
INTRODUCTION ...5
ABOUT THE AUTHORS ...15
PART I INTRODUCTION TO OPENGL ..17
CHAPTER 1 WHAT IS OPENGL?...18

About OpenGL ...19
How OpenGL Works ..20
OpenGL under Windows ..20
Future Prospects for OpenGL in Windows ...22

CHAPTER 2 3D GRAPHICS FUNDAMENTALS ...23
3D Perception ..23
Coordinate Systems ..28
Projections, The Essence of 3D ..33
Summary ..36

CHAPTER 3 LEARNING OPENGL WITH THE AUX LIBRARY ...37
OpenGL: An API, Not a Language ...37
The AUX Library..42
Dissecting a Short OpenGL Program ...44
Drawing Shapes with OpenGL ...52
Scaling to the Window..55
Animation with AUX...61
Finally, Some 3D! ..65
Summary ..67
Reference Section...68

CHAPTER 4 OPENGL FOR WINDOWS: OPENGL + WIN32 = WIGGLE105
Drawing in Windows Windows ...106
Using the Wiggle Functions..110
Preparing the Window for OpenGL..112
Return of the Bouncing Square...115
Summary ..121
Reference Section...122

CHAPTER 5 ERRORS AND OTHER MESSAGES FROM OPENGL ..146
When Bad Things Happen to Good Code..147
Who Am I and What Can I Do? ..148
Get a Clue with glHint..150
Summary ..150
Reference Section...151

PART II USING OPENGL...158
CHAPTER 6 DRAWING IN 3D: LINES, POINTS, AND POLYGONS..159

Drawing Points in 3D...159
Drawing Lines in 3D..169
Drawing Triangles in 3D..177
Building Solid Objects..181
Other Primitives ...191
Summary ..202
Reference Section...203

Page 2 OpenGL Super Bible!

CHAPTER 7 MANIPULATING 3D SPACE: COORDINATE TRANSFORMATIONS.....................221
Is This the Dreaded Math Chapter?..221
Understanding Transformations ...222
Matrix Munching..228
Using Projections...240
Advanced Matrix Manipulation ..249
Summary ..251
Reference Section...252

CHAPTER 8 COLOR AND SHADING ...266
What Is a Color? ..266
PC Color Hardware ...270
PC Display Modes..272
Selecting a Color..274
Windows Palettes ...280
Creating a Palette ..285
Color Index Mode ..291
Summary ..295
Reference Section...296

CHAPTER 9 LIGHTING AND LAMPS...305
Light in the Real World ..306
Materials in the Real World ...309
Adding Light to a Scene..311
Using a Light Source..316
Lighting Effects ..326
Spotlights ...335
Shadows ...339
Lighting and Color Index Mode..345
Summary ..346
Reference Section...347

CHAPTER 10 3D MODELING AND OBJECT COMPOSITION ...361
Defining the Task ...361
Constructing a Model, One Piece at a Time..364
A Makeshift Benchmark..378
Improving Performance..381
Summary ..385
Reference Section...386

CHAPTER 11 RASTER GRAPHICS IN OPENGL ...397
Drawing Bitmaps ...397
Pixmaps: Bitmaps with Color ...404
A Bitmap File Viewer ...413
Summary ..424
Reference Section...425

CHAPTER 12 TEXTURE MAPPING ...437
The Basics of Texture Mapping ..437
Defining Texture Images ..439

OpenGL Super Bible! Page 3

Drawing Textured Polygons ...443
Mipmapped Textures ..445
A Terrain Viewing Program ...447
Summary ..454
Reference Section...483

CHAPTER 13 QUADRICS: SPHERES, CYLINDERS, AND DISKS...493
Creating a Quadric ..493
Changing the Way Quadrics Are Drawn...493
Drawing Cylinders ...495
Drawing Disks ...496
Drawing Spheres..497
Drawing a Pencil ...498
Summary ..500
Reference Section...511

PART III ADVANCED TOPICS AND SPECIAL EFFECTS ...522
CHAPTER 14 THE OPENGL STATE MACHINE ...523

Basic OpenGL State Functions...523
Saving and Restoring States ...524
Reference Section...531

CHAPTER 15 BUFFERS: NOT JUST FOR ANIMATION ..537
What Are Buffers? ..537
The Color Buffer ..542
The Depth Buffer..544
The Stencil Buffer...554
The Accumulation Buffer ..560
Reference Section...566

CHAPTER 16 VISUAL EFFECTS: BLENDING AND FOG ..575
Blending...575
Fog ..590
Revisiting the Terrain Viewing Program ..595
Summary ..601
Reference Section...602

CHAPTER 17 CURVES AND SURFACES: WHAT THE #%@!&* ARE NURBS?...................604
Curves and Surfaces...605
Evaluators..607
NURBS...616
Summary ..623
Reference Section...624

CHAPTER 18 POLYGON TESSELLATION ..656
Complex Polygons..656
Drawing Concave Polygons ...657
Drawing Complex Polygons ...658
Callback Functions ..663
Summary ..664
Reference Section...665

Page 4 OpenGL Super Bible!

CHAPTER 19 INTERACTIVE GRAPHICS..672
Selection...673
Feedback..683
An Example..685
Summary ..690
Reference Section...691

CHAPTER 20 OPENGL ON THE 'NET: VRML...705
When Worlds Collide..705
WebSpace...707
Open Inventor and VRML...711
Summary ..712

PART IV OPENGL WITH. . ..713
CHAPTER 21 MFC-BASED OPENGL PROGRAMMING..714

Isolate Your OpenGL Code ..715
Starting with AppWizard ..716
Get CView Ready for OpenGL..718
Pixel Format and Rendering Context..719
Handling Window Resizing...721
Rendering the Scene ...721
CPalette Handling..722
Summary ..726

CHAPTER 22 OWL-BASED OPENGL PROGRAMMING ...727
Isolate Your OpenGL Code ..728
Starting with AppExpert ...729
Fleshing Out the Shell ..732
Pixel Format and Rendering Context..733
Handling Window Resizing...735
Rendering the Scene ...735
TPalette Handling ..738
Summary ..742

CHAPTER 23 VISUAL BASIC AND 4GL-BASED OPENGL PROGRAMMING.........................743
Low-Level Access Required..743
The Magic of Objects ...744
Use and Operation of WaiteGL.OCX..745
Installing and Using WaiteGL from VB 4.0 ..746
Installing the OCX in Delphi 2.0 ..749
Some Notes About the Source ...753
Summary ..754

CHAPTER 24 THE FUTURE OF OPENGL AND WINDOWS..755
Conclusion ...758

APPENDIX A PERFORMANCE-TUNING OPENGL FOR WINDOWS760
APPENDIX B FURTHER READING ...763
APPENDIX C OPENGL VERSION 1.1...765
APPENDIX D GLOSSARY..766

OpenGL Super Bible! Page 5

Introduction

Welcome to OpenGL SuperBible! The first time I ever heard of OpenGL was at the 1992
Win32 Developers Conference in San Francisco. Windows NT 3.1 was in early beta (or late
alpha) and many vendors were present, pledging their future support for this exciting new
platform. Among them was a company called Silicon Graphics, Inc. (SGI). They were
showing off their graphics workstations and playing video demos of special effects from
some popular movies. NT was running on MIPS processors— now owned by SGI— but their
primary purpose in this booth was to promote a new 3D graphics standard called OpenGL. It
was based on SGI’s proprietary IRIS GL and was fresh out of the box as a graphics
standard. Significantly, Microsoft was pledging future support for OpenGL in Windows NT.

I had to wait until the beta release of NT 3.5 before I got my first personal taste of OpenGL.
Those first OpenGL-based screensavers only scratched the surface of what was possible
with this graphics API. Like many other people, I struggled through the Microsoft help files
and bought a copy of the OpenGL Programming Guide (now called simply “The Red Book”
by most). The Red Book avoids platform issues and uses for all its examples the Auxiliary
(AUX) library, a platform-independent program framework for OpenGL graphics.

At that time, the Red Book was the only book available for learning OpenGL. Though quite
thorough in its coverage of OpenGL functions, it is lacking in two important respects. First,
it is not a primer. Whatever the intent of the authors, the book assumes a substantial working
knowledge of 3D graphics concepts in general. The Red Book’s second drawback is its
platform independence. As a Windows developer, I needed answers to some important
questions, such as how to use a .BMP file as a texture, how to create an OpenGL-usable
palette for an 8-bit display device, and how to use all those “wiggle” functions Microsoft
threw in.

OpenGL SuperBible fills in those gaps. I wanted to provide a 3D graphics introduction and
an OpenGL tutorial rolled into one. In addition, I approached the whole subject within the
context of the single most popular desktop operating system of all time, Microsoft Windows.
And I added a Reference Section of thorough function definitions at the end of each chapter,
making this book a good complement to the Waite Group line of bible reference books.

Who This Book Is For

This book will suit a wide audience of OpenGL and Windows programmers. Windows
programmers wanting to learn about 3D graphics and how to implement them using
OpenGL will find what they need. So will experienced Windows and 3D graphics
programmers wanting to learn more about the industry standard OpenGL. This book will
also be of value to seasoned OpenGL programmers who have a workstation background but
need some assistance porting their applications and experience to the Microsoft Windows
platforms.

Page 6 OpenGL Super Bible!

System Requirements for OpenGL

OpenGL is not available on the 16-bit versions of Microsoft Windows (3.1, 3.11, and so
forth) from Microsoft. Microsoft added OpenGL to Windows NT 3.5, and to Windows 95
via a separate distribution of some DLLs. (These DLLs are available via Microsoft’s FTP
and Web sites and are included on this book’s CD, in the \Windows95 subdirectory.)

OpenGL SuperBible does not attempt to cover any third-party OpenGL or OpenGL-like
libraries for the 32- or 16-bit environments. Programmatically, OpenGL used under
Windows 95 is the same as OpenGL used under Windows NT. The first set of DLLs shipped
by Microsoft for Windows NT supports all of the OpenGL 1.0 functions that are also
available under Windows NT 3.5 and 3.51. OpenGL 1.1 functions are being added to
Windows NT 4.0, and a new set of DLLs should be ready for Windows 95 by the time this
book ships. See the readme.txt file on the CD for any late-breaking information.

All of the samples in the book should run fine on a fast 486 (that’s a “real” 486, mind you,
which means a built-in math coprocessor!) with at least 8MB of RAM. Most programming
environments will require at least this much horsepower, anyway. If you’re interested, all
the code in the book and on the CD was developed and found to run acceptably on a 90MHz
Pentium with 32MB of RAM and a 16/24-bit color display card. You will need a display
card capable of at least 256 colors (an 8-bit color card). There is significant improvement in
OpenGL’s speed and appearance when you give it a good color depth to work with. If you
can run in a mode that gives you 65,000 or more colors, your results will be even better.

Language

With the exception of two chapters that specifically deal with C++ frameworks, all the
source code in this book is written in C. The choice between C and C++ can become an
almost religious crusade between two warring camps. It is reasonable to expect that any
competent C++ programmer can also follow well-structured C code, but the converse is not
always true. There is a popular C++ library for OpenGL called Open Inventor; any attempt
here to build a C++ class library around OpenGL would be a duplication of an already fine
effort and is beyond the scope and purpose of this book anyway. This brings us to our choice
of tools.

Compilers

All of the sample code was originally developed using Microsoft’s Visual C++ 4.0. (Yes,
you can compile C with it!) With each sample you will find Visual C++ project files. Since
all samples are in C and make no use of vendor-specific libraries, you shouldn’t have any
trouble building the projects with any other 32-bit compiler. I will assume that you are
familiar with your environment of choice and know how to add libraries and header files to
your projects.

OpenGL Super Bible! Page 7

For programmers who prefer C++ application frameworks such as MFC or OWL, chapters
are included that deal with these two in particular. In addition, many of the C samples are
also provided in an MFC (Visual C++) version and an OWL (Borland C++) version.These
samples can be found in the \MFC and \OWL subdirectories on the CD. Project files for the
Borland Compiler are also provided for these samples, prepared using Borland C++ 5.0.

Another special consideration has been made for users of Borland tools: the CD contains a
Borland-specific version of the OpenGL Auxiliary library. This library isn’t part of the
official OpenGL specification, but it is usually implemented on the same various platforms
as OpenGL. For reasons unknown, Borland includes a header file for this library but not the
library itself, and the version of the AUX library that ships with Microsoft tools is
incompatible with Borland C++. For additional notes on using Borland C++ with this book,
see the \Borland subdirectory on the CD.

What’s in This Book

OpenGL SuperBible is divided into four sections. Part I is an introduction to OpenGL and
the fundamentals of using it from within Microsoft Windows. In Part II we cover the basics
of programming with OpenGL. This includes primitives, viewing and modeling
transformations, lighting, and texture mapping. In Part III we dig into some of the more
advanced topics and functionality within OpenGL— the OpenGL State Machine, special
visual effects, more detail on the OpenGL buffers, advanced surface generation, and some
interactive graphics. For Part IV, we’ve added supplementary information on using OpenGL
from different programming environments (MFC, OWL, and Visual Basic). Finally, there’s
a discussion of the future of OpenGL under Windows.

Part I: Introduction to OpenGL

Chapter 1 - What Is OpenGL?

In this chapter, we provide you with a working knowledge of what OpenGL is, where it
came from, and where it is going. We also discuss at a high level the differences between
and compatibilities of OpenGL and the Microsoft Windows graphics system.

Chapter 2 - 3D Graphics Fundamentals

This chapter is for newcomers to 3D graphics. It introduces fundamental concepts and some
common vocabulary.

Page 8 OpenGL Super Bible!

Chapter 3 - Learning OpenGL with the AUX Library

In this chapter, you will begin writing programs that use OpenGL. For starters, we’ll make
things simple by using the AUX library. This common toolkit library is platform- and
windowing system-independent. We also cover OpenGL function and variable naming
conventions, as well as the DLLs and libraries that contain the OpenGL functionality.

Chapter 4 - OpenGL for Windows: OpenGL + Win32 = Wiggle

Here you’ll begin writing real Windows (message-based) programs that use OpenGL. You’ll
learn about Microsoft’s “wiggle” functions that glue OpenGL rendering code to Windows
device contexts. We’ll also talk about which Windows messages should be responded to and
how.

Chapter 5 - Errors and Other Message from OpenGL

We’ll explore OpenGL’s method of reporting errors, and how it provides information about
its version and vendor.

Part II: Using OpenGL

Chapter 6 - Drawing in 3D: Lines, Points, and Polygons

Here you’ll learn how all 3D objects are created by assembling 2D primitives. All the
OpenGL primitives are covered, as well as how to hide surfaces within your scenes.

Chapter 7 - Manipulating 3D Space: Coordinate Transformations

In this chapter you’ll learn about moving your objects or view within your scenes. You’ll
learn how to rotate, translate, and scale. We take a simplified approach to our study of
matrix transformations, so you will understand how to use them even if youdon’t know the
first thing about matrices.

Chapter 8 - Color and Shading

Here you’ll learn how to liven up your objects by adding color. Shading objects smoothly
from one color to another will be child’s play after you’ve completed this chapter. We also
show you how and why you need to construct a 3-3-2 palette for OpenGL when your code
runs on a 256-color video card.

OpenGL Super Bible! Page 9

Chapter 9 - Lighting and Lamps

OpenGL supports up to eight independent light sources per scene. You’ll learn how to use
these lamps, how to set lighting parameters and properties, and how they interact with
reflective material properties that you can assign to your objects.

Chapter 10 - 3D Modeling and Object Composition

For this chapter, we show you how to build complex 3D objects out of smaller, less complex
3D objects. We also introduce OpenGL display lists as a method of breaking down your
objects and improving performance, as well.

Chapter 11 - Raster Graphics in OpenGL

In this chapter you’ll learn how to manipulate bitmap graphics from within OpenGL. This
includes reading in a Windows .BMP file and displaying it in an OpenGL scene.

Chapter 12 - Texture Mapping

Texture mapping is one of the most useful features of any 3D graphics toolkit. You’ll learn
how to wrap bitmaps onto polygons, and how to use automatic texture coordinate
generation.

Chapter 13 - Quadrics: Spheres, Cylinders, and Disks

This chapter covers the OpenGL Utility library (glu) functions for quickly constructing
some common shapes.

Part III: Advanced Topics and Special Effects

Chapter 14 - The OpenGL State Machine

Many global OpenGL parameters and settings are maintained via the OpenGL State
Machine. In this chapter you’ll learn about this mechanism, as well as some generalized
functions for setting and accessing the various parameters.

Chapter 15 - Buffers: Not Just for Animation

This chapter goes into more depth about the various OpenGL buffers. As you’ll see, they’re
not just for doing screen flipping.

Page 10 OpenGL Super Bible!

Chapter 16 - Visual Effects, Blending, and Fog

Some other visual special effects are covered in this chapter. These include alpha blending
and fog effects for transparency and depth cues.

Chapter 17 - Curves and Surfaces: What the #%@!&* Are NURBS?

This chapter explores the utility functions that evaluate Bázier and NURBS curves and
surfaces. You can use these functions to create complex shapes with a small amount of code.

Chapter 18 - Polygon Tessellation

Here you’ll learn how to break down complex or concave polygons into smaller, more
manageable pieces.

Chapter 19 - Interactive Graphics

This chapter explains two OpenGL features: selection and feedback. These groups of
functions make it possible for the user to interact with objects in the scene. You can also get
rendering details about any single object in the scene.

Chapter 20 - OpenGL on the ‘Net: VRML

This chapter introduces VRML (Virtual Reality Modeling Language) and its history with
OpenGL. Open Inventor is discussed, as well, and its relationship to OpenGL and VRML.

Part IV: OpenGL with...

Chapter 21 - MFC-Based OpenGL Programming

This chapter is for C++ programmers using Microsoft’s MFC class library. We’ll show you
how to use OpenGL from an MFC-based application, and how to add rendering capabilities
to any CWnd window.

Chapter 22 - OWL-Based OpenGL Programming

This chapter is for C++ programmers using Borland C++ and the OWL application
framework. You’ll learn how to add OpenGL rendering capabilities to any OWL TWindow-
derived window.

OpenGL Super Bible! Page 11

Chapter 23 - OpenGL Programming from Visual Basic and 4GL

In this chapter we give you an OCX that wraps most of the OpenGL functions and
commands. This allows easy OpenGL programming from Visual Basic (4.0 or later) or any
32-bit environment that supports OCXs. Examples are given for both Visual Basic 4.0 and
Delphi 2.0.

Chapter 24 - The Future of OpenGL and Windows

This chapter looks at the future of 3D graphics and OpenGL in Windows. We discuss the
implications of the Microsoft DirectX API, which includes Direct Draw, Direct Sound,
Direct Play, Direct Input, and Direct 3D, and will ultimately incorporate the Reality Labs 3D
API.

Appendixes

Appendix A - Performance-Tuning OpenGL for Windows

Here we will provide some general-purpose performance-tuning tips for using OpenGL
under Windows NT and Windows 95.

Appendix B - Further Reading

A list of additional reading materials is provided for more in-depth research on any of the
topics covered by this book.

Appendix C - OpenGL Version 1.1

OpenGL 1.1 was finalized during development of this book. The new functions and
capabilities are not covered here, but Appendix C gives you a high-level overview of the
new version’s additions. The CD also contains more up-to-date and complete documentation
on the new functions and capabilities being added for Windows NT 4.0, as well as some
example programs.

Appendix D - Glossary

A glossary of common 3D graphics and OpenGL terms.

Page 12 OpenGL Super Bible!

About the Companion CD

OpenGL SuperBible comes with a CD-ROM that’s jam-packed with samples and other
OpenGL goodies. A directory called Book, off the root directory of the CD, contains all the
source code from the book. In addition, there are many examples demonstrating the concepts
presented from each chapter that may not have been described in the text of the book.

Each chapter of the book has its own subdirectory in the Book directory. Within each
chapter subdirectory is another subdirectory for each example on the disk. For instance, the
bouncing square program from Chapter 3 is located in the X:\Book\Chapt3\bounce
subdirectory (where X is your CD-ROM drive).

Some of the chapter directories have a subdirectory called \Tank. This is a roving tank/robot
simulation program that we observe as we progress through the book. Though it’s not
analyzed chapter by chapter, the simulation becomes more complex as we gradually add
more of the functions and features of OpenGL. See the readme.txt file for details on the
construction of this example program.

Some of the sample programs from each chapter will also be written in C++ using MFC or
OWL. These sample programs are under X:\MFC\ or X:\OWL\. Again, within the MFC and
OWL subdirectories there is an additional directory for each chapter.

The two final major subdirectories in the CD root are \Borland and \OpenGL11. The
\Borland subdirectory contains a Borland-specific version of the AUX library. See the
readme.txt file in that directory for details on the library’s functionality and use.The
\OpenGL11directory contains a document describing the OpenGL 1.1 additions that
Microsoft is incorporating for Windows NT 4.0. In addition, you’ll also find several
example programs that demonstrate these new capabilities.

Be sure to consult the file readme.txt in the root directory for any late-breaking news or
additions to the content of the CD. This file also contains a complete listing of all the files
and programs on the CD ROM.

OpenGL Super Bible! Page 13

Engage!

If you are learning OpenGL or 3D graphics for the first time, then I sincerely envy you.
Nothing is more satisfying and just plain fun than learning a new technology or tool for the
first time. Although OpenGL has its roots in scientific modeling and simulation, you don’t
need to be a rocket scientist to master it. The step-by-step approach taken throughout this
book will guide you to new levels of programming skill. Learning OpenGL is comparable to
learning SQL for database programming. Before I knew SQL, I could not quite imagine the
new power I would wield as a database developer. If you have been tinkering with 3D
graphics or are just wanting to get started, you are only just beginning to glimpse the new
power and capabilities that OpenGL will afford you!

— Richard S. Wright, Jr.

Page 14 OpenGL Super Bible!

Foreword

Due to its enormous processing and hardware requirements, three-dimensional computer
graphics had until recently been available only on specialized workstations, even though the
technology has been around for decades. Today, personal computers have become so
powerful that interactive 3D graphics is no longer out of reach of such systems. A PC today
performs as well as a graphics workstation from a few years ago, but at a small fraction of
the cost.

OpenGL is an industry effort that brings traditional workstation graphics technology to the
PC. Microsoft has been an active advocate of this technology since it was first developed. It
has worked with many hardware vendors to enable high performance3D graphics hardware
on PCs.

The Windows platform now offers OpenGL applications ranging from VRML browsers to
CAD/CAM and animation packages. It will also be the platform with which to release an
OpenGL 1.1 implementation well ahead of all other platforms!

Richard Wright has long been an advocate of Win32 and OpenGL technology. He is an
active participant in the comp.graphics.api.opengl newsgroup, and has helped resolve many
programmers’ problems. Richard and I regularly exchange notes and ideas in e-mail. I am
glad that he is sharing his years of knowledge with others in OpenGL SuperBible from
Waite Group Press, and I’m confident you will benefit from his insight and knowledge in
developing your OpenGL applications for Windows.

Hock San Lee

OpenGL Development Manager

Microsoft Corporation

June 1996

OpenGL Super Bible! Page 15

About the Authors

Richard S. Wright, Jr. works for Visteon Corporation in Maitland, Florida, developing
Windows-based applications for the healthcare industry. Richard first learned to program in
the eighth grade in 1978 on a paper terminal. At age 16, his parents let him buy a computer
instead of a car, and he sold his first computer program less than a year later. When he
graduated from high school, his first job was teaching programming and computer literacy
for a local consumer education company. He studied electrical engineering and computer
science at the University of Louisville’s Speed Scientific School and made it to his senior
year before his career got the best of him. A native of Louisville, Kentucky, he now lives
with his wife and three children in sunny Lake Mary, Florida. When not programming or
dodging hurricanes, Richard is an amateur astronomer, a beach bum, and Sunday School
teacher.

Michael Sweet works at the Chesapeake Test Range at Patuxent River, Maryland, and is co-
owner of Easy Software Products, a small software firm specializing in computer graphics
on Silicon Graphics workstations. He first started using a computer terminalat the age of six
and sold his first program at 12. Michael was hired as a consultant doing computer graphics
while finishing his bachelors degree in computer science at the SUNY Institute of
Technology in Utica/Rome, New York. He moved to Maryland shortly after graduating.
When he has free time, he enjoys cycling, photography, and playing the trumpet.

Dedications

Dedicated to the memory of Richard S. Wright, Sr. I Thessalonians 4:16

— Richard S. Wright, Jr.

To my folks for putting a computer terminal in front of me at age six, and to my girlfriend,
Sandra, for putting up with me while I worked on this book.

— Michael Sweet

Page 16 OpenGL Super Bible!

Acknowledgments

There are many people who provided inspiration, technical assistance, ideas, and just lots of
really strong iced tea when I badly needed it. Most of all, I wish to acknowledge my own
family’s sacrifice: Thank you to LeeAnne, my wife, who gave up countless nights,
weekends, and quiet evenings, not to mention taking on many extra responsibilities at home
so her husband could “get famous.” Many thanks to my three children (Sara, Stephen, and
Alex), who missed not a few bedtime stories, trips to the park, and bike rides, or who just
got grumped at for no reason other than that Daddy hadn’t slept in a week. No career
achievement would have been worth losing them. I know how fortunate I am that at the end
of this I can still have my cake and eat it, too.

Many thanks go out to all the people at Waite Group Press, who really brought the book
together. Special thanks to John Crudo for getting my foot in the door a few years ago, and
for recommending me for my first writing assignment before my first “real”book. Thanks to
Harry Henderson for keeping me on track and encouraging me whenever I started feeling
sorry for myself. Thank you to Kurt Stephan for seeing me through, and for being flexible
but firm with the schedule whenever disaster struck, or whenI decided to suddenly change
the fabric of the universe (usually over a weekend before a deadline). Lest I forget, thanks to
Jill Pisoni and Joanne Miller, who got the book rolling in the first place— Jill for pulling
teeth at one particular software company, and Joanne for sticking through four or five title
changes, countless proposal revisions, three revisions of a sample chapter, and a hurricane
before this thing took off. Finally, thank you to Mitch Waite himself for helping me shape
the first “prototype” chapter, not to mention introducing me to the game Mech Warrior 2.

Credit and thanks also go out to Mike Sweet, author of Chapters 11 through 16 and 18, who
jumped in at the last minute and bailed me out when my first co-author fell through. Thanks
to Jeff Bankston for checking all the samples and for pointing out the important fact that not
everyone has a 24-bit graphics card.

I also would like to thank everyone in the OpenGL community at large. I spent a lot of time
in the OpenGL newsgroup asking and answering questions, and from there much of the
content of the book was shaped. Special thanks to Hock San Lee at Microsoft, who
answered many questions on and off line, and provided me with advance material on the
new OpenGL features in NT 4.0. John Schimpf at SGI and Robert Weideman at Template
graphics were also very helpful.

— Richard S. Wright, Jr.

Many thanks to Harry Henderson, Jeff Bankston, and, of course, Kurt Stephan for making
this book come together so quickly.

— Michael Sweet

OpenGL Super Bible! Page 17

Part I
Introduction To OpenGL

Part I of this book introduces you to 3D graphics and programming with OpenGL. We start
with a brief discussion of OpenGL, its background, purpose, and how it works. Then, before
getting into any code, we’ll talk generally about 3D graphics on computers, including how
and why we “think” we see 3D, and how an object’s position and orientation in 3D space is
specified. You’ll get the fundamental background and terminology you need to get the best
out of this book.

In Chapter 3 you’ll start writing your first OpenGL programs. You’ll learn about the various
libraries and headers that are needed, and how OpenGL functions and data types are called
and named. Initially we’ll cover the AUX library, a toolkit for learning OpenGL
independently of any particular platform. Then we’ll “wiggle” our way into writing
programs that use OpenGL under Windows 95 and Windows NT, in Chapter 4. We’ll cover
the extensions to the Windows GDI (graphical device interface) to support OpenGL under
Windows and describe how they must be used.

In Chapter 5 you’ll get some essential information on OpenGL’s handling and reporting of
error conditions. We’ll tell you how you can ask the AUX library to identify itself and who
makes it, and how to give performance “hints” to the library. With this knowledge in hand,
you’ll be ready to tackle the meatier issues of OpenGL in Part II, where the examples will
get a lot better!

Page 18 OpenGL Super Bible!

Chapter 1
What Is OpenGL?

OpenGL is strictly defined as “a software interface to graphics hardware.” In essence, it is a
3D graphics and modeling library that is extremely portable and very fast. Using OpenGL,
you can create elegant and beautiful 3D graphics with nearly the visual quality of a ray-
tracer. The greatest advantage to using OpenGL is that it is orders of magnitude faster than a
ray-tracer. It uses algorithms carefully developed and optimized by Silicon Graphics, Inc.
(SGI), an acknowledged world leader in computer graphics and animation.

OpenGL is intended for use with computer hardware that is designed and optimized for the
display and manipulation of 3D graphics. Software-only, “generic” implementations of
OpenGL are also possible, and the Microsoft Windows NT and Windows 95
implementations fall into this category. Soon this may not strictly be the case, because more
and more PC graphics hardware vendors are adding 3D acceleration to their products.
Although this is mostly driven by the market for 3D games, it closely parallels the evolution
of 2D Windows-based graphics accelerators that optimize operations such as line drawing
and bitmap filling and manipulation. Just as today no one would consider using an ordinary
VGA card to run Windows on a new machine, soon 3D accelerated graphics cards will
become commonplace.

The Windows Graphics APIs
First there was GDI (Graphics Device Interface), which made it possible to write hardware-
independent graphics— but at the cost of speed. Then graphics card makers began writing
optimized GDI drivers to considerably speed up GDI. Then Microsoft introduced WinG to
lure game developers. WinG consisted of little more than a few functions that got bitmaps to
the display much faster, but it was still too slow. Microsoft next created the Direct Draw API
for really low-level access to the hardware. This became rolled in with a whole set of
DirectX APIs for writing directly to hardware, making games easier to write and improving
their performance. Finally, 3DDI (a part of DirectX) gives high-performance 3D games a
much needed shot in the arm. In Chapter 24 we talk more about the evolution and
relationship of Windows and 3D graphics acceleration.

OpenGL is used for a variety of purposes, from CAD engineering and architectural
applications to computer-generated dinosaurs in blockbuster movies. The introduction of an
industry standard 3D API to a mass-market operating system such as Microsoft Windows
has some exciting repercussions. With hardware acceleration and fast PC microprocessors
becoming commonplace, 3D graphics will soon be typical components of consumer and
business applications, not just of games and scientific applications.

