Structures, Memory Management, and
Multithreading

Making Silicon Think with Artificial Intelligence
Playing God: Basic Physics Modeling
Putting It All Together: You Got Game!

Part IV: Appendixes

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

What’s on the CD

Installing DirectX and Using the C/C++ Compiler
Math and Trigonometry Review

C++ Primer

Game Programming Resources

ASCII Tables

4

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Installing the CD-ROM

The CD-ROM contains all the source, executables, sample programs, stock art, 3D
modelers, sound effects, and bonus technical articles that make up the book. Here’s
the directory structure:

CD-DRIVE:\
T3DGAME\
SOURCE\
T3DCHAPQ1\
T3DCHAP02\
T3DCHAP14\
APPLICATIONS\
ARTWORK\
BITMAPS\
MODELS\
SOUND\
WAVES\
MIDI\
DIRECTX\
GAMES\
GOODIES\
ARTICLES\
ONLINEBOOKS\
ENGINES\

Each main directory contains specific data that you’ll need. Here’s a more detailed
breakdown:

T3DGAME—The root directory that contains all other directories. Be sure to read the
README . TXT within it for any last-minute changes.

SOURCE—Contains all the source directories for the book, in chapter order. Simply
drag the entire SOURCE\ directory to your hard drive and work from there.

DEMOS—Contains demo programs that various companies have so graciously
allowed me to place on the CD.

ARTWORK—Contains stock artwork that you may use royalty-free in your games.

INTRODUCTION

SOUND—Contains stock sound effects and music that you may use royalty-free in
your games.

DIRECTX—Contains the latest version of the DirectX SDK.
GAMES—Contains a number of 2D and 3D shareware games that I think are cool!

ARTICLES—Contains articles written by various experts in the field of game pro-
gramming for your edification.

ONLINEBOOKS—Contains online digital books covering Direct3D Immediate mode
and general 3D graphics.

ENGINES—Contains evaluation copies of various 3D engines.

There isn’t any general installation program for the CD because there are so many dif-
ferent types of programs and data. I'll leave the installation to you. However, in most
cases, you’ll simply copy the SOURCE\ directory to your hard drive and work within it.
As for the other programs and data, you’ll probably install them as you need them.

Installing DirectX

About the only important part of the CD that you must install is the DirectX SDK and
Run-Time files. The installation program is located within the DIRECTX\ directory,
along with a README . TXT file explaining any last-minute changes.

You must install DirectX 6.0 SDK or better to work with this CD. If
a you're not sure that you have the latest files on your system, run the

installation and it will tell you.

Compiling the Programs

I wrote the code for this book with Microsoft Visual C++ 5.0/6.0. However, in most
cases the programs will work with any Win32-compliant compiler. Nevertheless, 1
suggest Microsoft VC++ because it works the best for this type of work.

If you are unfamiliar with your compiler’s IDE, you are going to be wildly lost com-
piling Windows programs. Please take the time to learn your way around the com-
piler, and at least know how to compile a “Hello World” console program or
something similar before you dive into compiling the programs.

To compile Windows Win32 .EXE programs, all you need to do is set the target of
your program project to Win32 .EXE and compile. However, to create DirectX

programs, you must include the DirectX import libraries in your project. You may
think that you can simply add the DirectX libraries to your include path, but that

TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

won’t work! Save yourself a headache and include the DirectX .LIB files in your
project or workspace manually. You can find the .LIB files in the LIB\ directory, right
under the main DirectX SDK directory that you installed under. That way there won’t
be any linker confusion. In most cases, you’ll need the following:

DDRAW.LIB DirectDraw import library

DINPUT.LIB DirectInput import library

DSOUND.LIB DirectSound import library

DMUSIC.LIB DirectMusic import library

DSOUND3D.LIB DirectSound3D import library
D3DIM.LIB Direct3D Immediate Mode import library
DXGUID.LIB DirectX GUID library

WINMM.LIB Windows Multimedia Extensions

I’ll go into more detail on these files when you actually start working with them, but
at least keep them in mind when you start getting “unresolved symbol” errors from
your linker. I don’t want any emails on this subject from rookies!

In addition to the DirectX .LIB files, you must include the DirectX .H header files in
your header search path, so keep that in mind. Also, be sure to make the DirectX SDK
directories first in the search path list, because many C++ compilers contain old ver-
sions of DirectX and the old headers might be found in the compiler’s own INCLUDE\,
which is wrong. The proper place is the DirectX SDK include directory, which is
located in the main installation directory of the DirectX SDK in INCLUDE\.

Finally, if you use Borland products, make sure that you use the Borland versions of
the DirectX .LIB files. They can be found in the BORLAND\ directory of the DirectX
SDK installation.

Windows Programming
Foundations

Chapter 1
Journey into the Abyss 9

Chapter 2
The Windows Programming Model 47

Chapter 3
Advanced Windows Programming 95

Chapter 4
Windows GDI, Controls, and Last-Minute Gift Ideas 165

CHAPTER 1

Journey into the Abyss

“Oh, you want some too?!?”
—Hudson, Aliens

Windows programming has been an ongoing war with a long
history. Game programmers have resisted the Windows platform
since the beginning of time, but like the Borg say, “Resistance is
futile...” I tend to agree. In this chapter you’re going to take a
whirlwind tour of Windows:

 History of games

* Types of games

* The elements of game programming
e Using tools

e An example game: FreakOut

A Little History

It all began sometime in the *60s, when the first mainframe
computers came to be. Now, don’t quote me on this, but one of
the first computer games ever played was Core Wars on Unix
machines. When the *70s rolled around, there were quite a
number of text-based and crude graphic adventures running on
mainframe computers and minicomputers all around the world.

10 PART 1

T Windows Programming Foundations

The funny thing is, back then most games were networked! I mean, 90 percent of the
game programs were MUDs (Multi-User Dungeons) or similar simulations, like Star
Trek and war simulations. However, the masses never got a taste of computer games
until the quintessential Pong came out. Designed by Nolan Busnell, this single game
really started the whole video game arcade business overnight, and Atari was born.

Then, around 1976-1978, the TRS-80, Apple, and Atari 800 all hit the market. These
were the first computers that a consumer could buy. Of course, before then you could
buy kits like the Altair 8000, but who wanted to put them together? In any case, these
computers all had their pros and cons. The Atari 800 was by far the most powerful
(I'm convinced I could write a version of Wolfenstein that would work on it), the
TRS-80 was the most businesslike, and the Apple had the best marketing.

Slowly, games started to hit the market for these systems, and many teenage
millionaires were made overnight. A good lunar lander or Pong-type game was all
you needed to strike it rich! In those days, computer games looked like computer
games, and only a handful of people knew how to make them. There were absolutely
no books on the topic. Every now and then someone would publish a 50-100-page,
semi-underground booklet that had some pieces of the puzzle, and maybe there’d be a
magazine article in Byte, but for the most part you were on your own.

The *80s are when things started to heat up. The first 16-bit computers were available,
like the IBM PC (and compatibles), Mac, Atari ST, AMIGA 500, and so on. This was
the time when games started to look good. There were even some 3D games on the
market such as Wing Commander and Flight Simulator, but the PC was definitely at
the back of the line of game machines. By 1985, the Amiga 500 and Atari ST reigned
supreme as the ultimate game-playing computers. However, the PC slowly gained
popularity due to its low price and usefulness in the business sector. And the bottom
line is that the computer with the largest market base, regardless of its technology or
quality, will rule the world in the end.

By the early 1990s, the IBM PC-compatible was the leader. With the release of
Microsoft Windows 3.0, it was all over for the Apple Macintosh. The PC was the
“working person’s computer.” You could actually play with it, write programs for it,
and open it up and connect stuff to it. I think that those are the reasons why so many
hobbyists stuck to PCs rather than the sexier Mac stuff. Bottom line—you couldn’t
have fun with Macs!

But the PC was still lagging behind in the graphics and audio department. The PC
seemed like it just didn’t have enough horsepower to make a game that looked as
good as something on an Amiga or a game console.

And then there was light...

CHAPTER 1 1

Journey into the Abyss m

In late 1993, Id Software released DOOM as a follow up to Wolfenstein 3D (one of
the first shareware 3D games, also by Id). The PC became the game-playing and
programming platform of choice for the home computer market, and it has remained
that way ever since. DOOM proved that if you’re clever enough, you can make a PC
do anything. This is a very important point. Remember it. There is no substitute for
imagination and determination. If you believe it’s possible—it is!

After the DOOM craze hit, Microsoft really started to reevaluate its position on
gaming and game programming. It realized that the entertainment industry is huge
and only getting bigger. It also realized that it wanted to be part of that industry, so
big plans were drawn up to get Microsoft into the game.

The problem was that even Windows 95 had terrible real-time video and audio
capabilities. So Microsoft created a piece of software called Win-G to address the
video aspect of the problem. Win-G was heralded as the ultimate game programming
and graphics subsystem. It turned out to be nothing more than a couple of graphics
calls to draw bitmaps, and Microsoft literally denied its existence after about a
year—no joke!

However, work had already begun on a new set of graphics, sound, input, networking,
and 3D systems (a la the Rendermorphics acquisition). And DirectX was born. As
usual, the marketing people at Microsoft got carried away, claiming that DirectX
would solve all the world’s game programming problems on the PC platform and
Windows games would be as fast as or faster than DOS32 games. That didn’t quite
happen.

The first couple of iterations of DirectX were horrible failures as actual products, but
not in technological terms. Microsoft simply underestimated the complexity of video
game programming. (And of video game programmers!) But by DirectX 3.0, DirectX
worked better than DOS! However, most game companies at this time (1996-1997)
still were working with DOS32, and they didn’t make the transition to DirectX for
actual product releases until version 5.0.

Today, DirectX is coming up on version 8.0 (this book covers 7.0), and it’s a killer
API. True, you have to think a little differently—using COM (the Component Object
Model), programming in Win32, and not having total control over the whole computer
anymore—but that’s life. I don’t think that Geordi can take over the whole computer
system on the Enterprise either, so if resource-sharing works on a Galaxy Class star-
ship, it’s good enough for me.

With DirectX technology, you can create a virtual, DOS-like machine with a 4GB
address space (or more) and linear memory, and you can program as if you’re in DOS
(if that’s what you like). More importantly, now you can leverage every new piece of

12 PART 1

W Windows Programming Foundations

graphics and sound technology instantly. This is due to DirectX’s forward-looking
design and technology. Anyway, that’s enough about DirectX; you’ll get the full
treatment soon enough. Let’s get back to history...

First there was DOOM, which used software rasterization only. Take a look at Figure
1.1 to see a screen shot of Rex Blade, a DOOM-clone. The next generation of 3D
games, like Quake I, Quake II, and Unreal, really were a quantum leap. Take a look
at Figure 1.2 to see a screen shot of Unreal. This game and others like it are simply
unbelievable. All of them contain software rasterizers along with hardware accelera-
tion code to get the best of both worlds. And let me tell you, Unreal or Quake II
running on a Pentium IT 400MHz with Voodoo II acceleration is as sweet as it gets.

Figure 1.1 r SESTER——— [afdue Had3bd ¥e531s]
) . CRU:SEE TF Rl e
Rex Blade: The first ARz d0E4 G u §
generation in Doom CRYPTO:Ld
technology. [RRLEE LELHM

brA:

&

¢ HETHARE———
L FLAYER
ANTI-C BOOTS

[HAND #AP

INFOCOAPASS

[y =t]
[

Figure 1.2
It’s so good, it’s
Unreal!

CHAPTER 1 13

Journey into the Abyss m

So where does this leave us? In a world were technology is so advanced that the sky
is the limit. However, there’s always the next “big thing.” Even though games like
Quake and Unreal can take years to make, I’'m hoping that you’ll come up with
something just as engaging!

The history lesson’s over. Let’s get to the core of the matter with design.

Designing Games

One of the hardest things about writing video games is designing them. Sure, 3D
mathematics is hard, but thinking of a fun game and a design to go along with it is
just as difficult, in a manner of speaking, and definitely as important. Who cares if
you have the latest volumetric photon traces if the game sucks?

Now, thinking up a game idea isn’t that hard. It’s the details, final implementation,
and visual look that make the difference between the bargain bin and the cover of PC
Gamer. So let’s outline some basic concepts and rules of thumb that have worked for
me and paid for a Dodge Viper or two.

Types of Games

These days, there are as many game types as political promises (those that are made,
not kept), but you can bunch them into a handful of genres:

DOOM-like first-person games—These games are full 3D, for the most part, and
you view them from the character’s perspective. DOOM, Hexen, Quake, Unreal, Duke
Nukem 3D, and Dark Forces are all good examples of this type of game.
Technologically, they’re probably the most difficult to develop, and they require
cutting-edge technology to be noticed.

Sports games—Sports games can be either 2D or 3D, but these days more and more
are 3D. In any case, the sport can be one-man or team play. The graphics in sports
games have come a long way. Maybe they’re not as impressive as first-person games,
but they’re catching up. However, the artificial intelligence in sports games is some of
the most advanced of all the game genres.

Fighting games—Fighting games are typically played by one or two players, and the
action is viewed from the side or by a floating 3D camera. The game imagery can be
2D, 2.5D (multiple 2D bitmap images of 3D objects), or full 3D. Tekken for the Sony
Playstation is the game that really made the genre for the home console market.
Fighting games aren’t as popular on the PC, probably due to the interface problems
with controllers and the two-player fun factor.

4 PART 1

W Windows Programming Foundations

Arcade/shoot’em-up/platform—These games are your typical Asteroids, Pac Man,
and Jazz Jackrabbit type stuff. They’re basically old-school games that are primarily
2D, but they’re being redefined and remade into 3D worlds. However, the gameplay is
relatively the same as it was in 2D.

Mechanical simulations—These games encompass any kind of driving, flying,
boating, racing, and tank-battle simulation, and any other kind that you can think of.
For the most part, these are 3D and have always been (even though they didn’t look
good until recently).

Ecosystem simulations—This is really a new kind of game that has no real-world
analog—other than the real world itself. Here I’m talking about Populous, SimCity,
SimAnt, and so on. These games allow you, the player, to be a god of sorts and
control an artificial system of some kind, whether it’s a city, a colony of ants, or a
financial simulation like Gazzillonaire (very cool game, BTW).

Strategy or war games—These games have splintered into a number of subgenres.
But I’m not religious about it, so suffice it to say we’re talking about strategy, turn-
based (sometimes), thinking types of games such as Warcraft, Diablo, Final Fantasy
VII, and so on. Again, I’m being a little cavalier here since Diablo is real-time, but it
still involves a great deal of strategy and thinking. On the other hand, Final Fantasy is
turn-based and not real-time.

Interactive stories—This category includes Myst-like games. Basically, these are
games that are prerendered or on “tracks,” and you move through the game by
figuring out puzzles. Usually, these games don’t allow free roaming and are like
playing interactive books, for lack of a better definition. Moreover, these aren’t really
“to-the-metal” game programs because 99 percent of them are written using Director
or a Director-like tool. Boring, Jules.

Retro games—This area of gaming has sprung up overnight. In a nutshell, there
are people who want to play old games, but with more bells and whistles than the
originals. For example, Atari has made about 1,000 versions of Tempest. Granted,
they never sell, but you get the point. However, I have had a lot of luck remaking
some of the old games like Dig Dug, Centipede, Frogger, and so on.

Pure puzzle and board games—There’s not much to say here. These games can be
2D, 3D, prerendered, or whatever. Tetris, Monopoly, and Mahjong are a few games
that fall into this category.

Brainstorming

Once you have decided what kind of game you want to make—which is usually easy
since we all know what we like—it’s time to think up the game. This is where you’re
totally on your own. There’s no way to come up with good game ideas consistently.

CHAPTER 1 15

Journey into the Abyss m

Basically, you have to think of a game that you would like to make and develop it into
something that sounds cool, is doable, and that other people will like as well.

Of course, you can get help by using other games as models or starting points. Don’t
copy another product exactly, but loosely following successful products is fine. Also,
read a lot of science fiction books and game magazines, see what is selling, and watch
a lot of movies for cool story ideas, games ideas, or just visual motivation.

What I usually do is sit with a friend (or by myself) and just throw out ideas until
something sounds cool. Then I develop the idea until it sounds plausible or it falls
apart. This can be very frustrating. You may overthink all your ideas and throw your
hands up after two or three hours. Don’t despair—this is a good thing. If a game idea
survives the night and into the next day and you still like it, chances are that you
might have something.

Warning I want to say something that’s very important, so listen carefully—don“t
bite off more than you can chew! I've received thousands of emails from

newbie game programmers who want to create something at the level
of DOOM or Quake for their first game. It's simply not going to happen.
You'll be lucky if you can finish an Asteroids clone in 3-6 months, so
don’t get crazy. Set a reasonable goal. Try to think up something you
can do by yourself, because in the end you'll be working by yourself—
people flake out. Again, try to keep your first game ideas simple.

Now let’s move on to some details.

The Design Document and Storyboards

Once you have a game idea, you need to get it on paper. Now, when I do a big game
product, I require myself to make a real design document, but for little games, a few
pages of details will do. Basically, a design document is a roadmap or outline of a
game. It should have as many details about the game, the levels, and the gameplay as
you can think of. This way you know what you’re making and can follow some kind
of plan. Otherwise, you will keep changing things and your game will end up being
incoherent.

Usually, I like to write down a simple story to begin with, maybe a page or two that
describes what the game is about. Who is the main character? What is the idea of the
game? And lastly, how do you win the game? Then I decide on the hardcore details of
the game—the levels and the gameplay—and outline them as much as possible. When
I’m done, I can always add or delete things, but at least [have a working plan. If
think of 100 cool new ideas, I can always add them and not forget them.

16 PART 1

T Windows Programming Foundations

Obviously, the amount of detail is up to you, but write something down. At least some
sketches! For example, maybe you don’t even want a full design document and are
more comfortable with some crude sketches of the levels and gameplay. Figure 1.3 is
an example storyboard that you might make for a game. Nothing complicated, just
something to look at and work from.

Figure 1.3 Blnegy star system GIOV{ing
A basic storyboard. X B lowi
y ° O Glowing o o

“Blade = Talon Q o o (@)

Runner’ —>] P4 NG

look - Wire o
I:i oVl frame | Raptor Each 4

rotating

Scene 1: Intro Scene 2: Main menu Scene 3: Level 1
* Fade into city * Player selects ship Asteroid Field

* Begin monologue

Making the Game Fun

The last part of designing a game is the reality check. Do you really think that the
game will be fun and people will like it? Or are you lying to yourself? This is a
serious question. There are about 10,000 games on the shelves and about 9,900
companies going out of business, so think about this. If you’re totally excited about
the game and can imagine wanting to play it more than anything, you’re in the
ballpark. But if you, as the designer, just get lukewarm about the idea, imagine
how other people are going to feel about it!

The key here is to do a lot of thinking and beta testing of the game and add all kinds
of cool features, because in the end it’s the details that make a game fun. It’s like fine
workmanship on a piece of handcrafted oak furniture (I personally hate wood, but
work with me). People appreciate the details.

The Components of a Game

Now it’s time to look at what makes a video game program different from any other
kind of program. Video games are extremely complex pieces of software. In fact, they
are without a doubt the hardest programs to write. Sure, writing MS Word is harder
than writing Asteroids, but writing Unreal is harder than writing any other program I
can think of!

This means that you have to learn a new way of programming that’s more conducive
to real-time applications and simulation, rather than the single-line, event-driven, or
sequential logic programs that you may be used to. A video game is basically a
continuous loop that performs logic and draws an image on the screen, usually at a
rate of 30 frames per second (fps) or more. This is similar to how a movie is dis-
played, except that you are creating the movie as you go.

CHAPTE

R1

Journey into the Abyss qu.

17

Figure 1.4 Initialization
* Allocate memory
General game loop « Load files
architecture. « Build tables
Exit? Main event loop ———>| Handle windows
— call windows stuff f<——— [events
Init timing
Cleanup
* Reallocate
* Close files
Retrieve player
Joystick
Exit to O/S Loop
Mouse -
Main logic Time sync
* Game Al lock to
. e ; 30 FPS
: gr:lhgon protection Off-screen
ysics memory
Q Q Copy image to
display Wait
Render next frame O ‘O @
to off-screen O
buffer
Q O
O«
Qo

Therefore, let’s begin by taking a look at a simplified game loop, as shown in Figure
1.4. The following list describes each section.

Section 1: Initialization

In this section, you perform the standard operations you would for any program, such
as memory allocation, resource acquisition, loading data from disk, and so forth.

Section 2: Enter Game Loop

In this section, the code execution enters into the main game loop. This is where the
action begins and continues until the user exits out of the main loop.

Section 3: Retrieve Player Input
In this section, the player’s input is processed and/or buffered for later use in the Al
and logic section.

Section 4: Perform Al and Game Logic

This section contains the majority of the game code. The artificial intelligence,
physics systems, and general game logic are executed, and the results are used to
draw the next frame on the screen.

John H Warriner

errata
"Collision Protection" should be "Collision Detection"

18 PART 1
T Windows Programming Foundations

Section 5: Render Next Frame

In this section, the results of the player’s input and the execution of game Al and
logic are used to generate the next frame of animation for the game. This image is
usually drawn on an off-screen buffer area, so you can’t see it being rendered. Then it
is copied very quickly to the visible display.

Section 6: Synchronize Display

Many computers will speed up or slow down due to the game’s level of complexity.
For example, if there are 1,000 objects running on the screen, the CPU is going to
have a higher load than if there were only 10 objects. The frame rate of the game will
vary, which isn’t acceptable. Hence, you must synchronize the game to some maxi-
mum frame rate and try to hold it there using timing and/or wait functions. Usually,
30fps is considered to be optimal.

Section 7: Loop

This section is fairly simple—just go back to the beginning of the game loop and do it
all again.

Section 8: Shutdown

This is the end of the game, meaning that the user has exited the main body or game
loop and wants to return to the operating system. However, before the user does this,
you must release all resources and clean up the system, just as you would for any
other piece of software.

You might be wondering about all the details of a real game loop. Granted, the pre-
ceding explanation is a little oversimplified, but it captures the essence of what’s
going on. In most cases, the game loop will be an FSM (Finite State Machine) that
contains a number of states. Listing 1.1 is a more detailed version of what a C/C++
game loop might look like in real code.

Listing 1.1 A Simple Game Event Loop

// defines for game loop states

#define GAME_INIT // the game is initializing
#define GAME_MENU // the game is in the menu mode
#define GAME_STARTING // the game is about to run
#define GAME_RUN // the game is now running
#define GAME_RESTART // the game is going to restart
#define GAME_EXIT // the game is exiting

// game globals
int game_state = GAME_INIT; // start off in this state
int error =0; // used to send errors back to 0S

CHAPTER 1 9

Journey into the Abyss m

// main begins here

void main()

{

// implementation of main game loop

while (game_state!=GAME_EXIT)
{
// what state is game loop in
switch(game_state)

{
case GAME_INIT: // the game is initializing
{
// allocate all memory and resources
Init();

// move to menu state
game_state = GAME_MENU;
} break;

case GAME_MENU: // the game is in the menu mode
{
// call the main menu function and let it switch states
game_state = Menu();

// note: we could force a RUN state here
} break;

case GAME_STARTING: // the game is about to run
{
// this state is optional, but usually used to
// set things up right before the game is run
// you might do a little more housekeeping here
Setup_For_Run();

// switch to run state
game_state = GAME_RUN;
} break;

case GAME_RUN: // the game is now running

{
// this section contains the entire game logic loop

// clear the display
Clear();

// get the input
Get_Input();

// perform logic and ai
Do_Logic();

continues

20 PART 1

“ Windows Programming Foundations

Listing 1.1 Continued

// display the next frame of animation
Render_Frame() ;

/] synchronize the display
Wait();

// the only way that state can be changed is
// thru user interaction in the

// input section or by maybe losing the game.
} break;

case GAME_RESTART: // the game is restarting
{
// this section is a cleanup state used to
// fix up any loose ends before
// running again
Fixup();
// switch states back to the menu
game_state = GAME_MENU;
} break;

case GAME_EXIT: // the game is exiting
{
// if the game is in this state then
// it's time to bail, kill everything
// and cross your fingers
Release_And_Cleanup();

// set the error word to whatever
error = 0;

// note: we don't have to switch states
// since we are already in this state
// on the next loop iteration the code
// will fall out of the main while and
// exit back to the 0S

} break;

default: break;
} // end switch

} // end while

// return error code to operating system
return(error);

} // end main

CHAPTER 1 2

Journey into the Abyss m

Although Listing 1.1 is non-functional, I think that you can get a good idea of the
structure of a real game loop by studying it. All game loops pretty much follow this
structure in one way or another. Take a look at Figure 1.5, the state transition diagram
for the game loop logic. As you can see, the state transitions are fairly sequential.

Figure 1.5
State transition dia-
gram for a game loop.

Game
Starting Game
Restart

&

We’ll talk more about game loops and finite state machines later in the chapter when
we cover the FreakOut demo game.

General Game Programming Guidelines

Next I want to talk about some general game programming techniques and
philosophies that you should think about and try to adopt (if you can) to make
game programming much easier.

To begin with, video games are ultra-high-performance computer programs. No
longer can you use high-level APIs for time-critical or memory-critical code sections.
For the most part, you must write everything yourself that is related to the inner loop
of your game code, or else your game will suffer terrible speed and performance
problems. Obviously, this doesn’t mean that you can’t trust APIs like DirectX, since
DirectX was written to be as high-performance and “thin” as possible. But in general,
avoid high-level function calls.

With that in mind, take a look at a list of tricks to keep in mind as you’re
programming.

22 PART 1

“ Windows Programming Foundations

Don’t be afraid to use global variables. Many video games don’t use
parameters for a lot of time-critical functions, instead using a global
parameter passing area. For example, if a function looks like this:

void Plot(int x, int y, int color)

{

// plots a pixel on the screen
video_buffer[x + y*MEMORY_PITCH] = color;
} // end Plot

The body of the function takes less time than the function call. This is
due to the parameter pushing and popping on the stack. In this case a
better method might be to create a global parameter passing area and
then make assignments before a call, like this:

int gx,gy,gz,gcolor; // define some globals

void Plot_G(void)

{
// plot a pixel using globals
video_buffer[gx + gy*MEMORY_PITCH] = gcolor;

} // end Plot_G

Use inline functions. You can improve the previous trick even more by
using the inline directive to get rid of the function call completely. The
inline directive instructs the compiler to make its best attempt to put
the code for the function right where it's called, rather than making the
actual function call. Of course, this makes bigger programs, but speed is
more important. Here's an example:

inline void Plot_I(int x, int y, int color)

{

// plots a pixel on the screen

video_buffer[x + y*MEMORY_PITCH] = color;

} // end Plot_I

Notice that | didn't use globals because the compiler will in effect per-
form the same type of data aliasing. However, globals would come in
handy if only one or two of the parameters were changing between
calls because the old values could be used without reloading.

Always use 32-bit variables rather than 8- or 16-bit. The Pentium and
later processors are totally 32-bit. This means that they don't like 8- or
16-bit data words, and in fact, smaller data can slow them down

due to caching and other related memory addressing anomalies. For
example, you might create a structure that looks something like this:

CHAPTER 1 23

Journey into the Abyss m

struct CPOINT

{

short x,y;
unsigned char c;
} // end CPOINT

Although this may seem like a good idea, it's not! First, the structure
itself is now five bytes long—(2*sizeof (short) + sizeof(char))
=5. This is really bad, and it's going to wreak havoc on the memory
addressing. A better approach is the following structure:

struct CPOINT

{

int x,y;

int c;

} // end CPOINT

@ Tip STRUCTs in C++ are just like CLASSes, except that they have default
PUBLIC visibility.

This new structure is much better. For one thing, all the elements are the same size—
that is, sizeof (int) = 4 bytes. Therefore, a single pointer can be incremented on a
DWORD boundary to access any member. Of course, the new structure is now
(8*sizeof(int)) = 12 bytes, but at least it’s a multiple of 4 or on a DWORD bound-
ary. This is definitely going to improve performance.

In fact, if you really want to make things rock, you can pad all structures to make
them multiples of 32 bytes. This is the optimal length due to standard on-chip cache
line sizes in the Pentium class processors. You can pad manually by adding dummy
variables, or you can use a compiler directive (the easy way). Of course, this may
waste a lot of memory, but it may be worth it for the increase in speed.

Comment the heck out of your code. Game programmers are notorious
for not commenting their code. Don’t make the same mistake. Clean,
well-commented code is always worth the extra typing.

PART |

1o 8

' Windows Programming Foundations

Program in a RISC-like (Reduced Instruction Set Computer) manner. In
other words, make your code simple rather than complex. Pentium and
Pentium Il processors in particular like simple instructions rather than
complex ones. And making your code longer, with simpler instructions,
makes it easier for the compiler. For example, don’t do this:

if ((x+=(2*buffer[index++1)>10)

{

// do work

} // end if

Do this:

x+=(2*buffer[index]);
index++;

if (x > 10)
{

// do work
} // end if

There are two reasons for coding like this. First, it allows a debugger to
put break points between code sections. Second, it makes it easier for
the compiler to send simplified code to the Pentium, which allows it to
process more code in parallel using multiple execution units. Complex
code is bad!

Use binary shifts for simple multiplication of integers by powers of 2.
Since all data in a computer is stored in binary form, shifting the bit pat-
tern to the left or right is equivalent to multiplication or division,
respectively. For example:

int y _pos = 10;

// multiply y_pos by 64
y_pos = (y_pos << 6); // 2"6 = 64

Similarly,

// to divide y_pos by 8
y_pos = (y_pos >> 3); // 1/2"3 = 1/8

You'll see more tricks like this when you get to the optimization
chapters. Cool, huh?

Write efficient algorithms. All the assembly language in the world isn't
going to make an n”2 algorithm go faster. It's better to use clean,
efficient algorithms rather than brute force.

CHAPTER 1

o g

Journey into the Abyss m

Don’t optimize your code as you program. This is usually a waste of
time. Before you start heavy optimization, wait until you're done with a
major code block or until you're done with the whole game. This will
save you time in the end because you won't have to deal with cryptic
code or optimizations that aren’t necessary. When the game is done,
that’s when you should start profiling and finding problem areas to
optimize. On the other hand, don’t program sloppily.

Don’t write a lot of complex data structures for simple objects. Just
because linked lists are cool doesn’t mean you should use them

for a fixed array that you know will always be around 256 items. Just
allocate it statically and be done with it. Video game programming is
90 percent data manipulation. Keep your data as simple and visible as
possible so you can access it quickly, do what you need to, and move on.
Make sure the data structure fits the problem.

Use C++ sparingly. If you're a seasoned professional, go ahead and do as
you please, but don’t go class crazy or overload everything to death. In
the end, simple, straightforward code is the best and easiest to debug.
And | never want to see multiple inheritance!

If you see that you're going down a rocky road, stop, back up, and take
a detour. | have seen many game programmers start down a bad pro-
gramming line and bury themselves. It's better to realize you made a
mistake and redo 500 lines of code than to have a generally undesirable
code structure. So, if you see a problem with what you‘re doing, reeval-
uate it and make sure that the time you're saving is

worth it.

Back up your work regularly. When you‘re writing game code, you're
going to lock up the system fairly frequently. Redoing a sorting algo-
rithm is one thing, but redoing the Al for a character and the collision
detection is another.

Before you start on your game projects, be organized. Use reasonable
filenames and directory names, come up with a consistent variable nam-
ing convention, and try to use separate directories for graphics and
sound data rather than dumping everything in one directory.

25

26 PART 1

W Windows Programming Foundations

Using Tools

Writing video games used to require nothing more than a text editor and maybe a
homemade paint program. However, today things are a little more complicated. At a
minimum, you need a C/C++ compiler, a 2D paint program, and a sound processing
program. In addition, you might need a 3D modeler if you’re going to do a 3D game,
along with a music sequencing program if you’re going to use any MIDI.

Let’s take a look at some of the more popular products and what they do.

C/C++ Compilers

For Windows 9X/NT development, there’s simply no better compiler than MS VC++
5.0+. It does everything you need it to, and more. The .EXEs generated are the fastest
code available. The Borland compiler will also work fine (and is a lot cheaper), but it
has a much smaller feature set. In either case, you don’t need the full-blown version
of either one. A student version that makes Win32 .EXEs is more than enough.

2D Art Software

Here you have paint programs, drawing programs, and image processing. Paint
programs primarily allow you to draw images pixel by pixel with primitives and
manipulate them. As far as I’'m concerned, Paint Shop Pro 5.0+ by JASC is the leader
of the pack for price vs. performance. Fractal Design Painter is also great, but it’s
more for traditional artists, not to mention that it’s very expensive. My favorite is
Corel Photo-Paint, but that’s definitely more firepower than most newbies need.

On the other hand, drawing programs allow you to create images that are mostly
constructed from curves, lines, and 2D geometrical primitives. These types of
programs aren’t as useful, but if you need one, Adobe Illustrator is the way to go.

The final class of 2D art programs is the image processing type. These programs are
more for post-production work than for art creation. Adobe Photoshop is the favorite
in most circles, but I think Corel Photo-Paint is better. Decide for yourself.

Sound Processing Software

Ninety percent of all sound effects (SFX) used in games today are digitized samples.
To work with sound data of this type, you’re going to need a digital sound processing
program. The best program in this genre is Sound Forge Xp. It has by far the most
complex sound processing capabilities I have ever seen, and yet it’s the simplest

to use.

3D Modelers

This is where things get financially challenging. 3D modelers can cost tens of
thousands of dollars, but recently a number of low-cost modelers have shown up that
have enough power to literally make a movie. The modeler that I primarily use for

CHAPTER 1 27

Journey into the Abyss m

simple-to-medium-scale 3D models and animation is Caligari trueSpace III+. This is
the best 3D modeler for the price. It’s a few hundred dollars and has the best interface
there is.

If you want a little more firepower and absolute photorealism, 3D Studio Max II+ is
the way to go. It’s around $2,500, though, so that might be something to think about.
However, for the most part we’re going to use these modelers just to create 3D
meshes, not for rendering, so all the bells and whistles aren’t really needed. trueSpace
is the way to go.

Music and MIDI Sequencing Programs

There are two kinds of music in today’s games: pure digital (like a CD) and MIDI
(Musical Instruments Digital Interface), which is a synthesized performance based on
note data. If you want to manipulate MIDI information and songs, you’ll need a
sequencing package. One of the best and most reasonably priced is called Cakewalk,
so I suggest that you look into this program if you plan on recording and manipulat-
ing MIDI music. I'll talk about MIDI data when covering DirectMusic in Chapter 10,
“Sounding Off With DirectSound and DirectMusic.”

M\S Y And now for the cool part... A number of the software manufacturers
-~ listed here have allowed me to put shareware or evaluation
ﬁ“ X versions on the CD, so make sure to check them out!

Setting Up to Get Down—Using the Compiler

One of the most frustrating parts of learning Windows game programming is learning
how to use the compiler. In most cases, you’re so excited to get started that you dive
into the IDE and try to compile, and a million compiler and linker errors pop up! To
help with this problem, let’s cover a few basic compiler concepts here.

0. Read the entire compiler instructions—please, please, I beg you!

1. You must install the DirectX SDK on your system. All you need to do is
navigate to the <DirectX SDK> directory on the CD, read README . TXT, and do
what it says (which should be nothing more than “Click on the DirectX SDK
INSTALL.EXE program”).

2. We are going to make Win32 .EXE programs, not .DLLs, ActiveX components,
etc. So if you want to compile, the first thing you need to do with your compiler
is create a new project or workspace and set the target output file to Win32
.EXE. This step is shown for the VC++ 5.0 compiler in Figure 1.6.

2 PART |

Windows Programming Foundations

Figure 1.6
Creating a Win32

.EXE with Visual
-
C++5.0. —

[C:5curce Code\SOURCEY o

:
™\in32 Console Application
[] Win32 Dynamic-Link Library
%] Win3z Steti Library

3. Add the source files to the project using the ADD Files command from the main
menu or from the project node itself. This is shown for the VC++ 5.0 compiler
in Figure 1.7.

Figure 1.7
Adding files to a pro-
ject with VC++ 5.0.

4. When you get to the DirectX chapters, and from there on, you’re going to
have to include the DirectX COM interface libraries listed here and shown in
Figure 1.8.

« DDRAW.LIB
 DSOUND.LIB

« DSOUND3D.LIB
« DINPUT.LIB

» DMUSIC.LIB

e« DSETUP.LIB

CHAPTER 1 29

Journey into the Abyss m

Figure 1.8
The resources needed |mmmmmm—————
Compiler I

to create a Win32 .h Headers

DirectX application.
.cpp C++ files

Y
| Linker Ii
DDraw.Lib
DSound.Lib StarI]_(ijbarrgri\évsIn32
DirectX Y

Import Libraries Dinput.Lib - Game.EXE I
DirectX

needed for <
Reference

- .DLLs
Resolution DSound3D.Lib v
to Link | Runtime I
DSetup.Lib

DMusic.Lib

\ 0

These DirectX .LIB files are located in the <LIB> directory wherever you
installed the DirectX SDK. You must add these .LIB files to your project or
workspace. You can’t just add the search path, because the search engine will
probably find old DirectX 3.0 .LIB files along with installation libraries of the
compiler itself. While you’re at it, you may have to add the Windows
Multimedia Extensions library, WINMM. LIB, to your project. This file is located
in the <LIB> directory of your compiler installation.

5. You’re ready to compile your program.

If you're a Borland user, there is a separate Borland library directory
within the DirectX SDK. So make sure to add those .LIB files—not the
MS-compatible files higher up in the directory tree.

If you still have questions about this, don’t worry. I will revisit these steps a number
of times throughout the book when discussing Windows programming and your first
contact with DirectX.

An Example: FreakOut

Before we both lose our minds with all this talk about Windows, DirectX, and 3D
graphics, I would like to take a pause and show you a complete game—albeit a
simple one, but a game nonetheless. This way you can see a real game loop and some
graphics calls, and take a shot at compilation. Sound good? Alrighty, then!

30 PART 1

“ Windows Programming Foundations

The problem is, we’re only on Chapter 1. It’s not like I can use stuff from later
chapters... that would be cheating, right? So what I’ve decided to do is get you used
to using black box APIs for game programming. Based on that requirement, I asked,
“What are the absolute minimum requirements for creating a 2D Breakout-like
game?” All we really need is the following functionality:

* Change into any graphics mode.

e Draw colored rectangles on the screen.

e Get the keyboard input.

* Synchronize the game loop using some timing functions.

e Draw a string of colored text on the screen.

So I created a library called BLACKBOX.CPP | H. Within it is a DirectX (DirectDraw
only) set of functions, along with support code that implements the required
functionality. The beauty is, you don’t need to look at the code; you just have to
use the functions, based on their prototypes, and make sure to link with
BLACKBOX.CPP!H to make an .EXE.

Based on the BLACKBOX library, I wrote a game called FreakOut that demonstrates a
number of the concepts that we have discussed in this chapter. FreakOut contains all
the major components of a real game, including a game loop, scoring, levels, and even
a little baby physics model for the ball. And I do mean baby! Figure 1.9 is a screen-
shot of the game in action. Granted, it’s not Arkanoid, but it’s not bad for four hours
of work!

Figure 1.9 I I N N

A screen shot of
FreakOut. o N N N N N ¥ |

FREAKOUT SCORE 500 LEVEL1

Before I show you the source code to the game, I want you to take a look at how the
project and its various components fit together. Refer to Figure 1.10.

CHAPTER 1 3

Journey into the Abyss m

Figure 1.10 Main Source File
The structure of FREAKOUT.CPP Freakout.CPP
FreakOut.

Black Box Graphics
Engine
Blackbox.CPP
Blackbox.H

Linker

DirectX Libs

DDraw.Lib Y

| Freakout.EXE I

Loaded at runtime *

| DDraw.DLL I—»Iml—»

As you can see from the figure, the game is composed of the following files:

FREAKOUT.CPP—The main game logic that uses BLACKBOX.CPP and creates a mini-
mum Win32 application.

BLACKBOX .CPP—The game library (don’t peek).

BLACKBOX .H—The header file for the game library.

DDRAW. LIB—The DirectDraw import library needed to build the application. This
doesn’t contain the real DirectX code. It’s more of an intermediary library that you

make calls to, which in turn loads the DDRAW.DLL dynamic link library that does the
real work. You can find this in the DirectX SDK installation under <LIB>.

DDRAW.DLL—The run-time DirectDraw library that actually contains the COM
implementation of the DirectDraw interface functions that are called through the
DDRAW. LIB import library. You don’t need to worry about this per se; you just need
to make sure that the DirectX run-time files are installed.

Now that we have that all straight, let’s take a look at the BLACKOUT .H header file and
see what the functions are within it.

LisTING 1.2 BLACKOUT.H Header File

// BLACKBOX.H - Header file for demo game engine library
// watch for multiple inclusions

#ifndef BLACKBOX

#define BLACKBOX

/1 DEFINES ///// 1111111 r i i irry

// default screen size

continues

32 PART 1

W Windows Programming Foundations

Listing 1.2 Continued

#define SCREEN_WIDTH 640 // size of screen
#define SCREEN_HEIGHT 480

#define SCREEN_BPP 8 // bits per pixel
#define MAX_COLORS 256 // maximum colors

/1 MACROS [/ /111111 T r i ri i ri i rrrrry

// these read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? @ : 1)

// initializes a direct draw struct
#define DD_INIT_STRUCT(ddstruct) { memset(&ddstruct,0,sizeof(ddstruct));
ddstruct.dwSize=sizeof (ddstruct); }

[TXPES JLLLLTTTEE I i rr i i irrrr g

// basic unsigned types
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;

/1 EXTERNALS [/ /111110 TEEE i r i ni i ri i rrrl

extern LPDIRECTDRAW4 1pdd; // dd object

extern LPDIRECTDRAWSURFACE4 lpddsprimary; // dd primary surface
extern LPDIRECTDRAWSURFACE4 1lpddsback; // dd back surface
extern LPDIRECTDRAWPALETTE 1lpddpal; // a pointer to palette
extern LPDIRECTDRAWCLIPPER lpddclipper; // dd clipper

extern PALETTEENTRY palette[256]; // color palette
extern PALETTEENTRY save_palette[256]; // used to save palettes

extern DDSURFACEDESC2 ddsd; // dd surface description struct
extern DDBLTFX ddbltfx; // used to fill

extern DDSCAPS2 ddscaps; // dd surface capabilities struct
extern HRESULT ddrval; // result back from dd calls
extern DWORD start_clock_count; // used for timing

// these defined the general clipping rectangle
extern int min_clip_x, // clipping rectangle
max_clip_x,
min_clip_y,
max_clip_y;

// these are overwritten globally by DD_Init()

extern int screen_width, // width of screen
screen_height, // height of screen
screen_bpp; // bits per pixel

/1 PROTOTYPES [/ /[[/ /1111111111 ITELTEEE i irrirry

CHAPTER 1 3

Journey into the Abyss m

// DirectDraw functions

int DD_Init(int width, int height, int bpp);

int DD_Shutdown(void);

LPDIRECTDRAWCLIPPER DD_Attach_Clipper (LPDIRECTDRAWSURFACE4 1lpdds,
int num_rects, LPRECT clip_list);

int DD_Flip(void);

int DD_Fill_Surface(LPDIRECTDRAWSURFACE4 lpdds,int color)

// general utility functions
DWORD Start_Clock(void);

DWORD Get_Clock(void);

DWORD Wait_Clock (DWORD count);

// graphics functions
int Draw_Rectangle(int x1, int yi1,
int x2, int y2,
int color,
LPDIRECTDRAWSURFACE4 1pdds=1pddsback);

// gdi functions

int Draw_Text_GDI(char *text, int x,int y,COLORREF color,
LPDIRECTDRAWSURFACE4 1lpdds=1pddsback);

int Draw_Text_GDI(char *text, int x,int y,int color,
LPDIRECTDRAWSURFACE4 1pdds=1pddsback);

#endif

Now, don’t waste too much time straining your brain on the code and what all those
weird global variables are. Rather, just look at the functions themselves. As you can
see, there are functions to do everything that we needed for our little graphics inter-
face. Based on that and a minimum Win32 application (the less Windows program-
ming I have to do, the better), I have created the game FREAKOUT.CPP, which is shown
in Listing 1.3. Take a good look at it, especially the main game loop and the calls to
the game processing functions.

ListiNG 1.3 The Source File FREAKOUT.CPP

/1 INCLUDES [/ [/ [/ 1111 r i rr i r i i rrirry

#define WIN32_LEAN_AND_MEAN // include all macros
#define INITGUID // include all GUIDs

#include <windows.h> // include important windows stuff
#include <windowsx.h>
#include <mmsystem.h>

#include <iostream.h> // include important C/C++ stuff
#include <conio.h>
continues

34 PART 1

“ Windows Programming Foundations

Listing 1.3 Continued

#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

#include <ddraw.h> // directX includes
#include "blackbox.h" // game library includes

/1 DEFINES ////1 11111 T i r i r i i rr i irry

/| defines for windows
#define WINDOW_CLASS_NAME "WIN3DCLASS" // class name

#define WINDOW_WIDTH 640 /| size of window
#define WINDOW_HEIGHT 480

/| states for game loop

#define GAME_STATE_INIT 0

#define GAME_STATE_START_LEVEL 1

#define GAME_STATE_RUN 2

#define GAME_STATE_SHUTDOWN 3

#define GAME_STATE_EXIT 4

// block defines

#define NUM_BLOCK_ROWS 6

#define NUM_BLOCK_COLUMNS 8

#define BLOCK_WIDTH 64

#define BLOCK_HEIGHT 16

#define BLOCK_ORIGIN_X 8

#define BLOCK_ORIGIN_Y 8

#define BLOCK_X_GAP 80

#define BLOCK_Y_GAP 32

// paddle defines

#define PADDLE_START_X (SCREEN_WIDTH/2 - 16)
#define PADDLE_START_Y (SCREEN_HEIGHT - 32);
#define PADDLE_WIDTH 32

#define PADDLE_HEIGHT 8

#define PADDLE_COLOR 191

// ball defines

#define BALL_START_Y (SCREEN_HEIGHT/2)
#define BALL_SIZE 4

/1 PROTOTYPES [//[/[11111111t i irirrrrrl

CHAPTER 1 3

// game console

int Game_Init(void *parms=NULL);

int Game_Shutdown(void *parms=NULL);
int Game_Main(void *parms=NULL);

{1 GLOBALS [/ /[/1 1T1IHITTTIE LI i i i i rrrry

HWND main_window_handle = NULL; // save the window handle
HINSTANCE main_instance = NULL; // save the instance

int game_state = GAME_STATE_INIT; // starting state
int paddle_x = @, paddle_y = 0@; // tracks position of paddle
int ball_x = 0, ball_y = 0; // tracks position of ball

int ball_dx = 0, ball_dy = 0; // velocity of ball

int score =0; // the score

int level =1; // the current level

int blocks_hit = 0; /] tracks number of blocks hit

// this contains the game grid data
UCHAR blocks[NUM_BLOCK_ROWS][NUM_BLOCK_COLUMNS];
/1 FUNCTIONS /// [/ 1111110t r i i irr g
LRESULT CALLBACK WindowProc (HWND hwnd,
UINT msg,

WPARAM wparam,
LPARAM 1lparam)

{

// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT

HDC hdc; /] handle to a device context

// what is the message
switch(msg)
{
case WM_CREATE:
{
// do initialization stuff here
return(0);
} break;

case WM_PAINT:

{
/] start painting
hdc = BeginPaint (hwnd,&ps);

// the window is now validated

/1 end painting
EndPaint (hwnd,&ps);

Journey into the Abyss m

continues

36 PART 1

“ Windows Programming Foundations

Listing 1.3 Continued

return(0);
} break;

case WM_DESTROY:

{

// kill the application
PostQuitMessage(0);
return(0);

} break;

default:break;
} // end switch

/| process any messages that we didn't take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

[0 WINMAIN /7 /0L i r i r i i i rrrg

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)

{

// this is the winmain function

WNDCLASS winclass; // this will hold the class we create

HWND hwnd; // generic window handle
MSG msg; // generic message

HDC hdc; // generic dc

PAINTSTRUCT ps; // generic paintstruct

// first fill in the window class stucture

winclass.style = CS_DBLCLKS | CS_OWNDC ,
CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc = WindowProc;

winclass.cbClsExtra = 0;

winclass.cbWndExtra = 0;

winclass.hInstance = hinstance;

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);
winclass.hbrBackground = GetStockObject (BLACK_BRUSH);
winclass.lpszMenuName = NULL;

winclass.lpszClassName = WINDOW_CLASS_NAME;

// register the window class
if (!RegisterClass(&winclass))
return(0);

CHAPTER 1 37

Journey into the Abyss m

// create the window, note the use of WS_POPUP

if (!(hwnd = CreateWindow(WINDOW_CLASS_NAME, // class
"WIN3D Game Console", /] title
WS_POPUP ! WS_VISIBLE,
0,0, // initial x,y

GetSystemMetrics(SM_CXSCREEN), // intial width
GetSystemMetrics (SM_CYSCREEN), // initial height

NULL, // handle to parent

NULL, // handle to menu

hinstance,// instance

NULL))) // creation parms
return(0);

// hide mouse
ShowCursor (FALSE) ;

// save the window handle and instance in a global
main_window_handle = hwnd;
main_instance = hinstance;

// perform all game console specific initialization
Game_Init();

// enter main event loop
while(1)
{
if (PeekMessage(&msg,NULL,®,0,PM_REMOVE))
{
// test if this is a quit
if (msg.message == WM_QUIT)
break;

/! translate any accelerator keys
TranslateMessage (&msg) ;

// send the message to the window proc
DispatchMessage (&msg) ;
} // end if

// main game processing goes here
Game_Main();

} // end while

// shutdown game and release all resources
Game_Shutdown() ;

/1 show mouse
ShowCursor (TRUE) ;

// return to Windows like this

continues

38 PART 1

m Windows Programming Foundations

Listing 1.3 Continued

return(msg.wParam);
} // end WinMain
// T3DX GAME PROGRAMMING CONSOLE FUNCTIONS /////////111111111]]

int Game_Init(void *parms)

{

// this function is where you do all the initialization
// for your game

// return success
return(1);

} // end Game_Init

LEPTTELETIEEE L r i i rr i i rrr i i i i irrrr g

int Game_Shutdown(void *parms)

{

// this function is where you shutdown your game and
/| release all resources that you allocated

// return success
return(1);

} // end Game_Shutdown

LEPTLELETEEEE L r i i r i i rr i i iirrrr g

void Init_Blocks(void)
{
// initialize the block field
for (int row=0; row < NUM_BLOCK_ROWS; row++)
for (int col=0; col < NUM_BLOCK_COLUMNS; col++)
blocks[row][col] = row*16+col*3+16;

} // end Init_Blocks

LEETTEEETEEEE L r i i e r i i i i i i irrrr g

void Draw_Blocks(void)

{

// this function draws all the blocks in row major form

int x1 = BLOCK_ORIGIN_X, // used to track current position
y1 = BLOCK_ORIGIN_Y;

// draw all the blocks
for (int row=0; row < NUM_BLOCK_ROWS; row++)
{

CHAPTER 1 39

Journey into the Abyss m

/! reset column position
x1 = BLOCK_ORIGIN_X;

// draw this row of blocks
for (int col=0; col < NUM_BLOCK_COLUMNS; col++)
{
// draw next block (if there is one)
if (blocks[row][col]!=0)
{
// draw block
Draw_Rectangle(x1-4,y1+4,
x1+BLOCK_WIDTH-4,y1+BLOCK_HEIGHT+4,0);

Draw_Rectangle(x1,y1,x1+BLOCK_WIDTH,
y1+BLOCK_HEIGHT,blocks[row][col]);
} // end if

// advance column position
x1+=BLOCK_X_GAP;
} // end for col

// advance to next row position
y1+=BLOCK_Y_GAP;

} // end for row
} // end Draw_Blocks

LEPTTEETIEEE L i i i i i i rrrr g

void Process_Ball(void)

{

// this function tests if the ball has hit a block or the paddle
// if so, the ball is bounced and the block is removed from

// the playfield note: very cheesy collision algorithm :)

// first test for ball block collisions
// the algorithm basically tests the ball against each
// block's bounding box this is inefficient, but easy to

// implement, later we'll see a better way

int x1 = BLOCK_ORIGIN_X, // current rendering position
y1 = BLOCK_ORIGIN_Y;

int ball_cx = ball_x+(BALL_SIZE/2), // computer center of ball
ball_cy = ball_y+(BALL_SIZE/2);

// test of the ball has hit the paddle
if (ball_y > (SCREEN_HEIGHT/2) && ball_dy > 0)

{
// extract leading edge of ball

continues

40 PART 1

“ Windows Programming Foundations

Listing 1.3 Continued

int x = ball_x+(BALL_SIZE/2);
int y = ball_y+(BALL_SIZE/2);

// test for collision with paddle

if ((x >= paddle_x && x <= paddle_x+PADDLE_WIDTH) &&
(y >= paddle_y && y <= paddle_y+PADDLE_HEIGHT))
{
/] reflect ball
ball_dy=-ball_dy;

// push ball out of paddle since it made contact
ball_y+=ball_dy;

// add a little english to ball based on motion of paddle
if (KEY_DOWN(VK_RIGHT))
ball_dx-=(rand()%3);
else
if (KEY_DOWN(VK_LEFT))
ball_dx+=(rand()%3);
else
ball_dx+=(-1+rand()%3);

// test if there are no blocks, if so send a message
// to game loop to start another level
if (blocks_hit >= (NUM_BLOCK_ROWS*NUM_BLOCK_COLUMNS))
{
game_state = GAME_STATE_START_LEVEL;
level++;
} // end if

// make a little noise
MessageBeep (MB_OK) ;

/] return
return;

} // end if
} // end if

// now scan thru all the blocks and see if ball hit blocks
for (int row=0; row < NUM_BLOCK_ROWS; row++)

{

// reset column position

x1 = BLOCK_ORIGIN_X;

// scan this row of blocks
for (int col=0; col < NUM_BLOCK_COLUMNS; col++)

{
// if there is a block here then test it against ball

CHAPTER 1 41

Journey into the Abyss m

if (blocks[row][col]!=0)

{

// test ball against bounding box of block

if ((ball_cx > x1) && (ball_cx < x1+BLOCK_WIDTH) &&
(ball_cy > y1) && (ball_cy < y1+BLOCK_HEIGHT))
{
// remove the block
blocks[row][col] = 0;

// increment global block counter, so we know
// when to start another level up
blocks_hit++;

/] bounce the ball
ball_dy=-ball_dy;

// add a little english
ball_dx+=(-1+rand()%3);

// make a little noise
MessageBeep (MB_OK) ;

// add some points
score+=5*(level+(abs(ball_dx)));

// that's it -- no more block
return;
} // end if

} // end if

// advance column position
x1+=BLOCK_X_GAP;
} // end for col

// advance to next row position
y1+=BLOCK_Y_GAP;

} // end for row
} // end Process_Ball
LEEEETLLTTLEE i i i r i i r i r i r i i i irry
int Game_Main(void *parms)
f/ this is the workhorse of your game it will be called
// continuously in real-time this is like main() in C

// all the calls for you game go here!

char buffer[80]; // used to print text

continues

42 PART 1

“ Windows Programming Foundations

Listing 1.3 Continued

// what state is the game in?

if (game_state == GAME_STATE_INIT)
{
// initialize everything here graphics
DD_Init(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_BPP);

// seed the random number generator
// so game is different each play
srand(Start_Clock());

// set the paddle position here to the middle bottom
paddle_x = PADDLE_START_X;
paddle_y = PADDLE_START_Y;

// set ball position and velocity
ball x = 8+rand()%(SCREEN_WIDTH-16);
ball_y = BALL_START_Y;

ball dx = -4 + rand()%(8+1);

ball dy = 6 + rand()%2;

// transition to start level state
game_state = GAME_STATE_START_LEVEL;

} // end if
PEELLTEETE L i r i i r i i r i i r i r i rr i r g
else
if (game_state == GAME_STATE_START_LEVEL)

{

// get a new level ready to run

// initialize the blocks
Init_Blocks();

// reset block counter
blocks_hit = 0;

// transition to run state
game_state = GAME_STATE_RUN;

} // end if
PHLEETEEEL LT r i i r i r i r i r i r i i ri i rrrl
else
if (game_state == GAME_STATE_RUN)

{

// start the timing clock
Start_Clock();

// clear drawing surface for the next frame of animation
Draw_Rectangle(@,0,SCREEN_WIDTH-1, SCREEN_HEIGHT-1,200);

CHAPTER 1 43

// move the paddle

if (KEY_DOWN(VK_RIGHT))
{
// move paddle to right
paddle_x+=8;

// make sure paddle doesn't go off screen
if (paddle_x > (SCREEN_WIDTH-PADDLE_WIDTH))
paddle_x = SCREEN_WIDTH-PADDLE_WIDTH;

} // end if
else
if (KEY_DOWN(VK_LEFT))
{
// move paddle to right
paddle_x-=8;

// make sure paddle doesn't go off screen
if (paddle_x < 0)
paddle_x = 0;

} // end if

// draw blocks
Draw_Blocks() ;

// move the ball
ball_x+=ball_dx;
ball_y+=ball_dy;

// keep ball on screen, if the ball hits the edge of
/1 screen then bounce it by reflecting its velocity
if (ball_x > (SCREEN_WIDTH - BALL_SIZE) |, ball x < 0)

{

/] reflect x-axis velocity

ball_dx=-ball_dx;

// update position
ball_x+=ball_dx;
} // end if

// now y-axis

if (ball_y < 0)
{
// reflect y-axis velocity
ball_dy=-ball_dy;

// update position
ball_y+=ball_dy;
} // end if

else

Journey into the Abyss m

continues

44 PART 1

“ Windows Programming Foundations

Listing 1.3 Continued

// penalize player for missing the ball
if (ball_y > (SCREEN_HEIGHT - BALL_SIZE))
{
/1 reflect y-axis velocity
ball_dy=-ball_dy;

// update position
ball_y+=ball_dy;

// minus the score
score-=100;

} // end if

// next watch out for ball velocity getting out of hand
if (ball_dx > 8) ball _dx = 8;

else

if (ball_dx < -8) ball_dx = -8;

// test if ball hit any blocks or the paddle
Process_Ball();

// draw the paddle and shadow

Draw_Rectangle(paddle_x-8, paddle_y+8,
paddle_x+PADDLE_WIDTH-8,
paddle_y+PADDLE_HEIGHT+8,0);

Draw_Rectangle(paddle_x, paddle_y,
paddle x+PADDLE_WIDTH,
paddle_y+PADDLE_HEIGHT,PADDLE_COLOR) ;

// draw the ball

Draw_Rectangle(ball_x-4, ball_y+4, ball_x+BALL_SIZE-4,
ball_y+BALL_SIZE+4, 0);

Draw_Rectangle(ball_x, ball_y, ball_x+BALL_SIZE,
ball_y+BALL_SIZE, 255);

// draw the info

sprintf (buffer,"F REAKOUT Score %d /1
Level %d",score,level);

Draw_Text_GDI(buffer, 8,SCREEN_HEIGHT-16, 127);

/] flip the surfaces
DD_Flip();

// sync to 33ish fps
Wait_Clock(30);

/1 check of user is trying to exit
if (KEY_DOWN(VK_ESCAPE))

CHAPTER 1 45

Journey into the Abyss m

{
// send message to windows to exit
PostMessage (main_window_handle, WM_DESTROY,0,0);

/] set exit state
game_state = GAME_STATE_SHUTDOWN;

} // end if

} // end if
PIPELTTELEET L r i i r i i n i i i i ri i ri i rrry
else
if (game_state == GAME_STATE_SHUTDOWN)

{
// in this state shut everything down and release resources
DD_Shutdown () ;

// switch to exit state
game_state = GAME_STATE_EXIT;

} // end if

// return success
return(1);

} // end Game_Main

LEPTTELETEEEE i i i i i i i i rrrry

Cool, huh? That’s the entire Win32/DirectX game. Well, almost. There are a few
hundred lines of code in the BLACKBOX.CPP source file, but we’ll just pretend that it’s
like DirectX and someone else wrote it (me!). Anyway, let’s take a quick look at the
contents of Listing 1.3.

Basically, Windows needs to have what’s called an event loop. This is standard for all
Windows programs since Windows is, for the most part, event-driven. However,
games aren’t event-driven; they run at all times, whether the user does something or
not. So we need to at least support a minimum event loop to make Windows happy.
The code that implements this is in WinMain ()—jeez, that’s a surprise, huh?

WinMain() is the main entry point for all Windows programs, just like main() is the
entry point for all DOS/UNIX programs (please wash your mouth out if you said
“UNIX” out loud). In any case, the WinMain () for FreakOut creates a window and
then enters right into the event loop. If Windows needs to do something, it does so.
When all the basic event handling is over, Game_Main () is called. This is where the
real action occurs for our game.

46 PART 1

W Windows Programming Foundations

If you wanted to, you could loop in Game_Main() forever, never releasing it back to
the main event loop in WinMain (). But this would be bad because Windows would
never receive any messages and you would starve the system. Alas, what we need to
do is perform one frame of animation and logic and then return back to WinMain().
This way, Windows will continue to function and process messages. If this all sounds
a little hocus-pocus, don’t worry—it gets worse in the next chapter <BG>.

Once in Game_Main (), the logic for FreakOut is executed. The game image is ren-
dered into an offscreen workspace and then finally shown on the display at the end of
the loop via the DD_FLIP() call. So what I want you to do is take a look at all the
game states and try to follow each section of the game loop and what it does. To play
the game, simply click on FREAKOUT.EXE. The program will launch immediately. The
controls are

Right arrow—Move paddle right.
Left arrow—Move paddle left.
Esc—EXxit back to Windows.

Also, there’s a 100-point penalty if you miss the ball, so watch it!

When you feel comfortable with the game code and gameplay, try modifying the
game and making changes to it. You could add different background colors (0-255 are
valid colors), more balls, a paddle that changes size, and more sound effects (which
I’m making right now with the Win32 API function MessageBeep () function).

Summary

Well, I think that’s about the quickest crash course in game programming I have ever
given! We covered a lot of ground, but think of it as the “back of the box” version of
the book. I just wanted to give you a feel for all the things that we are going to talk
about and learn in this book. In addition, it’s always good to take a look at a complete
game because it generates a lot of questions for you to think about.

Now, before moving on to Chapter 2, which covers Windows programming, make
sure that you feel comfortable with compiling the FreakOut game. If you aren’t, open
up the compiler book and RTFM. I'll be waiting.

CHAPTER 2

The Windows
Programming Model

“Lilu Dallas Multipass!”

—Lilu, The 5th Element

Windows programming is like going to the dentist: You know
it’s good for you, but no one likes doing it. Am I right? In this
chapter, I'm going to show you the basics of Windows program-
ming using my “Zen”” methodology—or, in other words, the easy
way. I can’t promise that you’ll like going to the dentist after
reading this chapter, but I can promise you that you’ll like
Windows programming a lot more than you ever did! Here’s
what you’ll learn:

The history of Windows

Basic Windows architecture

Windows’ classes

Creating Windows

Windows event handlers

Event-driven programming and event loops

Opening multiple windows

48 PART 1

W Windows Programming Foundations

The Genesis of Windows

To put you in the mood for the onslaught of horror that I'm about to unleash upon
your mind (especially you DOS diehards), let’s take a quick look at how Windows
has shaped up over the past years and its relationship to the game development
world—shall we?

Early Windows Versions

It all began with the release of Windows 1.0. This was Microsoft’s first attempt at a
commercial windowed operating system, and it was pretty much a failure. Windows
1.0 was based completely on DOS (big mistake), wasn’t multitasking, ran really
slow, and looked really bad. Its looks were probably the most important reason for
its failure <BG>. Sarcasm aside, the problem was that Windows 1.0 needed much
more hardware, graphics, and sound capabilities than the 80286 (or worst yet, 8086)
machines of the time had to offer.

Nevertheless, Microsoft forged ahead, and shortly thereafter it released Windows 2.0.
I actually remember working at Software Publishing Corporation when we got the
beta of Windows 2.0. There was a boardroom filled with executives and the president
of the company (as usual, he had a cocktail in his hand). We ran the Windows 2.0 beta
demo and loaded multiple applications, and it seemed to work. However, at this time
IBM Presentation Manager (PM) was out. PM simply looked a lot better, and it was
based on OS/2, a vastly more advanced OS than Windows 2.0 (which was still a win-
dow manager simply overlaid on top of DOS). The verdict of the board that day: “Not
bad, but not a viable OS for development. Let’s stick to DOS, and can I have another
cocktail?”

Windows 3.x

In 1990, the planets must have been in alignment, because Windows 3.0 was released
and it was pretty damn good! It wasn’t up to par with Mac OS yet, but who cared?
(Real programmers hate Macs.) Finally, software developers could create sexy
applications on the PC and start migrating away from DOS for business applications.
This was the turning point for the PC and the thing that eventually put the Mac out of
the running for business applications and later for desktop publishing. (That, along
with Apple releasing new hardware every five minutes.)

Although Windows 3.0 worked well, it had a lot of problems, bugs, and so forth.
Heck, it was a quantum leap ahead of Windows 2.0 in technology, so problems were
to be expected. To fix these problems, Microsoft came out with Windows 3.1. The PR
and marketing departments originally wanted to call it Windows 4.0, but Microsoft
decided to simply call Windows 3.1 because it just didn’t have enough features to
qualify as a major revision upgrade. Nor did it live up to all the hype the marketing
department had built up.

CHAPTER 2 49

The Windows Programming Model m

Windows 3.1 was very solid. It had multimedia extensions like sound and video
support, and it was a good all-around OS that got work done for the user in a uniform
manner. In addition, there was another version called Windows 3.11 (Windows for
Workgroups) with network support. The only problem was that Windows 3.1 was still
a DOS application, for the most part, and ran under a DOS Extender.

Windows 95

On the other side of the planet, the game programming community was still chanting
“DOS TILL HELL FREEZES OVER!”, and I was out in front burning a Windows 3.1
box myself! However, in 1995 hell did start to freeze over... Windows 95 was
released, and it was a true 32-bit, multitasking, multithreaded operating system.
Granted, it had some 16-bit code left in it, but for the most part, Windows 95 was the
ultimate development and release platform for the PC.

(Of course, Windows NT 3.0 was also available. But NT just wasn’t feasible for the
average user, so I’'m not even acknowledging it yet in my story.)

When Windows 95 was released, it was the first time ever that I actually liked
programming for Windows. I always hated Windows 1.0, 2.0, 3.0, and 3.1 for
programming, although I hated it less and less with each release. But when
Windows 95 came out, there was one thing that changed my mind, as well as a lot
of other people’s—it looked cool! That’s all I needed.

A < The most important thing in the game programming business is how the
n)y box looks and how the screen shots you send to magazines look.
»

a Sending the reviewers free stuff works too.

So almost overnight, Windows 95 changed the computing business. Sure, many com-
panies today are szill using Windows 3.1 (can you believe that?), but Windows 95
made the Intel-based PC the computer of choice for all applications—except games.
Yes, DOS still had the hearts of game programmers, even though they knew it was
only a matter of time.