Who remembers when spreadsheets had only 2D graphics and charting capabilities? If you
think adding 3D to ordinary applications is extravagant, take a look at the bottom line of the

OpenGL Super Bible! Page 19

companies that first exploited this idea. Quattro Pro, one of the first to simplify 3D charting,
nearly captured the entire spreadsheet market. Today it takes far more than flat, two-
dimensional pie charts to guarantee long-term success for spreadsheet applications.

This isn’t to say that everyone will be using OpenGL to do pie and bar charts for business
applications. Nevertheless, appearances count for a lot. The success or failure of products
with otherwise roughly equivalent features often depends on “sex appeal.” And you can add
a lot of sex appeal with good 3D graphics!

About OpenGL

Let’s take a look at OpenGL’s origins, who’s “in charge” of OpenGL, and where OpenGL is
going. We’ll also examine the principles of OpenGL implementation.

A History of OpenGL

OpenGL is a relatively new industry standard that in only a few years has gained an
enormous following. The forerunner of OpenGL was GL from Silicon Graphics. “IRIS GL”
was the 3D programming API for that company’s high-end IRIS graphics workstations.
These computers were more than just general-purpose computers; they had specialized
hardware optimized for the display of sophisticated graphics. This hardware provided
ultrafast matrix transformations (a prerequisite for 3D graphics), hardware support for depth
buffering, and other features. When SGI tried porting IRIS GL to other hardware platforms,
however, problems occurred.

OpenGL is the result of SGI’s efforts to improve IRIS GL’s portability. The new language
would offer the power of GL but would be “Open,” allowing for easier adaptability to other
hardware platforms and operating systems. (SGI still maintains IRIS GL, but no
enhancements or features other than bug fixes are being made.)

On July 1, 1992, Version 1.0 of the OpenGL specification was introduced. Just five days
later, at the very first Win32 developers conference, SGI demonstrated OpenGL running on
their IRIS Indigo hardware. Video clips from films such as Terminator Two: Judgment Day,
and medical imaging applications were popular attractions in the vendor exhibit hall.
Already, SGI and Microsoft were working together to bring OpenGL to a future version of
Windows NT.

Further Developments in OpenGL

An open standard is not really open if only one vendor controls it. Thus, all enhancements to
OpenGL are decided by the OpenGL Architecture Review Board (ARB), whose founding
members are SGI, Digital Equipment Corporation, IBM, Intel, and Microsoft. The OpenGL
ARB meets twice a year.

Page 20 OpenGL Super Bible!

These meetings are open to the public, and nonmember companies may participate in
discussions (although they can’t vote). Permission to attend must be requested in advance,
and meetings are kept small to improve productivity. Members of the ARB frequently
participate in the Internet newsgroup comp.graphics.api.opengl. Questions and
recommendations can also be aired there.

In December 1995 the ARB ratified the final specification for Version 1.1 of OpenGL.
Many of the additions and changes from Version 1.0 were for performance reasons and are
summarized in Appendix A.

How OpenGL Works

OpenGL is a procedural rather than a descriptive graphics language. Instead of describing
the scene and how it should appear, the programmer actually describes the steps necessary to
achieve a certain appearance or effect. These “steps” involve calls to a highly portable API
that includes approximately 120 commands and functions. These are used to draw graphics
primitives such as points, lines, and polygons in three dimensions. In addition, OpenGL
supports lighting and shading, texture mapping, animation, and other special effects.

OpenGL does not include any functions for window management, user interaction, or file
I/O. Each host environment (such as Microsoft Windows) has its own functions for this
purpose and is responsible for implementing some means of handing over to OpenGL the
drawing control of a window or bitmap.

OpenGL under Windows

OpenGL made its debut in the release of Windows NT 3.5. A set of DLLs was also made
available to add support for OpenGL to Windows 95 shortly after its release. This book, in
fact, is specifically about Microsoft’s generic implementation of OpenGL. We will guide
you, the developer, through the fundamentals of 3D graphics first, and then show you how
to compile and link some OpenGL programs under Windows NT or Windows 95. Moving
on, we’ll cover the “wiggle” functions provided by Microsoft— the glue that enables the
OpenGL graphics API to work with Microsoft’s GDI. From there we will cover the entire
OpenGL API, using the context of Microsoft Windows NT and/or Windows95.

Graphics Architecture: Software versus Hardware

Using OpenGL is not at all like using GDI for drawing in windows. In fact, the current
selection of pens, brushes, fonts, and other GDI objects will have no effect on OpenGL. Just
as GDI uses the device context to control drawing in a window, OpenGL uses a rendering
context. A rendering context is associated with a device context, which in turn is associated
with a window, and voilà— OpenGL is rendering in a window. Chapter 4 discusses all the
mechanics associated with this process.

OpenGL Super Bible! Page 21

As we said earlier, OpenGL was meant to run on systems with hardware acceleration. PC
graphics vendors are adding OpenGL support for their cards. Properly written OpenGL
applications should not know the difference between hardware accelerated rendering and the
purely software rendering of the generic implementation. The user will notice, however, that
performance is significantly enhanced when hardware acceleration is present.

Figure 1-1 illustrates hardware acceleration under Windows, including normal GDI
acceleration and Direct Draw acceleration, as well as OpenGL acceleration. On the far left
you can see how an application makes normal GDI calls that are routed down through
WINSRV.DLL to the Win32 Device Driver Interface. The Win32 DDI then communicates
directly with the graphics card device driver, where the GDI acceleration is performed.

Figure 1-1 Overview of how Windows graphics acceleration works

Direct Draw is optimized for direct access to graphics hardware. It bypasses the GDI
completely and talks directly to the graphics hardware with perhaps only a thin hardware
abstraction layer in between, and some software emulation for unsupported features. Direct

Page 22 OpenGL Super Bible!

Draw is typically used for games and allows direct manipulation of graphics memory for
ultrafast 2D graphics and animation.

On the far right of Figure 1-1 you see OpenGL and other 3D API calls routed through a 3D
device driver interface. 3DDI is specifically designed to allow hardware manufacturers to
accelerate OpenGL and gaming 3D APIs such as the Reality Labs API. (For a discussion of
OpenGL and the Reality Labs API, see Chapter 24. In addition, hardware vendors with
specific hardware acceleration for OpenGL (such as the GLINT chipset) may install their
own OpenGL client drivers along with specialized device-driver interfaces.

Limitations of the Generic Implementation

Unless specifically supported by hardware, Microsoft’s generic implementation of OpenGL
has some limitations. There is no direct support for printing OpenGL graphics to a
monochrome printer or to a color printer with less than 4-bit planes of color (16 colors).
Hardware palettes for various windows are not supported. Instead, Windows has a single
hardware palette that must be arbitrated among multiple running applications.

Finally, some OpenGL features are not implemented, including stereoscopic images,
auxiliary buffers, and alpha bit planes. These features may or may not be implemented in
hardware, however. Your application should check for their availability before making use
of them (see Chapter 5).

Future Prospects for OpenGL in Windows

The introduction of OpenGL into the Windows family of operating systems opens up some
exciting possibilities. As millions of PCs become OpenGL-enabled, Windows may well
become the most popular platform for OpenGL-based applications. Initially this
implementation may be for scientific and engineering modeling and visualization
applications, but commonplace hardware will make high-performance games and other
consumer applications possible before long.

Even for vendors producing OpenGL based applications on other platforms, Microsoft
Windows implementations could prove to be a substantial source of secondary revenue.
Windows-based workstations are an attractive alternative to high-cost specialty
workstations, with the added bonus of being able to run some of today’s best business and
productivity applications.

OpenGL Super Bible! Page 23

Chapter 2
3D Graphics Fundamentals

What you’ll learn in this chapter:

How the eyes perceive three dimensions
How a 2D image can have the appearance of 3D
How Cartesian coordinates specify object positions
What a clipping volume is
How viewports affect image dimensions
How 3D objects are built from 2D primitives
How to work with orthographic and perspective projections

Before getting into the specifics of using OpenGL to create 3D graphics, we’ll take some
time out to establish some 3D vocabulary. In doing so, we will orient you to the fundamental
concepts of 3D graphics and coordinate systems. You’ll find out why we can get away with
calling 2D images on a flat computer screen 3D graphics. Readers experienced in 3D
graphics who are ready to get started using OpenGL may want to just skim this chapter.

3D Perception

“3D computer graphics” are actually two-dimensional images on a flat computer screen that
provide an illusion of depth, or a third “dimension.” In order to truly see in 3D, you need to
actually view the object with both eyes, or supply each eye with separate and unique images
of the object. Take a look at Figure 2-1. Each eye receives a two-dimensional image that is
much like a temporary photograph on the retina (the back part of your eye). These two
images are slightly different because they are received at two different angles (your eyes are
spaced apart on purpose). The brain then combines these slightly different images to
produce a single, composite 3D picture in your head, as shown in Figure 2-1.

Page 24 OpenGL Super Bible!

Figure 2-1 How the eyes “see” three dimensions

In Figure 2-1, the angle [theta] between the images gets smaller as the object goes farther
away. This 3D effect can be amplified by increasing the angle between the two images.
Viewmasters (those hand-held stereoscopic viewers you probably had as a kid) and 3D
movies capitalize on this effect by placing each of your eyes on a separate lens, or by
providing color-filtered glasses that separate two superimposed images. These images are
overenhanced for dramatic or cinematic purposes.

So what happens when you cover one eye? You may think you are still seeing in 3D, but try
this experiment: Place a glass or some other object just out of arm’s reach, off to your left
side. Cover your right eye with your right hand and reach for the glass. (Maybe you should
use an empty plastic one!) Notice that you have a more difficult time estimating how much
farther you need to reach (if at all) before you touch the glass. Now uncover your right eye
and reach for the glass, and you can easily discern how far you need to lean to reach the
glass. This is why people who have lost one eye often have difficulty with distance
perception.

2D + Perspective = 3D

The reason the world doesn’t become suddenly flat when you cover one eye is that many of
a 3D world’s effects are also present in a 2D world. This is just enough to trigger your
brain’s ability to discern depth. The most obvious cue is that nearby objects appear larger
than distant objects. This effect is called perspective. And perspective plus color changes,
textures, lighting, shading, and variations of color intensities (due to lighting) together add
up to our perception of a three-dimensional image.

OpenGL Super Bible! Page 25

Perspective alone is enough to lend the appearance of three dimensions. Figure 2-2 presents
a simple wireframe cube. Even without coloring or shading, the cube still has the appearance
of a three-dimensional object. Stare at the cube for long enough, however, and the front and
back of the cube will switch places. This is because your brain is confused by the lack of any
surface in the drawing.

Figure 2-2 This simple wireframe cube demonstrates perspective

Hidden Line Removal

Figure 2-2 contains just enough information to lend the appearance of three dimensions, but
not enough to let you discern the front of the cube from the back. When viewing a real
object, how do you tell the front from the back? Simple— the back is obscured by the front.
If the cube in Figure 2-2 were a solid, you wouldn’t be able to see the corners in the back of
the cube, and thus you wouldn’t confuse them for the corners in the front of the cube. Even
if the cube were made of wire, parts of the wires in front would obscure parts of the wires in
the back. To simulate this in a two-dimensional drawing, lines that would be obscured by
surfaces in front of them must be removed. This is called hidden line removal and it has
been done to the cube in Figure 2-3.

Page 26 OpenGL Super Bible!

Figure 2-3 The cube after hidden lines are removed

Colors and Shading

Figure 2-3 still doesn’t look much like a real-world object. The faces of the cube are exactly
the same color as the background, and all you can see are the front edges of the object. A
real cube would have some color and/or texture; in a wooden cube, for example, the color
and grain of the wood would show. On a computer (or on paper), if all we did was color the
cube and draw it in two dimensions, we would have something similar to Figure 2-4.

Figure 2-4 The cube with color, but no shading

Now we are back to an object that appears two-dimensional, and unless we specifically draw
the edges in a different color, there is no perception of three dimensions at all. In order to
regain our perspective of a solid object (without drawing the edges a different color), we
need to either make each of the three visible sides a different color, or make them the same

OpenGL Super Bible! Page 27

color with shading to produce the illusion of lighting. In Figure 2-5, the faces of the cube all
have a different color or shade.

Figure 2-5 The cube with its visible faces in three different shades

Lights and Shadows

One last element we must not neglect is lighting. Lighting has two important effects on
objects viewed in three dimensions. First, it causes a surface of a uniform color to appear
shaded when viewed or illuminated from an angle. Second, objects that do not transmit light
(most solid objects) cast a shadow when they obstruct the path of a ray of light. See Figure
2-6.

Figure 2-6 A solid cube illuminated by a single light

Two sources of light can influence our three-dimensional objects. Ambient light, which is
undirected light, is simply a uniform illumination that can cause shading effects on objects

Page 28 OpenGL Super Bible!

of a solid color; ambient light causes distant edges to appear dimmer. Another source of
light is from a light source, called a lamp. Lamps can be used to change the shading of solid
objects and for shadow effects.

Coordinate Systems

Now that you know how the eye can perceive three dimensions on a two-dimensional
surface (the computer screen), let’s consider how to draw these objects on the screen. When
you draw points, lines, or other shapes on the computer screen, you usually specify a
position in terms of a row and column. For example, on a standard VGA screen there are
640 pixels from left to right, and 480 pixels from top to bottom. To specify a point in the
middle of the screen, you specify that a point should be plotted at (320,240)— that is, 320
pixels from the left of the screen and 240 pixels down from the top of the screen.

In OpenGL, when you create a window to draw in, you must also specify the coordinate
system you wish to use, and how to map the specified coordinates into physical screen
pixels. Let’s first see how this applies to two-dimensional drawing, and then extend the
principle to three dimensions.

2D Cartesian Coordinates

The most common coordinate system for two-dimensional plotting is the Cartesian
coordinate system. Cartesian coordinates are specified by an x coordinate and a y
coordinate. The x coordinate is a measure of position in the horizontal direction and y is a
measure of position in the vertical direction.

The origin of the Cartesian system is at x=0, y=0. Cartesian coordinates are written as
coordinate pairs, in parentheses, with the x coordinate first and the y coordinate second,
separated by a comma. For example, the origin would be written as (0,0). Figure 2-7 depicts
the Cartesian coordinate system in two dimensions. The x and y lines with tick marks are
called the axes and can extend from negative to positive infinity. Note that this figure
represents the true Cartesian coordinate system pretty much as you used it in grade school.
Today, differing Windows mapping modes can cause the coordinates you specify when
drawing to be interpreted differently. Later in the book, you’ll see how to map this true
coordinate space to window coordinates in different ways.

OpenGL Super Bible! Page 29

Figure 2-7 The Cartesian plane

The x-axis and y-axis are perpendicular (intersecting at a right angle) and together define
the xy plane. A plane is, most simply put, a flat surface. In any coordinate system, two axes
that intersect at right angles define a plane. In a system with only two axes, there is naturally
only one plane to draw on.

Coordinate Clipping

A window is measured physically in terms of pixels. Before you can start plotting points,
lines, and shapes in a window, you must tell OpenGL how to translate specified coordinate
pairs into screen coordinates. This is done by specifying the region of Cartesian space that
occupies the window; this region is known as the clipping area. In two-dimensional space,
the clipping area is the minimum and maximum x and y values that are inside the window.
Another way of looking at this is specifying the origin’s location in relation to the window.
Figure 2-8 shows two common clipping areas.

Page 30 OpenGL Super Bible!

Figure 2-8 Two clipping areas

In the first example, on the left of Figure 2-8, x coordinates in the window range left to right
from 0 to +150, and y coordinates range bottom to top from 0 to +100. A point in the middle
of the screen would be represented as (75,50). The second example shows a clipping area
with x coordinates ranging left to right from –75 to +75, and y coordinates ranging bottom to
top from –50 to +50. In this example, a point in the middle of the screen would be at the
origin (0,0). It is also possible using OpenGL functions (or ordinary Windows functions for
GDI drawing) to turn the coordinate system upside-down or flip it right to left. In fact, the
default mapping for Windows windows is for positive y to move down from the top to the
bottom of the window. Although useful when drawing text from top to bottom, this default
mapping is not as convenient for drawing graphics.

Viewports, Your Window to 3D

Rarely will your clipping area width and height exactly match the width and height of the
window in pixels. The coordinate system must therefore be mapped from logical Cartesian
coordinates to physical screen pixel coordinates. This mapping is specified by a setting
known as the viewport. The viewport is the region within the window’s client area that will
be used for drawing the clipping area . The viewport simply maps the clipping area to a
region of the window. Usually the viewport is defined as the entire window, but this is not
strictly necessary— for instance, you might only want to draw in the lower half of the
window.

Figure 2-9 shows a large window measuring 300 x 200 pixels with the viewport defined as
the entire client area. If the clipping area for this window were set to be 0 to 150 along the x-
axis and 0 to 100 along the y-axis, then the logical coordinates would be mapped to a larger
screen coordinate system in the viewing window. Each increment in the logical coordinate

OpenGL Super Bible! Page 31

system would be matched by two increments in the physical coordinate system (pixels) of
the window.

Figure 2-9 A viewport defined as twice the size of the clipping area

In contrast, Figure 2-10 shows a viewport that matches the clipping area. The viewing
window is still 300 x 200 pixels, however, and this causes the viewing area to occupy the
lower-left side of the window.

Figure 2-10 A viewport defined as the same dimensions as the clipping area

Page 32 OpenGL Super Bible!

You can use viewports to shrink or enlarge the image inside the window, and to display only
a portion of the clipping area by setting the viewport to be larger than the window’s client
area.

Drawing Primitives

In both 2D and 3D, when you draw an object you will actually compose it with several
smaller shapes called primitives. Primitives are two-dimensional surfaces such as points,
lines, and polygons (a flat, multisided shape) that are assembled in 3D space to create 3D
objects. For example, a three-dimensional cube like the one in Figure 2-5 is made up of six
two-dimensional squares, each placed on a separate face. Each corner of the square (or of
any primitive) is called a vertex. These vertices are then specified to occupy a particular
coordinate in 2D or 3D space. You’ll learn about all the OpenGL primitives and how to use
them in Chapter 6.

3D Cartesian Coordinates

Now we’ll extend our two-dimensional coordinate system into the third dimension and add a
depth component. Figure 2-11 shows the Cartesian coordinate system with a new axis, z.
The z-axis is perpendicular to both the x- and y-axes. It represents a line drawn
perpendicularly from the center of the screen heading toward the viewer. (We have rotated
our view of the coordinate system from Figure 2-7 to the left with respect to the y-axis, and
down and back with respect to the x-axis. If we hadn’t, the z-axis would come straight out at
you and you wouldn’t see it.) Now we specify a position in three-dimensional space with
three coordinates— x, y, and z. Figure 2-11 shows the point (–4, 4, 4) for clarification.

OpenGL Super Bible! Page 33

Figure 2-11 Cartesian coordinates in three dimensions

Projections, The Essence of 3D

You’ve seen how to specify a position in 3D space using Cartesian coordinates. No matter
how we might convince your eye, however, pixels on a screen have only two dimensions.
How does OpenGL translate these Cartesian coordinates into two-dimensional coordinates
that can be plotted on a screen? The short answer is “trigonometry and simple matrix
manipulation.” Simple? Well, not really— we could actually go on for many pages and lose
most of our readers who didn’t take or don’t remember their linear algebra from college
explaining this “simple” technique. You’ll learn more about it in Chapter 7, and for a deeper
discussion you can check out the references in Appendix B. Fortunately, you don’t need to
understand the math in order to use OpenGL to create graphics.

All you really need to understand to get the most from this book is a concept called
projection. The 3D coordinates are projected onto a 2D surface (the window background).
It’s like tracing the outlines of some object behind a piece of glass with a black marker.
When the object is gone or you move the glass, you can still see the outline of the object
with its angular edges. In Figure 2-12 a house in the background is traced onto a flat piece of
glass. By specifying the projection, you specify the clipping volume (remember clipping
areas?) that you want displayed in your window, and how it should be translated.

Page 34 OpenGL Super Bible!

Figure 2-12 A 3D image projected onto a 2D surface

Orthographic Projections

You will mostly be concerned with two main types of projections in OpenGL. The first is
called an orthographic or parallel projection. You use this projection by specifying a square
or rectangular clipping volume. Anything outside this clipping area is not drawn.
Furthermore, all objects that have the same dimensions appear the same size, regardless of
whether they are far away or nearby. This type of projection (shown in Figure 2-13) is most
often used in architectural design or CAD (computer aided design).

Figure 2-13 The clipping volume for an orthographic projection

OpenGL Super Bible! Page 35

You specify the clipping volume in an orthographic projection by specifying the far, near,
left, right, top, and bottom clipping planes. Objects and figures that you place within this
viewing volume are then projected (taking into account their orientation) to a 2D image that
appears on your screen.

Perspective Projections

A second and more common projection is the perspective projection. This projection adds
the effect that distant objects appear smaller than nearby objects. The viewing volume
(Figure 2-14) is something like a pyramid with the top shaved off. This shaved off part is
called the frustum. Objects nearer to the front of the viewing volume appear close to their
original size, while objects near the back of the volume shrink as they are projected to the
front of the volume. This type of projection gives the most realism for simulation and 3D
animation.

Figure 2-14 The clipping volume for a perspective projection

Page 36 OpenGL Super Bible!

Summary

In this chapter we have introduced the very basics of 3D graphics. You’ve seen why you
actually need two images of an object from different angles in order to perceive true three-
dimensional space. You’ve also seen the illusion of depth created in a 2D drawing by means
of perspective, hidden line removal, and coloring, shading, and lighting techniques. The
Cartesian coordinate system was introduced for 2D and 3D drawing, and you learned about
two methods used by OpenGL to project three-dimensional drawings onto a two-
dimensional screen.

We purposely left out the details of how these effects are actually created by OpenGL. In the
chapters that follow, you will find out how to employ these techniques and take maximum
advantage of OpenGL’s power. On the Companion CD you’ll find one program for Chapter
2 (CUBE) that demonstrates the concepts covered in the first section of this chapter. In
CUBE, pressing the spacebar will advance you from a wireframe cube to a fully lit cube
complete with shadow. You won’t understand the code at this point, but it makes a powerful
demonstration of what is to come. By the time you finish this book, you will be able to
revisit this example and even be able to write it from scratch yourself.

OpenGL Super Bible! Page 37

Chapter 3
Learning OpenGL With The AUX Library

What you’ll learn in this chapter:

Which headers and libraries are used with OpenGL
How the AUX library provides basic windowing functions on just about any platform
How to use OpenGL to create a window and draw in it
How to use the OpenGL default coordinate system
How to create composite colors using the RGB (red, green, blue) components
How viewports affect image dimensions
How to scale your drawing to fit any size window
How to perform simple animation using double buffering
How to draw predefined objects

Now that you’ve been introduced to OpenGL and the principles of 3D graphics, it’s time to
set our hands to writing some OpenGL code. This chapter starts with an overview of how
OpenGL works with your compiler, and you’ll learn some conventions for naming variables
and functions. If you have already written some OpenGL programs, you may have
“discovered” many of these details for yourself. If that is the case, you may just want to
skim through the first section and jump right into using the AUX library.

OpenGL: An API, Not a Language

OpenGL is not a programming language; it is an API (Application Programming Interface).
Whenever we say that a program is OpenGL-based or an OpenGL application, we mean that
it was written in some programming language (such as C or C++) that makes calls to one or
more of the OpenGL libraries. We are not saying that the program uses OpenGL exclusively
to do drawing. It may combine the best features of two different graphics packages. Or it
may use OpenGL for only a few specific tasks, and environment-specific graphics (such as
the Windows GDI) for others.

As an API, the OpenGL library follows the C calling convention. This means programs in C
can easily call functions in the API either because the functions are themselves written in C
or because a set of intermediate C functions is provided that calls functions written in
assembler or some other language. In this book, our programs will be written in either C or
C++ and designed to run under Windows NT and Windows95. C++ programs can easily
access C functions and APIs in the same manner as C, with only some minor considerations.

Page 38 OpenGL Super Bible!

Other programming languages— such as so-called 4GLs (“fourth-generation languages”)
like Visual Basic— that can call functions in C libraries can also make use of OpenGL.
Chapter 23 discusses this in more detail.

Calling C Functions from C++
Except for the chapters that deal specifically with C++ application frameworks or 4GLs, all
of the chapter examples are written in C. On the accompanying CD, many of these samples
have also been provided in C++ using two popular application frameworks (MFC and
OWL). You can examine these examples and see how we made use of preprocessor macros
to keep most of our OpenGL drawing code in C.

The OpenGL Division of Labor

The OpenGL API is divided into three distinct libraries. See Table 3-1 for a breakdown.

• The first, covered in this chapter, is the Auxiliary or AUX library (sometimes
referred to as the “toolkit” library), glaux.lib. The declarations for this library are
contained in the file glaux.h. The functions contained in this library are not really a
part of the OpenGL specification, but rather a toolkit that provides a platform-
independent framework for calling OpenGL functions. If your compiler vendor did
not supply these files, they can be obtained from the Microsoft Win32 SDK. All
functions from this library begin with the prefix aux.
• The functions that actually define OpenGL as specified by the OpenGL
Architecture Review Board are contained in the library opengl32.dll, and its header
gl.h. Functions from this library are prefixed with gl.
• Finally, there is an OpenGL utility library glu32.dll and its header glu.h. This
library contains utility functions that make everyday tasks easier, such as drawing
spheres, disks, and cylinders. The utility library is actually written using OpenGL
commands, and thus is guaranteed to be available on all platforms that support the
OpenGL specification. These functions are all prefixed with glu.

All of the functions in the opengl32.dll and glu32.dll libraries are available for use when
using the AUX library for your program’s framework, which is what most of this chapter
focuses on. Along the way, you’ll learn the basics of OpenGL, and a few of the commands
from the gl library.

OpenGL Super Bible! Page 39

Table 3-1 OpenGL libraries and headers

Library Filename Library Filename Header File Function Prefix

Auxiliary or Toolkit glaux.lib glaux.h aux
OpenGL or gl opengl32.dll gl.h gl
Utility library or glu glu32.dll glu.h glu

A Note About the Libraries
You may have noticed that the AUX library is actually a library that is linked into your
application. The other OpenGL libraries, however, are actually implemented as DLLs. The
import libraries that you will need to link to are opengl32.lib and glu32.lib. Typically they
are provided by your compiler vendor, or you may obtain them via the Win32 SDK from
Microsoft. If you are using Borland C++, you will need to build your own import libraries
with Borland’s implib.exe utility.

OpenGL Data Types

To make it easier to port OpenGL code from one platform to another, OpenGL defines its
own data types. These data types map to normal C data types that you can use instead, if
desired. The various compilers and environments, however, have their own rules for the size
and memory layout of various C variables. By using the OpenGL defined variable types,
you can insulate your code from these types of changes.

Table 3-2 lists the OpenGL data types, their corresponding C data types under the 32-bit
Windows environments (Win32), and the appropriate suffix for literals. In this book we will
use the suffixes for all literal values. You will see later that these suffixes are also used in
many OpenGL function names.

Page 40 OpenGL Super Bible!

Table 3-2 OpenGL variable types and corresponding C data types

OpenGL Data Type Internal
Representation Defined as C Type C Literal Suffix

GLbyte 8-bit integer Signed char b
GLshort 16-bit integer Short s
GLint, GLsizei 32-bit integer Long I
GLfloat, GLclampf 32-bit floating point Float f
GLdouble, GLclampd 64-bit floating point Double d
GLubyte, GLboolean 8-bit unsigned integer Unsigned char ub
GLushort 16-bit unsigned integer Unsigned short us
GLuint, GLenum, GLbitfield 32-bit unsigned integer Unsigned long ui

All data types start with a GL to denote OpenGL. Most are followed by their corresponding
C data types (byte, short, int, float, etc.). Some have a u first to denote an unsigned data
type, such as ubyte to denote an unsigned byte. For some uses a more descriptive name is
given, such as size to denote a value of length or depth. For example, GLsizei is an OpenGL
variable denoting a size parameter that is represented by an integer. The clamp is used for
color composition and stands for color amplitude. This data type is found with both f and d
suffixes to denote float and double data types. The GLboolean variables are used to indicate
True and False conditions, GLenum for enumerated variables, and GLbitfield for variables
that contain binary bit fields.

Pointers and arrays are not give any special consideration. An array of ten GLshort variables
would simply be declared as

GLshort shorts[10];

and an array of ten pointers to GLdouble variables would be declared with

GLdouble *doubles[10];

Some other pointer object types are used for NURBS and Quadrics. They take more
explanation and will be covered in later chapters.

OpenGL Super Bible! Page 41

Function Naming Conventions

OpenGL functions all follow a naming convention that tells you which library the function
is from, and often how many and what type of arguments the function takes. All functions
have a root that represents the function’s corresponding OpenGL command. For example,
the glColor3f() function has the root Color. The gl prefix represents the gl library (see Table
3-1), and the 3f suffix means the function takes three floating point arguments. All OpenGL
functions take the following format:

<Library prefix><Root command><Optional argument count><Optional argument type>

Figure 3-1 illustrates the parts of an OpenGL function. This sample function with the suffix
3f takes three floating point arguments. Other variations take three integers (glColor3i()),
three doubles (glColor3d()), and so forth. This convention of adding the number and type of
arguments (see Table 3-1) to the end of OpenGL functions makes it very easy to remember
the argument list without having to look it up. Some versions of glColor take four arguments
to specify an alpha component, as well.

Figure 3-1 Dissected OpenGL Function

In the reference sections of this book, these “families” of functions are listed by their library
prefix and root. Thus all the variations of glColor (glColor3f, glColor4f, glColor3i, etc.) will
be listed under a single entry— glColor.

Page 42 OpenGL Super Bible!

Clean Code
Many C/C++ compilers for Windows assume that any floating-point literal value is of type
double unless explicitly told otherwise via the suffix mechanism. When using literals for
floating point arguments, if you don’t specify that these arguments are of type float instead of
double, the compiler will issue a warning while compiling because it detects that you are
passing a double to a function defined to accept only floats, resulting in a possible loss of
precision. As our OpenGL programs grow, these warnings will quickly number in the
hundreds and will make it difficult to find any real syntax errors. You can turn these
warnings off using the appropriate compiler options— but we advise against this. It’s better to
write clean, portable code the first time. So clean up those warning messages by cleaning up
the code (in this case, by explicitly using the float type)— not by disabling potentially useful
warnings.

Additionally, you may be tempted to use the functions that accept double-precision floating
point arguments, rather than go to all the bother of specifying your literals as floats.
However, OpenGL uses floats internally, and using anything other than the single-precision
floating point functions will add a performance bottleneck, as the values are converted to
floats anyway before being processed by OpenGL.

The AUX Library

For the remainder of this chapter, you will learn to use the Auxiliary (AUX) library as a way
to learn OpenGL. The AUX library was created to facilitate the learning and writing of
OpenGL programs without being distracted by the minutiae of your particular environment,
be it UNIX, Windows, or whatever. You don’t write “final” code when using AUX; it is
more of a preliminary staging ground for testing your ideas. A lack of basic GUI features
limits the library’s use for building useful applications.

A set of core AUX functions is available on nearly every implementation of OpenGL. These
functions handle window creation and manipulation, as well as user input. Other functions
draw some complete 3D figures as wireframe or solid objects. By using the AUX library to
create and manage the window and user interaction, and OpenGL to do the drawing, it is
possible to write programs that create fairly complex renderings. You can move these
programs to different environments with a recompile.

In addition to the core functions, each environment that implements an AUX library also
implements some other helper functions to enable system-specific operations such as buffer
swapping and image loading. The more your code relies on these additional AUX library
functions, the less portable your code will be. On the other hand, by making full use of these
functions you can create fantastic scenes that will amaze your friends and even the family
dog— without having to learn all the gritty details of Windows programming.

OpenGL Super Bible! Page 43

Unfortunately, it’s unlikely that all of the functionality of a useful application will be
embodied entirely in the code used to draw in 3D, so you can’t rely entirely on the AUX
library for everything. Nevertheless, the AUX library excels in its role for learning and
demonstration exercises. And for some applications, you may be able to employ the AUX
library to iron out your 3D graphics code before integrating it into a complete application.

Platform Independence

OpenGL is a powerful and sophisticated API for creating 3D graphics, with over 300
commands that cover everything from setting material colors and reflective properties to
doing rotations and complex coordinate transformations. You may be surprised that
OpenGL has not a single function or command relating to window or screen management. In
addition, there are no functions for keyboard input or mouse interaction. Consider, however,
that one of the primary goals of the OpenGL designers was platform independence. Creating
and opening a window is done differently under the various platforms. Even if OpenGL did
have a command for opening a window, would you use it or would you use the operating
system’s own built-in API call?

Another platform issue is the handling of keyboard and mouse input events under the
different operating systems and environments. If every environment handled these the same,
we would have only one environment to worry about and thus no need for an “open” API.
This is not the case, however, and it probably won’t be within our brief lifetimes! So
OpenGL’s platform independence comes at the cost of OS and GUI functions.

AUX = Platform I/O, the Easy Way

The AUX library was initially created as a toolkit to enable learning OpenGL without
getting mired in the details of any particular operating system or user interface. To
accomplish this, AUX provides rudimentary functions for creating a window and for reading
mouse and keyboard activity. Internally, the AUX library makes use of the native
environment’s APIs for these functions. The functions exposed by the AUX library then
remain the same on all platforms.

The AUX library contains only a handful of functions for window management and the
handling of input events, but saves you the trouble of managing these in pure C or C++
through the Windows API. The library also contains functions for drawing some relatively
simple 3D objects such as a sphere, cube, torus (doughnut), and even a teapot. With very
little effort, you can use the AUX library to display a window and perform some OpenGL
commands. Though AUX is not really part of the OpenGL specification, it seems to follow
that spec around to every platform to which OpenGL is ported. Windows is no exception,
and the source code for the AUX library is even included free in the Win32 SDK from
Microsoft.

Page 44 OpenGL Super Bible!

Dissecting a Short OpenGL Program

In order to understand the AUX library better, let’s take a look at possibly the world’s
shortest OpenGL program, which was written using the AUX library. Listing 3-1 presents
the shortest.c program. Its output is shown in Figure 3-2.

Figure 3-2 Output from shortest.c

Listing 3-1 Shortest OpenGL program in the world

// shortest.c
// The shortest OpenGL program possible

#include <windows.h> // Standard Window header required
for all programs
#include <conio.h> // Console I/O functions
#include <gl\gl.h> // OpenGL functions
#include <gl\glaux.h> // AUX Library functions

void main(void)
 {
 // These are the AUX functions to set up the win dow
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("My first OpenGL Program");

OpenGL Super Bible! Page 45

 // These are the OpenGL functions that do something in the window
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();

 // Stop and wait for a keypress
 cprintf("Press any key to close the Window \n");
 getch();
 }

Console Modes
A console-mode application is a Win32 program that runs in a text mode window. This is
very much like running a DOS program under Windows NT or Windows 95, except the
program is a true 32-bit application and has access to the entire Win32 API. Console-mode
programs are not limited to text mode. They can in fact create GUI windows for auxiliary
output (try calling MessageBox() with a NULL window handle from the above program),
and GUI-based applications can even create console windows if needed. The AUX library
allows you to easily write a console-based program with only a main() function that can
create an auxiliary GUI window for OpenGL output.

To build this program, you need to set your compiler and link options to build a Win32
console (or text-based) application. You will need to link to the AUX library glaux.lib and
the OpenGL import library opengl32.lib. See your compiler’s documentation for individual
instructions on building console applications.

The shortest.c program doesn’t do very much. When run from the command line, it creates a
standard GUI window with the caption “My first OpenGL Program” and a clear blue
background. It then prints the message “Press any key to close the window” in the console
window. The GUI window will not respond to any mouse or keyboard activity, and the
console window waits for you to press a key before terminating (you will have to switch
focus back to the console window first to do this). It doesn’t even behave very well— you
can’t move or resize the OpenGL window, and the window doesn’t even repaint. If you
obscure the window with another window and then uncover it, the client area goes black.

This simple program contains three AUX library functions (prefixed with aux) and three
“real” OpenGL functions (prefixed with gl). Let’s examine the program line by line, after
which we’ll introduce some more functions and substantially improve on our first example.

Page 46 OpenGL Super Bible!

The Includes

Here are the include files:

#include <windows.h>
#include <conio.h>
#include <gl\gl.h>
#include <gl\glaux.h>

These includes define the function prototypes used by the program. The windows.h header
file is required by all Windows GUI applications; even though this is a console-mode
program, the AUX library creates a GUI window to draw in. The file conio.h is for console
I/O. It’s included because we use cprintf() to print a message, and getch() to terminate the
program when a key is pressed. The file gl.h defines the OpenGL functions that are prefixed
with gl; and glaux.h contains all the functions necessary for the AUX library.

The Body

Next comes the main body of the program:

void main(void)
 {

Console mode C and C++ programs always start execution with the function main(). If you
are an experienced Windows nerd, you may wonder where WinMain() is in this example.
It’s not there because we start with a console-mode application, so we don’t have to start
with window creation and a message loop. It is possible with Win32 to create graphical
windows from console applications, just as it is possible to create console windows from
GUI applications. These details are buried within the AUX library (remember, the AUX
library is designed to hide these platform details).

Display Mode: Single-Buffered

The next line of code

auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);

tells the AUX library what type of display mode to use when creating the window. The flags
here tell it to use a single-buffered window (AUX_SINGLE) and to use RGBA color mode
(AUX_RGBA). A single-buffered window means that all drawing commands are performed
on the window displayed. An alternative is a double-buffered window, where the drawing
commands are actually executed to create a scene off screen, then quickly swapped into
view on the window. This is often used to produce animation effects and will be
demonstrated later in this chapter. RGBA color mode means that you specify colors by
supplying separate intensities of red, green, and blue components (more on color modes in
Chapter 8).

OpenGL Super Bible! Page 47

Position the Window

After setting the display mode, you need to tell the AUX library where to put the window
and how big to make it. The next line of code does this:

auxInitPosition(100,100,250,250);

The parameters represent the upper-left corner of the window and its width and height.
Specifically, this line tells the program to place the upper-left corner at coordinates
(100,100), and to make the window 250 pixels wide and 250 pixels high. On a screen of
standard VGA resolution (640 x 480), this window will take up a large portion of the
display. At SuperVGA resolutions (800 x 600 and above), the window will take less space
even though the number of pixels remains the same (250 x 250).

Here is the prototype for this function:

auxInitPosition(GLint x, GLint y, GLsizei width, GLsizei height);

The GLint and GLsizei data types are defined as integers (as described in the earlier section
about data types). The x parameter is the number of screen pixels counted from the left side
of the screen, and y is the number of pixels counted down from the top of the screen. This is
how Windows converts desktop screen coordinates to a physical location by default.
OpenGL’s default method for counting the x coordinate is the same; however, it counts the y
coordinate from bottom to top— just the opposite of Windows. See Figures 3-3 and 3-4.

Figure 3-3 Default Windows screen coordinate mapping

Page 48 OpenGL Super Bible!

Figure 3-4 Default OpenGL window coordinate mapping

Porting Note
Although Windows maps desktop coordinates as shown in Figure 3-3, the X Window
System maps desktop coordinates the same way that OpenGL does in Figure 3-4. If you are
porting an AUX library program from another environment, you may need to change the call
to auxInitPosition() to account for this.

Create the OpenGL Window

The last call to the AUX library actually creates the window on the screen. The code

auxInitWindow("My first OpenGL Program");

creates the window and sets the caption to “My first OpenGL Program.” Obviously, the
single argument to auxInitWindow is the caption for the window title bar. If you stopped
here, the program would create an empty window (black background is the default) with the
caption specified, and then terminate, closing the OpenGL window immediately. The
addition of our last getch() prevents the window from disappearing, but still nothing of
interest happens in the window.

OpenGL Super Bible! Page 49

Clear a Window (Erase with a Color)

The three lines of code we’ve looked at so far from the AUX library are sufficient to
initialize and create a window that OpenGL will draw in. From this point on, all OpenGL
commands and function calls will operate on this window.

The next line of code

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

is your first real OpenGL function call. This function sets the color used when clearing the
window. The prototype for this function is

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLcl ampf
alpha);

GLclampf is defined as a float under most implementations of OpenGL. In OpenGL, a
single color is represented as a mixture of red, green, and blue components. The range for
each component can vary from 0.0 to 1.0. This is similar to the Windows specification of
colors using the RGB macro to create a COLORREF value. (See the Windows95 API Bible
from Waite Group Press for details.) The difference is that in Windows each color
component in a COLORREF can range from 0 to 255, giving a total of 256 x 256 x 256— or
over 16 million colors. With OpenGL, the values for each component can be any valid
floating-point value between 0 and 1, thus yielding a theoretically infinite number of
potential colors. Practically speaking, OpenGL represents colors internally as 32-bit values,
yielding a true maximum of 4,294,967,296 colors (called true color on some hardware).
Thus the effective range for each component is from 0.0 to 1.0, in steps of approximately
.00006.

Naturally, both Windows and OpenGL take this color value and convert it internally to the
nearest possible exact match with the available video hardware and palette. We’ll explore
this more closely in Chapter 8.

Table 3-3 lists some common colors and their component values. These values can be used
with any of the OpenGL color-related functions.

Page 50 OpenGL Super Bible!

Table 3-3 Some common composite colors

Composite Color Red Component Green Component Blue Component

Black 0.0 0.0 0.0
Red 1.0 0.0 0.0
Green 0.0 1.0 0.0
Yellow 1.0 1.0 0.0
Blue 0.0 0.0 1.0
Magenta 1.0 0.0 1.0
Cyan 0.0 1.0 1.0
Dark gray 0.25 0.25 0.25
Light gray 0.75 0.75 0.75
Brown 0.60 0.40 0.12
Pumpkin orange 0.98 0.625 0.12
Pastel pink 0.98 .04 0.7
Barney purple 0.60 0.40 0.70
White 1.0 1.0 1.0

The last argument to glClearColor() is the alpha component. The alpha component is used
for blending and special effects such as translucence. Translucence refers to an object’s
ability to allow light to pass through it. Suppose you are representing a piece of red stained
glass, but a blue light is shining behind it. The blue light will affect the appearance of the red
in the glass (blue + red = purple). You can use the alpha component value to make a blue
color that is semitransparent; so it works like a sheet of water— an object behind it shows
through. There is more to this type of effect than the alpha value, and in Chapter 16 we will
write an example program that demonstrates it; until then you should leave this value as 1.

OpenGL Super Bible! Page 51

Actually Clear

Now that we have told OpenGL what color to use for clearing, we need an instruction to do
the actual clearing. This accomplished by the line

glClear(GL_COLOR_BUFFER_BIT);

The glClear() function clears a particular buffer or combination of buffers. A buffer is a
storage area for image information. The red, green, and blue components of a drawing
actually have separate buffers, but they are usually collectively referred to as the color
buffer.

Buffers are a powerful feature of OpenGL and will be covered in detail in Chapter 15. For
the next several chapters, all you really need to understand is that the color buffer is where
the displayed image is stored internally, and that clearing the buffer with glClear removes
the drawing from the window.

Flush That Queue

Our final OpenGL function call comes next:

glFlush();

This line causes any unexecuted OpenGL commands to be executed— we have two at this
point: glClearColor() and glClear().

Internally, OpenGL uses a rendering pipeline that processes commands sequentially.
OpenGL commands and statements often are queued up until the OpenGL server processes
several “requests” at once. This improves performance, especially when constructing
complex objects. Drawing is accelerated because the slower graphics hardware is accessed
less often for a given set of drawing instructions. (When Win32 was first introduced, this
same concept was added to the Windows GDI to improve graphics performance under
Windows NT.) In our short program, the glFlush() function simply tells OpenGL that it
should proceed with the drawing instructions supplied thus far before waiting for any more
drawing commands.

The last bit of code for this example

// Stop and wait for a keypress
cprintf("Press any key to close the Window \n");
getch();
}

displays a message in the console window and stops the program until you press a key, at
which point the program is terminated and the window is destroyed.

Page 52 OpenGL Super Bible!

It may not be the most interesting OpenGL program in existence, but shortest.c demonstrates
the very basics of getting a window up using the AUX library and it shows you how to
specify a color and clear the window. Next we want to spruce up our program by adding
some more AUX library and OpenGL functions.

Drawing Shapes with OpenGL

The shortest.c program made an empty window with a blue background. Let’s do some
drawing in the window. In addition, we want to be able to move and resize the window so
that it behaves more like a Windows window. We will also dispense with using getch() to
determine when to terminate the program. In Listing 3-2 you can see the modifications.

The first change you’ll notice is in the headers. The conio.h file is no longer included
because we aren’t using getch() or cprintf() anymore.

Listing 3-2 A friendlier OpenGL program

// friendly.c
// A friendlier OpenGL program

#include <windows.h> // Standard header for Windows
#include <gl\gl.h> // OpenGL library
#include <gl\glaux.h> // AUX library

// Called by AUX library to draw scene
void CALLBACK RenderScene(void)
 {
 // Set clear color to blue
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Clear the window
 glClear(GL_COLOR_BUFFER_BIT);

 // Set current drawing color to red
 // R G B
 glColor3f(1.0f, 0.0f, 0.0f);

 // Draw a filled rectangle with current color
 glRectf(100.0f, 150.0f, 150.0f, 100.0f);
 glFlush();
 }
void main(void)
 {
 // AUX library window and mode setup
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("My second OpenGL Program");

 // Set function to call when window needs updating
 auxMainLoop(RenderScene);
 }

OpenGL Super Bible! Page 53

The Rendering Function

Next, you’ll see we have created the function RenderScene().

// Called by AUX library to draw scene
void CALLBACK RenderScene(void)
 {
 ...}

This is where we have moved all code that does the actual drawing in the window. The
process of drawing with OpenGL is often referred to as rendering, so we used that
descriptive name. In later examples we’ll be putting most of our drawing code in this
function.

Make note of the CALLBACK statement in the function declaration. This is required
because we’re going to tell the AUX library to call this function whenever the window needs
updating. Callback functions are simply functions that you write, which the AUX library
will be calling in your behalf. You’ll see how this works later.

Drawing a Rectangle

Previously, all our program did was clear the screen. We’ve added the following two lines of
drawing code:

// Set current drawing color to red
// R G B
glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color
glRectf(100.0f, 150.0f, 150.0f, 100.0f);

These lines set the color used for future drawing operations (lines and filling) with the call to
glColor3f(). Then glRectf() draws a filled rectangle.

The glColor3f() function selects a color in the same manner as glClearColor(), but no alpha
translucency component needs to be specified:

void glColor3f(GLfloat red, GLfloat green, GLfloat blue);

The glRectf () function takes floating point arguments, as denoted by the trailing f. The
number of arguments is not used in the function name because all glRect variations take four
arguments. The four arguments of glRectf(),

void glRectf(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2);

Page 54 OpenGL Super Bible!

represent two coordinate pairs— (x1, y1) and (x2, y2). The first pair represents the upper-left
corner of the rectangle, and the second pair represents the lower-right corner. See Figure 3-4
if you need a review of OpenGL coordinate mapping.

Initialization

The main body of friendly.c starts the same way as our first example:

void main(void)
 {
 // AUX library window and mode se tup
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("My second OpenGL Program");

 // Set function to call when window needs updating
 auxMainLoop(RenderScene);
 }

As before, the three auxInitxxx calls set up and display the window in which we’ll be
drawing. In the final line, auxMainLoop() takes the name of the function that does the
drawing, RenderScene(). The AUX library’s auxMainLoop() function simply keeps the
program going until it’s terminated by closing the window. This function’s single argument
is a pointer to another function it should call whenever the window needs updating. This
callback function will be called when the window is first displayed, when the window is
moved or resized, and when the window is uncovered by some other window.

// Called by AUX library to draw scene
void CALLBACK RenderScene(void)
 {
 // Set clear color to Blue
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Clear the window
 glClear(GL_COLOR_BUFFER_BIT);

 // Set current drawing color to red
 // R G B
 glColor3f(1.0f, 0.0f, 0.0f);

 // Draw a filled rectangle with current color
 glRectf(100.0f, 150.0f, 150.0f, 100.0f);

 glFlush();
 }

At this point, the program will display a red square in the middle of a blue window, because
we used fixed locations for the square. If you make the window larger, the square will
remain in the lower-left corner of the window. When you make the window smaller, the
square may no longer fit in the client area. This is because as you resize the window, the

OpenGL Super Bible! Page 55

screen extents of the window change; however, the drawing code continues to place the
rectangle at (100, 150, 150, 100). In the original window this was directly in the center; in a
larger window these coordinates are located in the lower-left corner. See Figure 3-5.

Figure 3-5 Effects of changing window size

Scaling to the Window

In nearly all windowing environments, the user may at any time change the size and
dimensions of the window. When this happens, the window usually responds by redrawing
its contents, taking into consideration the window’s new dimensions. Sometimes you may
wish to simply clip the drawing for smaller windows, or display the entire drawing at its
original size in a larger window. For our purposes, we usually will want to scale the drawing
to fit within the window, regardless of the size of the drawing or window. Thus a very small
window would have a complete but very small drawing, and a larger window would have a
similar but larger drawing. You see this in most drawing programs when you stretch a
window as opposed to enlarging the drawing. Stretching a window usually doesn’t change
the drawing size, but magnifying the image will make it grow.

Setting the Viewport and Clipping Volume

In Chapter 2 we discussed how viewports and clipping volumes affect the coordinate range
and scaling of 2D and 3D drawings in a 2D window on the computer screen. Now we will
examine the setting of viewport and clipping volume coordinates in OpenGL. When we
created our window with the function call

 auxInitPosition(100,100,250,250);

Page 56 OpenGL Super Bible!

the AUX library by default created a viewport that matched the window size exactly (0, 0,
250, 250). The clipping volume by default was set to be the first quadrant of Cartesian
space, with the x- and y-axis extending the length and height of the window. The z-axis
extends perpendicular to the viewer, giving a flat 2D appearance to objects drawn in the xy
plane. Figure 3-6 illustrates this graphically.

Figure 3-6 The viewport and clipping volume for friendly.c

Although our drawing is a 2D flat rectangle, we are actually drawing in a 3D coordinate
space. The glRectf() function draws the rectangle in the xy plane at z = 0. Your perspective
is down along the positive z-axis to see the square rectangle at z = 0.

Whenever the window size changes, the viewport and clipping volume must be redefined for
the new window dimensions. Otherwise, you’ll see the effect shown in Figure 3-5, where the
mapping of the coordinate system to screen coordinates stays the same regardless of window
size.

Because window size changes are detected and handled differently under various
environments, the AUX library provides the function auxReshapeFunc(), which registers a
callback that the AUX library will call whenever the window dimensions change. The
function you pass to auxReshapeFunc() is prototyped like this:

void CALLBACK ChangeSize(GLsizei w, GLsizei h);

OpenGL Super Bible! Page 57

We have chosen ChangeSize as a descriptive name for this function and will use that name
for our future examples.

The ChangeSize() function will receive the new width and height whenever the window size
changes. We can use this information to modify the mapping of our desired coordinate
system to real screen coordinates, with the help of two OpenGL functions: glViewport() and
glOrtho(). Listing 3-3 shows our previous example modified to account for various window
sizes and dimensions. Only the changed main() function and our new ChangeSize() function
are shown.

Listing 3-3 Scaling in OpenGL

// Scale.c
// Scaling an OpenGL Window.

// Called by AUX Library when the window has changed size
void CALLBACK ChangeSize(GLsizei w, GLsizei h)
 {
 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 // Reset coordinate system
 glLoadIdentity();

 // Establish clipping volume (left, right, bottom, top, near, far)
 if (w <= h)
 glOrtho (0.0f, 250.0f, 0.0f, 250.0f*h/w, 1.0, -1.0);
 else
 glOrtho (0.0f, 250.0f*w/h, 0.0f, 250.0f, 1.0, -1.0);
 }

void main(void)
 {
 // Set up and initialize AUX window
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("Scaling Window");

 // Set function to call when window changes size
 auxReshapeFunc(ChangeSize);

 // Set function to call when window needs updating
 auxMainLoop(RenderScene);
 }

Now, when you change the size or dimensions of the window, the square will change size as
well. A much larger window will have a much larger square and a much smaller window
will have a much smaller square. If you make the window long horizontally, the square will

Page 58 OpenGL Super Bible!

be centered vertically, far left of center. If you make the window tall vertically, the square
will be centered horizontally, closer to the bottom of the window. Note that the rectangle
always remains square. To see a square scaled as the window resizes, see Figure 3-7a and
Figure 3-7b.

Figure 3-7a Image scaled to match window size

Figure 3-7b Square scaled as the window resizes

Defining the Viewport

To understand how the viewport definition is achieved, let’s look more carefully at the
ChangeSize() function. It first calls glViewport() with the new width and height of the
window. The glViewport function is defined as

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-right corner of the viewport within the window,
and the width and height parameters specify these dimensions in pixels. Usually x and y will
both be zero, but you can use viewports to render more than one drawing in different areas
of a window. The viewport defines the area within the window in actual screen coordinates
that OpenGL can use to draw in (see Figure 3-8). The current clipping volume is then
mapped to the new viewport. If you specify a viewport that is smaller than the window
coordinates, the rendering will be scaled smaller, as you see in Figure 3-8.

OpenGL Super Bible! Page 59

Figure 3-8 Viewport-to-window mapping

Defining the Clipping Volume

The last requirement of our ChangeSize() function is to redefine the clipping volume so that
the aspect ratio remains square. The aspect ratio is the ratio of the number of pixels along a
unit of length in the vertical direction to the number of pixels along the same unit of length
in the horizontal direction. An aspect ratio of 1.0 would define a square aspect ratio. An
aspect ratio of 0.5 would specify that for every two pixels in the horizontal direction for a
unit of length, there is one pixel in the vertical direction for the same unit of length.

If a viewport is specified that is not square and it is mapped to a square clipping volume, that
will cause images to be distorted. For example, a viewport matching the window size and
dimensions but mapped to a square clipping volume would cause images to appear tall and
thin in tall and thin windows, and wide and short in wide and short windows. In this case,
our square would only appear square when the window was sized to be a square.

In our example, an orthographic projection is used for the clipping volume (see Chapter 2).
The OpenGL command to create this projection is glOrtho():

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
 GLdouble near, GLdouble far);

In 3D Cartesian space, the left and right values specify the minimum and maximum
coordinate value displayed along the x-axis; bottom and top are for the y-axis. The near and
far parameters are for the z-axis, generally with negative values extending away from the
viewer (see Figure 3-9).

Page 60 OpenGL Super Bible!

Figure 3-9 Cartesian space

Just before the code using glOrtho(), you’ll notice a single call to glLoadIdentity(). This is
needed because glOrtho() doesn’t really establish the clipping volume, but rather modifies
the existing clipping volume. It multiplies the matrix that describes the current clipping
volume by the matrix that describes the clipping volume described in its arguments. The
discussion of matrix manipulations and coordinate transformations is in Chapter 7. For now,
you just need to know that glLoadIdentity() serves to “reset” the coordinate system to unity
before any matrix manipulations are performed. Without this “reset” every time glOrtho() is
called, each successive call to glOrtho() could result in a further corruption of our intended
clipping volume, which may not even display our rectangle.

Keeping a Square Square

The following code does the actual work of keeping our “square” square.

if (w <= h)
 glOrtho (0, 250, 0, 250*h/w, 1.0, -1.0);
else
 glOrtho (0, 250*w/h, 0, 250, 1.0, -1.0);

Our clipping volume (visible coordinate space) is modified so that the left-hand side is
always at x = 0. The right-hand side extends to 250 unless the window is wider than it is tall.
In that case, the right-hand side is extended by the aspect ratio of the window. The bottom is

OpenGL Super Bible! Page 61

always at y = 0, and extends upward to 250 unless the window is taller than it is wide. In
that case the upper coordinate is extended by the aspect ratio. This serves to keep a square
coordinate region 250 x 250 available regardless of the shape of the window. Figure 3-10
shows how this works.

Figure 3-10 Clipping region for three different windows

Animation with AUX

Thus far, we’ve discussed the basics of using the AUX library for creating a window and
using OpenGL commands for the actual drawing. You will often want to move or rotate
your images and scenes, creating an animated effect. Let’s take the previous example, which
draws a square, and make the square bounce off the sides of the window. You could create a
loop that continually changes your object’s coordinates before calling the RenderScene()
function. This would cause the square to appear to move around within the window.

The AUX library provides a function that makes it much easier to set up a simple animated
sequence. This function, auxIdleFunc(), takes the name of a function to call continually
while your program sits idle. The function to perform your idle processing is prototyped like
this:

void CALLBACK IdleFunction(void);

This function is then called repeatedly by the AUX library unless the window is being
moved or resized.

If we change the hard-coded values for the location of our rectangle to variables, and then
constantly modify those variables in the IdleFunction(), the rectangle will appear to move
across the window. Let’s look at an example of this kind of animation. In Listing 3-4, we’ll
modify Listing 3-3 to bounce the square around off the inside borders of the window. We’ll
need to keep track of the position and size of the rectangle as we go along, and account for
any changes in window size.

Page 62 OpenGL Super Bible!

Listing 3-4 Animated bouncing square

// bounce.c
// Bouncing square

#include <windows.h> // Standard windows include
#include <gl\gl.h> // OpenGL library
#include <gl\glaux.h> // AUX library

// Initial square position and size
GLfloat x1 = 100.0f;
GLfloat y1 = 150.0f;
GLsizei rsize = 50;

// Step size in x and y directions
// (number of pixels to move each time)
GLfloat xstep = 1.0f;
GLfloat ystep = 1.0f;

// Keep track of window’s changing width and height
GLfloat windowWidth;
GLfloat windowHeight;

// Called by AUX library when the window has changed size
void CALLBACK ChangeSize(GLsizei w, GLsizei h)
 {
 // Prevent a divide by zero, when window is too short
 // (you can’t make a window of zero width)
 if(h == 0)
 h = 1;

 // Set the viewport to be the entire window
 glViewport(0, 0, w, h);

 // Reset the coordinate system before modifying
 glLoadIdentity();

 // Keep the square square, this time, save calculated
 // width and height for later use
 if (w <= h)
 {
 windowHeight = 250.0f*h/w;
 windowWidth = 250.0f;
 }
 else
 {
 windowWidth = 250.0f*w/h;
 windowHeight = 250.0f;
 }

 // Set the clipping volume
 glOrtho(0.0f, windowWidth, 0.0f, windowHeight, 1.0f, -1.0f);
 }

// Called by AUX library to update window

OpenGL Super Bible! Page 63

void CALLBACK RenderScene(void)
 {
 // Set background clearing color to blue
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Set drawing color to red, and draw rectangle at
 // current position.
 glColor3f(1.0f, 0.0f, 0.0f);
 glRectf(x1, y1, x1+rsize, y1+rsize);

 glFlush();
 }

// Called by AUX library when idle (window not being
// resized or moved)
void CALLBACK IdleFunction(void)
 {
 // Reverse direction when you reach left or right edge
 if(x1 > windowWidth-rsize || x1 < 0)
 xstep = -xstep;

 // Reverse direction when you reach top or bottom edge
 if(y1 > windowHeight-rsize || y1 < 0)
 ystep = -ystep;

 // Check bounds. This is in case the window is made
 // smaller and the rectangle is outside the new
 // clipping volume
 if(x1 > windowWidth-rsize)
 x1 = windowWidth-rsize-1;

 if(y1 > windowHeight-rsize)
 y1 = windowHeight-rsize-1;

 // Actually move the square
 x1 += xstep;
 y1 += ystep;

 // Redraw the scene with new coordinates
 RenderScene();
 }

// Main body of program
void main(void)
 {
 // AUX window setup and initialization
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("Simple 2D Animation");

 // Set function to call when window is resized
 auxReshapeFunc(ChangeSize);

Page 64 OpenGL Super Bible!

 // Set function to call when program is idle
 auxIdleFunc(IdleFunction);

 // Start main loop
 auxMainLoop(RenderScene);
 }

The animation produced by this example is very poor, even on very fast hardware. Because
the window is being cleared each time before drawing the square, it flickers the entire time
it’s moving about, and you can easily see the square actually being drawn as two triangles.
To produce smoother animation, you need to employ a feature known as double buffering.

Double Buffering

One of the most important features of any graphics packages is support for double buffering.
This feature allows you to execute your drawing code while rendering to an off-screen
buffer. Then a swap command places your drawing on screen instantly.

Double buffering can serve two purposes. The first is that some complex drawings may take
a long time to draw and you may not want each step of the image composition to be visible.
Using double buffering, you can compose an image and display it only after it is complete.
The user never sees a partial image; only after the entire image is ready is it blasted to the
screen.