In 1996, Microsoft released the Game SDK, which was basically the first version of
DirectX. This technology worked on Windows 95 only, but it was simply too slow to
compete with DOS games such as DOOM and Duke Nukem. Developers continued to
develop for DOS32, but they knew it was only a matter of time before the DirectX
technology would be fast enough to make games on the PC.

By version 3.0, DirectX was as fast as DOS32 on the same machines. By version 5.0,
DirectX was very clean and the promises of the technology were coming true. But

>0 PART 1

W Windows Programming Foundations

we’ll talk more about that later when we cover DirectX in Chapter 5, “DirectX
Fundamentals and the Dreaded COM.” For now, just realize that Win32/DirectX is the
only way to go on the PC for games. Back to the history lesson.

Windows 98

In mid-1998, Windows 98 was released. It’s more of an evolutionary step than a
revolutionary one, like Windows 95, but it’s important nonetheless. Windows 98 is
like a hot rod—it’s sleek, fast, and kicks ass! It’s totally 32-bit, has support for
everything you can think of, and is open-ended for expansion. And it has DirectX,
multimedia, 3D graphics, networking, and the Internet all integrated into it very
nicely.

Windows 98 is also very robust compared to Windows 95. Sure, Windows 98 still
crashes and tweaks out, but believe me, there is a lot less of that. Furthermore,
plug-and-play actually works, and works well—it’s about time!

Windows NT

Now we can talk about Windows NT. At the time of this writing, Windows NT is
currently on release 5.0. And as far as I can tell, ultimately it’s going to replace
Windows 9X as the OS of choice for everyone. NT is simply a lot tighter than
Windows 9X; furthermore, most game programmers develop on NT and then release
on Windows 9X. The cool thing about NT 5.0 is that it has full plug-and-play support,
along with Win32/DirectX, so applications written for Windows 9X with DirectX will
work on NT 5.0+. This is great news, since now game developers who write PC
games have the largest market potential in history.

So what’s the bottom line? If you write a Win32 application with DirectX (or not), it
will work on Windows 95, 98, and NT 5.0+. This is a good thing. Hence, everything
you learn in this book is applicable to at least three operating systems, and maybe
more when NT along with DirectX is on other machines, like DEC Alphas. And don’t
forget Windows CE—DirectX and a subset of Win32 work on that system, too!

Basic Windows Architecture: Win9X/NT

Windows, unlike DOS, is a multitasking operating system designed to allow a number
of applications and/or smaller processes to run at the same time, using the hardware to
its fullest. This means that Windows is a shared environment—one application can’t
take over the entire system. Although Windows 95, 98, and NT are similar, there are a
number of technical differences. However, as far as we are concerned here, we can
generalize without too much drama. I will refer to the Windows machine as a Win
9X/NT or Windows box most of the time. So let’s get started!

CHAPTER 2 >1

The Windows Programming Model m

Multitasking and Multithreading

As I said, Windows allows a number of different applications to be executed simulta-
neously in a round-robin fashion, where each application gets a small time slice to run
in and then the next application takes its turn. As you can see in Figure 2.1, the CPU
is shared among a number of different applications in a circular manner. Figuring out
the exact methodology that selects the next application, and the amount of time allot-
ted to each application, is the job of the scheduler.

Figure 2.1 Process 0
Multiprocessing in
action with a single Game Program
Processor.
A

Process 1

Print Spooler

\

y
CPU
Intel Inside
"

A

Paint Program

Process 3

Y

(' Word Processor ’

Process 2

Execution Sequence: 0, 1,2,3,0,1,2,3,0,1,2,3, ...

The scheduler may be very simple, running each application for a fixed number of
milliseconds, or it may be very complex, giving applications various levels of priority
and preempting applications or events with lower priority. In the case of Win 9X/NT,
the scheduler is priority-based with preemption. This means that some applications
can have more processor time than others, but if an application needs the CPU, the
current task can be blocked or preempted while another task runs.

However, you don’t need to worry much about this unless you’re writing OS or real-
time code, where exact details matter. In most cases, Windows will run and schedule
your application, and you will have nothing to do with it.

Taking a closer look at Windows, we see that not only is it multitasking, but it’s multi-
threaded. This means that programs are really composed of a number of simpler
threads of execution. These threads are scheduled just like heavier-weight processes,
such as programs. In fact, right now there are probably 30 to 50 threads running on
your machine, performing various tasks. So in reality, you may have a single program
running that consists of one or more threads of execution.

>2 PART 1

w Windows Programming Foundations

Take a look at Figure 2.2 to see a more realistic multithreaded view of Windows. As
you can see, each program actually consists of a number of worker threads in addition

to the main thread.

Figure 2.2

A more realistic mul-
tithreaded view of
Windows.

Each thread is
executed a small
amount of time.

Getting Info on the Threads

For some fun, let’s see how many threads are running on your machine right now. On
your Windows machine, press Ctrl+Alt+Delete to pop up the Active Program Task
Manager, which displays all of the running tasks (or processes). This isn’t exactly
what we want, but it’s close. What we really want is a tool or applet that displays the
actual threads that are executing. A number of shareware and commercial utilities do
this, but Windows comes with a couple of them built in.

Within the directory that Windows was installed in (WINDOWS\, in most cases), you
will find an executable named SYSMON.EXE (Windows 95/98) or PERFMON . EXE
(Windows NT). Figure 2.3 depicts SYSMON. EXE running on my Windows 98 machine.
As you can see, there is a wealth of information in addition to the number of threads
running, such as memory use and processor load. In fact, I like to keep SYSMON. EXE
running as I develop so I can see what’s going on and how the system is loaded.

Figure 2.3 ™ system Monitor
Running SYSMON.EXE. ; =) Bz

4 g erek Processor Usage (%) - Kernel: Threads

25K Disk Cache: Cache buffers ernel. Virtual Machines

1 g Hernek Processor Usage (%)

[
50
25

CHAPTER 2 >3

The Windows Programming Model m

You might be wondering if you have any control over the creation of threads. The
answer is yes!!! In fact, this is one of the most exciting things about Windows game
programming—we can create as many threads as we want to perform other tasks in
addition to our main game process.

In Windows 98/NT, there is actually a new type of execution object
a called a fiber, which is even simpler than a thread.

(Get it? Threads are made of fibers.)

This is much different than how a DOS game is written. DOS is a single-threaded OS,
meaning that once your program runs, it’s the only thing running (except for an inter-
rupt handler from time to time). Therefore, if you want any kind of multitasking or
multithreading, you must simulate it yourself (check out Sams Teach Yourself Game
Programming in 21 Days for a complete DOS-based multitasking kernel). And this is
exactly what game programmers have been doing over the years. Granted, simulating
multitasking and multithreading is nowhere near as robust as having a complete OS
that supports them, but for a single game, it works well enough.

Before we move into real Windows programming and the code that makes things hap-
pen, there is one detail that I want to mention. You might be thinking that Windows is
a magical OS because it allows multiple tasks or programs to run at once. Remember,
this is not true. If there is a single processor, only one execution stream, thread, pro-
gram, or whatever you want to call it can run at a time. Windows just switches
between them so quickly that it seems as if more than one program is running. On the
other hand, if you have more than one processor, multiple programs can run. For
example, I have a dual Pentium II computer, with two 400MHz Pentium II processors
running Windows NT 5.0. With this configuration, two instruction streams can be exe-
cuted at the same time.

In the near future, I would expect that new microprocessor architectures for personal
computers will allow multiple threads or fibers to be executed as part of the proces-
sors’ design. For example, the Pentium has two execution units—the U pipe and V
pipe. Hence, it can execute two instructions at once. However, these two instructions
are always from the same thread. Similarly, the Pentium II can execute up to five sim-
ple instructions at once, but again from the same thread.

The Event Model

Windows is a multitasking/multithreaded OS, but it’s also an event-driven OS. Unlike
DOS programs, most Windows programs sit and wait for the user to do something,

which fires an event, and then Windows responds to the event and takes action. Take a
look at Figure 2.4 to see this graphically. It depicts a number of application windows,

>4 PART 1

T Windows Programming Foundations

each sending their events or messages to Windows to be processed. Windows does
some of the processing, but most of the messages or events are passed through to your
application program for processing.

Figure 2.4 =
Windows event
handling. Window 1

System Event Queue

Window 3

WinMain() Local
{ event
} Queue

[t J«—)

Messages are
routed to each
window app.

WinMain() Local
{ event
} Queue

Window 2 WinProc()

WinMain() Local

{ event
[} Queue
[Pt J«—

The good news is that you don’t need to concern yourself with the other applications
that are running. Windows will handle them for you. All you have to worry about is
your own application and the processing of messages for your window(s). This wasn’t
the entire truth in Windows 3.0/3.1. Those versions of Windows weren’t true multi-
tasking operating systems, and each application had to yield to the next. This meant
that applications running under these versions had a rather rough or sluggish feel. If
other applications were hogging the system, there wasn’t anything that the compliant
applications could do. However, this isn’t the case with Windows 9X/NT. The OS will
pull the rug out from under your application whenever it feels like it—of course, it
pulls it so quickly that you’ll never notice!

At this point, you know all you need to know about OS concepts. Luckily, Windows
is such a nice OS to write games for these days that you won’t have to worry about

scheduling—all you need to worry about is the game code and pushing the machine
to its limits.

Later in this chapter, we’ll get into some actual programming so you can see just how
easy Windows programming is. But (there’s always a but) before we do that, we need
to cover some conventions that Microsoft programmers like to use. This way, you
won’t be bewildered by all the weird function and variable naming.

CHAPTER 2 >

The Windows Programming Model m

Programming the Microsoft Way:
Hungarian Notation

If you’re running a company like Microsoft, with thousands of programmers working
on various projects, at some point you have to come up with a standard way of writ-
ing code. Otherwise, chaos ensues. Therefore, a man named Charles Simonyi was put
in charge of creating a specification for writing Microsoft code. This spec has been
used ever since as a basic guideline for writing code. All Microsoft APIs, interfaces,
technical articles, and so on use these conventions.

The specification is generally referred to as Hungarian notation, probably because
creating it and working those late hours made him hungry. Or maybe it was because
he was from Hungary. We’ll never know. The point is, you have to learn it so you can
read Microsoft code.

Hungarian notation consists of a number of conventions relating to naming:

* Variables
* Functions
* Types and constants
* Classes
» Parameters
Table 2.1 contains all the prefix codes used in Hungarian notation. These codes are

used to prefix variable names in most cases, along with other conventions depending
on what is being named. Refer to the table for the remaining explanations.

TABLE 2.1 The Hungarian Notation Prefix Codes Specification

Prefix Data Type (Base Type)

c char

by BYTE (unsigned char)

n short or int (refers to a number)

i int

X,y short (used as x-coordinate or y-coordinate, generally)
cX, cy short (used to denote x or y lengths; c stands for count)
b BOOL (int)

w UINT (unsigned int) or WORD (unsigned WORD)

1 LONG (long)

dw DWORD (unsigned long)

fn Function pointer

continues

>6 PART 1

T Windows Programming Foundations

TaBLE 2.1 Continued

Prefix Data Type (Base Type)

s String

sz, str String terminated by O byte

1p 32-bit long pointer

h Handle (used to refer to Windows objects)
msg Message

Variable Naming

With Hungarian notation, variables are prefixed by the codes in Table 2.1. In addition,
if a variable name is made up of one or more subnames, each subname is capitalized.
Here are some examples:

char *szFileName; // a null terminated string
int *lpiData; // a 32-bit pointer to an int
BOOL bSemaphore; // a boolean value

WORD dwMaxCount; // a 32-bit unsigned WORD

Although I know of no specification for local variables of a function, there is a loose
one for globals:

int g_iXPos; // a global x-position
int g_iTimer; // a global y-position
char *g_szString; // a global NULL terminated string

Basically, you begin the variable with g_, or sometimes just plain g. “When I grew up,
I was a big G, lots of money...” Sorry, I had a rap attack <BG>.

Function Naming

Functions are named in the same way variables are, but without the prefixes. In other
words, just capitalize all the first letters of subnames. Here are some examples:

int PlotPixel(int ix, int iy, int ic);
void *MemScan(char *szString);

Also, underscores are illegal. For example, the following wouldn’t be a valid
Hungarian-compliant function name:

int Get_Pixel(int ix, int 1iy);

John H Warriner

Errata
" // a global y-position" should be "// a global timer"

CHAPTER 2 >7

The Windows Programming Model m
Type and Constant Naming

All types and constants are in uppercase, but you're allowed to use underscores in the
names. For example:

const LONG NUM_SECTORS = 100; // a C++ style constant
#define MAX_CELLS 64 // a C style constant
#define POWERUNIT 100 // a C style constant
typedef unsigned char UCHAR; // a user defined type

Nothing too unusual here—fairly standard definitions. Although most Microsoft
programmers don’t use underscores, I prefer to use them because it makes the names
more readable.

@ Tip In C++, the const keyword has more than one meaning, but in the

preceding code lines, it's used to create a constant variable. This is simi-
lar to #define, but it has the added property of retaining the type
information. const is more like a variable than a simple preprocessed
text replacement like #define. It allows compiler type-checking and
casting to occur.

Class Naming

The naming conventions used for classes might bother you a bit. However, I have seen
many people who use this convention and just made it up on their own. Anyway, all
C++ classes must be prefixed by a capital C, and the first letter of each subname of the
class name must be capitalized. Here is an example:

class CVector

{
public:

CVector(); {ix=iy=iz=imagnitude = 0;}
CVector(int x, int y, int z) {ix=x; iy=y; iz=z;}

private:

int ix,iy,iz; /! the position of the vector
int imagnitude; // the magnitude of the vector

b

>8 PART 1

T Windows Programming Foundations

Parameter Naming

Parameters to functions follow the same naming conventions that normal variables do.
However, this is not a necessity. For example, you might see a function definition that
looks like this:

UCHAR GetPixel(int x, int y);

In this case, the more Hungarian prototype would be
UCHAR GetPixel(int ix, int iy);

But I have seen it both ways.

And finally, you might not even see the variable names, but just the types, as in this
example:

UCHAR GetPixel(int, int);

Of course, this would only be used for the prototype, and the real function declaration
must have variable names to bind to, but you get the point.

Just because you know how to read Hungarian notation doesn’t mean
a that you have to use it! In fact, | have been programming for over 20

years, and I'm not going to change my programming style for anyone
(well, maybe Pamela Anderson). Hence, the code in this book will use a
Hungarian-like coding style where Win32 API functions are concerned,
but it'll use my own style in other places. One thing is for certain—I'm
not capitalizing each word of my variable names! And I'm using under-
scores, too!

The World’s Simplest Windows Program

Now that you have a general overview of the Windows OS and some of its properties
and underlying design issues, let’s begin our journey into real Windows programming
with our first Windows program.

It’s customary to write a “Hello World” program in any new language or OS that
you’re learning, so let’s try that. Listing 2.1 is the standard DOS-based “Hello World.”

Listing 2.1 A DOS-Based “Hello World” Program

// DEMO2_1.CPP - standard version
#include <stdio.h>

// main entry point for all standard DOS/console programs
void main(void)

CHAPTER 2 >9

The Windows Programming Model m

{
printf ("\nTHERE CAN BE ONLY ONE!!!\n");

} // end main

Now let’s see how it’s done with Windows.

M\S// By the way, if you want to compile DEMO2_1.CPP, you can actually
) I'/r create what's called a console application with the VC++ or Borland

compilers. These are like DOS applications, but 32-bit. They run only in
text mode, but they're great for testing out ideas and algorithms.

It All Begins with WinMain()

As I mentioned before, all Windows programs begin execution at the function named
WinMain (). This is equivalent to main() in a straight DOS program. What you do in
WinMain() is up to you. If you want, you can create a window, start processing
events, and draw things on the screen. On the other hand, you can just make a call to
one of the hundreds (or are there thousands?) of Win32 API functions. This is what
we’re going to do.

I just want to print something on the screen in a little message box. There just so hap-
pens to be a Win32 API function that does this—MessageBox (). Listing 2.2 is a com-
plete, compilable Windows program that creates and displays a message box that you
can move around and close.

LisTiING 2.2 Your First Windows Program

// DEMO2_2.CPP - a simple message box
#define WIN32_LEAN_AND_MEAN

#include <windows.h> // the main windows headers
#include <windowsx.h> // a lot of cool macros

// main entry point for all windows programs
int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)
{
// call message box api with NULL for parent window handle
MessageBox (NULL, "THERE CAN BE ONLY ONE!!!",
"MY FIRST WINDOWS PROGRAM",
MB_OK | MB_ICONEXCLAMATION);

// exit program

continues

60 PART 1

“ Windows Programming Foundations

LisTiING 2.2 Continued

return(0);

} // end WinMain

To compile the program, follow these steps:

1. Create a new Win32 .EXE project and include DEM0O2_2.CPP from T3DCHAP02\
on the CD-ROM.

2. Compile and link the program.
3. Run it! (Or run the precompiled version, DEMO2_2.EXE, on the CD-ROM.)

And you thought that a basic Windows program had hundreds of lines of code!
Anyway, when you compile and run the program, you should see something like
what’s depicted in Figure 2.5.

AY FIRST WINPOWS PROGRAR ’7

Figure 2.5

Running A
DEMO2_2.EXE.

—

Dissecting the Program

Now that you have a complete Windows program, let’s take it apart line by line and
see what’s going on. The very first line of code is

#define WIN32_LEAN_AND_MEAN

This deserves a bit of explanation. There are two ways to create Windows programs—
with the Microsoft Foundation Classes (MFC), or with the Software Development Kit
(SDK). MFC is much more complex, totally based on C++ and classes, and 10 times
more powerful and complicated than you will ever need for games. On the other
hand, the SDK is manageable, can be learned in a week or two (at least the rudiments
of it), and uses straight C. Hence, the SDK is what I’'m going to use in this book.

So, WIN32_LEAN_AND_MEAN instructs the compiler (header file logic, actually) not to
include extraneous MFC overhead. Now that we have that out of the way, let’s
move on.

Next, the following header files are included:
#include "windows.h"

#include "windowsx.h"
The first include of "windows.h" really includes all the Windows header files. There

are a lot of them, so this is something like an inclusion macro to save you from
manually including dozens of explicit header files.

CHAPTER 2 o1

The Windows Programming Model m

The second include, "windowsx.h", is a header that contains a number of important
macros and constants that make Windows programming easier.

And now, for the important part—the main entry point of all Windows applications,
WinMain():
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,
int ncmdshow);

First off, you should notice that weird WINAPI declarator. This is equivalent to the
PASCAL function declarator, which forces the parameters to be passed from left to
right, rather than the normal right-to-left order with the default CDECL. However, the
PASCAL calling convention declarator is now obsolete, and WINAPI has taken its place.
You must use WINAPI for the WinMain () function; otherwise, the startup code will
end up passing the parameters incorrectly to the function!

Examining Parameters
Next, let’s look at each of the parameters in detail:

* hinstance—This parameter is the instance handle that Windows generates for
your application. Instances are pointers or numbers used to track resources. In
this case, hinstance is used to track your application, like a name or address.
When your application is executed, Windows will supply this parameter.

* hprevinstance—This parameter is no longer used, but in past versions of
Windows, it tracked the previous instance of the application (in other words, the
instance of the application that launched the current one). No wonder Microsoft
got rid of it! It’s like time travel—it gives me a headache thinking about it.

e 1lpcmdline—This is a null-terminated string, similar to the command-line para-
meters of the standard C/C++ main(int argc, char **argv) function, except
that there isn’t a separate parameter analogous to argc indicating the number of
command-line parameters. For example, if you create a Windows application
called TEST.EXE and launch it with the following parameters:

TEST.EXE one
Ipcmdline will contain @fellowing data:
lpcmdline = "one two three"
Notice that the name of the .EXE itself is not part of the command line.

* ncmdshow—This final parameter is simply an integer that is passed to the appli-
cation during launch, indicating how the main application window is to be
opened. Thus, the user has a little control over how the application starts up. Of
course, as the programmer, you can disregard this if you want, but it’s there if
you want to use it. (You pass it to ShowWindow(), but we’re getting ahead of our-
selves.) Table 2.2 lists the most common values that ncmdshow can take on.

Errata

Errata
"TEST.EXE one" should be "TEST.EXE one two three"

62 PART 1

T Windows Programming Foundations

Table 2.2 Windows Codes for ncmdshow

Value Function

SW_SHOWNORMAL Activates and displays a window. If the window is minimized or
maximized, Windows restores it to its original size and position.
An application should specify this flag when displaying the
window for the first time.

SW_SHowW Activates the window and displays it in its current size and
position.

SW_HIDE Hides the window and activates another window.

SW_MAXIMIZE Maximizes the specified window.

SW_MINIMIZE Minimizes the specified window and activates the next top-level
window in the Z order.

SW_RESTORE Activates and displays the window. If the window is minimized
or maximized, Windows restores it to its original size and
position. An application should specify this flag when restoring
a minimized window.

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized window.

SW_SHOWMINIMIZED Activates the window and displays it as a minimized window.

SW_SHOWMINNOACTIVE Displays the window as a minimized window. The active window
remains active.

SW_SHOWNA Displays the window in its current state. The active window
remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent size and position. The

active window remains active.

As you can see from Table 2.2, there are a lot of settings for ncmdshow (many of
which make no sense at this point). In reality, the majority of these settings will never
be sent in ncmdshow. You will use them with another function, ShowWindow (), which
actually displays a window once it’s created. However, we will get to this a little later
in the chapter.

The point I want to make is that Windows has a lot of options, flags, and so on that
you will never use, but they’re still there. It’s like VCR programming options—more
is always better, as long as you don’t need to use them if you don’t want to. Windows
is designed this way. It has to make everybody happy, so that means including a lot of
options. In fact, we will use SW_SHOW, SW_SHOWNORMAL, and SW_HIDE 99 percent of the
time, but you need to know the other for that one percent!

CHAPTER 2 63

The Windows Programming Model m
Choosing a Message Box

Finally, let’s talk about the actual function call to MessageBox () within WinMain().
MessageBox () is a Win32 API function that does something useful for us, so we don’t
have to do it. It is used to display messages with various icons, along with a button or
two. You see, simply displaying messages is so common in Windows applications that
a function was written just to save application programmers the half hour or so it
would take to write one every time.

MessageBox () doesn’t do much, but it does enough to get a window up on the screen,
ask a question, and wait for the user’s input. Here is the prototype for MessageBox ():
int MessageBox(HWND hwnd, // handle of owner window

LPCTSTR lptext, // address of text in message box

LPCTSTR lpcaption,// address of title of message box
UINT utype); // style of message box

The parameters are defined as follows:

e hwnd—This is the handle of the window you want the message box to be
attached to. At this point I haven’t covered window handles yet, so just think of
it as the parent of the message box. In the case of DEMO2_2.CPP, we are setting it
to NULL, so use the Windows desktop as the parent window.

* 1ptext—This is a null-terminated string containing the text you want to display.

e 1pcaption—This is a null-terminated string containing the caption for the mes-
sage dialog box.

* utype—This is about the only exciting parameter of the bunch. It controls what
kind of message box is displayed.

Take a look at Table 2.3 to see a (somewhat abridged) list of the various
MessageBox () options.

TAaBLE 2.3 MessageBox() Options

Flag Description
The following settings control the general style of the message box

MB_OK The message box contains one pushbutton: OK. This is the
default.

MB_OKCANCEL The message box contains two pushbuttons: OK and Cancel.

MB_RETRYCANCEL The message box contains two pushbuttons: Retry and Cancel.

MB_YESNO The message box contains two pushbuttons: Yes and No.

MB_YESNOCANCEL The message box contains three pushbuttons: Yes, No, and
Cancel.

continues

64 PART 1

T Windows Programming Foundations

TaBLE 2.3 Continued

MB_ABORTRETRYIGNORE The message box contains three pushbuttons: Abort, Retry,
and Ignore.

This group controls the addition of an icon to add a little “poor man’s
multimedia”

MB_ICONEXCLAMATION An exclamation-point icon appears in the message box.

MB_ICONINFORMATION An icon consisting of a lowercase letter i in a circle appears
in the message box.

MB_ICONQUESTION A question-mark icon appears in the message box.

MB_ICONSTOP A stop-sign icon appears in the message box.

This flag group controls which button is highlighted by default

MB_DEFBUTTONN Where n is a number (1...4) indicating which button is the
default, numbered from left to right.

Note: There are additional advanced OS level flags, but we aren’t concerned with them. You can
always look them up in the online compiler Win32 SDK Help if you want to know more.
You can logically OR the values together in Table 2.3 to create the desired message
box. Usually, you will 0R only one flag from each group.

And of course, like all good Win32 API functions, MessageBox () returns a value to let
you know what happened. In our case, who cares? But in general, you might want to
know the return value if the message box was a yes/no question and so forth. Table
2.4 lists the possible return values.

TABLE 2.4 Return Values for MessageBox ()

Value Button Selected
IDABORT Abort

IDCANCEL Cancel

IDIGNORE Ignore

IDNO No

IDOK OK

IDRETRY Retry

IDYES Yes

Finally, a table that can list all the values without defoliating an entire forest! Anyway,
this completes the line-by-line analysis of our first Windows program—click!

CHAPTER 2 65

The Windows Programming Model m

A < Now | want you to get comfortable making changes to the program and
n)y compiling it in different ways. Try mucking with various compiler
»

a options, like optimization. Then try running the program through the
A debugger and see if you can figure that out. When you’re done, come
back.

If you want to hear a sound, a cheap trick is to use the MessageBeep () function. You
can look it up in the Win32 SDK. It’s similar to the MessageBox () function as far as
simplicity of use. Here it is:

BOOL MessageBeep (UINT utype); // the sound to play

The different sounds can be from among the constants shown in Table 2.5.

TaBLE 2.5 Sound Identifiers for MessageBeep ()

Value Sound

MB_ICONASTERISK System asterisk

MB_ICONEXCLAMATION System exclamation

MB_ICONHAND System hand

MB_ICONQUESTION System question

MB_OK System default

OxFFFFFFFF Standard beep using the computer speaker—yuck!

Note: If you have an MS-Plus theme installed, you're sure to get some interesting results.

See how cool the Win32 API is? There are literally hundreds of functions to play
with. Granted, they aren’t the fastest things in the world, but for general housekeep-
ing, I/0, and GUI stuff, they’re grrrreat! (I felt like Tony the Tiger for a second
<BG>.)

Let’s take a moment to summarize what we know at this point about Windows pro-
gramming. The first thing is that Windows is multitasking/multithreaded, so multiple
applications can run simultaneously. However, we don’t have to do anything to make
this happen. What does concern us is that Windows is event-driven. This means that
we have to process events (which we have no idea how to do at this point) and
respond to them. Okay, sounds good. And finally, all Windows programs start with the
function WinMain (), which has a few more parameters than the normal DOS main ()
but is within the realm of logic and reason.

With all that in mind, it’s time to write a real Windows application. (But before we
start, you might want to grab something to drink. Normally I would say Mountain

66 PART 1

W Windows Programming Foundations

Dew, but these days I'm a Red Bull man. Tastes like crap, but it keeps the synapses
going and the can looks cool.)

Real-World Windows Applications
(Without Puck)

Even though the goal of this book is to write 3D games that run on Windows, you
don’t need to know much about Windows programming. Actually, all you need is a
basic Windows program that opens a window, processes messages, calls the main
game loop, and that’s it. With that in mind, my goal in this section is to first show you
how to create simple Windows programs, but at the same time to lay the groundwork
for a game programming shell application that looks like a 32-bit DOS machine.

The main point of any Windows program is to open a window. A window is nothing
more than a workspace that displays information, such as text and graphics, that the
user can interact with. To create a fully functional Windows program, you only have
to do a few things:

Create a Windows class.

Create an event handler or WinProc.

Register the Windows class with Windows.

Create a window with the previously created Windows class.

uvishwNR=

Create a main event loop that retrieves and dispatches Windows messages to the
event handler.

Let’s take a look at each step in detail.

The Windows Class

Windows is really an object-oriented OS, so a lot of concepts and procedures in
Windows have their roots in C++. One of these concepts is Windows classes. Each
window, control, list box, dialog box, gadget, and so forth in Windows is actually a
window. What makes them all different is the class that defines them. A Windows
class is a description of a window type that Windows can handle.

There are a number of predefined Window classes, such as buttons, list boxes, file
selectors, and so on. However, you're free to create your own Windows classes. In
fact, you will create at least one Windows class for each application you write.
Otherwise, your program would be rather boring. So you can think of a Windows
class as a template for Windows to follow when drawing your window, as well as
processing messages for it.

CHAPTER 2 67

The Windows Programming Model m

Two data structures are available to hold Windows class information: WNDCLASS and
WNDCLASSEX. WNDCLASS is the older of the two and will probably be obsolete soon, so
we will use the new “extended” version, WDCLASSEX. The structures are very similar,
and if you are interested, you can look up the old WNDCLASS in the Win32 Help.
Anyway, let’s take a look at WDCLASSEX as defined in the Windows header files:

typedef struct _WNDCLASSEX

{

UINT cbSize; /| size of this structure

UINT style; /| style flags

WNDPROC lpfnWndProc; // function pointer to handler

int cbClsExtra; /| extra class info

int cbWndExtra; // extra window info

HANDLE hInstance; // the instance of the application
HICON hIcon; // the main icon

HCURSOR hCursor; /! the cursor for the window

HBRUSH hbrBackground; // the background brush to paint the window
LPCTSTR lpszMenuName; // the name of the menu to attach

LPCTSTR 1lpszClassName; // the name of the class itself

HICON hIconSm; // the handle of the small icon

} WNDCLASSEX;

So what you would do is create one of these structures and then fill in all the fields:
WNDCLASSEX winclass; // a blank windows class

The first field, cbSize, is very important (even Petzold forgot this in Programming
Windows 95). It is the size of the WNDCLASSEX structure itself. You might be wondering
why the structure needs to know how big it is. That’s a good question. The reason is
that if this structure is passed as a pointer, the receiver can always check the first field
to decide how long the data chunk is at the very least. It’s like a precaution and a little
helper info so other functions don’t have to compute the class size during runtime.
Therefore, all you have to do is set it like this:

winclass.chbSize = sizeof (WNDCLASSEX) ;

The next field contains the style information flags that describe the general properties
of the window. There are a lot of these flags, so I’'m not going to show them all.
Suffice it to say that you can create any type of window with them. Table 2.6 shows a
good working subset of the possible flags. You can logically OR these values together
to derive the type of window you want.

TaBLE 2.6 Style Flags for Window Classes

Flag Description

CS_HREDRAW Redraws the entire window if a movement or size adjustment
changes the width of the window.

continues

68 PART 1

T Windows Programming Foundations

TaBLE 2.6 Continued

Flag Description

CS_VREDRAW Redraws the entire window if a movement or size adjustment
changes the height of the window.

CS_OWNDC Allocates a unique device context for each window in the class
(more on this later in the chapter).

CS_DBLCLKS Sends a double-click message to the window procedure when the
user double-clicks the mouse while the cursor is in a window
belonging to the class.

CS_PARENTDC Sets the clipping region of the child window to that of the parent
window so that the child can draw on the parent.

CS_SAVEBITS Saves the client image in a window so you don’t have to redraw it
every time the window is obscured, moved, etc. However, this
takes up more memory and is slower that doing it yourself.

CS_NOCLOSE Disables the Close command on the system menu.

Note: The most commonly used flags are highlighted.

Table 2.6 contains a lot of flags, and I can’t blame you if you're confused. For now,
though, just set the style flags to indicate that you want the window to be redrawn if it
is moved or resized, and you want a static device context along with the ability to han-
dle double-click events.

I’'m going to talk about device contexts in detail in Chapter 3, “Advanced Windows
Programming,” but basically they are used as data structures for graphics rendering
into a window. Hence, if you want to do graphics, you need to request a device con-
text for the particular window you are interested in. Alas, if you set the Windows class
so that it has its own device context via CS_OWNDC, you can save some time since you
don’t have to request one each time you want to do graphics. Did that help at all, or
did I make it worse? Windows is like that—the more you know, the more you don’t.
Anyway, here’s how to set the style field:

winclass.style = CS_VREDRAW ;, CS_HREDRAW ; CS_OWNDC | CS_DBLCLICKS;

The next field of the WDCLASSEX structure, 1pfnWndProc, is a function pointer to the
event handler. Basically, what you are setting here is a callback function for the class.
Callback functions are fairly common in Windows programming and work like this:
When something happens, instead of you randomly polling for it, Windows notifies
you by calling a callback function you’ve supplied. Then, within the callback func-
tion, you take whatever action needs to be taken.

CHAPTER 2 69

The Windows Programming Model m

This process is how the basic Window event loop and event handler work. You supply
a callback function to the Windows class (with a specific prototype, of course). When
an event occurs, Windows calls it for you, as Figure 2.6 shows. Again, we will cover
this more in later sections. But for now, just set it to the event function that you’ll
write in a moment:

winclass.lpfnWndProc = WinProc; // this is our function

Figure 2.6

The Windows event
handler callback in
action.

Do work

Windows
Application

Windows

Winmain()

WinProc() I
Loop Call it for you

Event Handler
supplied by you.

Tip If you're not familiar with function pointers, they are like virtual
functions in C++. If you're not familiar with virtual functions, | guess |
have to explain them <BG>. Let’s say you have two functions that oper-
ate on two numbers:

int Add(int op1, int op2) {return(opi+op2);}

int Sub(int op1, int op2) {return(opt1-op2);}

You want to be able to call either function with the same call. You can
do so with a function pointer, like this:
// define a function pointer that takes two int and returns
an int
int (Math*) (int, int);

Then you can assign the function pointer like this:

Math = Add;
int result = Math(1,2); // this really calls Add(1,2)
// result will be 3

Math = Sub;
int result = Math(1,2); // this really calls Sub(1,2)
// result will be -1

Cool, huh?

70 PART 1

W Windows Programming Foundations

The next two fields, cbClsExtra and cbWndExtra, were originally designed to instruct
Windows to save some extra space in the Windows class to hold extra runtime
information. However, most people don’t use these fields and simply set them to o,
like this:

winclass.cbClsExtra 0; // extra class info space
winclass.cbWndExtra = @; // extra window info space

Moving on, next is the hInstance field. This is simply the hinstance that is passed to
the WinMain () function on startup, so just copy it in from WinMain():

winclass.hInstance = hinstance; // assign the application instance

The remaining fields relate to graphical aspects of the Windows class, but before 1
discuss them, I want to take a quick moment to review handles.

Again and again you’re going to see handles in Windows programs and types: handles
to bitmaps, handles to cursors, handles to everything. Remember, handles are just
identifiers based on an internal Windows type. In fact, they are really integers. But
Microsoft might change this, so it’s a good idea to be safe and use the Microsoft
types. In any case, you’re going to see more and more “handles to [fill in the blank],”
so don’t trip out on me! And remember, any type prefixed by h is usually a handle.
Okay, back to the chalkboard.

The next field sets the type of icon that will represent your application. You have the
power to load your own custom icon, but for now you’re going to use a system icon,
which—you guessed it—you need a handle for. To retrieve a handle to a common
system icon, you can use the LoadIcon() function, like this:

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

This code loads the standard application icon—boring, but simple. If you’re interested
in the LoadIcon() function, take a look at its prototype below, and see Table 2.7 for
various icon options:

HICON LoadIcon(HINSTANCE hInstance, // handle of application instance
LPCTSTR lpIconName); // icon-name string or icon resource identifier

Here, hInstance is the instance of the application to load the icon resource from
(more on this later), but for now just set it to NULL to load one of the standard icons.
And lpIconName is a null-terminated string containing the name of the icon resource
to be loaded. However, when hInstance is NULL, 1pIconName can be one of the values
in Table 2.7.

CHAPTER 2

The Windows Programming Model m

TABLE 2.7 Icon Identifiers for LoadIcon()

Value Description
IDI_APPLICATION Default application icon
IDI_ASTERISK Asterisk
IDI_EXCLAMATION Exclamation point
IDI_HAND Hand-shaped icon
IDI_QUESTION Question mark
IDI_WINLOGO Windows logo

All right, we’re about halfway through all the fields. Take another breath, and let’s
forge on to the next field: hcursor. This is similar to hIcon in that it’s a handle to a
graphics object. However, hCursor differs in that it’s the handle to the cursor that will
be displayed when the pointer enters the client region of the window. LoadCursor() is
used to obtain a handle to a cursor that’s a resource or a predefined system cursor. We
will cover resources a bit later, but they are simply pieces of data, like bitmaps, cur-
sors, icons, sounds, etc., that are compiled into your application and can be accessed
at runtime. Anyway, here’s how to set the cursor for the Windows class:

winclass.hCursor = LoadCursor(NULL, IDC_ARROW);

And here is the prototype for LoadCursor() (along with Table 2.8, which contains the
various system cursor identifiers):

HCURSOR LoadCursor (HINSTANCE hInstance,// handle of application instance
LPCTSTR 1lpCursorName); // name string or cursor resource identifier

Again, hInstance is the application instance of your .EXE that contains the resource
data to extract a custom cursor by name with. However, you aren’t using this func-
tionality yet and will set hInstance to NULL to allow default system cursors only.

1pCursorName identifies the resource name string or handle to the resource (which we
aren’t using at this point), or is a constant that identifies one of the system defaults
shown in Table 2.8.

TaBLE 2.8 Values for LoadCursor()

Value Description

IDC_ARROW Standard arrow

IDC_APPSTARTING Standard arrow and small hourglass
IDC_CROSS Crosshair

IDC_IBEAM Text I-beam

IDC_NO Slashed circle

continues

71

2 PART 1

T Windows Programming Foundations

TaBLE 2.8 Continued

Value Description

IDC_SIZEALL Four-pointed arrow

IDC_SIZENESW Double-pointed arrow pointing northeast and southwest
IDC_SIZENS Double-pointed arrow pointing north and south
IDC_SIZENWSE Double-pointed arrow pointing northwest and southeast
IDC_SIZEWE Double-pointed arrow pointing west and east
IDC_UPARROW Vertical arrow

IDC_WAIT Hourglass

Now we’re cooking! We’re almost done—the remaining fields are a little more
interesting. Let’s move on to hbrBackground.

Whenever a window is drawn or refreshed, at the very least, Windows will repaint the
background of the window’s client area for you with a predefined color, or brush in
Windows-speak. Hence, hbrbackground is a handle to the brush that you want the
window to be refreshed with. Brushes, pens, colors, and graphics are all part of
GDI—the Graphics Device Interface—and we will discuss them in detail in the next
chapter. For now, I’'m going to show you how to request a basic system brush to paint
the window with. This is accomplished with the GetStockObject () function, as
shown in the following line of code:

winclass.hbrBackground = GetStockObject (WHITE_BRUSH);

GetStockObject () is a general function that retrieves a handle to one of the Windows
stock brushes, pens, palettes, or fonts. GetStockObject () takes a single parameter
indicating which one of these resources to load. Table 2.9 contains a list of possible
stock objects for brushes and pens only.

TABLE 2.9 Stock Object Identifiers for GetStockObject ()

Value Description
BLACK_BRUSH Black brush
WHITE_BRUSH White brush
GRAY_BRUSH Gray brush
LTGRAY_BRUSH Light gray brush
DKGRAY_BRUSH Dark gray brush
HOLLOW_BRUSH Hollow brush
NULL_BRUSH Null brush

BLACK_PEN Black pen

CHAPTER 2 3

The Windows Programming Model m

Value Description
WHITE_PEN White pen
NULL_PEN Null pen

The next field in the WNDCLASS structure is the 1pszMenuName. This is a null-
terminated ASCII string of the menu resource’s name to load and attach to the
window. We will see how this works later in Chapter 3, “Advanced Windows
Programming.” For now, we’ll just set it to NULL:

winclass.lpszMenuName = NULL; // the name of the menu to attach

As I mentioned a while ago, each Windows class represents a different type of
window that your application can create. Classes are like templates, in a manner of
speaking, but Windows needs some way to track and identify them. Therefore, the
next field, 1pszClassName, is for just that. This field is filled with a null-terminated
string that contains a text identifier for your class. I personally like using identifiers
like "WINCLASS1", "WINCLASS2", and so forth. It’s up to you, but it’s better to keep it
simple, like this:

winclass.lpszClassName = "WINCLASS1"; // the name of the class itself

After this assignment, you will refer to the new Windows class by its class name,
"WINCLASS1"—kinda cool, huh?

Last but not least is the small application icon. This is a new addition to the Windows
class WNDCLASSEX structure and wasn’t available in the older WNDCLASS. Basically, this
handle points to the icon you want to display on your window’s title bar and on the
Windows desktop taskbar. Usually you would load a custom resource, but for now
let’s just use one of the standard Windows icons via LoadIcon():

winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION); // the handle of the small
icon

That’s it. Now let’s take a look at the whole class definition at once:

WNDCLASSEX winclass; // this will hold the class we create

// first fill in the window class structure

winclass.chSize = sizeof (WNDCLASSEX) ;

winclass.style = CS_DBLCLKS | CS_OWNDC ; CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;

winclass.cbClsExtra = 0;

winclass.cbWndExtra = 0;

winclass.hInstance = hinstance;

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground = GetStockObject (BLACK_BRUSH);

74 PART 1

W Windows Programming Foundations

winclass.lpszMenuName = NULL;
winclass.lpszClassName = "WINCLASS1";
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

And of course, if you want to save some typing, you could initialize the structure
on-the-fly like this:

WNDCLASSEX winclass = {
winclass.cbSize = sizeof (WNDCLASSEX),
CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW,
WindowProc,
0,
0,
hinstance,
LoadIcon(NULL, IDI_APPLICATION),
LoadCursor (NULL, IDC_ARROW),
GetStockObject (BLACK_BRUSH),
NULL,
"WINCLASS1",
LoadIcon(NULL, IDI_APPLICATION)};

It saves typing!

Registering the Windows Class

Now that the Windows class is defined and stored in winclass, you must tell
Windows about the new class. This is accomplished via the function
RegisterClassEx (), which simply takes a pointer to the new class definition, like
this:

RegisterClassEx(&winclass);

Notice that I'm not using the class name, which is "WINCLASS1" in the

case of our example. For RegisterClassEx (), you must use the actual
structure holding the class because at the point before the call to the
function, Windows does not yet know of the existence of the new class.
Get it?

Also, to be complete, there is the old RegisterClass() function, which is used to
register a class based on the older structure WNDCLASS.

Once the class is registered, we are free to create the window with it. Let’s see how to
do that, and then revisit the details of the event handler and main event loop to see
what kind of processing needs to be done for a Windows application to work.

CHAPTER 2

The Windows Programming Model m

Creating the Window

To create a window (or any window-like object), you use the CreateWindow() or
CreateWindowEx () function. The latter is a little newer and supports an additional

style parameter, so let’s use it. This is where the Windows class comes in, which we
took so long to dissect piece by piece. When you create a window, you must supply
the text name of the window class—which in this case is "WINCLASS1". This is what
identifies your Windows class and differentiates it from other classes, along with the
built-in types like buttons, text boxes, etc.

Here’s the function prototype for CreateWindowEx ():

HWND

CreateWindowEx (

DWORD dwExStyle, // extended window style

LPCTSTR 1pClassName, // pointer to registered class name
LPCTSTR lpWindowName, // pointer to window name

DWORD dwStyle, // window style

int x, // horizontal position of window

int vy, // vertical position of window

int nwWidth, // window width

int nHeight, // window height

HWND hWndParent, // handle to parent or owner window

HMENU hMenu, // handle to menu, or child-window identifier
HINSTANCE hInstance, // handle to application instance

LPVOID lpParam); // pointer to window-creation data

If the function is successful, it returns a handle to the newly created window; other-
wise, it returns NULL.

Most of the parameters are self-explanatory, but let’s cover them anyway:

dwexStyle—The extended styles flag is an advanced feature, and for most
cases, you’ll set it to NULL. However, if you’re interested in all the possible val-
ues, take a look at the Win32 SDK Help—there are a lot of them. About the
only one I ever use is WS_EX_TOPMOST, which makes the window stay on top.

1pclassName—This is the name of the class you want to create a window based
on—for example, "WINCLASS1".

1pwindowName—This is a null-terminated text string containing the title of the
window—for example, "My First Window".

dwStyle—This is the general window flag that describes what the window
looks like and how it behaves—very important! See Table 2.10 for a list of
some of the more popular values. Of course, you can logically OR these values
together to get the various features you want.

x,y—This is the position of the upper left-hand corner of the window in pixel
coordinates. If you don’t care, use CW_USEDEFAULT and Windows will decide.

75

76 PART 1

T Windows Programming Foundations

* nWidth, nHeight—This is the width and height of the window in pixels. If you
don’t care, use CW_USEDEFAULT and Windows will decide.

e hwWndParent—This is the handle to the parent window, if there is one. Use NULL
if there isn’t a parent, and then the desktop will be the parent.

¢ hMenu—This is the handle to the menu to attach to the window. You’ll learn
more on this in the next chapter. Use NULL for now.

* hInstance—This is the instance of the application. Use hinstance from

WinMain () here.

e 1lpParam—Advanced. Set to NULL.

Table 2.10 lists the various window flags settings.

TAaBLE 2.10 General Style Values for dwStyle

Style

Creates

WS_POPUP
WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_VISIBLE

WS_SYSMENU

WS_BORDER
WS_CAPTION
WS_ICONIC

WS_MAXIMIZE
WS_MAXIMIZEBOX

WS_MINIMIZE

WS_MINIMIZEBOX

WS_POPUPWINDOW

A pop-up window.
An overlapped window, which has a title bar and a border.
Same as the WS_TILED style.

An overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_
MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

A window that is initially visible.

A window that has a window menu on its title bar. The
WS_CAPTION style must also be specified.

A window that has a thin-line border.

A window that has a title bar (includes the WS_BORDER style).
A window that is initially minimized. Same as the
WS_MINIMIZE style.

A window that is initially maximized.

A window that has a Maximize button. Cannot be combined

with the WS_EX_CONTEXTHELP style. The WS_SYSMENU style
must also be specified.

A window that is initially minimized. Same as the WS_ICONIC
style.

A window that has a Minimize button. Cannot be combined
with the WS_EX_CONTEXTHELP style. The WS_SYSMENU style
must also be specified.

A pop-up window with WS_BORDER, WS_POPUP, and
WS_SYSMENU styles. The WS_CAPTION and WS_POPUPWINDOW
styles must be combined to make the window menu visible.

CHAPTER 2 7

The Windows Programming Model m

Style Creates

WS_SIZEBOX A window that has a sizing border. Same as the
WS_THICKFRAME style.

WS_HSCROLL A window that has a horizontal scrollbar.

WS_VSCROLL A window that has a vertical scrollbar.

Note: I have highlighted commonly used values.

And here’s how you would create a basic overlapped window with the standard con-
trols at position 0,0 with a size of 400,400 pixels:

HWND hwnd; // window handle

// create the window, bail if problem

if (!(hwnd = CreateWindowEx (NULL, // extended style
"WINCLASS1", // class
"Your Basic Window", // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0, // initial x,y

400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu

hinstance,// instance of this application
NULL))) // extra creation parms
return(0);

Once the window has been created, it may or may not be visible. However, in this
case, we added the style flag WS_VISIBLE, which does this automatically. If this flag
isn’t added, use the following function call to manually display the window:

// this shows the window
Showwindow (hwnd, ncmdshow) ;

Remember the ncmdshow parameter of WinMain () ? This is where it comes in handy.
Although here you’ve overridden it by adding WS_VISIBLE, you would normally send
it as the parameter to Showwindow (). The next thing that you might want to do is force
Windows to update your window’s contents and generate a WM_PAINT message. This is
accomplished with a call to UpdateWindow():

/] this sends a WM_PAINT message to window and makes

// sure the contents are refreshed
UpdateWindow() ;

The Event Handler

I don’t know about you, but I’'m starting to get the hang of this Windows stuff! It’s not
that bad. It’s like a mystery novel—except the mystery is figuring out what language
the novel is written in! With that in mind, let’s tackle the main event handler, or at

78 PART 1

W Windows Programming Foundations

least take a first look at it. Remember, I mentioned that the event handler is a callback
function called by Windows from the main event loop whenever an event occurs that
your window must handle. Take a look at Figure 2.6 again to refresh your memory
about the general data flow.

This event handler is written by you, and it handles as many (or as few) events as you
want to take care of. The rest you can pass on to Windows and let it deal with them.
Of course, keep that in mind that the more events and messages your application
handles, the more functionality it will have.

Before we get into some code, though, let’s talk about some of the details of the event
handler, exactly what it does, and how it works. First, for each Windows class that
you create, you can have a separate event handler that I will refer to as Windows’
Procedure or simply WinProc from now on. The WinProc is sent messages from the
main event loop as messages are received from the user or Windows and placed in the
main event queue. That’s a mental tongue twister, so I’ll say it in another way...

As the user and Windows perform tasks, events and messages are generated that are
for your window and/or other applications’ windows. All of these messages go into a
queue, but the ones for your window are sent to your window’s own private queue.
Then the main event loop retrieves these messages and sends them to your window’s
WinProc to be processed.

There are literally hundreds of possible messages and variations, so we aren’t going to
cover them all. Luckily, you only have to handle very few of them to get a Windows
application up and running.

So in a nutshell, the main event loop feeds the WinProc with messages and events,
and the WinProc does something with them. Hence, not only do you have to worry
about the WinProc, but also the main event loop. We will get to this shortly; for now,
assume that the WinProc is simply going to be fed messages.

Now that you know what the WinProc does, let’s take a look at the prototype for it:

LRESULT CALLBACK WindowProc (
HWND hwnd, // window handle of sender
UINT msg, // the message id
WPARAM wparam, // further defines message
LPARAM 1lparam); // further defines message

Of course, this is just a prototype for the callback. You can call the function anything
you want because you are only going to assign the function’s address as a function
pointer to winclass.lpfnWndProc, like this:

winclass.lpfnWndProc = WindowProc;

CHAPTER 2 79

The Windows Programming Model m

Remember? Anyway, the parameters are fairly self-explanatory:

e hwnd—This is the window handle and is only important if you have multiple
windows open with the same Windows class. In that case, hwnd is the only way
you can tell which messages are coming from which window. Figure 2.7 shows
this possibility.

Figure 2 ? Same Application

. . I T ST TS TS s S m s s ==

Multiple windows ! hwnd 1 hwnd 2 !
1

based on the same ! X !
1

class. , messages messages messages |

1 Window 1 Window 2 Window 3 :

: 1

1 1

1

: “Winclass1” “Winclass1” “Winclass1” 1

1

WinProc() >
Event Handler
for “Winclass1” <€

Y

All messages are
processed by same
event handler if
window class is same.

* msg—This is the actual message ID that the WinProc should handle. This ID
may be one of dozens of main messages.

* wparam and Lparam—These further qualify or subclass the message sent in the
msg parameter.

And finally, the return type, LRESULT, and declaration specifier, CALLBCK, are of
interest. These keywords are a must, so don’t forget them! B
=1 case. And

So what most people do is switch() on the msg and then write code for

based on msg, you will know if you need to further evaluate wparam and/or lparam.
Cool? So let’s take a look at some of the possible messages that might come through
the WinProc, and then we’ll see a bare-bones WinProc. Take a look at Table 2.11 to

see a short list of some basic message IDs.

TABLE 2.11 A Short List of Message IDs

Value Description

WM_ACTIVATE Sent when a window is activated or becomes the focus.
WM_CLOSE Sent when a window is closed.

WM_CREATE Sent when a window is first created.

WM_DESTROY Sent when a window is about to be destroyed.
WM_MOVE Sent when a window has been moved.

WM_MOUSEMOVE Sent when the mouse has been moved.

continues

Errata

Errata
"hwnd 2" should be "hwnd 3"

Errata

Errata
"CALLBCK" should be "CALLBACK"

80 PART 1

T Windows Programming Foundations

TaBLe 2.11 Continued

Value Description

WM_KEYUP Sent when a key is released.

WM_KEYDOWN Sent when a key is pressed.

WM_TIMER Sent when a timer event occurs.

WM_USER Allows you to send messages.

WM_PAINT Sent when a window needs repainting.

WM_QUIT Sent when a Windows application is finally terminating.
WM_SIZE Sent when a window has changed size.

Take a good look at Table 2.11 and read what all those messages are for. Basically,
the WinProc will be sent one or more of these messages as the application runs. The
message ID itself will be in msg, and any remaining info is stored in wparam and
1param. Thus, it’s always a good idea to reference the online Win32 SDK Help to see
what all the parameters of a particular message do.

Fortunately, we are only interested in three messages right now:

e WM_CREATE—This message is sent when the window is first created and gives
you a chance to do any setup, initialization, or resource allocation.

e wM_PAINT—This message is sent whenever your window’s contents need
repainting. This can occur for a number of reasons: the window was moved or
resized by the user, another application popped up and obscured yours, and
SO on.

* WM_DESTROY—This message is sent to your window when the window is about
to be destroyed. Usually, this is a direct result of the user clicking the window’s
close icon or closing from the window’s system menu. Either way, this is where
you should deallocate all the resources and tell Windows to terminate the appli-
cation completely by sending a WM_QUIT message yourself—more on this later.

So without further ado, let’s see a complete WinProc that handles all these messages:

LRESULT CALLBACK WindowProc (HWND hwnd,
UINT msg,
WPARAM wparam,
LPARAM lparam)

{

// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT

HDC hdc; // handle to a device context

// what is the message
switch(msg)

{

CHAPTER 2 81

The Windows Programming Model m

case WM_CREATE:
{

// do initialization stuff here

// return success
return(0);
} break;

case WM_PAINT:
{

// simply validate the window

hdc = BeginPaint (hwnd,&ps);

// you would do all your painting here
EndPaint (hwnd, &ps) ;

// return success
return(0);
} break;

case WM_DESTROY:

{
// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

// return success
return(0);
} break;

default:break;
} // end switch

/| process any messages that we didn't take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

As you can see, the function is composed of empty space for the most part—which is
a good thing! Let’s begin with the processing of WM_CREATE. Here, all the function
does is return(@). This simply tells Windows that you handled it, so don’t take any
more actions. Of course, you could have done all kinds of initialization in the
WM_CREATE message, but that’s up to you.

The next message, WM_PAINT, is very important. This message is sent whenever your
window needs repainting. This usually means that you have to do the repainting. For
DirectX games, this isn’t going to matter because you are going to redraw the screen
30 to 60 fps (frames per second). But for a normal Windows application, it does mat-
ter. I'm going to cover WM_PAINT in much more detail in the next chapter, but for now
just tell Windows that you did repaint the window, so it can stop sending WM_PAINT
messages.

82 PART 1

W Windows Programming Foundations

To accomplish this feat, you must validate the client rectangle of the window. There
are a number of ways to do this, but the simplest is to put a call to BeginPaint()—
EndPaint (). This calling pair validates the window and fills the background with the
background brush previously stored in the Windows class variable hbrBackground.
Once again, here’s the code for the validation:
// begin painting
hdc = BeginPaint (hwnd,&ps);

// you would do all your painting here
EndPaint (hwnd,&ps) ;

There are a couple of things going on here that I want to address. First, notice that the
first parameter to each call is the window handle hwnd. This is necessary because the
BeginPaint()—EndPaint () functions can potentially paint in any window of your
application, so the window handle indicates which one you’re interested in messing
with. The second parameter is the address of a PAINTSTRUCT structure that contains
the rectangle that you must redraw. Here’s what a PAINTSTRUCT looks like:

typedef struct tagPAINTSTRUCT
{
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];
} PAINTSTRUCT;

You don’t really need to worry about this until later, when we talk about the Graphics
Device Interface or GDI. But the most important field is rcPaint, which is a RECT
structure that contains the minimum rectangle that needs to be repainted. Take a look
at Figure 2.8 to see this. Notice that Windows tries to do the least amount of work
possible, so when the contents of a window are mangled, Windows at least tries to tell
you the smallest rectangle that you can repaint to restore the contents. And if you’re
interested in the RECT structure, it’s nothing more than the four corners of a rectangle,
as shown here:

typedef struct tagRECT

{
LONG left; // left x-edge of rect
LONG top; // top y-edge of rect

LONG right; // right x-edge of rect
LONG bottom; // bottom y-edge of rect
} RECT;

And the last thing that you’ll notice about the call to BeginPaint () is that it returns a
handle to a graphics context or hdc:

HDC hdc; // handle to graphics context
hdc = BeginPaint (hwnd,&ps) ;

CHAPTER 2 8

The Windows Programming Model qu.

Figure 2.8 Title bar
Repainting the invalid

region only. Window

— I}

This area was invalidated,
possibly by another window

PaintStruct

f Only repaint
this region

RECT rcPaint —1+3>

}

lﬁ\ J

BeginPaint(hwnd, &ps); c Y
lient area

R —]

* Processed by WM_PAINT

A graphics context is a data structure that describes the video system and drawing
surface. It’s magic, as far as we are concerned; you just have to retrieve one if you
want to do any graphics. That’s about it for the WM_PAINT message—for now.

The WM_DESTROY message is actually quite interesting. WM_DESTROY is sent when the
user closes the window. However, this only closes the window, not the application.
The application will continue to run, but without a window. You need to do something
about this. In most cases, when the user kills the main window, he intends for the
application to terminate. Thus, you must facilitate this by sending a message yourself!
The message is called WM_QUIT. And since this message is so common, there’s a
function to send it for you, called PostQuitMessage ().

All you need to do in the WM_DESTROY handler is clean up everything and then tell
Windows to terminate your application with a call to PostQuitMessage (). This, in
turn, puts a WM_QUIT into the message queue, which at some point causes the main
event loop to bail.

There are a couple of details you should know about in the WinProc handler we have
been analyzing. First, I'm sure you have noticed the return(@) after each handler
body. This serves two purposes: to exit the WinProc and to tell Windows that you
handled the message. The second important detail is the default message handler,
DefaultWindowProc (). This function is a passthrough that passes messages that you
don’t process onto Windows for default processing. Therefore, if you don’t handle
the message, make sure to always end all your event handler functions with a call
like this:

84 PART 1

W Windows Programming Foundations

/] process any messages that we didn't take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

I know this may all seem like overkill and more trouble than it’s worth. Nevertheless,
once you have a basic Windows application skeleton, you just copy it and add your
own code. My main goal, as I said, is to help you create a DOS32-looking game con-
sole that you can use and almost forget that any Windows stuff is going on. Anyway,
let’s move on to the last part—the main event loop.

The Main Event Loop

The hard part is over! The main event loop is so simple, I'm just going to blurt it out
and then talk about it:
// enter main event loop

while (GetMessage (&msg,NULL,0,0))
{

// translate any accelerator keys
TranslateMessage (&msg) ;

// send the message to the window proc
DispatchMessage (&msg);
} // end while

That’s it? Yup! Let’s see what’s going on here, shall we? The main while() is exe-
cuted as long as GetMessage () returns a nonzero value. GetMessage () is the work-
horse of the main event loop, and its sole purpose is to get the next message from the
event queue and process it. You’ll notice that there are four parameters to
GetMessage (). The first one is important to us; however, the remaining parameters are
set to NULL and 0. Here’s the prototype, for reference:
BOOL GetMessage (

LPMSG 1pMsg, // address of structure with message

HWND hwnd, // handle of window

UINT wMsgFilterMin, // first message
UINT wMsgFilterMax); // last message

The msg parameter is (yes, you guessed it) the storage for Windows to place the next
message in. However, unlike the msg parameter for WinProc (), this msg is a complex
data structure rather than just an integer. Remember, by the time a message gets to the
WinProc, it has been “cooked” and split apart into its constituent parts. Anyway, here
is the MSG structure:

typedef struct tagMSG

{

HWND hwnd; // window where message occurred
UINT message; // message id itself

WPARAM wParam; // sub qualifies message

LPARAM 1Param; // sub qualifies message

CHAPTER 2 8

The Windows Programming Model m

DWORD time; // time of message event
POINT pt; // position of mouse
} MSG;

Starting to make sense, Jules? Notice that the parameters to WinProc() are all con-
tained within this structure, along with some others, like the time and position of the
mouse when the event occurred.

So GetMessage () retrieves the next message from the event queue, but then what?
Well, TranslateMessage () is called next. TranslateMessage () is a virtual accelera-
tor key translator—in other words, an input cooker. Just call it and don’t worry about
what it does. The final function, DispatchMessage (), is where all the action occurs.
After the message is retrieved with GetMessage () and potentially processed and trans-
lated a bit with TranslateMessage (), the actual WinProc () is called by the call to
DispatchMessage().

DispatchMessage () makes the call to the WinProc, sending the appropriate
parameters from the original MSG structure. Figure 2.9 shows the whole process
in its final glory.

Figure 2.9 WinMain() Event Handler
The mechanics of >| WinProc()
event loop message B { _ re-entrant =
processing. ~ wm-Create: =
wm-Paint: —
. = = Window
TranslateMessage() . -
wm-Destroy:
} A
DispatchMessage e —
a 950 * Post Message()
\
Message Queue
Game Logic
p— msg 1 User Input
msg 2
msg 3
+ Y + .
| Al I | Renderl | Physicsl .
—— msgn

That’s it, you're a Windows expert! If you grasp the concepts just covered and the
importance of the event loop, event handler, and so on, that’s 90 percent of the battle.
The rest is just details.

With that in mind, take a look at Listing 2.3. It’s a complete Windows program that
creates a single window and waits for you to close it.

Errata

Errata
"wm-Create" should be "WM_CREATE"

Errata

Errata
"wm-Paint" should be "WM_PAINT"

86 PART 1

“ Windows Programming Foundations

LisTing 2.3 A Basic Windows Program

// DEMO2_3.CPP - A complete windows program

[/ INCLUDES /[//[//111111 17170 irrirrirrl
#define WIN32 LEAN_AND MEAN // just say no to MFC

#include <windows.h> // include all the windows headers
#include <windowsx.h> // include useful macros

#include <stdio.h>

#include <math.h>

/1 DEFINES ////1 11111 LTH i rr i ri i irrry

// defines for windows
#define WINDOW_CLASS_NAME "WINCLASS1"

/1 GLOBALS [/ [/ 1111111t i i i rrry

[/ FUNCTIONS /[////11 11111t ri i rr g
LRESULT CALLBACK WindowProc (HWND hwnd,
UINT msg,

WPARAM wparam,

LPARAM 1lparam)
{
// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

// what is the message
switch(msg)

{

case WM_CREATE:

{
// do initialization stuff here

// return success
return(0);
} break;

case WM_PAINT:

{

// simply validate the window

hdc = BeginPaint (hwnd,&ps);

// you would do all your painting here
EndPaint (hwnd,&ps);

// return success
return(0);
} break;

CHAPTER 2

87

case

{

The Windows Programming Model

WM_DESTROY:

// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

retu

// return success
rn(o);

} break;

default:break;

P

end switch

// process any messages that we didn't take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end

/1 WINMAIN /7000 i i i rrg

WinProc

int WINAPI WinMain(HINSTANCE hinstance,

WNDCLASSEX winclass;

HWND
MSG

/] first

winclass.
winclass.

winclass.
winclass.
winclass.
winclass.
winclass.
winclass.
winclass.
winclass.
winclass.
winclass.

HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)

hwnd; // generic window handle
msg; // generic message
fill in the window class structure
cbSize = sizeof (WNDCLASSEX);
style = CS_DBLCLKS | CS_OWNDC |
CS_HREDRAW | CS_VREDRAW;
1pfnWndProc = WindowProc;
cbClsExtra = 0;
cbWndExtra = 0;
hInstance = hinstance;
hIcon = LoadIcon(NULL, IDI_APPLICATION);
hCursor = LoadCursor(NULL, IDC_ARROW);
hbrBackground = GetStockObject (BLACK_BRUSH);
1pszMenuName = NULL;
lpszClassName = WINDOW_CLASS_NAME;
hIconSm = LoadIcon(NULL, IDI_APPLICATION);

// register the window class
if (!RegisterClassEx(&winclass))

retu

rn(0);

// create the window
if (!(hwnd = CreateWindowEx (NULL, // extended style

WINDOW_CLASS_NAME, // class
"Your Basic Window", // title

// this will hold the class we create

continues

88 PART |

.r Windows Programming Foundations
Ji

LisTinGg 2.3 Continued

return(0);

WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0, // initial x,y

400,400, // initial width, height

NULL, // handle to parent

NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

// enter main event loop
while (GetMessage (&msg,NULL,0,0))

{

// translate any accelerator keys
TranslateMessage (&msg);

// send the message to the window proc
DispatchMessage (&msg) ;
} // end while

// return to Windows like this
return(msg.wParam);

} // end WinMain

PEPTLEEEEEEL i i i rr i iy

To compile DEMO2_3.CPP, simply create a Win32 .EXE application and add
DEMO2_3.CPP to the project. Or if you like, you can run the precompiled program,
DEMO2_3.EXE, off the CD-ROM. Figure 2.10 shows the program in action. It’s not
much to look at, but what do you want? This is a paperback book!

Figure 2.10 | Your Basic Window
DEMO2_3.EXE
in action.

CHAPTER 2 89

The Windows Programming Model m

There are a couple of issues that I want to hit you with before moving on. First, if
you take a close look at the event loop, it doesn’t look all that real-time. Meaning
that while the program waits for a message via GetMessage (), the main event loop
is basically blocked. This is very true; you must somehow get around this, since you
need to perform your game processing continuously and handle Windows events if
and when they come.

Making a Real-Time Event Loop

This type of real-time nonwaiting event loop is easy to make. All you need is a way
to test if there is a message in the message queue. If there is, you can process it;
otherwise, continue processing other game logic and repeat. The function that
performs this test is called PeekMessage ().Its prototype is almost identical to
GetMessage()’s, as shown here:
BOOL PeekMessage (

LPMSG 1lpMsg, // pointer to structure for message

HWND hWnd, // handle to window

UINT wMsgFilterMin, // first message

UINT wMsgFilterMax, // last message
UINT wRemoveMsg); // removal flags

This returns nonzero if a message is available.

The difference is in the last parameter, which controls how the messages should be
retrieved from the message queue. The valid flags for wRemoveMsg are

* PM_NOREMOVE—Messages are not removed from the queue after processing by
PeekMessage ().

* PM_REMOVE—Messages are removed from the queue after processing by
PeekMessage ().

Taking these two possibilities into consideration, you can do one of two things: Use
PeekMessage () with PM_NOREMOVE and, if there is a message, call GetMessage(); or
use PM_REMOVE and use PeekMessage () itself to retrieve a message if there is one. Use
the latter. Here’s the core logic, changed to reflect this new technique in the main
event loop:

while (TRUE)

{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,®@,0,PM_REMOVE))

{

/] test if this is a quit

if (msg.message == WM_QUIT)
break;

90 PART 1

T Windows Programming Foundations

// translate any accelerator keys
TranslateMessage (&msg);

// send the message to the window proc
DispatchMessage (&msg);
} // end if

// main game processing goes here
Game_Main();
} // end while

I've highlighted important points in the code. The first section in bold is
if (msg.message == WM_QUIT) break;

This is how you must detect to bail out of the infinite while (TRUE) loop. Remember,
when a WM_DESTROY message is processed in the WinProc, it’s your job to send a
WM_QUIT message via the call to PostQuitMessage (). The WM_QUIT then trickles
through the event queue, and you can detect it so you can bail out of the main loop.