A second use for double buffering is for animation. Each frame is drawn in the off-screen
buffer and then swapped quickly to the screen when ready. The AUX library supports
double-buffered windows. We need to make only two changes to the bounce.c program to
produce a much smoother animation. First, change the line in main() that initializes the
display mode to indicate that it should use double buffering:

 auxInitDisplayMode(AUX_DOUBLE | AUX_RGBA);

This will cause all the drawing code to render in an off-screen buffer.

Next, add a single line to the end of the Render() function:

 auxSwapBuffers();

The auxSwapBuffers() function causes the off-screen buffer used for drawing to be swapped
to the screen. (The complete code for this is in the BOUNCE2 example on the CD.) This
produces a very smooth animation of the red square bouncing around inside the window.
See Figure 3-11.

OpenGL Super Bible! Page 65

Figure 3-11 Bouncing square

Finally, Some 3D!

Thus far, all our samples have been simple rectangles in the middle of the window; they
either scaled to the new window size or bounced around off the walls. By now you may be
bouncing off some walls of your own, waiting anxiously to see something in 3D. Wait no
more!

As mentioned earlier, we have been drawing in 3D all along, but our view of the rectangle
has been perpendicular to the clipping volume. If we could just rotate the clipping volume
with respect to the viewer, we might actually see something with a little depth. However, we
aren’t going to get into coordinate transformations and rotations until Chapter 7. And even if
we started that work now, a flat rectangle isn’t very interesting, even when viewed from an
angle.

To see some depth, we need to draw an object that is not flat. The AUX library contains
nearly a dozen 3D objects— from a sphere to a teapot— that can be created with a single
function call. These called functions are of the form auxSolidxxxx() or auxWirexxxx(), where
xxxx names the solid or wireframe object that is created. For example, the following
command draws a wireframe teapot of approximately 50.0 units in diameter:

auxWireTeapot(50.0f);

If we define a clipping volume that extends from -100 to 100 along all three axes, we’ll get
the wireframe teapot shown in Figure 3-12. The teapot is probably the best example at this
point because the other objects still look two-dimensional when viewed from a parallel

Page 66 OpenGL Super Bible!

projection. The program that produced this image is found in this chapter’s subdirectory on
the CD in teapot.c.

Figure 3-12 A wireframe teapot

If you change the wire teapot to a solid teapot with the command

auxSolidTeapot(50.0f);

you’ll see only a red outline of the teapot. In order to see relief in a solid-colored object, you
will need to incorporate shading and lighting with other OpenGL commands that you’ll
learn about in Chapter 9 and later.

For further study of the AUX library objects, see the samples AUXWIRE and AUXSOLID
on the CD in this chapter’s subdirectory. These samples make use of the glRotatef() function
(explained in Chapter 7), which spins the objects around all three axes of the viewing
volume. Some of these objects make use of the utility library, so be sure that you link with
glu32.lib when using these objects yourself.

OpenGL Super Bible! Page 67

Summary

In this chapter we have introduced the AUX library toolkit and presented the fundamentals
of writing a program that uses OpenGL. We have used this library to show the easiest
possible way to create a window and draw in it using OpenGL commands. You have learned
to use the AUX library to create windows that can be resized, as well as to create simple
animation. You have also been introduced to the process of using OpenGL to do drawing—
composing and selecting colors, clearing the screen, drawing a rectangle, and setting the
viewport and clipping volume to scale images to match the window size. We’ve also
discussed the various OpenGL data types, and the headers and libraries required to build
programs that use OpenGL.

The Auxiliary library contains many other functions to handle keyboard and mouse input as
well. Microsoft’s implementation of the Aux library contains Windows-specific functions
that enable access to window handles and device contexts. You are encouraged to explore
the upcoming reference section of this chapter to discover other uses and features of the
AUX library. You’ll also want to examine and run the other Chapter 3 samples on the CD.

Page 68 OpenGL Super Bible!

Reference Section

auxIdleFunc

Purpose
Establishes a callback function for idle processing.

Include File
<glaux.h>

Syntax
void auxIdleFunc(AUXIDLEPROC func);

Description
Specifies the idle function func() to be called when no other activity is pending.
Typically used for animation. When not busy rendering the current scene, the idle
function changes some parameters used by the rendering function to produce the
next scene.

Parameters

func
This function is prototyped as
void CALLBACK IdleFunc(void);
This is the user-defined function used for idle processing. Passing NULL as this
function name will disable idle processing.

Returns
None.

Example
See BOUNCE and BOUNCE2 examples from this chapter.

See Also
auxSwapBuffers, auxMainLoop, auxReshapeFunc

OpenGL Super Bible! Page 69

auxInitDisplayMode

Purpose
Initializes the display mode of the AUX library OpenGL window.

Include File
<glaux.h>

Syntax
void auxInitDisplayMode(GLbitfield mask);

Description
This is the first function that must be called by an AUX library-based program to set
up the OpenGL window. This function sets the characteristics of the window that
OpenGL will use for drawing operations.

Parameters

mask
GLbitfield: A mask or bitwise combination of masks from Table 3-4. These mask
values may be combined with a bitwise OR. For example, to create a window that
uses double buffering and color index mode, call

 auxInitDisplayMode(AUX_DOUBLE | AUX_INDEX)
Returns

None.
Example

See any example program from this chapter.
See Also

auxInitPosition, auxInitWindow

Table 3-4 Mask values for window characteristics

Mask Value Meaning

AUX_SINGLE Specifies a single-buffered window
AUX_DOUBLE Specifies a double-buffered window
AUX_RGBA Specifies an RGBA-mode window
AUX_INDEX Specifies a color-index mode window
AUX_DEPTH Specifies a 32-bit depth buffer
AUX_DEPTH16 Specifies a 16-bit depth buffer
AUX_STENCIL Specifies a stencil buffer
AUX_ACCUM Specifies an accumulation buffer

Page 70 OpenGL Super Bible!

AUX_ALPHA Specifies an ALPHA buffer
AUX_FIXED_332_PAL Specifies a fixed 3-3-2 palette for the window

auxInitPosition

Purpose
Sets the window position used by auxInitWindow().

Include File
<glaux.h>

Syntax
void auxInitPosition(GLint x, GLint y, GLsizei width, GLsizei height);

Description
This function tells the AUX library where to place the main graphics window when
it is created.

Parameters

x
GLint: The position measured in pixels of the top left corner of the window from the
left side of the screen.

y
GLint: The position measured in pixels of the top left corner of the window from the
top of the screen.

width
GLsizei: The initial width of the client area of the window in screen pixels.

height
GLsizei: The initial height of the client area of the window in screen pixels.

Returns
None.

Example
See any example from this chapter.

See Also
auxInitDisplayMode, auxInitWindow

OpenGL Super Bible! Page 71

auxInitWindow

Purpose
Initializes and displays the OpenGL rendering window.

Include File
<glaux.h>

Syntax
void auxInitWindow(GLBYTE *titleString);

Description
This function opens the window that will be used by OpenGL for drawing
operations.
The window characteristics must first be set by auxInitDisplayMode() and
auxInitPosition().

Parameters

titleString
GLBYTE: A pointer to a character string that will be used for the window caption.

Returns
None.

Example
See any example from this chapter.

See Also
auxInitDisplayMode, auxInitPosition

Page 72 OpenGL Super Bible!

auxKeyFunc

Purpose
Associates a callback function with a particular keystroke.

Include File
<glaux.h>

Syntax
void auxKeyFunc(GLint key, void(*function(void));

Description
Sets a callback function function that the AUX library calls when the key indicated
by key is pressed. The window is also redrawn after the processing of this keystroke.

Parameters

key
GLint: Specifies the key with which to associate the given function. This can be one
of the values in Table 3-5.

function
This callback function is prototyped as
void CALLBACK KeyFunc(void);
This function is called by the AUX library when the specified key is pressed. Passing
NULL as this parameter disables a previous key function setting.

Returns
None.

Example
See the KEYMOVE supplementary example from this chapter’s subdirectory on the
CD.

See Also
auxMouseFunc

Table 3-5 Auxiliary Library Key Definitions.

Key Value Description

AUX_ESCAPE The Escape key
AUX_SPACE The Spacebar key
AUX_RETURN The Return or Enter key
AUX_LEFT The Left Arrow key
AUX_RIGHT The Right Arrow key
AUX_UP The Up Arrow key

OpenGL Super Bible! Page 73

AUX_DOWN The Down Arrow key
AUX_A through AUX_Z The keys A through Z (uppercase)
AUX_a through AUX_z The keys a through z (lowercase)
AUX_0 through AUX_9 The number keys 0 through 9

auxMainLoop

Purpose
Specifies the function that should be used to update the OpenGL window.

Include File
<glaux.h>

Syntax
void auxMainLoop(AUXMAINPROC func);

Description
This function is used to specify the function to be called whenever the OpenGL
window needs to be refreshed. This function does not return until the OpenGL
window is closed.

Parameters

func
This function is prototyped as
void CALLBACK MainFunc(void);
This is the function to be used for updating the window by actually performing the
drawing commands.

Returns
None.

Example
See any example from this chapter.

See Also
auxIdleFunc, auxReshapeFunc

Page 74 OpenGL Super Bible!

auxMouseFunc

Purpose
Associates callback functions with mouse button activity.

Include File
<glaux.h>

Syntax
void auxMouseFunc(int button, int mode, AUXMOUSEPROC func);

Description
Sets the function func to be called when a mouse button is pressed or released. The
specified mouse button is set to one of the values listed below. The button action can
denote whether the button is pressed or released.

Parameters

button
int: The button with which to associate the callback function; may be one of the
following values: AUX_LEFTBUTTON, AUX_MIDDLEBUTTON, or
AUX_RIGHTBUTTON.

mode
int: The action of the button specified above to associate with the callback function.
May be either AUX_MOUSEDOWN or AUX_MOUSEUP.

func
The callback function is prototyped as
void CALLBACK MouseFunc(AUX_EVENTREC *event);
The event structure contains the mouse position at the time of the event.

 typedef struct _AUX_EVENTREC {
 GLint event;
 GLint data[4];
 } AUX_EVENTREC;

event GLint: Specifies the event that took place (AUX_MOUSEUP,
or AUX_MOUSEDOWN)

data[4] GLint: contains specific data about this event.
 data[AUX_MOUSEX] = mouse position in x direction.
 data[AUX_MOUSEY] = mouse position in y direction.
 data[MOUSE_STATUS] = mouse button (from button).

Returns
None.

Example
See the MBOUNCE supplementary example on the CD subdirectory for this chapter.

See Also
auxKeyFunc

OpenGL Super Bible! Page 75

auxReshapeFunc

Purpose
Establishes a callback function to handle window dimension and size changes.

Include File
<glaux.h>

Syntax
void auxReshapeFunc(AUXRESHAPEPROC func)

Description
This function is called to establish a callback function that the AUX library will call
whenever the window size or shape changes. Typically this function modifies the
viewport and clipping volume to perform image scaling.

Parameters

func
This callback function is prototyped as
void CALLBACK Reshape(GLsizei width, GLsizei height)
This function receives the new width and height of the window.

Returns
None.

Example
See the SCALE example from this chapter.

See Also
auxIdleFunc, auxMainLoop

Page 76 OpenGL Super Bible!

auxSetOneColor

Purpose
Sets a single color in the color-index mode color palette.

Include File
<glaux.h>

Syntax
void auxSetOneColor(int index, float red, float green, float blue);

Description
This function is used in color index mode. In this mode, rather than specifying colors
with RGB values, a palette of colors is created. Object colors are designated by
specifying an index into this palette. This functions sets the RGB values for the color
that is represented by a particular palette index.

Parameters

index
int: The index into the color palette.

red
float: The red component of the desired color.

green
float: The green component of the desired color.

blue
float: The blue component of the desired color.

Returns
None.

Example
See the COLORDX supplementary sample on the CD subdirectory for this chapter.
Note that this sample requires operation on a palletized device (most 256-color cards,
but not more than 8 bits of color).

See Also
getColorMapSize, auxSetRGBMap

OpenGL Super Bible! Page 77

auxSolidBox

Purpose
Draws a solid box.

Include File
<glaux.h>

Syntax
void auxSolidBox(GLdouble width, GLdouble height, GLdouble depth);

Description
Draws a solid box centered at (0,0,0). An alternative form of auxSolidCube.
Generally used for demonstration purposes.

Parameters

width
The width of the box.

height
The height of the box.

depth
The depth of the box.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireBox, auxSolidCube

Page 78 OpenGL Super Bible!

auxSolidCone

Purpose
Draws a solid cone.

Include File
<glaux.h>

Syntax
void auxSolidCone(GLdouble radius, GLdouble height);

Description
Draws a solid cone centered at (0,0,0). Generally used for demonstration purposes.

Parameters

radius
The radius of the bottom of the cone.

height
The height of the cone.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireCone

OpenGL Super Bible! Page 79

auxSolidCube

Purpose
Draws a solid cube.

Include File
<glaux.h>

Syntax
void auxSolidCube(GLdouble width);

Description
Draws a solid cube centered at (0,0,0). An alternative form of AuxSolidBox.
Generally used for demonstration purposes.

Parameters

width
The width of the cube.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireCube, auxSolidBox

Page 80 OpenGL Super Bible!

auxSolidCylinder

Purpose
Draws a solid cylinder.

Include File
<glaux.h>

Syntax
void auxSolidCylinder(GLdouble radius, GLdouble height);

Description
Draws a solid cylinder centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

radius
The radius of the cylinder.

height
The height of the cylinder.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireCylinder

OpenGL Super Bible! Page 81

auxSolidDodecahedron

Purpose
Draws a solid dodecahedron.

Include File
<glaux.h>

Syntax
void auxSolidDodecahedron(GLdouble radius);

Description
Draws a solid dodecahedron centered at (0,0,0). A dodecahedron is a 12-sided object
with pentagon sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the dodecahedron.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireDodecahedron.

Page 82 OpenGL Super Bible!

auxSolidIcosahedron

Purpose
Draws a solid icosahedron.

Include File
<glaux.h>

Syntax
void auxSolidIcosahedron(GLdouble radius);

Description
Draws a solid icosahedron centered at (0,0,0). An icosahedron is a 20-sided object
with each side a triangle. Generally used for demonstration purposes.

Parameters

radius
The radius of the icosahedron.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireIcosahedron

OpenGL Super Bible! Page 83

auxSolidOctahedron

Purpose
Draws a solid octahedron.

Include File
<glaux.h>

Syntax
void auxSolidOctahedron(GLdouble radius);

Description
Draws a solid octahedron centered at (0,0,0). An octahedron is an 8-sided object with
triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the octahedron.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireOctahedron

Page 84 OpenGL Super Bible!

auxSolidSphere

Purpose
Draws a solid sphere.

Include File
<glaux.h>

Syntax
void auxSolidSphere(GLdouble radius);

Description
Draws a solid sphere centered at (0,0,0). Generally used for demonstration purposes.

Parameters

radius
The radius of the sphere.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireSphere

OpenGL Super Bible! Page 85

auxSolidTeapot

Purpose
Draws a solid teapot.

Include File
<glaux.h>

Syntax
void auxSolidTeapot(GLdouble size);

Description
Draws a solid teapot centered at (0,0,0). Generally used for demonstration purposes.

Parameters

size
The size of the teapot (approximate diameter).

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireTeapot

Page 86 OpenGL Super Bible!

auxSolidTetrahedron

Purpose
Draws a solid tetrahedron.

Include File
<glaux.h>

Syntax
void auxSolidTetrahedron(GLdouble radius);

Description
Draws a solid tetrahedron centered at (0,0,0). A tetrahedron is a 4-sided object with
triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the tetrahedron.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxWireTetrahedron

OpenGL Super Bible! Page 87

auxSolidTorus

Purpose
Draws a solid torus (doughnut shape).

Include File
<glaux.h>

Syntax
void auxSolidTorus(GLdouble innerRadius, GLdouble outerRadius);

Description
Draws a solid torus centered at (0,0,0). A torus is a doughnut-shaped object. The
inner radius is the radius of the tube and the outer radius is the radius of the center
hole. Generally used for demonstration purposes.

Parameters

innerRadius
The radius of the inside of the torus.

outerRadius
The inner radius of the ring.

Returns
None.

Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.

See Also
auxSolidTorus

Page 88 OpenGL Super Bible!

auxSwapBuffers

Purpose
Switches drawing buffer to screen during double-buffered drawing.

Include File
<glaux.h>

Syntax
void auxSwapBuffers(void);

Description
This function is used with doubled-buffered drawing and animation. Calling this
function causes the hidden scene to be quickly swapped to screen.

Returns
None.

Example
See the BOUNCE2 example from this chapter.

See Also
auxInitDisplayMode, auxIdleFunc

OpenGL Super Bible! Page 89

auxWireBox

Purpose
Draws a wireframe box.

Include File
<glaux.h>

Syntax
void auxWireBox(GLdouble width, GLdouble height, GLdouble depth);

Description
Draws a wireframe box centered at (0,0,0). An alternative form of
auxWireCube.Generally used for demonstration purposes.

Parameters

width
The width of the box.

height
The height of the box.

depth
The depth of the box.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidBox, auxWireCube

Page 90 OpenGL Super Bible!

auxWireCone

Purpose
Draws a wireframe cone.

Include File
<glaux.h>

Syntax
void auxWireCone(GLdouble radius, GLdouble height);

Description
Draws a wireframe cone centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

radius
The radius of the bottom of the cone.

height
The height of the cone.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidCone

OpenGL Super Bible! Page 91

auxWireCube

Purpose
Draws a wireframe cube.

Include File
<glaux.h>

Syntax
void auxWireCube(GLdouble width);

Description
Draws a wireframe cube centered at (0,0,0). An alternative form of
AuxWireCube.Generally used for demonstration purposes.

Parameters

width
The width of the cube.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidCube, auxWireBox

Page 92 OpenGL Super Bible!

auxWireCylinder

Purpose
Draws a wireframe cylinder.

Include File
<glaux.h>

Syntax
void auxWireCylinder(GLdouble radius, GLdouble height);

Description
Draws a wireframe cylinder centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

radius
The radius of the cylinder.

height
The height of the cylinder.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidCylinder

OpenGL Super Bible! Page 93

auxWireDodecahedron

Purpose
Draws a wireframe dodecahedron.

Include File
<glaux.h>

Syntax
void auxWireDodecahedron(GLdouble radius);

Description
Draws a wireframe dodecahedron centered at (0,0,0). A dodecahedron is a 12-sided
object with pentagon sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the dodecahedron.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidDodecahedron.

Page 94 OpenGL Super Bible!

auxWireIcosahedron

Purpose
Draws a wireframe icosahedron.

Include File
<glaux.h>

Syntax
void auxWireIcosahedron(GLdouble radius);

Description
Draws a wireframe icosahedron centered at (0,0,0). An icosahedron is a 20-sided
object with each side a triangle. Generally used for demonstration purposes.

Parameters

radius
The radius of the icosahedron.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidIcosahedron

OpenGL Super Bible! Page 95

auxWireOctahedron

Purpose
Draws a wireframe octahedron.

Include File
<glaux.h>

Syntax
void auxWireOctahedron(GLdouble radius);

Description
Draws a wireframe octahedron centered at (0,0,0). An octahedron is an 8-sided
object with triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the octahedron.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidOctahedron

Page 96 OpenGL Super Bible!

auxWireSphere

Purpose
Draws a wireframe sphere.

Include File
<glaux.h>

Syntax
void auxWireSphere(GLdouble radius);

Description
Draws a wireframe sphere centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

radius
The radius of the sphere.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidSphere

OpenGL Super Bible! Page 97

auxWireTeapot

Purpose
Draws a wireframe teapot.

Include File
<glaux.h>

Syntax
void auxWireTeapot(GLdouble size);

Description
Draws a wireframe teapot centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

size
The size of the teapot (approximate diameter).

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidTeapot

Page 98 OpenGL Super Bible!

auxWireTetrahedron

Purpose
Draws a wireframe tetrahedron.

Include File
<glaux.h>

Syntax
void auxWireTetrahedron(GLdouble radius);

Description
Draws a wireframe tetrahedron centered at (0,0,0). A tetrahedron is a 4-sided object
with triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the tetrahedron.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidTetrahedron

OpenGL Super Bible! Page 99

auxWireTorus

Purpose
Draws a wireframe torus (doughnut shape).

Include File
<glaux.h>

Syntax
void auxWireTorus(GLdouble innerRadius, GLdouble outerRadius);

Description
Draws a wireframe torus centered at (0,0,0). A torus is a doughnut-shaped object.
The inner radius is the radius of the tube and the outer radius is the radius of the
center hole. Generally used for demonstration purposes.

Parameters

innerRadius
The radius of the inside of the torus.

outerRadius
The inner radius of the ring.

Returns
None.

Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s wireframe objects.

See Also
auxSolidTorus

Page 100 OpenGL Super Bible!

glClearColor

Purpose
Sets the color and alpha values to use for clearing the color buffers.

Include File
<gl.h>

Syntax
void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf
alpha);

Description
Sets the fill values to be used when clearing the red, green, blue, and alpha buffers
(jointly called the color buffer). The values specified are clamped to the range [0.0f,
1.0f].

Parameters

red
GLclampf: The red component of the fill value.

green
GLclampf: The green component of the fill value.

blue
GLclampf: The blue component of the fill value.

alpha
GLclampf: The alpha component of the fill value.

Returns
None.

Example
See the SHORTEST example from this chapter.

OpenGL Super Bible! Page 101

glFlush

Purpose
Flushes OpenGL command queues and buffers.

Include File
<gl.h>

Syntax
void glFlush(void);

Description
OpenGL commands are often queued and executed in batches to optimize
performance. This can vary among hardware, drivers, and OpenGL implementations.
The glFlush command causes any waiting commands to be executed.

Returns
None.

Example
See any example from this chapter.

Page 102 OpenGL Super Bible!

glOrtho

Purpose
Sets or modifies the clipping volume extents.

Include File
<gl.h>

Syntax
void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Description
This function describes a parallel clipping volume. This projection means that
objects far from the viewer do not appear smaller (in contrast to a perspective
projection). Think of the clipping volume in terms of 3D Cartesian coordinates, in
which case left and right would be the minimum and maximum x values, top and
bottom the minimum and maximum y values, and near and far the minimum and
maximum z values.

Parameters

left
GLdouble: The leftmost coordinate of the clipping volume.

right
GLdouble: The rightmost coordinate of the clipping volume.

bottom
GLdouble: The bottommost coordinate of the clipping volume.

top
GLdouble: The topmost coordinate of the clipping volume.

near
GLdouble: The maximum distance from the origin to the viewer.

far
GLdouble: The maximum distance from the origin away from the viewer.

Returns
None.

Example
See the SCALE example from this chapter.

See Also
glViewport

OpenGL Super Bible! Page 103

glViewport

Purpose
Sets the portion of a window that can be drawn in by OpenGL.

Include File
<gl.h>

Syntax
void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

Description
Sets the region within a window that is used for mapping the clipping volume
coordinates to physical window coordinates.

Parameters

x
GLint: The number of pixels from the left-hand side of the window to start the
viewport.

y
GLint: The number of pixels from the bottom of the window to start the viewport.

width
GLsizei: The width in pixels of the viewport.

height
GLsizei: The height in pixels of the viewport.

Returns
None.

Example
See the SCALE example from this chapter.

See Also
glOrtho

Page 104 OpenGL Super Bible!

glRect

Purpose
Draws a flat rectangle.

Include File
<gl.h>

Variations
void glRectd(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2);
void glRectf(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2);
void glRecti(GLint x1, GLint y1, GLint x2, GLint y2);
void glRects(GLshort x1, GLshort y1, GLshort x1, GLshort y2);
void glRectdv(const GLdouble *v1, const GLdouble *v2);
void glRectfv(const GLfloat *v1, const GLfloat *v2);
void glRectiv(const GLint *v1, const GLint *v2);
void glRectsv(const GLshort *v1, const GLshort *v2);

Description
This function is an efficient method of specifying a rectangle as two corner points.
The rectangle is drawn in the xy plane at z = 0.

Parameters

x1, y1
Specifies the upper-left corner of the rectangle.

x2, y2
Specifies the lower-right corner of the rectangle.

*v1
An array of two values specifying the upper-left corner of the rectangle. Could also
be described as v1[2].

*v2
An array of two values specifying the lower-right corner of the rectangle. Could also
be described as v2[2].

Returns
None.

Example
See the FRIENDLY sample from this chapter.

OpenGL Super Bible! Page 105

Chapter 4
OpenGL for Windows: OpenGL + Win32 = Wiggle

What you’ll learn in this chapter:

OpenGL Tasks in a Window Without the
AUX Library Functions You’ll Use

Create and use rendering contexts wglCreateContext, wglDeleteContext,
wglMakeCurrent

Request and select a pixel format ChoosePixelFormat, SetPixelFormat
Respond to window messages WM_PAINT, WM_CREATE,

WM_DESTROY, WM_SIZE
Use double buffering in Windows SwapBuffers

OpenGL is purely a graphics API, with user interaction and the screen/window handled by
the host environment. To facilitate this partnership, each environment usually has some
extensions that “glue” OpenGL to its own window management and user interface functions.
This glue is code that associates OpenGL drawing commands to a particular window. It is
also necessary to provide functions for setting buffer modes, color depths, and other drawing
characteristics.

For Microsoft Windows, the glue code is embodied in six new wiggle functions added to
OpenGL (called wiggle because they are prefixed with wgl rather than gl), and five new
Win32 functions added to the Windows NT and 95 GDI. These gluing functions are
explained in this chapter, where we will dispense with using the AUX library for our
OpenGL framework.

In Chapter 3 we used the AUX library as a learning tool to introduce the fundamentals of
OpenGL programming in C. You have learned how to draw some 2D and 3D objects and
how to specify a coordinate system and viewing perspective, without having to consider
Windows programming details. Now it is time to break from our “Windowless” examination
of OpenGL and see how it works in the Windows environment. Unless you are content with
a single window, no menus, no printing ability, no dialogs, and few of the other features of a
modern user interface, you need to learn how to use OpenGL in your Win32 applications.

Starting with this chapter, we will build full-fledged Windows applications that can take
advantage of all the operating system’s features. You will see what characteristics a
Windows window must have in order to support OpenGL graphics. You will learn which
messages a well-behaved OpenGL window should handle, and how. The concepts of this

Page 106 OpenGL Super Bible!

chapter are introduced gradually, as we use C to build a model OpenGL program that will
provide the initial framework for all future examples.

Thus far in this book, you’ve needed no prior knowledge of 3D graphics and only a
rudimentary knowledge of C programming. From this point on, however, we assume you
have at least an entry-level knowledge of Windows programming. (Otherwise, we’d have
wound up writing a book twice the size of this one, and we’d have had to spend more time
on the details of Windows programming and less on OpenGL programming.) If you are new
to Windows, or if you cut your teeth on one of the Application Frameworks and aren’t all
that familiar with Windows procedures, message routing, and so forth, you’ll want to check
out some of the recommended reading in Appendix B, Further Reading, before going too
much further in this text.

Drawing in Windows Windows

With the AUX library we had only one window, and OpenGL always knew that we wanted
to draw in that window (where else would we go?). Your own Windows applications,
however, will often have more than one window. In fact, dialog boxes, controls, and even
menus are actually windows at a fundamental level; it’s nearly impossible to have a useful
program that contains only one window. So how does OpenGL know where to draw when
you execute your rendering code? Before we try to answer this question, let’s first review
how we normally draw in a window without using OpenGL.

GDI Device Contexts

To draw in a window without using OpenGL, you use the Windows GDI (Graphical Device
Interface) functions. Each window has a device context that actually receives the graphics
output, and each GDI function takes a device context as an argument to indicate which
window you want the function to affect. You can have multiple device contexts, but only
one for each window.

The example program WINRECT on the Companion CD draws an ordinary window with a
blue background and a red square in the center. The output from this program, shown in
Figure 4-1, will look familiar to you. This is the same image produced by our second
OpenGL program in Chapter 3, friendly.c. Unlike that earlier example, however, the
WINRECT program is done entirely with the Windows API. WINRECT’s code is pretty
generic as far as Windows programming goes. There is a WinMain that gets things started
and keeps the message pump going, and a WndProc to handle messages for the main
window.

OpenGL Super Bible! Page 107

Figure 4-1 Windows version of friendly.c, the OpenGL sample from Chapter 3

Your familiarity with Windows programming should extend to the details of creating and
displaying a window, so we’ll cover only the code from this example that is responsible for
the drawing of the background and square.

First we must create a blue and a red brush for filling and painting. The handles for these
brushes are declared globally.

// Handles to GDI brushes we will use for drawing
HBRUSH hBlueBrush,hRedBrush;

Then the brushes are created in the WinMain function, using the RGB macro to create solid
red and blue brushes.

// Create a blue and red brush for drawing and filling
// operations. // Red, green, blue
hBlueBrush = CreateSolidBrush(RGB(0, 0, 255));
hRedBrush = CreateSolidBrush(RGB(255, 0, 0));

When the window style is being specified, the background is set to use the blue brush in the
window class structure.

wc.hbrBackground = hBlueBrush; // Use blue brush for background

Window size and position (previously set with auxInitPosition) are set when the window is
created.

Page 108 OpenGL Super Bible!

// Create the main application window
hWnd = CreateWindow(
 lpszAppName,
 lpszAppName,
 WS_OVERLAPPEDWINDOW,
 100, 100, // Size and dimensions of
window
 250, 250,
 NULL,
 NULL,
 hInstance,
 NULL);

Finally, the actual painting of the window interior is handled by the WM_PAINT message
handler in the WndProc function.

 case WM_PAINT:
 {
 PAINTSTRUCT ps;
 HBRUSH hOldBrush;

 // Start painting
 BeginPaint(hWnd,&ps);

 // Select and use the red brush
 hOldBrush = SelectObject(ps.hdc,hRedBrush);

 // Draw a rectangle filled with the currently
 // selected brush
 Rectangle(ps.hdc,100,100,150,150);

 // Deselect the brush
 SelectObject(ps.hdc,hOldBrush);

 // End painting
 EndPaint(hWnd,&ps);
 }
 break;

The call to BeginPaint prepares the window for painting, and sets the hdc member of the
PAINTSTRUCT structure to the device context to be used for drawing in this window. This
handle to the device context is used as the first parameter to all GDI functions, identifying
which window they should operate on. This code then selects the red brush for painting
operations and draws a filled rectangle at the coordinates (100,100,150,150). Then the brush
is deselected, and EndPaint cleans up the painting operation for you.