The last section of highlighted code simply indicates where you would put the call to
your main game code loop. But remember, the call to Game_Main ()—or whatever you
call it—must return after one frame of animation or game logic. Otherwise, messages
won’t be processed by the main Windows event loop.

For an example of this new real-time structure that is more appropriate for game logic
processing, take a look at the source DEMO2_4.CPP and the associated DEM0O2_4 .EXE on
the CD-ROM. This structure will in fact be our model for the remainder of the book.

Opening More Windows

Before finishing up this chapter, I want to cover one more quick topic that you might
be wondering about—how do you open more than one window. Actually, this is
trivial, and you already know how to do it. All you need to do is make two or more
calls to CreateWindowEx () to create the windows, and that’s it. However, there are
some caveats to this.

First, remember that when you create a window, it’s based on a Windows class. This
class, among other things, defines the WinProc or event handler for the entire class.

This is a very important detail, so pay attention. You can make as many windows as
you want with the same class, but all the messages for them will be sent to the same
WinProc, as defined by the event handler pointed to by the 1pfnwWndProc field of the
WINCLASSEX structure. To see this, take a look at Figure 2.11. It depicts the message

flow in this case.

CHAPTER 2 o

The Windows Programming Model m

Figure 2.11 “Window class”
The message flow for WinProc()
multiple windows <«
with the same Event Handler | ¢——
Windows class. Ipfn WndProc >
hwnd 1 = CreateWindowEx (...“window class”...);
hwnd 2 = CreateWindowEX (...“window class”...);
hwnd 3 = CreateWindowEXx (...“window class”...);
hwnd 1 hwnd 2 hwnd 3
|

Messages

This may or may not be want you want. If you want a different WinProc for each win-
dow, you must create more than one Windows class and create each window with a
different class. Hence, a different WinProc is sent messages for each class window.
Figure 2.12 shows this setup.

Figure 2.12 Multiple Windows
Multiple Windows Window 1
classes with multiple = 000 n
windows.
Window 2
— T

Messages are
routed to each
WinProc() based
on window class.

With that in mind, here’s the code to create two windows based on the same class:

/| create the first window

if (!(hwnd = CreateWindowEx (NULL, // extended style
WINDOW_CLASS_NAME, // class
"Window 1 Based on WINCLASS1", // title

2 PART 1

.r Windows Programming Foundations

WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu

hinstance,// instance of this application
NULL))) // extra creation parms
return(0);

/| create the second window
if (!(hwnd = CreateWindowEx (NULL, // extended style
WINDOW_CLASS_NAME, /| class
"Window 2 Also Based on WINCLASS1", // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
100,100, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms
return(0);

Of course, you might want to track each window handle in different variables rather
than the same one, as is the case with hwnd, but you get the idea. For an example of
opening two windows at once, take a look at DEMO2_5.CPP and the associated exe-
cutable, DEMO2_5.EXE. When you run the .EXE, you should see something like Figure
2.13. Notice that when you close either window, they both close and the application
terminates. See if you can figure out a way to close only one window at a time. (Hint:
Create two Windows classes, and don’t send a WM_QUIT message until both windows
have been closed.)

Figure 2.13
The multiple-
window program
DEMO2_5. EXE.

CHAPTER 2 %3

The Windows Programming Model m

Summary
I don’t know about you, but I’'m really excited! At this point, you have everything you
need to start understanding much more complex Windows programming. You know
about the architecture of Windows and multitasking, and you know how to create
Window classes, register classes, create windows, write event loops and handlers, and
a lot more! So pat yourself on the back (or, for my alien readers, lick your eyeballs).
You have done a most excellent job <BG>.

In the next chapter, we’re going to cover some more Windows-related stuff, like using
resources, creating menus, working with dialogs, and getting information.

CHAPTER

Advanced Windows
Programming

“Are you sure this sweet machine isn’t going to waste?”
—Dade, Hackers

It doesn’t take a rocket scientist to realize that Windows pro-
gramming is a huge subject. However, the cool thing about it is
that you don’t need to know much to get a lot done. With that in
mind, this chapter supplies some of the most important pieces
you need to make a complete Windows application. You’ll learn
about:

e Using resources such as icons, cursors, and sounds

* Menus

e Basic GDI and the video system

 Input devices

¢ Sending messages

% PART 1

W Windows Programming Foundations

Using Resources

One of the main design issues that the creators of Windows wanted to address
was storing more than just the program code in a Windows application (even Mac
programs do this). They reasoned that the data for a program should also reside
within the program’s .EXE file. This isn’t a bad idea for a number of reasons:

* A single .EXE that contains both code and data is simpler to distribute.
 If you don’t have external data files, you can’t lose them.
* Outside forces can’t easily access your data files—such as .BMPs, .WAVs, and

so on—and hack, jack, and distribute them around the planet.

To facilitate this kind of database technology, Windows programs support what are
called resources. These are simply pieces of data combined with your program code
that can be loaded in later during runtime by the program itself. Figure 3.1 depicts
this concept.

Figure 3.1 Windows Application .EXE

The relationship of
resources to a
Windows application.

Program Code
Data

Resources

Icons

Bitmaps

.wavs

cursors

> Resources are located

String tables atend of .EXE

Dialogs

Menus

.
.
.

P

So what kind of resources are we talking about here? Well, in reality, there is no limit
to the types of data you can compile into your program because Windows programs
support user-defined resource types. However, there are some predefined types that
should take care of most of your needs:

CHAPTER 3 97

Advanced Windows Programming m

e Icons—Small bitmapped images used in a number of places, such as the image
that you click on to run a program within a directory. Icons use the .ICO file
extension.

* Cursors—A bitmap that represents the mouse pointer. Windows allows you
to manipulate cursors in a number of ways. For example, you might want the
cursor to change as it is moved from window to window. Cursors use the .CUR
file extension.

e Strings—The string resource might not be so obvious a choice for a resource.
You might say, “I usually put strings into my program anyway, or in a data file.”
I can see your point. Nevertheless, Windows allows you to place a table of
strings in your program as a resource and to access them via IDs.

* Sounds—Most Windows programs make at least minimal use of sounds via
.WAV files. Hence, .WAV files can be added to your resources, too. This is a great
way to keep people from hijacking your sound effects!

* Bitmaps—These are the standard bitmaps that you would imagine: a
rectangular matrix of pixels in monochrome or 4-, 8-, 16-, 24-, or 32-bit format.
They are very common objects in graphical operating systems such as Windows,
so they can be added as resources also. Bitmaps use the .BMP file extension.

* Dialogs—Dialog boxes are so common in Windows that the designers decided
to make them a resource rather than something that is loaded externally. Good
idea! Therefore, you can either create dialog boxes on-the-fly with code, or
design them with an editor and store them as a resource.

* Metafiles—Metafiles are a bit advanced. They allow you to record a sequence
of graphical operations in a file and then play the file back.

Now that you have an idea of what resources are and the types that exist, the next
question is, how does it all go together? Well, there is a program called a resource
compiler. Tt takes as input an ASCII text resource file with the extension .RC. This file
is a C/English-like description of all the resources you want to compile into a single
data file. The resource compiler then loads all the resources and places them into one
big data file with the extension .RES.

This .RES file contains all the binary data making up whichever icons, cursors,
bitmaps, sounds, and so forth that you may have defined in the .RC resource file. Then
the .RES file is taken, along with your .CPP, .H, .LIB, .0BJ, and so on, and compiled
into one .EXE, and that’s it! Figure 3.2 illustrates the data flow possibilities of this
process.

%8 PART 1

T Windows Programming Foundations

\

Figure 3.2
The data flow of
resources during Resources
compilation and * BMP
linking. *Ico
*CUR
* WAV
L

.Res

»

1 Li
Resource ! Resource Scripts I I
Compiler — .RC I

1

1

>

Resource compiler
usually built into compiler

Putting Your Resources Together

Back in the old days, you would use an external resource compiler like RC.EXE to
compile all your resources together. But these days, the compiler IDE does all this for
you. Hence, if you want to add a resource to your program, you can simply add it by
selecting New (in most cases) from the File menu in your IDE and then selecting the
resource type you want to add (more on this later).

C/C++
Compiler .
"— T .h I

Let’s review what the deal is with resources: You can add a number of data types and
objects to your program, and they will reside as resources within the .EXE itself
(somewhere at the end), along with the actual computer code. Then, during runtime,
you can access this resource database and load resource data from your program itself
instead of from the disk as separate files. Furthermore, to create the resource file, you
must have a resource description file that is in ASCII text and named *.RC. This file

is then fed to the compiler (along with access to the resources) and a *.RES file is
generated. This .RES file is then linked together with all your other program objects
to create a final .EXE. It’s as simple as that! Yeah, right, and I'm a billionaire!

With all that in mind, let’s cover a number of resource objects and see how to create
them and load them into our programs. I’'m not going to cover all the resources
previously mentioned, but you should be able to figure out any others with the
information here. They all work in the same manner, give or take a data type,
handle, or psychotic episode of staying up all night and not sleeping.

CHAPTER 3 9

Advanced Windows Programming m
Using Icon Resources

There are only two files that you need to create to work with resources: an .RC file
and possibly an .H file, if you want to make references to symbolic identifiers in the
.RC file. I’ll cover this detail in the following pages. Of course, ultimately you need to
generate an .RES file, but we’ll let the compiler IDE do this.

As an example of creating an ICON resource, let’s see how to change the icon that the
application uses on the taskbar and the one next to the system menu on the window
itself. If you recall, you set these icons during the creation of the Windows class with
the following lines of code:

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

These lines of code load the default application icon for both the normal icon and the
small version of the icon. However, you can load any icon you want into these slots
by using icons that have been compiled into a resource file.

First, you need an icon to work with... I have created a cool icon to use for all the
applications in this book. It’s called T3DX.ICO and is shown in Figure 3.3. I created
the icon using VC++ 5.0’s Image Editor, which is shown in Figure 3.4. However, you
can create icons, cursors, bitmaps, and so on with any program you want (as long as it
supports the export type).

Figure 3.3 [
The T3DX.1CO -1 7

icon bitmap.

T3DX. ICO is 32 pixelsx32 pixels, with 16 colors. Icons can range in size from 16x16
to 64x64, with up to 256 colors. However, most icons are 32x32 with 16 colors, so
let’s stick to that for now.

Once you have the icon that you’re interested in placing into a resource file, you need
to create a resource file to place it in. To keep things simple, you’re going to do every-
thing by hand. (Remember that the compiler IDE will do all this stuff for you—but
then you wouldn’t learn anything, right?)

The .RC file contains all the resource definitions, meaning that you can have more
than one resource in your program.

100 PART |

“ Windows Programming Foundations

G TIDCODE - Microsoft Developer Studio - Et3dx.icol

Figure 3.4
The VC++ 5.0
Image Editor.

}_] External Depender

Before | show you any code, | want to make a very important point
about resources. Windows uses either ASCII text strings or integer IDs to
refer to resources. In most cases, you can use both in your .RC files.
However, some resources only allow you to use one or the other. In
either case, the resources must be loaded in a slightly different way, and
if IDs are involved, an extra .H file containing the symbolic cross-
references must also be included in your project.

Here’s how you would define an ICON resource in your .RC script file:
Method 1—By string name:
icon_name ICON FILENAME.ICO

Examples:

windowicon ICON star.ico
MyCoolIcon ICON cool.ico

or
Method 2—By integer ID:
icon_id ICON FILENAME.ICO

Examples:

windowicon ICON star.ico
124 ICON ship.ico

CHAPTER 3 101

Advanced Windows Programming m

Here’s the confusing part: Notice that there aren’t any quotes at all in method 1.

This is a bit of a problem and will cause you much grief, so listen up. You might have
noticed that the first example in each method of the ICON definitions looks exactly
the same. However, one of them is interpreted as "windowicon" and the other as the
symbol windowicon. What makes this happen is an additional file that you literally
include in the .Rc file (and your application’s .CPP file) that defines any symbolic
constants. When the resource compiler parses the following line of code,

windowicon ICON star.ico

it takes a look at any symbols that have been defined via include header files. If the
symbol exists, the resource compiler then refers to the resource numerically by the
integer ID that the symbol resolves to. Otherwise, the resource compiler assumes it’s a
string and refers to the ICON by the string "windowicon".

Thus, if you want to define symbolic ICONs in your .RC resource script, you also need
an .H file to resolve the symbolic references. To include the .H file in the .RC script,
you use the standard C/C++ #include keyword.

For example, suppose that you want to define three symbolic ICONs in your .RC file,
which we’ll name RESOURCES.RC. You’ll also need an .H file, which we’ll name
RESOURCES.H. Here’s what the contents of each file would look like:

Contents of RESOURCES. H:

#define ID_ICON1 100 // these numbers are arbitrary
#define ID_ICON2 101
#define ID_ICON3 102

Contents of RESOURCES.RC:

#include "RESOURCES.H"
// here are the icon defines, note the use of C++ comments

ID_ICON1 ICON star.ico
ID_ICON2 ICON ball.ico
ID_ICON3 ICON cross.ico

That’s it. Then you would add RESOURCES.RC to your project and make sure to
#include RESOURCES.H in your application file, and you would be ready to rock and
roll! Of course, the .ICO files must be in the working directory of your project so the
resource compiler can find them.

Now, if you didn’t #define the symbols for the icons and include an .H file, the
resource compiler would just assume that the symbols ID_ICON1, ID_ICON2, and
ID_ICON3 were literal strings. That’s how you would refer to them in the program—
"ID_ICON1", "ID_ICON2", and "ID_ICON3".

102 PART |

W Windows Programming Foundations

Now that I have completely upset the time/space continuum with all this stuff, let’s
back up to what you were trying to do—just load a simple icon!

To load an icon by string name, do the following:
In an .RC file:
your_icon_name ICON filename.ICO

In program code:

// Notice the use of hinstance instead of NULL.
winclass.hIcon = LoadIcon(hinstance, "your_icon_name");
winclass.hIconSm = LoadIcon(hinstance, "your_icon_name");

And to load by symbolic reference, you would #include the header containing the
references to the symbols, as in the preceding example:

In an .H file:

#define ID_ICON1 100 // these numbers are arbitrary
#define ID_ICON2 101

#define ID_ICON3 102

In an .RC file:

// here are the icon defines, note the use of C++ comments
ID_ICON1 ICON star.ico
ID_ICON2 ICON ball.ico
ID_ICON3 ICON cross.ico

And then the program code would look like this:

// Notice the use of hinstance instead of NULL.

// use the MAKEINTRESOURCE macro to reference

// symbolic constant resource properly

winclass.hIcon = LoadIcon(hinstance,MAKEINTRESOURCE (ID_ICON1));
winclass.hIconSm = LoadIcon(hinstance,MAKEINTRESOURCE (ID_ICONT1));

Notice the use of the macro MAKEINTRESOURCE (). This macro converts the integer into
a string pointer, but don’t worry about that—just use it when using #defined sym-
bolic constants.

Using Cursor Resources

Cursor resources are almost identical to ICON resources. Cursor files are small bitmaps
with the extension .CUR and can be created in most compiler IDEs or with separate
image processing programs. Cursors are usually 32x32 with 16 colors, but they can be
up to 64x64 with 256 colors and even animated!

Assuming that you have created a cursor file with your IDE or a separate paint
program, the steps to add them to an .RC file and access them via your program
are similar to the steps for ICONs. To define a cursor, use the CURSOR keyword in
your .RC file.

CHAPTER 3 103

m\s/ | have created a few cursor . ICO files for this chapter. Try looking at

Advanced Windows Programming m

Method 1—By string name:
cursor_name CURSOR FILENAME.CUR
Examples:

windowcursor CURSOR crosshair.cur
MyCoolCursor CURSOR greenarrow.cur
or

Method 2—By integer ID:
cursor_id CURSOR FILENAME.CUR
Examples:

windowcursor CURSOR bluearrow.cur
292 CURSOR redcross.cur

Of course, if you use symbolic IDs, you must create an .H file with the symbol’s
defines.
Contents of RESOURCES. H:

#define ID_CURSOR_CROSSHAIR 200 // these numbers are arbitrary
#define ID_CURSOR_GREENARROW 201

Contents of RESOURCES.RC:

#include "RESOURCES.H"

// here are the icon defines, note the use of C++ comments
ID_CURSOR_CROSSHAIR CURSOR crosshair.cur
ID_CURSOR_GREENARROW CURSOR greenarrow.cur

And there isn’t any reason why a resource data file can’t exist in another directory.
For example, the greenarrow.cur might exist in the root directory in a CURSOR\ direc-
tory, like this:

ID_CURSOR_GREENARROW CURSOR C:\CURSOR\greenarrow.cur

= them with your IDE, or just open up the directory and Windows will
W show the bitmap of each one by its filename!

Now that you know how to add a CURSOR resource to an .RC file, here’s the code to
load the resource from the application by string name only.

104 PART |

T Windows Programming Foundations

In an .Rc file:
CrossHair CURSOR crosshair.CUR

In program code:

// Notice the use of hinstance instead of NULL.
winclass.hCursor = LoadCursor(hinstance, "CrossHair");

And to load a cursor with a symbolic ID defined in an .H file, here’s what you
would do:

In an .H file:

#define ID_CROSSHAIR 200

In an .Rc file:

ID_CROSSHAIR CURSOR crosshair.CUR

In program code:

// Notice the use of hinstance instead of NULL.
winclass.hCursor = LoadCursor(hinstance, MAKEINTRESOURCE (ID_CROSSHAIR));

Again, you use the MAKEINTRESOURCE () macro to convert the symbolic integer ID into
the form Windows wants.

All right, there’s one little detail that may not have crossed your mind. So far you
have only messed with the Windows class icon and cursor. But is it possible to
manipulate the window icon and cursor at the window level? For example, you might
want to create two windows and make the cursor change in each one. To do this, you
could use this SetCursor () function:

HCURSOR SetCursor (HCURSOR hCursor);

Here, hCursor is the handle of the cursor retrieved by LoadCursor (). The only
problem with this technique is that SetCursor() isn’t that smart, so your application
must do the tracking and change the cursor as the mouse moves from window to
window. Here’s an example of setting the cursor:

// load the cursor somewhere maybe in the WM_CREATE
HCURSOR hcrosshair = LoadCursor(hinstance, "CrossHair");

// later in program code to change the cursor..
SetCursor(hcrosshair);

For an example of both setting the window icon and the mouse cursor, take a look
DEMO3_1.CPP on the CD-ROM. The following list contains excerpts of the important
code sections that load the new icon and cursor:

CHAPTER 3 105

Advanced Windows Programming m

// include resources
#include "DEMO3_1RES.H"

// changes to the window class definition
winclass.hIcon=

LoadIcon(hinstance, MAKEINTRESOURCE (ICON_T3DX));
winclass.hCursor =

LoadCursor (hinstance, MAKEINTRESOURCE (CURSOR_CROSSHAIR)) ;
winclass.hIconSm = LoadIcon(hinstance, MAKEINTRESOURCE (ICON_T3DX));

Furthermore, the program uses the resource script named DEMO3_1.RC and the
resource header named DEMO3_1RES.H.
Contents of DEMO3_1RES.H:

#define ICON_T3DX 100
#define CURSOR_CROSSHAIR 200

Contents of DEMO3_1.RC:

#include "DEMO3_1RES.H"

// note that this file has different types of resources
ICON_T3DX ICON t3dx.ico
CURSOR_CROSSHAIR CURSOR crosshair.cur

To build the application yourself, you’ll need the following:

DEMO3_1.CPP—The main C/C++ file

DEMO3_1RES.H—The header with the symbols defined in it
DEMO3_1.RC—The resource script itself

T3DX.I1C0—The bitmap data for the icon
CROSSHAIR.CUR—The bitmap data for the cursor

All these files should be in the same directory as your project. Otherwise, the com-
piler and linker will have trouble finding them. Once you create and run the program
or use the precompiled DEMO3_1.EXE, you should see something like what’s shown in
Figure 3.5. Pretty cool, huh?

As an experiment, try opening the DEMO3_1.RC file with your IDE. Figure 3.6 shows
what VC++ 5.0 does when I do this. However, you may get different results with your
particular compiler, so don’t tweak if it doesn’t look the same. Alas, there is one point
I want to make about the IDE before moving on. As I said, you can use the IDE to
create both the .RC and .H file, but you’ll have to read the manual on this yourself.

106 PART |

.r Windows Programming Foundations

Figure 35 ®iveno of fustom Cursor and Icon
The output of
DEMO3_1.EXE with cus-
tom ICON and CURSOR.

. 4 T3FCOPE - Microsoft Beveloper Studio - Edemo3_k.rcd
Figure 3.6

The results of opening
the resource file
DEMO3_1.RC in VC++
5.0.

Cursor
- Bs CURSDR_CROSSHAIR

Icon
[1cON_T3DX

However, there is one problem with loading a handmade .RC file—if you save it with
your IDE, it will undoubtedly be inflicted with a zillion comments, macros, #defines,
and other garbage that Windows compilers like to see in .RC files. Thus, the moral of
the story is that if you want to edit your handmade .RC files, do the editing by loading
the .RC file as text. That way the compiler won’t try to load it as an .RC, but just as
plain ASCII text.

Creating String Table Resources

As I mentioned in the introduction, Windows supports string resources. Unlike other
resources, you can only have one string table that must contain all your strings.

CHAPTER 3 107

Advanced Windows Programming m

Furthermore, string resources do not allow definition by string. Therefore, all string
tables defined in your .RC files must be accompanied by symbolic reference constants
and the associated .H header file to resolve the references.

I’'m still not sure how I feel about string resources. Using them is equivalent to just
using header files, and in either case—string resources or plain header files—you
have to recompile. So I don’t see the need for them! But if you really want to get
complicated, you can put string resources into .DLLs and the main program doesn’t
have to be recompiled. However, I'm a scientist, not a philosopher, so who cares?

To create a string table in your .RC file, you must use the following syntax

STRINGTABLE

{
ID_STRING1, "string 1"
ID_STRING2, "string 2"

}
Of course, the symbolic constants can be anything, as can the strings within the

quotes. However, there is one rule: no line can be longer than 255 characters—
including the constant itself.

Here’s an example of an .H and .RC file containing a string table that you might use in
a game for the main menu. The .H file contains

// the constant values are up to you

#define ID_STRING START_GAME 16
#define ID_STRING_LOAD_GAME 17
#define ID_STRING_SAVE_GAME 18
#define ID_STRING OPTIONS 19
#define ID_STRING EXIT 20

The .RC file contains

// note the stringtable does not have a name since
// only one stringtable is allowed per .RC file

STRINGTABLE

{

ID_STRING_START_GAME, "Kill Some Aliens"
ID_STRING_LOAD_GAME, "Download Logs"
ID_STRING_SAVE_GAME, "Upload Data"
ID_STRING_OPTIONS, "Tweak The Settings"
ID_STRING_EXIT, "Let's Baill"

}

108 PART |

W Windows Programming Foundations

4 sequences like "\n", but you can use octal sequences like \015 and

A < You can put almost anything you want in the strings, including
n)y printf () command specifiers like %d, %s, etc. You can’t use escape
»
v so on.

Once you have created your resource files containing the string resources, you can use
the LoadString() function to load in a particular string. Here’s its prototype:

int LoadString(HINSTANCE hInstance,//handle of module withstring resource

UINT ulID, //resource identifier
LPTSTR 1lpBuffer, //address of buffer for resource
int nBufferMax); //size of buffer

LoadString() returns the number of characters read, or O if the call was unsuccessful.
Here’s how you would use the function to load and save game strings during runtime:
/| create some storage space

char load_string[80], // used to hold load game string
save_string[80]; // used to hold save game string

// load in the first string and check for error
if (!LoadString(hinstance, ID_STRING_LOAD_GAME, load_string,80))

{
// there's an error!
} // end if

// load in the second string and check for error
if (!LoadString(hinstance, ID_STRING_SAVE_GAME, save_string,80))

{
// there's an error!
} // end if

// use the strings now
As usual, hinstance is the instance of your application as passed in WinMain ().

That wraps it up for string resources. If you can find a good use for them, email me at
ceo@xgames3d.com!

Using Sound .wAv Resources

By now you’re either getting very comfortable with resource scripting or you’re so
upset that you’re about to hack into my Web site and destroy me. Remember, it wasn’t
me—it was Microsoft (http://www.microsoft.com) that invented all this stuff. 'm
just trying to make sense of it too!

All right, dog. Now that I’ve given you my occasional disclaimer, let’s continue by
loading some sound resources!

CHAPTER 3 109

Advanced Windows Programming m

Most games use one of two types of sounds:
* Digital .WAV files

e MIDI .MID music files

To my knowledge, the standard resources for Windows only support .WAV files, so I'm
only going to show you how to create .WAV resources. However, even if .MIDs aren’t
supported, you can always create a user-defined resource type. I'm not going to go
into this, but the ability to do so is there.

The first thing you need is a .WAV file, which is simply a digital waveform of data
that contains a number of 8- or 16-bit samples at some frequency. Typical sample
frequencies for game sound effects are 11KHz, 22KHz, and 44KHz (for CD-level
quality). This stuff doesn’t concern you yet, but I just wanted to give you a heads up.
You’ll learn all about digital sampling theory and .WAV files when we cover
DirectSound. But for now, just know that sample size and rate are issues.

With that in mind, let’s assume that you have a .WAV file on disk, and you want to add
it to a resource file and be able to load and play it programmatically. Okay, let’s go!
The resource type for .WAV files is WAVE—there’s a surprise. To add it to your .RC file,
you would use the following syntax.

Method 1—By string name:
wave_name WAVE FILENAME.WAV
Examples:

BigExplosion WAVE expli.wavr
FireWeapons WAVE fire.wav
Method 2—By integer ID:
ID_WAVE CURSOR FILENAME.CUR
Examples:

DEATH_SOUND_ID WAVE die.wav
20 WAVE intro.wav

Of course, the symbolic constants would have to be defined elsewhere in an .H file,
but you knew that!

At this point, we run into a little snag: WAVE resources are a little more complex than
cursors, icons, and string tables. The problem is, to load them in takes a lot more
programming than the other resources, so I'm going to hold off on showing you the
way to load .WAV resources in a real game until later. For now, I’'m just going to show

110 PART |

T Windows Programming Foundations

you a trick to load and play a .WAV on-the-fly using the PlaySound() function. Here’s
its prototype:
BOOL PlaySound(LPCSTR pszSound, // string of sound to play

HMODULE hmod, // instance of application
DWORD fdwSound); // flags parameter

Unlike LoadString(), PlaySound() is a little more complex, so let’s take a closer
look at each of the parameters:

e PszSound—This parameter is either the string name of the sound resource in the
resource file or a filename on disk. Also, you can use the MAKEINTRESOURCE ()
and use a WAVE that is defined with a symbolic constant.

e Hmod—The instance of the application to load the resource from. This is simply
the hinstance of the application.

e FdwSound—This is the clincher. This parameter controls how the sound is
loaded and played. Table 3.1 contains a list of the most useful values for
FdwSound.

TaBLe 3.1 Values for the FdwSound Parameter of PlaySound ()

Value Description
SND_FILENAME The pszSound parameter is a filename.
SND_RESOURCE The pszSound parameter is a resource identifier; hmod must identify the

instance that contains the resource.

SND_MEMORY A sound event’s file is loaded in RAM. The parameter specified by
pszSound must point to an image of a sound in memory.

SND_SYNC Synchronous playback of a sound event. PlaySound () returns after the
sound event is completed.

SND_ASYNC The sound is played asynchronously, and PlaySound () returns immedi-
ately after beginning the sound. To terminate an asynchronously played
waveform sound, call PlaySound () with pszSound set to NULL.

SND_LOOP The sound plays repeatedly until PlaySound () is called again with the
pszSound parameter set to NULL. You must also specify the SND_ASYNC
flag to indicate an asynchronous sound event.

SND_NODEFAULT No default sound event is used. If the sound cannot be found,
PlaySound () returns silently without playing the default sound.

SND_PURGE Sounds are to be stopped for the calling task. If pszSound is not NULL,
all instances of the specified sound are stopped. If pszSound is NULL,
all sounds that are playing on behalf of the calling task are stopped.

CHAPTER 3 m

Advanced Windows Programming m

Value Description

SND_NOSTOP The specified sound event will yield to another sound event that is
already playing. If a sound cannot be played because the resource
needed to generate that sound is busy playing another sound, the func-
tion immediately returns FALSE without playing the requested sound.

SND_NOWAIT If the driver is busy, the function returns immediately without playing
the sound.

To play a WAVE sound resource with PlaySound (), there are four general steps:

1. Create the .WAV file itself and store it on disk.

2. Create the .RC resource script and associated H file.

3. Compile the resources along with your program code.

4. In your program, make a call to PlaySound() with either the WAVE resource

name or the WAVE resource ID using the MAKEINTRESOURCE () macro.

Let’s see some examples, shall we? Let’s begin with a general RC file that has two
sounds: one with a string name and the other with a symbolic constant. Let’s name
them RESOURCE .RC and RESOURCE . H. The files would look something like this:

The RESOURCE . H file would contain
#define SOUND_ID ENERGIZE 1

The RESOURCE . RC file would contain

#include "RESOURCE.H"

// first the string name defined sound resource
Telporter WAVE teleport.wav

// and now the symbolically defined sound
SOUND_ID_ENERGIZE WAVE energize.wav

Within your program, here’s how you would play the sounds in different ways:

// to play the telport sound asynchronously
PlaySound("Teleporter", hinstance,
SND_ASYNC | SND_RESOURCE);

// to play the telport sound asynchronously with looping
PlaySound("Teleporter", hinstance,
SND_ASYNC | SND_LOOP | SND_RESOURCE);

// to play the energize sound asynchronously
PlaySound (MAKEINTRESOURCE (SOUND_ID_ ENERGIZE), hinstance,
SND_ASYNC |} SND_RESOURCE) ;

112 PART |

T Windows Programming Foundations

// and if you simply wanted to play a sound off disk

// directly then you could do this

PlaySound("C:\path\filename.wav", hinstance,
SND_ASYNC | SND_FILENAME);

And to stop all sounds, use the SND_PURGE flag with NULL as the sound name, like this:

// stop all sounds
PlaySound (NULL, hinstance, SND_PURGE);

Obviously, there are myriad flags options that you should feel free to experiment with.
Anyway, you don’t have any controls or menus yet, so it’s hard to interact with the
demo applications. However, as a simple demo of using sound resources, I have cre-
ated DEMO3_2.CPP, which you can find on the disk. I would list it here, but 99 percent
of it is just the standard template you have been using, and the sound code is nothing
more than a couple lines of code identical to the earlier examples. The demo is pre-
compiled, and you can run DEMO3_2.EXE yourself to see what it does.

However, I do want to show you the .RC and .H files that it uses. They are
DEMO3_2.RC and DEMO3_2RES.H, respectively:
Contents of DEMO3_2RES . H:

// defines for sound ids
#define SOUND_ID_CREATE 1
#define SOUND_ID MUSIC 2

// defines for icons
#define ICON_T3DX 500

// defines for cursors
#define CURSOR_CROSSHAIR 600

Contents of DEMO3_2.RC:

#include "DEMO3_2RES.H"

// the sound resources
SOUND_ID_CREATE WAVE create.wav
SOUND_ID_MUSIC WAVE techno.wav

// icon resources
ICON_T3DX ICON T3DX.ICO

/| cursor resources
CURSOR_CROSSHAIR CURSOR CROSSHAIR.CUR

You’ll notice that I have also included the ICON and CURSOR resources just to make
things a little more exciting.

CHAPTER 3 13
Advanced Windows Programming m

To make DEMO3_2.CPP, I took the standard Window demo we have been working with
and added calls to sound code in two places: the WM_CREATE message and the
WM_DESTROY message. In WM_CREATE, I start two sound effects. One of them says
Creating window and stops, and the other is a short song in loop mode so it will
continue to play. Then, in the WM_DESTROY section, I stop all sounds.

| used the SND_SYNC flag as one of the flags for the first sound. This
a flag is needed because you are only allowed to play one sound at a time
with PlaySound (), and I didnt want the second sound to stop the first
one in midplay.

Here’s the added code to the WM_CREATE and WM_DESTROY messages from
DEMO3_2.CPP:

case WM_CREATE:
{

// do initialization stuff here

// play the create sound once
PlaySound (MAKEINTRESOURCE (SOUND_ID_CREATE),
hinstance_app, SND_RESOURCE | SND_SYNC);

// play the music in loop mode
PlaySound (MAKEINTRESOURCE (SOUND_ID MUSIC),
hinstance_app, SND_RESOURCE | SND_ASYNC | SND_LOOP);

// return success
return(0);
} break;

case WM_DESTROY:

{
// stop the sounds first
PlaySound (NULL, hinstance_app, SND_PURGE);

// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

// return success
return(0);
} break;

Also, you’ll notice that there is a variable, histance_app, used as the instance handle
to the application in the PlaySound () calls. This is simply a global that saves the

114 PART |

T Windows Programming Foundations

hinstance sent in WinMain (). It is coded right after the class definition in WinMain(),
like this:

/| save hinstance in global
hinstance_app = hinstance;

/] register the window class
if (!RegisterClassEx(&winclass))
return(0);

To build this application, you’ll need the following files in your project:

DEMO3_2.CPP—The main source file.

DEMO3_2RES.H—The header file contains all the symbols.

DEMO3_2.RC—The resource script itself.

TECHNO .WAV—The music clip, which just needs to be in the working directory.

CREATE .WAV—The creating window vocalization, which needs to be the in working
directory.

WINMM.LIB—The Windows Multimedia Library Extensions. This file is found in
your compiler’s LIB\ directory. You should add it to all projects from here on out.

MMSYSTEM.H—The header for WINMM. LIB. This is already included as part of
DEMO3_2.CPP, and all my demos, for that matter. All you need to know is that you
need it in your compiler’s search path. It is part of the standard Win32 header file
collection.

Last, But Not Least—Using the Compiler to Create .Rc Files

Most compilers that generate Windows applications come with a quite extensive
development environment, such as Microsoft’s Visual Development Studio and so on.
Each of these IDEs contains one or more tools to create various resources, resource
scripts, and the associated headers automatically and/or with drag-and-drop
technology.

The only problem with using these tools is that you have to learn them! Moreover,
.RC files created with the IDE are in human-readable ASCII, but they have a great
deal of added #defines and macros that the compiler adds to help automate and sim-
plify the selection of constants and interfacing to MFC (wash your mouth out).

Since I'm a Microsoft VC++ 5.0 user these days, I'll briefly cover some key elements
of using VC++ 5.0’s resource manipulation support. First, there are two ways that you
can add resources to your project:

CHAPTER 3 15

Advanced Windows Programming m

Method 1—Using the File, New option from the main menu, you can add a number of
resources to your project. Figure 3.7 is a screen shot of the dialog that comes up.
When you add resources like icons, cursors, and bitmaps, the compiler IDE will auto-
matically launch the Image Editor (as shown back in Figure 3.4). This is a crude
image editing utility that you can use to draw your cursors and icons. If you add a
menu resource (which we will get to in the next section), the menu editor will appear.

Figure 3.7
Adding resources
with File, New in

VC++ 5.0.

C:\S ource Code\SOURCEATAD |]

Method 2—This is a bit more flexible and contains all possible resource types,
whereas method 1 only supports a few. To add any type of resource to your project,
you can use the Insert, Resource option on the main menu. The dialog that appears is
shown in Figure 3.8. However, this method does some stuff under the hood. Whenever
you add a resource, you must add it to a resource script—right? Therefore, if your
project doesn’t already have a resource script, the compiler IDE will generate one for
you and call it SCRIPT*.RC. In addition, both methods will end up generating (and/or
modifying) a file named RESOURCE .H. This file contains the resource symbols, ID
values, and so on that you define with the editor(s) in relation to resources.

Figure 36 Insert Resource
Using Insert,
Resource to add

P

T Cursor

resources to your o
application. [leon

B Menu

3bc Stiing Table
21 Tookar
Version

116 PART |

T Windows Programming Foundations

I would like to delve much more into the area of resource editing via the IDE, but it’s
really a topic for an entire chapter—if not a whole book. Please review your particular
compiler’s documentation on the subject. We aren’t going to use many resources in
this book, so the info I have already given you will suffice. Let’s move on to a more
complex type of resource—the menu.

Working with Menus

Menus are one of the coolest things about a Windows program and are ultimately the
point of interaction between the user and your program (that is, if you’re making a
word processor <BG>). Knowing how to create and work with menus is very impor-
tant because you might want to design simple tools to help create your game, or you
might want to have a window-based front end to start up your game. And these tools
will undoubtedly have menus—millions of them if you’re making a 3D tool. Trust
me! In either case, you need to know how to create, load, and respond to menus.

Creating a Menu

You can create an entire menu and all the associated files with the compiler’s menu
editor, but we’ll do it manually because I can’t be sure which compiler you’re using.
This way you’ll learn what’s in a menu description, too. But when you’re writing a
real application and creating a menu, most of the time you’ll use the IDE editor
because menus are just too complex to type in manually. It’s like HTML code—when
the Web started, it wasn’t a big deal to make a home page with a text editor.
Nowadays, it’s nearly impossible to create a Web site without using a tool. (Speaking
of Web site design, my friend needs work at http://www.belmdesigngroup.com—he
has 15 kids to feed!)

Anyway, let’s get started making menus! Menus are just like the other resources you
have already worked with. They reside in an .RC resource script and must have an .H
file to resolve any symbolic references, which are all IDs in the case of menus. (One
exception: The name of the menu must be symbolic—no name strings.) Here’s the
basic syntax of a MENU description as you would see it in an .RC file:

MENU_NAME MENU DISCARDABLE
{ // you can use BEGIN instead of { if you wish

// menu definitions
} // you can use END instead of } if you wish

MENU_NAME can be a name string or a symbol, and the keyword DISCARDABLE is vesti-
gial but necessary. Seems simple enough. Of course, the stuff in the middle is miss-
ing, but chill—I’m getting there!

CHAPTER 3 17

Advanced Windows Programming m

Before I show you the code to define menu items and submenus, we need to get some
terminology straight. For my little discussion, refer to the menu in Figure 3.9. It has
two top-level menus, File and Help. The File menu contains four menu items: Open,
Close, Save, and Exit. The Help menu contains only one menu item: About. So there
are top-level menus and menu items within them. However, this is misleading because
it’s possible to also have menus within menus, or cascading menus. I’'m not going to
create any cascading menus, but the theory is simple: You just use a menu definition
for one of the menu items itself. You can do this recursively, ad infinitum.

Figure 3.9 |= Title Bar —[O]X]
A menu bar with two File Help <—— Menu Bar
submenus. Open About
Close
Save
Exit

Now that we have the terminology straight, here’s how you would implement the
menu shown in Figure 3.9:

MainMenu MENU DISCARDABLE

{

POPUP "File"
{
MENUITEM "Open", MENU_FILE_ID_ OPEN
MENUITEM "Close", MENU_FILE_ID_CLOSE
MENUITEM "Save", MENU_FILE_ID_ SAVE
MENUITEM "Exit", MENU_FILE_ID EXIT
} // end popup

POPUP "Help"

{
MENUITEM "About", MENU_HELP_ABOUT

} // end popup
} // end top level menu

Let’s analyze the menu definition section by section. To begin with, the menu is
named MainMenu. At this point we don’t know if it’s a name string or an ID, but since
I usually capitalize all constants, it’s a safe bet that it’s a plain string. So that’s what
we’ll make it. Moving on, there are two top-level menu definitions, beginning with
the keyword POPUP—this is key. POPUP indicates that a menu is being defined with the
following ASCII name and menu items.

118 PART |

w Windows Programming Foundations

The ASCII name must follow the keyword POPUP and be surrounded by quotes. The
pop-up menu definition must be contained within { } or a BEGIN END block—
whichever you like. (You Pascal people should be happy <BG>.)

Within the definition block, follow all of the menu items. To define a menu item, you
use the keyword MENUITEM with the following syntax:

MENUITEM "name", MENU_ID

And that’s it! Of course, in this example you haven’t defined all the symbols, but you
would do so in an .H file something like this:

// defines for the top level menu FILE

#define MENU_FILE_ID OPEN 1000
#define MENU_FILE ID CLOSE 1001
#define MENU_FILE_ID_SAVE 1002
#define MENU_FILE_ID EXIT 1003

// defines for the top level menu HELP

#define MENU_HELP_ABOUT 2000
A < Notice the values of the IDs. | have selected to start off the first top-level
n)v menu at 1000 and increment by 1 for each item. Then | increment by
N 1000 for the next top-level menu. Thus, each top-level menu differs by
v 1000, and each menu item within a menu differs by 1. This is a good
convention that works well. And it’s less filling.

I didn’t define "MainMenu" because I want to refer to the menu by string rather than
ID. This isn’t the only way to do it. For example, if I put the single line of code

#define MainMenu 100

within the .H file with the other symbols, the resource compiler would automatically
assume that I wanted to refer to the menu by ID. I would have to use MAKEINTRE -
SOURCE (MainMenu) or MAKEINTRESOURCE (100) to refer to the menu resource. Get it?
Alrighty, then!

\S// You'll notice that many menu items have hotkeys or shortcuts that you
- can use instead of manually selecting the top-level menu or menu item
with the mouse. This is achieved by using the ampersand character (&).
All you do is place the ampersand in front of the character that you
want to be a shortcut or hotkey in a POPUP menu or a MENUITEM string.

For example,

MENUITEM "E&xit", MENU_FILE_ID_ EXIT

CHAPTER 3 19

Advanced Windows Programming m

makes the x a hotkey, and
POPUP "&File"

makes F a shortcut via Alt+F.

Now that you know how to create and define a menu, let’s see how to load it into your
application and attach it to a window.

Loading a Menu

There are a number of ways to attach a menu to a window. You can associate a single
menu with all windows in a Windows class, or you can attach different menus to each
window that you create. First, let’s see how to associate a single menu with the
Windows class itself.

In the definition of the Windows class, there is a line of code that defines what the
menu is

winclass.lpszMenuName = NULL;

All you need to do is assign it the name of the menu resource. Presto, that’s it!
Here’s how

winclass.lpszMenuName = "MainMenu";
And if "MainMenu" was a constant, you would do it this way:
winclass.lpszMenuName = MAKEINTRESOURCE (MainMenu) ;

No problemo... almost. The only problem with this is that every window you create
will have the same menu. To get around this, you can assign a menu to a window
during creation by passing a menu handle. However, to get a menu handle, you must
load the menu resource with LoadMenu (). Here’s its prototype(s):

HMENU LoadMenu (HINSTANCE hInstance,// handle of application instance
LPCTSTR 1lpMenuName);// menu name string or menu-resource identifier

If successful, LoadMenu () returns an HMENU handle to the menu resource, which you
can then use.

Here’s the normal Createwindow() call you have been making, changed to load the
menu "MainMenu" into the menu handle parameter:

/| create the window
if (!(hwnd = CreateWindowEx (NULL, /] extended style
WINDOW_CLASS_NAME, /] class
"Sound Resource Demo", // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y

120 PART |

T Windows Programming Foundations

400,400, // initial width, height
NULL, // handle to parent

LoadMenu(hinstance, "MainMenu"), // handle to menu

hinstance,// instance of this application
NULL))) // extra creation parms
return(0);

Or if MainMenu was a symbolic constant, the call would look like this:

LoadMenu(instance, MAKEINTRESOURCE (MainMenu)), // handle to menu

You may think I'm belaboring the difference between resources defined

a by string and by symbolic constant. However, taking into consideration

that it's the number one cause of self-mutilation among Windows
programmers, | think it's worth the extra work—don't you?

And of course, you can have many different menus defined in your .RC file, and thus

you can attach a different one to each window.

The final method of attaching a menu to a window is by using the SetMenu ()

function, shown here:

BOOL SetMenu(HWND hWnd, // handle of window to attach to

HMENU hMenu); // handle of menu

SetMenu () takes the window handle, along with the handle to the menu (retrieved
from LoadMenu()), and simply attaches the menu to the window. The new menu will
override any menu previously attached. Here’s an example listing, assuming that the
Windows class defines the menu as NULL, as does the menu handle in the call to

CreateWindow():

// first fill in the window class structure
winclass.chSize = sizeof (WNDCLASSEX);

winclass.style = CS_DBLCLKS | CS_OWNDC
CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra =0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(hinstance,

MAKEINTRESOURCE (ICON_T3DX)) ;
winclass.hCursor = LoadCursor(hinstance,

MAKEINTRESOURCE (CURSOR_CROSSHAIR)) ;
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);
winclass.lpszMenuName = NULL; // note this is null
winclass.lpszClassName = WINDOW_CLASS_NAME;

winclass.hIconSm = LoadIcon(hinstance, MAKEINTRESOURCE (ICON_T3DX));

CHAPTER 3 121

Advanced Windows Programming qu.

// register the window class
if (!RegisterClassEx(&winclass))
return(0);

// create the window
if (!(hwnd = CreateWindowEx (NULL, // extended style
WINDOW_CLASS_NAME, // class
"Menu Resource Demo", // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0, // initial x,y

400,400, // initial width, height

NULL, // handle to parent

NULL, // handle to menu, note it's null

hinstance,// instance of this application
NULL))) // extra creation parms
return(0);

// since the window has been created you can
// attach a new menu at any time

// load the menu resource
HMENU hmenuhandle = LoadMenu(hinstance, "MainMenu");

// attach the menu to the window
SetMenu(hwnd, hmenuhandle);

For an example of creating the menu and attaching it to the window using the second
method (that is, during the window creation call), take a look at DEMO3_3.CPP on the
CD-ROM and the associated executable, DEMO3_3.EXE, which is shown running in
Figure 3.10.

i Nenu Resource Demo ~ =lolx|

File Help

Figure 3.10
Running DEMO3_3.EXE.

The only two files of interest are the resource and header files, DEMO3_3RES.H and
DEMO3_3.RC.

122 PART |

T Windows Programming Foundations

Contents of DEMO3_3RES . H:

// defines for the top level menu FILE

#define MENU_FILE_ID OPEN 1000
#define MENU_FILE_ ID CLOSE 1001
#define MENU_FILE_ID_SAVE 1002
#define MENU_FILE_ID EXIT 1003

// defines for the top level menu HELP
#define MENU_HELP_ABOUT 2000

Contents of DEMO3_3.RC:

#include "DEMO3_3RES.H"

MainMenu MENU DISCARDABLE

{

POPUP "File"
{
MENUITEM "Open", MENU_FILE_ID_ OPEN
MENUITEM "Close", MENU_FILE_ID CLOSE
MENUITEM "Save", MENU_FILE_ID_SAVE
MENUITEM "Exit", MENU_FILE_ID_ EXIT
} // end popup

POPUP "Help"

{
MENUITEM "About", MENU_HELP_ABOUT

} // end popup
} // end top level menu
To compile your own DEMO3_3.CPP executable, make sure to include

DEMO3_3.CPP—The main source.
DEMO3_3RES.H—The resource symbol header.
DEMO3_3.RC—The resource script file.

Try playing with DEMO3_3.EXE and the associated source. Change the menu items, add
some more menus by adding more POPUP blocks to the .RC file, and get a good feel
for it. Also, try making a cascading menu tree. (Hint: Just replace MENUITEM with a
POPUP for one of the MENUITEMS making up a menu.)

Responding to Menu Event Messages

The only problem with DEMO3_3.EXE is that it doesn’t do anything! True, my young
Jedi. The problem is that you don’t know how to detect the messages that menu item
selections and manipulations generate. That is the topic of this section.

CHAPTER 3 123

Advanced Windows Programming m

The Windows menu system generates a number of messages as you slide across
top-level menu items as shown in Figure 3.11.

Window menu selec- File Help »| WinProc()

tion message flow. About {
wm_command:
{

ID =2000 ———— »| WParam = 2000 fj<€— menu ltem ID
»| | Param = Hwnd JJ<€— Window Handle
}
}
Hwnd

The message we are interested in is sent when a menu item is selected and then the
mouse is released. This denotes a selection. Selections send a WM_COMMAND message to
the WinProc () of the window that the menu is attached to. The particular menu item
ID and various other data is stored in the wparam and 1param of the message, as
shown here:

msg—WM_COMMAND
1lparam—The window handle that the message was sent from

wparam—The ID of the menu item that was selected

Technically, you should extract the low-order WORD from wparam with
the LOWORD () macro to be safe. This macro is part of the standard
includes, so you have access to it.

So all you have to do is switch() on the wparam parameter, with the cases being the
different MENUITEM IDs defined in your menu, and you’re in business. For example,
using the menu defined in DEMO3_3.RC, you would add the WM_COMMAND message han-
dler and end up with something like this for your WinProc():

LRESULT CALLBACK WindowProc (HWND hwnd,

UINT msg,
WPARAM wparam,
LPARAM 1lparam)
{
// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

// what is the message

124 PART |

m Windows Programming Foundations

switch(msg)
{
case WM_CREATE:
{

// do initialization stuff here

/] return success
return(0);
} break;

case WM_COMMAND:

{

switch (LOWORD (wparam))
{
// handle the FILE menu
case MENU_FILE_ID_OPEN:

{
// do work here
} break;
case MENU_FILE_ID_CLOSE:
{
// do work here
} break;
case MENU_FILE_ID_SAVE:
{
// do work here
} break;
case MENU_FILE_ID_EXIT:
{
// do work here
} break;

// handle the HELP menu
case MENU_HELP_ABOUT:

{
// do work here
} break;

default: break;
} // end switch wparam
} break; // end WM_COMMAND

case WM_PAINT:

{

// simply validate the window

hdc = BeginPaint (hwnd,&ps);

// you would do all your painting here
EndPaint (hwnd,&ps);
// return success

return(0);

CHAPTER 3 125

} break;

case WM_DESTROY:

{

Advanced Windows Programming m

// kill the application, this sends a WM_QUIT message
PostQuitMessage(Q) ;

// return success

return(0);
} break;

default:break;

} // end switch

// process any messages that we didn't take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

It’s so easy, it should be illegal! Of course, there are other messages that manipulate
the top-level menus and menu items themselves, but you can look in your Win32
SDK Help for more info. (I rarely need to know more than if a menu item was clicked

or not.)

As a solid example of doing something with menus, I have created a cool sound demo
that allows you to exit the program via the main menu, play one of four different
teleporter sound effects, and finally pop up an About box via the Help menu. Also, the
.RC file contains the sound, icon, and cursor resources. The program is DEMO3_4.CPP.

Let’s take a look at the resource script and header first.

Contents of DEMO3_4RES.H:

// defines for sounds resources

#define
#define
#define
#define

// defines for icon and cursor

#define
#define

// defines for the top level menu FILE

#define

// defines for play sound top level menu

#define
#define
#define
#define

SOUND_ID ENERGIZE 1
SOUND_ID_BEAM 2
SOUND_ID_TELEPORT 3
SOUND_ID WARP 4

ICON_T3DX 100
CURSOR_CROSSHAIR 200

MENU_FILE_ID _EXIT

MENU_PLAY_ID_ENERGIZE
MENU_PLAY_ID_BEAM
MENU_PLAY_ID_TELEPORT
MENU_PLAY_ID_WARP

1000

2000
2001
2002
2003

126 PART |

W Windows Programming Foundations

// defines for the top level menu HELP
#define MENU_HELP_ABOUT 3000

Contents of DEMO3_4.RC:
#include "DEMO3_4RES.H"
// the icon and cursor resource

ICON_T3DX ICON t3dx.ico
CURSOR_CROSSHAIR CURSOR crosshair.cur

// the sound resources
SOUND_ID_ENERGIZE WAVE energize.wav

SOUND_ID_BEAM WAVE beam.wav
SOUND_ID TELEPORT WAVE teleport.wav
SOUND_ID_WARP WAVE warp.wav

// the menu resource

SoundMenu MENU DISCARDABLE

{

POPUP "&File"
{
MENUITEM "E&xit", MENU_FILE_ID_EXIT
} // end popup

POPUP "&PlaySound"

{
MENUITEM "Energize!", MENU_PLAY_ID_ENERGIZE
MENUITEM "Beam Me Up", MENU_PLAY_ID_BEAM
MENUITEM "Engage Teleporter", MENU_PLAY_ID_TELEPORT

MENUITEM "Quantum Warp Teleport", MENU_PLAY_ID_WARP
} // end popup

POPUP "Help"

{
MENUITEM "About", MENU_HELP_ABOUT

} // end popup
} // end top level menu

Based on the resource script and header file (which must be included in the main
app), let’s take a look at the code excerpts of DEMO3_4.CPP loading each resource.
First, the loading of the main menu, icon, and cursor:

winclass.hCursor = LoadCursor(hinstance,

MAKEINTRESOURCE (CURSOR_CROSSHAIR)) ;
winclass.lpszMenuName = "SoundMenu";
winclass.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE (ICON_T3DX));
winclass.hIconSm= LoadIcon(hinstance, MAKEINTRESOURCE (ICON_T3DX));

CHAPTER 3 127

Advanced Windows Programming m

And now the fun part—the processing of the WM_COMMAND message that plays each
sound, along with the handling of the Exit menu item and the display of the About
box under Help. For brevity, I'll just show the WM_COMMAND message handler, since

you’ve seen the entire WinProc () enough by now:

case WM_COMMAND:

{

switch (LOWORD (wparam))
{
// handle the FILE menu
case MENU_FILE_ID EXIT:
{
// terminate window
PostQuitMessage(0);
} break;

// handle the HELP menu

case MENU_HELP_ABOUT:

{

// pop up a message box

MessageBox (hwnd, "Menu Sound Demo",
"About Sound Menu",

MB_OK | MB_ICONEXCLAMATION);

} break;
// handle each of sounds
case MENU_PLAY_ID_ENERGIZE:

{
// play the sound

PlaySound (MAKEINTRESOURCE (SOUND_ID_ENERGIZE),
hinstance_app, SND_RESOURCE | SND_ASYNC);

} break;
case MENU_PLAY_ID_BEAM:

{
// play the sound

PlaySound (MAKEINTRESOURCE (SOUND_ID_BEAM),

hinstance_app, SND_RESOURCE | SND_ASYNC);

} break;
case MENU_PLAY_ID_TELEPORT:

{
// play the sound

PlaySound (MAKEINTRESOURCE (SOUND_ID_TELEPORT),
hinstance_app, SND_RESOURCE | SND_ASYNC);

} break;
case MENU_PLAY_ID_WARP:

{
// play the sound

PlaySound (MAKEINTRESOURCE (SOUND_ID_WARP),

hinstance_app, SND_RESOURCE | SND_ASYNC);

} break;

128 PART |

W Windows Programming Foundations

default: break;
} // end switch wparam
} break; // end WM_COMMAND

And that’s all I have to say about that.

As you can see, resources can do a lot and are fun to work with. Now let’s take a
break from resources and take an introductory crash course on the WM_PAINT message
and basic GDI manipulation.

Introduction to GDI

Thus far, the only experience you’ve had with GDI is the processing of the WM_PAINT
message in the main event handler. Remember that GDI, or the Graphics Device
Interface, is how all graphics are drawn under Windows when DirectX is not in use.
Alas, you haven’t yet learned how to actually draw anything on the screen with GDI,
but this is very key because rendering on the screen is one of the most important parts
of writing a video game. Basically, a game is just logic that drives a video display. In
this section, I’'m going to revisit the WM_PAINT message, cover some basic video con-
cepts, and teach you how to draw text within your window. The next chapter will
focus more heavily on GDI.

Understanding the WM_PAINT message is very important for standard GDI graphics and
Windows programming because most Windows programs’ displays revolve around
this single message. In a DirectX game this isn’t true, because DirectX, or more
specifically DirectDraw or Direct3D, will do the drawing, but you still need to know
GDI to write Windows applications.

The WM_PAINT Message Once Again

The WM_PAINT message is sent to your window’s WinProc () whenever the window’s
client area needs repainting. Until now, you haven’t done much processing on this
event. Here’s the standard WM_PAINT handler you have been using:

PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

case WM_PAINT:

{

// simply validate the window

hdc = BeginPaint (hwnd,&ps);

// you would do all your painting here
EndPaint (hwnd,&ps);
// return success
return(0);
} break;

CHAPTER 3 129

Advanced Windows Programming m

Refer to Figure 3.12 for the following explanation. When a window is moved, resized,
or in some way graphically obscured by another window or event, some or all of the
window’s client area must be redrawn. When this happens, a WM_PAINT message is
sent and you must deal with it.

Figure 3.12 Case 1 Case 2
The wm_PAINT F d

Resize

Movement

Window
Overlap

Wm_Paint
Wm_Paint

Wm_Paint WinProc()

Wm_Paint:

Message Queue

In the case of the preceding code example, the calls to BeginPaint () and EndPaint ()
accomplish a couple of tasks. First, they validate the client area, and second, they fill
the background of your window with the background brush defined in the Windows
class that the window was originally created with.

Now, if you want to do your own graphics within the BeginPaint ()—EndPaint ()
call, you can. However, there is one problem: You will only have access to the portion
of the window’s client area that actually needs repainting. The coordinates of the
invalid rectangle are stored in the rcPaint field of the ps (PAINSTRUCT) returned by
the call to BeginPaint():

typedef struct tagPAINTSTRUCT

{

HDC hdc; // graphics device context

BOOL fErase; // if TRUE then you must draw background
RECT rcPaint; // the RECT containing invalid region

BOOL fRestore; // internal
BOOL fIncUpdate; // internal
BYTE rgbReserved[32]; // internal
} PAINTSTRUCT;

And to refresh your memory, here’s the definition of RECT:

typedef struct _RECT

{
LONG left; // left edge if rectangle

LONG top; // upper edge of rectangle

130 PART |

T Windows Programming Foundations

LONG right; // right edge of rectangle
LONG bottom; // bottom edge of rectangle
} RECT;

In other words, referring back to Figure 3.12, the window is 400x400, but only the
lower region of the window—300,300 to 400,400—needs repainting. Thus, the
graphics device context returned by the call to BeginPaint () is only valid for this
100x100 region of your window! Obviously, this is a problem if you want to have
access to the entire client area.

The solution to the problem has to do with gaining access to the graphics device
context for the window directly without it being sent as part of a window update
message via BeginPaint (). You can always get a graphics context for a window or
hdc using the GetDC() function, as shown here:

HDC GetDC(HWND hwWnd); // handle of window

You simply pass the window handle of the graphics device context you want to
access, and the function returns a handle to it. If the function is unsuccessful, it
returns NULL. When you’re done with the graphics device context handle, you must
give it back to Windows with a call to ReleaseDC(), as shown here:

int ReleaseDC(HWND hWnd, // handle of window
HDC hDC); // handle of device context

ReleaseDC() takes the window handle and the handle to the device context you
previously acquired with GetDC().

Windows-speak gets confusing when it comes to graphics device con-

a texts. Technically, a handle to a device context can refer to more than
one output device. For example, a device context could be a printer.
Therefore, | usually refer to a graphics-only device context as a graphics
device context. But the data type is HDC or handle to device context. So
typically, I will define a graphics device context variable as HDC hdc, but
sometimes | will also use HDC gdc because it makes more sense to me.
In any case, just be aware that for this book, a graphics device context
and a device context are interchangeable, and variables with the names
hdc and gdc are of the same type.

Here’s how you would use GetDC()—ReleaseDC() to do graphics:
HDC gdc = NULL; // this will hold the graphics device context
// get the graphics context for the window

if (!(gdc = GetDC(hwnd)))
error();

CHAPTER 3 131

Advanced Windows Programming m

// use the gdc here and do graphics - you don't know how yet!

/| release the dc back to windows
ReleaseDC (hwnd, gdc);

Of course, you don’t know how to do any graphics yet, but I’'m getting there... The
important thing is that you now have another way to process a WM_PAINT message.
However, there is one problem: When you make a call to GetDC()—ReleaseDC(),
Windows has no idea that you have restored or validated the client area of your
window. In other words, if you use GetDC()—ReleaseDC() in place of
BeginPaint()—EndPaint (), you’ll create another problem!

The problem is that BeginPaint ()—EndPaint () sends a message to Windows
indicating that the window contents have been restored (even if you don’t make any
graphics calls). Hence, Windows won’t send any more WM_PAINT messages. On the
other hand, if you replace BeginPaint ()—EndPaint () with GetDC()—ReleaseDC()
in the WM_PAINT handler, WM_PAINT messages will continue to be sent forever! Why?
Because you must validate the window.

To validate the area of a window that needs repainting and tell Windows that you have
restored the window, you could call BeginPaint ()—EndPaint () after the call to
GetDC()—ReleaseDC (), but this would be inefficient. Instead, use the call specifically
designed for this, called validateRect():

BOOL ValidateRect(HWND hwnd, // handle of window
CONST RECT *1pRect); // address of validation rectangle coordinates

To validate a window, send the handle of the window along with the region you want
to be validated in 1pRect. In most cases, the region to validate would be the entire
window. Thus, to use GetDC()—ReleaseDC() in the WM_PAINT handler, you would
have to do something like this:

PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context
RECT rect; // rectangle of window

case WM_PAINT:
{
// simply validate the window
hdc = GetDC(hwnd) ;
// you would do all your painting here
ReleaseDC (hwnd,hdc) ;

// get client rectangle of window - use Win32 call
GetClientRect (hwnd,&rect);

// validate window

ValidateRect (hwnd,&rect);

132 PART |

T Windows Programming Foundations

/] return success
return(0);
} break;

Notice the call to GetClientRect (). All this does is get the client rec-
a tangle coordinates for you. Remember, because a window can move
around, it has two sets of coordinates: window coordinates and client
coordinates. Window coordinates are relative to the screen, and client

coordinates are relative to the upper left-hand corner of the window
(0,0). Figure 3.13 shows this more clearly.

Figure 3.13 Screen

‘Window coordinates Origin (0, 0) Screen 1 Desktop
versus client
coordinates. Windows
Coords (X1, Y1)
Border
°(0,0)
Client Coords
Border not

included in = (Window_width, Window_height)

client coords.
(X2,Y2)

Start |

Maximum Resolution
(639, 479)
(799, 599)

(1599, 1399)

You must be saying, “Does it really need to be this hard?” Of course it does—it’s
Windows <BG>. Remember, the whole reason for all this drama in the WM_PAINT
message handler is that you need to make sure that you can draw graphics anywhere
you want in the client area of the window. This is only possible if you use GetDC()—
ReleaseDC() or BeginPaint()—EndPaint () with a completely invalid window.
However, we are trying to get the best of both worlds, and we’re almost done. The
final trick T want to show you is how to invalidate a window manually.

Consider this: If you could somehow invalidate the entire window within your
WM_PAINT handler, you would be sure that the rcPaint field of the ps PAINTSTRUCT
returned by BeginPaint () and the associated gdc would give you access to the
entire client area of the window. To make this happen, you can manually enlarge the
invalidated area of any window with a call to InvalidateRect(), as shown here:

BOOL InvalidateRect(HWND hWnd, // handle of window with

CHAPTER 3 133

Advanced Windows Programming m

// changed update region
CONST RECT *1pRect, // address of rectangle coordinates
BOOL bErase); /| erase-background flag

If bErase is TRUE, the call to BeginPaint () fills in the background brush; otherwise,
it doesn’t.

Simply call InvalidateRect () before the BeginPaint ()—EndPaint () pair, and then,
when you do call BeginPaint (), the invalid region will reflect the union of what it
was and what you added to it with the InvalidatRect (). However, in most cases, you
will use NULL as the 1pRect parameter of InvalidateRect (), which will invalidate
the entire window. Here’s the code:

PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

case WM_PAINT:
{

// invalidate the entire window
InvalidateRect (hwnd, NULL, FALSE);
// begin painting
hdc = BeginPaint (hwnd,&ps);
// you would do all your painting here
EndPaint (hwnd, &ps) ;
// return success
return(0);
} break;

In most of the programs in this book, you’ll use GetDC()—ReleaseDC() in places
other than the WM_PAINT message, and BeginPaint ()—EndPaint () solely in the
WM_PAINT handler. Now let’s move on to some simple graphics so you can at least
print out text.

Video Display Basics and Color

At this point, I want to take time to discuss some concepts and terminology that relate
to graphics and color on the PC. Let’s start with some definitions:

* Pixel—A single addressable picture element on a raster display, such as a
computer monitor.

¢ Resolution—The number of pixels that the display card supports, such as
640x480, 800x600, and so forth. The higher the resolution, the better the image,
but the more memory required too. Table 3.2 lists some of the most common
resolutions and their various memory requirements.

* Color depth—The number of bits or bytes that represent each pixel on the
screen—bits per pixel (bpp). For example, if each pixel is represented by 8 bits
(a single byte), the display can only support 256 colors because 28 = 256. On

134 PART |

W Windows Programming Foundations

the other hand, if each pixel is made of 16 bits (2 bytes), each pixel can support
up to 16,384 colors or 216, Again, the greater the color depth, the greater the
detail, but memory usage also goes up. Furthermore, 8-bit modes are usually
palettized (which will be explained shortly), 16-bit modes are called high color,
and 24- and 32-bit modes are called true color.

* Interlaced/noninterlaced displays—Computer displays are drawn by a scan-
ning electron gun one line at a time—rvasterization. Standard television draws
two frames for each image. One frame consists of all the odd-numbered scan
lines, and the other frame is all the even-numbered lines. When these two
frames are drawn in quick succession, your eyes fuse them together and create a
single image. This only looks acceptable for moving images and therefore is not
acceptable for static imagery like a Windows display. However, some cards can
only support high-resolution modes if they interlace. When interlacing occurs,
you will usually see a flicker or shake in the display.

¢ Video RAM (VRAM)—The amount of onboard memory on a video card for
representing the video image(s) on the screen or in texture memory.

¢ Refresh rate—The number of times per second the video image is refreshed,
measured in Hz (hertz) or fps (frames per second). 60Hz is considered the
minimum acceptable level these days, and some monitors and display cards go
up to well over 100Hz for a rock-solid display.

e 2D acceleration—Hardware support on the video card that helps Windows
and/or DirectX with 2D operations like bitmapped graphics, lines, circles, text,
scaling, and so forth.

e 3D acceleration—Hardware support on the video card that helps Windows or
DirectX/Direct3D with 3D graphics rendering.

These elements are shown in Figure. 3.14.

TaBLE 3.2 Video Resolutions and Memory Requirements

Resolution Bits per Pixel Memory (min-max)
320x200* 8 64KB

320x240* 8 64KB

640x480 8, 16, 24, 32 307KB-1.22MB
800x600 8, 16, 24, 32 480KB-1.92MB
1024x768 8, 16, 24, 32 786KB-3.14MB
1280x1024 8, 16, 24, 32 1.31MB-5.24MB
1600x1200 8, 16, 24, 32 1.92KB-7.68MB

*These are considered to be Mode X modes and may not be supported by your video card.