Before you jump to the conclusion that OpenGL should work in a similar way, remember
that the GDI is Windows-specific. Other environments do not have device contexts, window
handles, and the like. OpenGL, on the other hand, was designed to be completely portable
among environments and hardware platforms. Adding a device context parameter to the

OpenGL Super Bible! Page 109

OpenGL functions would render your OpenGL code useless in any environment other than
Windows.

OpenGL Rendering Contexts

In order to accomplish the portability of the core OpenGL functions, each environment must
implement some means of specifying a current rendering window before executing any
OpenGL commands. In Windows, the OpenGL environment is embodied in what is known
as the rendering context. Just as a device context remembers settings about drawing modes
and commands for the GDI, the rendering context remembers OpenGL settings and
commands.

You may have more than one rendering context in your application— for instance, two
windows that are using different drawing modes, perspectives, and so on. However, in order
for OpenGL commands to know which window they are operating on, only one rendering
context may be current at any one time per thread. When a rendering context is made
current, it is also associated with a device context and thus with a particular window. Now
OpenGL knows which window into which to render. Figure 4-2 illustrates this concept, as
OpenGL commands are routed to the window indirectly associated with the current
rendering context.

Figure 4-2 How OpenGL commands find their window

Page 110 OpenGL Super Bible!

Performance Tip:
The OpenGL library is thread-safe, meaning you can have multiple threads rendering their
own windows or bitmaps simultaneously. This has obvious performance benefits for
multiprocessor systems. Threads can also be beneficial on single-processor systems, as in
having one thread render while another thread handles the user interface. You can also have
multiple threads rendering objects within the same rendering context. In this chapter’s
subdirectory on the CD, the supplementary example program GLTHREAD is an example of
using threads with OpenGL.

Using the Wiggle Functions

The rendering context is not a strictly OpenGL concept, but rather an addition to the
Windows API to support OpenGL. In fact, the new wiggle functions were added to the
Win32 API specifically to add windowing support for OpenGL. The three most used
functions with regard to the rendering context are

HGLRC wglCreateContext(HDC hDC);
BOOL wglDeleteContext(HGLRC hrc);
BOOL wglMakeCurrent(HDC hDC, HGLRC hrc);

Creating and Selecting a Rendering Context

Notice first the new data type HGLRC, which represents a handle to a rendering context.
The wglCreateContext function takes a handle to a windows GDI device context and returns
a handle to an OpenGL rendering context. Like a GDI device context, a rendering context
must be deleted when you are through with it. The wglDeleteContext function does this for
you, taking as its only parameter the handle of the rendering context to be deleted.

When a rendering context is created for a given device context, it is said to be suitable for
drawing on that device context. When the rendering context is made current with
wglMakeCurrent, it is not strictly necessary that the device context specified be the one used
to create the rendering context in the first place. However, the device context used when a
rendering context is made current must have the same characteristics as the device context
used to create the rendering context. These characteristics include color depth, buffer
definitions, and so forth, and are embodied in what is known as the pixel format.

To make a rendering context current for a device context different from that used to create it,
they must both have the same pixel format. You may deselect the current rendering context
either by making another rendering context current, or by calling wglMakeCurrent with
NULL for the rendering context. (Selecting and setting the pixel format for the device
context will be covered shortly.)

OpenGL Super Bible! Page 111

Painting with OpenGL

If you haven’t done much GDI programming, keeping track of both the device context and
the rendering context may seem bewildering, but it’s actually very simple to do after you’ve
seen it done once. In the old days of 16-bit Windows programming, you needed to retrieve a
device context, process it quickly, and release it as soon as you were done with it— because
Windows could only remember five device contexts at a time. In the new era of 32-bit
Windows, these internal resource limitations are all but gone. This does not give us
permission to be careless, but it does mean that there are fewer implications to creating a
window with its own private device context (window style WS_OWNDC), getting the
window, and hanging on until we are done with it. Furthermore, since most of our examples
will be animated, we can avoid repeated (and expensive) calls to GetDC every time we need
to make the rendering context current. Another time-saver for us is to make the rendering
context current once it is created, and keep it current. If only one window per thread uses
OpenGL, this will never be a problem, and it will save the time of repeated calls to
wglMakeCurrent.

Only two window messages require any code that handles the creating and deleting of a
rendering context: WM_CREATE and WM_DESTROY. Naturally, the rendering context is
created in the WM_CREATE message, and it is deleted in the WM_DESTROY message.
The following skeleton section from a window procedure of a window that uses OpenGL
graphics shows the creation and deleting of a rendering context:

LRESULT CALLBACK WndProc(HWND hWnd, …
 {
 static HGLRC hRC; // Save the rendering context between calls
 static HDC hDC; // Save the device context between calls

 switch(msg)
 {
 case WM_CREATE:
 hDeviceContext = GetDC(hWnd)
 …

 hRenderContext = wglC reateContext(hDC);
 wglMakeCurrent(hDC,hRC);
 break;

 case WM_DESTROY:
 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 PostQuitMessage(0);
 break;
 }
 }

The painting and drawing of the window is still handled by the WM_PAINT message, only
now it will contain your OpenGL drawing commands. In this message, you can dispense

Page 112 OpenGL Super Bible!

with the BeginPaint/EndPaint sequence. (These functions cleared the window, hid the caret
for drawing operations, and validated the window region after painting.) With OpenGL, you
only need to validate the window client area in order to keep a constant stream of
WM_PAINT messages from being posted to the window. Here is a skeletal WM_PAINT
handler:

case WM_PAINT:
 {
 // OpenGL drawing code or your Render function called here.
 RenderScene();

 ValidateRect(hWnd,NULL);
 }
break;

Programming Trick:
You can still use the device context with GDI commands to draw in the window after the
OpenGL scene is drawn. The Microsoft documentation states that this is fully supported
except in double-buffered windows. You can, however, use GDI calls in double-buffered
windows— as long as you make your calls after the buffer swap. What’s actually not
supported are GDI calls to the back buffer of a double-buffered window. It’s best to avoid
such calls, anyway, since one of the primary reasons for using double buffering is to provide
flicker-free and instantaneous screen updates.

Preparing the Window for OpenGL

At this point you may be chomping at the bit to write a quick-and-dirty windows program
using the foregoing code and a render function from a previous chapter in the WM_PAINT
handler. But don’t start cobbling together code just yet. There are still two important
preparatory steps we need to take before creating the rendering context.

Window Styles

In order for OpenGL to draw in a window, the window must be created with the
WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles set, and it must not contain the
CS_PARENTDC style. This is because the rendering context is only suitable for drawing in
the window for which it was created (as specified by the device context in the
wglCreateContext function), or in a window with exactly the same pixel format. The
WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles keep the paint function from trying
to update any child windows. CS_PARENTDC (which causes a window to inherit its
parent’s device context) is forbidden because a rendering context can be associated with
only one device context and window. If these styles are not specified you will not be able to
set a pixel format for the window— the last detail before we begin our first Windows
OpenGL program.

OpenGL Super Bible! Page 113

Pixel Formats

Drawing in a window with OpenGL also requires that you select a pixel format. Like the
rendering context, the pixel format is not really a part of OpenGL per se. It is an extension to
the Win32 API (specifically, to the GDI) to support OpenGL functionality. The pixel format
sets a device context’s OpenGL properties, such as color and buffer depth, and whether the
window is double-buffered. You must set the pixel format for a device context before it can
be used to create a rendering context. Here are the two functions you will need to use:

int ChoosePixelFormat(HDC hDC, PIXELFORMATDESCRIPTOR *ppfd)
BOOL SetPixelFormat(HDC hDC, int
iPixelFormat, IXELFORMATDESCRIPTOR *ppfd)

Setting the pixel format is a three-step process. First, you fill out the
PIXELFORMATDESCRIPTOR structure according to the characteristics and behavior you
want the window to possess (we’ll examine these fields shortly). You then pass this structure
to the ChoosePixelFormat function. The ChoosePixelFormat function returns an integer
index to an available pixel format for the specified device context. This index is then passed
to the SetPixelFormat function. The sequence looks something like this:

PIXELFORMATDESCRIPTOR pixelFormat;
int nFormatIndex;
HDC hDC;

// initialize pixelFormat structure
….
….

nFormatIndex = ChoosePixelFormat(hDC, &pixelFormat);
SetPixelFormat(hDC, nPixelFormat, &pixelFormat);

ChoosePixelFormat attempts to match a supported pixel format to the information requested
in the PIXELFORMATDESCRIPTOR structure. The returned index is the identifier for this
pixel format. For instance, you may request a pixel format that has 16 million colors on
screen, but the hardware may only support 256 simultaneous colors. In this case, the
returned pixel format will be as close an approximation as possible— for this example, a
256-color pixel format. This index is passed to SetPixelFormat.

You’ll find a detailed explanation of the PIXELFORMATDESCRIPTOR structure in the
Reference Section under the function DescribePixelFormat. Listing 4-1 shows a function
from the GLRECT sample program that establishes the PIXELFORMATDESCRIPTOR
structure and sets the pixel format for a device context.

Listing 4-1 A high-level function that sets up the pixel format for a device context

/ Select the pixel format for a given device context
void SetDCPixelFormat(HDC hDC)
 {

Page 114 OpenGL Super Bible!

 int nPixelFormat;

 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1, // Version of this
 structure
 PFD_DRAW_TO_WINDOW | // Draw to window
 (not bitmap)

 PFD_SUPPORT_OPENGL | // Support OpenGL calls
 PFD_DOUBLEBUFFER, // Double -buffered mode
 PFD_TYPE_RGBA, // RGBA Color mode
 24, / / Want 24bit color
 0,0,0,0,0,0, // Not used to select mode
 0,0, // Not used to select mode
 0,0,0,0,0, // Not used to select mode
 32, // Size of depth buffer
 0, // Not used to select mode
 0, // Not used to select mode
 PFD_MAIN_PLANE, // Draw in main plane
 0, // Not used to select mode
 0,0,0 }; // Not used to select mode

 // Choose a pixel format that best matches that described in pfd
 nPixelFormat = ChoosePixelFormat(hDC, &pfd);

 // Set the pixel format for the device context
 SetPixelFormat(hDC, nPixelFormat, &pfd);
 }

As you can see in this example, not all the members of the PIXELFORMATDESCRIPTOR
structure are used when requesting a pixel format. Table 4-1 lists the members that are set in
Listing 4-1. The rest of the data elements can be set to zero for now.

Table 4-1 Members of PIXELFORMATDESCRIPTOR used when requesting a pixel
format

Member Description

nSize The size of the structure, set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion The version of this data structure, set to 1.

dwFlags

Flags that specify the properties of the pixel buffer, set to
(PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
PFD_DOUBLEBUFFER). These indicate the device context is
not a bitmap context, that OpenGL will be used for drawing,

OpenGL Super Bible! Page 115

and that the window should be double buffered.

iPixelType
The type of pixel data. Actually, tells OpenGL to use RGBA
mode or color index mode. Set to PFD_TYPE_RGBA for
RGBA mode.

cColorBits
The number of color bitplanes, in this case 24-bit color. If
hardware does not support 24-bit color, the maximum number
of color bitplanes supported by the hardware will be selected.

cDepthBits The depth of the depth (z-axis) buffer. Set to 32 for maximum
accuracy, but 16 is often sufficient (see Reference Section).

iLayerType The type of layer. Only PFD_MAIN_PLANE is valid for the
Windows implementation of OpenGL.

Return of the Bouncing Square

At last we have enough information to create a Windows window that uses OpenGL,
without using the AUX library. The program shown in Listing 4-2 contains the necessary
Windows code along with the rendering function from Chapter 3’s BOUNCE2 example
program. You can see by the length of this code that the AUX library saves you a lot of
effort.

The RenderScene, ChangeSize, and IdleFunction functions are virtually unchanged from the
Chapter 3 example and are thus omitted here. These functions, along with the function in
Listing 4-1, make up the sample program GLRECT. Figure 4-3 shows the familiar bouncing
rectangle. Listing 4-2 shows the WinMain function that creates the window and services
messages for the program and the WndProc function for the window that handles the
individual messages.

Figure 4-3 Windows version of the bouncing square

Page 116 OpenGL Super Bible!

Listing 4-2 Animated square program, without the AUX library

// Entry point of all Windows programs
int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
 {
 MSG msg; // Windows message structure
 WNDCLASS wc; // Windows class structure
 HWND hWnd; // Storage for window handle

 // Register Window style
 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = (WNDPROC) WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);

 // No need for background brush for OpenGL window
 wc.hbrBackground = NULL;

 wc.lpszMenuName = NULL;
 wc.lpszClassName = lpszAppName;

 // Register the window class
 if(RegisterClass(&wc) == 0)
 return FALSE;

 // Create the main application window
 hWnd = CreateWindow(
 lpszAppName,
 lpszAppName,

 // OpenGL requires WS_CLIPCHILDREN and
 WS_CLIPSIBLINGS

 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN
 | WS_CLIPSIBLINGS,

 // Window position and size
 100, 100,
 250, 250,

 NULL,
 NULL,
 hInstance,
 NULL);
 // If window was not created, quit
 if(hWnd == NULL)
 return FALSE;

 // Display the window

OpenGL Super Bible! Page 117

 ShowWindow(hWnd,SW_SHOW);
 UpdateWindow(hWnd);

 // Process application messages until the application closes
 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return msg.wParam;
 }

// Window procedure, handles all messages for this program
LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
 {
 static HGLRC hRC; // Permanent Rendering context
 static HDC hDC; // Private GDI Device context

 switch (message)
 {
 // Window creation, setup for OpenGL
 case WM_CREATE:
 // Store the device context
 hDC = GetDC(hWnd);

 // Select the pixel format
 SetDCPixelFormat(hDC);

 // Create the rendering context
 and make it current

 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 // Create a timer that fir es every millisecond
 SetTimer(hWnd,101,1,NULL);
 break;

 // Window is being destroyed, cleanup
 case WM_DESTROY:
 // Kill the timer that we created
 KillTimer(hWnd,101);

 // Deselect the current rendering
 context and delete it

 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 // Tell the application to terminate
 after the window

Page 118 OpenGL Super Bible!

 // is gone.
 PostQuitMessage(0);
 break;

 // Window is resized.
 case WM_SIZE:
 // Call our function which modifies the clipping
 // volume and viewport
 ChangeSize(LOWORD(lParam), HIWORD(lParam));
 break;

 // Timer, moves and bounces the rectangle, simply calls
 // our previous OnIdle function, then invalidates the
 // window so it will be redrawn.
 case WM_TIMER:
 {
 IdleFunction();

 InvalidateRect(hWnd,NULL,FALSE);
 }
 break;

 // The painting function. This message sent by Windows
 // whenever the screen needs updating.
 case WM_PAINT:
 {
 // Call OpenGL drawing code
 RenderScene();

 // Call function to swap the buffers
 SwapBuffers(hDC);

 // Validate the newly p ainted client area
 ValidateRect(hWnd,NULL);
 }
 break;

 default: // Passes it on if unproccessed
 return (DefWindowProc(hWnd, message, wParam, lParam));

 }
return (0L);
}

The code for the Windows version of the bouncing square will be quite understandable to
you if you’ve been following our discussion. Let’s look at a few points that may be of
special interest.

Scaling to the Window

In our AUX library-based example in Chapter 3, the AUX library called the registered
function ChangeSize whenever the window dimension changed. For our new example, we

OpenGL Super Bible! Page 119

need to trap the WM_SIZE message sent by Windows when the call to ChangeSize occurs.
Now we call ChangeSize ourselves, passing the LOWORD of lParam, which represents the
new width of the window, and the HIWORD of lParam, which contains the new height of
the window.

// Window is resized.
case WM_SIZE:
 // Call our function which modifies the clipping
 // volume and viewport
 ChangeSize(LOWORD(lParam), HIWORD(lParam));
 break;

Ticktock, the Idle Clock

Also handled graciously for us by the AUX library was a call to our function IdleFunction.
This function was called whenever the program didn’t have anything better to do (such as
draw the scene). We can easily simulate this activity by setting up a Windows timer for our
window. The following code:

// Create a timer that fires every millisecond
SetTimer(hWnd,101,1,NULL);

which is called when the window is created, sets up a Windows timer for the window. A
WM_TIMER message is sent every millisecond by Windows to the OpenGL window.
Actually, this happens as often as Windows can send the messages— no less than a
millisecond apart— and only when there are no other messages in the applications message
queue. (See the Windows API Bible, by James L. Conger, published by Waite Group Press
for more information on Windows timers.) When the WndProc function receives a
WM_TIMER message, this code is executed:

case WM_TIMER:
 {
 IdleFunction();

 InvalidateRect(hWnd,NULL,FALSE);
 }
 break;

The IdleFunction is identical to the version in BOUNCE2 except that now it doesn’t contain
a call to RenderScene(). Instead, the window is repainted by calling InvalidateRect, which
causes Windows to post a WM_PAINT message.

Lights, Camera, Action!

Everything else is in place, and now it’s time for action. The OpenGL code to render the
scene is placed within the WM_PAINT message handler. This code calls RenderScene
(again, stolen from the BOUNCE2 example), swaps the buffers, and validates the window
(to keep further WM_PAINT messages from coming).

Page 120 OpenGL Super Bible!

case WM_PAINT:
 {
 // Call OpenGL drawing code
 RenderScene();

 // Call function to swap the buf fers
 SwapBuffers(hDC);

 // Validate the newly painted client area
 ValidateRect(hWnd,NULL);
 }
 break;

Here we also find a new function for the Windows GDI, SwapBuffers. This function serves
the same purpose the auxSwapBuffers— to move the back buffer of a double-buffered
window to the front. The only parameter is the device context. Note that this device context
must have a pixel format with the PFD_DOUBLEBUFFER flag set; otherwise, the function
fails.

That’s it! You now have a code skeleton into which you can drop any OpenGL rendering
procedure you want. It will be neatly maintained in a window that has all the usual Windows
properties (moving, resizing, and so on). Furthermore, you can of course use this code to
create an OpenGL window as part of a full-fledged application that includes other windows,
menus, and so on.

Missing Palette Code
If you compare the code from the GLRECT program listing here with the one on the CD, you
will notice two other windows messages that are handled by that code but not by the code
listed here. These two messages, WM_QUERYNEWPALETTE and
WM_PALETTECHANGED, handle Windows palette mapping. Another function,
GetOpenGLPalette, creates the palette for us. Palettes are a necessary evil when using a
graphics card that supports only 256 or fewer colors. Without this code, we could not get the
colors we asked for with glColor, nor even a close approximation when using these particular
cards. Palettes and color under Windows constitute a significant topic that is covered in
Chapter 8, where we give it the attention it deserves. This is yet another dirty detail that the
AUX library hid from us!

OpenGL Super Bible! Page 121

Summary

In this chapter you should have gained an appreciation for all the work that goes on behind
the scenes when you use the AUX library for your program and window framework. You’ve
seen how the concept of rendering contexts was introduced to the Windows GDI so that
OpenGL would know which window into which it was allowed to render. You have also
learned how selecting and setting a pixel format prepares the device context before a
rendering context can be created for it. In addition, you have seen which Windows messages
should be processed to provide the functionality of the AUX library helper functions for
window resizing and idle-time animation.

The following Reference Section contains some additional functions not covered in this
chapter’s discussion because their use requires some concepts and functionality not yet
introduced. You’ll find examples of these functions on the CD, demonstrating all the
functions in our References. You are encouraged to explore and modify these examples.

Page 122 OpenGL Super Bible!

Reference Section

ChoosePixelFormat

Purpose
Selects the pixel format closest to that specified by the
PIXELFORMATDESCRIPTOR, and that can be supported by the given device
context.

Include File
<wingdi.h>

Syntax
int ChoosePixelFormat(HDC hDC, CONST PIXELFORMATDESCRIPTOR *ppfd);

Description
This function is used to determine the best available pixel format for a given device
context based on the desired characteristics described in the
PIXELFORMATDESCRIPTOR structure. This returned format index is then used in
the SetPixelFormat function.

Parameters

hDC
HDC: The device context for which this function seeks a best-match pixel format.

ppfd
PIXELFORMATDESCRIPTOR: Pointer to a structure that describes the ideal pixel
format that is being sought. The entire contents of this structure are not pertinent to
its future use. For a complete description of the PIXELFORMATDESCRIPTOR
structure, see the DescribePixelFormat function. Here are the relevant members for
this function:

nSize WORD: The size of the structure, usually set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion WORD: The version number of this structure, set to 1.
dwFlag DWORD: A set of flags that specify properties of the

pixel buffer.
iPixelType BYTE: The color mode (RGBA or color index) type.
cColorBits BYTE: The depth of the color buffer.
cAlphaBits BYTE: The depth of the alpha buffer.
cAccumBits BYTE: The depth of the accumulation buffer.
cDepthBits BYTE: The depth of the depth buffer.
cStencilBits BYTE: The depth of the stencil buffer.
cAuxBuffers BYTE: The number of auxiliary buffers (not supported

by Microsoft).

OpenGL Super Bible! Page 123

iLayerType BYTE: The layer type (not supported by Microsoft).

Returns

The index of the nearest matching pixel format for the logical format specified, or
zero if no suitable pixel format can be found.

Example

This code from the GLRECT example code in this chapter demonstrates a pixel format
being selected:

 int nPixelFormat;

 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1,
 …
 …
 };

 // Choose a pixel format that best matches that described in pfd
 nPixelFormat = ChoosePixelFormat(hDC, &pfd);

 // Set the pixel format for the device context
 SetPixelFormat(hDC, nPixelFormat, &pfd);
See Also

DescribePixelFormat, GetPixelFormat, SetPixelFormat

Page 124 OpenGL Super Bible!

DescribePixelFormat

Purpose
Obtains detailed information about a pixel format.

Include File
<wingdi.h>

Syntax
int DescribePixelFormat(HDC hDC, int iPixelFormat, UINT nBytes,
LPPIXELFORMATDESCRIPTOR ppfd);

Description
This function fills the PIXELFORMATDESCRIPTOR structure with information
about the pixel format specified for the given device context. It also returns the
maximum available pixel format for the device context. If ppfd is NULL, the
function still returns the maximum valid pixel format for the device context. Some
fields of the PIXELFORMATDESCRIPTOR are not supported by the Microsoft
generic implementation of OpenGL, but these values may be supported by individual
hardware manufacturers.

Parameters

hDC
HDC: The device context containing the pixel format of interest.

iPixelFormat
int: The pixel format of interest for the specified device context.

nBytes
UINT: The size of the structure pointed to by ppfd. If this value is zero, no data will
be copied to the buffer. This should be set to
sizeof(PIXELFORMATDESCRIPTOR).

ppfd
LPPIXELFORMATDESCRIPTOR: A pointer to the
PIXELFORMATDESCRIPTOR that on return will contain the detailed information
about the pixel format of interest. The PIXELFORMATDESCRIPTOR structure is
defined as follows:

 typedef struct tagPIXELFORMATDESCRIPTOR {
 WORD nSize;
 WORD nVersion;
 DWORD dwFlags;
 BYTE iPixelType;
 BYTE cColorBits;
 BYTE cRedBits;
 BYTE cRedShift;
 BYTE cGreenBits;
 BYTE cGreenShift;
 BYTE cBlueBits;
 BYTE cBlueShift;
 BYTE cAlphaBits;

OpenGL Super Bible! Page 125

 BYTE cAlphaShift;
 BYTE cAccumBits;
 BYTE cAccumRedBits;
 BYTE cAccumGreenBits;
 BYTE cAccumBlueBits;
 BYTE cAccumAlphaBits;
 BYTE cDepthBits;
 BYTE cStencilBits;
 BYTE cAuxBuffers;
 BYTE iLayerType;
 BYTE bReserved;
 DWORD dwLayerMask;
 DWORD dwVisibleMask;
 DWORD dwDamageMask;
 } PIXELFORMATDESCRIPTOR;

nSize contains the size of the structure. It should always be set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion holds the version number of this structure. It should always be set to 1.

dwFlags contains a set of bit flags (Table 4-2) that describe properties of the pixel format.
Except as noted, these flags are not mutually exclusive.

Table 4-2 Flags for the dwFlags member of PIXELFORMATDESCRIPTOR

Flag Description

PFD_DRAW_TO_WINDOW The buffer is used to draw to a window or
device surface such as a printer.

PFD_DRAW_TO_BITMAP The buffer is used to draw to a memory bitmap.

PFD_SUPPORT_GDI
The buffer supporting GDI drawing. This flag is
mutually exclusive with
PFD_DOUBLEBUFFER.

PFD_SUPPORT_OPENGL The buffer supporting OpenGL drawing.

PFD_GENERIC_FORMAT

The pixel format is a generic implementation
(supported by GDI emulation). If this flag is not
set, the pixel format is supported by hardware or
a device driver.

PFD_NEED_PALETTE The pixel format requires the use of logical
palettes.
Used for nongeneric implementations that

Page 126 OpenGL Super Bible!

support only one hardware palette. This function
forces the hardware palette to a one-to-one
mapping to the logical palette.

PFD_DOUBLEBUFFER The pixel format is double buffered. This flag is
mutually exclusive with PFD_SUPPORT_GDI.

PFD_STEREO

The buffer is stereoscopic. This is analogous to
front and back buffers in double buffering, only
there are left and right buffers. Not supported by
Microsoft’s generic implementation of OpenGL.

PFD_DOUBLE_BUFFER_DONTCARE
When choosing a pixel format, the format may
be either single- or double-buffered, without
preference.

PFD_STEREO_DONTCARE
When choosing a pixel format, the view may be
either stereoscopic or monoscopic, without
preference.

iPixelType specifies the type of pixel data. More specifically, it specifies the color selection
mode. It may be one of the values in Table 4-3.

Table 4-3 Flag values for iPixelType

Flag Description

PFD_TYPE_RGBA RGBA color mode. Each pixel color is selected by
specifiying the red, blue, green, and alpha components.

PFD_TYPE_COLORINDEX Color index mode. Each pixel color is selected by an index
into a palette (color table).

cColorBits specifies the number of color bitplanes used by the color buffer, excluding the
alpha bitplanes in RGBA color mode. In color index mode, it specifies the size of the color
buffer.

cRedBits specifies the number of red bitplanes in each RGBA color buffer.

OpenGL Super Bible! Page 127

cRedShift specifies the shift count for red bitplanes in each RGBA color buffer. *

cGreenBits specifies the number of green bitplanes in each RGBA colorbuffer.

cGreenShift specifies the shift count for green bitplanes in each RGBA color buffer. *

cBlueBits specifies the number of blue bitplanes in each RGBA color buffer.

cBlueShift specifies the shift count for blue bitplanes in each RGBA color buffer. *

cAlphaBits specifies the number of alpha bitplanes in each RGBA color buffer. This is not
supported by the Microsoft implementation.

cAlphaShift specifies the shift count for alpha bitplanes in each RGBA color buffer. This is
not supported by the Microsoft implementation.

cAccumBits is the total number of bitplanes in the accumulation buffer. See Chapter 15.

cAccumRedBits is the total number of red bitplanes in the accumulation buffer.

cAccumGreenBits is the total number of green bitplanes in the accumulation buffer.

cAccumBlueBits is the total number of blue bitplanes in the accumulation buffer.

cAccumAlphaBits is the total number of alpha bitplanes in the accumulation buffer.

cDepthBits specifies the depth of the depth buffer. See Chapter 15.

cStencilBits specifies the depth of the stencil buffer. See Chapter 15.

cAuxBuffers specifies the number of auxiliary buffers. This is not supported by the
Microsoft implementation.

iLayerType specifies the type of layer. Table 4-4 lists the values defined for this member,
but only the PFD_MAIN_PLANE value is supported by the Microsoft implementation.

Page 128 OpenGL Super Bible!

Table 4-4 Flag values for iLayerType

Flag Description

PFD_MAIN_PLANE Layer is the main plane.
PFD_OVERLAY_PLANE Layer is the overlay plane.
PFD_UNDERLAY_PLANE Layer is the underlay plane.

bReserved is reserved and should not be modified.

dwLayerMask is used in conjunction with dwVisibleMask to determine if one layer overlays
another. Layers are not supported by the current Microsoft implementation.

dwVisibleMask is used in conjunction with the dwLayerMask to determine if one layer
overlays another. Layers are not supported by the current Microsoft implementation.

dwDamageMask indicates when more than one pixel format shares the same frame buffer. If
the bitwise AND of the dwDamageMask members of two pixel formats is non-zero, then
they share the same frame buffer.

* Chapter 8 explains how this applies to devices with palettes.

Returns
The maximum pixel format supported by the specified device context, or zero on
failure.

Example

This example is from the GLRECT sample program on the CD. It queries the pixel format to
see if the device context needs a color palette defined.

 PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor
 int nPixelFormat; // Pixel format index

 …
 …

 // Get the pixel format index and retrieve
 the pixel format description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat,

OpenGL Super Bible! Page 129

 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 // Does this pixel format require a palette?
 If not, do not create a
 // palette and just return NULL
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return NULL;

 // Go on to create the palette
 …
 …
See Also

ChoosePixelFormat, GetPixelFormat, SetPixelFormat

Page 130 OpenGL Super Bible!

GetPixelFormat

Purpose
Retrieves the index of the pixel format currently selected for the given device
context.

Include File
<wingdi.h>

Syntax
int GetPixelFormat(HDC hDC);

Description
This function retrieves the selected pixel format for the device context specified. The
pixel format index is a 1-based positive value.

Parameters

hDC
HDC: The device context of interest.

Returns
The index of the currently selected pixel format for the given device, or zero on
failure.

Example
See the example given for DescribePixelFormat.

See Also
DescribePixelFormat, ChoosePixelFormat, SetPixelFormat

OpenGL Super Bible! Page 131

SetPixelFormat

Purpose
Sets a device context’s pixel format.

Include File
<wingdi.h>

Syntax
BOOL SetPixelFormat(HDC hDC, int nPixelFormat, CONST
PIXELFORMATDESCRIPTOR * ppfd);

Description
This function actually sets the pixel format for a device context. Once the pixel
format has been selected for a given device, it cannot be changed. This function must
be called before creating an OpenGL rendering context for the device.