CHAPTER 3 135

Advanced Windows Programming m

Of course, Table 3.2 is only a sampling of possible video modes and color depths.
Your card may support many more. The important thing is to understand that it’s
pretty easy to eat up 2MB to 4MB of video RAM. The good news is that most
DirectX Windows games that you’ll write will run in 320x240 or 640x480, which,
depending on the color depth, a 2MB card can support.

Figure 3.14 ©,0) *
The mechanics of a Single Pixel " 1
X - Bit Depth
video display. 1 Bit - Monochrome
2 Bit - 4 Color
4 Bit - 16 Color

8 Bit - 256 Color Palettized
16 Bit - Hi Color 65,536 Colors
24 Bit - True Color 16.7 Million Colors
32 Bit - Ultra True Color 4.2 Billion Colors

640 x 480 Resolution 480 Lines

Yy
640 Pixels >|(639,479)

Video surface represent in VRAM
e.g. 640 x 480 x 256 = 307,200 Bytes of VRAM

A

RGB and Palletized Modes

There are two ways to represent color on a video display: directly or indirectly. Direct
color modes, or RGB modes, represent each pixel on the screen with either 16, 24, or
32 bits that represent the red, green, and blue components of the color (see Figure
3.15). This is possible due to the additive nature of the primary colors red, green,

and blue.

Referring to Figure 3.15, you can see that for each possible color depth (16, 24, 32),
there are a number of bits assigned to each color channel. Of course, with 16-bit and
32-bit color, these numbers aren’t evenly divisible by 3; therefore, there might be an
unequal amount of one of the color channels. For example, with 16-bit color modes,
there are three different RGB encodings you might find:

* RGB (6.5.5)—Six bits of red, five bits of green, and five bits of blue.

¢ RGB (1.5.5.5)—One bit alpha and five bits each of red, green, and blue. Alpha
is a transparency control.

¢ RGB (5.6.5)—Five bits of red, six bits of green, and five bits of blue. This is
the most common, in my experience.

136 PART |

W Windows Programming Foundations

Figure 3.15
Color encoding for
RGB modes.

16 bit color 5.5.5 format
dis dis do

wss [x [oo [[[| o [[o [o [o [o [0] o0

N AN AN J
Y Y

* Alpha or Red channel Green channel Blue channel

* Intensity or

* Unused

16 bit color 5.6.5 format - Green dominant
dis | do
MSB | Rs|Rs |R2 [Ri | Ro | Gs [Gs [Gs [G2 | Gi | Go | Bs | Bs | B2 | By [Bo I LSB
N AN '\ J
Y Y Y
Red channel Green channel Blue channel
24 bit color 8.8.8 format 1256 shades each channel
dos do
MSB | R7 | Re | Rs |Rs |Rs |R2 | R1 | Ro | G7 [Ge | Gs | Ga | Gs | Gz | Gy | Go | B7 | Bs | Bs |Bs | Bs | B2 | Bi | Bo I LsB
N '\ AN J
Y Y Y
Red channel Green channel Blue channel
32 bit color A.8.8.8 format
day Byte 3 Byte 2 Byte 1 Byte 0 do
MSB | | Alpha Red Green Blue | I LsSB
N J\ J\ J\ J
Y Y Y Y
8 Alpha channel da3 - dib dis-dg d7-do
Red channel Green channel Blue channel

* note: Some cards support 10.10.10 format

The 24-bit mode is almost always eight bits per channel. However, the 32-bit mode
can be weird, and in most cases there are eight bits for alpha (transparency) and eight
bits each for the red, green, and blue channels.

Basically, RGB modes give you control over the exact red, green, and blue compo-
nents of each pixel on the screen. Palettized modes work on a principle called indirec-
tion. When there are only eight bits per pixel, you could decide to allocate the three
bits for red, three bits for green, and maybe two bits for blue or some combination
thereof. However, this would leave you with only a few shades of each of the primary
colors, and that wouldn’t be very exciting. Instead, 8-bit modes use a palette.

As shown in Figure 3.16, a palette is a table that has 256 entries, one for each possi-
ble value of a single byte—0 to 255. However, each of these entries is really com-
posed of three 8-bit entries of red, green, and blue. In essence, it’s a full RGB 24-bit
descriptor. The color lookup table (CLUT) works like this: When a pixel in an 8-bit
color mode is read from the screen, say value 26, the 26 is used as an index into the
color table. Then the 24-bit RGB value for color descriptor index 26 is used to drive
the red, green, and blue channels for the actual color that is sent to the display. In this
way, you can have just 256 colors on the screen at once, but they can be from among
16.7 million colors or 24-bit RGB values. Figure 3.16 illustrates the lookup process.

CHAPTER 3 137

Advanced Windows Programming m

Color Color Lookup Table (CLUT)
How 256-color palet- [12]5 [29] Index Red

tized modes work.

Figure 3 16 (0, 0) Display Buffer 256 color mode

Green Blue

150 E}' 0| 100 5 36

1 29 200 60
2 52 36 161
’ Digital to Analog
Pixel values . Red converter
0-255 9 ° e Output
" 6 0 255 100 Green Color
Pixel values are DAC
used as Index into Blue
CLUT.

Last Index —>»255| 100 100 100

\8 bit 8 bit 8 bit Y
Y

24-bit
RGB value for each entry
can be anything you want
in range 0 - 255.

We are getting a little ahead of ourselves with all this color stuff, but I want to let you
chew on the concepts a bit so that when you see them again during the DirectDraw
discussion, it won’t be for the first time. In fact, color is such a complex problem to
work with in normal GDI-based Windows graphics that Windows has abstracted color
to a 24-bit model no matter what. That way you don’t have to worry about the details
of color depth and such when you’re programming. Of course, you will get better
results if you do worry about them, but you don’t have to.

Basic Text Printing

Windows has one of the most complex and robust text-rendering systems of any oper-
ating system I have ever seen. Of course, for most game programmers, printing the
score is all we want to do, but it’s nice to have nonetheless.

In reality, the GDI text engine is usually too slow to print text in a real-time game, so
in the end you will need to design our own DirectX-based text engine. For now,
though, let’s learn how to print text with GDI. At the very least, it will help with
debugging and output with demos.

There are two popular functions for printing text: TextOut () and DrawText ().
TextOut () is the “ghetto ride” version of text output, and DrawText () is the Lexus. I
usually use TextOut () because it’s faster and I don’t need all the bells and whistles of
DrawText (), but we’ll take a look at both. Here are their prototypes:
BOOL TextOut(HDC hdc, // handle of device context

int nXStart, /| x-coordinate of starting position

int nYStart, /] y-coordinate of starting position

LPCTSTR 1pString,// address of string
int cbString); // number of characters in string

138 PART |

T Windows Programming Foundations

int DrawText(HDC hDC, // handle to device context
LPCTSTR 1pString, // pointer to string to draw

int nCount, // string length, in characters
LPRECT 1lpRect, // ptr to bounding RECT
UINT uFormat); // text-drawing flags

Most of the parameters are self-explanatory. For TextOut (), you simply send the
device context, the x,y coordinates to print to, and the ASCII string, along with the
length of the string in bytes. DrawText (), on the other hand, is a little more complex.
Because it does word wrapping and formatting, it takes a different approach to print-
ing via a rendering RECT. Thus, DrawText () doesn’t take an X,y for the place to start
printing; instead, it takes a RECT that defines where the printing will take place within
the window (see Figure 3.17). Along with the RECT of where to print it, you send
some flags that describe how to print it (such as left-justified). Please refer to the
Win32 documentation for all the flags, because there are a ton of them. I'll just stick
to DT_LEFT, which is the most intuitive and justifies all text to the left.

Figure 3.17 - Window Title Bar X
The drawing RECT of
DrawText (). RECT{
Top;
Left;
DrawText(hoc Right;
“HelloWorld;” Botom} _ Top
11, Hello World
& rect);
| Left Right
Bottom
All text printed by DrawText()
Client | _—» is clipped to the RECT
area sent to DrawText().

The only problem with both calls is that there’s no mention of color. Hmmmm. That’s
almost as strange as Boogie Nights, but who cares? Anyway, thankfully there is a way
to set both the foreground color of the text and the background color behind it, in
addition to the transparency mode of the text.

The transparency mode of the text dictates how the characters will be drawn. Will the
characters be stamped down with rectangular regions or drawn pixel by pixel as an
overlay? Figure 3.18 illustrates transparency as it relates to printing. As you can see,
when text is printed with transparency, it looks as if it was drawn right on top of the
graphics. Without transparency, you can actually see that there is an opaque block sur-
rounding each character, which obscures everything—very ugly.

CHAPTER 3 139

Advanced Windows Programming m

Figure 3.18
Opaque and transpar-

or This is text with a transparent hackground.
ent text printing.

A 4 Rendering without transparency is faster, so if you're printing on a
)P monochrome background and you can get away with it, do it!
»

Let’s take a look at the functions to set the foreground and background colors of text:

COLORREF SetTextColor(HDC hdc, // handle of device context
COLORREF Color); // foreground character color

COLORREF SetBkColor(HDC hdc, // handle of device context
COLORREF color); // background color

Both functions take the graphics device context (from a call to GetDC() or
BeginPaint()) along with the color to use in COLORREF format. Once you set these
colors, they stay in flux until you change them. In addition, when you do set the col-
ors, each function returns the current value so you can restore the old one when
you’re done or when your application exits.

You’re almost ready to print, but this new COLORREF type has to be dealt with—don’t
you think? Okay, then! Here’s the definition of COLORREF:

typedef struct tagCOLORREF

{

BYTE bRed; // the red component
BYTE bGreen; // the green component
BYTE bBlue; // the blue component
BYTE bDummy; // unused

} COLORREF;

So in memory, a COLORREF looks like @x@0bbggrr. Remember, PCs are Little
Endian—that is, low BYTE to high BYTE. To create a valid COLORREF, you can use the
RGB () macro, like this:

COLORREF red = RGB(255,0,0);
COLORREF yellow = RGB(0,255,255);

And so forth. While we’re looking at color descriptor structures, we might as well
look at PALETTEENTRY because it is absolutely identical:

typedef struct tagPALETTEENTRY

140 PART |

T Windows Programming Foundations

{

BYTE peRed; /] red bits
BYTE peGreen; // green bits
BYTE peBlue; // blue bits

BYTE peFlags; // control flags
} PALETTEENTRY;

peFlags can take on the values in Table 3.3. In most cases you will use
PC_NOCOLLAPSE and PC_RESERVED, but for now just know they exist. The interesting
thing that I wanted to point out, though, is the similarity between COLORREFs and
PALETTEENTRYS. They are identical except for the interpretation of the last BYTE.
Hence, in many cases they’re interchangeable.

TaBLE 3.3 PALLETEENTRY Flags

Value Description

PC_EXPLICIT Specifies that the low-order word of the logical palette entry designates
a hardware palette index. Advanced.

PC_NOCOLLAPSE Specifies that the color be placed in an unused entry in the system
palette instead of being matched to an existing color in the system
palette.

PC_RESERVED Specifies that the logical palette entry be used for palette animation.

This flag prevents other windows from matching colors to the palette
entry because the color frequently changes. If an unused system-
palette entry is available, the color is placed in that entry. Otherwise,
the color is not available for animation.

Now you’re almost ready to print, but remember that there was the issue of
transparency and how to set it. The function used to set the transparency mode is
SetBkMode (), and here’s its prototype:

int SetBkMode (HDC hdc, // handle to device context
int iBkMode); // transparency mode

The function takes the graphics device context along with the new transparency mode
to switch to, which can be either TRANSPARENT or OPAQUE. The function returns the old
mode so you can save it for later restoration.

Now you’re ready to kick the tires and light the fires, big daddy. Here’s how you
would print some text:

COLORREF old_fcolor, // old foreground text color
old_bcolor; // old background text color

int old_tmode; // old text transparency mode

// first get a graphics device context
HDC hdc = GetDC(hwnd);

CHAPTER 3 41

Advanced Windows Programming qm

// set the foreground color to green and save old one
old_fcolor = SetTextColor(hdc, RGB(0,255,0));

// set the background color to black and save old one
old_bcolor = SetBkColor(hdc, RGB(0,0,0));

// finally set the transparency mode to transparent
old_tmode = SetBkMode(hdc, TRANSPARENT);

// draw some text at (20,30)
TextOut(hdc, 20,30, "Hello",strlen("Hello"));

// now restore everything
SetTextColor (hwnd, old_fcolor);
SetBkColor (hwnd, old_bcolor);
SetBkMode (hwnd, old_tmode);

// release the device context
ReleaseDC(hwnd, hdc);

Of course, there is no law that you have to restore the old values, but I did it here just
to show you how. Also, the color and transparency settings are valid as long as you
have the handle to the device context. Let’s say you wanted to draw some blue text in
addition to the green text. You’d only have to change the text color to blue and then
draw the text. You wouldn’t have to set all three values again.

For an example of printing text using the preceding technique, take a look at
DEMO3_5.CPP and the executable DEMO3_5.EXE. The demo creates a display of ran-
domly positioned text strings in different colors all over the screen, as shown in
Figure 3.19.

Figure 3 Ig W 6PI Text Printing Pemo
GDI Text Di !
Random text e fema
GDI Text Demo!
output from
DEMO3_5.EXE. GDI Text Demo!

GDI Text Dap!Text Demo!

GDI Text Demo!
GDI Text Demo!

GDITéx

TSR

GDI Text Demg

GDI Text Demo! GDI Tex

ni
GDI TeXt DEmu!G'

GDERext-Demot, o

142 PART |

w Windows Programming Foundations

The following is an excerpt from the program’s WinMain (), where all the action takes
place:

// get the dc and hold it
HDC hdc = GetDC(hwnd);

// enter main event loop, but this time we use PeekMessage()
// instead of GetMessage() to retrieve messages
while (TRUE)
{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,®,0,PM_REMOVE))
{
// test if this is a quit
if (msg.message == WM_QUIT)
break;

// translate any accelerator keys
TranslateMessage (&msg) ;

// send the message to the window proc
DispatchMessage (&msg);
} // end if

// main game processing goes here

/1 set the foreground color to random
SetTextColor(hdc, RGB(rand()%256,rand()%256,rand()%256));

// set the background color to black
SetBkColor (hdc, RGB(0,0,0));

// finally set the transparency mode to transparent
SetBkMode (hdc, TRANSPARENT);

// draw some text at a random location
TextOut (hdc,rand()%400,rand()%400,
"GDI Text Demo!", strlen("GDI Text Demo!"));

} // end while

/| release the dc
ReleaseDC (hwnd,hdc);

As a second example of printing text, let’s try doing something like updating a
counter in response to the WM_PAINT message. Here’s the code to do that:

char buffer[80] // used to print string
static int wm_paint_count = @; // track number of msg's

case WM_PAINT:
{

CHAPTER 3 143

Advanced Windows Programming m

// simply validate the window
hdc = BeginPaint(hwnd,&ps);

// set the foreground color to blue
SetTextColor(hdc, RGB(0,0,255));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// finally set the transparency mode to transparent
SetBkMode (hdc, OPAQUE) ;

// draw some text at (0,0) reflecting number of times

// wm_paint has been called

sprintf (buffer, "WM_PAINT called %d times ", ++wm_paint_count);
TextOut(hdc, 0,0, buffer, strlen(buffer));

EndPaint (hwnd, &ps) ;
// return success
return(0);
} break;

Take a look at DEMO3_6.CPP and the executable DEMO3_6.EXE on the CD-ROM to see
the program in action. Notice that nothing will print until you move or overwrite the
window. This is because WM_PAINT is generated only when there is some reason to
restore or redraw the window, such as a movement or resize.

That’s about it for basic printing. Of course, the DrawText () function does a lot more,
but that’s up to you. Also, you might want to look into fonts and that whole can of
worms, but stuff like that is normally for full Windows GUI programming and is not
really what we’re trying to do in this book.

Handling Important Events

As you’ve been painfully learning, Windows is an event-based operating system.
Responding to events is one of the most important aspects of a standard Windows
program. This next section covers some of the more important events that have to do
with window manipulation, input devices, and timing. If you can handle these basic
events, you’ll have more than you need in your Windows arsenal to handle anything
that might come up as part of a DirectX game, which itself relies very little on events
and the Windows operating system.

Window Manipulation

There are a number of messages that Windows sends to notify you that the user has
manipulated your window. Table 3.4 contains a small list of some of the more
interesting manipulation messages that Windows generates.

144 PART 1

T Windows Programming Foundations

TaBLE 3.4 Window Manipulation Messages

Value

Description

WM_ACTIVATE

WM_ACTIVATEAPP

WM_CLOSE
WM_MOVE
WM_MOVING

WM_SIZE
WM_SIZING

Sent when a window is being activated or deactivated. This message is

sent first to the window procedure of the top-level window being deac-

tivated. It is then sent to the window procedure of the top-level window
being activated.

Sent when a window belonging to an application other than the active
window is about to be activated. The message is sent both to the appli-
cation whose window is being activated and to the application whose
window is being deactivated.

Sent as a signal that a window or an application should terminate.
Sent after a window has been moved.

Sent to a window that the user is moving. By processing this message,
an application can monitor the size and position of the drag rectangle
and, if needed, change its size or position.

Sent to a window after its size has changed.

Sent to a window that the user is resizing. By processing this message,
an application can monitor the size and position of the resizing rectan-
gle and, if needed, change its size or position.

Let’s take a look at WM_ACTIVATE, WM_CLOSE, WM_SIZE, and WM_MOVE and what they do.
For each one of these messages, I'm going to list the message, wparam, 1param, and
some comments, along with a short example WinProc () handler for the event.

Message: WM_ACTIVATE

Parameterization:

fActive = LOWORD (wParam); // activation flag
fMinimized = (BOOL)HIWORD(wParam); // minimized flag
hwndPrevious = (HWND)1lParam; // window handle

The fActive parameter basically defines what is happening to the window—that is, is
the window being activated or deactivated? This information is stored in the low-order
word of wparam and can take on the values shown in Table 3.5.

TaBLE 3.5 The Activation Flags for WM_ACTIVATE

Value

Description

WA_CLICKACTIVE
WA_ACTIVE

WA_INACTIVE

Activated by a mouse click.

The window has been activated by some means other than the mouse,
such as the keyboard interface.

The window is being deactivated.

CHAPTER 3 145

Advanced Windows Programming m

The fMinimized variable simply indicates if the window was minimized. This is true
if the variable is nonzero. Lastly, the hwndPrevious value identifies the window being
activated or deactivated, depending on the value of the fActive parameter. If the
value of fActive is WA_INACTIVE, hwndPrevious is the handle of the window being
activated. If the value of fActive is WA_ACTIVE or WA_CLICKACTIVE, hwndPrevious is
the handle of the window being deactivated. This handle can be NULL. That makes
sense, huh?

In essence, you use the WM_ACTIVATE message if you want to know when your appli-
cation is being activated or deactivated. This might be useful if your application keeps
track of every time the user Alt+Tabs away or selects another application with the
mouse. On the other hand, when your application is reactivated, maybe you want to
play a sound or do something. Whatever, it’s up to you.

Here’s how you code when your application is being activated in the main WinProc():

case WM_ACTIVATE:

{

// test if window is being activated
if (LOWORD(wparam)!=WA_ INACTIVE)

{
// application is being activated
} // end if
else
{

// application is being deactivated
} // end else

} break;
Message: WM_CLOSE
Parameterization: None

The WM_CLOSE message is very cool. It is sent right before a WM_DESTROY and the fol-
lowing WM_QUIT are sent. The WM_CLOSE indicates that the user is trying to close your
window. If you simply return(@) in your WinProc (),nothing will happen and the
user won’t be able to close your window! Take a look at DEMO3_7.CPP and the exe-
cutable DEMO3_7.EXE to see this in action. Try killing the application—you won’t be
able to!

Warning Don’t panic when you can’t kill DEMO3_7 . EXE. Simply press Ctrl+Alt+Del,
and the Task Manager will come up. Then select and terminate the

DEMO3_7.EXE application. It will cease to exist—just like service at elec-
tronics stores starting with “F” in Silicon Valley.

146 PART 1
T Windows Programming Foundations

Here’s the coding of the empty WM_CLOSE handler in the WinProc () as coded in
DEMO3_7.CPP:

case WM_CLOSE:

{
// kill message, so no further WM_DESTROY is sent
return(0);

} break;

If making the user mad is your goal, the preceding code will do it. However, a

better use of trapping the WM_CLOSE message might be to include a message box

that confirms that the application is going to close or maybe do some housework.
DEMO3_8.CPP and the executable take this route. When you try to close the window, a
message box asks if you’re certain. The logic flow for this is shown in Figure 3.20.

Figure 3.20 = Window X] WM_CLOSE sent

The logic flow for \Message Queue
WM_CLOSE.

WM_CLOSE GetMessage()

DispatchMessage()

Event Handler

Case WM_CLOSE: Message Box
{ > A -
¢ »{ Are you sure?
} Break; Yes No
eal; I + Stop processing of WM_CLOSE
Return back and Return (0);

let WM_CLOSE continue
to flow through message
system producing a
WM_DESTROY

Here’s the code from DEMO3_8.CPP that processes the WM_CLOSE message:

case WM_CLOSE:

{
// display message box
int result = MessageBox(hwnd,

"Are you sure you want to close this application?",
"WM_CLOSE Message Processor",
MB_YESNO | MB_ICONQUESTION);

// does the user want to close?
if (result == IDYES)
{
/] call default handler
return (DefWindowProc(hwnd, msg, wparam, lparam));
} // end if

CHAPTER 3 147

Advanced Windows Programming m

else // throw message away
return(0);

} break;

Cool, huh? Notice the call to the default message handler, DefWindowProc (). This
occurs when the user answers Yes and you want the standard shutdown process to
continue. If you knew how to, you could have sent a WM_DESTROY message instead,
but since you haven’t learned how to send messages yet, you just called the default
handler. Either way is fine, though.

Next, let’s take a look at the WM_SIZE message, which is an important message to
process if you’ve written a windowed game and the user keeps resizing the view
window!

Message: WM_SIZE

Parameterization:

fwSizeType = wParam; // resizing flag

nWidth = LOWORD(1lParam); // width of client area
nHeight = HIWORD(1lParam); // height of client area

The fwSizeType flag indicates what kind of resizing just occurred, as shown in Table
3.6, and the low and high word of 1Param indicate the new window client dimensions.

TaBLE 3.6 Resizing Flags for WM_SIZE

Value Description

SIZE_MAXHIDE Message is sent to all pop-up windows when some other window is
maximized.

SIZE_MAXIMIZED Window has been maximized.

SIZE_MAXSHOW Message is sent to all pop-up windows when some other window
has been restored to its former size.

SIZE_MINIMIZED Window has been minimized.

SIZE_RESTORED Window has been resized, but neither the SIZE_MINIMIZED nor

SIZE_MAXIMIZED value applies.

As I said, processing the WM_SIZE message can be very important for windowed
games because when the window is resized, the graphics display must be scaled to fit.
This will never happen if your game is running in full-screen, but in a windowed
game, you can count on the user trying to make the window larger and smaller. When
this happens, you must recenter the display and scale the universe or whatever to keep

148 PART |

w Windows Programming Foundations

the image looking correct. As an example of tracking the WM_SIZE message,
DEMO3_9.CPP prints out the new size of the window as it’s resized. The code that
tracks the WM_SIZE message in DEMO3_9.CPP is shown here:

case WM_SIZE:
{
// extract size info
int width = LOWORD(lparam);
int height = HIWORD(lparam);

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode (hdc, OPAQUE) ;

// draw the size of the window

sprintf (buffer,

"WM_SIZE Called - New Size = (%d,%d)", width, height);
TextOut (hdc, 0,0, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} break;

You should know that the code for the WM_SIZE message handler has a

potential problem: When a window is resized, not only is a W_SIZE
message sent, but a WM_PAINT message is sent as well! Therefore, if the
WM_PAINT message was sent after the WI_SIZE, the code in WM_PAINT
could erase the background and thus the information just printed in
WM_SIZE. Luckily, this isn't the case, but it's a good example of problems
that can occur when messages are out of order or when they aren’t sent
in the order you think they are.

Last, but not least, let’s take a look at the WM_MOVE message. It’s almost identical to
WM_SIZE, but it is sent when a window is moved rather than resized. Here are the
details:

Message: WM_MOVE

CHAPTER 3 149

Parameterization:

Advanced Windows Programming m

xPos = (int) LOWORD(1lParam); // new horizontal position in screen coords
yPos = (int) HIWORD(1lParam); // new vertical position in screen coords

WM_MOVE is sent whenever a window is moved to a new position, as shown in Figure
3.21. However, the message is sent after the window has been moved, not during the
movement in real time. If you want to track the exact pixel-by-pixel movement of a
window, you need to process the WM_MOVING message. However, in most cases, pro-
cessing stops until the user is done moving your window.

Flgqre 3.21 (%1 Y1)
Generation of the
WM_MOVE message.

Movement by:
_(DX, DY)

~
~

Window

~

S s (X1 + DX, Y1 + DY)
N

Event Queue
WM_MOVE

Window

Desktop

As an example of tracking the motion of a window, DEMO3_10.CPP and the associated
executable DEMO3_10.EXE print out the new position of a window whenever it’s
moved. Here’s the code that handles the WM_MOVE processing:

case WM_MOVE:
{
// extract the position
int xpos = LOWORD(lparam);
int ypos = HIWORD(lparam);

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

/! set the background color to black
SetBkColor(hdc, RGB(0,0,0));

/] set the transparency mode to OPAQUE
SetBkMode (hdc, OPAQUE);

150 PART |

W Windows Programming Foundations

// draw the size of the window

sprintf(buffer,

"WM_MOVE Called - New Position = (%d,%d)", xpos, ypos);
TextOut (hdc, 0,0, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} break;

Well, that’s it for window manipulation messages. There are a lot more, obviously, but
you should have the hang of it now. The thing to remember is that there is a message
for everything. If you want to track something, just look in the Win32 Help and sure
enough, you’ll find a message that works for you!

The next sections cover input devices so you can interact with the user (or yourself)
and make much more interesting demos and experiments that will help you master
Windows programming.

Banging on the Keyboard

Back in the old days, accessing the keyboard required sorcery. You had to write an
interrupt handler, create a state table, and perform a number of other interesting feats
to make it work. I'm a low-level programmer, but I can say without regret that I don’t
miss writing keyboard handlers anymore!

Ultimately you’re going to use DirectInput to access the keyboard, mouse, joystick,
and any other input devices. Nevertheless, you still need to learn how to use the
Win32 library to access the keyboard and mouse. If for nothing else, you’ll need them
to respond to GUI interactions and/or to create more engaging demos throughout the
book until we cover Directlnput. So without further ado, let’s see how the keyboard
works.

The keyboard consists of a number of keys, a microcontroller, and support electronics.
When you press a key or keys on the keyboard, a serial stream of packets is sent to
Windows describing the key(s) that you pressed. Windows then processes this stream
and sends your window keyboard event messages. The beauty is that under Windows,
you can access the keyboard messages in a number of ways:

e With the WM_CHAR message
e With the WM_KEYDOWN and WM_KEYUP messages
e With a call to GetAsyncKeyState()

Each one of these methods works in a slightly different manner. The wM_CHAR and
WM_KEYDOWN messages are generated by Windows whenever a keyboard keypress or

CHAPTER 3 151

Advanced Windows Programming m

event occurs. However, there is a difference between the types of information
encapsulated in the two messages. When you press a key on the keyboard, such as A,
two pieces of data are generated:

e The scan code
e The ASCII code

The scan code is a unique code that is assigned to each key of the keyboard and has
nothing to do with ASCII. In many cases, you just want to know if the A key was
pressed; you’re not interested in whether or not the Shift key was held down and so
on. Basically, you just want to use the keyboard like a set of momentary switches.
This is accomplished by using scan codes. The WM_KEYDOWN message is responsible for
generating scan codes when keys are pressed.

The ASCII code, on the other hand, is cooked data. This means that if you press the A
key on the keyboard but the Shift key is not pressed or the Caps Lock key is not
engaged, you see an a character. Similarly, if you press Shift+A, you see an A. The
WM_CHAR message sends these kinds of messages.

You can use either technique—it’s up to you. For example, if you were writing a
word processor, you would probably want to use the WM_CHAR message because the
character case matters and you want ASCII codes, not virtual scan codes. On the
other hand, if you’re making a game and F is fire, S is thrust, and the Shift key is the
shields, who cares what the ASCII code is? You just want to know if a particular
button on the keyboard is up or down.

The final method of reading the keyboard is to use the Win32 function
GetAsynKeyState (), which tracks the last known keyboard state of the keys in a state
table—like an array of Boolean switches. This is the method I prefer because you
don’t have to write a keyboard handler.

Now that you know a little about each method, let’s cover the details of each one in
order, starting with the WM_CHAR message.

The WM_CHAR message has the following parameterization:

wparam—Contains the ASCII code of the key pressed.

1param—Contains a bit-encoded state vector that describes other special control
keys that may be pressed. The bit encoding is shown in Table 3.7.

152 PART |

W Windows Programming Foundations

TaBLE 3.7 Bit Encoding for the Key State Vector

Bits Description

0-15 Contains the repeat count, which is the number of times the keystroke is
repeated as a result of the user holding down the key.

16-23 Contains the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Boolean; extended key flag. If it’s 1, the key is an extended key, such as the
right-hand Alt and Ctrl keys that appear on an enhanced 101- or 102-key
keyboard.

29 Boolean; indicates whether the Alt key is down.

30 Boolean; indicates the previous key state. It’s useless.

31 Boolean; indicates the key transition state. If the value is 1, the key is being

released; otherwise, the key is being pressed.

To process the WM_CHAR message, all you have to do is write a message handle for it,
like this:

case WM_CHAR:
{

// extract ascii code and state vector
int ascii_code = wparam;
int key_state = lparam;

// take whatever action

} break;

And of course, you can test for various state information that might be of interest.
For example, here’s how you would test for the Alt key being pressed down:

// test the 29th bit of key_state to see if it's true

#define ALT_STATE_BIT 0x20000000
if (key_state & ALT_STATE_BIT)

{
// do something
} // end if

And you can test for the other states with similar bitwise tests and manipulations.

As an example of processing the WM_CHAR message, I have created a demo that prints
out the character and the state vector in hexadecimal form as you press keys. The
program is called DEMO3_11.CPP, and the executable is of course DEMO3_11.EXE. Try
pressing weird key combinations and see what happens. The code that processes and
displays the WM_CHAR information is shown here, excerpted from the WinProc():

case WM_CHAR:
{

CHAPTER 3 153

Advanced Windows Programming m

/1 get the character
char ascii_code = wparam;
unsigned int key_state = lparam;

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode (hdc, OPAQUE);

// print the ascii code and key state
sprintf (buffer, "WM_CHAR: Character = %c ",ascii_code);
TextOut(hdc, 0,0, buffer, strlen(buffer));

sprintf(buffer,"Key State = 0X%X ",key_state);
TextOut (hdc, 0,16, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} break;

The next keyboard event message, WM_KEYDOWN, is similar to WM_CHAR, except that the
information is not “cooked.” The key data sent during a WM_KEYDOWN message is the
virtual scan code of the key rather than the ASCII code. The virtual scan codes are
similar to the standard scan codes generated by any keyboard, except that virtual scan
codes are guaranteed to be the same for any keyboard. For example, it’s possible that
the scan code for a particular key on your 101 AT—style keyboard is 67, but on
another manufacturer’s keyboard, it might be 69. See the problem?

The solution used in Windows was to virtualize the real scan codes to virtual scan
code with a lookup table. As programmers, we use the virtual scan codes and let
Windows do the translation. Thanks, Windows! With that in mind, here are the details
of the WM_KEYDOWN message:

Message: WM_KEYDOWN

wparam—Contains the virtual key code of the key pressed. Table 3.8 contains a list of
the most common keys that you might be interested in.

1param—Contains a bit-encoded state vector that describes other special control keys
that may be pressed. The bit encoding is shown in Table 3.8.

154 PART |

w Windows Programming Foundations

TaBLE 3.8 Virtual Key Codes

Value
Symbol (hexadecimal) Description
VK_BACK 08 Backspace key
VK_TAB 09 Tab key
VK_RETURN 0D Enter key
VK_SHIFT 10 Shift key
VK_CONTROL 11 Ctrl key
VK_PAUSE 13 Pause key
VK_ESCAPE 1B Esc key
VK_SPACE 20 Spacebar
VK_PRIOR 21 Page Up key
VK_NEXT 22 Page Down key
VK_END 23 End key
VK_HOME 24 Home key
VK_LEFT 25 Left-arrow key
VK_UP 26 Up-arrow key
VK_RIGHT 27 Right-arrow key
VK_INSERT 2D Ins key
VK_DELETE 2E Del key
VK_HELP 2F Help key
No VK_Code 30-39 0-9 keys
No VK_Code 41-5A A-Z keys
VK_F1 - VK_F12 70-7B F1-F12 keys

Note: The keys A—Z and 0-9 have no VK_ codes. You must use the numeric constants or define your
own.
In addition to the WM_KEYDOWN message, there is WM_KEYUP. It has the same parameteri-
zation—that is, wparam contains the virtual key code, and 1param contains the key
state vector. The only difference is that WM_KEYUP is sent when a key is released.

For example, if you’re using the WM_KEYDOWN message to control something, take a
look at the code here:

case WM_KEYDOWN:
{
// get virtual key code and data bits
int virtual_code = (int)wparam;
int key_state = (int)lparam;

CHAPTER 3 155

Advanced Windows Programming m

// switch on the virtual_key code to be clean
switch(virtual_code)

{

case VK_RIGHT:{ } break;
case VK_LEFT: { } break;
case VK_UP: { } break;
case VK_DOWN: { } break;

// more cases..

default: break;
} // end switch

// tell windows that you processed the message
return(0);
} break;

As an experiment, try modifying the code in DEMO3_11.CPP to support the WM_KEYDOWN
message instead of WM_CHAR. When you’re done, come back and we’ll talk about the
last method of reading the keyboard.

The final method of reading the keyboard is to make a call to one of the keyboard
state functions: GetKeyboardState (), GetKeyState(), or GetAsyncKeyState (). We’ll
focus on GetAsyncKeyState () because it works for a single key, which is what you’re
usually interested in rather than the entire keyboard. If you’re interested in the other
functions, you can always look them up in the Win32 SDK. Anyway,
GetAsyncKeyState () has the following prototype:

SHORT GetAsyncKeyState(int virtual_key);

You simply send the function the virtual key code that you want to test, and if the
high bit of the return value is 1, the key is pressed. Otherwise, it’s not. I have written
some macros to make this easier:

#define KEYDOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEYUP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

The beauty of using GetAsyncKeyState () is that it’s not coupled to the event loop.
You can test for keypresses anywhere you want. For example, say that you’re writing
a game and you want to track the arrow keys, spacebar, and maybe the Ctrl key. You
don’t want to have to deal with the WM_CHAR or WM_KEYDOWN messages; you just want
to code something like this:

if (KEYDOWN (VK_DOWN))

{
// move ship down, whatever
} // end if

if (KEYDOWN(VK_SPACE))
{

156 PART |

W Windows Programming Foundations

// fire weapons maybe?
} // end if

// and so on

Similarly, you might want to detect when a key is released to turn something off.
Here’s an example:

if (KEYUP(VK_ENTER))

{
// disengage engines
} // end if

As an example, I have created a demo that continually prints out the status of the
arrow keys in the WinMain (). It’s called DEMO3_12.CPP, and the executable is
DEMO3_12.EXE. Here’s the WinMain () from the program:
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,
int ncmdshow)

{

WNDCLASSEX winclass; // this will hold the class we create
HWND hwnd; // generic window handle

MSG msg; // generic message

HDC hdc; // graphics device context

// first fill in the window class stucture

winclass.cbSize = sizeof (WNDCLASSEX);

winclass.style = CS_DBLCLKS | CS_OWNDC |
CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc = WindowProc;

winclass.cbhClsExtra = 0;

winclass.cbWndExtra = 0;

winclass.hInstance = hinstance;

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground = GetStockObject (BLACK_BRUSH);

winclass.lpszMenuName = NULL;

winclass.lpszClassName = WINDOW_CLASS_NAME;

winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

/| save hinstance in global
hinstance_app = hinstance;

// register the window class
if (!RegisterClassEx(&winclass))
return(0);

// create the window
if (!(hwnd = CreateWindowEx (NULL, // extended style
WINDOW_CLASS_NAME, /| class

CHAPTER 3 157

Advanced Windows Programming m

"GetAsyncKeyState() Demo", // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0, // initial x,y

400,300, // initial width, height

NULL, // handle to parent

NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

// save main window handle
main_window_handle = hwnd;

// enter main event loop, but this time we use PeekMessage()
// instead of GetMessage() to retrieve messages
while (TRUE)
{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,®,0,PM_REMOVE))
{
// test if this is a quit
if (msg.message == WM_QUIT)
break;

// translate any accelerator keys
TranslateMessage (&msg);

// send the message to the window proc
DispatchMessage (&msg);
} // end if

// main game processing goes here

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor (hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode (hdc, OPAQUE) ;

// print out the state of each arrow key
sprintf (buffer,"Up Arrow: = %d ",KEYDOWN (VK_UP)) ;
TextOut(hdc, 0,0, buffer, strlen(buffer));

sprintf (buffer, "Down Arrow: = %d " ,KEYDOWN (VK_DOWN)) ;
TextOut(hdc, 0,16, buffer, strlen(buffer));

158 PART |

W Windows Programming Foundations

sprintf (buffer, "Right Arrow: = %d " ,KEYDOWN (VK_RIGHT)) ;
TextOut (hdc, 0,32, buffer, strlen(buffer));

sprintf (buffer,"Left Arrow: = %d " ,KEYDOWN (VK_LEFT));
TextOut(hdc, 0,48, buffer, strlen(buffer));

/1 release the dc back
ReleaseDC(hwnd, hdc);

} // end while

// return to Windows like this
return(msg.wParam);

} // end WinMain

Also, if you review the entire source on the CD-ROM, you’ll notice that there aren’t
handlers for WM_CHAR or WM_KEYDOWN in the message handler for the window. The
fewer messages that you have to handle in the WinProc (), the better! In addition, this
is the first time you have seen action taking place in the WinMain (), which is the sec-
tion that does all game processing. Notice that there isn’t any timing delay or synchro-
nization, so the redrawing of the information is free-running (in other words, working
as fast as possible). In Chapter 4, “Windows GDI, Controls, and Last-Minute Gift
Ideas,” you’ll learn about timing issues, how to keep processes locked to a certain
frame rate, and so forth. But for now, let’s move on to the mouse.

Squeezing the Mouse

The mouse is probably the most innovative computer input device ever created. You
point and click, and the mouse pad is physically mapped to the screen surface—that’s
innovation! Anyway, as you guessed, Windows has a truckload of messages for the
mouse, but we’re going to look at only two classes of messages: WM_MOUSEMOVE and
WM_*BUTTON*.

Let’s start with the WM_MOUSEMOVE message. The first thing to remember about the
mouse is that its position is relative to the client area of the window that it’s in.
Referring to Figure 3.22, the mouse sends coordinates relative to the upper-left corner
of your window, which is 0,0.

Other than that, the WM_MOUSEMOVE message is fairly straightforward.

Message: WM_MOUSEMOVE

CHAPTER 3 159

Advanced Windows Programming m

H Controls
Fl.gure 3.22 Controls tx Vs
The details of mouse \
movement. - Title Bar n
ty | (0, 0)

x = LOWORD (Lparam)
y = HIWORD (Lparam)
msg: WM_MOUSEMOVE

(x,y)

&

Mouse Pointer

Window clignt area (MAX_X, MAX_Y)
*Does not include border or controls
Border
Parameterization:
int mouse_x = (int)LOWORD(1Param);

int mouse_y = (int)HIWORD(1Param);
int buttons = (int)wParam;

Basically, the position is encoded as 16-bit entries in the 1param, and the buttons are
encoded in the wparam, as shown in Table 3.9.

TaBLE 3.9 Button Bit Encoding for WM_MOUSEMOVE

Value Description

MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_CONTROL Set if the Ctrl key is down.

MK_SHIFT Set if the Shift key is down.

So all you have to do is logically AND one of the bit codes with the button state and
you can detect which mouse buttons are pressed. Here’s an example of tracking the
X,y position of the mouse along with the left and right buttons:

case WM_MOUSEMOVE:

{

// get the position of the mouse
int mouse_x = (int)LOWORD(1Param);
int mouse_y = (int)HIWORD(1lParam);

160 PART |

T Windows Programming Foundations

/1 get the button state
int buttons = (int)wParam;

// test if left button is down
if (buttons & MK_LBUTTON)

{
// do something
} // end if

// test if right button is down
if (buttons & MK_RBUTTON)

{
// do something

} // end if
} break;

Trivial, ooh, trivial! For an example of mouse tracking, take a look at DEMO3_13.CPP
on the CD-ROM and the associated executable. The program prints out the position of
the mouse and the state of the buttons using the preceding code as a starting point.
Take note of how the button changes only when the mouse is moving. This is as you
would expect because the message is sent when the mouse moves rather than when
the buttons are pressed.

Now for some details. The WM_MOUSEMOVE is not guaranteed to be sent all the time.
You may move the mouse too quickly for it to track. Therefore, don’t assume that
you’ll be able to track individual mouse movements that well—for the most part, it’s
not a problem, but keep it in mind. Also, you should be scratching your head right
now, wondering how to track if a mouse button was pressed without a mouse move.
Of course, there is a whole set of messages just for that. Take a look at Table 3.10.

TaBLe 3.10 Mouse Button Messages

Message Description

WM_LBUTTONDBLCLK The left mouse button was double-clicked.
WM_LBUTTONDOWN The left mouse button was pressed.
WM_LBUTTONUP The left mouse button was released.
WM_MBUTTONDBLCLK The middle mouse button was double-clicked.
WM_MBUTTONDOWN The middle mouse button was pressed.
WM_MBUTTONUP The middle mouse button was released.
WM_RBUTTONDBLCLK The right mouse button was double-clicked.
WM_RBUTTONDOWN The right mouse button was pressed.

WM_RBUTTONUP The right mouse button was released.

CHAPTER 3 161

Advanced Windows Programming m

The button messages also have the position of the mouse encoded just as they were
for the WM_MOUSEMOVE message—in the wparam and 1param. For example, to test for a
left button double-click, you would do this:

case WM_LBUTTONDBLCLK:

{

// extract x,y and buttons

int mouse_x = (int)LOWORD(1lParam);
int mouse_y = (int)HIWORD(1Param);

// do something intelligent

// tell windows you handled it
return(0);
} // break;

Killer! I feel powerful, don’t you? Windows is almost at our feet!

Sending Messages Yourself

The last subject I want to talk about is sending messages yourself. There are two ways
to do this:

SendMessage ()—Sends a message to the window immediately for processing. The
function returns after the WinProc () if the receiving window has processed the
message.

PostMessage ()—Sends a message to the window’s message queue and returns
immediately. Use this if you don’t care if there’s a delay until your message is
processed, or your message is a low priority.

The prototypes for both functions are similar, as shown here:

LRESULT SendMessage (HWND hWnd, // handle of destination window
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM 1lParam); // second message parameter

The return value of SendMessage () is the value returned by the WinProc () of the win-
dow you sent it to.
BOOL PostMessage (HWND hWnd, // handle of destination window

UINT Msg, // message to post

WPARAM wParam, // first message parameter
LPARAM 1Param); // second message parameter

If PostMessage () is successful, it returns a nonzero value. Notice that this is different
than SendMessage (). Why? Because SendMessage () actually calls the WinProc (),
whereas PostMessage () simply places a message in the message queue of the receiv-
ing window without any processing.

162 PART |

T Windows Programming Foundations

You might be wondering why you would ever want to send a message yourself. There
are millions of reasons—Iliterally. This is something that the designers of Windows
want you to do, and it’s how you make things happen in a windowed environment.
For example, in the next chapter, when I talk about window controls like buttons,
sending messages is the only way to talk to a control window! But if you’re like me,
you like something a little more concrete.

In all of the demos thus far, you’ve terminated them by double-clicking the close box
or pressing Alt+F4. Wouldn’t be nice if you could programmatically kill the window?

You know that either a WM_CLOSE or WM_DESTROY will do the job. If you use WM_CLOSE,
it gives your application a little warning, whereas WM_DESTROY is a little tighter. But
either way you go, you just do something like this:

SendMessage (hwnd, WM_DESTROY,0,0);

Or if you want a little delay and don’t mind if your message is queued, use
PostMessage():

PostMessage (hwnd, WM_DESTROY,0,0) ;

In both cases, the application will terminate—unless there is steering logic in the
WM_DESTROY handler, of course. But the next question is when to launch the message.
Well, that’s up to you. In a game, you might track the Esc key and exit on that. Here’s
how you would do that using the KEYDOWN () macro in the main event loop:

if (KEYDOWN (VK_ESCAPE)
SendMessage (hwnd,WM_CLOSE,0,0) ;

For an example of the preceding code in action, take a look at DEMO3_14.CPP and the
executable DEMO3_14.EXE on the CD-ROM. The program implements the logic in the
preceding code exactly. As an experiment, try changing the message to WM_DESTROY
and using PostMessage (), too.

Warning Sending messages out of the main event loop can cause unforeseen
problems. For example, in the preceding case, you're killing the window

out of the main event loop by sending a message directly to the
WinProc () with SendMessage (). However, if you normally assume
that the event handling is done in the main event loop, you might cre-
ate an out-of-execution-order bug. This means that you assume that
event B happens after event A, but in some cases event B happens
before event A. Whammo! This is a typical problem when you're send-
ing messages, so make sure to think it out. PostMessage () is usually
safer because it doesn’t leapfrog the event queue.

CHAPTER 3 163

Advanced Windows Programming m

Finally, there is also a way to send your own custom messages called WM_USER.
Simply send a message with SendMessage () or PostMessage (), using WM_USER as the
message type. You can put whatever you want in the wparam and 1param values. For
example, you might want to use the WM_USER message to create a number of virtual
messages for a memory management system that you have. Take a look:

// defines for memory manager
#define ALLOC_MEM 0
#define DEALLOC_MEM 1

// send WM_USER message, use the lparam as amount of memory
// and the wparam as the type of operation
SendMessage (hwnd, WM_USER, ALLOC_MEM, 1000);

Then, in your WinProc (), you might have

case WM_USER:

{
// what is the virtual message
switch(wparam)
{
case ALLOC_MEM: { } break;
case DEALLOC_MEM: { } break;
// .. more messages
} // end switch
} break;

As you can see, you can encode whatever you want in the wparam and 1param
and do something as stupid as I just did for this example, or something that is more
interesting!

Summary

Thank God! I never thought I would finish this chapter—did you? We covered
resources, menus, input devices, GDIs, and messaging—wow! A good Windows trea-
tise is about 3,000 pages, so you can see my dilemma. But I think we covered a lot of
good material that’s useful. After the next chapter, you’ll know everything you need to
work with Windows.

CHAPTER

Windows GDI, Controls,
and Last-Minute Gift Ideas

“Compuuuuterrr?”

—Scotty, Star Trek IV

This is the last chapter on pure Windows programming. Thank
the gods! Anyway, we’re going to cover more on using the
Graphics Device Interface. Stuff like drawing pixels, lines, and
simple shapes. Then we’ll touch on timing and finish off with
Windows’ child controls. Finally, we’ll take everything and cre-
ate our first shot at the T3D Game Console template application
that we’ll use throughout the remainder of the book as a starting
point for all demos. Here’s a list of the main topics:

e Advanced GDI programming, pens, brushes, and rendering
 Child controls

» System timing functions

¢ Sending messages

* Getting information

e The T3D Game Console

166 PART |

W Windows Programming Foundations

Advanced GDI Graphics

As I've mentioned, GDI is horribly slow when compared to DirectX. However, GDI is
good at everything and it’s the native rendering engine for Windows itself. This means
if you create any tools or standard GUI applications, knowing your way around GDI
is an asset. Moreover, knowing how to mix GDI and DirectX is a way to leverage the
power of GDI’s functionality to emulate functions you haven’t completed in your
DirectX programming. Hence, GDI has utility as a slow software emulation for
functions you might write down the road in your game design. Bottom line—you
need to know it.

What I’m going to do now is cover a few basic GDI operations. You can always learn
more by perusing the Win32 SDK, but the basic skill set you’ll learn here will more
than prepare you for figuring out any GDI function. It’s like Comdex—if you’ve seen
one, you’ve seen them all.

Under the Hood with the Graphics Device Context

In Chapter 3, “Advanced Windows Programming,” you saw the type handle to device
context, or HDC, a number of times. This of course is the data type that represents a
handle to a device context. In our case, the device context has been a graphics device
context type, but there are others like printer contexts. Anyway, you might be wonder-
ing what exactly a graphics device context is? What does it really mean? Both are
good questions.

A graphics device context is really a description of the video graphics card installed in
your system. Therefore, when you have access to a graphics device context or handle
this really means that stuffed away somewhere is an actual description of the video
card in your system and its resolution and color capabilities. This information is
needed for any graphics call you might make to GDI. In essence, the HDC handle you
supply to any GDI function is used to reference whatever important information about
your video system that a function needs to operate with. And that’s why you need a
graphics device context.

Furthermore, the graphics device context tracks software settings that you may change
throughout the life of your program. For example, GDI uses a number of graphics
objects such as pens, brushes, line styles, and more. These basic data descriptions are
used by GDI to draw any graphics primitives that you may request. Therefore, even
though the current pen color is something that you might set and isn’t intrinsic to your
video card, the graphics device context still tracks it. In this way, the graphics device
context is not only a hardware description of your video system, but a repository of
information that records your settings and stores them for you, so that the GDI calls
you make can use those settings rather than explicitly sending them along with the
call. This way you can save a lot of parameters for GDI calls. With that in mind, let’s
take a look at how to render graphics with GDIL.

CHAPTER 4 167

Windows GDI, Controls, and Last-Minute Gift Ideas m
Color, Pens, and Brushes

If you think about it, there aren’t that many types of objects that you can draw on a
computer screen. Sure, there are an unlimited number of shapes and colors you can
draw them with, but the types of objects are very limited. There are points, lines, and
polygons. Everything else is really a combination of these types of primitive objects.

The approach that GDI takes is something like that of a painter. A painter paints
pictures with colors, pens, and brushes—work with me on this <BG>. GDI works in
the same manner, with the following definitions:

* Pens—These are used to draw lines or contours. They have color, thickness,
and a line style.

* Brushes—These are used to fill in any closed objects. They have color, style,
and can even be bitmaps. Take a look at Figure 4.1 for a detailed labeling.

Figure 4.1 Brush Edges/contours use pens.
A brush, labeled in
detail. * Pattern Height
* Bitmap Applied to
* Solid object
|« width —>] interior

*Patterned and solid
have RGB color also.

Before we get into pens and brushes and actually using them, I want to take a minute
to look at the situation. GDI likes to use only one pen, and one brush at a time. Sure,
you can have many pens and brushes at your disposal, but only one of each is active
in the current graphics device context. This means that you must “select objects” into
the graphics device context to use them.

Remember, the graphics device context is not only a description of the video card and
its services, but a description of the current drawing tools. Pens and brushes are pri-
mary examples of tools that the context tracks and that you must select in and out of
the graphics context. This process is called selection. As your program runs, you’ll
select in a new pen and then select it out later, and maybe select in and out different
brushes and so on. The thing to remember is that once a drawing object is selected
into the context it’s used until it is changed.

Finally, whenever you create a new pen or brush, you must delete it when you’re
done. This is important because Windows GDI has only so many slots for pen and
brush handles and you could run out! But we’ll get to that in a minute. Okay, so let’s
cover pens first, and then brushes.

168 PART 1
T Windows Programming Foundations

Working with Pens

The handle to a pen is called HPEN. Here’s how you would create a NULL pen.

HPEN pen_1 = NULL;

pen_1 is just a handle to a pen, but pen_1 hasn’t been filled in or defined yet with the
desired information. This operation is accomplished in one of two ways:

» Using a stock object

* Creating a user-defined pen

Remember, stock objects, or stock anything, are just objects that Windows has a few
default types for to get you started. In the case of pens, there are a couple of pen types
already defined, but they are very limited. You can use the GetStockObject ()
function shown in the following line to retrieve a number of different object handles,
including pen handles, brushes, and fonts.

HGDIOBJ GetStockObject(int fnObject); // type of stock object

The function simply takes the type of stock object you desire and returns a handle to
it. The types of pens that are pre-defined stock objects are shown in Table 4.1.

ANSI_FIXED FONT
ANSI_VAR_FONT

DEFAULT_GUI_FONT

OEM_FIXED FONT

TaBLE 4.1 Stock Object Types
Value Description
BLACK_PEN Black pen.
NULL_PEN Null pen.
WHITE_PEN White pen.
BLACK_BRUSH Black brush.
DKGRAY_BRUSH Dark gray brush.
GRAY_BRUSH Gray brush.
HOLLOW_BRUSH Hollow brush (equivalent to NULL_BRUSH).
LTGRAY_BRUSH Light gray brush.
NULL_BRUSH Null brush (equivalent to HOLLOW_BRUSH).
WHITE_BRUSH White brush.

Standard Windows fixed-pitch (monospace) system font.

Standard Windows variable-pitch (proportional space) system
font.

Windows 95 only: Default font for user interface objects such
as menus and dialog boxes.

Original equipment manufacturer (OEM) dependent fixed-
pitch (monospace) font.

CHAPTER 4 169

Windows GDI, Controls, and Last-Minute Gift Ideas m

SYSTEM_FONT The system font. By default, Windows uses the system font to
draw menus, dialog box controls, and text. In Windows ver-

Value Description

sions 3.0 and later, the system font is a proportionally spaced
font; earlier versions of Windows used a monospace system
font.

SYSTEM_FIXED_FONT Fixed-pitch (monospace) system font used in Windows ver-
sions earlier than 3.0. This stock object is provided for com-
patibility with earlier versions of Windows.

As you can see from Table 4.1 there aren’t a whole lot of pens to select from (that’s a
little GDI humor—get it?). Anyway, here’s an example of how you would create a
white pen:

HPEN white_pen = NULL;
white_pen = GetStockObject(WHITE_PEN);

Of course, GDI knows nothing about white_pen because it hasn’t been selected into
the graphics device context, but we’re getting there.

A more interesting method of creating pens is to create them yourself by defining
their color, line style, and width in pixels. The function used to create a pen is called
CreatePen() and is shown here:

HPEN CreatePen(int fnPenStyle, // style of the pen

int nwidth, // width of pen in pixels
COLORREF crColor); // color of pen

The nwidth and crColor parameters are easy enough to understand, but the
fnPenStyle needs a little explanation.

In most cases you probably want to draw solid lines, but in some cases you might
need a dashed line to represent something in a charting program. You could draw a
number of lines all separated by a little space to make a dashed line, but why not let
GDI do it for you? The line style facilitates this functionality. GDI logically ANDs or
masks a line style filter as it’s rendering lines. This way, you can draw lines that are
composed of dots and dashes, or solid pixels, or whatever one-dimensional entity you
want. Table 4.2 contains the valid line styles that you can choose from.

TABLE 4.2 Line Styles for CreatePen()

Style Description
PS_NULL Pen is invisible.
PS_SOLID Pen is solid.
PS_DASH Pen is dashed.

continues

170 PART |

T Windows Programming Foundations

TaBLE 4.2 Continued

Style Description
PS_DOT Pen is dotted.
PS_DASHDOT Pen has alternating dashes and dots.

PS_DASHDOTDOT Pen has alternating dashes and double dots.

As an example, let’s create three pens, each 1 pixel wide, with solid style:

// the red pen, notice the use of the RGB macro
HPEN red_pen = CreatePen(PS_SOLID, 1, RGB(255,0,0));

// the green pen, notice the use of the RGB macro
HPEN green_pen = CreatePen(PS_SOLID, 1, RGB(0,255,0));

// the blue pen, notice the use of the RGB macro
HPEN blue pen = CreatePen(PS_SOLID, 1, RGB(0,0,255));

And let’s also make a white dashed pen:

HPEN white_dashed_pen = CreatePen(PS_DASHED, 1, RGB(255,255,255));

Simple enough? Now, that we have a little to work with, let’s take a look at how to
select pens into the graphics device context. We still don’t know how to draw
anything, but now is a good time to see the concept.

To select any GDI object into the graphics device context use the SelectObject ()
function shown here:

HGDIOBJ SelectObject(HDC hdc, // handle of device context
HGDIOBJ hgdiobj); // handle of object

SelectObject () takes the handle to the graphics context along with the object to be
selected. Notice that SelectObject () is polymorphic, meaning that it can take many
different handle types. The reason for this is that all handles to graphics objects are
also subclasses of the data type HGDIOBJs (handles to GDI objects), so everything
works out. Also, the function returns the current handle of the object you are de-
selecting from the context. In other words, if you select a new pen into the context,
obviously you must select the old one out. Therefore, you can save the old handle and
restore it later if you wish. Here’s an example of selecting a pen into the context and
saving the old one:

HDC hdc; // the graphics context, assume valid

/] create the blue
HPEN blue_pen = CreatePen(PS_SOLID, 1, RGB(0,0,255));

HPEN old_pen = NULL; // used to store old pen

CHAPTER 4 7

Windows GDI, Controls, and Last-Minute Gift Ideas m

/| select the blue pen in and save the old pen
old_pen = SelectObject(hdc, blue_pen);

// do drawing..

// restore the old pen
SelectObject(hdc, old_pen);

And then finally, when you are done with pens that you have created either with
GetStockObject() or CreatePen(), you must destroy them. This is accomplished
with DeleteObject (), which, similar to SelectObject(), is polymorphic and can
delete many object types. Here’s its prototype:

BOOL DeleteObject(HGDIOBJ hObject); // handle to graphic object

Warning Be careful when you destroy pens. If you delete an object that is cur-
rently selected or try to select an object that is currently deleted chances

are you will cause an error and possibly a GP Fault.

| haven’t been doing too much error checking, but obviously this is an
a issue. In a real program, you should always check the return type of your
function calls to see if they are successful; otherwise, there could be
trouble.

The next question is when to actually call DeleteObject () on graphics objects.
Typically, you will do this at the end of the program. However, if you create hundreds
of objects, use them, and won’t use them for the remainder of the program, you
should delete them then and there. This is because Windows GDI only has limited
resources. As an example, here’s how to release and destroy the group of pens we cre-
ated in the earlier example:

DeleteObject(red_pen);

DeleteObject(green_pen);

DeleteObject(blue_pen);
DeleteObject(white_dashed_pen);

Try not to delete objects you have already deleted. It can cause unpre-
dictable results.

172 PART |

W Windows Programming Foundations

Painting with Brushes

Let’s talk more about brushes. Brushes are similar to pens in most ways except how
they look. Brushes are used to fill in graphic objects, whereas pens are used to outline
objects or draw simple lines. However, all the same principles are in flux. The handle
to a brush is called an HBRUSH. And to define a blank brush object you would do
something like:

HBRUSH brush_1 = NULL;

To actually make the brush look like something you can either use a stock brush type
from Table 4.1 via GetStockObject () or define one yourself. For example, here’s
how to create a light gray stock brush:

brush_1 = GetStockObject(LTGRAY_BRUSH) ;

Bam, baby! Too easy, huh? To create more interesting brushes you can select the fill
pattern type and color just as you can for pens. Unfortunately GDI broke brushes up
into two classes: solid and hatched. 1 think this is stupid—GDI should allow all
brushes to be hatched and then simply have a solid type, but whatever! The function
to create a solid fill brush is called CreateSolidBrush() and is shown here:

HBRUSH CreateSolidBrush(COLORREF crColor); // brush color
To create a green solid brush all you have to do is this:
HBRUSH green_brush = CreateSolidBrush(RGB(0,255,0));

To select it into the graphics device context, do this:

HBRUSH old_brush = NULL;
0ld_brush = SelectObject(hdc, green_brush);
// draw something with brush

// restore old brush
SelectObject(hdc, old_brush);

At the end of your program you would delete the brush object like this:
DeleteObject(green_brush);

Starting to all make sense? In a nutshell, you create an object, select it, use it, delete
it. Okay, let’s next see how to create patterned or hatched brushes.
To create a hatch brush, use the CreateHatchBrush() function shown here:

HBRUSH CreateHatchBrush(int fnStyle, /] hatch style
COLORREF clrref); // color value

CHAPTER 4 173

Windows GDI, Controls, and Last-Minute Gift Ideas m

The style of the brush can be one of the values listed in Table 4.3.

TaBLE 4.3 Style Values for CreateHatchBrush()

Value Description

HS_BDIAGONAL 5-degree downward left-to-right hatch
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS 45-degree crosshatch

HS_FDIAGONAL 45-degree upward left-to-right hatch
HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch

As a final example of brushes, let’s create a cross-hatched red brush:
HBRUSH red_hbrush = CreateHatchBrush(HS_CROSS, RGB(255,0,0));
Select it into the device context:

HBRUSH old_brush = SelectObject(hdc, red_hbrush);

Finally, restore the old brush and delete the red brush we created:

SelectObject(hdc, old_brush);
DeleteObject(red_hbrush);

Of course, we still aren’t doing anything with the pens or brushes, but we will <BG>.

Points, Lines, Polygons, and Circles

Now that you have the concept of pens and brushes under your belt, it’s time to see
how these entities are used in real programs to draw objects. Let’s start with the sim-
plest of all graphic objects—the point.

Straight to the Point

Drawing points with GDI is trivial and doesn’t require a pen or a brush. That’s
because a point is a single pixel and selecting a pen or brush wouldn’t have much of
an effect. To draw a point within the client area of your window, you need the HDC to
your window along with the coordinates and the color you wish to draw it with.
However, you don’t need to select the color or anything like that—you simply make a
function call to SetPixel() with all this information. Take a look:
COLORREF SetPixel(HDC hdc, // the graphics context

int x, /] x-coordinate

int vy, // y-coordinate
COLORREF crColor); // color of pixel

174 PART |

T Windows Programming Foundations

The function takes the HDC to the window along with the (x,y) coordinate and the
color. The function then plots the pixel and returns the color actually plotted. You see,
if you are in a 256 color mode and request an RGB color that doesn’t exist, GDI will
plot a closest match to the color for you, and either way return the RGB color that
was actually plotted. If you’re a little uneasy about the exact meaning of the (x,y)
coordinates that you send the function, take a look at Figure 4.2. The figure depicts a
window and the coordinate system that Windows GDI uses, which is an inverted
Quadrant I Cartesian system—meaning that the x increases from right to left and y

increases from top to bottom. @
Figure 4.2 Windows coordinates
Windows coordinates 0,0) Increasing x X
in relation to standard AHY ~
Cartesian coordinates. I Guesami|
>
2
—x (0, 0) X 3 Window client
< > o coords
o
£
Screen coords
1]} [\
\ A Wy
Cartesian Coordinate System Inverted y axis Ql

Technically, GDI has other mapping modes, but this is the default and the one to use
for all GDI and DirectX. Notice that the origin (0,0) is in the upper-left corner of the
window’s client area. It’s possible to get an HDC for the entire window with
GetWindowDC () rather than GetDC (). The difference is that if you use GetWindowDC ()
to retrieve an HDC, the graphics device context is for the whole window. With an
HDC retrieved with GetDC (), you can draw over everything including the window
controls, not just the client area. Here’s an example of drawing 1000 randomly
positioned and colored pixels on a window that we know is 400x400:

HWND hwnd; // assume this is valid
HDC hdc; // used to access window

// get the dc for the window
hdc = GetDC(hwnd);

for (int index=0; index<1000; index++)
{
// get random position
int x = rand()%400;
int y = rand()%400;

COLORREF color = RGB(rand()%255,rand()%255,rand()%255));
SetPixel(hdc, x,y, color);

Errata

Errata
"right to left" should "left to right"

CHAPTER 4 175

Windows GDI, Controls, and Last-Minute Gift Ideas m

} // end for index

As an example of plotting pixels, take a look at DEMO4_1.CPP and DEMO4_1.EXE. They
illustrate the preceding code, but in a continuous loop. Figure 4.3 is a screen shot of
the program running.

Figu]“e 43 B pixel Plotting Pemo
Demo of pixel-
plotting program
DEMO4_1.EXE.

Getting a Line on Things

Now let’s draw the next most primitive complex—the line. To draw a line, we need to
create the pen, and then make a call to the line-drawing function. Under GDI, lines are
little more complex than that. GDI likes to draw lines in a three-step process:

1. Create a pen and select it into the graphics device contexts. All lines will be
drawn with this pen.

2. Set the initial position of the line.

3. Draw a line from the initial position to the destination position (the destination
position becomes the initial position of the next segment).

4. Go to step 3 and draw more segments if desired.

In essence, GDI has a little invisible cursor that tracks the current starting position of
a line to be drawn. This position must be set by you if you want to draw a line, but
once it’s set, GDI will update it with every segment you draw, facilitating drawing
complex objects like polygons. The function to set the initial position of the line
cursor is called MoveToEx():
BOOL MoveToEx(HDC hdc, // handle of device context

int X, // x-coordinate of new current position

inty, // y-coordinate of new current position
LPPOINT 1pPoint); // address of old current position

Suppose you wanted to draw a line from (10,10) to (50,60). You would first make a
call to MoveToEx () like this:

// set current position

176 PART |

T Windows Programming Foundations

MoveToEx (hdc, 10,10,NULL);

Notice the NULL for the last position parameter. If you wanted to save the last position,
do this:

POINT last_pos; // used to store last position

// set current position, but save last
MoveToEx(hdc, 10,10, &last_pos);

By the way, here’s a POINT structure again just in case you forgot:

typedef struct tagPOINT
{ /1 pt
LONG x;
LONG vy;
} POINT;

Okay, once you have set the initial position of the line, you can draw a segment with a
call to LineTo():

BOOL LineTo(HDC hdc, // device context handle
int xEnd, // destination x-coordinate
int yEnd);// destination y-coordinate

As a complete example of drawing a line, here’s how you would draw a solid green
line from (10,10) to (50,60):

HWND hwnd; // assume this is valid

// get the dc first
HDC hdc = GetDc (hwnd);

// create the green pen
HPEN green_pen = CreatePen(PS_SOLID, 1, RGB(0,255,0));

// select the pen into the context
HPEN old _pen = SelectObject(hdc, green_pen);

// draw the line
MoveToEx (hdc, 10,10, NULL);
LineTo(hdc,50,60);

// restore old pen
SelectObject(hdc, old_pen);

// delete the green pen
DeleteObject(green_pen);

// release the dc
ReleaseDC (hwnd, hdc);

CHAPTER 4 177

Windows GDI, Controls, and Last-Minute Gift Ideas m

If you wanted to draw a triangle with the vertices (20,10), (30,20), (10,20), here’s the
line drawing code:

// start the triangle
MoveToEx (hdc, 20,10, NULL);

// draw first leg
LineTo(hdc,30,20);

// draw second leg
LineTo(hdc,10,20);

// close it up
LineTo(hdc,20,10);

You can see why using the MoveToEx ()—LineTo() technique is useful.

As a working example of drawing lines, take a look at DEMO4_2.CPP. It draws
randomly positioned lines at high speed. Its output is shown in Figure 4.4.

Figure 44 Egine Prawing Dem
Line drawing program
DEMO4_2.EXE

Getting Rectangular

The next step up in the food chain of GDI is rectangles. Rectangles are drawn with
both a pen and a brush (if the interior is filled). Therefore, rectangles are the most
complex GDI primitives thus far. To draw a rectangle, use the Rectangle() function
that follows:

BOOL Rectangle(HDC hdc, // handle of device context

int nLeftRect, // x-coord. of bounding

// rectangle's upper-left corner
int nTopRect, // y-coord. of bounding

// rectangle's upper-left corner
int nRightRect, // x-coord. of bounding

// rectangle's lower-right corner
int nBottomRect); // y-coord. of bounding
// rectangle's lower-right corner

178 PART |

W Windows Programming Foundations

Rectangle() draws a rectangle with the current pen and brush as shown in Figure 4.5.

Figure 4.5 (X4, Y1)
Using the
DrawRectangle()
function.
Filled with
1 Pixel = 4™~ current BRUSH
thick selected into
device context.

A (X2, Ya)
Border drawn with current PEN selected into device context
Xj: nLeftRect
Xz: nRightRect

Y+1: nTopRect
Y2: nBottomRect

| want to bring a very important detail to your attention. The coordi-
a nates you send Rectangle() are for the bounding box of the rectan-
gle. This means that if the line style is NULL and you have a solid
rectangle, it will be 1 pixel smaller on all four sides.

There are also two other more specific functions to draw rectangles FillRect () and
FrameRect (), shown here:
int FillRect(HDC hDC, // handle to device context

CONST RECT *1prc, // pointer to structure with rectangle
HBRUSH hbr); // handle to brush

int FrameRect(HDC hDC,// handle to device context
CONST RECT *1prc, // pointer to rectangle coordinates
HBRUSH hbr); // handle to brush

FillRect() draws a filled rectangle without a border pen and includes the upper-left
corner, but not the lower-right corner. Therefore, if you want a rectangle to fill in
(10,10) to (20,20) you must send (10,10) to (21,21) in the RECT structure.

FrameRect () on the other hand, just draws a hollow rectangle with a border.
Surprisingly, FrameRect () uses a brush rather than a pen. Any ideas? In any case,
here’s an example of drawing a solid filled rectangle with the Rectangle () function:
// create the pen and brush

HPEN blue_pen = CreatePen(PS_SOLID, 1, RGB(0,0,255));
HBRUSH red_brush = CreateSolidBrush(RGB(255,0,0));

CHAPTER 4 179

Windows GDI, Controls, and Last-Minute Gift Ideas m

// select the pen and brush into context
SelectObject(blue_pen);
SelectObject(red_brush);

// draw the rectangle
Rectangle(hdc, 10,10, 20,20);

// do house keeping..

Here’s a similar example using the FillRect () function instead:
// define rectangle
RECT rect {10,10,20,20};

// draw rectangle

FillRect(hdc, &rect, CreateSolidBrush(RGB(255,0,0));

Notice the slickness here! I defined the RECT on-the-fly as well as the brush. The
brush doesn’t need to be deleted because it was never selected into context; hence,
it’s transient.

I'm being fairly loose about the HDC and other details in these exam-
ples, so | hope you're awake! Obviously, for any of these examples to
work you must have a window, an HDC, and perform the appropriate
prolog and epilog code to each segment. As the book

continues, | will assume that you know this already.

As an example of using the Rectangle() function, take a look at DEM0O4_3.CPP; it
draws a slew of random rectangles in different sizes and colors on the window
surface. However, as a change, I retrieved the handle to the entire window rather than
just the client area, so the window looks like it’s getting destroyed—cool, huh? Take a
look at Figure 4.6 to see the output the program creates.

Figure 46 H Rectangle Prawing Pemo

Rectangle program
DEMO4_3.EXE.

180 PART 1
W Windows Programming Foundations

Round and Round She Goes—Circles

Back in the ’80s if you could make your computer draw a circle, you were a
mastermind. There were a number of ways to do it—with the explicit formula:

(x-x0)2 + (y-y0)2 = r2

Or maybe with the sine and cosine functions:

x=r*cos(angle)
y=r*sin(angle)

Or maybe with lookup tables! The point is that circles aren’t the fastest things in the
world to draw. This dilemma is no longer important with S00MHz Pentium II’s, but it
used to be. In any case, GDI has a circle drawing function—well, sort of... GDI likes
ellipses rather than circles.

If you recall from geometry, an ellipse is like a squished circle on either axis. An
ellipse has both a major axis and a minor axis, as shown in the figure. The equation
of an ellipse centered at (x0,y0) is shown in Figure 4.7.

Flgl.ll‘e 4? Circle Ellipse
The mathematics of K Minor K
circles and ellipses. Il Ql 1l axis | al

/\ﬁ(v A’ \Y‘ y)
_ (X0, Yo) > < o, Yo
< o X -a a +X
; —1>
KyRadlus formula K@ins (X —X0)? + (y — yo)?=1

X — X0)2 + (y — yo)2=R? 2 2
n VR G A A i -b v @ o

Yoy Yoy

Cartesian Coordinate System Cartesian Coordinate System

You would think that GDI would use some of the same concepts—the major axis and
minor axis to define an ellipse—but GDI took a slightly different approach to defin-
ing an ellipse. With GDI, you simply give a bounding rectangle and GDI draws the
ellipse that’s bounded by it. In essence, you’re defining the origin of the ellipse while
at the same time the major and minor axes—whatever!

The function that draws an ellipse is called E11lipse () and it draws with the current
pen and brush. Here’s the prototype:

BOOL Ellipse(HDC hdc,// handle to device context
int nLeftRect, /] x-coord. of bounding
// rectangle's upper-left corner
int nTopRect, // y-coord. of bounding
/] rectangle's upper-left corner
int nRightRect, // x-coord. of bounding
// rectangle's lower-right corner
int nBottomRect); // y-coord. bounding
// rectangle's f lower-right corner

CHAPTER 4 181

Windows GDI, Controls, and Last-Minute Gift Ideas m

So to draw a circle you would make sure that the bounding rectangle was square. For
example, to draw a circle that had center (20,20) with a radius of 10, you would do
this:

Ellipse(hdc,10,10,30,30);

Get it? And if you wanted to draw a real-life ellipse with major axis 100, minor axis
50, with an origin of (300,200), you would do this:

Ellipse(hdc,250,175,350,225) ;

For a working example of drawing ellipses, take a look at DEMO4_4.CPP on the CD
and the associated executable. The program draws a moving ellipse in a simple
animation loop of erase, move, draw. This type of animation loop is very similar to
the technique we’ll use later called double buffering or page flipping, but with those
techniques we won’t be able to see the update as shown in the demo, and hence there
won’t be a flicker! For fun, try messing with the demo and changing things around.
See if you can figure out how to add more ellipses.

Polygon, Polygon, Wherefore Art Thou, Polygon?

The last little primitive I want to show you is the polygon primitive. Its purpose is
to draw open or closed polygonal objects very quickly. The function that draws a
polygon is called Polygon() and is shown here:

BOOL Polygon(HDC hdc, // handle to device context
CONST POINT *1pPoints, // pointer to polygon's vertices
int nCount); // count of polygon's vertices

You simply send Polygon() a list of POINTs along with the number of them and it will
draw a closed polygon with the current pen and brush. Take a look at Figure 4.8 to see
this graphically.

Current Brush

Figure 4.8

) P, Point List
Using the Point Points[7] =
Polygon() Po {
function. P2 Ps Po, P4, P2, P3, P4, Ps, Ps
/ %
Each vertex '«€— Current Pen
is a point
/lcode
Point P P, polygon (hdc, points, 7);
{ 5
Long x;

Longy; Pe

}

182 PART |

T Windows Programming Foundations

Here’s an example:

// create the polygon shown in the figure
POINT poly[7] = {p0x, p@y, pix, ply, p2x, p2y,
p3x, p3y, p4x, pay, pb5x, pdy, p6x, p6y, };

// assume hdc is valid, and pen and brush are selected into
// graphics device context
Polygon(hdc, poly,7);

That was easy! Of course, if you send points that make a degenerate polygon, or a
polygon that closes on itself, GDI will do its best to draw it, but no promises!

As an example of drawing filled polygons, DEM04_5.CPP draws a collection of random
3-10 point polygons all over the screen with a little delay between each, so you can
see the weird results that occur with degenerate polygon vertex lists. Figure 4.9 shows
the output of the program in action. Notice that because the points are random, the
polygons are almost always degenerate due to overlapping geometry. Can you find a
way to make sure that all the points exist within a convex hull?

Figure 4_9 I Polygon Prawing Demo
Output of polygon \
program DEMO4_5.EXE.

More on Text and Fonts

Working with fonts is an extremely complex subject and not really something that I
want to get into. If you want an in-depth treatise on this subject, your best bet is to
pick up Petzold’s Programming Windows 95. For products such as games under
DirectX, you will in most cases render text yourself with your own font engine. The
only time you might want to use GDI to draw text is in a GUI situation or a quick
solution to drawing scores or other simple information during development of your
game. However, in the end you must create your own font system to get any kind of
speed.

To be somewhat complete I want to at least show you how to change fonts for the
DrawText () and TextOut () functions. This is done by selecting a new font object into
the current graphics device context just as you would a new pen or brush. Table 4.1
shows a number of font constants, such as SYSTEM_FIXED_FONT, which is a

CHAPTER 4 183

Windows GDI, Controls, and Last-Minute Gift Ideas m

monospaced font. Monospaced means that each character is always the same width.
Proportional fonts have different spacing. Anyway, to select a new font into the
graphics context, you would do this:

SelectObject(hdc, GetStockObject(SYSTEM_FIXED FONT));

Whatever GDI text you rendered with TextOut () or DrawText () is drawn in the new
font. If you want a little more power over the selection of fonts, you can use one of
the built-in TrueType fonts listed in Table 4.4.

TaBLE 4.4 TrueType Font Typeface Names

Font Typeface String Example
Courier New Hello World
Courier New Bold Hello World
Courier New Italic Hello World
Courier New Bold Italic Hello World
Times New Roman Hello World
Times New Roman Bold Hello World
Times New Roman Italic Hello World
Times New Roman Bold Italic Hello World
Arial Hello World
Arial Bold Hello World
Arial Italic Hello World
Arial Bold Italic Hello World
Symbol HeAlo QopAd

To create one of these fonts, you can use the CreateFont () function:

HFONT CreateFont(int nHeight, // logical height of font

int nWidth, // logical average character width
int nEscapement, // angle of escapement

int nOrientation, // base-line orientation angle

int fnWeight, // font weight

DWORD fdwItalic, // italic attribute flag

DWORD fdwUnderline, // underline attribute flag

DWORD fdwStrikeOut, // strikeout attribute flag

DWORD fdwCharSet, // character set identifier

DWORD fdwOutputPrecision,// output precision
DWORD fdwClipPrecision, // clipping precision

DWORD fdwQuality, // output quality
DWORD fdwPitchAndFamily, // pitch and family
LPCTSTR lpszFace); // pointer to typeface name string

// as shown in table 4.4

184 PART |

T Windows Programming Foundations

The explanation of the function is far too long, so take a look at the Win32 SDK Help
for details. Basically, you fill in all those ugly parameters and the results are a handle
to a rasterized version of the font you requested. Then you can select the font into
your device context and you're ready to rock.

Timing Is Everything
The next topic we’re going to cover is timing. Although it may seem unimportant,

timing is crucial in a video game. Without timing and proper delays a game can run
too fast or too slow and the illusion of animation is completely lost.

If you recall, back in Chapter 1, “Journey into the Abyss,” I mentioned that most
games run about 30 fps (frames per second), but I never alluded to how to keep this
timing constant. In this section you’ll learn some techniques to track time and even
send time-based messages. Later in the book you’ll see how these ideas are used over
and over to keep frame rate solid and you’ll see how to augment parametric animation
and physics on slow systems that can’t sustain high frame rates. First, though, take a
look at the WM_TIMER message.

The wm_TIMER Message

The PC has a built-in timer that can be very accurate (in the microsecond range), but
because we’re programming in Windows, it’s not a good idea to muck with the timer
ourselves. Instead, we’ll use the timing functions built into Windows (which are built
upon the actual hardware timer). The cool thing about this approach is that Windows
virtualizes the timer into an almost infinite number of virtual timers. Thus, from your
point of view, you can start and receive many messages from a number of timers, even
though there’s only one physical timer on most PCs.

Figure 4.10 Timers Updated by Windows

Message flow for the

Timer 1
WM_TIMER message. D: 1 Message Queue

Delay: 1000 WM_Timer Event Handler
ID: 1 WinProc()

Timer 2) {

D 2 :g'_\/lz_T'mEF WM_Timer:

Delay: 5000 : {
WM_Timer | =
ID: 12 }

Timer 3 }

ID: 12 .

Delay: 3000 -
WM_Paint

CHAPTER 4 185

Windows GDI, Controls, and Last-Minute Gift Ideas m

When you create a timer you set the ID of the timer along with the delay. The timer
will begin to send messages to your WinProc () at the specified interval. Take a look at
Figure 4.10 to see the data flow of some timers. Each timer sends WM_TIMER messages
when its elapsed time has passed. You tell one timer from another when processing
the WM_TIMER message with the timer ID (which you set when you create the timer).
With that in mind, let’s take a look at the function to create a timer—SetTimer ():
UNIT SetTimer (HWND hWnd, // handle to parent window

UINT nIDevent, // timer id

UINT nElapse, // time delay in milliseconds
TIMERPROC 1lpTimerFunc); // timer callback

To create a timer you need:

¢ The window handle
¢ ID of choice

* The time delay in milliseconds

With these three things, you're in business. However, the last parameter takes a little
explanation. 1pTimerFunc () is a callback function just like WinProc () is, hence, you
can create a timer that calls a function at some specified interval instead of processing
it in the WinProc () via WM_TIMER messages. It’s up to you, but I usually use the
WM_TIMER messages and leave the TIMERPROC set to NULL.

You can create as many timers as you wish, but remember that they all take up
resources. If the function fails, it will return 0. Otherwise, SetTimer () returns the
timer ID you sent to create the timer with.

The next question is how to tell one timer from another. The answer is that you
interrogate the wparam when the WM_TIMER message is sent; it contains the timer ID
that you originally created the timer with. As an example, here’s how you would
create two timers, one with a 1.0 second delay and the other with a 3.0-second delay:

#define TIMER_ID_1SEC 1
#define TIMER_ID_3SEC 2

/1 maybe do this in WM_CREATE
SetTimer (hwnd, TIMER ID 1SEC, 1000,NULL);
SetTimer (hwnd, TIMER ID 3SEC, 3000,NULL);

Notice that the delays are in milliseconds. In other words, 1000 milliseconds equals
1.0 seconds and so forth. Moving on, here’s the code you would need to add to your
WinProc () to process the timer messages:

case WM_TIMER:
{

// what timer fired?
switch(wparam)

185 PART |

m Windows Programming Foundations

{
case TIMER_ID_1SEC:

{

// do processing here
} break;

case TIMER_ID 3SEC:
{

// do processing here
} break;

default:break;
} // end switch

// let windows know we handled the message
return(0);

} break;

Finally, when you’re done with a timer, you can kill it with KillTimer():
BOOL KillTimer (HWND hWnd, // handle of window
UINT uIDEvent); // timer id
Continuing with the example, you might want to kill all the timers in the WM_DESTROY
message, as shown here:
case WM_DESTROY:
// kill timers

KillTimer (hwnd, TIMER_ID_1SEC);
KillTimer (hwnd, TIMER_ID 3SEC);

// terminate application or whatever..
PostQuitMessage(0);

} break;

Even though timers may seem free and abundant, PCs aren’t Star Trek
computers. Timers use resources and should be used sparingly. Make

sure to kill any timer that you don’t need anymore during

run-time.

As a working example of using timers, take a look at DEMO4_6.CPP on the CD. It
creates three timers with different times and then prints out when each timer changes.
Finally, although timers take time delays in milliseconds, they are hardly millisecond-
accurate. Don’t expect your timers to be more accurate than 10-20 milliseconds. If

CHAPTER 4 187

Windows GDI, Controls, and Last-Minute Gift Ideas m

you need more accuracy, there are methods, such as using the Win32 High
Performance timers or using the Pentium Real-Time hardware counters based on the
RDTSC assembly language instruction.

Low-Level Timing

Although creating timers is at least one way to keep track of time, the technique
suffers from a few faults: First, timers send messages, and second, timers aren’t that
accurate. Finally, in most game loops you want to force the main body of the code to
run at a specific frame rate and no higher; this is achieved by locking the frame rate
via timing code. Timers aren’t very good at this. What’s really needed is a way to
query a system clock of sorts and then perform differential tests to see how much time
has elapsed. The Win32 API has such a function, and it’s called GetTickCount():

DWORD GetTickCount(void);

GetTickCount () returns the number of milliseconds since Windows was started. That
may not seem useful as an absolute reference, because you have none, but it’s perfect
as a differential reference. All you have to do at the top of any code block that you
want to time is query the current tick count and then at the end of the loop query
again, and take the difference. Whammo, you have the time difference in millisec-
onds. For example, here’s how you would make sure that a chunk of code runs at
exactly 30 fps or with a delay of 1/30fps = 33.33 milliseconds:

// get the starting time
DWORD start_time = GetTickCount();

// do work, draw frame, whatever

// now wait until 33 milliseconds has elapsed
while ((GetTickCount() - start_time) < 33);

That’s what I’m talking about, baby! Of course, sitting in a busy loop is a waste of
time performing the while() logic, but you can always branch off and test every now
and then, so you don’t waste cycles. The point is that with this technique you can
force time constraints on chunks of code.

Obviously, if your PC can’t run at 30 fps, the loop will take longer.
a However, if during a free run of your code the loop ran from 30-100 fps,

the preceding code would lock it to 30 fps always. That's the point!

188 PART |

T Windows Programming Foundations

As an example, take a look at DEMO4_7.CPP on the CD. It basically locks the frame
rate to 30 fps and updates a little screen saver with lines on each frame. Following is
the code from the WinMain () that does the work:

// get the dc and hold onto it
hdc = GetDC(hwnd);

// seed random number generator
srand(GetTickCount());

// endpoints of line
int x1 = rand()%WINDOW_WIDTH;

int y1 = rand()SWINDOW_HEIGHT;
int x2 = rand()%WINDOW_WIDTH;
int y2 = rand()%WINDOW_HEIGHT;

// intial velocity of each end

int x1v = -4 + rand()%8;
int ylv = -4 + rand()%8;
int x2v = -4 + rand()%8;
int y2v = -4 + rand()%8;

// enter main event loop, but this time we use PeekMessage()
// instead of GetMessage() to retrieve messages
while (TRUE)

{

// get time reference

DWORD start_time = GetTickCount();

// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
// test if this is a quit
if (msg.message == WM_QUIT)
break;

/| translate any accelerator keys
TranslateMessage (&msg) ;

// send the message to the window proc
DispatchMessage (&msg) ;
} // end if

// is it time to change color
if (++color_change_count >= 100)
{
/] reset counter
color_change_count = 0;

// create a random colored pen
if (pen)
DeleteObject(pen);

CHAPTER 4 189

Windows GDI, Controls, and Last-Minute Gift Ideas m
// create a new pen

pen = CreatePen(PS_SOLID,1,
RGB (rand ()%256, rand ()%256, rand ()%256)) ;

// select the pen into context
SelectObject(hdc,pen);

} // end if
// move endpoints of line
X1+=x1v;
yl+=yiv;

X2+=X2V;
y2+=y2v;

// test if either end hit window edge
if (x1 <@ |, x1 >= WINDOW_WIDTH)

{
// invert velocity
x1v=-x1v;

// bum endpoint back
x1+=x1v;
} // end if

if (y1 <@ !! y1 >= WINDOW_HEIGHT)
{
// invert velocity
ylv=-ylv;

// bum endpoint back
yl1+=yiv;
} // end if

// now test second endpoint
if (x2 < @ |! x2 >= WINDOW_WIDTH)

{
// invert velocity
X2V=-X2V;

// bum endpoint back
X2+=X2V;
} // end if

if (y2 < @ |} y2 >= WINDOW_HEIGHT)
{
// invert velocity
y2v=-y2v;

190 PART |

W Windows Programming Foundations

// bum endpoint back
y2+=y2v;
} // end if

// move to end one of line
MoveToEx (hdc, x1,y1, NULL);

// draw the line to other end
LineTo(hdc,x2,y2);

// lock time to 30 fps which is approx. 33 milliseconds
while((GetTickCount() - start_time) < 33);

// main game processing goes here
if (KEYDOWN(VK_ESCAPE))
SendMessage (hwnd, WM_CLOSE, 0,0);

} // end while

// release the device context
ReleaseDC (hwnd,hdc) ;

// return to Windows like this
return(msg.wParam);

} // end WinMain

Other than the timing aspect of the code, there is some other logic that you should
take some time to review: the collision logic. You’ll notice that there are two ends of
the line segment, each with a position and velocity. As the segment moves, the code
tests whether it has collided with the edge of the window client area. If so, the
segment is bounced off the edge, creating the illusion of a bouncing line.

M\S// If you just want to delay your code, use a Win32 API function called
- Sleep(). Just send it the time delay in milliseconds you wish to delay
W[and the function will. For example, to delay 1.0 second, you would say
Sleep(1000).

Playing with Controls
Normally I wouldn’t cover Window controls in a game programming book, but
because you might need to know how to make them for a tool and I got a lot of email
begging me to add them to my new book, here ya go! But just a few!

CHAPTER 4 191

Windows GDI, Controls, and Last-Minute Gift Ideas m

Window child controls are really little windows themselves. Here’s a short list of
some of the more popular child controls:

 Static text boxes
* Edit boxes

e Buttons

e List boxes

* Scroll bars
In addition, there are a number of sub-button types, such as

¢ Push buttons
¢ Check boxes
¢ Radio buttons

There are even further sub-types of each. Nevertheless, most complex window
controls that you see are conglomerations of these basic types. For example, a file
directory control is just a few list boxes, some text edit boxes, and some buttons. If
you can work with the basic controls listed here, you can handle anything. Once you
have mastered one, they’re all roughly the same, give or take a few details, so I'm just
going to show you how to work with a few of the child controls, including buttons.

Buttons

There are a number of button types that Windows supports. If you’re reading this
book, hopefully you have used Windows and are at least familiar with push buttons,
check boxes, and radio buttons, so I’'m not go into the details of each. Rather, I'm
going to show you how to create any type of button you want and respond to
messages sent from it. The rest is up to you. Let’s begin by taking a look at

Table 4.5, which lists all the available button types.

TaBLE 4.5 Button Styles
Value Description

BS_PUSHBUTTON Creates a push button that posts a WM_COMMAND message to the
owner window when the user selects the button.

BS_RADIOBUTTON Creates a small circle with text. By default, the text is displayed to
the right of the circle.

BS_CHECKBOX Creates a small empty check box with text. By default, the text is
displayed to the right of the check box.

BS_3STATE Creates a button that is the same as a check box, except that the
box can be grayed as well as checked or unchecked.

continues

192 PART |

T Windows Programming Foundations

TaBLE 4.5 Continued

Value

Description

BS_AUTO3STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_OWNERDRAW

Creates a button that is the same as a three-state check box, except
that the box changes its state when the user selects it. The state
cycles through checked, grayed, and unchecked.

Creates a button that is the same as a check box, except that the
check state automatically toggles between checked and unchecked
each time the user selects the check box.

Creates a button that is the same as a radio button, except that
when the user selects it, Windows automatically sets the button’s
check state to checked and automatically sets the check state for all
other buttons in the same group to unchecked.

Creates an owner-drawn button. The owner window receives a
WM_MEASUREITEM message when the button is created and a
WM_DRAWITEM message when a visual aspect of the button has
changed.

To create a child control button you simply create a window using "button" as the
class string along with one of the button styles in Table 4.5. Then, when the button is
manipulated, it sends WM_COMMAND messages to your window, as shown in Figure 4.11.
You process the wparam and 1param as usual to see what child control sent the mes-
sage and what the message was.

Figure 4.11 Window

Child window
message passing. D=3

ID=6 | Button2! wm - command

child window controls

+ LOword(wparam) = ID
Hlword(wparam) = notification code

Lparam = Button window handle

y Message Queue

wm_command

Event handler
v WinProc .

case wm_command o

CHAPTER 4 193

Windows GDI, Controls, and Last-Minute Gift Ideas m

Let’s begin by seeing the exact parameters you’ll need to send to CreateWindowEx ()
to create a child button control. First, you need to set the class name to "button".
Then you need to set the style flags to WS_CHILD | WS_VISIBLE logically ORed with
a button style from Table 4.5. Then in the place where you would normally put the
handle to the menu or HMENU, you send the ID you want to refer to the button with
(of course you must cast it to a HMENU). That’s about it.

As an example, here’s how you would create a push button with ID equal to 100
and the text “Push Me” on it:

CreateWindowEx (NULL, // extended style
"button", /] class
"Push Me", // text on button
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

10,10, // initial x,y

100,24, // initial width, height
main_window_handle, // handle to parent

(HMENU) (100), // id of button, notice cast to HMENU
hinstance, // instance of this application
NULL) ; // extra creation parms

Simple, isn’t it? When you press the button, a WM_COMMAND message is sent to the
WinProc () of the parent window with the following paramaterization:

msg: WM_COMMAND

LOWORD (wparam): Child Window id
HIWORD (wparam): Notification Code
lparam: Child Window Handle

Seem reasonable? The only mystery is the notification code. Notification codes
describe what happened to the button control and begin with BN_. Table 4.6 lists all
the possible notification codes and values.

TABLE 4.6 Notification Codes for Buttons

Code Value
BN_CLICKED 0
BN_PAINT 1
BN_HLITE 2
BN_UNHILITE 3
BN_DISABLE 4
BN_DOUBLECLICKED 5

194 PART 1

— Windows Programming Foundations

The most important of the notification codes are of course BN_CLICKED and
BN_DOUBLECLICKED. To process a button child control like a simple push button, you
might do something like this in the WM_COMMAND event handler:

// assume a child button was created with id 100
case WM_COMMAND:

{

// test for id

if (LOWORD(wparam) == 100)

{
// do whatever
} // end if

// process all other child controls, menus, etc.

// we handled it
return(0);

} break;

As an example, take a look at DEMO4_8.CPP; it creates a list of all button types and
then displays all the messages along with the wparam and 1param for each message as
you click and manipulate the buttons. Figure 4.12 shows the program in action. By
experimenting with it, you will get a much better idea of how button child controls
work.

Figure 4' 12 I Button Pemo
The DEMO4_8.EXE

child control program.

If you play with DEM0O4_8.EXE, you’ll quickly realize that although your WinProc() is
sending messages indicating what the user (you) is doing to the controls, you don’t
know how to change or manipulate the controls programmatically. In essence, many
of the controls don’t seem to do anything when you click them. This is important, so
let’s briefly cover it.

CHAPTER 4 195
Windows GDI, Controls, and Last-Minute Gift Ideas m

Sending Messages to Child Controls

Because child controls are windows, they can receive messages just like any other
window. But because they are children of a parent the messages are sent onto the
parent in the case of the WM_COMMAND message. However, it’s possible to send a child
control (like a button) a message and it will itself process the message with its own
default WinProc (). This is exactly how you change the state of any control—by
sending messages to it.

In the case of buttons, there are a number of messages you can send button controls,
using SendMessage () to change the state of the button and/or retrieve the state of the
button. Remember that SendMessage () returns a value too. Here’s a list of some of
the more interesting messages for use with the parameterizations of wparam and
lparam.

Purpose: To simulate clicking the button.

msg: BM_CLICK

wparam: 0

lparam: 0
Example:

// this would make the button look like it was pressed
SendMessage (hwndbutton, BM_CLICK,0,0);

Purpose: Used to set the check on a check box or radio button.

msg: BM_SETCHECK
wparam: fCheck
lparam: 0

fCheck can be one of the following:

Value Description
BST_CHECKED Sets the button state to checked.
BST_INDETERMINATE Sets the button state to grayed, indicating an indeterminate state.

Use this value only if the button has the BS_3STATE or
BS_AUTO3STATE style.

BST_UNCHECKED Sets the button state to unchecked.

Example:

// this would check a check button
SendMessage (hwndbutton, BM_SETCHECK, BST_CHECKED, 0);

19 PART |

W Windows Programming Foundations

Purpose: Used to retrieve the current state of the button check. Possible return values
are shown here.

msg: BM_GETCHECK
wparam: 0
lparam: 0
Value Description
BST_CHECKED Button is checked.

BST_INDETERMINATE Button is grayed, indicating an indeterminate state (applies only if
the button has the BS_3STATE or BS_AUTO3STATE style).

BST_UNCHECKED Button is unchecked.

Example:

// this would get the check state of a checkbox
if (SendMessage(hwndbutton,BM_GETCHECK,®,0) == BST_CHECKED)

{
// button is checked
} // end if
else
{

// button is not checked
} // end else

Purpose: Used to highlight the button as if it were selected by the user.

msg: BM_SETSTATE
wparam: fState
lparam: 0

Where fState is a TRUE for highlighted and FALSE otherwise.

Example:

// this would highlight the button control
SendMessage (hwndbutton, BM_SETSTATE, 1, 0);

Purpose: To get the general state of the button control. Possible return values are
shown below.

msg: BM_GETSTATE

wparam: 0

lparam: 0

CHAPTER 4 197

Windows GDI, Controls, and Last-Minute Gift Ideas m

Value Description

BST_CHECKED Indicates the button is checked.

BST_FOCUS Specifies the focus state. A nonzero value indicates that the button
has the keyboard focus.

BST_INDETERMINATE Indicates the button is grayed because the state of the button is
indeterminate. This value applies only if the button has the
BS_3STATE or BS_AUTO3STATE style.

BST_PUSHED Specifies the highlight state. A nonzero value indicates that the but-
ton is highlighted. A button is automatically highlighted when the
user positions the cursor over it and presses and holds the left
mouse button. The highlighting is removed when the user releases
the mouse button.

BST_UNCHECKED Indicates the button is unchecked.

Example:

// this code can be used to get the state of the button
switch(SendMessage (hwndbutton, BM_GETSTATE, 0, 0)

{

// what is the button state

case BST_CHECKED: { } break;
case BST_FOCUS: { } break;
case BST_INDETERMINATE: { } break;
case BST_PUSHED: { } break;
case BST_UNCHECKED: { } break;

default: break;
} // end switch

Well, that’s it for child controls. At least you have an idea of what they are and how to
handle them. Now it’s time to move onto querying information from Windows.

Getting Information

Wall Street’s Gordon Gecko once said: “Why don’t you stop sending me information
and start getting some?” These words are appropriate for this circumstance and many
other things. Information about the system your game is running on is vital to making
your game take advantage of all the resources that a system has to offer. As you
would expect, Windows is full of information retrieval functions that acquire a myriad
of details about Windows settings and the hardware itself.

Win32 supports a number of Get* () functions and DirectX supports a number of
GetCaps* () functions. I'm only going to cover a few of the Win32 functions that I
use from time to time. In the next part of the book you’ll see more of the information

198 PART |

W Windows Programming Foundations

retrieval functions that DirectX supports. Those functions are more geared toward the
multimedia end of the spectrum.

The following paragraphs describe three functions that I like to use from time to time.
(There are many more.) Basically, anything you want to know about Windows is there
and can be queried with a "Get" class function. Simply type "get" into the Win32
SDK Search engine within your compiler Help and you should find whatever you
need. We’ll take a look at these three functions just to get a feel for using them.

The first function we’ll look at is called GetSystemInfo (). It basically returns
everything you would ever want to know about the processing hardware you’re
running on—things like the type of processor, how many processors, and so forth.
Here’s the function prototype:

VOID GetSystemInfo(

LPSYSTEM_INFO 1pSystemInfo);
// address of system information structure

The function simply takes a pointer to a SYSTEM_INFO structure and fills in all the
fields. Here’s what a SYSTEM_INFO structure looks like:

typedef struct _SYSTEM_INFO

{ // sinf
union {
DWORD dwOemlId;
struct {
WORD wProcessorArchitecture;
WORD wReserved;
b
b

DWORD dwPageSize;

LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;

DWORD dwNumberOfProcessors;

DWORD dwProcessorType;

DWORD dwAllocationGranularity;
WORD wProcessorlLevel;

WORD wProcessorRevision;

} SYSTEM_INFO;

The details of all these fields are pages long and we don’t have room to cover them,
but obviously there are some interesting fields. For example, dwNumberOfProcessors
is the number of processors on the motherboard of the PC. dwProcessorType is the
actual type of the processor, which can be one of the following:

Value

PROCESSOR_INTEL_386

PROCESSOR_INTEL_486

PROCESSOR_INTEL_PENTIUM

CHAPTER 4 199

Windows GDI, Controls, and Last-Minute Gift Ideas m

The other fields are all self-explanatory—just take a look at the Win32 SDK for
details. This is an amazing function, however, if you think about it. Can you imagine
how hard it is to determine the type of processor installed, let alone how many of
them? Where would you even start?

You would start by writing a very complex detection algorithm that knows things
about 486s, Pentiums, Pentium IIs, and so on, and it would poke and pry with writes
and reads until it figured out what processor was on the machine. Of course, Pentium
class processors have ID strings and machine flags, but 486s are a lot harder to figure
out. The point is that this is a great function to get system-level information.

The next function I want to show you is very general and can retrieve all kinds of cool
information about Windows and the Desktop. It’s called GetSystemMetrics():

int GetSystemMetrics(int nIndex); // system metric or configuration
=setting to retrieve

GetSystemMetrics() is very powerful. What you do is send it the index of the data
you want retrieved, as shown in Table 4.7, and it is returned. By the way, Table 4.7 is
the longest table in the book. I really hate looking it up in the Help, so I'm going to
break down and add it to the book for your convenience <BG>.

TABLE 4.7 System Metric Constants for GetSystemMetrics()

Value Description

SM_ARRANGE Flags specifying how the system arranged
minimized windows. For more information
about minimized windows, see the following
Remarks section.

SM_CLEANBOOT Value that specifies how the system was
started:

0 Normal boot
1 Fail-safe boot

2 Fail-safe with network boot

SM_CMOUSEBUTTONS Number of buttons on mouse, or zero if no
mouse is installed.
SM_CXBORDER, SM_CYBORDER The width and height, in pixels, of a window

border. This is equivalent to the SM_CXEDGE
value for windows with the 3-D look.

SM_CXCURSOR, SM_CYCURSOR Width and height, in pixels, of a cursor. These
are the cursor dimensions supported by the
current display driver. The system cannot cre-
ate cursors of other sizes.

continues

200 PART |

W Windows Programming Foundations

TaBLE 4.7 Continued

Value

Description

SM_CXDOUBLECLK, SM_CYDOUBLECLK

SM_CXDRAG, SM_CYDRAG

SM_CXEDGE, SM_CYEDGE

SM_CXFIXEDFRAME, SM_CYFIXEDFRAME

SM_CXFULLSCREEN, SM_CYFULLSCREEN

SM_CXHSCROLL, SM_CYHSCROLL

SM_CXHTHUMB

SM_CXICON, SM_CYICON

Width and height, in pixels, of the rectangle
around the location of a first click in a
double-click sequence. The second click
must occur within this rectangle for the
system to consider the two clicks a double-
click. (The two clicks must also occur within
a specified time.)

Width and height, in pixels, of a rectangle
centered on a drag point to allow for limited
movement of the mouse pointer before a drag
operation begins. This enables the user to
click and release the mouse button easily
without unintentionally starting a drag
operation.

Dimensions, in pixels, of a 3-D border. These
are the 3-D counterparts of SM_CXBORDER and
SM_CYBORDER.

Thickness, in pixels, of the frame around the
perimeter of a window that has a caption but
is not sizable. SM_CXFIXEDFRAME is the
width of the horizontal border and
SM_CYFIXEDFRAME is the height of the
vertical border.

Width and height of the client area for a full-
screen window. To get the coordinates of the
portion of the screen not obscured by the tray,
call the SystemParametersInfo function
with the SPI_GETWORKAREA value.

Width, in pixels, of the arrow bitmap on a
horizontal scroll bar; and height, in pixels, of
a horizontal scroll bar.

Width, in pixels, of the thumb box in a
horizontal scroll bar.

The default width and height, in pixels, of an
icon. These values are typically 32x32, but
can vary depending on the installed display
hardware.

CHAPTER 4

201

Value

Windows GDI, Controls, and Last-Minute Gift Ideas

Description

SM_CXICONSPACING, SM_CYICONSPACING

SM_CXMAXIMIZED, SM_CYMAXIMIZED

SM_CXMAXTRACK, SM_CYMAXTRACK

SM_CXMENUCHECK, SM_CYMENUCHECK

SM_CXMENUSIZE, SM_CYMENUSIZE

SM_CXMIN, SM_CYMIN

SM_CXMINIMIZED, SM_CYMINIMIZED

SM_CXMINSPACING, SM_CYMINSPACING

SM_CXMINTRACK, SM_CYMINTRACK

SM_CXSCREEN, SM_CYSCREEN
SM_CXSIZE, SM_CYSIZE

SM_CXSIZEFRAME, SM_CYSIZEFRAME

Dimensions, in pixels, of a grid cell for items
in large icon view. Each item fits into a rec-
tangle of this size when arranged. These val-
ues are always greater than or equal to
SM_CXICON and SM_CYICON.

Default dimensions, in pixels, of a maximized
top-level window.

Default maximum dimensions, in pixels, of a
window that has a caption and sizing borders.
The user cannot drag the window frame to a
size larger than these dimensions. A window
can override these values by processing the
WM_GETMINMAXINFO message.

Dimensions, in pixels, of the default menu
check mark bitmap.

Dimensions, in pixels, of menu bar buttons,
such as multiple document (MDI) child close.

Minimum width and height, in pixels, of a
window.

Dimensions, in pixels, of a normal minimized
window.

Dimensions, in pixels, of a grid cell for mini-
mized windows. Each minimized window fits
into a rectangle this size when arranged.

These values are always greater than or equal
to SM_CXMINIMIZED and SM_CYMINIMIZED.

Minimum tracking width and height, in pix-
els, of a window. The user cannot drag the
window frame to a size smaller than these
dimensions. A window can override these val-
ues by processing the WM_GETMINMAXINFO
message.

Width and height, in pixels, of the screen.
Width and height, in pixels, of a button in a
window’s caption or title bar.

Thickness, in pixels, of the sizing border
around the perimeter of a window that can be
resized. SM_CXSIZEFRAME is the width of the
horizontal border and SM_CYSIZEFRAME is
the height of the vertical border.

continues

202 PART |

W Windows Programming Foundations

TaBLE 4.7 Continued

Value Description

SM_CXSMICON, SM_CYSMICON Recommended dimensions, in pixels, of a

SM_CXSMSIZE, SM_CYSMSIZE

SM_CXVSCROLL, SM_CYVSCROLL

SM_CYCAPTION
SM_CYKANJ IWINDOW

SM_CYMENU
SM_CYSMCAPTION
SM_CYVTHUMB

SM_DBCSENABLED

SM_DEBUG

SM_MENUDROPALIGNMENT

SM_MIDEASTENABLED

SM_MOUSEPRESENT

SM_MOUSEWHEELPRESENT

SM_NETWORK

SM_PENWINDOWS

small icon. Small icons typically appear in
window captions and in small icon view.

Dimensions, in pixels, of small caption
buttons.

Width, in pixels, of a vertical scroll bar; and
height, in pixels, of the arrow bitmap on a
vertical scroll bar.

Height, in pixels, of the normal caption area.

For double-byte character set versions of
Windows, height, in pixels, of the Kanji win-
dow at the bottom of the screen.

Height, in pixels, of single-line menu bar.
Height, in pixels, of a small caption.

Height, in pixels, of the thumb box in a verti-
cal scroll bar.

TRUE or nonzero if the double-byte character
set (DBCS) version of USER.EXE is installed;
FALSE or zero otherwise.

TRUE or nonzero if the debugging version of
USER. EXE is installed; FALSE or zero other-
wise.

TRUE or nonzero if drop-down menus are
right-aligned relative to the corresponding
menu-bar item; FALSE or zero if they are left-
aligned.

TRUE if the system is enabled for
Hebrew/Arabic languages.

TRUE or nonzero if a mouse is installed;
FALSE or zero otherwise.

Windows NT only: TRUE or nonzero if a
mouse with a wheel is installed; FALSE or
zero otherwise.

The least significant bit is set if a network is
present; otherwise, it is cleared. The other bits
are reserved for future use.

TRUE or nonzero if the Microsoft Windows
for Pen computing extensions are installed;
zero or FALSE otherwise.

CHAPTER 4 203

Windows GDI, Controls, and Last-Minute Gift Ideas m

Value Description
SM_SECURE TRUE if security is present FALSE otherwise.
SM_SHOWSOUNDS TRUE or nonzero if the user requires an appli-

cation to present information visually in situa-
tions where it would otherwise present the
information only in audible form; FALSE or
zero otherwise.

SM_SLOWMACHINE TRUE if the computer has a low-end (slow)
processor; FALSE otherwise.
SM_SWAPBUTTON TRUE or nonzero if the meanings of the left

and right mouse buttons are swapped; FALSE
or zero otherwise.

If it isn’t in Table 4.7, you don’t need to know! As an example, here’s a cool way to
create a window that’s as large as the screen display:

// create the window

if (!(hwnd = CreateWindowEx (NULL, // extended style
WINDOW_CLASS_NAME, /| class
"Button Demo", /] title
WS_POPUP | WS_VISIBLE,
0,0, // initial x,y
GetSystemMetrics (SM_CXSCREEN), // initial width
GetSystemMetrics (SM_CYSCREEN), // initial height

NULL, // handle to parent

NULL, // handle to menu

hinstance, // instance of this application
NULL))) /| extra creation parms
return(0);

Notice the use of the WS_POPUP window style rather than the WM_OVER -
a LAPPEDWINDOW. This creates a window without any borders or controls,
resulting in a blank screen—the effect you would want for a full-screen
game application.

As another example, you could use the following code to test for a mouse:

if (GetSystemMetrics(SM_MOUSEPRESENT))

{
// there's a mouse
} // end if
else
{

// no mouse
} // end else

204 PART |

W Windows Programming Foundations

Finally, when you’re drawing text, you might want to know about the font that GDI is
using—for example, how wide each character is and other related metrics. If you
write some code to draw text and you know the font, you can position the text with
some reasonable accuracy. The name of the function that retrieves text metrics is
called GetTextMetrics():

BOOL GetTextMetrics(HDC hdc, // handle of device context
LPTEXTMETRIC 1lptm); // address of text metrics structure

You may be wondering why the hdc is needed—it’s because you may have multiple
dc’s with different fonts selected, so you have to tell the function which one to
compute the metrics on. Smart little function! Anyway, 1ptm is a pointer to a
TEXTMETRIC structure that is filled with the information. It looks like this:

typedef struct tagTEXTMETRIC {

LONG tmHeight; // the height of the font
LONG tmAscent; // the ascent of the font
LONG tmDescent; // the descent of the font

LONG tmInternallLeading; // the internal leading

LONG tmExternallLeading; // the external leading

LONG tmAveCharWidth; // the average width

LONG tmMaxCharWidth; // the maximum width

LONG tmWeight; /] the weight of the font
LONG tmOverhang; // the overhang of the font
LONG tmDigitizedAspectX; // the designed for x-aspect
LONG tmDigitizedAspectY; // the designed for y-aspect
BCHAR tmFirstChar; // first character font defines
BCHAR tmLastChar; // last character font defines
BCHAR tmDefaultChar; // char used when desired not in set
BCHAR tmBreakChar; // the break character

BYTE tmItalic; // is this an italic font

BYTE tmUnderlined; // is this an underlined font
BYTE tmStruckOut; // is this a strikeout font
BYTE tmPitchAndFamily; //family and tech,truetype..
BYTE tmCharSet; // what is the character set

} TEXTMETRIC;

Because most of us haven’t worked with a printing press our whole lives, a number of
these fields are meaningless, but I have highlighted the ones that should make some
sense. Take a look at the following list of terms and refer to Figure 4.13; it might help
with some of the terminology.

e Height—This is the total height in pixels of the character.

* Baseline—This is a reference point, usually the bottom of an uppercase
character.

e Ascent—This is the number of pixels from the baseline to the top of where an
accent mark might be.

e Descent—This is the number of pixels from the baseline to the bottom of lower
case extensions.

CHAPTER 4 205

Windows GDI, Controls, and Last-Minute Gift Ideas m

* Internal leading—This is the number of pixels to allow for accent marks.

e External leading—This is the number of pixels to allow for other characters
above the character, so they don’t run on top of each other.

Figure 4.13
The makeup of a Exter'nal
character. Leading
Internal E_ x x
Leading —L

Ascent Height

Baseline -

Descent

Here’s an example of how you would center some text:

TEXTMETRIC tm; // holds the textmetric data

/] get the textmetrics
GetTextMetrics(hdc,&tm);

// used tm data to center a string given the horizontal width
// assume width of window is WINDOW_WIDTH
int x_pos = WINDOW_WIDTH -

strlen("Center This String")*tm.tmAveCharWidth/2;

/] print the text at the centered position
TextOut (hdc,x_pos,0,"Center This String",
strlen("Center This String"));

No matter what the font size is, this code will always center it.

The T3D Game Console

In the beginning of the book I mentioned that Win32/DirectX programming is almost
like 32-bit DOS programming if you create a shell Windows application and then
create a code structure that hides the details of the dull Windows stuff that’s going
on. Now you know enough to do this. In this section you’ll see how to put together
the T3D Game Console, which will be the basis for all the demos and games from
here on.

At this point, you know that to create a Windows application you need a WinProc ()
and a WinMain() and that’s about it. So we’ll create a minimal Windows application
that has these components and create a generic window. The application will then call
out to three functions that perform the game logic. As a result, the details of handling

206 PART |

T Windows Programming Foundations

Windows messages and other Win32 related drama won’t be an issue (unless of
course you want it to be). Take a look at Figure 4.14 to see the T3D Game Console

architecture.
Figure 4.14 Called once at beginning
The architecture of Game_Init()
the T3D Game WinMain()
Console.

CreateWindow()
Gamelnit()
Mainevent Loop

| Process messages i c
| Game_main() I

} Game_shutdown()

Called each frame

Physics

Game_main()

_—

A

}

Y
Game_shutdown()

.._ll

Called at end

As you can see, there are only three functions that are needed to implement the
console:
int Game_Init(void *parms = NULL, int num_parms =

0
int Game_Shutdown(void *parms = NULL, int num_parms
int Game_Main(void *parms = NULL, int num_parms = 0

) .

0);

)

e Game_Init() is called before the main event loop in WinMain () is entered and
is called only once. Here is where you’ll initialize everything for your game.

e Game_Main() is like main() in a normal C/C++ program except that it is called
each cycle after any Windows message handling is performed by the main
event loop. This is where the entire logic of your game will be. You’ll do all
the rendering, sound, Al, and so forth in Game_Main() or as calls out of
Game_Main (). The only caveat about Game_Main () is that you must draw only
one frame and then return, so you don’t starve the WinMain () event handler.
Also, because this function is entered and exited each cycle, remember that
automatic variables are transient—if you want data to stick around, make it
global or local static to Game_Main ().

CHAPTER 4

207

Windows GDI, Controls, and Last-Minute Gift Ideas

* Game_Shutdown () is called after the main event loop in WinMain () is exited,
which is caused by a message sent from the user, ultimately causing a WM_QUIT
message to be posted. In Game_Shutdown () you’ll do all your housekeeping and
cleanup of resources allocated during game play.

The T3D Game Console is contained in the file T3DCONSOLE.CPP. Below is the
WinMain () section showing the calls to all the console functions:

[WINMAIN 7/ r i r i r i i il rrl g
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR 1lpcmdline,

int ncmdshow)

{

WNDCLASSEX winclass;
HWND hwnd;

MSG msg;

HDC hdc;

// this holds the class we create

// generic window handle

/

/ generic message

// graphics device context

// first fill in the window class structure

winclass.cbSize
winclass.style

winclass.lpfnWnd

Proc

winclass.cbClsExtra

winclass.cbWndEx
winclass.hInstan
winclass.hIcon

winclass.hCursor
winclass.hbrBack
winclass.lpszMen
winclass.lpszCla
winclass.hIconSm

tra
ce

ground
uName
ssName

C
C

sizeof (WNDCLASSEX) ;
S_DBLCLKS | CS_OWNDC
S _HREDRAW | CS_VREDRAW;
WindowProc;
:@;
:0;
= hinstance;
= LoadIcon(NULL, IDI_APPLICATION);
LoadCursor (NULL, IDC_ARROW);
= GetStockObject (BLACK_BRUSH) ;
= NULL;
= WINDOW_CLASS NAME;
LoadIcon(NULL, IDI_APPLICATION);

// save hinstance in global
hinstance_app = hinstance;

// register the window class
if (!RegisterClassEx(&winclass))

return(0);

// create the wi

ndow

if (!(hwnd = CreateWindowEx (NULL, // extended style

WINDOW_CLASS_NAME, /1 class

"T3D Game Console Version 1.0", // title
WS_OVERLAPPEDWINDOW ; WS_VISIBLE,

0,0,
400,300,
NULL,

// initial x,y
// initial width, height
// handle to parent

208 PART |

T Windows Programming Foundations

NULL, // handle to menu
hinstance, // instance of this application
NULL))) /| extra creation parms

return(0);

// save main window handle
main_window_handle = hwnd;

// initialize game here
Game_Init();

// enter main event loop
while (TRUE)
{

// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{

// test if this is a quit

if (msg.message == WM_QUIT)
break;

// translate any accelerator keys
TranslateMessage (&msg) ;

// send the message to the window proc
DispatchMessage (&msg);
} // end if

// main game processing goes here
Game_Main();

} // end while

// closedown game here
Game_Shutdown();

// return to Windows like this
return(msg.wParam);

} // end WinMain

Take a moment or two and review the WinMain (). It should look very generic because
it’s the one we have been using all along! The only differences, of course, are the calls
to Game_Init(), Game_Main(), and Game_Shutdown (), which follow:

LIPETELTEE LT r i i n i i n i i i i i riiri ity

int Game_Main(void *parms = NULL)

{

// this is the main loop of the game, do all your processing
// here

CHAPTER 4 209

Windows GDI, Controls, and Last-Minute Gift Ideas m

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
SendMessage (main_window_handle,WM_CLOSE,0,0);

// return success or failure or your own return code here
return(1);

} // end Game_Main
PICTELEEELE I n i n i r i i n i i

int Game_Init(void *parms = NULL)
{

// this is called once after the initial window is created and
/| before the main event loop is entered; do all your initialization
/] here

// return success or failure or your own return code here
return(1);

} // end Game_Init
PICTELEELII LI r i n i i i r i r i n i il rirr

int Game_Shutdown(void *parms = NULL)
{

// this is called after the game is exited and the main event
// loop while is exited; do all you cleanup and shutdown here

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

The console functions don’t do much! That’s right—you’re the one that’s going to fill
them in with code each time. However, I did put a little something in Game_Main() to
test for the Esc key and send a WM_CLOSE message to kill the window. This way you
don’t always have to close the window with the mouse or Alt+F4 key combination.
Also, I'm sure that you’ve noticed the parameter list of each function looks like the
following:

Game_*(void *parms = NULL, int num_parms=0);

The num_parms is just a convenience for you if you want to send parameters to any
of the functions along with the number of parameters sent. The type is void, so it’s
flexible. Again, this isn’t in stone and you can surely change it, but it’s something to
start with.

210 PART |

T Windows Programming Foundations

Finally, you might think that I should have forced the window to be full screen
without any controls by using the WS_POPUP style. I could have done this, but I’'m
thinking of making them windowed for a number of demos so that theyre easier to
debug. We can also change to full screen on a demo-by-demo basis, so let’s leave it
windowed for now.

@ If you're a C programmer, the syntax Game_Main (void *parms =

NULL, int num_parms=0) might look a little alien. The assignment
on-the-fly is called default parameters. All it does is assign the parame-
ters the listed default values so you don’t have to type in parameters if
you know that they are the same as the default values. For example, if
you don’t want to use the parameter list and don’t care if *parms ==
NULL and num_parms == 0, you can call Game_Main() just like
that—without parameters. On the other hand, if you want to send
parameters, you would have to use Game_Main (&list, 12), or some-
thing similar. Take a look at Appendix D for a short tutorial on C++ if it
still seems fuzzy.

If you run T3DCONSOLE .EXE on the CD, you won’t see much other than a blank
window. The cool thing is that all you have to do is fill in Game_Init(), Game_Main(),
and Game_Shutdown () with your 3D game code and you have a million dollars! Of
course, we have a little ways to go, but we’re getting there <BG>.

As a final demo of using the T3D Game Console, I have created an application

based on it called DEMO4_9.CPP. It’s a 3D star field demo—not bad for GDI. Check

it out and see if you can make it speed up and slow down. The program once again
illustrates the erase, move, draw animation cycle. It also locks the frame rate to 30 fps
with our timing code.

Summary

Well, my young Jedi, you are now a master of Windows—at least enough to take on
the evil empire of game programming. In this chapter, you saw a number of topics,
including GDI, controls, timing, getting information. In the end, you saw a real
template application—the T3D Game Console. With it, you can get started on some
serious Windows applications. Beginning with the next chapter, you’re going to
embark on the wonderful world of DirectX. It’s cooler than cool—definitely a
NexTGeN topic!

DirectX and 2D
Fundamentals

Chapter 5
DirectX Fundamentals and the Dreaded COM 213

Chapter 6
First Contact: DirectDraw 241

Chapter 7
Advanced DirectDraw and Bitmapped Graphics 287

Chapter 8

Vector Rasterization and 2D Transformations 401

Chapter 9
Uplinking with DirectInput and Force Feedback 537

Chapter 10
Sounding Off with DirectSound and DirectMusic 589

CHAPTER

DirectX Fundamentals and
the Dreaded COM

“Louie, Louie, Louie... I've had to listen to that for centuries!”

—Lestat, Interview With the Vampire

In this chapter, we’re going to get a gargoyle’s-eye view of
DirectX and all the underlying components that make up this
incredible technology. In addition, we’re going to take a detailed
look at COM (Component Object Model), which all the DirectX
components are made of. If you’re a straight C programmer, you
should pay close attention. But not to worry, I'll keep it chill.

However, a word of warning on this material—read the whole
chapter before you decide you don’t get it. DirectX and COM
are circularly related, so it’s hard to explain one without the
other. As an example, try to think how you would explain the
concept of zero without using the word itself in the definition.
If you think it’s easy, it’s not!

Here’s a list of the main topics we’ll touch upon:

¢ An introduction to DirectX
e The Component Object Model (COM)

e A working example of a COM implementation

214 PART 11

W DirectX and 2D Fundamentals

e How DirectX and COM fit together
e The future of COM

DirectX Primer

I’'m starting to feel like an evangelist for Microsoft these days (hint to Microsoft:

Send me money), trying to turn all my friends to the dark side. But the bad guys
always have better technology! Am I right? What would you rather ride around in, one
of the Empire’s Super Star Destroyers or some half-converted Rebel transport? See
what I’'m saying?

DirectX may take a bit more control from you as a programmer, but in truth it’s worth
its weight in gold. It’s basically a system of software that abstracts video, audio,
input, networking, installation, and more, so no matter what a particular PC’s hard-
ware configuration is, you can use the same code. In addition, DirectX technology is
many times faster and more robust than GDI and/or MCI (the Media Control
Interface), which is native to Windows.

Figure 5.1 illustrates how you would make a Windows game with and without
DirectX. Notice how clean and elegant the DirectX solution is.

tandard Win: ame irectX Win: ame
lgUl‘E 5 1 Standard Win32 60I/MCI G: DirectX Win32 G
) fast
1 versu fast/primitive fast slow/few options :
DirectX versus fastjprimiti f fowf i Win32
GDI/MCI. WinSock Win32 User Application
Network | « Application Input
fast/robust very fast fast

slow slow

4—) | Network I(—)l DirectX I(—)l Input I

Lots of latency

fast

— (]

output

So how does DirectX work? Well, it gives you almost hardware-level control of all
devices. This is possible through a technology called Component Object Model
(COM) and a set of drivers and libraries written by both Microsoft and the hardware
vendors themselves. Microsoft came up with a set of conventions—functions, vari-
ables, data structures, and so on—that must be used by the hardware vendors when
implementing drivers to talk to the hardware.

CHAPTER 5 215

DirectX Fundamentals and the Dreaded COM m

As long as these conventions are followed, you don’t need to worry about the details
of the hardware. You just make calls to DirectX and it handles the details for you. No
matter the video card, sound card, input device, network card, or whatever, as long as
there’s DirectX support, your program will be able to use it without you knowing any-
thing about it!

Currently there are a number of DirectX components. They are listed here and shown
graphically in Figure 5.2.
* DirectDraw
* DirectSound
* DirectSound3D
* DirectMusic
 Directlnput
 DirectPlay
* DirectSetup
* Direct3DRM
* Direct3DIM

Figure 5.2 _ : —
The architecture of Windows Win32 Application
DirectX and its rela-
tionship to Win32.
DirectX y Sub-systems
Y
z| |=|8
o ——55(2]=(5| 5| 2| 2|2
— aoipirectX| E1 512533121218
erface 1 8181 8|8|8[8[8] 8|8
ala|lala|la|la|lalala
Y Low Level I
; Drivers i
Windows DDI === Emulation .
<— Software Emulation
Device Driver HEL Layer I Software Emulatio
Interface
— * 7
HAL Hardware Abstraction I
Layer
v v

Hardware: Video, Audio, Input...

Errata

Errata
"Direct3DROM" should be "Direct3DRM"

Errata

Errata
 "DirectDIM" should be "Direct3DIM"

216 PART 11

W DirectX and 2D Fundamentals

The HEL and HAL

In Figure 5.2, you may notice that there are two layers under DirectX called the HEL
(Hardware Emulation Layer) and the HAL (Hardware Abstraction Layer). Here’s the
deal: DirectX is a very forward-looking design, so it assumes that advanced features
are implemented by the hardware. However, if the hardware doesn’t support some fea-
ture, what happens? This is the basis of the dual-mode HAL and HEL design.

The HAL, or Hardware Abstraction Layer, is the “to the metal” layer. It talks directly
to the hardware. This layer is usually the device driver from the vendor, and you com-
municate to it directly through generic DirectX calls. The bottom line is that HAL is
used when the feature you’re requesting is supported directly by the hardware and
thus is accelerated. For example, when you request a bitmap to be drawn, the hard-
ware blitter does the work rather than a software loop.

The HEL, or Hardware Emulation Layer, is used when the hardware doesn’t support
the feature that you’re requesting. Let’s say that you ask the video card to rotate a
bitmap. If the hardware doesn’t support rotation, the HEL kicks in and software algo-
rithms take over. Obviously, this is slower, but the point is that it does not break your
program. It will still work—just slower. In addition, the switching between the HAL
and HEL is transparent to you. If you ask DirectX to do something and the HAL does
it directly, the hardware will do it. Otherwise, a software emulation will be called to
get the job done with HEL.

Now, you might be thinking that there are a lot of layers of software here. That’s a
concern, but the truth is that DirectX is so clean that the only penalty you take for
using it is maybe an extra function call or two. That’s a small price to pay for 2D/3D
graphics, network, and audio acceleration. Can you imagine writing drivers to control
all the video accelerators on the market? Trust me, it would take literally thousands of
man-years—it just can’t be done. DirectX is really a massively distributed engineering
effort by Microsoft and all the hardware vendors to bring you an ultra-high-perfor-
mance standard.

The DirectX Foundation Classes in Depth

Now let’s take a quick look at each DirectX component, as of version 6.0, and what
they do:

DirectDraw—This is the primary rendering and 2D bitmap engine that controls the
video display. It’s the conduit that all graphics must go through and probably the most
important of all the DirectX components. The DirectDraw object represents more or
less the video card(s) in your system.

CHAPTER 5 217

DirectX Fundamentals and the Dreaded COM m

DirectSound—This is the sound component of DirectX. It only supports digital
sound, not MIDI. However, this component makes your life 100 times easier because
no longer do you have to license a third-party sound system to do your sound. Sound
programming is a black art, and in the past no one wanted to keep up with writing all
the drivers for all the sound cards. Hence, a couple of vendors cornered the market on
sound libraries: Miles Sound System and DiamondWare Sound Toolkit. Both were
very capable systems that allowed you to simply load and play digital and MIDI
sounds from your DOS or Win32 programs. However, with DirectSound,
DirectSound3D, and the latest DirectMusic components, there’s obviously less use for
third-party libraries.

DirectSound3D—This is the 3D sound component of DirectSound. It allows you to
position 3D sounds in space as if objects were floating around the room! This technol-
ogy is relatively new, but it’s maturing quickly. Today, most sound cards support
hardware-accelerated 3D effects, including Doppler shift, refraction, reflection, and
more. However, if software emulation is used, all this stuff comes to a halt!

DirectMusic—The newest addition to DirectX. Thank God! DirectMusic is the miss-
ing MIDI technology that DirectSound didn’t support. But more than that,
DirectMusic has a new DLS (Downloadable Sounds) system that allows you to create
digital representations of instruments and then play them back with MIDI control. It’s
much like a Wave Table synthesizer, but in software. Also, DirectMusic has a new
Performance Engine that is an Artificial Intelligence system of sorts. In real-time, it
can make changes to your music based on templates you supply it with. In essence,
the system can create new music on-the-fly. Wild, huh?

DirectInput—This system handles all input devices, including the mouse, keyboard,
joystick, paddles, space balls, and so forth. Moreover, DirectInput now supports Force
Feedback devices, which have electromechanical actuators and force sensors that
allow you to physically manifest forces so the user can feel them. It’s going to really
put the cybersex industry into overdrive!

DirectPlay—This is the networking aspect of DirectX. It allows you to make abstract
connections using the Internet, modems, direct connect, or any other kind of medium
that might come up. The cool thing about DirectPlay is that it allows you to make
these connections without knowing anything about networking. You don’t have to
write drivers, use sockets, or anything like that. In addition, DirectPlay supports the
concepts of sessions, which are games in progress, and lobbies, which are places for
gamers to congregate and play. Also, DirectPlay doesn’t force you into any kind of
multiplayer network architecture. All it does is send and receive packets for you. What
they contain and if they are reliable is up to you.

218 PART 11

W DirectX and 2D Fundamentals

Direct3DRM—This is Direct3D Retained Mode, which is a high-level, object- and
frame-based 3D system that you can use to create basic 3D programs. It takes advan-
tage of 3D acceleration, but it isn’t the fastest thing in the world. It’s great for making
walkthrough programs, model displayers, or extremely slow demos.

Direct3DIM—This is Direct3D Immediate Mode, which is the low-level 3D support
for DirectX. Originally, this was incredibly hard to work with and was the cause for
many flamewars with OpenGL. The old Immediate Mode used what are called
execute buffers, basically arrays of data and instructions that you created that
described the scene to be drawn—very ugly. However, since DirectX 5.0, Immediate
Mode now supports a much more OpenGL-like interface through the

DrawPrimitive () functions. This allows you to send triangle strips, fans, and so on to
the rendering engine and make state changes with function calls rather than execute
buffers. Hence, I now like Direct3D Immediate Mode! Even though this volume and
Volume II are software-based 3D game books, to be complete, we’re going to cover
D3D IM at the end of Volume II. In fact, there is an entire cyber-book on Direct3D
Immediate Mode on the CD of Volume II.

DirectSetup/AutoPlay—These are quasi-DirectX components that allow a program
to install DirectX from your application on the user’s machine and start your game up
directly when the CD is placed in the system. DirectSetup is a small set of functions
that load the run-time DirectX files on a user’s machine and register them in the reg-
istry. Autoplay is the standard CD subsystem that looks for the AUTOPLAY . INF file on
the CD root. If the file is found, Autoplay executes the batch command functions in
the file.

Finally, you might be wondering what the deal is with all the versions of DirectX. It
seems to be revised on a six-month basis. This is true, for the most part. It’s a hazard
of the business we’re in—graphics and game technology move very fast. However,
since DirectX is based on COM technology, programs that you write for, say, DirectX
version 3.0 are guaranteed to work on DirectX version 7.0. Let’s see how that
works...

COM: Is It the Work of Microsoft... or Demons?

Computer programs today are easily reaching multimillion-line sizes, and large sys-
tems will soon reach to billions of lines of code. With programs this large, abstraction
and hierarchy are of utmost importance. Otherwise, complete chaos would ensue.

The two most recent attempts at computer languages that foster more object-oriented
programming techniques are, of course, C++ and Java. C++ is really an evolution (or
maybe more a regurgitation) of C, with object-oriented hooks built into it. On the
other hand, Java is based on C++ but is fully object-oriented and much cleaner. In
addition, Java is more of a platform while C++ is simply a language.

CHAPTER 5 219

DirectX Fundamentals and the Dreaded COM m

Anyway, languages are great, but it’s how you use them that counts in the long run.
Alas, even though C++ is chock full of cool OO (object-oriented) features, many peo-
ple don’t use them or use them the wrong way. Thus, large-scale programs are still a
bit of a problem. This is one of the difficulties that the COM model addresses.

COM was invented many years back as a simple white paper on a new software para-
digm, which was similar to how computer chips or Lego blocks work. You simply
plug them together and they work. Computer chips and Lego blocks know how to be
computer chips and Lego blocks, so everything works out. To implement this kind of
technology with software, you need a very generic interface that can take on the form
of any type of function set you can imagine. This is what COM does.

One of the cool things about computer chips is that when you add more of them to a
design, you don’t have to tell all the other chips that you’ve changed something.
However, as you know, this is a little harder with software programs. You at least have
to recompile to make an executable. Fixing this problem is another goal of COM. You
should be able to add new features to a COM object without breaking the software
that uses the old COM object. In addition, COM objects can be changed without
recompiling the original program, which is very cool.

Since you can upgrade COM objects without recompiling your program, that means
you can upgrade your software without patches and new versions. For example, say
you have a program that uses three COM objects: one that implements graphics, one
for sound, and one for networking (see Figure 5.3). Now imagine that you sell
100,000 copies of this program, but you don’t want to send out 100,000 upgrades! To
update the graphics COM object, all you do is give the users the new COM object for
graphics and the program will automatically use it. No recompiling, no linking, no
nothing. Easy. Of course, all this technology is very complex at the low level, and
writing your own COM objects is a bit challenging, but using them is easy.

The next question is, how are COM objects distributed or contained, given their
plug-and-play nature? The answer is that there are no rules about this, but in most
cases COM objects are DLLs, or Dynamic Link Libraries, that can be downloaded or
supplied with the program that uses them. This way they can be easily upgraded and
changed. The only problem with this is that the program that uses the COM object
must know how to load it from a DLL. But we’ll get to that in the “Building a Quasi-
COM Object” section later in this chapter.

What Exactly Is a COM Object?