Parameters

hDC
HDC: The device context whose pixel format is to be set.

nPixelFormat
int: Index of the pixel format to be set.

ppfd
LPPIXELFORMATDESCRIPTOR: A pointer to a PIXELFORMATDESCRIPTOR
that contains the logical pixel format descriptor. This structure is used internally to
record the logical pixel format specification. Its value does not influence the
operation of this function.

Returns
True if the specified pixel format was set for the given device context. False if an
error occurs.

Example
See the example given for ChoosePixelFormat.

See Also
DescribePixelFormat, GetPixelFormat, ChoosePixelFormat

Page 132 OpenGL Super Bible!

SwapBuffers

Purpose
Quickly copies the contents of the back buffer of a window to the front buffer
(foreground).

Include File
<wingdi.h>

Syntax
BOOL SwapBuffers(HDC hDC);

Description
When a double-buffered pixel format is chosen, a window has a front (displayed)
and back (hidden) image buffer. Drawing commands are sent to the back buffer. This
function is used to copy the contents of the hidden back buffer to the displayed front
buffer, to support smooth drawing or animation. Note that the buffers are not really
swapped. After this command is executed, the contents of the back buffer are
undefined.

Parameters

hDC
HDC: Specifies the device context of the window containing the off-screen and on-
screen buffers.

Returns
True if the buffers were swapped.

Example

The following sample shows the typical code for a WM_PAINT message. This is where the
rendering code is called, and if in double buffered mode, the back buffer is brought forward.
You can see this code in the GLRECT example program from this chapter.

 // The painting function. This message sent by Windows
 // whenever the screen needs updating.
 case WM_PAINT:
 {
 // Call OpenGL drawing code
 RenderScene();

 // Call function to swap the buffer s
 SwapBuffers(hDC);
 // Validate the newly painted client area
 ValidateRect(hWnd,NULL);
 }
 break;
See Also

glDrawBuffer

OpenGL Super Bible! Page 133

wglCreateContext

Purpose
Creates a rendering context suitable for drawing on the specified device context.

Include File
<wingdi.h>

Syntax
HGLRC wglCreateContext(HDC hDC);

Description
Creates an OpenGL rendering context suitable for the given Windows device
context. The pixel format for the device context should be set before the creation of
the rendering context. When an application is finished with the rendering context, it
should call wglDeleteContext.

Parameters

hDC
HDC: The device context that will be drawn on by the new rendering context.

Returns
The handle to the new rendering context, or NULL if an error occurs.

Example

The code below shows the beginning of a WM_CREATE message handler. Here, the device
context is retrieved for the current window, a pixel format is selected, then the rendering
context is created and made current.

 case WM_CREATE:
 // Store the device context
 hDC = GetDC(hWnd);

 // Select the pixel format
 SetDCPixelFormat(hDC);

 // Create the rendering context and make it current
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);
 …
 …
See Also

wglDeleteContext, wglGetCurrentContext, wglMakeCurrent

Page 134 OpenGL Super Bible!

wglDeleteContext

Purpose
Deletes a rendering context after it is no longer needed by the application.

Include File
<wingdi.h>

Syntax
BOOL wglDeleteContext(HGLRC hglrc);

Description
Deletes an OpenGL rendering context. This frees any memory and resources held by
the context.

Parameters

hglrc
HGLRC: The handle of the rendering context to be deleted.

Returns
True if the rendering context is deleted; false if an error occurs. It is an error for one
thread to delete a rendering context that is the current context of another thread.

Example

Example shows the message handler for the destruction of a window. Assuming the
rendering context was created when the window was created, this is where you would delete
the rendering context. Before you can delete the context, it must be made noncurrent.

 // Window is being destroyed, clean up
 case WM_DESTROY:

 // Deselect the current rendering context and delete it
 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 // Tell the application to terminate after the window
 // is gone.
 PostQuitMessage(0);
 break;
See Also

wglCreateContext, wglGetCurrentContext, wglMakeCurrent

OpenGL Super Bible! Page 135

wglGetCurrentContext

Purpose
Retrieves a handle to the current thread’s OpenGL rendering context.

Include File
<wingdi.h>

Syntax
HGLRC wglGetCurrentContext(void);

Description
Each thread of an application can have its own current OpenGL rendering context.
This function can be used to determine which rendering context is currently active
for the calling thread.

Returns
If the calling thread has a current rendering context, this function returns its handle.
If not, the function returns NULL.

Example
See the supplementary example program GLTHREAD in this chapter’s subdirectory
on the CD.

See Also
wglCreateContext, wglDeleteContext, wglMakeCurrent, wglGetCurrentDC

Page 136 OpenGL Super Bible!

wglGetCurrentDC

Purpose
Gets the Windows device context associated with the current OpenGL rendering
context.

Include File
<wingdi.h>

Syntax
HDC wglGetCurrentDC(void);

Description
This function is used to acquire the Windows device context of the window that is
associated with the current OpenGL rendering context. Typically used to obtain a
Windows device context to combine OpenGL and GDI drawing functions in a single
window.

Returns
If the current thread has a current OpenGL rendering context, this function returns
the handle to the Windows device context associated with it. Otherwise, the return
value is NULL.

Example
See the supplementary example program GLTHREAD in this chapter’s subdirectory
on the CD.

See Also
wglGetCurrentContext

OpenGL Super Bible! Page 137

wglGetProcAddress

Purpose
Returns the address of an OpenGL extension function for use with the current
rendering context.

Include File
<wingdi.h>

Syntax
PROC wglGetProcAddress(LPCSTR lpszProc);

Description
Extension functions are functions that either are not yet part of the OpenGL standard
or are proprietary to a specific vendor implementation of OpenGL, usually adding
some platform-specific performance feature. Many extensions are supported by more
than one vendor. To use these functions, you must call wglGetProcAddress and
specify the name of the extension function exactly. In this way you can also test for
the presence of a particular extension. The exact address can vary for different pixel
formats, so be careful not to store the address returned and try to use it across
rendering contexts, unless you can be certain that the pixel format of both will be the
same. You can call glString(GL_EXTENSION) to receive a space-delimited string
containing any extensions that may be present (see Chapter 5 for more details).

Parameters

lpszProc
LPCSTR: The name of the extension function. The case and spelling must exactly
match that of the desired extension function.

Returns
If the extension function does not exist, the return value is NULL; otherwise, the
return is the address of the specified extension function.

Example

The following code segment retrieves the address of the Windows-specific extension
function glAddSwapHintRectWIN. This extension allows you to accelerate buffer swapping
by telling OpenGL that only certain regions of the window actually need to be copied. This
feature is demonstrated in the supplementary example program SWAPHINT in the GL_EXT
subdirectory.

 // Find out if a particular extensio n is handled
 char *szBuffer;
 szBuffer = (char *)glString(GL_EXTENSION);

 // If it is handled, get the new function's address and call it.
 if(strcmp(szBuffer,”GL_WIN_swap_hint”) == 0)
 {

Page 138 OpenGL Super Bible!

 PROC pSwapHint;
 pSwapHint = wglGetCurrentDC(“glAddSwapHintRectWIN”);
 // Call the function
 pSwapHint(40.0f, 40.0f, 50.0f, 50.2f);
 }
 else
 {
 // If not supported, handle some other way…
 ….
 ….
 }
See Also

glGetString

OpenGL Super Bible! Page 139

wglMakeCurrent

Purpose
Makes a given OpenGL rendering context current for the calling thread and
associates it with the specified device context.

Include File
<wingdi.h>

Syntax
BOOL wglMakeCurrent(HDC hdc, HGLRC hglrc);

Description
This function makes the specified rendering context the current rendering context for
the calling thread. This rendering context is associated with the given Windows
device context. The device context need not be the same as that used in the call to
wglCreateContext, as long as the pixel format is the same for both and they both
exist on the same physical device (not, say, the screen and a printer). Any out-
standing OpenGL commands for the previous rendering context are flushed before
the new rendering context is made current. This function can also be used to make no
rendering context active, by calling it with NULL for the hglrc parameter.

Parameters

hdc
HDC: The device context that will be used for all OpenGL drawing operations
performed by the calling thread.

hglrc
HGLRC: The rendering context to make current for the calling thread.

Returns
True on success, or False if an error occurs. If an error occurs, no rendering context
will remain current for the calling thread.

Example
See the example for wglCreateContext.

See Also
wglCreateContext, wglDeleteContext, wglGetCurrentContext, wglGetCurrentDC

Page 140 OpenGL Super Bible!

wglShareLists

Purpose
Allows multiple rendering contexts to share display lists.

Include File
<wingdi.h>

Syntax
BOOL wglShareLists(HGLRC hRC1, HGLRC hRC2);

Description
A display list is a list of “precompiled” OpenGL commands and functions (see
Chapter 10). Memory is allocated for the storage of display lists within each
rendering context. As display lists are created within that rendering context, it has
access to its own display list memory. This function allows multiple rendering
contexts to share this memory. This is particularly useful when large display lists are
used by multiple rendering contexts or threads to save memory. Any number of
rendering contexts may share the same memory for display lists. This memory will
not be freed until the last rendering context using that space is deleted. When using a
shared display list space between threads, display list creation and usage should be
synchronized.

Parameters

hRC1
HGLRC: Specifies the rendering context with which to share display list memory.

hRC2
HGLRC: Specifies the rendering context that will share the display list memory with
hRC1. No display lists for hRC2 should be created until after its display list memory
is shared.

Returns
True if the display list space is shared; False if they are not.

Example
See the tank/robot simulator directory (\TANK) from Chapter 10’s subdirectory on
the CD. This program uses multiple windows to produce various views of the same
scene simultaneously. To save memory, the rendering contexts for these windows all
share the same display list memory space, by using this function.

See Also
glIsList, glNewList, glCallList, glCallLists, glListBase, glDeleteLists, glEndList,
glGenLists

OpenGL Super Bible! Page 141

wglUseFontBitmaps

Purpose
Creates a set of OpenGL display list bitmaps for the currently selected GDI font.

Include File
<wingdi.h>

Syntax
BOOL wglUseFontBitmaps(HDC hDC, DWORD dwFirst, DWORD dwCount,
DWORD dwListBase);

Description
This function takes the font currently selected in the device context specified by
hDC, and creates a bitmap display list for each character, starting at dwFirst and
running for dwCount characters. The display lists are created in the currently
selected rendering context and are identified by numbers starting at dwListBase.
Typically this is used to draw text into an OpenGL double-buffered scene, since the
Windows GDI will not allow operations to the back buffer of a double-buffered
window. This function is also used to label OpenGL objects on screen.

Parameters

hDC
HDC: The Windows GDI device context from which the font definition is to be
derived. The font used can be changed by creating and selecting the desired font into
the device context.

dwFirst
DWORD: The ASCII value of the first character in the font to use for building the
display lists.

dwCount
DWORD: The consecutive number of characters in the font to use succeeding the
character specified by dwFirst.

dwListBase
DWORD: The display list base value to use for the first display list character.

Returns
True if the display lists could be created, False otherwise.

Example

The code below shows how to create a set of display lists for the ASCII character set. It is
then used to display the text “OpenGL” at the current raster position.

 // Create the font outlines based on the font for this device
 // context
 //
 wglUseFontBitmaps(hDC, // Device Context
 0, // First character

Page 142 OpenGL Super Bible!

 255, // Last character
 1000); // Display list base number
 …
 …

 // Draw the string
 glListBase(1000);
 glPushMatrix();
 glCallLists (3, GL_UNSIGNED_BYTE, "OpenGL");
 glPopMatrix();
See Also

wglUseFontOutlines, glIsList, glNewList, glCallList, glCallLists, glListBase,
glDeleteLists, glEndList, glGenLists

OpenGL Super Bible! Page 143

wglUseFontOutlines

Purpose
Creates a set of OpenGL 3D display lists for the currently selected GDI font.

Include File
<wingdi.h>

Syntax
BOOL wglUseFontOutlines(HDC hdc, DWORD first, DWORD count, DWORD
listBase, FLOAT deviation, FLOAT extrusion, int format,
LPGLYPHMETRICSFLOAT lpgmf);

Description
This function takes the TrueType font currently selected into the GDI device context
hDC, and creates a 3D outline for count characters starting at first. The display lists
are numbered starting at the value listBase. The outline may be composed of line
segments or polygons as specified by the format parameter. The character cell used
for the font extends 1.0 unit length along the x- and y-axis. The parameter extrusion
supplies the length along the negative z-axis on which the character is extruded. The
deviation is an amount 0 or greater that determines the chordal deviation from the
original font outline. This function will only work with TrueType fonts. Additional
character data is supplied in the lpgmf array of GLYPHMETRICSFLOAT structures.

Parameters

hc
HDC: Device context of the font.

first
DWORD: First character in the font to be turned into a display list.

count
DWORD: Number of characters in the font to be turned into display lists.

listBase
DWORD: The display list base value to use for the first display list character.

deviation
FLOAT: The maximum chordal deviation from the true outlines.

extrusion
FLOAT: Extrusion value in the negative z direction.

format
int: Specifies whether the characters should be composed of line segments or
polygons in the display lists. May be one of the following values:

WGL_FONT_LINES Use line segments to compose character.
WGL_FONT_POLYGONS Use polygons to compose character.

lpgmf

Page 144 OpenGL Super Bible!

LPGLYPHMETRICSFLOAT: Address of an array to receive glyphs metric data.
Each array element is filled with data pertaining to its character’s display list. Each is
defined as follows:

 typedef struct _GLYPHMETRICSFLOAT { // gmf
 FLOAT gmfBlackBoxX;
 FLOAT gmfBlackBoxY;
 POINTFLOAT gmfptGlyphOrigin;
 FLOAT gmfCellIncX;
 FLOAT gmfCellIncY;
 } GLYPHMETRICSFLOAT;
Members
gmfBlackBoxX

Width of the smallest rectangle that completely encloses the character.
gmfBlackBoxY

Height of the smallest rectangle that completely encloses the character.
gmfptGlyphOrigin

The x and y coordinates of the upper-left corner of the rectangle that completely
encloses the character. The POINTFLOAT structure is defined as

typedef struct _POINTFLOAT { // ptf
 FLOAT x; // The horizontal coordinate of a point
 FLOAT y; // The vertical coordinate of a point
} POINTFLOAT;
gmfCellIncX

The horizontal distance from the origin of the current character cell to the origin of
the next character cell.

gmfCellIncY
The vertical distance from the origin of the current character cell to the origin of the
next character cell.

Returns
True if the display lists could be created; False otherwise.

Example

The following code can be found in glcode.c in either the MFCGL example program in
Chapter 21, or glcode.c in the OWLGL example program in Chapter 22. These examples
show how a font defined in a LOGFONT structure is created and selected into the device
context, where it is then used to create a set of display lists that represent the entire ASCII
character set for that font.

 hDC = (HDC)pData;
 hFont = CreateFontIndirect(&logfont);
 SelectObject (hDC, hFont);

 // create display lists for glyphs 0 through 255 with 0.1
 // extrusion and default deviation. The display list numbering
 // starts at 1000 (it could be any number).
 wglUseFontOutlines(hDC, 0, 255, 1000, 0.0f, 0.3f,
 WGL_FONT_POLYGONS, agmf);

OpenGL Super Bible! Page 145

 DeleteObject(hFont);
See Also

wglUseFontBitmaps, glIsList, glNewList, glCallList, glCallLists, glListBase,
glDeleteLists, glEndList, glGenLists

Page 146 OpenGL Super Bible!

Chapter 5
Errors and Other Messages from OpenGL

What you’ll learn in this chapter:

How To… Functions You’ll Use

Get the error code of the last OpenGL error glGetError
Convert an error code into a textual description of the problem gluErrorString
Get version and vendor information from OpenGL glGetString, gluGetString
Make implementation-dependent performance hints glHint

In any project, we want to write robust and well-behaved programs that respond politely to
their users and have some amount of flexibility. Graphical programs that use OpenGL are no
exception. Now we don’t want to turn this chapter into a course on software engineering and
quality assurance, but if you want your programs to run smoothly, you need to account for
errors and unexpected circumstances. OpenGL provides you with two different methods of
performing an occasional sanity check in your code.

The first of OpenGL’s control mechanisms is error detection. If an error occurs, you need to
be able to stop and say “Hey, an error occurred, and this is what it was.” This is the only
way in code that will let you know your rendering of the Space Station Freedom is now the
Space Station Melted Crayola.

The second OpenGL sanity check is a simple solution to a common problem— something of
which every programmer, good and bad, is sometimes guilty. Let’s say you know that
Microsoft’s implementation of the Generic GDI version of OpenGL lets you get away with
drawing in a double-buffered window using GDI, as long as you draw in the front buffer.
Then you buy one of those fancy, warp drive accelerator cards, and the vendor throws in a
new rendering engine. Worse, suppose your customer buys one of these cards. Will your
code still work? Will it eat your image and spit out psychedelic rainbows? You may have a
good reason for using such optimization tricks; it’s certainly faster to use TextOut than to
call wglUseFontBitmaps. (Of course, if you do have this fancy-dancy video card, TextOut
may not be the fastest road to Rome anymore anyhow.) The simple way to guard against this
type of catastrophe is to check the version and vendor of your OpenGL library. If your
implementation is the generic Microsoft, cheat to your heart’s content; otherwise, better
stick to the documented way of doing things.

In summary, if you want to take advantage of vendor or version specific behavior, you
should check in your code to make sure that the vendor and version are the same as that you

OpenGL Super Bible! Page 147

designed for. Later, we’ll discuss OpenGL Hints, which allow you to instruct the rendering
engine to make tradeoffs for the sake of speed, or image quality. This would be the preferred
means of using vendor specific optimizations.

When Bad Things Happen to Good Code

Internally, OpenGL maintains a set of six error status flags. Each flag represents a different
type of error. Whenever one of these errors occurs, the corresponding flag is set. To see if
any of these flags is set, call glGetError:

GLenum glGetError(void);

The glGetError function returns one of the values listed in Table 5-1, located in the
Reference Section under glGetError. The GLU library defines three errors of its own, but
these errors map exactly to two flags already present. If more than one of these flags is set,
glGetError still returns only one distinct value. This value is then cleared when glGetError is
called, and recalling glGetError will return either another error flag or GL_NO_ERROR.
Usually, you will want to call glGetError in a loop that continues checking for error flags
until the return value is GL_NO_ERROR.

Listing 5-1 is a section of code from the GLTELL example that loops, checking for error
messages until there are none. Notice that the error string is placed in a control in a dialog
box. You can see this in the output from the GLTELL program in Figure 5-1.

Figure 5-1 An About box describing the GL and GLU libraries, along with any recent
errors

Page 148 OpenGL Super Bible!

Listing 5-1 Code sample that retrieves errors until there are no more errors

// Display any recent error messages
 i = 0;
 do {
 glError = glGetError();

 SetDlgItemText(hDlg,IDC_ERROR1+i,gluErrorString(glError));
 i++;
 }
 while(i < 6 && glError != GL_NO_ERROR);

You can use another function in the GLU library, gluErrorString, to get a string describing
the error flag:

const GLubyte* gluErrorString(GLenum errorCode);

This function takes as its only argument the error flag (returned from glGetError, or hand-
coded), and returns a static string describing that error. For example, the error flag
GL_INVALID_ENUM returns the string

invalid enumerant

You can take some peace of mind from the assurance that if an error is caused by an invalid
call to an OpenGL function or command, that function or command is ignored. OpenGL
may not behave as you intended, but it will continue to run. The only exception to this is
GL_OUT_OF_MEMORY (or GLU_OUT_OF_MEMORY, which has the same value
anyway). When this error occurs, the state of OpenGL is undefined— indeed, the state of
your program may be undefined! With this error, it’s best to clean up as gracefully as
possible and terminate the program.

Who Am I and What Can I Do?

As mentioned in the introduction of this section, there are times when you want to take
advantage of a known behavior in a particular implementation. If you know for a fact that
you are using Microsoft’s rendering engine, and the version number is the same as what you
tested your program with, it’s not unusual that you’ll want to try some trick to enhance your
program’s performance. To be sure that the functionality you’re exploiting exists on the
machine running your program, you need a way to query OpenGL for the vendor and
version number of the rendering engine. Both the GL library and GLU library can return
version and vendor specific information about themselves.

For the GL library, you can call glGetString:

const GLubyte *glGetString(GLenum name);

OpenGL Super Bible! Page 149

This function returns a static string describing the requested aspect of the GL library. The
valid parameter values are listed under glGetString in the Reference Section, along with the
aspect of the GL library they represent.

The GLU library has a corresponding function, gluGetString:

const GLubyte *gluGetString(GLenum name);

It returns a string describing the requested aspect of the GLU library. The valid parameters
are listed under gluGetString in the Reference Section, along with the aspect of the GLU
library they represent.

Listing 5-2 is a section of code from the GLTELL sample program, a modified version of
our faithful bouncing square. This time we’ve added a menu and an About box. The About
box, shown earlier in Figure 5-1, displays information about the vendor and version of both
the GL and GLU libraries. In addition, we’ve added an error to the code to produce a listing
of error messages.

Listing 5-2 Example usage of glGetString an gluGetString

 // glGetString demo
 SetDlgItemText(hDlg,IDC_OPENGL_VENDOR,glGetString(GL_VENDOR));
 SetDlgItemText(hDlg,IDC_OPENGL_RENDERER,glGetString(GL_RENDERER));
 SetDlgItemText(hDlg,IDC_OPENGL_VERSION,glGetString(GL_VERSION));
 SetDlgItemText(hDlg,IDC_OPENGL_EXTENSIONS,glGetString(GL_EXTENSIONS));

 // gluGetString demo
 SetDlgItemText(hDlg,IDC_GLU_VERSION,gluGetString(GLU_VERSION));
 SetDlgItemText(hDlg,IDC_GLU_EXTENSIONS,gluGetString(GLU_EXTENSIONS));

Extensions to OpenGL

Take special note of the GL_EXTENSIONS and/or GLU_EXTENSIONS flags. Some
vendors (including Microsoft, with the latest versions of OpenGL) may add extensions to
OpenGL that offer vendor-specific optimizations, or popular OpenGL extensions that aren’t
yet part of the standard. These features can enhance your performance considerably. If you
make use of these extension functions, however, you must test for the presence of the
extensions (using GL_EXTENSIONS); and if they are not present, you must implement the
feature by some other means.

The list of extensions returned will contain spaces between each entry. You will have to
parse the string yourself to test for the presence of a particular extension library. For more
information on OpenGL extensions, see the wglGetProcAddress function (Chapter 4), or

Page 150 OpenGL Super Bible!

your specific vendor’s documentation. The Microsoft extensions are discussed and
demonstrated in Appendix A.

Get a Clue with glHint

We have mentioned taking advantage of known anomalies in the OpenGL libraries. You can
exploit other vendor-specific behaviors, as well. For one thing, you may want to perform
renderings as quickly as possible on a generic implementation, but switch to a more accurate
view for hardware-assisted implementations. Even without the vendor dependencies, you
may simply want OpenGL to be a little less picky for the sake of speed— or to be more
fastidious and produce a better image, no matter how long it takes.

The function glHint allows you to specify certain preferences of quality or speed for
different types of operations. The function is defined as follows:

void glHint(GLenum target, GLenum mode);

The target parameter allows you to specify types of behavior you want to modify. These
values, listed under glHint in the Reference Section, include hints for fog and anti-aliasing
accuracy. The mode parameter tells OpenGL what you care most about— fastest render time
and nicest output, for instance— or that you don’t care. An example use might be rendering
into a small preview window with lower accuracy to get a faster preview image, saving the
higher accuracy and qualities for final output. Enumerated values for mode are also listed
under glHint in the Reference Section.

For a demonstration of these settings on various images, see the supplementary sample
program WINHINT in this chapter’s subdirectory on the CD.

Bear in mind that not all implementations are required to support glHint, other than
accepting input and not generating an error. This means your version of OpenGL may ignore
any or all of these requests.

Summary

Even in an imperfect world, we can at least check for error conditions and possibly take
action based on them. We can also determine vender and version information so that we can
take advantage of known capabilities or watch out for known deficiencies. This chapter has
shown you how to marshal your forces against these problems. You’ve also seen how you
can ask OpenGL to prefer speed or quality in some types of operations. Again, this depends
on the vendor and implementation details of your version of OpenGL.

OpenGL Super Bible! Page 151

Reference Section

glGetError

Purpose
Returns information about the current error state.

Include File
<gl.h>

Syntax
GLenum glGetError(void);

Description
OpenGL maintains five error flags, listed in Table 5-1. When an error flag is set, it
remains set until glGetError is called, at which time it will be set to
GL_NO_ERROR. Multiple flags may be set simultaneously, in which case
glGetError must be called again to clear any remaining errors. Generally, it is a good
idea to call glGetError in a loop to ensure that all error flags have been cleared. If
glGetError is called between glBegin and glEnd statements, the
GL_INVALID_OPERATION flag is set.

Returns
One of the error flags in Table 5-1. In all cases except GL_OUT_OF_MEMORY, the
offending command is ignored and the condition of the OpenGL state variables,
buffers, etc., is not affected. In the case of GL_OUT_OF_MEMORY, the state of
OpenGL is undefined.

Example
See the GLTELL sample from Listing 5-1.

See Also
gluErrorString

Table 5-1 Valid error return codes from glGetError

Value Meaning

GL_NO_ERROR No errors have occurred.
GL_INVALID_ENUM

GLU_INVALID_ENUM An invalid value was specified for an enumerated
argument.

GL_INVALID_VALUE

GLU_INVALID_VALUE A numeric argument was out of range.

GL_INVALID_OPERATION An operation was attempted that is not allowed in the
current state.

GL_STACK_OVERFLOW A command was attempted that would have resulted in a
stack overflow.

Page 152 OpenGL Super Bible!

GL_STACK_UNDERFLOW A command was attempted that would have resulted in a
stack underflow.

GL_OUT_OF_MEMORY

GLU_OUT_OF_MEMORY There is insufficient memory to execute the requested
command.

OpenGL Super Bible! Page 153

glGetString

Purpose
Returns a string describing some aspect of the OpenGL implementation.

Include File
<gl.h>

Syntax
const GLubyte *glGetString(GLenum name);

Description
This function returns a string describing some aspect of the current OpenGL
implementation. This string is statically defined, and the return address cannot be
modified.

Parameters

name
GLenum: Identifies the aspect of the OpenGL implementation to describe. This may
be one of the following values:

GL_VENDOR Returns the name of the company responsible for this
implementation.

GL_RENDERER
Returns the name of the renderer. This can vary with
specific hardware configurations. GDI Generic specifies
unassisted software emulation of OpenGL.

GL_VERSION Returns the version number of this implementation.

GL_EXTENSIONS
Returns a list of supported extensions for this version and
implementation. Each entry in the list is separated by a
space.

Returns
A character string describing the requested aspect, or NULL if an invalid identifier is
used.

Example
See the GLTELL sample from Listing 5-2.

See Also
gluGetString

Page 154 OpenGL Super Bible!

glHint

Purpose
Allows the programmer to specify implementation-dependent performance hints.

Include File
<gl.h>

Syntax
void glHint(GLenum target, GLenum mode);

Description
Certain aspects of OpenGL behavior are open to interpretation on some
implementations. This function allows some aspects to be controlled with
performance hints that request optimization for speed or fidelity. There is no
requirement that the glHint has any effect, and may be ignored for some
implementations.

Parameters

target
GLenum: Indicates the behavior to be controlled. This may be any of the following
values:

GL_FOG_HINT Influences accuracy of fog
calculations

GL_LINE_SMOOTH_HINT Influences quality of anti-aliased
lines.

GL_PERSPECTIVE_CORRECTION_HINT Influences quality of color and
texture interpolation.

GL_POINT_SMOOTH_HINT Influences quality of anti-aliased
points.

GL_POLYGON_SMOOTH_HINT Influences quality of anti-aliased
polygons.

mode
GLenum: Indicates the desired optimized behavior. This may be any of the following
values:

GL_FASTEST The most efficient or quickest method should be used.

GL_NICEST The most accurate or highest quality method should be
used.

GL_DONT_CARE No preference on the method used.
Returns

None.
Example

OpenGL Super Bible! Page 155

The following code is found in the WINHINT supplementary sample program. It
tells OpenGL that it should render anti-aliased lines as quickly as possible, even if it
has to sacrifice the image quality.

 glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);

Page 156 OpenGL Super Bible!

gluErrorString

Purpose
Retrieves a string that describes a particular error code.

Include File
<glu.h>

Syntax
const GLubyte* gluErrorString(GLenum errorCode);

Description
This function returns a string describing error code specified. This string is statically
defined, and the return address cannot be modified. The returned string is ANSI. To
return ANSI or UNICODE depending on the environment, call the macro
glErrorStringWIN.

Parameters

errorCode
GLenum: The error code to be described in the return string. Any of the codes in
Table5-1 may be used.

Returns
A string describing the error code specified.

Example
See the GLTELL sample from Listing 5-2.

See Also
glGetError

OpenGL Super Bible! Page 157

gluGetString

Purpose
Returns the version and extension information about the GLU library.

Include File
<glu.h>

Syntax
const GLubyte *gluGetString(GLenum name);

Description
This function returns a string describing either the version or extension information
about the GLU library. This string is statically defined, and the return address cannot
be modified.

Parameters

name
GLenum: Identifies the aspect of the GLU library to describe. This may be one of the
following values:

GLU_VERSION Returns the version information for the GLU Library.
The format of the return string is:

<version number><space><vendor information>

GLU_EXTENSIONS
Returns a list of supported extensions for this version of
the GLU Library. Each entry in the list is separated by a
space.

Returns
A character string describing the requested aspect, or NULL if an invalid identifier is
used.

Example
See the GLTELL sample from Listing 5-2.

See Also
glGetString

Page 158 OpenGL Super Bible!

Part II
Using OpenGL

It seems that every programming language class in college started with that same goofy
“How many miles per gallon did you get on the way to New York” example program. First
you needed to learn to use the terminal, then the editor, compiler, and linker, how the
programs were structured, and finally some language syntax. Unfortunately, we must all
learn to crawl before we can walk, and learning OpenGL is no exception.

Part I of this book introduced OpenGL, the hows and whys of 3D, and the format of
OpenGL functions. Then we started gluing this to the Windows API, building Windows-
based programs that used OpenGL to paint in the client area. We learned how to look for
errors, how to interpret them, and how to make sure we don’t take advantage of features that
don’t exist!