A COM object is really a C++ class or a set of C++ classes that implement a number
of interfaces. (Basically, an interface is a set of functions.) These interfaces are used
to communicate with the COM object. Take a look at Figure 5.4. Here we see a single
COM object that has three interfaces named IGRAPHICS, ISOUND, and IINPUT.

220 PART 11

W DirectX and 2D Fundamentals

Figure 5.3 Application Application
A . version 1.0 version 2.0
n overview of
COM.
Core
Core To update software, Logic
Logic user can download
3| new Com objects > Old
. and load them into .
Com Object) - Com Object
Graphics < system for immediate Graphics
I use. I
CT T New T
Com Object . !
Sound : Com Object 1
f Sound .
1
1 1
Com Object 1 New ,
Network : Com Object 1
1 Network !
' :
1
[y ——
Loaded from Internet
no recompilation needed.
Figure 5.4 Input Output
The interfaces of a P Interface 1 P
COM object. funci()
func2()
/’ Win32 app
IGRAPHICS < »| uses Com
IUnknown object
Addref()
Release() Interface 2
QuerylInterface() f——3. funci()
func2()
Interfaces all ISOUND
derived from
IUnknown :
Interface 3
\ func1()
func2()
IINPUT

Each one of these interfaces has a number of functions that you can call (when you
know how) to do work. So a single COM object can have one or more interfaces, and
you may have one or more COM objects. Moreover, the COM specification states that

CHAPTER 5 221

DirectX Fundamentals and the Dreaded COM m

all interfaces you create must be derived from a special base class interface called
IUnknown. For you C programmers, all this means is that IUnknown is like a starting
point to build the interface from.

Let’s take a look at the TUnknown class definition:

struct IUnknown

{

// this function is used to retrieve other interfaces
virtual HRESULT _ stdcall QueryInterface(const IID &iid, (void **)ip) = 0;

// this is used to increment interfaces reference count
virtual ULONG __ stdcall AddRef() = 0;

// this is used to decrement interfaces reference count
virtual ULONG __ stdcall Release() = 0;

};
Notice that all methods are pure and virtual. In addition, the methods
a use __stdcall in deference to the standard C/C++ calling convention. If

you remember from Chapter 2, “The Windows Programming Model,”
__stdcall pushes the parameters on the stack from right to left.

Even if you’re a C++ programmer, this class definition may look a bit bizarre if you're
rusty on virtual functions. Anyway, let’s dissect IUnknown and see what’s up. All inter-
faces derived from IUnknown must implement, at very minimum, each of the methods
QueryInterface(), AddRef (), and Release().

QueryInterface() is the key to COM. It’s used to request a pointer to the interface
functions that you desire. To make the request happen, you must have an interface ID.
This is a unique number, 128 bits long, that you assign to your interface. There are
2128 different possible interface IDs, and I guarantee that we wouldn’t run out in a bil-
lion years even if everybody on this planet did nothing but make COM objects. More
on the interface ID when we get to a real example a little later in the chapter.

Furthermore, one of the rules of COM is that if you have an interface, you can always
request any other interface from it as long as it’s from the same COM object.
Basically, this means that you can get anywhere from anywhere else. Take a look at
Figure 5.5 to see this graphically.

AddRef () is a curious function. COM objects use a technique called reference count-
ing to track their life. This is due to one of the specifications of COM: It’s not
language-specific. Hence, AddRef () is called when a COM object is created and when

222 PART 11

W DirectX and 2D Fundamentals

interfaces are created to track how many references there are to the objects. If a COM
object were to use malloc() or new[], that would be C/C++-specific. When the refer-
ence count drops to 0, the objects are destroyed internally.

Figure 5.5 Com Object

Navigating the inter- Interface A I :-'-'-'-'-'-'-.' Interface_ptr **
f; f a COM < > e
aces.of a CO Querylnterface() - y | Queryinterface()

object.
Interface B I

1

1

1

1

1
<« >
Querylnterface() ‘: -

1

1

1

1

1
"
n
n
n
n
Pl Ll
1 o

! : : From any given interface you

: n can request another from the

' "1 same Com object.

Interface C ' "
Queryinterface() €T > !
. ! : 1
. !] [N}
° !] [N}
Y T
! T
Interface Z (_L:_) "

Querylnterface() 1 1

Tip Usually, you don't have to call AddRef () yourself on interfaces or
COM objects. It's done internally by the QueryInterface() function. But
sometimes you may have to, if you want to increase the reference count
to trick the COM object into thinking that there are more references to
it than there really are.

This brings us to a problem—if COM objects are C++ classes, how can they be cre-
ated or used in Visual Basic, Java, ActiveX, and so on? It just so happens that the
designers of COM used virtual C++ classes to implement COM, but you don’t need
to use C++ to access them or even to create them. As long as you create the same
binary image that a Microsoft C++ compiler would when creating a virtual C++ class,
the COM object will be COM-compliant. Of course, most compiler products have
extras or tools to help make COM objects, so that’s not too much of a problem. The
cool thing about this is that you can write a COM object in C++, Visual Basic, or
Delphi, and then that COM object can be used by any of those languages! A binary
image in memory is a binary image in memory.

Release() is used to decrement the reference count of a COM object or interface. In
most cases, you must call this function yourself when you’re done with an interface.
However, sometimes if you create an object and then create another object from that
object, calling Release () on the parent will trickle down and Release() the child or
derived object. But either way, it’s a good idea to Release () in the opposite order that
you queried.

CHAPTER 5 223

DirectX Fundamentals and the Dreaded COM m
More on Interface IDs and GUIDs

As I mentioned earlier, every COM object and interface thereof must have a unique
128-bit identifier that you use to request or access it. These numbers are called GUIDs
(Globally Unique Identifiers) in general. More specifically, when defining COM inter-
faces they’re called Interface IDs or IIDs. To generate them, you must use a program
called GUIDGEN.EXE created by Microsoft (or a similar program that uses the same
algorithm). Figure 5.6 shows GUIDGEN.EXE in action.

Figure 55 Create GUID
The GUID generator
GUIDGEN.EXE in action.

What you do is select what kind of ID you want (there are four different formats), and
then the program generates a 128-bit vector that is guaranteed to never be generated
again on any machine at any time. Seem impossible? It’s not. It’s just math and proba-
bility theory. The bottom line is that it works, so don’t get a headache asking why.

After you generate the GUID or IID, it’s placed on the Clipboard and you can paste it
into your programs by pressing Ctrl+V. Here’s an example of an IID I just made while
writing this paragraph:

/1 {C1BCE961-3E98-11d2-A1C2-004095271606}

static const <<name>> =

{ 0xc1bce961, 0x3e98, 0x11d2,
{ 0xal, 0xc2, 0x0, 0x40, 0x95, 0x27, 0x16, Ox6 } };

Of course, you would replace <<name>> with the name you choose for the GUID in
your program, but you get the idea.

GUIDs and IIDs (Interface IDs) are used to reference COM objects and their inter-
faces. So whenever you make a new COM object and a set of interfaces, these are the
only numbers that you have to give to programmers to work with your COM objects.
Once they have the IIDs, they can create COM objects and interfaces.

224 PART 11

T DirectX and 2D Fundamentals

Building a Quasi-COM Object

Creating a full-fledged COM object is well beyond the scope of this book. You only
need to know how to use them. However, if you're like me, you like to have some
idea of what’s going on. So what we’re going to do is build up a very basic COM
example to help you answer some of the questions that I'm sure I’ve created for you.

All right, you know that all COM objects contain a number of interfaces, but all COM
objects must be derived from the IUnknown class to begin with. Then, once you have
all your interfaces built, you put them all in a container class and implement every-
thing. As an example, let’s create a COM object that has three interfaces: ISound,
IGraphics, and IInput. Here’s how you might define them:

// the graphics interface

struct IGraphics : IUnknown

{

virtual int InitGraphics(int mode)=0;
virtual int SetPixel(int x, int y, int c)=0;
// more methods...

bs

// the sound interface

struct ISound : IUnknown

{

virtual int InitSound(int driver)=0;
virtual int PlaySound(int note, int vol)=0;
// more methods...

b

// the input interface
struct IInput: IUnknown

{

virtual int InitInput(int device)=0;
virtual int ReadStick(int stick)=0;
// more methods...

b

Now that you have all your interfaces, let’s create your container class, which is really
the heart of the COM object:

class CT3D_Engine: public IGraphics, ISound, IInput

{
public:

// implement IUnknown here

virtual HRESULT __stdcall QueryInterface(const IId& iid,
(void **)ip)

{ /* real implementation */ }

// this method increases the interfaces reference count

CHAPTER 5 225

DirectX Fundamentals and the Dreaded COM m
virtual ULONG __ stdcall Addref()

{ /* real implementation */}

// this method decreases the interfaces reference count
virtual ULONG __stdcall Release()
{ /* real implementation */}

// note there still isn't a method to create one of these
// objects...

// implement each interface now

// IGraphics
virtual int InitGraphics(int mode)
{ /*implementation */}
virtual int SetPixel(int x, int y, int c)
{/*implementation */}

// ISound
virtual int InitSound(int driver)

{ /*implementation */}
virtual int PlaySound(int note, int vol)

{ /*implementation */}

// IInput
virtual int InitInput(int device)
{ /*implementation */}

virtual int ReadStick(int stick)
{ /*implementation */}

private:
// .. locals
};

You're still missing a generic way to create a COM object. This is a prob-

a lem, no doubt. The COM specification states that there are a number of
ways to do it, but none of them can tie the implementation to a specific
platform or language. One of the simpler ways to do it is to create a
function called CoCreateInstance() or ComCreate() to create the initial
IUnknown instance of the object. The function usually loads a DLL that
contains the COM code and works from there. Again, this technology is
beyond what you need to know, but | just want to throw it out there
for you. However, we're going to cheat a little to continue with the
example.

226 PART 11

W DirectX and 2D Fundamentals

As you can see from the example, COM interfaces and coding are nothing really more
than slightly advanced C++ virtual classes with some conventions. However, true
COM objects must be created properly and registered in the registry, and a number of
other rules must be adhered to. But at the lowest level, they are simply classes with
methods (or for you C programmers, structs) with function pointers, more or less.
Anyway, let’s take a brief step back and review what you know about COM.

A Quick Recap of COM

COM is a new way of writing component software that allows you to create reusable

software modules that are dynamically linked at run-time. Each of these COM objects
has one or more interfaces that do the actual work. These interfaces are nothing more
than collections of methods or functions that are referenced through a virtual function
table pointer (more on this in next section).

Each COM object and interface is unique from the others due to the use of GUIDs, or
Globally Unique Identifiers, that you must generate for your COM objects and inter-
faces. You use the GUIDs or IIDs to refer to COM objects and interfaces and share
them with other programmers.

If you create a new COM object that upgrades an old one, you must still implement
the old interfaces along with any new ones you might add. This is a very important
rule: all programs based on COM objects should still work, without recompilation,

with new versions of the COM object(s).

COM is a general specification that can be followed with any language on any
machine. The only rule is that the binary image of the COM object must be that of a
virtual class generated by a Microsoft VC compiler—it just worked out that way.
However, COM can be used on other machines, like Mac, SGI, and so on, as long as
they follow the rules for using and creating COM objects.

Finally, COM opens up the possibility of creating massive computer programs

(in the multibillion-line range) by means of its component-level generic architecture.
And of course, DirectX, OLE, and ActiveX are all based on COM, so you need to
understand it!

A Working COM Program

As a complete example of creating a COM object and a couple of interfaces, I have
created DEMO5_1.CPP for you. The program implements a COM object called
CCOM_OJBECT that is composed of two interfaces, IX and IY. The program is a decent
implementation of a COM object, but of course it’s missing some of the high-level
details like being a DLL, loading dynamically, and so on. But the COM object is fully
implemented as far as all the methods and the IUnknown class are concerned.

CHAPTER 5 227

DirectX Fundamentals and the Dreaded COM m

What I want you to do is look at it very carefully, play with the code, and see how it
works. Listing 5.1 contains the entire source for the COM object and a simple C/C++
main () test bed to run it in.

ListiNnG 5.1 A Complete COM Object Program

// DEMO5_1.CPP - A ultra minimal working COM example
// NOTE: not fully COM compliant

/1 INCLUDES [/ [/ /11111 r i r i rr i ri i i ri i rrrr

#include <stdio.h>

#include <malloc.h>

#include <iostream.h>

#include <objbase.h> // note: you must include this header it
// contains important constants
// you must use in COM programs

[GUIDS [/ /11T i r i r e r e r e
/! these were all generated with GUIDGEN.EXE

// {B9B8ACE1-CE14-11d0-AE58-444553540000}

const IID IID_IX =

{ 0xb9b8acel, 0Oxcel4, 0x11d0,

{ Oxae, 0x58, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0 } };

// {B9BBACE2-CE14-11d0-AE58-444553540000}

const IID IID_IY =

{ 0xb9b8ace2, 0Oxcel4, 0x11d0,

{ Oxae, 0x58, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0 } };

// {B9BBACE3-CE14-11d0-AE58-444553540000}

const IID IID IZ =

{ 0xb9b8ace3, 0xcel4, 0x11d0,

{ Oxae, 0x58, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0 } };

/1 INTERFACES [//[/[/1 1111111t i ri i i ri i rrrrr

// define the IX interface
interface IX: IUnknown

{

virtual void __ stdcall fx(void)=0;

};

continues

228 PART 11

“ DirectX and 2D Fundamentals

ListiNnG 5.1 Continued

// define the IY interface
interface IY: IUnknown

{

virtual void __ stdcall fy(void)=0;

b

/| CLASSES AND COMPONENTS /////[//[11 1111111111117 1111 710010101

// define the COM object

class CCOM_OBJECT : public IX,
public IY

{

public:

CCOM_OBJECT() : ref_count(0) {}
~CCOM_OBJECT() {}

private:

virtual HRESULT __ stdcall QueryInterface(const IID &iid, void **iface);
virtual ULONG __stdcall AddRef();
virtual ULONG __ stdcall Release();

virtual void __ stdcall fx(void)

{cout << "Function fx has been called." << endl; }
virtual void __ stdcall fy(void)

{cout << "Function fy has been called." << endl; }

int ref_count;
b
/| CLASS METHODS ////// 111111111111t ririirirrirsi

HRESULT _ stdcall CCOM_OBJECT::QueryInterface(const IID &iid,
void **iface)

// this function basically casts the this pointer or the IUnknown
// pointer into the interface requested, notice the comparison with
// the GUIDs generated and defined in the beginning of the program

// requesting the IUnknown base interface

if (iid==IID_IUnknown)
{
cout << "Requesting IUnknown interface" << endl;
iface = (IX)this;

} // end if

CHAPTER 5 229

// maybe IX?
if (iid==IID_IX)
{

cout << "Requesting IX interface" << endl;

iface = (IX)this;

} // end if
else // maybe IY
if (iid==IID_IY)

{

cout << "Requesting IY interface" << endl;

iface = (IY)this;

} // end if
else
{ // cant find it!

DirectX Fundamentals and the Dreaded COM m

cout << "Requesting unknown interaface!" << endl;

*iface = NULL;

return(E_NOINTERFACE);

} // end else

// if everything went well cast pointer to
// IUnknown and call addref()
((IUnknown *)(*iface))->AddRef();

return(S_OK);

} // end QueryInterface

=

LHEEETTEELEE LT r i i r i i r i r i i ri i i ri i rrr

ULONG __ stdcall CCOM_OBJECT: :AddRef ()

{

// increments reference count
cout << "Adding a reference" << endl;

return(++ref_count);

} // end AddRef

LEPTTELTEEEE i i i i i i i i rrrr g

ULONG __stdcall CCOM_OBJECT::Release()

{

// decrements reference count
cout << "Deleting a reference" << endl;

if (--ref_count==0)
{
delete this;
return(0);
} // end if

else
return(ref_count);

continues

Errata

Errata
"interaface!" should be "interface!"

230 PART 11

“ DirectX and 2D Fundamentals

Listing 5.1 Continued

} // end Release

JHLEETETEEE i r i i i r it rriri i irsl
IUnknown *CoCreatelInstance(void)

{

// this is a very basic implementation of CoCreateInstance()

// it creates an instance of the COM object, in this case

// I decided to start with a pointer to IX -- IY would have

// done just as well

IUnknown *comm_obj = (IX *)new(CCOM_OBJECT);

cout << "Creating Comm object" << endl;

// update reference count
comm_obj->AddRef () ;

return(comm_obj);
} // end CoCreatelnstance
NNy,

void main(void)

{

// create the main COM object
IUnknown *punknown = CoCreateInstance();

// create two NULL pointers the IX and IY interfaces
IX *pix=NULL;
IY *piy=NULL;

// from the original COM object query for interface IX
punknown->QueryInterface(IID_IX, (void **)&pix);

// try some of the methods of IX
pix->fx();

// release the interface
pix->Release();
// now query for the IY interface

punknown->QueryInterface(IID_IY, (void **)&piy);

// try some of the methods
piy->fy();

// release the interface

CHAPTER 5 231

DirectX Fundamentals and the Dreaded COM m

piy->Release();

// release the COM object itself
punknown->Release();

} // end main

I have already precompiled the program for you into the executable DEMO5_1 . EXE.
However, if you want to experiment and compile DEMO5_1.CPP, remember to create a
Win32 Console Application because the demo uses main () rather than WinMain() and
is, of course, a text-based program.

Working with DirectX COM Obijects

Now that you have an idea what DirectX is and how COM works, let’s take a closer
look at how they actually work together. Like I said, there are a number of COM
objects that make up DirectX. These COM objects are contained within your system
as DLLs when you load the run-time version of DirectX. When you run a third-party
DirectX game, what happens is that one or more of these DLLs are loaded by the
DirectX application, and then interfaces are requested and the methods (functions) of
the interfaces are used to get the work done. That’s the run-time side of things.

The compile-time angle is a little different. The designers of DirectX knew that they
were dealing with us game programmers, and assumed that most of us hate Windows
programming—yvery true. Alas, they knew that they better keep the COM stuff to a
minimum, or else game programmers would really hate using DirectX. Thus, 90% of
the DirectX COM objects are wrapped in nice little function calls that take care of the
COM stuff. So, you don’t have to call CoCreateInstance(), do COM initialization,
and stuff like that. However, you may have to query for a new interface with
QueryInterface(), but we’ll get to that in a bit. The point is, DirectX really tries to
hide the tedium of working with COM from you so you can work with the core func-
tionality of DirectX.

With all that said, to compile a DirectX program, you must include a number of
import libraries that have the COM wrappers within them so you can make calls to
DirectX using those wrapper functions to create the COM objects. For the most part,
the libraries you need are

DDRAW.LIB
DSOUND.LIB
DINPUT.LIB
DSETUP.LIB
DPLAYX.LIB
D3DIM.LIB
D3DRM.LIB

232 PART 11

W DirectX and 2D Fundamentals

But remember, these libraries don’t contain the COM objects themselves. These are
only wrapper libraries and hooks that make calls to load the DirectX DLLs them-
selves, which are the COM objects. Finally, when you do call one of the DirectX
COM objects, the result is usually just an interface pointer. This is where are the
action occurs. Just like in the example of DEMO5_1.CPP, once you have the interface
pointer, you're free to make function calls—or more correctly in C++ speak, method
calls. However, if you’re a C programmer, take a quick look at the next section if you
feel uncomfortable with function pointers. If you’re a C++ programmer, you can skip
ahead to the next section if you want.

COM and Function Pointers

Once you have created a COM object and retrieved an interface pointer, what you
really have is a VIABLE (Virtual Function Table) pointer. Take a look at Figure 5.7 to
see this graphically. Virtual functions are used so that you can code with function calls
that are not bound until run-time. This is the key to COM and virtual functions. In
essence, C++ has this built in, but you can do the same thing with C by using straight
function pointers.

Figure 5.7 Class with Virtual Functions
Virtual Function Table
architecture Int X;
. IntY;
.
.
.
. Func1();
Normal functions —3» Func28' Notice 2nd level
of indirection Virtual Functions table
VTable Pointer ~f———————>» | & Func3();
& Func4();
& FuncN();

A function pointer is a type of pointer used to make calls to a function. But instead of
the function being hard-bound to some code, you can move it around as long as the
prototype of the function pointer is the same as the function(s) you point it to. For
example, say that you want to write a graphics driver function to plot a pixel on the
screen. But also suppose that you have dozens of different video cards to support and
they all work differently, as shown in Figure 5.8.

CHAPTER 5 233

DirectX Fundamentals and the Dreaded COM m

Figure 5.8 I

Software design Application

needed to support dif- A
ferent video cards.
Y
General Abstraction Layer (Slow) I
A A A
Y Y Y
Hardware Dependent Hardware Dependent Hardware Dependent
Driver Driver Driver
A A A
Y Y Y
Graphics Card I Graphics Card I Graphics Card I
1 5 e N

You want to call the plot pixel function the same way for all these video cards, but the
internal code is different depending on what card is plugged in. Here’s a typical C
programmer’s solution:

int SetPixel(int x, int y, int color, int card)

{

// what video card do we have?

switch(card)
{
case ATI: { /* hardware specific code */ } break;
case VOODOO: { /* hardware specific code */ } break;
case SIII: { /* hardware specific code */ } break;
default: { /* standard VGA code */ } break;

} // end switch

// return success
return(1);

} // end SetPixel

Do you see the problem with this? First, the switch statement sucks. It’s slow, long,
prone to errors, and you might break the function while adding support for another
card. A better solution for straight C is to use function pointers like this:

// function pointer declaration, weird huh?
int (* SetPixel)(int x, int y, int color);

234 PART 11

T DirectX and 2D Fundamentals

// now here's all our set pixel functions

int SetPixel ATI(int x, int y, int color)

{
/| code for ATI

} // end SetPixel ATI

LILEETELELEE L r i i r i r i i i rrry
int SetPixel_VOODOO(int x, int y, int color)

j/ code for VOODOO

} // end SetPixel_VOODOO

PEEETTEETE L r i r i r i r i r i i i irry
int SetPixel SIII(int x, int y, int color)

5/ code for SIII

} // end SetPixel SIII

Now you’re ready to rock. When the system starts up, it checks what kind of card is
installed and then, once and only once, sets the generic function pointer to point to the
correct card’s function. For example, if you wanted SetPixel() to point to the ATI
version, you would code it like this:

// assigning a function pointer
SetPixel = SetPixel ATI;

Isn’t that easy? Figure 5.9 shows what this looks like graphically.

Figure 5.9 [seipixel_siin) SetPixel_voodoo() SetPixel_ATI()
Using function point- { { {
ers to enable different — — —
code blocks. R R R
} } }
A A A
*SetPixel
SetPixel (...);

This call is equivalent to calling

one of the functions SetPixel_SlII(),
SetPixel _ATI(),
SetPixel_voodoo()

CHAPTER 5 235

DirectX Fundamentals and the Dreaded COM m

Notice that SetPixel() is, in a way, an alias for SetPixel ATI(). This is the key to
function pointers. Now, to call SetPixel() you make a normal call, but instead of
calling the empty SetPixel(), the call really calls SetPixel ATI():

// this really calls SetPixel_ ATI(10,20,4);
SetPixel(10,20,4);

The point is that your code always looks likkme, but it does different things based
on how you assign the function pointer. This is such a cool technology that much of
C++ and virtual functions are based on it. That’s all virtual functions really are—Ilate
binding of function pointers, but nicely built into the language and then built up as
you’ve done here.

With that in mind, let’s see how you would finish your generic video driver link-up...
All you have to do is test to see which card is installed, set the SetPixel() function
pointer once to the proper SetPixel* () function, and that’s it. Take a look:

int SetCard(int card)

{
// assign the function pointer based on the card
switch(card)

{
case ATI:

{
SetPixel = SetPixel ATI;

} break;
case VOODOO:
{
SetPixel = SetPixel VOODOO;
} break;
case SIII:
{
SetPixel = SetPixel SIII;
} break;
default: break;
} // end switch

} // end SetCard

At the beginning of your code, you would make a call to the set up function like this:

SetCard(card);

And from then on, you’re good to go. This is how function pointers and virtual func-
tions are used in C++, so now let’s see how these techniques are used with DirectX.

Errata

Errata
"like" should be "the"

236 PART 11

T DirectX and 2D Fundamentals

Creating and Using DirectX Interfaces

At this point, I think you understand that COM objects are collections of interfaces,
which are simply function pointers (and more specifically, VTABLEs). Hence, all you
need to do to work with a DirectX COM object is create it, retrieve an interface
pointer, and then make calls to the interface using the proper syntax. As an example,
I’ll use the main DirectDraw interface to show how this is done.

First off, you need three things to experiment with DirectDraw:
e The DirectDraw run-time COM object(s) and DLLs must be loaded and regis-
tered. This is what the DirectX installer does.

* You must include the DDRAW.LIB import library in your Win32 programs so that
the wrapper functions you call are linked in.

* You need to include DDRAW.H in your program so the compiler can see the
header information, prototypes, and data types for DirectDraw.

With that in mind, here’s the data type for a DirectDraw interface pointer:
LPDIRECTDRAW lpdd = NULL;

Now, to create a DirectDraw COM object and retrieve an interface pointer to the
DirectDraw object (which represents the video card), all you need to do is use the
wrapper function DirectDrawCreate () like this:

DirectDrawCreate (NULL, &lpdd, NULL);

In Chapter 6, “First Contact: DirectDraw,” I go into the parameters in detail. But for
now, just be aware that this call creates a DirectDraw object and assigns the interface
pointer to 1pdd.

Of course, there’s a lot going on in the function. It opens a DLL, loads it,
a makes calls, and does about a million other things. But you don’t have

to worry about it.

Now you’re in business and can make calls to DirectDraw. But wait a minute! You
don’t know the methods or functions that are available—that’s why you’re reading
this book <BG>. As an example, here’s how you would set the video mode to
640x480 with 256 colors:

lpdd->SetVideoMode (640, 480, 256);

Is that simple or what? About the only extra work is the pointer dereference from the
DirectDraw interface pointer 1pdd—that’s it. Of course, what’s really happening is a
lookup in the virtual table of the interface, but don’t be concerned about that.

CHAPTER 5 237

DirectX Fundamentals and the Dreaded COM m

In essence, any call to DirectX takes the following form:

interface_pointer->method_name(parameter list);

Also, you can get any other interfaces that you might want to work with (for example,
Direct3D) from the original DirectDraw interface by using QueryInterface().
Moreover, since there are multiple versions of DirectX floating around, a while ago
Microsoft stopped writing wrapped functions to retrieve the latest interface. What this
means is that you must manually retrieve the latest DirectX interface yourself with
QueryInterface(). Let’s take a look at that.

Querying for Interfaces

The weird thing about DirectX is that all the version numbers are out of sync. This is
a bit of a problem, and definitely a cause for confusion. Here’s the deal: when the first
version of DirectX came out, the DirectDraw interface was named like this:

IDIRECTDRAW

Then, when DirectX 2.0 came out, DirectDraw was upgraded to version 2.0, so we
had this:

IDIRECTDRAW
IDIRECTDRAW2

Now, at version 6.0, we have something like this:

IDIRECTDRAW
IDIRECTDRAW2
IDIRECTDRAW4

Wait a minute—what happened to interfaces 3 and 5? I have no idea, but this is the
problem. Hence, the idea is that even though you’re using DirectX 7.0, it doesn’t
mean that the interfaces are up to that version. Moreover, they can all be out of sync.
DirectX 6.0 may have DirectDraw interfaces up to IDIRECTDRAW4, but DirectSound is
only up to interface version 1.0, which is simply called IDIRECTSOUND. You can see
the mess we’re in! The moral of the story is that whenever you use a DirectX inter-
face, you should make sure that you’re using the latest version. If you’re not sure, use
the revision 1 interface pointer from the generic create function to get the latest ver-
sion.

Here’s an example of what I’'m talking about: DirectDrawCreate () returns a revision
1.0 interface pointer, but DirectDraw is really up to IDIRECTDRAW4. So how do you
take advantage of this new functionality?

A < If you're having a panic attack over this stuff, don’t feel alone. | was
n \y using the version 1.0 interfaces up until version 5.0 of DirectX, since the
»

a DirectX docs are nebulous in this area—typical!

238 PART 11

W DirectX and 2D Fundamentals

There are two ways to do this: with low-level COM functions or with
QueryInterface(). Let’s use the latter. The process goes like this: First, you create
the DirectDraw COM interface with a call to DirectDrawCreate (). This returns a
boring IDIRECTDRAW interface pointer. Then, you make a call to QueryInterface()
using this pointer and you retrieve it using the Interface ID (or GUID) for IDIRECT -
DRAW4. Here’s an example:

LPDIRECTDRAW 1lpdd; // version 1.0
LPDIRECTDRAW4 1lpdd4; // version 6.0, but called 4.0

// create version 1.0 DirectDraw object interface
DirectDrawCreate (NULL, &lpdd, NULL);

// now look in DDRAW.H header, find IDIRECTDRAW4 interface
// ID and use it to query for the interface
1lpdd->QueryInterface(IID_IDirectDraw4, &lpdd4);

At this point, you have two interface pointers. But you don’t need the pointer to
IDIRECTDRAW, so you should release it:

/| release, decrement reference count
lpdd->Release();

// set to NULL to be safe
1lpdd = NULL;

Remember this? You should release an interface when you’re done with it. Hence,
when your program terminates, you would also release the IDIRECTDRAW4 interface
like this:

// release, decrement reference count
1pdd4->Release();

// set to NULL to be safe
1pdd4 = NULL;

That’s all there is to using DirectX and COM. Of course, you haven’t seen all the
hundreds of functions that DirectX components have or all the interfaces—but you
will <BG>.

The Future of COM

Currently, there are a number of distributed object technologies similar to COM, such
» COBRA (Common Object Broker Architecture). However, since you’re worried
Zoout Windows games, these other technologies aren’t as important.

The latest version of COM is called COM++, and it’s a much more robust implemen-
tation, with better rules and a more thought-out set of implementation details.
COM++ will make distributed component software even easier to create. Granted,
COM++ is a bit more complex than COM, but hey, that’s life.

Errata

Errata
"COBRA" should be "CORBA"
 "Common Object Broker Architecture" should be "Common Object Request Broker Architecture"

Errata

CHAPTER 5 239

DirectX Fundamentals and the Dreaded COM m

In addition to COM and COM++, there’s also the full Internet/intranet version of
COM called DCOM—Distributed COM. With DCOM technology, the COM objects
don’t even need to be on your machine. They can be served from other machines on
the network. Is that cool or what? Imagine having massive DCOM servers that your
programs basically act as clients to. Incredible technology, if I do say so myself.

Summary

This chapter has covered some pretty technical material and concepts. COM is not
simple to understand, and it does take a bit of studying to really get a good hold on it.
However, using COM is ten times easier than understanding it, as you’ll see in the
next chapter. Anyway, you also took a look at DirectX and all of its components. So
once you’ve seen the details of each component and how to use it in the following
chapters, you’ll have a good idea of how they fit together.

CHAPTER b

First Contact: DirectDraw

“Are you sure you don’t want to come upstairs?”
—John Milton, The Devil’s Advocate

In this chapter you’re going to take your first look at one of the
most important components of DirectX: DirectDraw. This is
perhaps the most enabling technology in DirectX because it’s the
conduit through which 2D graphics are performed and the frame
buffer layer that Direct3D is built upon. Furthermore, if you
understand DirectDraw alone, you have more than enough power
to create any kind of graphical application that you might have
written under DOS16/32. DirectDraw is the key to understand-
ing a number of concepts indigenous to DirectX, so listen up!

Here’s your hit list for this chapter:

e The interfaces of DirectDraw

* Creating a DirectDraw object

* Cooperating with Windows
 Getting into the mode of things
* The subtleties of color

¢ Building a display surface

242 PART 11

W DirectX and 2D Fundamentals

The Interfaces of DirectDraw

DirectDraw is composed of a number of interfaces. If you recall from the discussion
on the Component Object Model (COM) in Chapter 5, “DirectX Fundamentals and
the Dreaded COM,” interfaces are nothing more than collections of functions and/or
methods that you use to communicate with components. Take a look at Figure 6.1 for
a graphical illustration of the DirectDraw interfaces.

Figure 6.1 Main Com object all others

. are retrieved from
The interfaces of

DirectDraw. /

IDirectDraw

IDirectDrawPalette I— IUnknown I— IDirectDrawSurface I

IDirectDrawClipper I

Interface Characteristics

As you can see, there are only five interfaces that make up DirectDraw:

IUnknown—AIll COM objects must be derived from this base interface, and
DirectDraw is no exception. IUnknown doesn’t contain much more than the Addref (),
Release(), and QueryInterface() functions that are overridden by each of the other
interfaces.

IDirectDraw—This is the main interface object that must be created to start working
with DirectDraw. IDirectDraw literally represents the video card and support hard-
ware. Interestingly enough, with MMS (Multiple Monitor Support) and Windows
98/NT, now you can have more than one video card installed in your system and
hence more than one DirectDraw object. However, in this book we’ll assume that
there is only one video card in the computer and always select the default card to
represent the DirectDraw object, even if there is more than one card in the system.

IDirectDrawSurface—This represents the actual display surface(s) that you will
create, manipulate, and display using DirectDraw. A DirectDraw surface can exist on
the video card itself using VRAM (Video RAM) or within system memory. There are
basically two types of surfaces: primary surfaces and secondary surfaces.

Primary surfaces usually represent the actual video buffer that is currently being
rasterized and displayed by the video card. Secondary surfaces, on the other hand, are
usually offscreen. In most cases, you will create a single primary surface to represent

CHAPTER 6 243

First Contact: DirectDraw qﬂ.

the actual video display, and then one or more secondary surfaces to represent object
bitmaps and/or back buffers to represent offscreen drawing areas where you’ll build
up the next frame of animation. We’ll get to the details of surfaces later in the chapter,
but for now, take a look at Figure 6.2 for a little graphical elaboration.

Video Display (mxn)

Main Memory (slower) @

Figure 6.2
DirectDraw surfaces.

(0,0
m,xn, [IDirectDraw Surface A
A l_ Rasterization Hardware
©.0) A
’ Primary Surface
v Ly
myxn,
DirectDraw] @ A
©,0 mxn
maxn _ Off-screen surfaces \ .
s in main directory Secondary Surface
Back Buffer
BN for smooth /
animation
mxn Off-screen
Video Card
VRAM (fast)

IDirectDrawPalette—DirectDraw is equipped to deal with any color space, from
1-bit monochrome to 32-bit Ultra-True Color. Thus, DirectDraw supports the
IDirectDrawPalette interface to deal with color palettes in video modes that use 256
or fewer colors. In this case, you will use the 256-color mode extensively in a number
of demos because it’s the fastest mode for a software rasterizer. In the discussion of
Direct3D Immediate Mode in Volume II, you’ll switch over to 24-bit color because
that’s the native mode that D3D likes to work in. In any case, the
IDirectDrawPalette interface is used to create, load, and manipulate palettes, and to
attach palettes to drawing surfaces, such as the primary or secondary surfaces that
you might create for your DirectDraw applications. Take a look at Figure 6.3 to see
the relationship between a drawing surface and a DirectDraw palette.

IDirectDrawClipper—This is used to help with clipping DirectDraw raster and
bitmap operations to some subset of the visible display surface. In most cases, you’ll
only use DirectDraw clippers for windowed DirectX applications and/or to clip
bitmap operations to the extents of your display surface, whether it be a primary or
secondary surface. The cool thing about the IDirectDrawClipper interface is that it
takes advantage of hardware acceleration if it’s available, and the costly pixel-by-
pixel or sub-image processing that is normally needed to clip bitmaps to the screen
extents is done for you.

244 PART 11

W DirectX and 2D Fundamentals

Figure 5_3 IDirectDraw Surface
The relationship DirectDraw Surface <% IDirectDraw palette
between DirectDraw Usually primary
surfaces and palettes. 350 x 240 Color Index
640 x 480 v -
800 x 600 o| Ro Go Bo
: 1| R Gi B
° Color
° - Palette
Y .
Color
Video Display 255 | Rass | Gizss | Bass J
256 Col
olors Each entry is composed
of Red, Green, and Blue

in 8.8.8 format.

Now, before you move on to creating a DirectDraw object, I want to refresh your
memory with some tasty tidbits of information that we touched upon in the previous
chapter when dealing with COM. DirectDraw and all DirectX components are in con-
stant flux, and thus the interfaces are always being upgraded. Alas, even though so far
in this chapter I have referred to the interfaces of DirectDraw generically as
IDirectDraw, IDirectDrawSurface, IDirectDrawPalette, and IDirectDrawClipper,
for the most part these interfaces have all been updated and newer versions exist. For
example, IDirectDraw is up to IDirectDraw4 as of DirectX version 6.0.

All this means is that if you want the very latest software and hardware performance,
you should always IUnknown: :QueryInterface () for the latest interface revision.
However, to find this out you’ll have to take a look at the DirectX SDK docs. Of
course, in this book you’re using DirectX 6.0, so you already know what’s up, but
keep in mind that when you upgrade to 7.0 you might have some newer interfaces that
you want to use. However, both volumes of this book are about writing your own ras-
terization and 3D software, so I want to cheat as little as possible. In most cases,
you’re going to be using very few of the bells and whistles of all the new revisions.
Cool, home slice?

Using the Interfaces Together

Next, I want to briefly run down how all the interfaces are used together to create a
DirectDraw application:

1. Create the main DirectDraw object and retrieve a IDirectDraw4 interface.
Using this interface, set both the cooperation level and video mode.

2. Using the IDirectDrawSurface interface, create at least a primary surface to
draw on. Based on the color depth of the surface and the video mode itself, a
palette will be needed if the video mode is 8 bits per pixel or less.

CHAPTER 6 245

First Contact: DirectDraw m

3. Create a palette using the IDirectDrawPalette interface, initialize it with RGB
triples, and attach it to the surface of interest.

4. If the DirectDraw application is going to be windowed, or if you’re going to
render bitmaps that could potentially go out of bounds of the visible DirectDraw
surface, at least create a single clipper and size it to the extents of the visible
window. See Figure 6.4.

Figure 6.4 No Clipper
DirectDraw clippers. mxn Not Clipped

Direct Draw
Surface

With Clipper (mxn)

1
1
1
) 1 Clipped
Direct Draw 1 (only works for Blitter)
1
1
1
1
1

Surface

IDirectDraw clipper
same size as surface

5. Draw on the primary surface.

Of course, there are about a bazillion (yes, that’s a technical term) little details I've
left out, but that’s the gist of using the different interfaces. With that in mind, let’s get
down to details and really make these interfaces work...

You might want to have both the DDRAW.H header file and the DirectX
SDK Help system open for reference during the remainder of the
chapter.

Creating a DirectDraw Object

To create a DirectDraw object with C++, all you need to do is call
DirectDrawCreate(), shown here:
HRESULT WINAPI DirectDrawCreate(GUID FAR *1pGUID, // guid of object

LPDIRECTDRAW FAR *1plpDD, // receives interface
IUnknown FAR *pUnkOuter); // com stuff

246 PART 11

T DirectX and 2D Fundamentals

1p6UID—This is the GUID (Globally Unique Identifier) of the display driver that you
want to use. In most cases, you’ll simply send NULL to represent the default hardware.

1p1pbdD—This is a pointer to a pointer that receives the IDirectDraw interface pointer
if the call is successful. Note that the function returns a IDirectDraw interface, not a
IDirectDraw4 interface!

pUnkOuter—Advanced feature; always send NULL.

Here’s how you would use the function to create a default DirectDraw object based on
the IDirectDraw interface:

LPDIRECTDRAW 1pdd = NULL; // storage for IDirectDraw

// create the DirectDraw object
DirectDrawCreate (NULL, &lpdd, NULL);

If the function is successful, 1pdd will be a valid IDirectDraw object interface.
However, you still would like that latest interface, IDirectDraw4. But before you
learn how to do that—what about error handling?

Error Handling with DirectDraw

Error handling in DirectX is very clean. There are a number of macros that can test
the results of any function for general success or failure. The Microsoft-endorsed way
of testing for errors with DirectX functions is to use these two macros:

FAILED ()—Tests for failure.
SUCCEEDED ()—Tests for success.

Based on this new information, you could do something smart by adding the
following error handling code:

if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// error
} // end if

Or similarly, you could test for success:

if (SUCCEEDED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// move onto next step
} // end if
else
{
/] error

} // end else

CHAPTER 6 247

First Contact: DirectDraw m

I usually use the FAILED () macro because I don’t like having two different logic
paths, but whatever lights your fusion reactor... The only problem with the macros is
that they don’t tell you much; they are more to detect a general problem. If you want
to know the exact problem, you can always take a look at the return code for the
function. In this case, Table 6.1 lists the possible return codes for DirectX version 6.0
DirectDrawCreate().

TaBLE 6.1 Return Codes for DirectDrawCreate()

Return Code Description

DD_OK Total Success.
DDERR_DIRECTDRAWALREADYCREATED DirectDraw object has already been created.
DDERR_GENERIC DirectDraw has no idea what’s wrong.
DDERR_INVALIDDIRECTDRAWGUID The device GUID is unknown.
DDERR_INVALIDPARAMS Something is wrong with the parameters you sent.
DDERR_NODIRECTDRAWHW There isn’t any hardware.

DDERR_OUTOFMEMORY Take a wild guess?

The only problem with using the constants along with conditional logic is that
Microsoft doesn’t guarantee that they won’t completely change all the error codes.
However, I think that you’ll be pretty safe with

if (DirectDrawCreate(...)!=DD_OK)

{
/] error
} // end if

in all cases. Moreover, DD_OK is defined for all DirectDraw functions, so you can use
it safely without worrying.

Getting an Interface Lift

As I said, you can use the basic IDirectDraw interface stored in 1pdd from the call to
DirectDrawCreate (). Or you can upgrade it to the latest version (whatever it may be)
by querying for a new interface via the IUnknown interface method
QueryInterface(), which is part of every DirectDraw interface implementation. The
latest DirectDraw interface as of DirectX version 6.0 is IDirectDraw4, so here’s how
you retrieve the interface pointer:

LPDIRECTDRAW 1lpdd
LPDIRECTDRAW 1lpdd4

NULL; // standard DirectDraw 1.0
NULL; // DirectDraw 6.0 interface 4

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))
{

248 PART 11

W DirectX and 2D Fundamentals

/| error
} // end if

// now query for IDirectDraw4
if (FAILED(1lpdd->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&1lpdd4)))

{
// error
} // end if

Now, here are the important things to pay attention to:

e The way that QueryInterface() is called.

e The constant used to request the IDirectDraw4 interface, which is
IID_IDirectDraw4.

In general, all calls from an interface are in the form
interface_pointer->method(parms...);

And all Interface Identifiers are in the form
IID_IDirectCD

Here, C refers to the component: Draw for DirectDraw, Sound for DirectSound, Input
for DirectInput, and so on. D is a number, from 2 to n, indicating the interface you
desire. In addition, you can find all these constants within the DDRAW. H file.

Moving on with this example, you now have a bit of a dilemma—you have both a
IDirectDraw interface and a IDirectDraw4 interface. What to do? Simply blow the
old interface away since you don’t need it, like this:

lpdd->Release();
lpdd = NULL; // set to NULL for safety

And from this point on, do all method calls using the new interface IDirectDraw4.

Along with the new functionality of IDirectDraw4 comes a little
housekeeping and responsibility. The problem is that not only is the
IDirectDraw4 interface more sophisticated and advanced, but in many
cases it needs and returns new data structures rather than the base
structures defined for DirectX 1.0. The only way to be sure about these
anomalies is to take a look at the DirectX SDK documentation and verify
the version of the data structure that any specific function needs and/or
returns. However, this is just a warning in general. I'll show you the cor-
rect structures for all the examples that you work through in this book—
because I'm that kind of guy! By the way, my birthday is on

June 14th.

CHAPTER 6 249

First Contact: DirectDraw m

In addition to using the QueryInterface() function from the initial IDirectDraw
interface pointer (1pdd), there is a more direct “COM way” of getting the
IDirectDraw4 interface directly. Under COM, you can retrieve an interface pointer to
any interface as long as you have the Interface ID, or IID, that represents the interface
that you desire. In most cases, I personally prefer not to use low-level COM functions
because I already have enough drama in my life. Nevertheless, when you get to
DirectMusic there will be no way around using low-level COM stuff, so this is a good
place to at least introduce the process to you. Here’s how you would directly obtain an
IDirectDraw4 interface:

// first initialize COM, this will load the COM libraries

// if they aren't already loaded
if (FAILED(CoInitialize(NULL)))

{
/] error
} // end if

/| Create the DirectDraw object by using the
/| CoCreatelInstance() function
if (FAILED(CoCreateInstance(&CLSID DirectDraw,

NULL,
CLSCTX_ALL,
&IID_IDirectDraw4,
&1pdd4)))

{

/] error

} // end if

// now before using the DirectDraw object, it must
// be initialized using the initialize method

if (FAILED(IDirectDraw4 Initialize(lpdd4, NULL)))

{
// error
} // end if

// now that we're done with COM, uninitialize it
CoUninitialize();

The preceding code is the Microsoft-recommended way to create a DirectDraw
object. However, the technique does cheat a bit and use one macro:

IDirectDraw4_Initialize(lpdd4, NULL);
You can get rid of this and be totally COM by replacing it with

lpdd4->Initialize(NULL);

250 PART 11

W DirectX and 2D Fundamentals

where the NULL in both calls is the video device, which in this case is the default
driver. (That’s why it’s been left NULL.) In any case, it’s not hard to see how the
macro expands out into the code in the preceding line. Just makes life easier, I guess?
But then, why doesn’t Microsoft continue to make macros to create new interfaces
like

DirectDrawCreate4(...);

That would be nice, but why ask why? My point is that you might want to do this
yourself so that all your code looks fairly uniform.

Now that you know how to create a DirectDraw object and obtain the latest interface,
let’s move on to the next step in the sequence of getting DirectDraw working, which
is setting the cooperation level.

Cooperating with Windows

As you know, Windows is a cooperative, shared environment. At least that’s the idea,
although as a programmer I still haven’t figured out how to make it cooperate with
my code! Anyway, DirectX is similar to any Win32 system, and at the very least, it
must inform Windows that it’s going to use various resources so that other Windows
applications don’t try to request (and get) resources that DirectX has control over.
Basically, DirectX can be a complete resource hog as long is it tells Windows what
it’s doing—seems fair to me <BG>.

In the case of DirectDraw, about the only thing that you should be interested in is the
video display hardware. There are two cases that you must concern yourselves with:

e Full-screen mode

¢ Windowed mode

In full-screen mode, DirectDraw acts much like an old DOS program. That is, the
entire screen surface is allocated to your game, and you write directly to the video
hardware. No other application can touch the hardware. Windowed mode is a little
different. In windowed mode, DirectDraw must cooperate much more with Windows
because other applications may need to update their own client window areas (which
may be visible to the user). Hence, in windowed mode your control and monopoliza-
tion of the video hardware is much more restrained. However, you still have full
access to 2D and 3D acceleration, so that’s a good thing. But then, so were bell-
bottoms at first...

Chapter 7, “Advanced DirectDraw and Bitmapped Graphics,” will talk more about
windowed DirectX applications, but they are a little more complex to handle. Most of
this chapter will deal with full-screen modes because they are easier to work with, so

CHAPTER 6 251

First Contact: DirectDraw m

Now that you know a little bit about why there needs to be cooperation between
Windows and DirectX, let’s see how to tell Windows how you want to cooperate.
To set the cooperation level of DirectDraw, use the IDirectDraw4: :
SetCooperativelLevel() function, which is a method of IDirectDraw4.

keep that in mind.

For you C programmers, the syntax IDirectDraw4: :SetCooperative
Level() may be a little cryptic. The : : operator is called the scope

resolution operator, and the syntax simply means that
SetCooperativelLevel() is a method (or member function) of the
IDirectDraw4 interface. This is basically a class that is nothing more
than a structure with data and a virtual function table. In some cases, |
may forgo using the interface to prefix the method and write it like
SetCooperativelLevel(). However, be advised that all DirectX func-
tions are part of an interface and thus must be called using a function
pointer style call, like 1pdd->function(...).

Here’s the prototype of IDirectDraw4: :SetCooperativelLevel():

HRESULT SetCooperativelLevel (HWND hWnd, // window handle
DWORD dwFlags);// control flags

This returns DD_OK if successful, and an error code if not.

Interestingly enough, this is the first time that the window handle has entered into the

DirectX equation. The hWnd parameter is needed so that DirectX (or more specifically,
DirectDraw) has something to anchor to. Simply use your main window handle in all

cases.

The second and last parameter to SetCoopertiveLevel() is dwFlags, which is the
control flags parameter and directly influences the way that DirectDraw works with
Windows. Table 6.2 lists the most commonly used values that can be logically OR’ed
together to obtain the desired cooperation level.

TaBLE 6.2 Control Flags for SetCooperativeLevel()

Value Description

DDSCL_ALLOWMODEX Allows the use of Mode X (320x200,240,400) display
modes. Can be used only if the DDSCL_EXCLUSIVE and
DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT Allows Ctrl+Alt+Del to be detected while in exclusive
(full-screen) mode.

continues

252 PART 11

T DirectX and 2D Fundamentals

TaBLE 6.2 Continued

Value Description

DDSCL_EXCLUSIVE Requests the exclusive level. This flag must be used with
the DDSCL_FULLSCREEN flag.

DDSCL_FPUSETUP Indicates that the calling application is likely to keep the

FPU set up for optimal Direct3D performance (single pre-
cision and exceptions disabled) so Direct3D does not need
to explicitly set the FPU each time. For more information,
look up “DirectDraw Cooperative Levels and FPU
Precision” in the DirectX SDK.

DDSCL_FULLSCREEN Indicates full-screen mode will be used. GDI from other
applications will not be able to draw on the screen. This
flag must be used with the DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED Requests multithread-safe DirectDraw behavior. Don’t
worry about this for now.

DDSCL_NORMAL Indicates that the application will function as a regular
Windows application. This flag cannot be used with the
DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or
DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES Indicates that DirectDraw is not allowed to minimize or
restore the application window on activation.

If you take a good look at the various flags, it may seem that some of them are
redundant—very true. Basically, DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE must be
used together, and if you decide to use any Mode X modes, you must use
DDSCL_FULLSCREEN, DDSCL_EXCLUSIVE, and DDSCL_ALLOWMODEX all together. Other
than that, the flags pretty much do what they would seem to from their definitions. In
most cases, you’ll set full-screen applications like this:
1pdd4->SetCooperativeLevel (hwnd,

DDSCL_FULLSCREEN !

DDSCL_ALLOWMODEX !

DDSCL_EXCLUSIVE !
DDSCL_ALLOWREBOOT) ;

and normal windowed applications like this:
1pdd4->SetCooperativelevel(hwnd, DDSCL_NORMAL) ;

Of course, when you get to multithreaded programming techniques later in the book,
you might want to add the multithreading flag DDSCL_MULTITHREADED to play it safe.
Anyway, let’s see how you would create a DirectDraw object and set the cooperation
level together:

CHAPTER 6 253

First Contact: DirectDraw qu.

LPDIRECTDRAW 1pdd4 = NULL; // DirectDraw 6.0 interface 4

@ LPDIRECTDRAW 1lpdd = NULL; // standard DirectDraw 1.0

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// error
} // end if

// now query for IDirectDraw4
if (FAILED(1lpdd->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&1pdd4)))

{
/] error
} // end if

// now set the cooperation level for windowed directdraw

// since we aren't going to do any drawing yet

if (FAILED(1lpdd4->SetCooperativelLevel(hwnd, DDSCL_NORMAL)))
{
/] error
} // end if

w | may start leaving out the error handling calls to FAILED() and/or
Q a SUCCEEDED () to save space, but remember that you should always
check for errors!

At this point, you have enough information to create a complete DirectX application
that creates a window, starts up DirectDraw, and sets the cooperation level. Although
you don’t know how to draw, it’s a start. As an example, take a look at DEMO6_1.CPP
on the CD, along with its executable DEMO6_1.EXE. When you run the program, you’ll
see something like what’s shown in Figure 6.5. I based the program on the T3D
Game Console template, so the only changes I made were in the Game_Init() and
Game_Shutdown () to create and set the cooperation level for DirectDraw.

Figure 55 B rirectPraw Initialization Demo
DEMO6_1 . EXE in action.

Errata

Errata
"LPDIRECTDRAW" should be "LPDIRECTDRAW4"

254 PART 11

m DirectX and 2D Fundamentals

Here are those functions with the added DirectDraw code from DEMO6_1.CPP, so you
can see how simple DirectDraw is to set up:

int Game_Init(void *parms = NULL, int num_parms = 0)

{

// this is called once after the initial window is created and

// before the main event loop is entered, do all your initialization
/] here

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))
{
// error
return(0);
} // end if

// now query for IDirectDraw4
if (FAILED(1lpdd->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&1lpdd4)))
{
/] error
return(0);
} // end if

// set cooperation to normal since this will be a windowed app
1lpdd4->SetCooperativelLevel(main_window_handle, DDSCL_NORMAL) ;

// return success or failure or your own return code here
return(1);

} // end Game_Init
PEEEETEELL L r i rr i rr i r i i ir

int Game_Shutdown(void *parms = NULL, int num_parms = 0)

{

// this is called after the game is exited and the main event
// loop while is exited, do all you cleanup and shutdown here

// simply blow away the IDirectDraw4 interface
if (1lpdd4)

{

1pdd4->Release();

lpdd4 = NULL;

} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

CHAPTER 6 255

First Contact: DirectDraw m

If you're about to jump in head-first and try to compile DEMO6_1.CPP,
please remember to manually include DDRAW. LIB from the DirectX 6.0
SDK LIB\ directory, along with adding the DirectX header paths to your
compiler’s .H search directories as the first directory! And of course, you
should build a Win32 .EXE. | get at least 10 emails a day from rookie
compiler users who forget to include the .LIB files, so don’t be another
statistic...

Getting into the Mode of Things

The next step in setting up DirectDraw is probably the coolest of all. Normally, in
DOS setting the video mode is fairly reasonable for the basic ROM BIOS modes, but
in Windows it’s nearly impossible due to the aftershocks of the mode switch.
However, with DirectX, it’s a snap. One of the main goals of DirectDraw was to make
video mode switching trivial and transparent to the programmer. No more VGA/CRT
control register programming just to make a single call. Presto—the mode will be set
to whatever you desire (if the card can do it, of course).

The function to set the video mode is called SetVideoMode () and is a method of the
IDirectDraw4 interface, or, in C++-speak, IDirectDraw4: :SetVideoMode (). Here’s

its prototype:

HRESULT SetDisplayMode (DWORD dwWidth, // width of mode in pixels

DWORD dwHeight, // height if mode in pixels

DWORD dwBPP, // bits per pixel, 8,16,24, etc.

DWORD dwRefreshRate, // desired refresh, @ for default
DWORD dwFlags); // extra flags (advanced) @ for default

As usual, the function returns DD_OK if successful.

All you should be saying is, “Wow, this is too good to be true!” Have you ever tried to
set up a Mode X mode like 320x400 or 800x600 mode? Even if you’re successful,
good luck trying to render to the video buffer! With this DirectDraw function, you just
send the width, height, and color depth, and bam! DirectDraw handles all the idiosyn-
crasies of whichever video card is plugged in, and if the requested mode can be built,
it is. Moreover, the mode is guaranteed to have a linear memory buffer... but more on
that later. Take a look at Table 6.3 for a brief refresher on the most commonly used
video modes and their color depths.

TaBLE 6.3 Common Video Mode Resolutions

Width Height BPP Mode X
320 200 8 *
320 240 8 *

continues

256 PART 11

W DirectX and 2D Fundamentals

TaBLE 6.3 Continued

Width Height BPP Mode X
320 400 8 *

512 512 8,16,24,32

640 480 8,16,24,32

800 600 8,16,24,32

1024 768 8,16,24,32

1280 1024 8,16,24,32

Interestingly enough, you can request any mode you wish. For example, you can
choose 400x400, and if the video driver can build it, it will work. However, it’s best
to stick to the modes listed in Table 6.3 because they are the most common.

W.JS// Actually, there is a Win32 API function to set the video mode that | have
7*'// used before, but it wreaks havoc on the system and really messes things

up.

Referring back to the function, the first three parameters are straightforward, but

the last two need a bit of explanation. dwRefreshRate is used to override the video
driver’s default refresh for the mode you request. Hence, if you request a 320x200
mode, chances are the refresh will be at 70Hz. But with this parameter, you could
force it to 60Hz if you wanted to. I would leave the refresh rate alone, to tell you the
truth, and simply set the bit to 0 (which indicates to the driver to use the default).

The last parameter, dwFlags, is an extra flags WORD that is a catchall and is of very
little use. Currently, it’s used as an override so you can use VGA mode 13h for
320%200 instead of Mode X 320x200 via the flag DDSDM_STANDARDVGAMODE. Again,

I wouldn’t worry about it. If you do write a game that uses 320x200, you can try
experimenting with this flag and using VGA mode 13h or Mode X for 320x200 to
see which is faster, but the performance difference will be almost negligible. For now,
just set dwFlags to 0.

That’s enough of the preliminaries. Let’s get to switching modes! To switch modes,
you must create the DirectDraw object, set the cooperation level, and finally set the
display mode, like this:

1pdd4->SetDisplayMode (width,height,bpp,0,0);

For example, to create a 640x480 mode in 256 (8-bit) color, you would do this:

CHAPTER 6 257

First Contact: DirectDraw m

1pdd4->SetDisplayMode (640,480,8,0,0);
And to set a 800x600 with 16-bit color, you would do this:
1pdd4->SetDisplayMode (800,600,16,0,0);

Now, there’s a big difference between these two modes that extends further than the
mere difference in resolution: the color depth. An 8-bit mode works completely
differently than a 16-, 24-, or 32-bit mode. If you’ll recall, the previous chapters on
Win32/GDI programming covered the topic of palettes extensively (Chapter 3,
“Advanced Windows Programming,” and Chapter 4, “Windows GDI, Controls, and
Last-Minute Gift Ideas”), and the same theory is in force with DirectDraw. That is,
when you create an 8-bit mode, you are requesting a palettized mode, and you must
also create a palette and fill it with 8.8.8 RGB entries.

On the other hand, if you create a straight RGB mode like 16, 24, or 32 bpp (bits per
pixel), you don’t have to take this step. You can write encoded data directly to the
video buffer (when you learn how). At very least, you must learn how to work with
DirectDraw palettes (which will be the next topic of discussion). However, before
moving on, let’s take a look at a complete example of creating a full-screen DirectX
application with a resolution of 640x480x8.

DEMO6_2.CPP on the CD and the associated executable do just that. I would show you
a figure, but all you would see is a black rectangle because the demo is a full-screen
application. However, I can surely show you the code that makes it happen. As usual,
I have based the demo on your game console, with the appropriate modifications, and
made the DirectX-related changes to the Game_Init() and Game_Shutdown() sections,
which are listed here from DEM06_2.CPP. Take a close look at them and be amazed by
the simplicity...

int Game_Init(void *parms = NULL, int num_parms = 0)

{

// this is called once after the initial window is created and

// before the main event loop is entered, do all your initialization
/1 here

/| first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))
{
/] error
return(0);
} // end if

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&1lpdd4)))
{

// error

258 PART 11

m DirectX and 2D Fundamentals

return(0);
} // end if

/! set cooperation to full screen
if (FAILED(1lpdd4->SetCooperativelLevel(main_window_handle,
DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))
{
/] error
return(0);
} // end if

// set display mode to 640x480x8
if (FAILED(1lpdd4->SetDisplayMode (SCREEN_WIDTH,
SCREEN_HEIGHT, SCREEN_BPP,0,0)))
{
/] error
return(0);
} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Init
FELETETEEEE i i i n i rriririr

int Game_Shutdown(void *parms = NULL, int num_parms = 0)

{
// this is called after the game is exited and the main event
// loop while is exited, do all your cleanup and shutdown here

// simply blow away the IDirectDraw4 interface
if (1lpdd4)

{

1pdd4->Release();

1pdd4 = NULL;

} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

At this point, there are two things that you’re still missing: controlling the palette
(in 256-color modes) and accessing the display buffers. Let’s take care of the color
problem first.

CHAPTER 6 259

First Contact: DirectDraw qﬂ.

The Subtleties of Color

DirectDraw supports a number of different color depths, including 1, 2, 4, 8, 16, 24,
and 32 bpp. Obviously, 1, 2, and 4 bits per pixel are a little outdated, so don’t concern
yourself with these color depths. On the other hand, the 8-, 16-, 24-, and 32-bit modes
are of utmost interest. Most games you write, you’ll write to run in either 8-bit
palettized mode for speed reasons, or 16- or 24-bit mode for full RGB color utiliza-
tion. The RGB modes work by writing similar-sized WORDs into the frame buffer, as
shown in Figure 6.6. The palletized mode works by using a look-up table that is
indexed by each individual pixel value in the frame buffer, which is always a single
byte. Thus, there are 256 different values—you have seen all this before, so it should

look familiar.
Figure 6.6 640x480x8 256 color mode Color Palette (IDirectDraw Palette)
Comparison of vari- 12 Index 0| Ro Go Bo In 256 color modes
ous color depths. 1| Ry G B, each pixel is an Index
. into color lookup table
8-bit color 102
Index .
8-bit 102
mode > Rie Gioz B1oz
fastest -
.
255 | Rass Goss Bass
640 x 480 x 16 64k color mode
16-Bit
Each pixel is
) 2 bytes Dis Red Green Blue Dg
16-bit
mode 16-Bit —>| Rs-Ro | Gs- Go | Bs4-Bo
fast RGB
56.5 \ ~ /
16-Bit RGB color
DirectX Encoded
640 x 480 x 24 16.7 million color mode (True Color)
24-Bit
) RGB D3; Red Green Blue Dg
24-bit
mode 24-Bit —>| R7- Ro | G7-Go | B7-Bo
slow
8.8.8 N I
Lots of data Y
24-Bit color
8.8.8 format

What you need to learn to do is create a 256-color palette and then tell DirectDraw
that you want to use it. So let’s see the steps involved:

260 PART 11

W DirectX and 2D Fundamentals

1. Create one or more palette data structures as arrays of 256 PALETTENTRY’s.

2. Create a DirectDraw palette interface IDirectDrawPalette object from the
DirectDraw object itself. In many cases, this will be directly mapped to the
hardware VGA palette registers.

3. Attach the palette object to a drawing surface, such as the primary surface, so
all data rendered to it is displayed in the appropriate colors.

4. (Optional) If you desire, you can change the palette entries or the entire palette.
You will need to take this step if you sent a NULL palette during step 2 and opted
to omit step 1. Basically, what I’m trying to say is that when you create a
palette interface, you can send it a palette of color also. But if you don’t, you
can always do it later. Therefore, step 2 can be step 1 if you remember to fill up
the palette entries at a later time.

Let’s begin by creating the palette data structure. It’s nothing more than an array of
256 palette entries based on the PALETTENTRY Win32 structure, shown here:

typedef struct tagPALETTEENTRY

{

BYTE peRed; // red component 8-bits
BYTE peGreen; // green component 8-bits
BYTE peBlue; // blue component 8-bits

BYTE peFlags; // control flags: set to PC_NOCOLLAPSE
} PALETTEENTRY;

Look familiar? It better! Anyway, to create a palette, you simply create an array of
these structures, like this:

PALETTEENTRY palette[256];

And then you fill them up in any way you desire. However, there is one rule: You
must set the peFlags field to PC_NOCOLLAPSE. This is necessary because you don’t
want Win32/DirectX optimizing your palette for you. With that in mind, here’s an
example of creating a random palette with black in position 0 and white in
position 255:

PALETTEENTRY palette[256]; // palette storage

// fill em up with color!

for (int color=1; color < 255; color++)
{
// fill with random RGB values
palette[color].peRed rand()%256;
palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

/| set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

CHAPTER 6 261

First Contact: DirectDraw m

// now fill in entry @ and 255 with black and white
palette[@].peRed = 0;

palette[0].peGreen = 0;

palette[0].peBlue = 0;

palette[0].peFlags = PC_NOCOLLAPSE;

palette[255].peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

That’s all there is to it! Of course, you can create multiple palettes and fill them with
whatever you want; it’s up to you.

Moving on, the next step is to create the actual IDirectDrawPalette interface.
Luckily for you, the interface hasn’t changed as of DirectX 6.0, so you don’t need to
use QueryInterface() or anything. Here’s the prototype for IDirectDraw4: :
CreatePalette(), which creates a palette object:

HRESULT CreatePalette(DWORD dwFlags, // control flags

LPPALETTEENTRY 1lpDDColorArray, // palette data or NULL

LPDIRECTDRAWPALETTE FAR *1plpDDPalette, // received palette interface
IUnknown FAR *pUnkOuter); // advanced, make NULL

The function returns DD_OK if successful.

Let’s take a look at the parameters. The first parameter is dwFlags, which controls the
various properties of the palette—more on this in a minute. The next parameter is a
pointer to the initial palette, or NULL if you don’t want to send one. Next you have the
actual IDirectDrawPalette interface storage pointer that receives the interface if the
function is successful. Finally, punkOuter is for advanced COM stuff, so simply send
NULL.

The only interesting parameter of the bunch is, of course, the flags parameter
dwFlags. Let’s take a more in-depth look at what your options are. Refer to Table 6.4
for the possible values you can logically OR to create the flags WORD.

TaBLE 6.4 Control Flags for CreatePalette()

Value Description

DDPCAPS_1BIT 1-bit color. There are two entries in the color table.
DDPCAPS_2BIT 2-bit color. There are four entries in the color table.
DDPCAPS_4BIT 4-bit color. There are 16 entries in the color table.
DDPCAPS_8BIT 8-bit color. The most common. There are 256 entries in the

color table.

continues

262 PART 11

T DirectX and 2D Fundamentals

TaBLE 6.4 Continued

Value Description

DDPCAPS_8BITENTRIES This is for an advanced feature referred to as indexed
palettes and is used for 1-, 2-, and 4-bit palettes. Just
say no.

DDPCAPS_ALPHA Indicates that the peFlags member of the associated

PALETTEENTRY structure is to be interpreted as a single
8-bit alpha value controlling the transparency. A palette
created with this flag can only be attached to a D3D texture
surface created with the DDSCAPS_TEXTURE capability
flag. Again, this is advanced and for big G’s.

DDPCAPS_ALLOW256 Indicates that this palette can have all 256 entries defined.
Normally, entries 0 and 255 are reserved for black and
white, respectively, and on some systems like NT you can’t
write to these entries under any circumstances. However, in
most cases you don’t need this flag because 0 is usually
black anyway, and most palettes can live with entry 255
being white. It’s up to you.

DDPCAPS_INITIALIZE Initialize this palette with the colors in the color array
passed at 1pDDColorArray. This is used to enable the
palette data sent to be downloaded into the hardware
palette.

DDPCAPS_PRIMARYSURFACE This palette is attached to the primary surface. Changing

this palette’s color table immediately affects the display
unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC Forces palette updates to be performed only during the ver-
tical blank period. This minimizes color anomalies and
sparkling. Not fully supported yet, though.