Now it’s time to graduate from our baby walkers and start stumbling across the room. First,
in Chapter 6, we’ll cover all the OpenGL drawing primitives. You’ll use these building
blocks to make larger and more complex objects. Next you’ll find out about all the things
you can do in 3D space with your newfound object-building tools: translation, rotation, and
other coordinate transformation goodies. Walking with more confidence, you’ll be ready for
Chapters 8 and 9, which give you color, shading, and lighting for photo-realistic effects. The
remaining chapters offer advanced object-manipulation tools, techniques for juggling
images and texture maps with ease, and some more specialized 3D object primitives.

When you’re done with Part II, you’ll be ready for your first 100-yard dash! By the end of
the book, the Olympics!

Be sure and follow along with the tank/robot simulation development that starts in this
section of the book. This special sample program won’t be discussed in the chapters ahead,
and can only be found on the CD, where the simulation will be enhanced with that chapter’s
techniques and functions. The readme.txt file for each step discusses the enhancements
along the way.

Anybody else tired of bouncing squares? Read on! Now we’re into the good stuff!

OpenGL Super Bible! Page 159

Chapter 6
Drawing in 3D: Lines, Points, and Polygons

What you’ll learn in this chapter:

How To… Functions You’ll Use

Draw points, lines, and shapes glBegin/glEnd/glVertex
Set shape outlines to wireframe or solid objects glPolygonMode
Set point sizes for drawing glPointSize
Set line drawing width glLineWidth
Perform hidden surface removal glCullFace
Set patterns for broken lines glLineStipple
Set polygon fill patterns glPolygonStipple

If you’ve ever had a chemistry class (and probably even if you haven’t), you know that all
matter is made up of atoms, and that all atoms consist of only three things: protons,
neutrons, and electrons. All the materials and substances you have ever come into contact
with— from the petals of a rose to the sand on the beach— are just different arrangements of
these three fundamental building blocks. Although this is a little oversimplified for most
anyone beyond the third or fourth grade, it demonstrates a powerful principle: With just a
few simple building blocks, you can create highly complex and beautiful structures.

The connection is fairly obvious. Objects and scenes that you create with OpenGL are also
made up of smaller, simpler shapes, arranged and combined in various and unique ways. In
this chapter we will explore these building blocks of 3D objects, called primitives. All
primitives in OpenGL are one- or two-dimensional objects, ranging from single points to
lines and complex polygons. In this chapter you will learn everything you need to know in
order to draw objects in three dimensions from these simpler shapes.

Drawing Points in 3D

When you first learned to draw any kind of graphics on any computer system, you usually
started with pixels. A pixel is the smallest element on your computer monitor, and on color
systems that pixel can be any one of many available colors. This is computer graphics at its
simplest: Draw a point somewhere on the screen, and make it a specific color. Then build on
this simple concept, using your favorite computer language to produce lines, polygons,
circles, and other shapes and graphics. Perhaps even a GUI…

Page 160 OpenGL Super Bible!

With OpenGL, however, drawing on the computer screen is fundamentally different. You’re
not concerned with physical screen coordinates and pixels, but rather positional coordinates
in your viewing volume. You let OpenGL worry about how to get your points, lines, and
everything else translated from your established 3D space to the 2D image made by your
computer screen.

This chapter and the next cover the most fundamental concepts of OpenGL or any 3D
graphics toolkit. In the upcoming chapter, we’ll go into substantial detail about how this
transformation from 3D space to the 2D landscape of your computer monitor takes place, as
well as how to manipulate (rotate, translate, and scale) your objects. For now, we shall take
this ability for granted in order to focus on plotting and drawing in a 3D coordinate system.
This may seem backwards, but if you first know how to draw something, and then worry
about all the ways to manipulate your drawings, the material coming up in Chapter 7 will be
more interesting and easier to learn. Once you have a solid understanding of graphics
primitives and coordinate transformations, you will be able to quickly master any 3D
graphics language or API.

Setting Up a 3D Canvas

Figure 6-1 shows a simple viewing volume that we will use for the examples in this chapter.
The area enclosed by this volume is a Cartesian coordinate space that ranges from –100 to
+100 on all three axes, x, y, and z. (For a review of Cartesian coordinates, see Chapter 2.)
Think of this viewing volume as your three-dimensional canvas on which you will be
drawing with OpenGL commands and functions.

Figure 6-1 Cartesian viewing volume measuring 100 x 100 x 100

OpenGL Super Bible! Page 161

We established this volume with a call to glOrtho(), much as we did for others in the
previous chapters. Listing 6-1 shows the code for our ChangeSize() function that gets called
when the window is sized (including when it is first created). This code looks a little
different from that in previous chapters, and you’ll notice some unfamiliar functions
(glMatrixMode, glLoadIdentity). We’ll spend more time on these in Chapter 7, exploring
their operation in more detail.

Listing 6-1 Code to establish the viewing volume in Figure 6-1

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat nRange = 100.0f;
 // Prevent a divide by zero
 if(h == 0)
 h = 1;
 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);
 // Reset projection matrix stack
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 // Establish clipping volume (left, right, bottom, top, near, far)
 if (w <= h)
 glOrtho (-nRange, nRange, -nRange*h/w, nRange*h/w,
 -nRange,nRange);
 else
 glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange,
 -nRange,nRange);
 // Reset Model view matrix stack
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

Why the Cart Before the Horse
Look at any of the source code of this chapter, and you’ll notice some new functions in the
RenderScene() functions: glRotate(), glPushMatrix(), and glPopMatrix(). Though they’re
covered in more detail in Chapter 7, we’re introducing them now. That’s because they
implement some important features that we wanted you to have as soon as possible. These
functions let you plot and draw in 3D, and help you easily visualize your drawing from
different angles. All of this chapter’s sample programs employ the arrow keys for rotating
the drawing around the x- and y-axes. Look at any 3D drawing dead-on (straight down the z-
axis) and it may still look two-dimensional. But when you can spin the drawings around in
space, it’s much easier to see the effects of what you’re drawing.

There is a lot to learn about drawing in 3D, and in this chapter we want you to focus on that.
By changing only the drawing code for any of the examples that follow, you can start
experimenting right away with 3D drawing and still get interesting results. Later, you’ll learn
how to manipulate drawings using the other functions.

Page 162 OpenGL Super Bible!

A 3D Point: The Vertex

To specify a drawing point in this 3D “palette,” we use the OpenGL function glVertex—
without a doubt the most used function in all of the OpenGL API. This is the “lowest
common denominator” of all the OpenGL primitives: a single point in space. The glVertex
function can take from two to four parameters of any numerical type, from bytes to doubles,
subject to the naming conventions discussed in Chapter 3.

The following single line of code specifies a point in our coordinate system located 50 units
along the x-axis, 50 units along the y-axis, and 0 units out the z-axis:

glVertex3f(50.0f, 50.0f, 0.0f);

This point is illustrated in Figure 6-2. Here we chose to represent the coordinates as floating
point values, as we shall do for the remainder of the book. Also, the form of glVertex() that
we have used takes three arguments for the x, y, and z coordinate values, respectively.

Figure 6-2 The point (50,50,0) as specified by glVertex3f(50.0f, 50.0f, 0.0f)

Two other forms of glVertex take two and four arguments, respectively. We could represent
the same point in Figure 6-2 with this code:

glVertex2f(50.0f, 50.0f);

This form of glVertex takes only two arguments that specify the x and y values, and assumes
the z coordinate to be 0.0 always. The form of glVertex taking four arguments, glVertex4,
uses a fourth coordinate value w, which is used for scaling purposes. You will learn more
about this in Chapter 7 when we spend more time exploring coordinate transformations.

OpenGL Super Bible! Page 163

Draw Something!

Now we have a way of specifying a point in space to OpenGL. What can we make of it, and
how do we tell OpenGL what to do with it? Is this vertex a point that should just be plotted?
Is it the endpoint of a line, or the corner of a cube? The geometric definition of a vertex is
not just a point in space, but rather the point at which an intersection of two lines or curves
occurs. This is the essence of primitives.

A primitive is simply the interpretation of a set or list of vertices into some shape drawn on
the screen. There are ten primitives in OpenGL, from a simple point drawn in space to a
closed polygon of any number of sides. You use the glBegin command to tell OpenGL to
begin interpreting a list of vertices as a particular primitive. You then end the list of vertices
for that primitive with the glEnd command. Kind of intuitive, don’t you think?

Drawing Points

Let’s begin with the first and simplest of primitives: points. Look at the following code:

glBegin(GL_POINTS); // Se lect points as the primitive
 glVertex3f(0.0f, 0.0f, 0.0f); // Specify a point
 glVertex3f(50.0f, 50.0f, 50.0f); // Specify another point
glEnd(); // Done drawing points

The argument to glBegin, GL_POINTS, tells OpenGL that the following vertices are to be
interpreted and drawn as points. Two vertices are listed here, which translates to two
specific points, both of which would be drawn.

This brings up an important point about glBegin and glEnd: You can list multiple primitives
between calls as long as they are for the same primitive type. In this way, with a single
glBegin/glEnd sequence you can include as many primitives as you like.

This next code segment is very wasteful and will execute more slowly than the preceding
code:

glBegin(GL_POINTS); // Specify point drawing
 glVertex3f(0.0f, 0.0f, 0.0f);
glEnd();

glBegin(GL_POINTS); // Specify another point
 glVertex3f(50.0f, 50.0f, 50.0f);
glEnd();

Page 164 OpenGL Super Bible!

Indenting Your Code
In the foregoing examples, did you notice the indenting style used for the calls to glVertex()?
This convention is used by most OpenGL programmers to make the code easier to read. It is
not required, but it does make it easier to find where primitives start and stop.

Our First Example

The code shown in Listing 6-2 draws some points in our 3D environment. It uses some
simple trigonometry to draw a series of points that form a corkscrew path up the z-axis. This
code is from the POINTS program, which is on the CD in the subdirectory for this chapter.
All of the example programs use the framework we established in Chapters 4 and 5. Notice
that in the SetupRC() function we are setting the current drawing color to green.

Listing 6-2 Rendering code to produce a spring-shaped path of points

// Define a constant for the value of PI
#define GL_PI 3.1415f

// This function does any needed initialization on the rendering
// context.
void SetupRC()
 {
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Set drawing color to green
 glColor3f(0.0f, 1.0f, 0.0f);
 }

// Called to draw scene
void RenderScene(void)
 {
 GLfloat x,y,z,angle; // Storage for coordinates and angles

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Save matrix state and do the rotation
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Call only once for all remaining points
 glBegin(GL_POINTS);

 z = -50.0f;
 for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)

OpenGL Super Bible! Page 165

 {
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Specify the point and move the Z value up a little
 glVertex3f(x, y, z);
 z += 0.5f;
 }

 // Done drawing points
 glEnd();

 // Restore transformations
 glPopMatrix();

 // Flush drawing commands
 glFlush();
 }

Only the code between calls to glBegin and glEnd is important for our purpose in this and
the other examples for this chapter. This code calculates the x and y coordinates for an angle
that spins between 0º and 360º three times. (We express this programmatically in radians
rather than degrees; if you don’t know trigonometry, you can take our word for it. If you’re
interested, see the box, “The Trigonometry of Radians/Degrees.” Each time a point is drawn,
the z value is increased slightly. When this program is run, all you will see is a circle of
points, because you are initially looking directly down the z-axis. To better see the effect,
use the arrow keys to spin the drawing around the x- and y-axes. This is illustrated in Figure
6-3.

Figure 6-3 Output from the POINTS sample program

Page 166 OpenGL Super Bible!

One Thing at a Time
Again, don’t get too distracted by the functions in this sample that we haven’t covered yet
(glPushMatrix, glPopMatrix, and glRotate). These functions are used to rotate the image
around so you can better see the positioning of the points as they are drawn in 3D space. We
will be covering these in some detail in Chapter 7. If we hadn’t used these features now, you
wouldn’t be able to see the effects of your 3D drawings, and this and the following sample
programs wouldn’t be very interesting to look at. For the rest of the sample code in this
chapter, we will only be showing the code that includes the glBegin and glEnd statements.

The Trigonometry of Radians/Degrees
The figure in this box shows a circle drawn in the xy plane. A line segment from the origin
(0,0) to any point on the circle will make an angle (a) with the x-axis. For any given angle,
the trigonometric functions Sine and Cosine will return the x and y values of the point on the
circle. By stepping a variable that represents the angle all the way around the origin, we can
calculate all the points on the circle. Note that the C runtime functions sin() and cos() accept
angle values measured in radians instead of degrees. There are 2*PI radians in a circle, where
PI is a nonrational number that is approximately 3.1415 (nonrational means there are an
infinite number of values past the decimal point).

OpenGL Super Bible! Page 167

Setting the Point Size

When you draw a single point, the size of the point is one pixel by default. You can change
this with the function glPointSize.

void glPointSize(GLfloat size);

The glPointSize function takes a single parameter that specifies the approximate diameter in
pixels of the point drawn. Not all point sizes are supported, however, and you should check
to make sure the point size you specify is available. Use the following code to get the range
of point sizes, and the smallest interval between them:

GLfloat sizes[2]; // Store supp orted point size range
GLfloat step; // Store supported point size increments

// Get supported point size range and step size
glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

Here the sizes array will contain two elements that contain the smallest and the largest valid
value for glPointsize. In addition, the variable step will hold the smallest step size allowable
between the point sizes. The OpenGL specification only requires that one point size, 1.0, be
supported. The Microsoft implementation of OpenGL allows for point sizes from 0.5 to
10.0, with 0.125 the smallest step size. Specifying a size out of range will not be interpreted
as an error. Instead, the largest or smallest supported size will be used, whichever is closest
to the value specified.

OpenGL State Variables
OpenGL maintains the state of many of its internal variables and settings. This collection of
settings is called the OpenGL State Machine. The State Machine can be queried to determine
the state of any of its variables and settings. Any feature or capability you enable or disable
with glEnable/glDisable, as well as numeric settings set with glSet, can be queried with the
many variations of glGet. Chapter 14 explores the OpenGL State Machine more completely.

Let’s look at a sample that makes use of these new functions. The code shown in Listing 6-3
produces the same spiral shape as our first example, but this time the point sizes are
gradually increased from the smallest valid size to the largest valid size. This example is
from the program POINTSZ in the CD subdirectory for this chapter. The output from
POINTSZ is shown in Figure 6-4.

Page 168 OpenGL Super Bible!

Figure 6-4 Output from POINTSZ program

Listing 6-3 Code from POINTSZ that produces a spiral with gradually increasing point sizes

// Define a constant for the value of PI
#define GL_PI 3.1415f

// Called to draw scene
void RenderScene(void)
 {
 GLfloat x,y,z,angle; // Storage for coordinates and angles
 GLfloat sizes[2]; // Stor e supported point size range
 GLfloat step; // Store supported point size increments
 GLfloat curSize; // Store current point size
 …
 …

 // Get supported point size range and step size
 glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
 glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

 // Set the initial point size
 curSize = sizes[0];

 // Set beginning z coordinate
 z = -50.0f;

 // Loop around in a circle three tim es
 for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
 {
 // Calculate x and y values on the circle
 x = 50.0f*sin(angle);

OpenGL Super Bible! Page 169

 y = 50.0f*cos(angle);

 // Specify the point size before the primitive is
specified
 glPointSize(curSize);

 // Draw the point
 glBegin(GL_POINTS);
 glVertex3f(x, y, z);
 glEnd();

 // Bump up the z value and the point size
 z += 0.5f;
 curSize += step;
 }

 …
 …
 }

This example demonstrates a couple of important things. For starters, notice that glPointSize
must be called outside the glBegin/glEnd statements. Not all OpenGL functions are valid
between these function calls. Though glPointSize affects all points drawn after it, you don’t
begin drawing points until you call glBegin(GL_POINTS). For a complete list of valid
functions that you can call within a glBegin/glEnd sequence, see the Reference Section.

The most obvious thing you probably noticed about the POINTSZ excerpt is that the larger
point sizes are represented simply by larger squares. This is the default behavior, but it
typically is undesirable for many applications. Also, you may be wondering why you can
increase the point size by a value less than one. If a value of 1.0 represents one pixel, how
do you draw less than a pixel or, say, 2.5 pixels?

The answer is that the point size specified in glPointSize isn’t the exact point size in pixels,
but the approximate diameter of a circle containing all the pixels that will be used to draw
the point. You can get OpenGL to draw the points as better points (that is, small filled
circles) by enabling point smoothing, with a call to

glEnable(GL_POINT_SMOOTH);

Other functions affect how points and lines are smoothed, but this falls under the larger topic
of anti-aliasing (Chapter 16). Anti-aliasing is a technique used to smooth out jagged edges
and round out corners. We mention it now only in case you want to play with this on your
own, and to whet your appetite for the rest of the book!

Drawing Lines in 3D

The GL_POINTS primitive we have been using thus far is pretty straightforward; for each
vertex specified, it draws a point. The next logical step is to specify two vertices and draw a

Page 170 OpenGL Super Bible!

line between them. This is exactly what the next primitive, GL_LINES, does. The following
short section of code draws a single line between two points (0,0,0) and (50, 50, 50):

glBegin(GL_LINES);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 50.0f);
glEnd();

Note here that two vertices are used to specify a single primitive. For every two vertices
specified, a single line is drawn. If you specify an odd number of vertices for GL_LINES,
the last vertex is just ignored. Listing 6-4, from the LINES sample program on the CD,
shows a more complex sample that draws a series of lines fanned around in a circle. The
output from this program is shown in Figure 6-5.

Figure 6-5 Output from the LINES sample program

Listing 6-4 Code from the sample program LINES that displays a series of lines fanned in a
circle

 // Call only once for all remaining points
 glBegin(GL_LINES);
 // All lines lie in the xy plane.
 z = 0.0f;
 for(angle = 0.0f; angle <= GL_PI*3.0f; angle += 0.5f)
 {
 // Top half of the circle
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);
 glVertex3f(x, y, z); // First end point of line

OpenGL Super Bible! Page 171

 // Bottom half of the circle
 x = 50.0f*sin(angle+3.1415f);
 y = 50.0f*cos(angle+3.1415f);
 glVertex3f(x, y, z); // Second end point of line
 }

 // Done drawing points
glEnd();

Line Strips and Loops

The next two OpenGL primitives build on GL_LINES by allowing you to specify a list of
vertices through which a line is drawn. When you specify GL_LINE_STRIP, a line is drawn
from one vertex to the next in a continuous segment. The following code draws two lines in
the xy plane that are specified by three vertices. Figure 6-6 shows an example.

glBegin(GL_LINE_STRIP);
 glVertex3f(0.0f, 0.0f, 0.0f); // V0
 glVertex3f(50.0f, 50.0f, 0.0f); // V1
 glVertex3f(50.0f, 100.0f, 0.0f); // V2
glEnd();

Figure 6-6 An example of a GL_LINE_STRIP specified by three vertices

The last line-based primitive is the GL_LINE_LOOP. This primitive behaves just like a
GL_LINE_STRIP, but one final line is drawn between the last vertex specified and the first
one specified. This is an easy way to draw a closed-line figure. Figure 6-7 shows a
GL_LINE_LOOP drawn using the same vertices as for the GL_LINE_STRIP in Figure 6-6.

Page 172 OpenGL Super Bible!

Figure 6-7 The same vertices from Figure 6-6, used by a GL_LINE_LOOP primitive

Approximating Curves with Straight Lines

The POINTS example program, shown earlier in Figure 6-3, showed you how to plot points
along a spring-shaped path. You may have been tempted to push the points closer and closer
together (by setting smaller values for the angle increment) to create a smooth spring-shaped
curve instead of the broken points that only approximated the shape. This is a perfectly valid
operation, but it can be quite slow for larger and more complex curves with thousands of
points.

A better way of approximating a curve is to use a GL_LINE_STRIP to play connect-the-
dots. As the dots move closer together, a smoother curve materializes, without your having
to specify all those points. Listing 6-5 shows the code from Listing 6-2, with the
GL_POINTS replaced by GL_LINE_STRIP. The output from this new program, LSTRIPS,
is shown in Figure 6-8. As you can see, the approximation of the curve is quite good. You
will find this handy technique almost ubiquitous among OpenGL programs.

Figure 6-8 Output from the LSTRIPS program approximating a smooth curve

OpenGL Super Bible! Page 173

Listing 6-5 Code from the sample program LSTRIPS, demonstrating Line Strips

 // Call only once for all remaining points
 glBegin(GL_LINE_STRIP);
 z = -50.0f;

 for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
 {
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Specify the point and move the Z value up a little
 glVertex3f(x, y, z);
 z += 0.5f;
 }

 // Done drawing points
 glEnd();

Setting the Line Width

Just as you can set different point sizes, you can also specify various line widths when
drawing lines. This is done with the glLineWidth function:

void glLineWidth(GLfloat width);

The glLineWidth function takes a single parameter that specifies the approximate width, in
pixels, of the line drawn. Just like point sizes, not all line widths are supported, and you
should check to make sure the line width you want to specify is available. Use the following
code to get the range of line widths, and the smallest interval between them:

GLfloat sizes[2]; // Store supported line width range
GLfloat step; // Store supported line width increments

// Get supported line width range and step size
glGetFloatv(GL_LINE_WIDTH_RANGE,sizes);
glGetFloatv(GL_LINE_WIDTH_GRANULARITY,&step);

Here the sizes array will contain two elements that contain the smallest and the largest valid
value for glLineWidth. In addition, the variable step will hold the smallest step size
allowable between the line widths. The OpenGL specification only requires that one line
width, 1.0, be supported. The Microsoft implementation of OpenGL allows for line widths
from 0.5 to 10.0, with 0.125 the smallest step size.

Listing 6-6 shows code for a more substantial example of glLineWidth. It’s from the
program LINESW and draws ten lines of varying widths. It starts at the bottom of the
window at –90 on the y-axis and climbs the y-axis 20 units for each new line. Every time it
draws a new line, it increases the line width by 1. Figure 6-9 shows the output for this
program.

Page 174 OpenGL Super Bible!

Figure 6-9 Demonstration of glLineWidth from LINESW program

Listing 6-6 Drawing lines of various widths

// Called to draw scene
void RenderScene(void)
 {
 GLfloat y; // Storage for varying Y coordinate
 GLfloat fSizes[2]; // Line width range metrics
 GLfloat fCurrSize; // Save current size

 …
 …
 …

 // Get line size metrics and save the smallest value
 glGetFloatv(GL_LINE_WIDTH_RANGE,fSizes);
 fCurrSize = fSizes[0];

 // Step up Y axis 20 units at a time
 for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
 // Set the line width
 glLineWidth(fCurrSize);

 // Draw the line
 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);
 glEnd();

 // Increase the line width
 fCurrSize += 1.0f;
 }

 …
 …
 }

OpenGL Super Bible! Page 175

Notice that we used glVertex2f() this time instead of glVertex3f() to specify the coordinates
for our lines. As mentioned, this is only a convenience because we are drawing in the xy
plane, with a z value of zero. To see that you are still drawing lines in three dimensions,
simply use the arrow keys to spin your lines around. You will see easily that all the lines lie
on a single plane.

Line Stippling

In addition to changing line widths, you can create lines with a dotted or dashed pattern,
called stippling. To use line stippling, you must first enable stippling with a call to

glEnable(GL_LINE_STIPPLE);

Then the function glLineStipple establishes the pattern that the lines will use for drawing.

void glLineStipple(GLint factor, GLushort pattern);

Reminder
Any feature or ability that is enabled by a call to glEnable() can be disabled by a call to
glDisable().

The pattern parameter is a 16-bit value that specifies a pattern to use when drawing the
lines. Each bit represents a section of the line segment that is either on or off. By default,
each bit corresponds to a single pixel, but the factor parameter serves as a multiplier to
increase the width of the pattern. For example, setting factor to 5 would cause each bit in the
pattern to represent five pixels in a row that would be either on or off. Furthermore, bit 0
(the least significant bit) of the pattern is used first to specify the line. Figure 6-10 illustrates
a sample bit pattern applied to a line segment.

Figure 6-10 Stipple pattern is used to construct a line segment

Page 176 OpenGL Super Bible!

Why Are These Patterns Backward?
You might wonder why the bit pattern used for stippling is used in reverse when drawing the
line. Internally, it’s much faster for OpenGL to shift this pattern to the left one place, each
time it needs to get the next mask value. For high-performance applications, reversing this
pattern internally (to make it easier for humans to understand) can take up precious processor
time.

Listing 6-7 shows a sample of using a stippling pattern that is just a series of alternating On
and Off bits (0101010101010101). This program draws ten lines from the bottom of the
window up the y-axis to the top. Each line is stippled with the pattern 0x5555, but for each
new line the pattern multiplier is increased by 1. You can clearly see the effects of the
widened stipple pattern in Figure 6-11.

Figure 6-11 Output from the LSTIPPLE program

Listing 6-7 Code from LSTIPPLE that demonstrates the effect of factor on the bit pattern

// Called to draw scene
void RenderScene(void)
 {
 GLfloat y; // Storage for varying Y coordinate
 GLint factor = 1; // Stippling factor
 GLushort pattern = 0x5555; // Stipple pattern

 …
 …

OpenGL Super Bible! Page 177

 // Enable Stippling
 glEnable(GL_LINE_STIPPLE);

 // Step up Y axis 20 units at a time
 for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
 // Reset the repeat factor and pattern
 glLineStipple(factor,pattern);

 // Draw the line
 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);
 glEnd();

 factor++;
 }
 …
 …
 }

Drawing Triangles in 3D

You’ve seen how to draw points and lines, and even how to draw some enclosed polygons
with GL_LINE_LOOP. With just these primitives, you could easily draw any shape possible
in three dimensions. You could, for example, draw six squares and arrange them so they
form the sides of a cube.

You may have noticed, however, that any shapes you create with these primitives are not
filled with any color— after all, you are only drawing lines. In fact, all the previous example
draws is a wireframe cube, not a solid cube. To draw a solid surface, you need more than
just points and lines; you need polygons. A polygon is a closed shape that may or may not
be filled with the currently selected color, and it is the basis of all solid-object composition
in OpenGL.

Triangles: Your First Polygon

The simplest polygon possible is the triangle, with only three sides. The GL_TRIANGLES
primitive is used to draw triangles, and it does so by connecting three vertices together. The
following code draws two triangles using three vertices each, as shown in Figure 6-12:

Page 178 OpenGL Super Bible!

Figure 6-12 Two triangles drawn using GL_TRIANGLES

glBegin(GL_TRIANGLES);
 glVertex2f(0.0f, 0.0f); // V0
 glVertex2f(25.0f, 25.0f); // V1
 glVertex2f(50.0f, 0.0f); // V2

 glVertex2f(-50.0f, 0.0f); // V3
 glVertex2f(-75.0f, 50.0f); // V4
 glVertex2f(-25.0f, 0.0f); // V5
glEnd();

Note that the triangles will be filled with the currently selected drawing color. If you don’t
specify a drawing color at some point, you can’t be certain of the result (there is no default
drawing color).

Choose the Fastest Primitives for Performance Tip
The triangle is the primitive of choice for the OpenGL programmer. You will find that, with
a little work, any polygonal shape can be composed of one or more triangles placed carefully
together. Most 3D accelerated hardware is highly optimized for the drawing of triangles. In
fact, you will see many 3D benchmarks measured in triangles per second.

Winding

An important characteristic of any polygonal primitive is illustrated in Figure 6-12. Notice
the arrows on the lines that connect the vertices. When the first triangle is drawn, the lines
are drawn from V0 to V1, then to V2, and finally back to V0 to close the triangle. This path
is in the order that the vertices are specified, and for this example, that order is clockwise

OpenGL Super Bible! Page 179

from your point of view. The same directional characteristic is present for the second
triangle, as well.

The combination of order and direction in which the vertices are specified is called winding.
The triangles in Figure 6-12 are said to have clockwise winding because they are literally
wound in the clockwise direction. If we reverse the positions of V4 and V5 on the triangle
on the left, we get counterclockwise winding as shown in Figure 6-13.

Figure 6-13 Two triangles with different windings

OpenGL by default considers polygons that have counterclockwise winding to be front
facing. This means that the triangle on the left in Figure 6-13 is showing us the front of the
triangle, and the one on the right is showing the back side of the triangle.

Why is this important? As you will soon see, you will often want to give the front and back
of a polygon different physical characteristics. You can hide the back of a polygon
altogether, or give it a different color and reflective property as well (see Chapter 9). It’s
very important to keep the winding of all polygons in a scene consistent, using front-facing
polygons to draw the outside surface of any solid objects. In the upcoming section on solid
objects, we will demonstrate this principle using some models that are more complex.

If you need to reverse the default behavior of OpenGL, you can do so by calling the function

glFrontFace(GL_CW);

The GL_CW parameter tells OpenGL that clockwise-wound polygons are to be considered
front facing. To change back to counterclockwise winding for the front face, use GL_CCW.

Page 180 OpenGL Super Bible!

Triangle Strips

For many surfaces and shapes, you will need to draw several connected triangles. You can
save a lot of time by drawing a strip of connected triangles with the
GL_TRIANGLE_STRIP primitive. Figure 6-14 shows the progression of a strip of three
triangles specified by a set of five vertices numbered V0 through V4. Here you see the
vertices are not necessarily traversed in the same order they were specified. The reason for
this is to preserve the winding (counterclockwise) of each triangle.

Figure 6-14 The progression of a GL_TRIANGLE_STRIP

(By the way, for the rest of our discussion of polygonal primitives, we won’t be showing
you any more code fragments to demonstrate the vertices and the glBegin statements. You
should have the swing of things by now. Later, when we have a real sample program to
work with, we’ll resume the examples.)

There are two advantages to using a strip of triangles instead of just specifying each triangle
separately. First, after specifying the first three vertices for the initial triangle, you only need
to specify a single point for each additional triangle. This saves a lot of time (as well as data
space) when you have many triangles to draw. The second advantage is that it’s a good idea,
as mentioned previously, to compose an object or surface out of triangles rather than some
of the other primitives.

Another advantage to composing large flat surfaces out of several smaller triangles is that
when lighting effects are applied to the scene, the simulated effects can be better reproduced
by OpenGL. You’ll learn to apply this technique in Chapter 9.

OpenGL Super Bible! Page 181

Triangle Fans

In addition to triangle strips, you can use GL_TRIANGLE_FAN to produce a group of
connected triangles that fan around a central point. Figure 6-15 shows a fan of three
triangles produced by specifying four vertices. The first vertex, V0, forms the origin of the
fan. After the first three vertices are used to draw the initial triangle, all subsequent vertices
are used with the origin (V0) and the vertex immediately preceding it (Vn-1) to form the
next triangle. Notice that the vertices are traversed in a clockwise direction, rather than
counterclockwise.