A lot of confusing control words, if you ask me. Basically, you only need to work
with 8-bit palettes, so the control flags you need to OR together are

DDPCAPS_8BIT , DDPCAPS_ALLOW256 | DDPCAPS_INITIALIZE

And if you don’t care about setting color entries 0 and 256, you can omit
DDPCAPS_ALLOW256. Furthermore, if you’re not sending a palette during the
CreatePalette() call, you can omit DDPCAPS_INITIALIZE.

Sucking all that down into your brain, here’s how you would create a palette object
with your random palette:

LPDIRECTDRAWPALETTE 1lpddpal = NULL; // palette interface

CHAPTER 6 263

if (FAILED(1lpdd4->CreatePalette(DDPCAPS_8BIT |

{
/] error
} // end if

DDPCAPS_ALLOW256 |
DDPCAPS_INITIALIZE,
palette,

&lpddpal,

NULL)))

First Contact: DirectDraw m

If the function call is successful, 1pddpal will return with a valid
IDirectDrawPalette interface. Also, the hardware color palette will instantly be
updated with the sent palette, which in this case is a collection of 256 random colors.

Normally, at this point I would drop a demo on you, but unfortunately we’re at one of
those “chicken and the egg” points in DirectDraw. That is, you can’t see the colors

until you can draw on the screen. So that’s what’s next!

Building a Display Surface

As you know, the image displayed on the screen is nothing more than a matrix of
colored pixels represented in memory for some format, either palletized or RGB.

In either case, to make anything happen, you need to know how to draw into this
memory. However, under DirectDraw the designers decided to abstract the concept
of video memory just a little bit so that no matter how weird the video card in your
system (or someone else’s) is, accessing the video surfaces will be the same for you
(the programmer’s point of view). Thus, DirectDraw supports what are called

surfaces.

Referring to Figure 6.7, surfaces are rectangular regions of memory that can hold
bitmap data. Furthermore, there are two kinds of surfaces: primary and secondary.

Figure 6.7
Surfaces can be
any size.

Off-screen surfaces could be

in VRAM or system memory

-

.

Secondary Surface

Primary Surface (VRAM)

100 x 80
Secondary Surface DirectDraw
> Blitter
400 x 400 | Hardware
A

Secondary Surface

1x1

Any size you want

> 640 x 480

Y

Video
Display

264 PART 11

W DirectX and 2D Fundamentals

A primary surface directly corresponds to the actual video memory being rasterized
by the video card and is visible at all times. Hence, you will have only one primary
surface in any DirectDraw program, and it refers directly to the screen image and
usually resides in VRAM. When you manipulate it, you see the results instantly on the
screen. For example, if you set the video mode to 640x480x256, you must create a
primary surface that is also 640x480x256 and then attach it to the display device—the
IDirectDraw4 object.

Secondary surfaces, on the other hand, are much more flexible. They can be any size,
can reside in either VRAM or system memory, and you can create as many of them as
memory will allow. In most cases, you will create one or two secondary surfaces
(back buffers) for smooth animation. These will always have the same color depth and
geometry as the primary surface. Then you update these offscreen surfaces with the
next frame of animation, and then quickly copy or page flip the offscreen surface into
the primary surface for smooth animation. This is called double or triple buffering.
You’ll learn more on this in the next chapter, but that’s one use for secondary sur-
faces.

The second use for secondary surfaces is to hold your bitmap images and animations
that represent objects in the game. This is a very important feature of DirectDraw
because only by using DirectDraw surfaces can you invoke hardware acceleration on
bitmap data. If you write your own bit blitting (bitmap image transferring) software to
write bitmaps, you lose all acceleration.

Now, I'm getting a little ahead of myself here, so I want to come out of warp and
back down to sub-light speed. I just wanted to get you thinking a bit. For now, let’s
just see how to create a simple primary surface that’s the same size as your display
mode, and then you’ll learn to write data to it and plot pixels on the screen.

Creating a Primary Surface
All right, to create any surface, you must follow these steps:
1. Fill out a DDSURFACEDESC2 data structure that describes the surface you want to
create.

2. Call IDirectDraw4: :CreateSurface() to create the surface.

Here’s the prototype for CreateSurface():

HRESULT CreateSurface(
LPDDSURFACEDESC2 1pDDSurfaceDesc2,
LPDIRECTDRAWSURFACE4 FAR *1plpDDSurface,
IUnknown FAR *pUnkOuter);

Basically, the function takes a DirectDraw surface description of the surface you want
to create, a pointer to receive the interface, and finally NULL for the advanced COM

CHAPTER 6 265

First Contact: DirectDraw m

feature punkouter. Huh? Filling out the data structure can be a bit bewildering,
but I’ll step you through it. First, let’s take a look at the DDSURFACEDESC2:

typedef struct _DDSURFACEDESC2

{

DWORD dwSize; /] size of this structure
DWORD dwFlags; // control flags
DWORD dwHeight; // height of surface in pixels
DWORD dwWidth; // width of surface in pixels

union

{

LONG 1Pitch; // memory pitch per row
DWORD dwLinearSize; // size of the buffer in bytes

} DUMMYUNIONNAMEN(1);

DWORD dwBackBufferCount; // number of back buffers chained

union

{

DWORD dwMipMapCount;

DWORD dwRefreshRate;

} DUMMYUNIONNAMEN (2);

DWORD dwAlphaBitDepth;

DWORD dwReserved;

LPVOID 1pSurface;

DDCOLORKEY ddckCKDestOverlay;
DDCOLORKEY ddckCKDestBlt;
DDCOLORKEY ddckCKSrcOverlay;
DDCOLORKEY ddckCKSrcBlt;
DDPIXELFORMAT ddpfPixelFormat;
DDSCAPS2 ddsCaps;

DWORD dwTextureStage;

Il
I

number of mip-map levels
refresh rate

number of alpha bits
reserved

pointer to surface memory
dest overlay color key
destination color key
source overlay color key
source color key

pixel format of surface
surface capabilities
used to bind a texture
to specific stage of D3D

} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

As you can see, this is a complicated structure. Moreover, 75 percent of the fields are
more than cryptic. Luckily, you only need to know about the ones that I've bolded.
Let’s take a look at their functions in detail, one by one:

dwsize—This is one of the most important fields in any DirectX data structure. Many
DirectX data structures are sent by address, so the receiving function or method
doesn’t know the size of the data structure. However, if the first 32-bit value is always
the size of the data structure, the receiving function will always know how much data
is there just by dereferencing the first DWORD. Hence, DirectDraw and DirectX data
structures in general have the size specifier as the first element of all structures. It
may seem redundant, but it’s a good design—trust me. All you need to do is fill it in

like this:

DDSURFACEDESC2 ddsd;
ddsd.dwSize = sizeof (DDSURFACEDESC2);

266 PART 11

W DirectX and 2D Fundamentals

dwFlags—This field is used to indicate to DirectDraw which fields you’ll be filling in
with valid info or, if you’re using this structure in a query operation, which fields you
want to retrieve. Take a look at Table 6.5 for the possible values that the flags word
can take on. For example, if you were going to place valid data in the dwwidth and
dwHeight fields, you would set the dwFlags field like this:

ddsd.dwFlags = DDSD_WIDTH | DDSD_HEIGHT;

Then DirectDraw would know to look in the dwHeight and dwwWidth fields and that the
data would be valid. Think of dwFlags as a valid data specifier.

TAaBLE 6.5 The Various Flags for the dwFlags Field of DDSURFACEDESC2

Value Description

DDSD_ALPHABITDEPTH Indicates that the dwAlphaBitDepth member is valid.
DDSD_BACKBUFFERCOUNT Indicates that the dwBackBufferCount member is valid.
DDSD_CAPS Indicates that the ddsCaps member is valid.
DDSD_CKDESTBLT Indicates that the ddckCKDestB1t member is valid.
DDSD_CKDESTOVERLAY Indicates that the ddckCKDestOverlay member is valid.
DDSD_CKSRCBLT Indicates that the ddckCKSrcB1t member is valid.
DDSD_CKSRCOVERLAY Indicates that the ddckCKSrcOverlay member is valid.
DDSD_HEIGHT Indicates that the dwHeight member is valid.
DDSD_LINEARSIZE Indicates that the dwLinearSize member is valid.
DDSD_LPSURFACE Indicates that the 1pSurface member is valid.
DDSD_MIPMAPCOUNT Indicates that the dwMipMapCount member is valid.
DDSD_PITCH Indicates that the 1Pitch member is valid.
DDSD_PIXELFORMAT Indicates that the ddpfPixelFormat member is valid.
DDSD_REFRESHRATE Indicates that the dwRefreshRate member is valid.
DDSD_TEXTURESTAGE Indicates that the dwTextureStage member is valid.
DDSD_WIDTH Indicates that the dwWidth member is valid.

dwwidth—Indicates the width of the surface in pixels. When you create a surface, this
is where you set the width—320, 640, and so on. In addition, if you query the proper-
ties of a surface, this field will return the width of the surface (if you requested it).

dwHeight—Indicates the height of the surface in pixels. Similarly to dwWidth, this is
where you set the height of the surface you are creating—200, 240, 480, and so on.

1Pitch—This is an interesting field. It’s basically the horizontal memory pitch of the
display mode that you’re in. Referring to Figure 6.8, the 1Pitch is the number of

CHAPTER 6 267

First Contact: DirectDraw m

bytes per line for the video mode, also referred to as the stride or memory width.
However you pronounce it, the bottom line is that this is a very important piece of
data for the following reason: When you request a video mode like 640x480x8, you
know that there are 640 pixels per line and each pixel is 8 bits (or 1 byte). Therefore,
there should be exactly 640 bytes per line, and hence 1Pitch should be 640. Right?

Not necessarily. @

- Memory Addresses Cache, Virtual mem
Flgure EB (0,0) LP Surface (first byte) (639, 0)
Accessing a surface.
0 0 red Row 0 .
Lpitch Row 1
2eLpitch Row 2
j=2)
£
3
3 < 40 Byt >
o
£
< Lpitch >
640 x 480
v X le— E:'o’a — >
Working Area
479eLpitch . Row 479 .

(0, 479) (639, 479)

Most new video boards support what are called linear memory modes and have
addressing hardware, so this property holds true, but it’s not guaranteed. Therefore,
you can’t assume that a 640x480x8 video mode has 640 bytes per line. This is what
the 1Pitch field is for. You must refer to it to make your memory addressing calcula-
tions correct, so that you can move from line to line. For example, to access any pixel
in a 640x480x8 (256-color) display mode, you can use the following code, assuming
you’ve already requested DirectDraw to give you 1Pitch and 1pSurface is pointing
to the surface memory (which I’ll explain next):

ddsd.lpSurface[x + y*ddsd.lPitch] = color;

Simple, isn’t it? In most cases, ddsd.1Pitch would be 640 for a 640x480x8 mode,
and for a 640x480x16 mode, ddsd.1Pitch would be 1280 (two bytes per pixel =
640x2). But for some cards, this may not be the case due to the way memory is stored
on the card, the internal cache for the card, or whatever... The moral of the story is:
Always use 1Pitch for your memory calculations and you’ll always be safe.

Errata

Errata
"LP Surface" should be "LP_Surface"

268 PART 11

W DirectX and 2D Fundamentals

M\S 4 Even though 1Pitch may not equal the horizontal resolution of the

- mode that you set, it may be worth it to test for it so that you can
W switch to more optimized functions. For example, during the initializa-
tion of your code, you might get 1Pitch and compare it to the selected
horizontal resolution. If they are equal, you might switch to highly

optimized code that hard-codes the number of bytes per line.

1psurface—This field is used to retrieve a pointer to the actual memory that the sur-
face you create resides in. The memory may be in VRAM or system memory, but you
don’t need to worry about it. Once you have the pointer to it, you can manipulate it as
you would any other memory—write to it, read from it, and so on. This is exactly
how you’re going to implement pixel plotting. Alas, making this pointer valid takes a
little work, but we’ll get there in a minute. Basically, you must “lock” the surface
memory and tell DirectX that you’re going to muck with it and that no other process
should attempt to read or write from it. Furthermore, when you do get this pointer,
depending on the color depth—38, 16, 24, 32 bpp—you will usually cast and assign it
to a working alias pointer.

dwBackBufferCount—This field is used to set or read the number of back buffers or
secondary offscreen flipping buffers that are chained to the primary surface. If you’ll
recall, back buffers are used to implement smooth animation by creating one or more
virtual primary buffers (buffers with the same geometry and color depth) that are
offscreen. Then you draw on the back buffer, which is invisible to the user, and then
quickly flip or copy the back buffer(s) to the primary buffer for display. If you have
only one back buffer, the technique is called double buffering. Using two back buffers
is called triple buffering, which is a little better but memory-intensive. To keep things
simple, in most cases you’ll create flipping chains that contain a single primary
surface and one back buffer.

ddckcKDestB1t—This field is used to control the destination color key, which is used
in blitting operations to control the color(s) that can be written to. More on this later
in the Chapter 7, “Advanced DirectDraw and Bitmapped Graphics.”

ddckcKsrcB1t—This field is used to indicate the source color key, which is basically
the colors that you don’t want to be blitted when you’re performing bitmapping
operations. This is how you set the transparent colors for your bitmaps. More on this
in Chapter 7.

ddpfPixelFormat—This field is used to retrieve the pixel format of a surface, which
is quite important if you’re trying to figure out what the properties of a surface are.
The following is the general structure, but you’ll have to look at the DirectX SDK for
all the details because they’re lengthy and not really relevant right now:

CHAPTER 6 269

typedef struct _DDPIXELFORMAT

{
DWORD

DWORD
DWORD
union
{

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

dwSize;
dwFlags;
dwFourcCC;

dwRGBBitCount;
dwYUVBitCount;
dwzZBufferBitDepth;
dwAlphaBitDepth;
dwLuminanceBitCount; //
dwBumpBitCount; /1

} DUMMYUNTONNAMEN (1) ;

union
{

DWORD
DWORD
DWORD
DWORD
DWORD

dwRBitMask;
dwYBitMask;
dwStencilBitDepth; /1
dwLuminanceBitMask; //
dwBumpDuBitMask; 1/

} DUMMYUNIONNAMEN (2) ;

union
{

DWORD
DWORD
DWORD
DWORD

dwGBitMask;
dwUBitMask;
dwZBitMask; 1/
dwBumpDvBitMask; /1

} DUMMYUNIONNAMEN (3) ;

union
{

DWORD
DWORD
DWORD
DWORD

dwBBitMask;
dwVBitMask;
dwStencilBitMask; /1
dwBumpLuminanceBitMask;

} DUMMYUNIONNAMEN (4);

union
{

DWORD
DWORD
DWORD
DWORD
DWORD

dwRGBAlphaBitMask;
dwYUVAlphaBitMask;
dwLuminanceAlphaBitMask;
dwRGBZBitMask;
dwYUVZBitMask;

} DUMMYUNIONNAMEN (5) ;

} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

o

new
new

new
new
new

new
new

new

I

I

for
for

for
for
for

for
for

for
new

new

DirectX 6.0
DirectX 6.0

DirectX 6.0
DirectX
DirectX 6.0

o
S

DirectX 6.0
DirectX 6.0

DirectX 6.0
for DirectX 6.0

for DirectX 6.0

First Contact: DirectDraw m

| have bolded some of the more commonly used fields.

270 PART 11

T DirectX and 2D Fundamentals

ddscaps—This field is used to indicate the requested properties of the surface that
haven’t been defined elsewhere. In reality, this field is another data structure.
DDSCAPS2 is shown here:

typedef struct _DDSCAPS2
{
DWORD dwCaps; // Surface capabilities
DWORD dwCaps2; // More surface capabilities
DWORD dwCaps3; // future expansion
DWORD dwCaps4; // future expansion
} DDSCAPS2, FAR* LPDDSCAPS2;

In 99.9 percent of all cases, you will set only the first field, dwCaps. dwCaps2 is for 3D
stuff, and the remaining fields, dwCaps3 and dwCaps4, are future expansion and
unused. In any case, a partial list of the possible flag settings for the dwCaps are
shown in Table 6.6. For a complete listing, take a look at the DirectX SDK.

For example, when creating a primary surface you would set ddsd.ddsCaps like this:
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
I know this may seem overly complex, and in some ways it is. Having doubly nested

control flags is a bit of a pain, but oh well...

TABLE 6.6 Capabilities Control Settings for DirectDraw Surfaces

Value Description

DDSCAPS_BACKBUFFER Indicates that this surface is the back buffer of a surface
flipping structure.

DDSCAPS_COMPLEX Indicates that a complex surface is being described. A

complex surface is a surface with a primary surface and
one or more back buffers to create a flipping chain.

DDSCAPS_FLIP Indicates that this surface is a part of a surface flipping
structure. When this capability is passed to the
CreateSurface () method, a front buffer and one or
more back buffers are created.

DDSCAPS_LOCALVIDMEM Indicates that this surface exists in true, local video
memory rather than non-local video memory. If this flag
is specified, DDSCAPS_VIDEOMEMORY must be specified

as well.

DDSCAPS_MODEX Indicates that this surface is a 320200 or 320x240 Mode
X surface.

DDSCAPS_NONLOCALVIDMEM Indicates that this surface exists in non-local video

memory rather than true, local video memory. If this flag
is specified, DDSCAPS_VIDEOMEMORY flag must be
specified as well.

CHAPTER 6 271

First Contact: DirectDraw m
Value Description

DDSCAPS_OFFSCREENPLAIN Indicates that this surface is an offscreen surface that is not
a special surface such as an overlay, texture, z-buffer, front-
buffer, back-buffer, or alpha surface. Usually used for

sprites.

DDSCAPS_OWNDC Indicates that this surface will have a device context asso-
ciation for a long period.

DDSCAPS_PRIMARYSURFACE Indicates that this surface is the primary surface. It repre-
sents what is visible to the user at the moment.

DDSCAPS_STANDARDVGAMODE Indicates that this surface is a standard VGA mode surface,

and not a Mode X surface. This flag cannot be used in
combination with the DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY Indicates that this surface memory was allocated in system
memory.
DDSCAPS_VIDEOMEMORY Indicates that this surface exists in display memory.

Now that you have an idea of the complexity and power that DirectDraw gives you
when you’re creating surfaces, let’s put the knowledge to work and create a simple
primary surface that’s the same size and color depth as the display mode (default
behavior). Here’s the code to create a primary surface:

// interface pointer to hold primary surface, note that
// it's the 4th revision of the interface
LPDIRECTDRAWSURFACE4 1lpddsprimary = NULL;

DDSURFACEDESC2 ddsd; // the DirectDraw surface description

// MS recommends clearing out the structure
memset (&ddsd,0,sizeof(ddsd)); // could use ZeroMemory ()

// now fill in size of structure
ddsd.dwSize = sizeof(ddsd);

// enable data fields with values from table 6.5 that we
// will send valid data in

// in this case only the ddsCaps field is enabled, we

// could have enabled the width, height etc., but they
// aren't needed since primary surfaces take on the

// dimensions of the display mode by default
ddsd.dwFlags = DDSD_CAPS;

// now set the capabilities that we want from table 6.6
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// now create the primary surface

272 PART 11

W DirectX and 2D Fundamentals

if (FAILED(lpdd->CreateSurface(&ddsd, &lpddsprimary, NULL)))

{
// error
} // end if

If the function was successful, 1pddsprimary will point to the new surface interface
and you can call methods on it (of which there are quite a few, such as attaching the
palette in 256-color modes). Let’s take a look at this to bring the palette example back
full-circle.

Attaching the Palette

In the previous section on palettes, you did everything except attach the palette to a
surface. You created the palette and filled it with entries, but you couldn’t attach the
palette to a surface because you didn’t have one yet. Now that you have a surface (the
primary), you can complete this step.

To attach a palette to any surface, all you need to do is use the
IDirectDrawSurface4: :SetPalette() function, which is shown here:

HRESULT SetPalette(LPDIRECTDRAWPALETTE lpDDPalette);

This function simply takes a pointer to the palette that you want to be attached. Using
the same palette that you created in the previous palette section, here’s how you
would associate the palette with the primary surface:

if (FAILED(lpddsprimary->SetPalette(lpddpal)))

{
// error
} // end if

Not too bad, huh? At this point, you have everything you need to emulate the entire
power of a DOS32 game. You can switch video modes, set the palette, and create a
primary drawing surface that represents the active video image. However, there are
still some details that you have to learn about, like actually locking the primary sur-
face memory and gaining access to the VRAM and plotting a pixel. Let’s take a look
at that now.

Plotting Pixels

To plot a pixel (or pixels) in a full-screen DirectDraw mode, you first must set up
DirectDraw, set the cooperation level, set a display mode, and create at least a primary
surface. Then you have to gain access to the primary surface and write to the video
memory. However, before you learn how to do this, let’s take another look at how
video surfaces work.

If you’ll recall, all DirectDraw video modes and surfaces are linear, as shown in
Figure 6.9. This means that memory increases from left to right and from top to
bottom as you move from row to row.

CHAPTER 6 273

First Contact: DirectDraw m

Figure 5.9 Increasing Memory

DirectDraw surfaces
are linear.

Y

(0,0)

Surface
mxn
Logical View

Increasing Memory

I_

\ (m-1, n-1)

Physical View 0 Pixel 0

Increasing Memory
1 Pixel 1

e o o o o o o o 0 0 o o o
e o o o o o o o o o o o o

(mxn-1)| Pixel (mxn-1) Y

Tip You may be wondering how DirectDraw can magically turn a non-
linear video mode into a linear one if the video card itself doesn’t sup-
port it. For example, Mode X is totally nonlinear and bank-switched.
Well, the truth is this—when DirectDraw detects that a mode is nonlin-
ear in hardware, a driver called VFLATD.VXD is invoked, which creates a
software layer between you and the VRAM and makes the VRAM look
linear. Keep in mind that this is going to be slow.

In addition, to locate any position in the video buffer, you need only two pieces of
information: the memory pitch per line (that is, how many bytes make up each row)
and the size of each pixel (8-bit, 16-bit, 24-bit, 32-bit). You can use the following
formula:

// assume this points to VRAM or the surface memory
UCHAR *video_buffers;

274 PART 11

W DirectX and 2D Fundamentals

video_buffer8[x + y*memory_pitchB] = pixel_color_8;

Of course, this is not exactly true because this formula works only for 8-bit modes, or
modes that have one BYTE per pixel. For a 16-bit mode, or two BYTEs per pixel,
you would have to do something like this:

// assume this points to VRAM or the surface memory
USHORT *video_buffer16;

video_buffer16[x + y*(memory_pitchB >> 1)] = pixel_color_16;

There’s a lot going on here, so let’s take a look at the code carefully. Since we’re in a
16-bit mode, I’'m using a USHORT pointer to the VRAM. What this does is let me use
array access, but with 16-bit pointer arithmetic. Hence, when I say

video_bufferi16[1]

this really accesses the second SHORT or byte pair 2,3. In addition, because
memory_pitchB is in bytes, you must divide it by two by shifting right one bit so that
it’s in SHORT or 16-bit memory pitch. Finally, the assignment of pixel_color16 is
also misleading because now a complete 16-bit USHORT will be written into the video
buffer, rather than a single 8-bit value as in the previous example. Moreover, the 8-bit
value would be a color index, whereas a 16-bit value must be a RGB value, usually
encoded in R5G¢B5 format or five bits for red, six bits for green, and five bits for
blue, as shown in Figure 6.10.

Figure 6.10 5.6.5 Format (full 16 bit color)
P0ss1ble 16,'b1t RGB Dis Red Green Blue Do
encodings, including
5.6.5 format. Rs| R3| Ro| Ri | Ro| Gs| Ga| Ga| Go| G1| Go| Bs| Ba| B2 | By | Bo
5-Bits for Red 6-Bits for Green 5-Bits for Blue

1.5.5.5 Format (15 bit color)

Dis D1 Do

|X R4|R3|R2|R1|F{o G4|G3|G2|G1|Go B4|B3|B2|B1|BOI

5-Bits for Red 5-Bits for Green 5-Bits for Blue

Unused or alpha Other formats also exist

Here’s a macro to make up a 16-bit RGB word:

// this builds a 16 bit color value
#define RGB16BIT565(r,g,b) ((b%32) + ((g%64) << 5) + ((r%32) << 11))

As you can see, 16-bit modes and RGB modes in general have a little more complex
addressing and manipulation than do the 256-color 8-bit modes, so let’s begin there.

CHAPTER 6 275

First Contact: DirectDraw m

To gain access to any surface—primary, secondary, and so on—you must lock and
unlock the memory. This lock and unlock sequence is necessary for two reasons:
First, to tell DirectDraw that you are in control of the memory (that is, it shouldn’t be
accessed by other processes), and second, to indicate to the video hardware that it
shouldn’t move any cache or virtual memory buffers around while you’re messing
with the locked memory. Remember, there is no guarantee that VRAM will stay in the
same place. It could be virtual, but when you lock it, the memory will stay in the
same address space for the duration of the lock so you can manipulate it. The function
to lock memory is called IDirectDrawSurface4: :Lock() and is shown here:

HRESULT Lock(LPRECT 1lpDestRect, // destination RECT to lock
LPDDSURFACEDESC2 1pDDSurfaceDesc, // address of struct to receive info
DWORD dwFlags, /] request flags
HANDLE hEvent); // advanced, make NULL

The parameters aren’t that bad, but there are some new players. Let’s step through
them. The first parameter is the RECT of the region of surface memory that you want
to lock; take a look at Figure 6.11. DirectDraw allows you to lock only a certain
portion of surface memory so that, if another process is accessing a region that you
aren’t, processing can continue. This is great if you know that you’re going to update
only a certain part of the surface and don’t need a full lock on the entire surface.
However, in most cases you’ll just lock the entire surface to keeps things simple.
This is accomplished by passing NULL.

Figure 6.11 IDirectDrawSurface4—Lock (...)

Locking surface Surface
memory. *

]

]

Rect ! Only this region
to Lock 1 €1 will be accessible
mxn 1
]

Can be any size up
to the entire surface
mi=Mz Ni=N2

m{ X M2

The second parameter is the address of a DDSURFACEDESC2 that will be filled with
information about the surface that you request. Basically, just send a blank
DDSURFACEDESC2 and that’s it. The next parameter, dwFlags, tells Lock () what you
want to do. Table 6.7 contains a list of the most commonly used values.

276 PART 11

m DirectX and 2D Fundamentals

TABLE 6.7 The Control Flags for the Lock() Method

Value Description

DDLOCK_READONLY Indicates that the surface being locked will be read-only.

DDLOCK_SURFACEMEMORYPTR Indicates that a valid memory pointer to the top of the
specified RECT should be returned. If no rectangle is
specified, a pointer to the top of the surface is returned.
This is the default.

DDLOCK_WAIT If a lock cannot be obtained because a blit operation is in
progress, the method retries until a lock is obtained or
another error occurs, such as DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY Indicates that the surface being locked will be
write-enabled.

@ | have bolded the most commonly used flags.

The last parameter is to facilitate an advanced feature that Win32 supports called
events. Set it to NULL.

Locking the primary surface is really easy. What you want to do is request the
memory pointer to the surface, along with requesting DirectDraw to wait for the
surface to become available. Here’s the code:

DDSURFACEDESC2 ddsd; // this will hold the results of the lock

// clear the surface description out always
memset (&ddsd, @, sizeof(ddsd));

// set the size field always
ddsd.dwSize = sizeof(ddsd);

// lock the surface
if (FAILED(lpddsprimary->Lock(NULL,
&ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL)))

{
/] error
} // end if

/] ****** gt this point there are two fields that we are
// concerned with: ddsd.lPitch which contains the memory
// pitch in bytes per line and ddsd.lpSurface which is a
// pointer to the top left corner of the locked surface

CHAPTER 6 277

First Contact: DirectDraw m

Once you’ve locked the surface, you're free to manipulate the surface memory as you
wish. The memory pitch per line is stored in ddsd.1Pitch, and the pointer to the
actual surface is ddsd.1pSurface. Therefore, if you’re in any 8-bit mode (1 byte per
pixel), the following function can be used to plot a pixel anywhere on the primary
surface:
inline void Plot8(int x, int y, // position of pixel

UCHAR color, // color index of pixel

UCHAR *buffer, // pointer to surface memory

int mempitch) // memory pitch per line

{
// this function plots a single pixel
buffer[x+y*mempitch] = color;

} // end Plot8
Here’s how you would call it to plot a pixel at (100,20) with color index 26:
Plot8(100,20,26, (UCHAR *)ddsd.lpSurface, (int)ddsd.1lPitch);

Similarly, here’s a 16-bit 5.6.5 RGB mode plot function:

inline void Plot16(int x, int y, // position of pixel
UCHAR red,
UCHAR green,
UCHAR, blue // RGB color of pixel
USHORT *buffer, // pointer to surface memory
int mempitch) // memory pitch bytes per line

{
// this function plots a single pixel
buffer[x+y*(mempitch>>1)] = _RGB16BIT565(red,green,blue);

} // end Ploti16
And here’s how you would plot a pixel at (300,100) with RGB value (10,14,30):
Plot16(300,100,10,14,30, (USHORT *)ddsd.lpSurface, (int)ddsd.1Pitch);

Now, once you’re done with all your video surface access for the current frame of
animation, you need to unlock the surface. This is accomplished with the
IDirectDrawSurface4: :Unlock () method shown here:

HRESULT Unlock(LPRECT 1pRect);

You send Unlock () the original RECT that you used in the lock command, or NULL if
you locked the entire surface. In this case, here’s all you would do to unlock the
surface:

if (FAILED(lpddsprimary->Unlock(NULL)))
{

/] error
} // end if

278 PART 11

w DirectX and 2D Fundamentals

That’s all there is to it. Now, let’s see all the steps put together to plot random pixels
on the screen (without error detection):

LPDIRECTDRAW 1pdd = NULL; // standard DirectDraw 1.0
LPDIRECTDRAW 1lpdd4 = NULL; // DirectDraw 6.0 interface 4
LPDIRECTDRAWSURFACE4 lpddsprimary = NULL; // surface ptr
DDSURFACEDESC2 ddsd; // surface description
LPDIRECTDRAWPALETTE lpddpal = NULL; // palette interface
PALETTEENTRY palette[256]; // palette storage

// first create base IDirectDraw interface
DirectDrawCreate (NULL, &lpdd, NULL);

// now query for IDirectDraw4
1pdd->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&lpdd4);

/1 release lpdd
1pdd->Release();

// set the cooperative level for full-screen mode

1pdd4->SetCooperativelLevel (hwnd,
DDSCL_FULLSCREEN
DDSCL_ALLOWMODEX
DDSCL_EXCLUSIVE |
DDSCL_ALLOWREBOOT) ;

// set the display mode to 640x480x256
1pdd4->SetDisplayMode (640,480,8,0,0);

// clear ddsd and set size
memset (&ddsd,0,sizeof (ddsd));
ddsd.dwSize = sizeof(ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS;

// request primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface

1pdd4->CreateSurface (&ddsd, &lpddsprimary, NULL);

// build up the palette data array
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;

palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

CHAPTER 6 279

First Contact: DirectDraw m

/1 set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

// now fill in entry @ and 255 with black and white
palette[@].peRed = 0;

palette[@].peGreen =
palette[0].peBlue = 0;
palette[0].peFlags = PC_NOCOLLAPSE;

|
S

palette[255] .peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

/| create the palette object

1pdd4->CreatePalette (DDPCAPS_8BIT !DDPCAPS_ALLOW256 !
DDPCAPS_INITIALIZE,
palette,&lpddpal, NULL);

// finally attach the palette to the primary surface
lpddsprimary->SetPalette(1lpddpal);

// and you're ready to rock n roll!
// lock the surface first and retrieve memory pointer
// and memory pitch

// clear ddsd and set size, never assume it's clean
memset (&ddsd,0,sizeof (ddsd));
ddsd.dwSize = sizeof (ddsd);

lpddsprimary->Lock(NULL, &ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT, NULL))

// now ddsd.lPitch is valid and so is ddsd.lpSurface

// make a couple aliases to make code cleaner, so we don't
// have to cast

int mempitch ddsd.1Pitch;

UCHAR *video_buffer = ddsd.lpSurface;

// plot 1000 random pixels with random colors on the
// primary surface, they will be instantly visible
for (int index=0; index<1000; index++)

{

// select random position and color for 640x480x8

UCHAR color = rand()%256;

int x = rand()%640;

int y = rand()%480;

// plot the pixel
video_buffer[x+y*mempitch] = color;

280 PART 11

.r DirectX and 2D Fundamentals
[~

} // end for index

// now unlock the primary surface
1lpddsprimary->Unlock (NULL) ;

Of course, I'm leaving out all the Windows initialization and event loop stuff, but
that never changes. However, to be complete, take a look at DEMO6_3.CPP and the
associated executable DEM06_3.EXE on the CD. They contain the preceding code
injected into your Game Console’s Game_Main () function, shown in the following
listing along with the updated Game_Init (). Figure 6.12 is a screen shot of the
program in action.

Figure 6.12
DEMO6_3.EXE in
action.

int Game_Main(void *parms = NULL, int num_parms = 0)

{

// this is the main loop of the game, do all your processing
/] here

/] for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK _ESCAPE))
SendMessage (main_window_handle,WM_CLOSE,0,0);

// plot 1000 random pixels to the primary surface and return
// clear ddsd and set size, never assume it's clean

memset (&ddsd,0,sizeof (ddsd));

ddsd.dwSize = sizeof(ddsd);

if (FAILED(lpddsprimary->Lock(NULL, &ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,
NULL)))

CHAPTER 6 281

First Contact: DirectDraw m

{

/] error
return(0);
} // end if

// now ddsd.lPitch is valid and so is ddsd.lpSurface

// make a couple aliases to make code cleaner, so we don't
// have to cast

int mempitch = (int)ddsd.1lPitch;

UCHAR *video_buffer = (UCHAR *)ddsd.lpSurface;

// plot 1000 random pixels with random colors on the
// primary surface, they will be instantly visible
for (int index=0; index < 1000; index++)
{
/] select random position and color for 640x480x8
UCHAR color = rand()%256;
int x = rand()%640;
int y = rand()%480;

/1 plot the pixel
video_buffer[x+y*mempitch] = color;

} // end for index

// now unlock the primary surface
if (FAILED(lpddsprimary->Unlock(NULL)))
return(0);

// sleep a bit
Sleep(30);

// return success or failure or your own return code here
return(1);

} // end Game_Main
JETETETETEEE i i i r i n iy

int Game_Init(void *parms = NULL, int num_parms = 0)

{

// this is called once after the initial window is created and

// before the main event loop is entered, do all your initialization
/] here

/| first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))
{
/] error
return(0);
} // end if

282 PART 11

“ DirectX and 2D Fundamentals

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&lpdd4)))
{
/] error
return(0);
} // end if

/| set cooperation to full screen
if (FAILED(1lpdd4->SetCooperativelLevel(main_window_handle,
DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))
{
/] error
return(0);
} // end if

// set display mode to 640x480x8
if (FAILED(1lpdd4->SetDisplayMode (SCREEN_WIDTH,
SCREEN_HEIGHT, SCREEN_BPP,0,0)))
{
/] error
return(0);
} // end if

/] clear ddsd and set size
memset (&ddsd,0,sizeof (ddsd));
ddsd.dwSize = sizeof (ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS;

// request primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface
if (FAILED(lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL)))
{
// error
return(0);
} // end if

// build up the palette data array
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;

palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

CHAPTER 6

First Contact: DirectDraw m

/1 set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

// now fill in entry @ and 255 with black and white
palette[@].peRed = 0;

palette[@].peGreen =
palette[0].peBlue = 0;
palette[0].peFlags = PC_NOCOLLAPSE;

|
S

palette[255] .peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

/| create the palette object

if (FAILED(lpdd4->CreatePalette(DDPCAPS_8BIT | DDPCAPS_ALLOW256 |
DDPCAPS_INITIALIZE,
palette,&lpddpal, NULL)))

{

/] error

return(0);

} // end if

// finally attach the palette to the primary surface
if (FAILED(lpddsprimary->SetPalette(1lpddpal)))

{

/l error

return(0);

} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Init

The only other detail I want to bring to your attention about the demo program code is
the creation of the main window, shown here:

/| create the window
if (!(hwnd = CreateWindowEx (NULL, // extended style
WINDOW_CLASS_NAME, /] class
"T3D DirectX Pixel Demo", // title
WS_POPUP |, WS_VISIBLE,

0,0, // initial x,y
640,480, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance, // instance of this application
NULL))) // extra creation parms

return(0);

283

284 PART 11

T DirectX and 2D Fundamentals

Notice that instead of using the WS_OVERLAPPEDWINDOW window style, the demo uses
ws_POPUP. If you’ll recall, this style is devoid of all controls and Windows GUI stuff,
which is what you want for a full-screen DirectX application.

Cleaning Up

Before moving on to the end of the chapter, I want to bring up a topic that I’'ve been
putting off for a while—resource management. Yuck! Anyway, this seemingly un-fun
concept simply means making sure that you Release() DirectDraw or DirectX
objects in general when you’re done with them. For example, if you take a look at the
source code in DEMO6_3.CPP, in the Game_Shutdown () function you’ll see a number of
Release() calls to release all the DirectDraw objects back to the operating system,
and DirectDraw itself, shown here:

int Game_Shutdown(void *parms = NULL, int num_parms = 0)

{

// this is called after the game is exited and the main event
// loop while is exited, do all you cleanup and shutdown here

// first the palette
if (1lpddpal)
{
1pddpal->Release();
lpddpal = NULL;
} // end if

// now the primary surface
if (lpddsprimary)
{
lpddsprimary->Release();
1pddsprimary = NULL;
} // end if

// now blow away the IDirectDraw4 interface
if (1lpdd4)

{

lpdd4->Release();

lpdd4 = NULL;

} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

In general, you should Release () objects only when you’re done with them, and you
should do so in reverse order of creation. For example, you created the DirectDraw
object, the primary surface, and the palette, in that order, so a good rule of thumb
would be to release the palette, surface, and then DirectDraw, like this:

CHAPTER 6 285

First Contact: DirectDraw m

/] first kill the palette
if (1lpddpal)
{
lpddpal->Release();
1pddpal = NULL;
} /] end if

// now the primary surface

if (lpddsprimary)
lpddsprimary->Release();

// and finally the directdraw object itself

if (1lpdd4)
{
1pdd4->Release();
1pdd4 = NULL;
} // end if
Before you make a call to Release (), notice the testing to see if the
interface is non-NULL. This is absolutely necessary because the interface
pointer may be NULL, and releasing on a NULL pointer may cause
problems if the implementers of the interface haven't thought of it.
Summary

In this chapter you learned the basics of DirectDraw—how to get it up and running in
full-screen mode, for the most part. Also, we touched upon palettes, display surfaces,
and the differences between full-screen and windowed applications. In the next
chapter, I'm going to put on the gas and we’re going to cover a lot of ground, so

strap on your seat belt, baby!

CHAPTER

Advanced DirectDraw and
Bitmapped Graphics

“There are a lot of decaffeinated brands on the market that are
just as tasty as the real thing...”

—Chris Knight, Real Genius

In this chapter I'm going to show you the guts of DirectDraw
and start working on the first module of the graphics library
(T3DLIB1.CPP|H), which will be the basis of all demos and
games created in this book. A lot of material will be covered in
this chapter, in addition to me throwing a graphics library at you
that "1l write through the course of this chapter. However, |
promise that everything will be reasonably simple, while still
complex enough to do something cool with. Here’s what this
chapter will cover:

* High-color modes

* Page flipping and double buffering
* The blitter

* Clipping

e Loading bitmaps

¢ Color animation

288 PART 11

W DirectX and 2D Fundamentals

¢ Windowed DirectX

¢ Getting information from DirectX

Working with High-Color Modes

High-color modes (modes that require more than eight bits per pixel) are of course
more visually pleasing to the eye than the 256-color modes. However, they aren’t used
in software-based 3D engines for a number of reasons. The biggest reasons are as fol-
lows:

e Computational speed—A standard 640x480 pixel frame buffer consists of
307,200 pixels. If each pixel is 8-bit, that means that most calculations can be
done using a single byte per pixel and rasterization is simpler. On the other
hand, in 16-bit or 24-bit modes, full RGB space calculations are usually
employed (or very large lookup tables) and the speed is cut at least in half.
Furthermore, two or three bytes per pixel must be written to the frame buffer
instead of one as in 8-bit modes.

Of course, with acceleration hardware, this isn’t as much of a problem for
bitmapping or 3D (in fact, most 3D cards work in 24/32-bit color), but for soft-
ware rasterization (which is what you’re learning in this book), it’s a big deal.
You want to write the least amount of data per pixel as possible, and 8-bit mode
meets this requirement (although it’s not as pretty as 16-bit). However, with
8-bit mode, you can rest assured that someone with a Pentium 75-100 might be
able to play your game, and you won’t have to worry about your audience hav-
ing a P233 with MMX and 3D acceleration at a minimum.

* Memory bandwidth—This is something that people hardly ever take into con-
sideration. Your PC has either an ISA (Industry Standard Architecture), VLB
(VESA Local Bus), PCI (Peripheral Component Interface), or PCI/AGP
(Accelerated Graphics Port) hybrid bus system. The bottom line is that every-
thing but the AGP port is relatively slow compared to video clock rates. This
means that although you may have a 500+ MHz Pentium III, it’s not going to do
you any good if you have a PCI bus that’s bottlenecking your access to video
RAM and/or acceleration hardware. Of course, a number of hardware optimiza-
tions can help in this area, such as caching, multi-port VRAM, and so forth, but
there’s always a fill rate limit that you can never exceed no matter what you do.
The moral of the story is that as you move to higher and higher resolutions and
color depths, in many cases the memory bandwidth is more of a limiting factor
than the processor’s speed. However, with AGP 2x and 4x this will become less
of an issue.

CHAPTER 7 289

Advanced DirectDraw and Bitmapped Graphics qﬂ.

Now that I’ve made my initial points about the appropriate uses for high-color modes,
I'll cover them in detail and show you how to work with them. I’ve decided to primar-
ily target 8-bit modes to make the material and the 3D software easier to comprehend
(3D is hard enough to understand without adding high-color RGB calculations to it).
So let’s get started.

Working with high-color modes is conceptually similar to working with palletized
modes, with the single caveat that you aren’t writing color indices into the frame
buffer, but instead full RGB-encoded pixel values. This means that you must know
how to create an RGB pixel encoding for the high-color modes that you want to work
with. Figure 7.1 depicts a number of various 16-bit pixel encodings.

Figure 7.1 A 5 . 5 . 5
16-Bit RGB pixel <€—Red 5-Bit —» | €—Green 5-Bit—>» | €«——Blue 5-Bit—>»

encodings. Alpha/Vl A | Ra[Rs[Re|Ri[Ro[ca]as|c2] a1]co[Ba[Bas [B2 B [Bo
High Bit di5 d14 d13 d12 d11 diopdg dg d7 de ds d4 d3 d2 di do | owBit
X o 5 . 5 . 5
<€—Red 5-Bit—>» | €—Green 5-Bit—>» | €«——Blue 5-Bit—>
/)|x R4|R3|R2|R1|Ro G4|G3|G2|G1|Go B4|B3|BQ|B1|B0
Don't care dis do
5 . 6 . 5

<«—Red 5-Bit —» | €«——Green 6-Bit——» | €«——Blue 5-Bit—>»

R4| R3|R2|R1|R0

as|ae]as|cz| a1 co

B4|leleB1|BO

dis

Red

Green

do

Blue

|« 16 Bits >

16-Bit High-Color Mode

Referring to Figure 7.1, there are a number of possible bit encodings for 16-bit modes:

Alpha.5.5.5—This mode uses a single bit at position D5 to represent a possible Alpha
component (transparency), and the remaining 15 bits are equally distributed with five
bits for red, five bits for green, and five bits for blue. This makes a total of 25 = 32
shades for each color and a palette of 32x32x32 = 32,768 colors.

X.5.5.5—This mode is similar to the Alpha.5.5.5 mode, except the MSB (most signifi-
cant bit) is unused and can be anything. The color range is still 32 shades of each pri-
mary color (red, green, and blue), with a total of 32x32x32 = 32,768 colors.

290 PART 11

W DirectX and 2D Fundamentals

5.6.5—This is the most common mode and uses all 16 bits of the WORD to define the
color. The format is, of course, five bits for red, six bits for green, and five bits for
blue, for a total of 32x64x32 = 65536 color. Now, you may ask, “Why six bits for
green?” Well, my little leprechaun, the answer is that human eyes are more sensitive
to green, and therefore the increased range for green is the most logical choice of the

three primaries.

Now that you know the RGB bit-encoding formats, the question is how to build them
up. You accomplish this task with simple bit shifting and masking operations, as
shown in the following macros:

// this builds a 16 bit color value in 5.5.5 format (1-bit alpha mode)
#define RGB16BIT555(r,g,b) ((b%32) + ((g%32) << 5) + ((r%32) << 10))

// this builds a 16 bit color value in 5.6.5 format (green dominate mode)
#define _RGB16BIT565(r,g,b) ((b%32) + ((g%64) << 6) + ((r%32) << 11))

You’ll notice from the macros and Figure 7.2 that the red bits are located in the high-
order bits of the color WORD, the green bits are in the middle bits, and the blue bits are
located in the low-order bits of the color WORD. This may seem backwards because
PCs are little-endian and place data in low-to-high order, but in this case the bits are
in big-endian format, which is much better because they follow RGB order from MSB

to LSB.
Figure 7.2 dis High Byte d7 Low Byte do
Color woRbDs are l?lg— Red Green Blue h
endian.

MSB LsSB

Before you build a quick demo of 16-bit mode, there’s one more little
detail that | must address—how on Earth do you detect if the video
mode is 5.5.5 or 5.6.5? This is important because it's not under your con-
trol. You can tell DirectDraw to create a 16-bit mode, but the bit encod-
ing is up to the hardware. You must know this detail because the green
channel will be all jacked up if you don’t take it into consideration!
What you need to know is the pixel format.

Getting the Pixel Format

To figure out the pixel format of any surface, all you need to do is call the function
IDIRECTDRAWSURFACE4:GetPixelFormat (), shown here:

HRESULT GetPixelFormat (LPDDPIXELFORMAT lpDDPixelFormat);

You already saw the DDPIXELFORMAT structure in the previous chapter, but the fields
you’re interested in are

CHAPTER 7 291

Advanced DirectDraw and Bitmapped Graphics m

DWORD dwSize; /] the size of the structure, must be set by you
DWORD dwFlags; /| flags describing the surface, refer to Table 7.1
DWORD dwRGBBitCount; // number of bits for Red, Green, and Blue

The dwSize field must be set before you make the call to the size of a DDPIXELFORMAT
structure. After the call, both the dwFlags field and the dwRGBBitCount fields will be
valid and contain the informational flags, along with the number of RGB bits for the
surface in question. Table 7.1 lists a subset of the possible flags contained in dwFlags.

TaBLe 7.1 Valid Flags for DDPIXELFORMAT.dwFlags

Value Description

DDPF_ALPHA The pixel format describes an alpha-only surface.

DDPF_ALPHAPIXELS The surface has alpha channel information in the pixel
format.

DDPF_LUMINANCE The pixel format describes a luminance-only or
luminance-alpha surface.

DDPF_PALETTEINDEXED1 The surface is 1-bit color indexed.

DDPF_PALETTEINDEXED2 The surface is 2-bit color indexed.

DDPF_PALETTEINDEXED4 The surface is 4-bit color indexed.

DDPF_PALETTEINDEXEDS The surface is 8-bit color indexed. Most common.

DDPF_PALETTEINDEXEDTO8 The surface is 1-, 2-, or 4-bit color indexed to an 8-bit
palette.

DDPF_RGB The RGB data in the pixel format structure is valid.

DDPF_ZBUFFER The pixel format describes a z-buffer surface.

DDPF_ZPIXELS The surface contains z information in the pixels.

Note that there are a lot more flags especially for D3D-related properties. Please refer to the
DirectX SDK for more information.

The fields that matter the most right now are
DDPF_PALETTEINDEXED8—This indicates that the surface is an 8-bit palettized mode.

DDPF_RGB—This indicates that the surface is an RGB mode and the format can be
queried by testing the value in dwRGBBitCount.

So all you need to do is write a test that looks something like this:

DDPIXELFORMAT ddpixel; // used to hold info
LPDIRECTDRAWSURFACE4 lpdds_primary; // assume this is valid

// clear our structure
memset (&ddpixel, @, sizeof (ddpixel));

292 PART 11

m DirectX and 2D Fundamentals

/1 set length
ddpixel.dwSize = sizeof(ddpixel);

// make call off surface (assume primary this time)
lpdds_primary->GetPixelFormat (&ddpixel);

// now perform tests
// check if this is an RGB mode or palettized
if (ddpixel.dwFlags & DDPF_RGB)
{
// RGB mode
// what's the RGB mode
switch(ddpixel.dwRGBBitCount)

{

case 15: // must be 5.5.5 mode
{
/| use the _RGB16BIT555(r,g,b) macro
} break;

case 16: // must be 5.6.5 mode

{
// use the _RGB16BIT565(r,g,b) macro
} break;

case 24: // must be 8.8.8 mode

{
} break;

case 32: // must be alpha(8).8.8.8 mode

{
} break;

default: break;
} // end switch

} // end if
else
if (ddpixel.dwFlags & DDPF_PALETTEINDEXEDS8)

{
// 256 color palettized mode
} // end if

else

{

// something else??? more tests
} // end else

Fairly simple code, huh? A bit ugly, but that comes with the territory, baby! The real
power of GetPixelFormat () comes into play when you don’t set the video mode and
you simply create a primary surface in a windowed mode. In that case, you’ll have no
idea about the properties of the video system and you must query the system.

CHAPTER 7 293

Advanced DirectDraw and Bitmapped Graphics m

Otherwise, you won’t know the color depth, pixel format, or even the resolution of the
system.

Now that you're a 16-bit expert, here’s a demo! There’s nothing to creating a 16-bit
application—just make the call to SetDisplayMode () with 16 bits for the color depth,
and that’s it. As an example, here are the steps you would take to create a full-screen,
16-bit color mode in DirectDraw:

LPDIRECTDRAW 1lpdd_temp NULL; // used to get directdrawi
LPDIRECTDRAW4 1pdd NULL; // used to get directdraw4
DDSURFACEDESC2 ddsd; // surface description
LPDIRECTDRAWSURFACE4 lpddsprimary = NULL; // primary surface

// create IDirectDrawdirectdraw interface 1.0 object and test for error
if (FAILED(DirectDrawCreate(NULL,&lpdd_temp,NULL)))
return(0);

// now query for IDirectDraw4
if (FAILED(lpdd_temp->QueryInterface(IID_IDirectDraw4,
(LPVOID *)&lpdd)))
return(0);

// set cooperation level to requested mode
if (FAILED(lpdd->SetCooperativelevel(main_window_handle,
DDSCL_ALLOWMODEX | DDSCL_FULLSCREEN |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))
return(0);

// set the display mode to 16 bit color mode
if (FAILED(lpdd->SetDisplayMode(640,480,16,0,0)))
return(0);

// Create the primary surface
memset (&ddsd,0,sizeof (ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS;

// set caps for primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface
1lpdd->CreateSurface(&ddsd,&lpddsprimary,NULL) ;

And that’s all there is to it. At this point, you would see a black screen (possibly
garbage if the primary buffer memory has data in it).

To simplify the discussion, assume that you already tested the pixel format and found
that it’s RGB 16-bit 5.6.5 mode—which is correct, because you set the mode! In the
worst-case scenario, however, it could have been the 5.5.5 format. Anyway, to write a
pixel to the screen, you must

294 PART 11

T DirectX and 2D Fundamentals

1. Lock the surface. In this example, that means locking the primary surface with a
call to Lock().

2. Build the RGB WoRD for 16-bit mode. This entails using one of the macros or
doing it yourself. Basically, you’re going to send the pixel-plotting function red,
green, and blue values. They must be scaled and then combined into the 16-bit
5.6.5 format that the primary surface needs.

3. Write the pixel. This means addressing the primary buffer using a USHORT
pointer and writing the pixel into the VRAM buffer.
4. Unlock the primary surface. A call to Unlock () is made.

Here’s the code for a rough 16-bit plot pixel function:

void Plot_Pixel16(int x, int y, int red, int green, int blue,
LPDIRECTDRAWSURFACE4 1pdds)
{

// this function plots a pixel in 16-bit color mode
// very inefficient..

DDSURFACEDESC2 ddsd; // directdraw surface description

// first build up color WORD
USHORT pixel = _RGB16BIT565(red,green,blue);

// now lock video buffer
DDRAW_INIT_STRUCT (ddsd);

1pdds->Lock (NULL, &ddsd,DDLOCK_WAIT !
DDLOCK_SURFACEMEMORYPTR,NULL) ;

// write the pixel

// alias the surface memory pointer to a USHORT ptr
USHORT *video_buffer = ddsd.lpSurface;

// write the data
video_buffer[x + y*(ddsd.lPitch >> 1)] = pixel;

// unlock the surface
1pdds->Unlock (NULL);

} // end Plot_Pixell6

Notice the use of DDRAW_INIT_STRUCT (ddsd), which is a simple macro that zeros out
the structure and sets its dwSize field. I'm getting tired of doing it the long way.
Here’s the macro definition:

// this macro should be on one line

#define DDRAW_INIT_STRUCT (ddstruct)

{ memset(&ddstruct,®,sizeof(ddstruct));
ddstruct.dwSize=sizeof (ddstruct); }

CHAPTER 7 295

Advanced DirectDraw and Bitmapped Graphics qﬂ.

For example, to plot a pixel on the primary surface at (10,30) with RGB values
(255,0,0), you would do something like this:
Plot_Pixel16(10,30, /Il X,y

255,0,0, // rgb
lpddsprimary); // surface to draw on

Although the function seems reasonably simple, it’s extremely inefficient. There are a
number of optimizations that you can take advantage of. The first problem is that the
function locks and unlocks the sent surface each time. This is totally unacceptable.
Locking/unlocking can take hundreds of microseconds on some video cards, and
maybe even longer. The bottom line is that in a game loop, you should lock a surface
once, do all the manipulation you’re going to do with it, and unlock it when you’re
done, as shown in Figure 7.3. That way you don’t have to keep locking/unlocking,
zeroing out memory, etc. For example, the memory fill of the DDSURFACEDESC2 struc-
ture probably takes longer than the pixel plot! Not to mention that the function isn’t
inline and the function overhead is probably killing you.

Figure 73 Game Loop
DirectDraw surfaces Lock P
should be locked as ock () <
little as possible.
Hardware Blitter \
is locked out
while you — Do Manual Blitting
have a lock
on the surface
Y
—— Unlock ()
\ 4

Use Hardware
Blitter

Blt()

Bltfast()

These are the types of things that a game programmer needs to keep in mind. You
aren’t writing a word processor program here—you need speed! Here’s another ver-
sion of the function with a little bit of optimization, but it can still be 10 times faster:

inline void Plot_Pixel Fast16(int x, int vy,
int red, int green, int blue,
USHORT *video_buffer, int lpitch)
{

// this function plots a pixel in 16-bit color mode

296 PART 11

T DirectX and 2D Fundamentals

// assuming that the caller already locked the surface
// and is sending a pointer and byte pitch to it

// first build up color WORD
USHORT pixel = _RGB16BIT565(red,green,blue);

// write the data
video_buffer[x + y*(lpitch >> 1)] = pixel;

} // end Plot_Pixel Fast16

I still don’t like the multiply and shift, but this new version isn’t bad. You can get rid
of both the multiply and shift with a couple of tricks. First, the shift is needed because
1Pitch is memory width in bytes. However, because you’re assuming that the caller
already locked the surface and queried the memory pointer and pitch from the surface,
it’s a no-brainer to add one more step to the process to compute a WORD or 16-bit
strided version of 1pitch, like this:

int lpitch16 = (lpitch >> 1);

Basically, 1pitch16 is now the number of 16-bit WORDs that make up a video line.
With this new value, you can rewrite the functions once again, like this:
inline void Plot_Pixel_Fasteri16(int x, int vy,
int red, int green, int blue,
USHORT *video_buffer, int lpitch16)
{

// this function plots a pixel in 16-bit color mode
// assuming that the caller already locked the surface
// and is sending a pointer and byte pitch to it

// first build up color WORD
USHORT pixel = _RGB16BIT565(red,green,blue);

// write the data
video_buffer[x + y*lpitch16] = pixel;

} // end Plot_Pixel_Faster16

That’s getting there! The function is inline and has a single multiply, addition, and
memory access. Not bad, but it could be better! The final optimization is to use a
huge lookup table to get rid of the multiply, but this may not be needed because inte-
ger multiplies are getting down to single cycles on newer Pentium X architectures. It
is a way to speed things up, however.

On the other hand, you can get rid of the multiply by using a number of shift-adds.
For example, assuming a perfectly linear memory mode (without any extra stride per
line), you know that it’s exactly 1,280 bytes from one video line to another in a
640x480 16-bit mode. Therefore, you need to multiply y by 640 because the array

CHAPTER 7 297

Advanced DirectDraw and Bitmapped Graphics m

access will use automatic pointer arithmetic and scale anything in the [] array opera-
tor by a factor of 2 (2 bytes per USHORT WORD). Anyway, here’s the math:

y*640 = y*512 + y*128

512 is equal to 29, and 128 is equal to 27. Therefore, if you were to shift y to the left 9
times and then add that to y shifted to the left 7 times, the result should be equivalent
to y*640, or mathematically:

y*640 = y*512 + y*128
= (y<<9) * (y<<7)

That’s it! If you aren’t familiar with this trick, take a look at Figure 7.4. Basically,
shifting any binary-encoded number to the right is the same as dividing by 2 and
shifting to the left is the same as multiplying by 2. Furthermore, multiple shifts accu-
mulate. Hence, you can use this property to perform very fast multiplication on num-
bers that are powers of 2. However, if the numbers aren’t powers of 2, you can always
break them into a sum of products that are—as in the previous case.

Figure 7.4 128 64 32 16 8 4 2 1 Valve

Using binary shifting Original Byte | ojo]Jt1t]1|o|1]1|0]=2+4+16+32=54
to multiply and
divide. G
1 1 1 1 1 1 1 AN
AY AY AY AY AY AY AY *

AY AY AY AY AY A A

\ \ \ \ \ \ \
Shifted Right A VA VA VA VAV VS 5
1bt{OJOfO 1|1]O] 1|1 =1+2+8+16=27=|_ J=27

o o ;

do Divide by two
Carry In when Right Shift.

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
’ ’ ’

4 4 I, I, I, I, I, 4

I, , 4 , , 4 , ,
S OENENENENENENEN
Shifted Left 27 %2
1pit [O] O[T |1 |[O] 1| 1]O0]=2+4+16+32=54=2L = =54

Multiply by two
d7 do‘\Q when Left Shift.

Carry Out

You'll see a lot more of these tricks when you get to the Chapter 11,
a “Algorithms, Data Structures, Memory Management, and

Multithreading.”

For an example of using the 16-bit modes to write pixels to the screen, take a look at
DEMO7_1.CPP}EXE on the CD. The program basically implements what you’ve done
here and blasts random pixels to the screen. Take a look at the code and note that you
don’t need a palette anymore, which is kind of nice <BG>. By the way, the code is in
the standard T3D Game Engine template, so the only things you need to really look at
are Game_Init() and Game_Main (). The contents of Game_Main() are shown here:

298 PART 11

m DirectX and 2D Fundamentals

int Game_Main(void *parms = NULL, int num_parms = 0)

{

// this is the main loop of the game, do all your processing
/1 here

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
SendMessage (main_window_handle,WM_CLOSE,®,0);

// plot 1000 random pixels to the primary surface and return
// clear ddsd and set size, never assume it's clean
DDRAW_INIT_STRUCT (ddsd);

// lock the primary surface
if (FAILED(lpddsprimary->Lock(NULL, &ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,
NULL)))
return(0);

// now ddsd.lPitch is valid and so is ddsd.lpSurface

// make a couple aliases to make code cleaner, so we don't
// have to cast

int 1lpitch16 = (int)(ddsd.lPitch >> 1);

USHORT *video_buffer = (USHORT *)ddsd.lpSurface;

// plot 1000 random pixels with random colors on the
// primary surface, they will be instantly visible
for (int index=0; index < 1000; index++)
{
// select random position and color for 640x480x16
int red = rand()%256;
int green = rand()%256;
int blue = rand()%256;
int x = rand()%640;
int y = rand()%480;

// plot the pixel
Plot_Pixel_Fasteri16(x,y,red,green,blue,video_buffer,lpitch16);

} // end for index
// now unlock the primary surface
if (FAILED(lpddsprimary->Unlock(NULL)))

return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

CHAPTER 7 299

Advanced DirectDraw and Bitmapped Graphics m
24/32-Bit High-Color Mode

Once you’ve mastered 16-bit mode, 24-bit and 32-bit modes are trivial. I'll begin with
24-bit mode because it’s simpler than 32-bit mode—which is not a surprise! 24-bit
mode uses exactly one byte per channel of RGB blue. Thus, there’s no loss and a total
of 256 shades per channel, giving a total possible number of colors of 256x256x256 =
16.7 million. The bits for red, green, and blue are encoded just as they were in 16-bit
mode, except that you don’t have to worry about one channel using more bits than
another.

Because there’s one byte per channel and three channels, there are three bytes per
pixel. This makes for really ugly addressing, as shown in Figure 7.5. Alas, writing
pixels in pure 24-bit mode is rather contrived, as shown in the following 24-bit ver-
sion of the pixel-writing function:

inline void Plot_Pixel_24(int x, int vy,
int red, int green, int blue,
UCHAR *video_buffer, int lpitch)
{
// this function plots a pixel in 24-bit color mode
// assuming that the caller already locked the surface
// and is sending a pointer and byte pitch to it

// in byte or 8-bit math the proper address is: 3*x + y*1lpitch

// this is the address of the low order byte which is the Blue channel
// since the data is in RGB order

DWORD pixel_addr = (x+x+x) + y*lpitch;

// write the data, first blue
video_buffer[pixel_addr] = blue;

// now red
video_buffer[pixel_addr+1] = green;

/1 finally green
video_buffer[pixel_addr+2] = red;

} // end Plot_Pixel 24

The function takes as parameters the x,y, along with the RGB color, and finally the
video buffer starting address and the memory pitch in bytes. There’s no point in send-
ing the memory pitch or the video buffer in some WORD length because there isn’t any
data type that’s three bytes long. Hence, the function basically starts addressing the
video buffer at the requested pixel location and then writes the blue, green, and red
bits for the pixel.

For an example of 24-bit mode, take a look at DEMO7_2.CPP ! EXE on the CD. It basi-
cally mimics the functionality of DEMO7_1.CPP, but in 24-bit mode.

300 PART 11

W DirectX and 2D Fundamentals

Figure 7.5 Byte offset in buffer
Three-byte RGB 012 345 678 9.ueiriiuiaruauiinie.s (3n-1)
addressing is ugly. RGB | RG Bl RG Bl

Each RGB word
is on a 3 byte

boundary.

16-Bit Frame Buffer
n Words (Pixels)/Line

Many video cards don't support 24-bit color mode. They support only
32-bit color, which is usually 8 bits of alpha transparency and then 24
bits of color. This is due to addressing constraints. So DEMO7_2.EXE may
not work on your system.

Moving on to 32-bit color, the pixel setup is a little different, as shown in Figure 7.6.
In 32-bit mode, the pixel data is arranged in the following two formats:

Alpha(8).8.8.8—This format uses eight bits for alpha or transparency information (or
sometimes other information) and then eight bits for each channel: red, green, and
blue. However, where simple bitmapping is concerned, you can usually disregard the
alpha information and simply write eights to it. The nice thing about this mode is that
it’s 32 bits per pixel, which is the fastest possible memory addressing mode for a
Pentium.

X(8).8.8.8—Similar to the preceding mode, except in this mode the upper eight bits of
the color WORD are “don’t care’s” or irrelevant. However, I still suggest setting them to
zeroes to be safe. You may say, “This mode seems like a 24-bit mode, so why have
it?” The answer is that many video cards can’t address on three-byte boundaries, so
the fourth byte is just for alignment.

Now, take a look at a macro to create a 32-bit color WORD:

// this builds a 32 bit color value in A.8.8.8 format (8-bit alpha mode)
#define _RGB32BIT(a,r,g,b) (+ ((g) << 8) + ((r) << 16) + (<< 24))

CHAPTER 7 301

Advanced DirectDraw and Bitmapped Graphics qu.

Figure ?_G Alpha | Red | Green | Blue
32t RGB pixel 1 a7 p R7~Ro G7-Go B7-Bo [l A8.8.8format
encodings.
d31 d23 d15 d7 do
don'tcare | Red 1 Green 1 Blue
XXXXXXXX R7 - Ro G7-Go B7-Bo X.8.8.8 format
d31 d23 d15 d7 do
used for

alignment only

Then all you need to do is change your pixel-plotting function to use the new macro
and take advantage of the four-byte-per-pixel data size. Here it is:
inline void Plot_Pixel 32(int x, int vy,

int alpha,int red, int green, int blue,

UINT *video_buffer, int 1lpitch32)

{

// this function plots a pixel in 32-bit color mode

// assuming that the caller already locked the surface

// and is sending a pointer and DWORD aligned pitch to it

// first build up color WORD
UINT pixel = _RGB32BIT(alpha,red,green,blue);

// write the data
video_buffer[x + y*1lpitch32] = pixel;

} // end Plot_Pixel_32

This should look familiar. The only thing hidden is the fact that 1pitch32 is the byte
pitch divided by four, so it’s a DWORD or 32-bit WORD stride. With that all in mind,
check out DEMO7_3.CPP|EXE. It’s the same pixel-plotting demo, but in 32-bit mode. It
should work on your machine because more video cards support 32-bit mode than
pure 24-bit mode.

All righty, then! I think I’ve belabored high-color modes enough that you can work
with them and convert any 8-bit color code that you want. Remember, I can’t assume
that everyone has a Pentium II 450MHz with a Voodoo II 3D Accelerator. Sticking to
8-bit color is a good way to keep the processing power within reach of most people.

Double Buffering

Thus far you’ve directly modified the contents of the primary surface, which is
directly rasterized each frame by the video controller. This is fine for demos and static

302 PART 11

W DirectX and 2D Fundamentals

imagery, but what if you want to perform smooth animation? This is a definite prob-
lem; let me explain. As I alluded to earlier in the book, most computer animation is
achieved by drawing each frame of animation in an offscreen buffer area and then
blasting the image to the visible display surface very quickly, as shown in Figure 7.7.

Figure 7.7 (Off screen image in
Performing animation system memory or VRam) (On-screen visible VRam)
with double buffering.

memcpy()
flip

Data is copied

Next frame this will be copied to visible display.
Raster

Display

This way the user can’t see you erase images, generate the display, or anything else
you might do in each frame. As long as the copying of the offscreen image to the vis-
ible surface is very quick, you could theoretically do it 15 times a second, or 15 fps,
and still have a reasonably smooth game. However, the standard these days is at least
30 fps, so that has become the minimum to get high-quality animation.

The process of drawing an image in an offscreen area and then copying it to the dis-
play surface is called double buffering, and it’s how 99 percent of all games perform
animation. However, in the past (under DOS especially), there wasn’t special hard-
ware to help with this process. This obviously changed with the introduction of
DirectX/DirectDraw.

If acceleration hardware is present (and enough VRAM memory is on the video
card), a process that’s similar to double buffering, called page flipping, can be
employed. Page flipping is roughly the same idea as double buffering, except that you
draw to one of two potentially visible surfaces and then direct the hardware to make
the other surface the active display surface. This basically removes the “copy” step
because the hardware addressing system is used to point the video rasterizer to a dif-
ferent portion of memory. The end result is an instantaneous page flip and update of
the visual on the screen (hence the term page flipping).

CHAPTER 7 303

Advanced DirectDraw and Bitmapped Graphics m

Of course, page flipping has always been possible, and many game programmers used
it when programming Mode X modes (320x240, 320x400). However, it’s a down-
low-and-direct technique. Assembly language and video controller programming was
usually needed to accomplish the task. But with DirectDraw it’s a snap. You’ll get to
it in the next section. I just wanted you to have an idea of where this chapter is going
before I show you double buffering in detail.

Implementing double buffering is trivial. All you need to do is allocate a portion of
memory that has the same geometry as the primary DirectDraw surface, draw each
frame of animation on it, and then copy the double buffer memory to the primary dis-
play surface. Unfortunately, there’s a problem with this scheme...

Let’s say you’ve decided to create a 640x480x8 DirectDraw mode. Hence, you would
need to allocate a double buffer that was 640x480 or a linear array of 307,200 bytes.
And keep in mind that the data is mapped in a row-order form, one row for each row
on the screen. This is no problem, though. Here’s the code to create the double buffer:

UCHAR *double_buffer = (UCHAR *)malloc(640*480);
Or, using the new operator in C++:
UCHAR *double_buffer = new UCHAR[640*480];

Either way you do it, you have an array of 307,200 bytes linearly addressable in
memory that double_buffer points to. To address a single pixel at position (X,y), you
would use the following code:

double_buffer[x + 640*y] = ..

Seems reasonable because there are 640 bytes per virtual line and you’re assuming a
rectangular mapping of 640 bytes per line and 480 lines. Okay, here’s the problem:
Assume that you’ve also locked a pointer to the primary display surface and it’s in
primary_buffer. In addition, assume that during the lock you’ve extracted the mem-
ory pitch and stored it in mempitch, as shown in Figure 7.8. If mempitch is equal to
640, you can use the following code to copy the double_buffer to the
primary_buffer:

memcpy ((void *)primary_buffer, (void *)double_buffer,640*480);

And almost instantly, the double_buffer will show up in the primary buffer.

304 PART 11

W DirectX and 2D Fundamentals

Figure 7.8 Double Buffer (System memory) Primary Buffer (VRam)
Primary display sur-

LP surface Am
faces may have extra 639 0 639 | €—>
memory per line,
causing addressing | g49 Co n 640 + Am
problems. | :py
640 x 480 x 1 byte 640 x 480 x 1 byte
in system memory direct draw surface
in VRam

Display memory

Off Screen Linear Buffer kJ
Extra bytes for

cache alignment, etc.
can cause memory
problem.

| €———— Mem ditch ——>|

There's a potential optimization here. Notice, I'm using memcpy (). This
function is rather slow because it only copies bytes (on some compilers).
A better method would be to write your own DWORD or 32-bit copy func-
tion to move more data per cycle. You can do this with inline or external
assembly language. You'll see how when you get to optimization theory,
but this is a good example if you're taking advantage of the largest
data chunk that the Pentium can process, which is a 32-bit value.

Everything seems fine, right? Wrong! The preceding memcpy () code will work only if
mempitch or the primary surface stride is exactly 640 bytes per line. This may or may
not be true. Alas, the preceding memcpy () code may fail terribly. A better way to write
the double buffer copy function is to add a little function that tests if the memory
pitch of the primary surface is 640. If so, the memcpy () is employed; if not, a line-by-
line copy is used. A little slower, but the best you can do... Here’s the code for that:

// can we use a straight memory copy?

if (mempitch==640)

{

memcpy ((void *)primary_buffer, (void *)double_buffer,640*480);

} // end if

else

{

// copy line by line, bummer!

for (int y=0; y<480; y++)
{
// copy next line of 640 bytes
memcpy ((void *)primary_buffer, (void
*)double_buffer,640);

// now for the tricky part..

Errata

Errata
"Mem ditch" should be "Mem Pitch"

CHAPTER 7 305

Advanced DirectDraw and Bitmapped Graphics qﬂ.

// advance each pointer ahead to next line

// advance to next line which is mempitch bytes away
primary_buffer+=mempitch;

// we know that we need to advance 640 bytes per line
double_buffer+=640;

} // end for y

} // end else

Figure 7.9 shows the process graphically. As you can see, this is one of the times that
you have to do the work—no cheating! However, at least you can optimize the code
with 4-byte or 32-bit copy code later. That makes me feel a little better.

Figure 7.9 Double Buffer in Display Surface in VRam
Copying the double System Memory Each line must be
buffer line by line. copied separately
Line 0 > Line 0
Line 1 > Line 1
. For load .
: line copy(); ‘
—Line - —@9 __Llf‘le -

|

Extra memory
per line

> 0 depending
on mode and

manufacturer.

As an example, I have created a demo that draws a set of random pixels on a double
buffer and then copies the double buffer to the primary buffer in 640x480x8 mode.
There’s a long delay between copies, so you can see that the image is entirely differ-
ent. The name of the program is DEMO7_4.CPP|EXE and it’s on the CD. Remember to
compile it yourself to add DDRAW.LIB to your project and have the header file paths set
to the DirectX include directory. Here’s the Game_Main() from the program, which is
where all the action occurs:

int Game_Main(void *parms = NULL, int num_parms = 0)

{
// this is the main loop of the game, do all your processing
/] here

UCHAR *primary_buffer = NULL; // used as alias to primary surface buffer

Errata
The little squiggily lines should be "..." vertically, as shown by the marks on the hardcopy.

306 PART 11

m DirectX and 2D Fundamentals

// make sure this isn't executed again
if (window_closed)
return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
{
PostMessage (main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

/| erase double buffer
memset((void *)double buffer,®, SCREEN_WIDTH*SCREEN_HEIGHT) ;

// you would perform game logic...
// draw the next frame into the double buffer

// plot 5000 random pixels
for (int index=0; index < 5000; index++)

{
int x = rand()%SCREEN_WIDTH;
int y = rand()%SCREEN_HEIGHT;

UCHAR col = rand()%256;
double_buffer[x+y*SCREEN_WIDTH] = col;
} // end for index

/] copy the double buffer into the primary buffer
DDRAW_INIT_STRUCT (ddsd);

// lock the primary surface
lpddsprimary->Lock (NULL,&ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// get video pointer to primary surfce
primary_buffer = (UCHAR *)ddsd.lpSurface;

/] test if memory is linear
if (ddsd.1lPitch == SCREEN_WIDTH)
{
// copy memory from double buffer to primary buffer
memcpy ((void *)primary_buffer, (void *)double_buffer,
SCREEN_WIDTH*SCREEN_HEIGHT) ;
} // end if
else
{ // non-linear

// make copy of source and destination addresses
UCHAR *dest_ptr = primary_buffer;
UCHAR *src_ptr = double_buffer;

// memory is non-linear, copy line by line
for (int y=0; y < SCREEN_HEIGHT; y++)

CHAPTER 7 307
{

Advanced DirectDraw and Bitmapped Graphics m
// copy line

memcpy ((void *)dest_ptr, (void *)src_ptr, SCREEN WIDTH);

// advance pointers to next line
dest_ptr+=ddsd.1lPitch;
src_ptr +=SCREEN_WIDTH;

// note: the above code can be replaced with the simpler
// memcpy (&primary_buffer[y*ddsd.1lPitch],

/1l double buffer[y*SCREEN_WIDTH], SCREEN_WIDTH);
// but it is much slower due to the recalculation

// and multiplication each cycle

} // end for
} // end else

// now unlock the primary surface
if (FAILED(lpddsprimary->Unlock(NULL)))
return(0);

// wait a sec
Sleep(500);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Surface Dynamics

Throughout the book I've mentioned that you can create a number of different types
of surfaces, but up to this point you’ve only seen how to work with primary surfaces.
Now I want to talk about offscreen surfaces. Basically, there are two types of off-
screen surfaces. The first kind is the back buffer.

Back buffers are surfaces used in an animation chain that have the same geometry and
color depth as the primary surface. Back buffer surfaces are unique because you cre-
ate them as you create the primary surface. They’re part of the primary surface’s flip-
ping chain. In other words, when you request one or more secondary surfaces to be
back buffers, by default DirectDraw assumes that you’ll be using them in an anima-
tion loop. Figure 7.10 shows the relationship between the primary surface and sec-
ondary surfaces that are back buffers.

308 PART 11

T DirectX and 2D Fundamentals

Figure 7.10 Flipping Chain

The primary surface 1 or more Back Buffers Primary Surface Display

and back buffer(s). mxn pixels 7

Double Buff 4

—| Double Buffer |«)
) |

(standard) mxn pixels

A

Y

. mxn pixels
Triple Buffer

(better
performance)

;:
¥

Secondary Surfaces

mxn pixels

The reason you would create a back buffer is to emulate the functionality of double
buffering, but in a more DirectDraw kind of way. If you create a DirectDraw back
buffer, usually it will be in VRAM and thus will be very fast. Moreover, you’ll be able
to page flip it with the primary surface, which is much faster than the memory copy
needed for a double buffering scheme.

Technically, you can have as many back buffers as you want in a flipping chain.
However, at some point you’ll run out of VRAM and the surface will have to be cre-
ated in system memory, which is much slower. In general, if you create an mxn mode
with a color depth of one byte, the amount of memory for the primary buffer is of
course m*n bytes (unless there’s memory pitch alignment). Therefore, if you have one
extra back buffer secondary surface, you would multiply this by 2 because back
buffers have the same geometry and color depth. So 2*m*n bytes would be the mem-
ory required. Finally, if the color depth is 16-bit, you would have to scale all the cal-
culations by two bytes, and similarly for 32-bit buffers you would scale by 4. For
example, the primary buffer for a 640x480x16-bit mode would take

Width * Height * Number of bytes per pixel
640 * 480 * 2 = 614,400 bytes

And if you want one extra back buffer, you need to multiply that result by 2 so the
final number of bytes is

614,400 * 2 = 1,228,800 bytes

Roughly 1.2MB of VRAM! Hence, if you have only a 1MB card, you can forget hav-
ing a VRAM back buffer in 640x480x16-bit color mode. Most cards have at least
2MB these days, so you’re usually safe, but it’s always good to test for the amount of

CHAPTER 7

309

Advanced DirectDraw and Bitmapped Graphics

memory available on the card. You can do so with a GetCaps class function. We’ll
cover that at the end of the chapter.

To create a primary surface that has a back buffer surface attached to it, you have to
create what DirectDraw calls a complex surface. Here are the steps:

1. First, you have to add DDSD_BACKBUFFERCOUNT to the dwFlags flag field to indi-
cate to DirectDraw that the dwBackBufferCount field of the DDSURFACEDESC2

structure will be valid and contain the number of back buffers (one in this case).

2. Second, you must add the control flags DDSCAPS_COMPLEX and DDSCAPS_FLIP to
the capabilities WORD of the DDSURFACEDESC2 structure contained in the
ddsCaps.dwCaps field.

3. Finally, create the primary surface as usual. From it, request the attached back
buffer with a call to IDIRECTDRAWSURFACE4: :GetAttachedSurface(), shown
below, and you’re in business.

HRESULT GetAttachedSurface(LPDDSCAPS2 1lpDDSCaps,
LPDIRECTDRAWSURFACE4 FAR *1plpDDAttachedSurface);

1pDDSCaps is a DDSCAPS2 structure containing the requested surface capabilities. In
your case, you're requesting a back buffer, so you’ll set it like this:

DDSCAPS2 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;

Or just use the DDSCAPS2 field of the DDSURFACEDESC2 structure to save another vari-
able, like this:

ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

Here’s the code to create a primary surface and a single back buffer flipping chain:

// assume we already have the directdraw object etc..

DDSURFACEDESC2 ddsd; // directdraw surface description
LPDIRECTDRAWSURFACE4 1lpddsprimary = NULL; // primary surface
LPDIRECTDRAWSURFACE4 1lpddsback = NULL; // back buffer

// clear ddsd and set size
DDRAW_INIT_STRUCT (ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// set the backbuffer count field to 1
ddsd.dwBackBufferCount = 1;

// request a complex, flippable
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
DDSCAPS_COMPLEX | DDSCAPS_FLIP;

310 PART 11

W DirectX and 2D Fundamentals

/| create the primary surface
if (FAILED(1lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL)))
return(0);

// now query for attached surface from the primary surface

// this line is needed by the call
ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

if (FAILED(lpddsprimary->GetAttachedSurface(&ddsd.ddsCaps, &lpddsback);

At this point, 1pddsprimary points to the primary surface, which is currently visible,
and lpddsback points to the back buffer surface, which is not. Take a look at Figure
7.11 to see this graphically. To access the back buffer, you can lock/unlock it just like
the primary surface.

Figure p.11 Lpdds primary——
A true complex
surface. Primary Buffer
Surface
(on-screen)

Attached surface Simple flipping chain

Lpdds back —»|

Back Buffer
Surface
(off-screen)

So, if you wanted to manipulate the information in the back buffer, you could do this:

// copy the double buffer into the primary buffer
DDRAW_INIT_STRUCT (ddsd);

// lock the back buffer surface
lpddsback->Lock (NULL,&ddsd, DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// now ddsd.lpSurface and ddsd.lPitch are valid
// do whatever..

// unlock the back buffer, so hardware can work with it

lpddsback->Unlock (NULL) ;

Now, the only problem is that you don’t know how to flip the pages, or, in other
words, make the back buffer surface the primary surface and hence animate the two
pages. Let me show you how that’s done!

CHAPTER 7 311

Advanced DirectDraw and Bitmapped Graphics m

Page Flipping

Once you’ve created a complex surface with a primary surface and a back buffer sur-
face, you’re ready to page flip. The standard animation loop requires these steps (see
Figure 7.12):

1. Clear back buffer.

2. Render scene to back buffer.

3. Flip primary surface with back buffer surface.

4. Lock to frame rate (30 fps, for example).

5. Repeat step 1.

Figure 7.12 Main animation loop
A page flipped anima-
NgQ system. ¥ LPDDS back —»
@ Clear
Back Buff
ack Buffer
/ Flipping
@ Render chain
LPDDS primary 3|
Primary Buffer
o) Flip > .
°
@ Display

There are a few details that may confuse you. First, if the back buffer is flipped with
the primary buffer, won’t the back buffer become the primary buffer, and vice versa?
If so, won’t you need to draw on the primary surface every other frame? Although this
may seem to make sense, it’s not what really happens. In reality, pointers to VRAM
are switched by the hardware, and from your point of view and DirectDraw’s, the
back buffer surface is always offscreen and the primary is always onscreen. Therefore,
you always draw to the back buffer and flip with the primary surface each frame.

To flip the primary surface with the next attached surface in the flipping chain, you
use the function IDIRECTDRAWSURFACE4: :Flip(), shown here:

HRESULT Flip(LPDIRECTDRAWSURFACE4 1lpDDSurfaceTargetOverride, // override surface
DWORD dwFlags); // control flags

312 PART 11

T DirectX and 2D Fundamentals

This returns DD_OK if successful and an error code if not.

The parameters are simple. 1pDDSurfaceTargetOverride is basically an advanced
parameter used to override the flipping chain and flip to another surface other than the
back buffer attached to the primary surface; just send NULL here. The dwFlags parame-
ter, however, might be of interest to you. Table 7.2 contains the various settings for it.

TaBLE 7.2 Control Flags for Flip()

Value Description
DDFLIP_INTERVAL2 Flip after two vertical retraces.
DDFLIP_INTERVAL3 Flip after three vertical retraces.
DDFLIP_INTERVAL4 Flip after four vertical retraces.

(Note that the default is one vertical retrace.)

These flags indicate how many vertical retraces to wait between each flip. The default
is one. DirectDraw will return DERR_WASSTILLDRAWING for each surface involved in
the flip until the specified number of vertical retraces has occurred. If DDFLIP_INTER-
VAL2 is set, DirectDraw will flip on every second vertical sync; if DDFLIP_INTERVALS3,
on every third sync; and if DDFLIP_INTERVAL4, on every fourth sync.

These flags are effective only if DDCAPS2_FLIPINTERVAL is set in the DDCAPS structure
returned for the device.

DDFLIP_NOVSYNC—This flag causes DirectDraw to perform the physical flip as close
as possible to the next scan line.

DDFLIP_WAIT—This flag forces the hardware to wait until a flip is possible rather than
returning back immediately if there’s a problem.

\S// It's possible to create a complex surface with two back buffers or a flip-

= ping chain that has a total of three surfaces, including the primary sur-
face. This is called triple buffering, and it gives the ultimate in
performance. The reason is obvious: If you have a single back buffer, the
video hardware may be bottlenecked by your accessing it along with the
video hardware and so on. But with two extra surfaces in the flipping
chain, the hardware never has to wait. The beauty of triple buffering
with DirectDraw is that you simply use Flip() and the hardware flips
the surfaces in a cyclic manner, but you still only render to a single back
buffer, so it's transparent to you.

Typically, you’ll set the flags for DDFLIP_WAIT and that’s it. Also, you must call
Flip() as a method from the primary surface, not the back buffer. This should make

CHAPTER 7 313

Advanced DirectDraw and Bitmapped Graphics m

sense because the primary surface is the “parent” of the back buffer surface, and the
back buffer is part of the parent’s flipping chain. Anyway, here’s how you would make
the call to flip pages:

lpddsprimary->Flip(NULL, DDFLIP_WAIT);

And I've found that adding a little logic like this helps if the function errors out for
some stupid reason:

while (FAILED(lpddsprimary->Flip(NULL, DDFLIP_WAIT));

Both the back buffer surface and the primary surface must be unlocked
to perform the flip, so make sure you've unlocked them both before try-
ing a call to Flip().

For an example of page flipping, check out DEMO7_5.CPP|EXE. I took DEMO7_4.CPP
and changed the double buffering to page flipping, and of course I updated the
Game_Init() code to create a complex surface with a single back buffer. Here are
Game_Init() and Game_Main() for your review:

int Game_Init(void *parms = NULL, int num_parms = 0)

{

// this is called once after the initial window is created and

// before the main event loop is entered, do all your initialization
/] here

LPDIRECTDRAW lpdd_temp;

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd_temp, NULL)))
return(0);

// now query for IDirectDraw4
if (FAILED(1lpdd_temp->QueryInterface(IID IDirectDraw4,
(LPVOID *)&lpdd4)))
return(0);

// set cooperation to full screen
if (FAILED(1lpdd4->SetCooperativelLevel(main_window_handle,
DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))
return(0);

// set display mode to 640x480x8
if (FAILED(1lpdd4->SetDisplayMode (SCREEN_WIDTH, SCREEN_HEIGHT,
SCREEN_BPP,0,0)))
return(0);

314 PART 11

w DirectX and 2D Fundamentals

/] clear ddsd and set size
DDRAW_INIT_STRUCT (ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// set the backbuffer count field to 1, use 2 for triple buffering
ddsd.dwBackBufferCount = 1;

// request a complex, flippable
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
DDSCAPS_COMPLEX | DDSCAPS_FLIP;

// create the primary surface
if (FAILED(1lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL)))
return(0);

// now query for attached surface from the primary surface

// this line is needed by the call
ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

// get the attached back buffer surface
if (FAILED(lpddsprimary->GetAttachedSurface (&ddsd.ddsCaps, &lpddsback)));

// build up the palette data array
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;

palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

/1 set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

// now fill in entry @ and 255 with black and white

palette[0].peRed = 0;
palette[0].peGreen =0;
palette[0].peBlue =0;
palette[@].peFlags = PC_NOCOLLAPSE;
palette[255].peRed = 255;

palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

/| create the palette object

if (FAILED(1lpdd4->CreatePalette (DDPCAPS 8BIT | DDPCAPS_ALLOW256 !
DDPCAPS_INITIALIZE,
palette,&lpddpal, NULL)))

CHAPTER 7 315

Advanced DirectDraw and Bitmapped Graphics m

// finally attach the palette to the primary surface
if (FAILED(lpddsprimary->SetPalette(lpddpal)))
return(0);

return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Init

LHEEETTEEELT L r i r i i r i r i i r i r i ri i ri iy
1111

int Game_Main(void *parms = NULL, int num_parms = 0)

{

// this is the main loop of the game, do all your processing
/] here

// make sure this isn't executed again
if (window_closed)
return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
{
PostMessage (main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

/! lock the back buffer
DDRAW_INIT_STRUCT(ddsd);
lpddsback->Lock (NULL,&ddsd, DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// alias pointer to back buffer surface
UCHAR *back_buffer = (UCHAR *)ddsd.lpSurface;

// now clear the back buffer out

// linear memory?
if (ddsd.lPitch == SCREEN_WIDTH)

memset (back_buffer,0,SCREEN_WIDTH*SCREEN_HEIGHT) ;
else

{

// non-linear memory

// make copy of video pointer
UCHAR *dest_ptr = back_buffer;

// clear out memory one line at a time
for (int y=0; y<SCREEN_HEIGHT; y++)
{

// clear next line

316 PART 11

m DirectX and 2D Fundamentals

memset (dest_ptr,0,SCREEN_WIDTH);

// advance pointer to next line
dest_ptr+=ddsd.1Pitch;

} // end for y

} // end else

// you would perform game logic...

// draw the next frame into the back buffer, notice that we
// must use the lpitch since it's a surface and may not be linear

// plot 5000 random pixels
for (int index=0; index < 5000; index++)

{
int x = rand()%SCREEN_WIDTH;
int y = rand()%SCREEN_HEIGHT;

UCHAR col = rand()%256;
back_buffer[x+y*ddsd.1lPitch] = col;
} // end for index

// unlock the back buffer
if (FAILED(lpddsback->Unlock(NULL)))
return(0);

/| perform the flip
while (FAILED(lpddsprimary->Flip(NULL, DDFLIP_WAIT)));

// wait a sec
Sleep(500);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Also, note the boldfaced code from Game_Main () that deals with the lock
window_closed, reprinted here:

// make sure this isn't executed again
if (window_closed)
return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
{
PostMessage (main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

CHAPTER 7 317

Advanced DirectDraw and Bitmapped Graphics m
13

/ | needed to add the exit state in the preceding code because it's possible
-~ that Game_Main () will be called one extra time even though the window
was destroyed. This will cause an error, of course, because DirectDraw
anchors to the window handle. Hence, | have created a locking variable
(or binary semaphore if you will) that's set once the window is closed,
and the gate keeps the Game_Main () function from any future entry. This
is a very important detail that | should have mentioned in the last pro-
gram, but | didn't. Of course, | could have rewritten the text, but I just
wanted to show you how easy it is to make a mistake with
DirectX/Win32 asynchronous programming.

That’s about all there is to page flipping. DirectDraw does most of the work, but I
want to leave you with some last details about it. First, when you create a back buffer,
there is the possibility that DirectDraw will create it in system memory rather than
VRAM (f there isn’t any left). In that case, you don’t have to do anything;
DirectDraw will emulate the functionality of page flipping with double buffering and
copy the back buffer to the primary surface when you make a call to Flip().
However, it will be slower. The cool thing is that your code will work no matter what.
So that’s pretty killer and drama-free, baby!

In general, when you create the primary and secondary back buffer, you

a want them both in VRAM. The primary is always in VRAM, but it's possi-
ble to get stuck with a system memory back buffer. However, always
remember that there’s only so much VRAM, and you might want to
forgo the use of a VRAM back buffer in exchange for putting all your
game graphics in VRAM to speed the blitting of images. Using the hard-
ware blitter to move bitmaps from VRAM to VRAM is much faster than
moving them from system memory to VRAM. Alas, you might decide to
make a system memory back buffer in cases where you have a lot of
small sprites or bitmaps and you're going to do a lot of blitting. In this
case, you're doing so much blitting, the speed loss of a double buffer
scheme in deference to page flipping with a VRAM animation system is
far outweighed by the performance gain of having all your game
bitmaps in VRAM.

Using the Blitter

If you’ve been programming in DOS, not only have you been stuck in a quasi-32-bit
world (even with a DOS extender), but I’ll bet you’ve never been able to use hardware
acceleration for 2D/3D graphics without a driver from the manufacturer or a fat third-
party library. Hardware acceleration has been around since way before DOOM, but
game programmers could rarely use it because it was more of a Windows thing.

318 PART 11

W DirectX and 2D Fundamentals

However, with DirectX you can take total advantage of all acceleration—graphics,
sound, input, networking, etc. But the coolest thing is finally being able to use the
hardware blitter to move bitmaps and do fills! Let me show you how it works...

Normally, when you want to draw a bitmap or fill a video surface, you have to do it
manually, pixel by pixel and so forth. For example, take a look at Figure 7.13, which
depicts an 8x8, 256-color bitmap. Imagine that you want to copy this image to a video
or offscreen buffer at position (x,y) that’s 640x480 with linear pitch. Here’s the code

to do it:

UCHAR *video_buffer; // points to VRAM or offscreen surface

UCHAR bitmap[8*8]; // holds our bitmap in row major form

// crude bitmap copy

// outer loop is for each row
for (int index_y=0; index_y<8; index_y++)
{
// inner loop for each pixel of each row
for (int index_x=0; index_x<8; index_x++)
{
// copy the pixel without transparency
video_buffer[x+index_x + (y+index_y)*640] =
bitmap[index_x + index_y*8];
} // end for index_x

} // end for index_y

Figure 7.13 8 x 8 Bitmap
An 8x8, 256-color 1-Byte per pixel (256 color)
bitmap.

e

Data Representation
in Memory

10

10

10

10

10

10

15

10

_
o

10

10

10

10

10

0 |® | |o

8

Each pixel is 8-bits

LI

Now take a few minutes (or seconds, if you’re a cyborg) and make sure you com-

pletely understand what’s going on and could write this yourself without looking.
Refer back to Figure 7.13 to help visualize it. Basically, you’re simply copying a

CHAPTER 7 319

Advanced DirectDraw and Bitmapped Graphics m

rectangular bitmap of pixels from one place in memory to another. There are
obviously a number of optimizations and problems with this function. First, I'1l talk
about the problems:

Problem 1: The function is incredibly slow.

Problem 2: The function doesn’t take into consideration transparency, meaning that if
you have a game object in the bitmap that has black around it, the black will be
copied. This problem is shown in Figure 7.14. You need to add code for this.

Figure 7.14 Source Bitmap Destination Surface
Transparent pixels
aren’t copied to the
destination surface
during blitting.

0 - Denotes transparent
not copied

ofojojofoJofoO]oO

oo |15|15|15|15]|15]0

ofi5jofofo]Jofo0]15 I 15
o|15]0 [10f0 |10] 0|15 S

of15|3|ofo]o]|3 |15 §

of15|o]|3]|3|3J.0|15 2 3

oo [5[15[15]15[15]0 = I ey g
ofojojofoJofoO]oO

Transparent: 0 Non-transparent pixels

Non-transparent: 3, 10, 15 are copied during Blit

As far as optimizations go, you can do the following:

Optimization 1: Get rid of all the multiplication and most of the addition by precom-
puting starting addresses in the source and destination buffers and then increment
pointers for each pixel.

Optimization 2: Use memory fills for nontransparent runs of pixels (advanced).

Let’s start with making a real function that takes transparency into consideration (use
color 0), and that uses better addressing to speed things up and get rid of the multi-
plies. Here’s one example:

void Blit8x8(int x, int vy,

UCHAR *video_buffer,
UCHAR *bitmap)

// this function blits the image sent in bitmap to the
// destination surface pointed to by video_buffer
// the function assumes a 640x480x8 mode with linear pitch

// compute starting point into video buffer
// video_buffer = video_buffer + (x + y*640)

320 PART 11

W DirectX and 2D Fundamentals

video_buffer+= (x + (y << 9) + (y << 7));
UCHAR pixel; // used to read/write pixels

// main loop
for (int index_y=0; index_y < 8; index_y++)
{
// inner loop, this is where it counts!
for (int index_x=0; index_x < 8; index_x++)
{
// copy pixel, test for transparent though

if ((pixel = bitmap[index_x])
video_buffer[index_x] = pixel;
} // end for index_x

// advance pointers
bitmap+=8; // next line in bitmap
video_buffer+=640; // next line in video_buffer

} // end for index_y
} // end B1lit8x8

This version of the blitter function is many times faster than the previous one with
multiplication, and this one even works with bitmaps that have transparent pixels—
wow! The point of this exercise is to show you how something so simple can take up
so many processor cycles. If you count cycles, the function is still crap. There’s the
overhead of the loop mechanics, of course, but the guts of the function are still ugly.
A test for transparency must be made, two array accesses, a write to memory... yuck,
yuck, yuck! This is why there are accelerators. A hardware blitter can do this in its
sleep, which is why you need to use the hardware to blit images down. That way you
can save processor cycles for other things, like Al and physics!

Not to mention that the blitter function just shown is really stupid. It is hard-coded to
640x480x256, doesn’t do any clipping (more logic), and only works for 8-bit images.

Now that I’ve shown you the old way to draw bitmaps, here’s the first look at the blit-
ter and how to use it to do memory fills. Then you’ll see how to copy images from
one surface to another. Later in the chapter, you’ll use the blitter to draw game
objects, but take your time.

Using the Blitter for Memory Filling

Although accessing the blitter under DirectDraw is trivial compared to programming
it manually, it’s still a reasonably complex piece of hardware. Therefore, whenever I
get my hands on a new piece of video hardware, I always like to try something simple
first before I try pushing the envelope. So let me show you how to do something that’s
very useful—memory fills.

CHAPTER 7

321

Advanced DirectDraw and Bitmapped Graphics

Memory filling simply means filling a region of VRAM with some value. You’ve done
this a number of times by locking a surface and then using memset () or memcpy () to
manipulate and fill the surface memory, but there are a number of problems with this
approach. First, you’re using the main CPU to do the memory fill, so the main bus is
part of the transfer. Second, the VRAM that makes up a surface may not be totally lin-
ear. In that case, you’ll have to do a line-by-line fill or move. However, with the hard-
ware blitter you can directly fill or move chunks of VRAM or DirectDraw surfaces
instantly!

The two functions that DirectDraw supports for blitting are
IDIRECTDRAWSURFACE4: :B1t () and IDIRECTDRAWSURFACE4: :B1tFast (). Their proto-
types are shown here:
HRESULT Blt(LPRECT lpDestRect, // dest RECT
LPDIRECTDRAWSURFACE4 1pDDSrcSurface, // dest surface
LPRECT 1pSrcRect, // source RECT

DWORD dwFlags, // control flags
LPDDBLTFX 1pDDBltFx); // special fx (very cool!)

The parameters are defined here and illustrated graphically in Figure 7.15:

1pDestRect is the address of a RECT structure that defines the upper-left and lower-
right points of the rectangle to blit to on the destination surface. If this parameter is
NULL, the entire destination surface will be used.

1pDDSrcSurface is the address of an IDIRECTDRAWSURFACE4 interface for the
DirectDraw surface to be used as the source of the blit.

1pSrcRect is the address of a RECT structure that defines the upper-left and lower-
right points of the rectangle to blit from on the source surface. If this parameter is
NULL, the entire source surface will be used.

dwFlags determines the valid members of the next parameter, which is a DDBLTFX
structure. Within DDBLTFX, special behaviors such as scaling, rotation, and so on can
be controlled, as well as color key information. The valid flags for dwFlags are shown
in Table 7.3.

1pDDB1tFx is a structure containing special blitter-relating information about the blit
you’re requesting. The data structure follows.

typedef struct _DDBLTFX

{

DWORD dwSize; // the size of this structure in bytes
DWORD dwDDFX; // type of blitter fx

DWORD dwROP; // Win32 raster ops that are supported
DWORD dwDDROP; // DirectDraw raster ops that are supported
DWORD dwRotationAngle; // angle for rotations

DWORD dwZBufferOpCode; /! z-buffer fields (advanced)

322 PART 11

T DirectX and 2D Fundamentals

DWORD dwzZBufferLow; // advanced..

DWORD dwzZBufferHigh; // advanced..

DWORD dwZBufferBaseDest; // advanced..

DWORD dwzZDestConstBitDepth; // advanced..

union

{

DWORD dwZDestConst; // advanced. .

LPDIRECTDRAWSURFACE 1pDDSZBufferDest; // advanced..
};

DWORD dwZSrcConstBitDepth; // advanced. .
union

{

DWORD dwZSrcConst; // advanced. .
LPDIRECTDRAWSURFACE 1pDDSZBufferSrc; // advanced. .

b

DWORD dwAlphaEdgeBlendBitDepth; // alpha stuff (advanced)
DWORD dwAlphaEdgeBlend; // advanced. .

DWORD dwReserved; // advanced. .

DWORD dwAlphaDestConstBitDepth; // advanced..
union

{

DWORD dwAlphaDestConst; // advanced. .
LPDIRECTDRAWSURFACE 1pDDSAlphaDest; // advanced. .
b

DWORD dwAlphaSrcConstBitDepth; // advanced. .
union

{

DWORD dwAlphaSrcConst; // advanced. .
LPDIRECTDRAWSURFACE 1pDDSAlphaSrc; /] advanced. .
b

union // these are very important

{

DWORD dwFillColor; // color word used for fill

DWORD dwFillDepth; // z filling (advanced)

DWORD dwFillPixel; // color fill word for RGB(alpha) fills
LPDIRECTDRAWSURFACE 1pDDSPattern;

s

// these are very important

DDCOLORKEY ddckDestColorkey; // destination color key
DDCOLORKEY ddckSrcColorkey; // source color key

} DDBLTFX,FAR* LPDDBLTFX;

(Note that I've boldfaced useful fields.)

CHAPTER 7 323

Advanced DirectDraw and Bitmapped Graphics qu.

Figure 7.15 Source Surface Destination Surface
(LpDDS_Source) (LpDDS_Dest)

Blitting from source
to destination.

(Left, top) = (x3, y3)
(Left, top) = (x1, y1)

Dest
Source Rect
Rect
\
A . y2) = (Right, Bottom)
(Right, Bottom) = (x4, y4)

— Blitter

Lpdds_Dest—»Blt(Lpdds_Source . . .);

TaBLE 7.3 Control Flags for dwrFlags Parameter of B1t()

Value Description

General Flags

DDBLT_COLORFILL Uses the dwFillColor member of the DDBLTFX struc-
ture as the RGB color that fills the destination rec-
tangle on the destination surface.

DDBLT_DDFX Uses the dwbDFX member of the DDBLTFX structure to
specify the effects to use for this blit.

DDBLT_DDROPS Uses the dwbDROP member of the DDBLTFX structure
to specify the raster operations (ROPs) that are not
part of the Win32 APL

DDBLT_DEPTHFILL Uses the dwFillDepth member of the DDBLTFX struc-

ture as the depth value with which to fill the destina-
tion rectangle on the destination z-buffer surface.

DDBLT_KEYDESTOVERRIDE Uses the ddckDestColorkey member of the DDBLTFX
structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE Uses the ddckSrcColorkey member of the DDBLTFX
structure as the color key for the source surface.

DDBLT_ROP Uses the dwROP member of the DDBLTFX structure for
the ROP for this blit. These ROPs are the same as
those defined in the Win32 APIL.

continues

324 PART 11

T DirectX and 2D Fundamentals

TABLE 7.3 Control Flags for dwFlags Parameter of B1t()

Value Description

General Flags
DDBLT_ROTATIONANGLE Uses the dwRotationAngle member of the DDBLTFX
structure as the rotation angle (specified in 1/100ths
of a degree) for the surface. This only works with
hardware support. The HEL (Hardware Emulation
Layer) can’t do rotation—bummer!

Color Key Flags

DDBLT_KEYDEST Uses the color key associated with the destination
surface.

DDBLT_KEYSRC Uses the color key associated with the source sur-
face.

Behavior Flags

DDBLT_ASYNC Performs this blit asynchronously through the FIFO
(First In, First Out) in the order received. If no room
is available in the FIFO hardware, the call fails. Fast,
but risky; error logic is needed to use this flag prop-
erly.

DDBLT_WAIT Waits until the blit can be performed and doesn’t
return the error DDERR_WASSTILLDRAWING if the blitter
was busy.

(Note that I've boldfaced the most useful flags.)

If you’re losing your mind, that’s fantastic—it shows that you’re following me <BG>.
Now, take a look at B1tFast():
HRESULT BltFast(

DWORD dwX, // x-position of blit on destination

DWORD dwY, // y-position of blit on destination

LPDIRECTDRAWSURFACE4 1pDDSrcSurface, // source surface

LPRECT 1lpSrcRect, // source RECT to blit from
DWORD dwTrans); /1 type of transfer

dwX and dwY are the (x,y) coordinates to blit to on the destination surface.

1pDDSrcSurface is the address of the IDIRECTDRAWSURFACE4 interface for the
DirectDraw surface to be used as the source of blit.

1pSrcRect is the address of the source RECT that defines the upper-left and lower-right
points of the rectangle to blit from on the source surface.

dwTrans is the type of blitter operation. Table 7.4 shows the possible values.

CHAPTER 7 325

Advanced DirectDraw and Bitmapped Graphics m

TABLE 7.4 Control Flags for B1tFast() Blitter Operation

Value Description

DDBLTFAST_SRCCOLORKEY Specifies a transparent blit that uses the source’s
color key.

DDBLTFAST_DESTCOLORKEY Specifies a transparent blit that uses the destination’s
color key.

DDBLTFAST_NOCOLORKEY Specifies a normal copy blit with no transparency.
Could be faster on some hardware; definitely faster
in HEL.

DDBLTFAST_WAIT Forces the blitter to wait while busy and not send

back the DDERR_WASSTILLDRAWING message.
BltFast() returns as soon as the blit can be per-
formed, or a serious error occurs.

(Note that I've boldfaced the most useful flags.)

All right, the first question is, “Why are there two different blitter functions?” The
answer should be apparent from the functions themselves: B1t () is the full-blown
kitchen sink model, while B1tFast () is simpler but has fewer options. Furthermore,
B1t() uses DirectDraw clippers while B1tFast () doesn’t. This means that BLtFast ()
is faster than B1t () in the HEL by about 10%, and may even be faster in hardware (if
the hardware is crappy and sucks at clipping). The point is, use B1t () if you need
clipping, and use B1tFast () if you don’t.

Let me show you how to use the B1t () function to fill a surface. This will be reason-
ably simple because there isn’t a source surface (only a destination surface). A lot of
the parameters, therefore, can be NULL. To do a memory fill, you must perform the fol-
lowing steps:
1. Place the color index or RGB-encoded color you want to fill the surface with in
the dwColorFile 1 field of a DDBLTFX structure.
2. Set up a RECT structure with the area that you want to fill on your destination
surface.
3. Make a call to B1t() from the destination surface’s IDIRECTDRAWSURFACE4
interface pointer with the control flags DDBLT_COLORFILL | DDBLT_WAIT. This

is very important; B1t () and B1tFast() are both called from the destination
surface’s interface, not the source!

Here’s the code to fill a region of an 8-bit surface with a color:

DDBLTFX ddbltfx; // the blitter fx structure
RECT dest_rect; // used to hold the destination RECT

326 PART 11

T DirectX and 2D Fundamentals

// first initialize the DDBLTFX structure
DDRAW_INIT_STRUCT (ddbltfx) ;

// now set the color word info to the color we desire

// in this case, we are assuming an 8-bit mode, hence,
// we'll use a color index from 0-255, but if this was a
// 16/24/32 bit example then we would fill the WORD with
// the RGB encoding for the pixel - remember!
ddbltfx.dwFillColor = color_index;

// now set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the destination surface

dest_rect.left = x1;
dest_rect.top = y1;
dest_rect.right = x2;
dest_rect.bottom = y2;

// make the blitter call

lpddsprimary->Blt(&dest_rect, // pointer to dest RECT
NULL, // pointer to source surface
NULL, // pointer to source RECT
DDBLT_COLORFILL ; DDBLT_WAIT,
// do a color fill and wait if you have to
&ddbltfx); // pointer to DDBLTFX holding info

There's one little detail with any of the RECT structures that you send to
a most DirectDraw functions: In general, they're upper-left inclusive, but
lower-right exclusive. In other words, if you send a RECT that’s (0,0) to
(10,10), the actual rectangle scanned will be (0,0) to (9,9) inclusive. So
keep that in mind. Basically, if you want to fill the entire 640x480

screen, you would send upper-left as (0,0) and lower-right as (641, 481).

The important things to notice are the setup and that both the source surface and RECT
are NULL. This makes sense because you’re using the blitter to fill with a color, not to
copy data from one surface to another. Okay, let’s move on, my little leprechaun.

The preceding example was for an 8-bit surface; the only change you need to make
for a high-color mode in 16/24/32-bit mode is to simply change the value in
ddbltfx.dwFillColor to reflect the pixel value that you want the fill to be performed
in. Isn’t that cool?

For example, if the display happened to be a 16-bit mode and you wanted to fill the
screen with green, the following code would work:

ddbltfx.dwFillColor = _RGB16BIT565(0,255,0);

Everything else in the preceding 8-bit example would stay the same. DirectDraw isn’t
that bad, huh?

Errata

Errata
"(641, 481)" should be "(640, 480)"

CHAPTER 7 327

Advanced DirectDraw and Bitmapped Graphics m

To see the blitter hardware in action, I’ve created a little psychedelic demo for you
called DEMO7_6.CPP | EXE. It puts the system into 640x480x16-bit mode and then fills
different regions of the screen with random color. You’ll see about a zillion colored
rectangles per second getting blitted to the screen (try turning the lights off and trip-
ping out on it). Take a look at the Game_Main (); it’s almost trivial:

int Game_Main(void *parms = NULL, int num_parms = 0)

{

// this is the main loop of the game, do all your processing
/1 here

DDBLTFX ddbltfx; // the blitter fx structure
RECT dest_rect; // used to hold the destination RECT

// make sure this isn't executed again
if (window_closed)
return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
{
PostMessage (main_window_handle,WM_CLOSE,0,0) ;
window_closed = 1;
} // end if

// first initialize the DDBLTFX structure
DDRAW_INIT_STRUCT (ddbltfx);

// now set the color word info to the color we desire

// in this case, we are assuming an 8-bit mode, hence,

// we'll use a color index from 0-255, but if this was a

// 16/24/32 bit example then we would fill the WORD with

// the RGB encoding for the pixel - remember!

ddbltfx.dwFillColor = _RGB16BIT565(rand()%256, rand()%256, rand()%256);

// get a random rectangle

int x1 = rand()%SCREEN_WIDTH;
int y1 = rand()%SCREEN_HEIGHT;
int x2 = rand()%SCREEN_WIDTH;
int y2 = rand()%SCREEN_HEIGHT;

// now set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the destination surface
dest_rect.left = x1;

dest_rect.top = yi;

dest_rect.right = x2;

dest_rect.bottom = y2;

// make the blitter call

if (FAILED(lpddsprimary->Blt(&dest_rect, // pointer to dest RECT
NULL, // pointer to source surface
NULL, // pointer to source RECT

328 PART 11

W DirectX and 2D Fundamentals

DDBLT_COLORFILL ; DDBLT_WAIT,

// do a color fill and wait if you have to

&ddbltfx))) // pointer to DDBLTFX holding info
return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Now that you know how to use the blitter to fill, let me show you how to use it to
copy data from surface to surface. This is where the real power of the blitter comes
into play. It’s the foundation for the sprite or blitter object engine that you’re going to
make in a little while.

Copying Bitmaps from Surface to Surface

The whole point of the blitter is to copy rectangular bitmaps from some source mem-
ory to destination memory. This may involve copying the entire screen, or small
bitmaps that represent game objects. In either case, you need to learn how to instruct
the blitter to copy data from one surface to another. Actually, you already know how
to do this and may not realize it. The blitter fill demo will do the job with a couple of
changes.

When you’re using the B1t () function, you basically send a source RECT and surface
and a destination RECT and surface to perform the blit. The blitter will then copy the
pixels from the source RECT to the destination RECT. The source and destination sur-
face can be the same (surface to surface copy or move), but they’re usually different.
In general, the latter is the basis for most sprite engines. (A sprite is a bitmap game
image that moves around the screen.)

At this point you know how to create a primary surface and secondary surface that
serves as a back buffer, but you don’t know how to create plain offscreen surfaces that
aren’t related to the primary surface. You can’t blit them if you can’t make them.
Thus, I'm going to hold off on showing you the general blitting case of any surface to
the primary surface until I’ve shown you how to blit from the back buffer to the pri-
mary surface. Then the transition from generic surface to primary or back buffer will
be trivial.

All you need to do to make a blit from any two surfaces (the back buffer to the pri-
mary surface, for example) is set the RECTs up correctly and make a call to B1t () with
the right parameterization. Take a look at Figure 7.15. Imagine that you want to copy
the RECT defined by (x1,y1) to (x2,y2) on the source surface (the back buffer in this
case) to (x3,y3) to (x4,y4) on the destination surface (the primary surface in this
case). Here’s the code:

CHAPTER 7 329

Advanced DirectDraw and Bitmapped Graphics qﬂ.

RECT source_rect, // used to hold source RECT
dest_rect; // used to hold the destination RECT

// set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the destination surface

source_rect.left = x1;
source_rect.top = yi;
source_rect.right = x2;

source_rect.bottom = y2;

// now set up the RECT structure to fill the region from
/1 (x3,y3) to (x4,y4) on the destination surface

dest_rect.left = x3;
dest_rect.top = y3;
dest_rect.right = X4;
dest_rect.bottom = y4;

// make the blitter call

lpddsprimary->Blt(&dest_rect, // pointer to dest RECT
1pddsback, // pointer to source surface
&source_rect, // pointer to source RECT
DDBLT_WAIT, /] control flags
NULL); // pointer to DDBLTFX holding info

That was easy, huh? Of course, there are still a few details I’'m leaving out, such as
clipping and transparency. I'll talk about clipping first. Take a look at Figure 7.16,
which depicts a bitmap that’s drawn to a surface with and without clipping. Blitting
without clipping is obviously a problem if the bitmap extends past the rectangle of the
destination surface. Memory may be overwritten and so forth, so DirectDraw supports
clipping via the IDirectDrawClipper interface. Or, if you wrote your own bitmap ras-
terizer, as you did in the example B1it8x8(), you could always add clipping code.
That will slow things down, however. The second issue pertaining to blitting is trans-

parency.
Figure 7.16 A. Blitting without clipping B. Blitting with clipping
The basic bitmap clip- (0,0 (0,0)
ping problem. Myst be . .
clipped! \ K Bitmap K Bitmap
Written off
surface into
invalid memory (m,n) (m,n)
Destination Surface Destination Surface

Portion of bitmap that
extends beyond viewing
window is clipped by
hardware or software

330 PART 11

T DirectX and 2D Fundamentals

When you draw a bitmap, the image is always within a rectangular matrix of pixels.
However, you don’t want all those pixels copied when you blit. In many cases, you
select a color, such as black, blue, green, or whatever, to serve as a transparent color
that isn’t copied (you saw this implemented in B1it8x8()). DirectDraw also has sup-
port for this called color keys, which I will also talk about shortly.

Before you move on to clipping, I’d like to show you a demo of blitting from the back
buffer to the primary surface. Take a look at DEMO7_7.CPP|EXE on the CD. The only
problem is that I haven’t shown you how to load bitmaps from disk yet, so I can’t
really blit anything cool—bummer! So what I did was draw a gradient of green in
16-bit color mode from top to bottom on the back buffer, and then use this as the
source data. You'll see a bunch of gradient rectangles copied to the primary surface at
warp speed. Here’s the source from Game_Main () for your review:

int Game_Main(void *parms = NULL, int num_parms = 0)

{

// this is the main loop of the game, do all your processing
/1 here

RECT source_rect, // used to hold the destination RECT
dest_rect; // used to hold the destination RECT

// make sure this isn't executed again
if (window_closed)
return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))
{
PostMessage (main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// get a random rectangle for source
int x1 = rand()%SCREEN_WIDTH;
int y1 = rand()%SCREEN_HEIGHT;
int x2 = rand()%SCREEN_WIDTH;
int y2 = rand()%SCREEN_HEIGHT;

// get a random rectangle for destination
int x3 = rand()%SCREEN_WIDTH;
int y3 = rand()%SCREEN_HEIGHT;
int x4 = rand()%SCREEN_WIDTH;
int y4 = rand()%SCREEN_HEIGHT;

// now set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the source surface
source_rect.left = x1;

source_rect.top = y1;

source_rect.right = x2;

CHAPTER 7 331

Advanced DirectDraw and Bitmapped Graphics m

source_rect.bottom = y2;

// now set up the RECT structure to fill the region from
/1 (x3,y3) to (x4,y4) on the destination surface
dest_rect.left = x3;

dest_rect.top = y3;

dest_rect.right X4;

dest_rect.bottom = y4;

// make the blitter call
if (FAILED(lpddsprimary->Blt(&dest_rect, // pointer to dest RECT
lpddsback, // pointer to source surface
&source_rect,// pointer to source RECT
DDBLT_WAIT, // control flags
NULL))) // pointer to DDBLTFX holding info
return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Also, in Game_Init() I used a little inline assembly to do a DWORD or 32-bit line of
two 16-bit pixels at once in RGB.RGB format instead of a slower 8-bit fill. Here’s that

code:
_asm
{
CLD ; clear direction of copy to forward
MOV EAX, color ; color goes here
MOV ECX, (SCREEN_WIDTH/2) ; number of DWORDS goes here
MOV EDI, video_buffer ; address of line to move data
REP STOSD ; send the Pentium X on its way..

} // end asm

Basically, the preceding code implements the following C/C++ loop:

for (DWORD ecx = @, DWORD *edi = video_buffer;
ecx < (SCREEN_WIDTH/2); ecx++)
edi[ecx] = color;

If you don’t know assembly language, don’t freak out. I just like to use it now and

then for little things like this. Also, it’s good practice to use the inline assembler; it
keeps you on your toes!

As an exercise, see if you can make the program work only on the primary surface.
Simply delete the back buffer code, draw the image on the primary surface, and then
run the blitter with the source and destination as the same surface. Watch what hap-
pens...

332 PART 11

W DirectX and 2D Fundamentals

Clipper Fundamentals

I’'m going to talk about clipping over and over in this book. Pixel clipping, bitmap
clipping, 2D clipping, 3D clipping, and I’m sure I'll think of some more <BG>. Right
now, though, the theme is DirectDraw. I want to focus on pixel clipping and bitmap
clipping to help you ease into the subject, which I guarantee is going to get very com-
plex when you do it in 3D!

Clipping is generally defined as “not drawing pixels or image elements that are out of
bounds of the view port or window.” Just like Windows clips anything you draw to the
client area of your window, you need to do this in a game that runs under DirectX.
Now, as far as 2D graphics go, the only thing that DirectDraw accelerates are bitmaps
and bit blitting. Sure, many cards know how to draw lines, circles, and other conic
sections, but DirectDraw doesn’t support these primitives, so you don’t get access to
them (hopefully you will soon, though).

What this all means is that if you write a graphics engine that draws pixels, lines, and
bitmaps, you have to do the clipping yourself for the pixel and line drawing algo-
rithms. However, DirectDraw can help with the bitmaps—as long as the bitmaps are
in the form of DirectDraw surfaces, or IDirectDrawSurfaces to be exact.

The help that DirectDraw gives is in the form of DirectDraw clippers under the
IDirectDrawClipper interface. What you do is create an IDirectDrawClipper, give
it valid regions to clip to, and then attach it to a surface. Then, when you use the bliz-
ter function, B1t (), it will clip to the clipping regions and you won’t have any out-of-
bounds blitting or performance hits—if you have the proper hardware, of course. But
first, take a look at how to clip pixels and do a rewrite of the B1it8x8() function that
does clip.

Clipping Pixels to a Viewport

Figure 7.17 gives you a visual of the problem. You want to clip a pixel with coordi-
nates (X,y) to a viewport located at (x1,yl) to (x2,y2). If (x,y) is within the rectangle
defined by (x1,y1) to (x2,y2), render it; otherwise, don’t. Simple enough?

Here’s the code for a 640x480 linear 8-bit mode:

// assume clipping rectangle is global
int x1,y1,x2,y2; // these are defined somewhere

void Plot_Pixel Clip8(int x, int vy,
UCHAR color,
UCHAR *video_buffer)

{
/] test the pixel to see if it's in range

CHAPTER 7 333

Advanced DirectDraw and Bitmapped Graphics m

if (x>=x1 && x<=x2 && y>=y1 && y<=y2)
video_buffer[x+y*640] = color;

} // end if

Figure 7.17
A detailed view of the
clipping region.

O

Outside clip region

(1, y1)»

Pixel to be clipped
Oxy
| In clipping region [Outside clip region
Outside clip region

(x2, y2)

Clipping region

O

Outside clip region

Of course, there’s a lot of room for optimization, but you get the point—you’ve cre-
ated a software filter on the pixel coordinates. Only pixel coordinate values that satisfy
the if statement pass through the filter—interesting concept, huh? Now, the preceding
clipper is very general, but in many cases, the window or viewport is located at (0,0)
and has dimensions (win_width, win_height). This simplifies your code a little:

// assume clipping rectangle is global
int x1,y1,x2,y2; // these are defined somewhere

void Plot_Pixel2_Clip8(int x, int vy,
UCHAR color,
UCHAR *video_buffer)

{

// test the pixel to see if it's in range

if (x>=0 && x<win_width && y>=0 && y<=win_height)
video_buffer[x+y*640] = color;

} // end if

See? In addition, more optimizations can be made whenever zeros are around. Now
that you get the point of clipping and know how to do it, I’'ll show you how to clip an
entire bitmap.

334 PART 1l
W DirectX and 2D Fundamentals

Clipping Bitmaps the Hard Way

Clipping bitmaps is as simple as clipping pixels. There are two ways to approach it:

e Method 1: Clip each pixel of the bitmap on a independent basis as it’s gener-
ated. Simple, but slow.

e Method 2: Clip the bounding rectangle of the bitmap to the viewport, and then
only draw the portion of the bitmap that’s within the viewport. More complex,
but very fast, with almost no performance loss and no hit at all in the inner loop.

Obviously, you're going to use Method 2, which is shown graphically in Figure 7.18.
Also, I'm going to generalize a little and assume that the screen extends from (0,0) to
(SCREEN_WIDTH-1, SCREEN_HEIGHT-1), that your bitmap has it’s upper-left corner at
(x,y), and that it’s exactly so many widthxheight pixels in dimension—or in other
words, the bitmap extends from (x,y) to (x+width-1, y+height-1). Please take a minute
and make sure you see the reasoning for the “-1” factors. Basically, if a bitmap is 1x1,
it has a width of 1 and a height of 1. Therefore, if the origin of the bitmap is at (x,y),
the bitmap extends from (x,y) to (x+1-1,y+1-1) or (x,y). This is because it’s only 1x1
pixels, so the “-1” factor is needed, as shown by this base case.

Figure 7. 18 A. Before clipping B. After clipping

How to clip the

bounding box of a Bounding box of bitmap

bitma (X, y) to be clipped
p- <«—Width —»| After clippin
— 9
* (screen_width-1,0)
(0,0) (0,0
Height
+ (x, 0) 7
. e
(x + width-1, (%, y + height-1)
y + height-1)
(Screen_width-1, y + height-1)
(Screen_width-1, screen_height-1) (Screen_width-1, screen_height-1)
Clipping region Clipping region

The plan of attack for clipping is simple—you just clip the virtual rectangle of the
bitmap to the viewport and then draw only the portions of the bitmap that are in the
clipped bitmap. Here’s the code for a 640x480x8 linear mode:

// dimensions of window or viewport (0,0) is origin

#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

void Blit_Clipped(int x, int vy, // position to draw bitmap
int width, int height, // size of bitmap in pixels

CHAPTER 7 335

{

UCHAR *bitmap,
UCHAR *video_buffer)

Advanced DirectDraw and Bitmapped Graphics m

// pointer to bitmap data
// pointer to video buffer surface

// this function blits and clips the image sent in bitmap to the
// destination surface pointed to by video_buffer
// the function assumes a 640x480x8 mode with linear pitch

// first do trivial rejections of bitmap, is it totally invisible?
= SCREEN_WIDTH) !! (y>= SCREEN_HEIGHT) '!
+ width) <= @) !'! ((y + height) <= 0))

if ((x >
((x
return;

// clip

source rectangle

// pre-compute the bounding rect to make life easy

int x1 =
int y1 =
int x2 =
int y2 =

// upper
if (x1 <
x1 =

if (y1 <
y1 =

// now 1
if (x2 >
X2 =

if (y2 >
y2 =

// now we know to draw only the portions

// of the bitmap from (x1,y1) to (x2,y2)

// compute offsets into bitmap on x,y axes,
// we need this to compute starting point

// to ra
int x_of
int y_of

X3
Y;
x1 + width - 1;
y1 + height -1;

left hand corner first
0)
0;

0)
H

ower left hand corner
= SCREEN_WIDTH)
SCREEN_WIDTH-1;

= SCREEN_HEIGHT)
SCREEN_HEIGHT-1;

sterize from
f=x1 - x;
f=yt-y;

// compute number of columns and rows to blit

int dx =
int dy =

// compute starting address in video_buffer

video_bu

x2 - x1 + 1;
y2 - y1 + 1;

ffer += (x1 + y1%640);

// compute starting address in bitmap to scan data from

bitmap += (x_off + y_off*width);

336

PART 1l

T DirectX and 2D Fundamentals

/1l
1
/1
/1
1

at this point bitmap is pointing to the first
pixel in the bitmap that needs to

be blitted, and video_buffer is pointing to
the memory location on the destination

buffer to put it, so now enter rasterizer loop

UCHAR pixel; // used to read/write pixels

for (int index_y = 0; index_y < dy; index_y++)

{

// inner loop, where the action takes place
for (int index_x = 0; index_x < dx; index_x++)

{

// read pixel from source bitmap,

// test for transparency and plot

if ((pixel = bitmap[index_x]))
video_buffer[index_x] = pixel;

} // end for index_x

// advance pointers

video_buffer+=640; /1 bytes per scanline

bitmap +=width; // bytes per bitmap row
} // end for index_y

} // end Blit_Clipped

As a demo of this little software clipper, I’ve written the crudest bitmap engine you’ve
ever seen. Basically, I created an array of 64 bytes to hold a little happy face. Here’s
the declaration:

-

SsasaLaLls
Sasoaaals
SaL.sasas
SeaaLaLss
SRR si? SESES)

Then I put the system into 320x240x8 back buffer mode and made color index
RGB(255,255,0), which is yellow. Then I made the little happy face move around the
screen by moving it on a constant random velocity and then wrapping the face around
when it goes too far off any of the four screen edges. It goes out of the window just
far enough for you to see the clipping function work. Then I got carried away and
made 100 happy faces! The final program is DEMO7_8.CPP | EXE, and Figure 7.19 is a
screen shot of the program in action.

CHAPTER 7 337

Advanced DirectDraw and Bitmapped Graphics m

Figure 7.19

DEMO7_8.EXE in action.

Here’s the Game_Main () function for your review:

int Game_Main(void *parms = NULL, int num_parms = 0)

{

// this is the main loop of the game, do all your processing
/1 here

DDBLTFX ddbltfx; // the blitter fx structure

// make sure this isn't executed again
if (window_closed)
return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN (VK_ESCAPE))
{
PostMessage (main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// use the blitter to erase the back buffer
// first initialize the DDBLTFX structure
DDRAW_INIT_STRUCT (ddbltfx) ;

// now set the color word info to the color we desire
ddbltfx.dwFillColor = 0;

// make the blitter call
if (FAILED(lpddsback->B1t(NULL, // ptr to dest RECT, NULL means all

338 PART 11

“ DirectX and 2D Fundamentals

NULL, // pointer to source surface

NULL, // pointer to source RECT

DDBLT_COLORFILL | DDBLT_WAIT,

// do a color fill and wait if you have to

&ddbltfx))) // pointer to DDBLTFX holding info
return(0);

// initialize ddsd
DDRAW_INIT_STRUCT (ddsd);

// lock the back buffer surface
if (FAILED(lpddsback->Lock(NULL,&ddsd,
DDLOCK_WAIT | DDLOCK_SURFACEMEMORYPTR,
NULL)))
return(0);

// draw all the happy faces
for (int face=0; face < 100; face++)
{
Blit_Clipped(happy_faces[face].x,
happy_faces[face].y,
8,8,
happy_bitmap,
(UCHAR *)ddsd.lpSurface,
ddsd.1lPitch);
} // end face

// move all happy faces

for (face=0; face < 100; face++)
{
// move
happy_faces[face].x+=happy_faces[face].xv;
happy_faces[face].y+=happy_faces[face].yv;

/] check for off screen, if so wrap

if (happy_faces[face].x > SCREEN_WIDTH)
happy_faces[face].x = -8;

else

if (happy_faces[face].x < -8)
happy_faces[face].x = SCREEN_WIDTH;

if (happy_faces[face].y > SCREEN_HEIGHT)
happy_faces[face].y = -8;

else

if (happy_faces[face].y < -8)
happy_faces[face].y = SCREEN_HEIGHT;

} // end face
// unlock surface

if (FAILED(lpddsback->Unlock(NULL)))
return(0);

CHAPTER 7 339

Advanced DirectDraw and Bitmapped Graphics m
// flip the pages

while (FAILED(lpddsprimary->Flip(NULL, DDFLIP_WAIT)));

// wait a sec
Sleep(30);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Make sure to look at the code for B1it_Clipped() in the demo program,
a because | slightly modified it to work with a variable memory pitch. No
big deal, but | thought you might want to know. Also, you may be won-

dering why | decided to use 320x240 mode. Well, the little 8x8 bitmap
in 640x480 was so small, | was going blind <BG>.

Making a DirectDraw Clip with IDirectDrawClipper

Now that you see the work it takes to perform clipping via software, it’s time to look
at how easy it is with DirectDraw. DirectDraw has an interface called
IDirectDrawClipper that’s used for all 2D blitter clipping, as well as 3D rasterization
under Direct3D. In essence, the buck stops here. Right now, however, you’re only
interested in using the clipper to clip bitmaps that are blitted using the B1t () function
and the associated blitter hardware.

To set up DirectDraw clipping, you must do the following:

1. Create a DirectDraw clipper object.
2. Create a clipping list.

3. Send the clipping list data to the clipper with
IDIRECTDRAWCLIPPER: :SetClipList().

4. Attach the clipper to a window and/or surface with
IDIRECTDRAWSURFACE4: :SetClipper().

I’ll begin with step 1. The function to create an IDirectDrawClipper interface is
called IDIRECTDRAW4: :CreateClipper() and is shown here:

HRESULT CreateClipper (DWORD dwFlags, // control flags
LPDIRECTDRAWCLIPPER FAR *1plpDDClipper, // address of interface pointer
IUnknown FAR *pUnkOuter); // COM stuff

The function returns DD_OK if successful.

340 PART 11

W DirectX and 2D Fundamentals

The parameters are pretty easy. dwFlags is currently unused and must be 0.
1plpDDClipper is the address of a IDirectDrawClipper interface that will point to a
valid DirectDraw clipper after the function succeeds. Finally, punkOuter is for COM
aggregation, which is something you don’t care about—make it NULL. To create a clip-
per object, just enter this:

LPDIRECTDRAWCLIPPER lpddclipper = NULL; // hold the clipper

if (FAILED(lpdd->CreateClipper(@,&lpddclipper,NULL)))
return(0);

If the function succeeds, 1pddclipper will point to a valid IDirectDrawClipper
interface and you can call the methods on it.

That’s great, but how do you create the clipping list, and what does it represent?
Under DirectDraw, the clipping list is a list of rectangles stored in RECT structures that
indicate the valid regions that can be blitted to, as shown in Figure 7.20. As you can
see, there are a number of rectangles on the display surface, but DirectDraw’s blitter
system can blit only within these rectangles. You can draw anywhere you want with
Lock()/Unlock(), but the blitter hardware will be able to draw only within the clip-
ping regions, more commonly called the clip list.

Figure 7.20 Clipping List: Array of RECT's

The relationship ©,0)
between the clip list y
and the blitter.

*RECT—0w | 3 HAL & HEL will onl
N will only

«RECT Blt into these
* RECT \

RECTs, everything

\\ E else will be clipped.

(m, n)

Display surface

To create a clip list, you must fill in a rather ugly data structure called RGNDATA
(Region Data), which is shown here:

typedef struct _RGNDATA

{ /* rgnd */
RGNDATAHEADER rdh; // header info
char Buffer[1]; // the actual RECT list

} RGNDATA;

CHAPTER 7 341

Advanced DirectDraw and Bitmapped Graphics m

This is a very odd data structure. Basically, it’s a variant size structure, which means
that the Buffer[] part of it can be any length. The structure is generated dynamically
rather than statically, and its true length is stored in the RGNDATAHEADER. What you're
seeing here is the old version of the new DirectX data structure technique that sets the
dwSize field of every structure. Maybe a better approach would have been to make
Buffer[] a pointer rather than storage for a single byte?

Whatever the thinking was, here’s the deal: All you have to do is allocate enough
memory for a RGNDATAHEADER structure, along with memory to hold an array of one or
more RECT structures that are contiguous in memory, as shown in Figure 7.21. Then
you’ll just cast it to a RGNDATA type and pass it.

Figure 7.21 RGN DATA structure (variable length)
The memory footprint

| PR RONDATA RGN DATA HEADER
clipping structure. > -

RECT
RECT

Starting address —>»

RECT

Buffer — — Clip list

Anyway, look at what’s in the RGNDATAHEADER structure:

typedef struct _RGNDATAHEADER

{ // rgndh
DWORD dwSize; /| size of this header in bytes
DWORD iType; // type of region data

DWORD nCount; // number of RECT'S in Buffer[]
DWORD nRgnSize; // size of Buffer[]

RECT rcBound; // a bounding box around all RECTS
} RGNDATAHEADER;

To set this structure up, set dwSize to the sizeof (RGNDATAHEADER), set iType to
RDH_RECTANGLES, set nCount to the number of rectangles or RECTS in your clipping
list, set nRgnSize to the size in bytes of your Buffer[] (which is equal to

sizeof (RECT)*nCount), create a bounding box around all your RECTS, and store this
box in rcBound. Once you’ve generated the RGNDATA structure, you send it to your
clipper with a call to IDIRECTDRAWCLIPPER: :SetClipList (), shown here:

HRESULT SetClipList(LPRGNDATA 1pClipList, // ptr to RGNDATA
DWORD dwFlags); // flags, always 0

342 PART 11

T DirectX and 2D Fundamentals

There’s not much more to say about this. Assuming you’ve already generated the
RGNDATA structure for