Figure 6-15 The progression of GL_TRIANGLE_FAN

Building Solid Objects

Composing a solid object out of triangles (or any other polygon) involves more than just
assembling a series of vertices in a 3D coordinate space. Let’s examine the example
program TRIANGLE, which uses two triangle fans to create a cone in our viewing volume.
The first fan produces the cone shape, using the first vertex as the point of the cone and the
remaining vertices as points along a circle further down the z-axis. The second fan forms a
circle and lies entirely in the xy plane, making up the bottom surface of the cone.

The output from TRIANGLE is shown in Figure 6-16. Here you are looking directly down
the z-axis and can only see a circle composed of a fan of triangles. The individual triangles
are emphasized by coloring them alternately green and red.

Page 182 OpenGL Super Bible!

Figure 6-16 Initial output from the TRIANGLE sample program

The code for the SetupRC and RenderScene functions is shown in Listing 6-8. (You will see
some unfamiliar variables and specifiers that will be explained shortly.) This program
demonstrates several aspects of composing 3D objects. Notice the Effects menu item; this
will be used to enable and disable some 3D drawing features so we can explore some of the
characteristics of 3D object creation.

Listing 6-8 Pertinent code for the TRIANGLE sample program

// This function does any needed initialization on the rendering
// context.
void SetupRC()
 {
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Set drawing color to green
 glColor3f(0.0f, 1.0f, 0.0f);

 // Set color shading model to flat
 glShadeModel(GL_FLAT);

 // Clockwise-wound polygons are front facing; this is reversed
 // because we are using triangle fans
 glFrontFace(GL_CW);
 }

OpenGL Super Bible! Page 183

// Called to draw scene
void RenderScene(void)
 {
 GLfloat x,y,angle; // Storage for coordinates and angles
 int iPivot = 1; // Used to flag alternating colors

 // Clear the window and the depth buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Turn culling on if flag is set
 if(bCull)
 glEnable(GL_CULL_FACE);
 else
 glDisable(GL_CULL_FACE);
 // Enable depth testing if flag is set
 if(bDepth)
 glEnable(GL_DEPTH_TEST);
 else
 glDisable(GL_DEPTH_TEST);
 // Draw the back side as a polygon only, if flag is set
 if(bOutline)
 glPolygonMode(GL_BACK,GL_LINE);
 else
 glPolygonMode(GL_BACK,GL_FILL);

 // Save matrix state and do the rotation
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Begin a triangle fan
 glBegin(GL_TRIANGLE_FAN);

 // Pinnacle of cone is shared vertex for fan, moved up z -axis
 // to produce a cone instead of a circle
 glVertex3f(0.0f, 0.0f, 75.0f);

 // Loop around in a circle and specify even points
 along the circle
 // as the vertices of the triangle fan
 for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))
 {
 // Calculate x and y position of the next vertex
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Alternate color between red and green
 if((iPivot %2) == 0)
 glColor3f(0.0f, 1 .0f, 0.0f);
 else
 glColor3f(1.0f, 0.0f, 0.0f);
 // Increment pivot to change color next time
 iPivot++;

 // Specify the next vertex for the triangle fan

Page 184 OpenGL Super Bible!

 glVertex2f(x, y);
 }

 // Done drawing fan for cone
 glEnd();

 // Begin a new triangle fan to cover the bottom
 glBegin(GL_TRIANGLE_FAN);

 // Center of fan is at the origin
 glVertex2f(0.0f, 0.0f);
 for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))
 {
 // Calculate x and y position of the next vertex
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Alternate color between red a nd green
 if((iPivot %2) == 0)
 glColor3f(0.0f, 1.0f, 0.0f);
 else
 glColor3f(1.0f, 0.0f, 0.0f);

 // Increment pivot to change color next time
 iPivot++;

 // Specify the next vertex for the triangle fan
 glVertex2f(x, y);
 }

 // Done drawing the fan that covers the bottom
 glEnd();
 // Restore transformations
 glPopMatrix();
 // Flush drawing commands
 glFlush();
 }

Setting Polygon Colors

Until now, we have set the current color only once and drawn only a single shape. Now,
with multiple polygons, things get slightly more interesting. We want to use different colors
so we can see our work more easily. Colors are actually specified per vertex, not per
polygon. The shading model affects whether the polygon is then solidly colored (using the
current color selected when the last vertex was specified), or smoothly shaded between the
colors specified for each vertex.

The line glShadeModel(GL_FLAT); tells OpenGL to fill the polygons with the solid color
that was current when the polygon’s last vertex was specified. This is why we can simply
change the current color to red or green before specifying the next vertex in our triangle fan.
On the other hand, the line glShadeModel(GL_SMOOTH); would tell OpenGL to shade the
triangles smoothly from each vertex, attempting to interpolate the colors between those

OpenGL Super Bible! Page 185

specified for each vertex. You’ll be learning much more about color and shading in Chapter
8.

Hidden Surface Removal

Hold down one of the arrow keys to spin the cone around, and don’t select anything from
the Effects menu yet. You’ll notice something unsettling: The cone appears to be swinging
back and forth plus and minus 180º, with the bottom of the cone always facing you, but not
rotating a full 360º. Figure 6-17 shows this more clearly.

Figure 6-17 The rotating cone appears to be wobbling back and forth

This is occurring because the bottom of the cone is being drawn after the sides of the cone
are drawn. This means, no matter how the cone is oriented, the bottom is then drawn on top
of it, producing the “wobbling” illusion. This effect is not limited to just the various sides
and parts of an object. If more than one object is drawn and one is in front of the other (from
the viewer’s perspective), the last object drawn will still appear over the previously drawn
object.

You can correct this peculiarity with a simple technique called hidden surface removal, and
OpenGL has functions that will do this for you behind the scenes. The concept is simple:
When a pixel is drawn, it is assigned a value (called the z value) that denotes its distance
from the viewer’s perspective. Later, when another pixel needs to be drawn to that screen
location, the new pixel’s z value is compared to that of the pixel that is already stored there.
If the new pixel’s z value is higher, then it is closer to the viewer and thus in front of the
previous pixel, so the previous pixel will be obscured by the new pixel. If the new pixel’s z
value is lower, then it must be behind the existing pixel and thus would not be obscured.
This maneuver is accomplished internally by a depth buffer, which will be discussed in
Chapter 15.

Page 186 OpenGL Super Bible!

To enable depth testing, simply call

glEnable(GL_DEPTH_TEST);

This is done in Listing 6-8 when the bDepth variable is set to True, and depth testing is
disabled if bDepth is False.

// Enable depth testing if flag is set
if(bDepth)
 glEnable(GL_DEPTH_TEST);
else
 glDisable(GL_DEPTH_TEST);

The bDepth variable is set when Depth Test is selected from the Effects menu. In addition,
the depth buffer must be cleared each time the scene is rendered. The depth buffer is
analogous to the color buffer in that it contains information about the distance of the pixels
from the observer. This is used to determine if any pixels are hidden by pixels closer to the
observer.

// Clear the window and the depth buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Figure 6-18 shows the Effects menu with depth testing enabled. It also shows the cone with
the bottom correctly hidden behind the sides. You can see that depth testing is practically a
prerequisite to creation of 3D objects out of solid polygons.

Figure 6-18 The bottom of the cone is now correctly placed behind the sides for this
orientation

OpenGL Super Bible! Page 187

Culling: Hiding Surfaces for Performance

You can see that there are obvious visual advantages to not drawing a surface that is
obstructed by another. Even so, you pay some performance overhead because every pixel
drawn must be compared with the previous pixel’s z value. Sometimes, however, you know
that a surface will never be drawn anyway, so why specify it? The answer is that you may
not wish to draw the back sides of the surface.

In our working example, the cone is a closed surface and we never see the inside. OpenGL is
actually (internally) drawing the back sides of the far side of the cone, and then the front
sides of the polygons facing us. Then, by a comparison of z buffer values, the far side of the
cone is eliminated. Figures 6-19a and 6-19b show our cone at a particular orientation with
depth testing turned on (a) and off (b). Notice that the green and red triangles that make up
the cone sides change when depth testing is enabled. Without depth testing, the sides of the
triangles at the far side of the cone show through.

Figure 6-19a With depth testing

Page 188 OpenGL Super Bible!

Figure 6-19b Without depth testing

Earlier in the chapter we explained how OpenGL uses winding to determine the front and
back sides of polygons, and that it is important to keep the polygons that define the outside
of your objects wound in a consistent direction. This consistency is what allows us to tell
OpenGL to render only the front, only the back, or both sides of polygons. By eliminating
the back sides of the polygons, we can drastically reduce the amount of necessary processing
to render the image. Even though depth testing will eliminate the appearance of the inside of
objects, internally OpenGL must take them into account unless we explicitly tell it not to.

The elimination of the front or back of polygons is called culling. Culling is enabled or
disabled for our program by the following code fragment from Listing 6-8:

// Clockwise-wound polygons are front facing; this is reversed
// because we are using triangle fans
glFrontFace(GL_CW);

…
…

// Turn culling on if flag is set
if(bCull)
 glEnable(GL_CULL_FACE);
else
 glDisable(GL_CULL_FACE);

OpenGL Super Bible! Page 189

Note that we first changed the definition of front-facing polygons to be those with clockwise
winding (because our triangle fans are all wound clockwise).

Figure 6-20 demonstrates that the bottom of the cone is gone when culling is enabled. This
is because we didn’t follow our own rule about all the surface polygons having the same
winding. The triangle fan that makes up the bottom of the cone is wound clockwise, like the
fan that makes up the sides of the cone, but the front side of the cone’s bottom section is
facing the inside. See Figure 6-21.

Figure 6-20 The bottom of the cone is culled because the front-facing triangles are inside

Page 190 OpenGL Super Bible!

Figure 6-21 How the cone was assembled from two triangle fans

We could have corrected this by changing the winding rule, by calling

glFrontFace(GL_CCW);

just before we drew the second triangle fan. But in this example we wanted to make it easy
for you to see culling in action, as well as get set up for our next demonstration of polygon
tweaking.

Polygon Modes

Polygons don’t have to be filled with the current color. By default, polygons are drawn
solid, but you can change this behavior by specifying that polygons are to be drawn as
outlines or just points (only the vertices are plotted). The function glPolygonMode() allows
polygons to be rendered filled, as outlines, or as points only. In addition, this rendering
mode can be applied to both sides of the polygons or to just the front or back. The following
code from Listing 6-8 shows the polygon mode being set to outlines or solid, depending on
the state of the Boolean variable bOutline:

// Draw back side as a polygon only, if flag is set
if(bOutline)
 glPolygonMode(GL_BACK,GL_LINE);
else
 glPolygonMode(GL_BACK,GL_FILL);

Figure 6-22 shows the back sides of all polygons rendered as outlines. (We had to disable
culling to produce this image; otherwise, the inside would be eliminated and you’d get no
outlines.) Notice that the bottom of the cone is now wireframe instead of solid, and you can
see up inside the cone where the inside walls are also drawn as wireframe triangles.

OpenGL Super Bible! Page 191

Figure 6-22 Using glPolygonMode() to render one side of the triangles as outlines

Other Primitives

Triangles are the preferred primitive for object composition since most OpenGL hardware
specifically accelerates triangles, but they are not the only primitives available. Some
hardware will provide for acceleration of other shapes as well, and programmatically it may
be simpler to use a general-purpose graphics primitive. The remaining OpenGL primitives
provide for rapid specification of a quadrilateral or quadrilateral strip, as well as a general-
purpose polygon. If you know your code is going to be run in an environment that
accelerates general-purpose polygons, these may be your best bet in terms of performance.

Four-Sided Polygons: Quads

The next most complex shape from a triangle is a quadrilateral, or a four-sided figure.
OpenGL’s GL_QUADS primitive draws a four-sided polygon. In Figure 6-23 a quad is
drawn from four vertices. Note also that quads have clockwise winding.

Page 192 OpenGL Super Bible!

Figure 6-23 An example of GL_QUAD

Quad Strips

Just as you can for triangles, you can specify a strip of connected quadrilaterals with the
GL_QUAD_STRIP primitive. Figure 6-24 shows the progression of a quad strip specified
by six vertices. Quad strips, like single GL_QUADS, maintain a clockwise winding.

Figure 6-24 Progression of GL_QUAD_STRIP

General Polygons

The final OpenGL primitive is the GL_POLYGON, which can be used to draw a polygon
having any number of sides. Figure 6-25 shows a polygon consisting of five vertices.
Polygons created with GL_POLYGON have clockwise winding, as well.

OpenGL Super Bible! Page 193

Figure 6-25 Progression of GL_POLYGON

What About Rectangles?
All ten of the OpenGL primitives are used with glBegin/glEnd to draw general-purpose
polygonal shapes. One shape is so common, it has a special function instead of being a
primitive; that shape is the rectangle. It was actually the first shape you learned to draw back
in Chapter 3. The function glRect() provides an easy and convenient mechanism for
specifying rectangles without having to resort to GL_QUAD.

Filling Polygons, or Stippling Revisited

There are two methods of applying a pattern to solid polygons. The customary method is
texture mapping, where a bitmap is mapped to the surface of a polygon, and this is covered
in Chapter 11. Another way is to specify a stippling pattern, as we did for lines. A polygon
stipple pattern is nothing more than a 32 x 32 monochrome bitmap that is used for the fill
pattern.

To enable polygon stippling, call

glEnable(GL_POLYGON_STIPPLE);

and then call

glPolygonStipple(pBitmap);

where pBitmap is a pointer to a data area containing the stipple pattern. Hereafter, all
polygons will be filled using the pattern specified by pBitmap (GLubyte *). This pattern is
similar to that used by line stippling, except the buffer is large enough to hold a 32 x 32-bit
pattern. Also, the bits are read with the MSB (Most Significant Bit) first, which is just the

Page 194 OpenGL Super Bible!

opposite of line stipple patterns. Figure 6-26 shows a bit pattern for a campfire that we will
use for a stipple pattern.

Figure 6-26 Building a polygon stipple pattern

Pixel Storage
As you will learn in Chapter 11, you can modify the way pixels for stipple patterns are
interpreted, with the glPixelStore() function. For now, though, we will stick to simple
polygon stippling.

To construct a mask to represent this pattern, we store one row at a time from the bottom up.
Fortunately, unlike line-stipple patterns, the data is by default interpreted just as it is stored,
with the most significant bit read first. Each byte can then be read from left to right and
stored in an array of GLubyte large enough to hold 32 rows of 4 bytes apiece.

Listing 6-9 shows the code used to store this pattern. Each row of the array represents a row
from Figure 6-26. The first row in the array is the last row of the figure, and so on, up to the
last row of the array and the first row of the figure.

OpenGL Super Bible! Page 195

Listing 6-9 The mask definition for the campfire in Figure 6-26

// Bitmap of camp fire
GLubyte fire[] = { 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0xc0,
 0x00, 0x00, 0x01, 0xf0,
 0x00, 0x00, 0x07, 0xf0,
 0x0f, 0x00, 0x1f, 0xe0,
 0x1f, 0x80, 0x1f, 0xc0,
 0x0f, 0xc0, 0x3f, 0x80,
 0x07, 0xe0, 0x7e, 0x00,
 0x03, 0xf0, 0xff, 0x80,
 0x03, 0xf5, 0xff, 0xe0,
 0x07, 0xfd, 0xff, 0xf8,
 0x1f, 0xfc, 0xff, 0xe8,
 0xff, 0xe3, 0xbf, 0x70,
 0xde, 0x80, 0xb7, 0x00,
 0x71, 0x10, 0x4a, 0x80,
 0x03, 0x10, 0x4e, 0x40,
 0x02, 0x88, 0x8c, 0x20,
 0x05, 0x05, 0x04, 0x40,
 0x02, 0x82, 0x14, 0x40,
 0 x02, 0x40, 0x10, 0x80,
 0x02, 0x64, 0x1a, 0x80,
 0x00, 0x92, 0x29, 0x00,
 0x00, 0xb0, 0x48, 0x00,
 0x00, 0xc8, 0x90, 0x00,
 0x00, 0x85, 0x10, 0x00,
 0x00, 0x03, 0x00, 0x00,
 0x00, 0x00, 0x10, 0x00};

Suggestion: Come Back Later
If you are still uncertain about how this campfire bitmap is stored and interpreted, we suggest
you come back and reread this material after you’ve finished Chapter 11, “Raster Graphics in
OpenGL.”

To make use of this stipple pattern, we must first enable polygon stippling and then specify
this pattern as the stipple pattern. The PSTIPPLE example program does this, and then
draws a hexagon (stop sign) using the stipple pattern. Listing 6-10 is the pertinent code, and
Figure 6-27 shows the output from PSTIPPLE.

Page 196 OpenGL Super Bible!

Listing 6-10 Code from PSTIPPLE that draws a stippled hexagon

// This function does any needed initialization on the rendering
// context.
void SetupRC()
 {
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Set drawing color to red
 glColor3f(1.0f, 0.0f, 0.0f);

 // Enable polygon stippling
 glEnable(GL_POLYGON_STIPPLE);

 // Specify a specific stipple pattern
 glPolygonStipple(fire);
 }

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window
 glClear(GL_COLOR_BUFFER_BIT);

 …
 …

 // Begin the stop sign shape,
 // use a standard polygon for simplicity
 glBegin(GL_POLYGON);
 glVertex2f(-20.0f, 50.0f);
 glVertex2f(20.0f, 50.0f);
 glVertex2f(50.0f, 20.0f);
 glVertex2f(50.0f, -20.0f);
 glVertex2f(20.0f, -50.0f);
 glVertex2f(-20.0f, -50.0f);
 glVertex2f(-50.0f, -20.0f);
 glVertex2f(-50.0f, 20.0f);
 glEnd();

 …
 …

 // Flush drawing commands
 glFlush();
 }

OpenGL Super Bible! Page 197

Figure 6-27 Output from the PSTIPPLE program

Figure 6-28 shows the hexagon rotated somewhat. You’ll notice that the stipple pattern is
still used, but the pattern is not rotated with the polygon. That’s because the stipple pattern is
only used for simple polygon filling on screen. If you need to map a bitmap to a polygon so
that it mimics the polygon’s surface, you will have to use texture mapping (Chapter 12).

Figure 6-28 PSTIPPLE output with the polygon rotated, showing that the stipple pattern is
not rotated

Page 198 OpenGL Super Bible!

Polygon Construction Rules

When you are using many polygons to construct a complex surface, you’ll need to
remember two important rules.

The first rule is that all polygons must be planar. That is, all the vertices of the polygon must
lie in a single plane, as illustrated in Figure 6-29. The polygon cannot twist or bend in space.

Figure 6-29 Planar vs. nonplanar polygons

Here is yet another good reason to use triangles. No triangle can ever be twisted so that all
three points do not line up in a plane, because mathematically it only takes three points to
define a plane. (So if you can plot an invalid triangle, aside from winding it in the wrong
direction, the Nobel Prize committee may just be looking for you!)

The second rule of polygon construction is that the polygon’s edges must not intersect, and
the polygon must be convex. A polygon intersects itself if any two of its lines cross.
“Convex” means that the polygon cannot have any indentions. A more rigorous test of a
convex polygon is to draw some lines through it. If any given line enters and leaves the
polygon more than once, then the polygon is not convex. Figure 6-30 gives examples of
good and bad polygons.

Figure 6-30 Some valid and invalid primitive polygons

OpenGL Super Bible! Page 199

Why the Limitations on Polygons?
You may be wondering why OpenGL places the restrictions on polygon construction.
Handling polygons can become quite complex, and OpenGL’s restrictions allow it to use
very fast algorithms for the rendering of these polygons. We predict that you’ll not find these
restrictions burdensome, and that you’ll be able to build any shapes or objects you need using
the existing primitives. (And you can use GL_LINES to draw an otherwise illegal shape,
too.)

Subdivision and Edges

Even though OpenGL can only draw convex polygons, there’s still a way to create a
nonconvex polygon— by arranging two or more convex polygons together. For example,
let’s take a four-point star as shown in Figure 6-31. This shape is obviously not convex and
thus violates OpenGL’s rules for simple polygon construction. However, the star on the right
is composed of six separate triangles, which are legal polygons.

Figure 6-31 A nonconvex four-point star made up of six triangles

When the polygons are filled, you won’t be able to see any edges and the figure will seem to
be a single shape on screen. However, if you use glPolygonMode to switch to an outline
drawing, it would be distracting to see all those little triangles making up some larger
surface area.

OpenGL provides a special flag called an edge flag for this purpose. By setting and clearing
the edge flag as you specify a list of vertices, you inform OpenGL which line segments are
considered border lines (lines that go around the border of your shape), and which ones are
not (internal lines that shouldn’t be visible). The glEdgeFlag() function takes a single
parameter that sets the edge flag to True or False. When set to True, any vertices that follow
mark the beginning of a boundary line segment. Listing 6-11 shows an example of this from
the STAR example program on the CD.

Page 200 OpenGL Super Bible!

Listing 6-11 Example usage of glEdgeFlag from the STAR program

 // Begin the triangles
 GlBegin(GL_TRIANGLES);

 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f, 0.0f);
 glEdgeFlag(TRUE);
 glVertex2f(20.0f, 0.0f);
 glVertex2f(0.0f, 40.0f);

 glVertex2f(-20.0f,0.0f);
 glVertex2f(-60.0f,-20.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f,-40.0f);
 glEdgeFlag(TRUE);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(0.0f, -80.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(20.0f, -40.0f);
 glEdgeFlag(TRUE);

 glVertex2f(20.0f, -40.0f);
 glVertex2f(60.0f, -20.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(TRUE);

 // Center square as two triangles
 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f, 0.0f);
 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, 0.0f);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, -40.0f);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(TRUE);

 // Done drawing Triangles
 glEnd();

The Boolean variable bEdgeFlag is toggled on and off by a menu option to make the edges
appear and disappear. If this flag is True, then all edges are considered boundary edges and
will appear when the polygon mode is set to GL_LINES. In Figures 6-32a and 6-32b you
can see the output from STAR, showing the wireframe star with and without edges.

OpenGL Super Bible! Page 201

Figure 6-32a STAR program with edges enabled

Figure 6-32b STAR program without edges enabled

Page 202 OpenGL Super Bible!

Summary

We’ve covered a lot of ground in this chapter. At this point you can create your 3D space for
rendering, and you know how to draw everything from points and lines to complex
polygons. We’ve also shown you how to assemble these two dimensional primitives as the
surface of three-dimensional objects.

We encourage you to experiment with what you have learned in this chapter. Use your
imagination and create some of your own 3D objects before moving on to the rest of the
book. You’ll then have some personal samples to work with and enhance as you learn and
explore new techniques throughout the book.

Here Comes the Tank/Robot Simulation
Beginning with this chapter, we will begin constructing a tank and robot simulator as a
supplementary example (found on the CD). The goal of this simulation is to have both the
tank and robot roam around in a virtual landscape, allowing for viewpoints from the tank’s or
robot’s perspective. The tank/robot simulator is not explained as part of the text, but the
simulation will be gradually enhanced using the techniques presented in each chapter. You
can start now and view some of the objects that will exist in the virtual world of our tank and
robot. Observe and study how these objects are composed entirely of the primitives from this
chapter.

OpenGL Super Bible! Page 203

Reference Section

glBegin

Purpose
Used to denote the beginning of a group of vertices that define one or more
primitives.

Include File
<gl.h>

Syntax
void glBegin(GLenum mode);

Description
This function is used in conjunction with glEnd to delimit the vertices of an OpenGL
primitive. Multiple vertices sets may be included within a single glBegin/glEnd pair,
as long as they are for the same primitive type. Other settings may also be made with
additional OpenGL commands that affect the vertices following them. Only these
OpenGL functions may be called within a glBegin/glEnd sequence: glVertex,
glColor, glIndex, glNormal, glEvalCoord, glCallList, glCallLists, glTexCoord,
glEdgeFlag, and glMaterial.

Parameters

mode
GLenum: This value specifies the primitive to be constructed. It may be any of the
values in Table 6-1.

Returns
None.

Example

You can find this ubiquitous function in literally every example and supplementary sample
in this chapter. The following code shows a single point being drawn at the origin of the
x,y,z coordinate system.

 glBegin(GL_POINTS)
 glVertex3f(0.0f, 0.0f, 0.0f); //plots point at origin
 glEnd();
See Also

glEnd, glVertex

Table 6-1 OpenGL Primitives Supported by glBegin()

Mode Primitive Type

Page 204 OpenGL Super Bible!

GL_POINTS The specified vertices are used to create a single point each.

GL_LINES
The specified vertices are used to create line segments. Every
two vertices specify a single and separate line segment. If the
number of vertices is odd, the last one is ignored.

GL_LINE_STRIP
The specified vertices are used to create a line strip. After the
first vertex, each subsequent vertex specifies the next point to
which the line is extended.

GL_LINE_LOOP

Behaves as GL_LINE_STRIP, except a final line segment is
drawn between the last and the first vertex specified. This is
typically used to draw closed regions that may violate the rules
regarding GL_POLYGON usage.

GL_TRIANGLES
The specified vertices are used to construct triangles. Every
three vertices specify a new triangle. If the number of vertices
is not evenly divisible by three, the extra vertices are ignored.

GL_TRIANGLE_STRIP

The specified vertices are used to create a strip of triangles.
After the first three vertices are specified, each of any
subsequent vertices is used with the two preceding ones to
construct the next triangle. Each triplet of vertices (after the
initial set) is automatically rearranged to ensure consistent
winding of the triangles.

GL_TRIANGLE_FAN

The specified vertices are used to construct a triangle fan. The
first vertex serves as an origin, and each vertex after the third is
combined with the foregoing one and the origin. Any number
of triangles may be fanned in this manner.

GL_QUADS
Each set of four vertices is used to construct a quadrilateral (a
four-sided polygon). If the number of vertices is not evenly
divisible by four, the remaining ones are ignored.

GL_QUAD_STRIP

The specified vertices are used to construct a strip of
quadrilaterals. One quadrilateral is defined for each pair of
vertices after the first pair. Unlike the vertex ordering for
GL_QUADS, each pair of vertices is used in the reverse order
specified, to ensure consistent winding.

GL_POLYGON

The specified vertices are used to construct a convex polygon.
The polygon edges must not intersect. The last vertex is
automatically connected to the first vertex to insure the
polygon is closed.

OpenGL Super Bible! Page 205

glCullFace

Purpose
Specifies whether the front or back of polygons should be eliminated from drawing.

Include File
<gl.h>

Syntax
void glCullFace(GLenum mode);

Description
This function disables lighting, shading, and color calculations and operations on
either the front or back of a polygon. Eliminates unnecessary rendering computations
because the back side of polygons will never be visible regardless of rotation or
translation of the objects. Culling is enabled or disabled by calling glEnable and
glDisable with the GL_CULL_FACE parameter. The front and back of the polygon
are defined by use of glFrontFace() and by the order in which the vertices are
specified (clockwise or counterclockwise winding).

Parameters

mode
GLenum: Specifies which face of polygons should be culled. May be either
GL_FRONT or GL_BACK.

Returns
None.

Example

The following code (from the TRIANGLE example in this chapter) shows how the color and
drawing operations are disabled for the inside of the cone when the Boolean variable bCull
is set to True.

 // Clockwise-wound polygons are front facing; this is reversed
 // because we are using triangle fans
 glFrontFace(GL_CW);
 …
 …
 …
 // Turn culling on if flag is set
 if(bCull)
 glEnable(GL_CULL_FACE);
 else
 glDisable(GL_CULL_FACE);
See Also

glFrontFace, glLightModel

Page 206 OpenGL Super Bible!

glEdgeFlag

Purpose
Flags polygon edges as either boundary or nonboundary edges. This can be used to
determine whether interior surface lines are visible.

Include File
<gl.h>

Variations
void glEdgeFlag(GLboolean flag); void glEdgeFlagv(const GLboolean *flag);

Description
When two or more polygons are joined to form a larger region, the edges on the
outside define the boundary of the newly formed region. This function flags inside
edges as nonboundary. This is used only when the polygon mode is set to either
GL_LINE or GL_POINT.

Parameters

flag
GLboolean: Sets the edge flag to this value, True or False.

*flag
const GLboolean *: A pointer to a value that is used for the edge flag.

Returns
None.

Example

The following code from the STAR program in this chapter sets the edge flag to False for
triangle borders inside the region of the star. It draws the star either as a solid, an outline, or
just the vertices.

 // Draw back side as a polygon only, if flag is set
 if(iMode == MODE_LINE)
 glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);

 if(iMode == MODE_POINT)
 glPolygonMode(GL_FRONT_AND_BACK,GL_POINT);

 if(iMode == MODE_SOLID)
 glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);

 // Begin the triangles
 glBegin(GL_TRIANGLES);

 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f, 0.0f);
 glEdgeFlag(TRUE);
 glVertex2f(20.0f, 0.0f);

OpenGL Super Bible! Page 207

 glVertex2f(0.0f, 40.0f);

 glVertex2f(-20.0f,0.0f);
 glVertex2f(-60.0f,-20.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f,-40.0f);
 glEdgeFlag(TRUE);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(0.0f, -80.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(20.0f, -40.0f);
 glEdgeFlag(TRUE);

 glVertex2f(20.0f, -40.0f);
 glVertex2f(60.0f, -20.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(TRUE);

 // Center square as two tri angles
 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f, 0.0f);
 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, 0.0f);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, -40.0f);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(TRUE);

 // Done drawing Triangles
glEnd();
See Also

glBegin, glPolygonMode.

Page 208 OpenGL Super Bible!

glEnd

Purpose
Terminates a list of vertices that specify a primitive initiated by glBegin.

Include File
<gl.h>

Syntax
void glEnd();

Description
This function is used in conjunction with glBegin to delimit the vertices of an
OpenGL primitive. Multiple vertices sets may be included within a single
glBegin/glEnd pair, as long as they are for the same primitive type. Other settings
may also be made with additional OpenGL commands that affect the vertices
following them. Only these OpenGL functions may be called within a glBegin/glEnd
sequence: glVertex, glColor, glIndex, glNormal, glEvalCoord, glCallList,
glCallLists, glTexCoord, glEdgeFlag, and glMaterial.

Returns
None.

Example

You can find this ubiquitous function in literally every example and supplementary sample
in this chapter. The following code shows a single point being drawn at the origin of the
x,y,z coordinate system.

glBegin(GL_POINTS)
 glVertex3f(0.0f, 0.0f, 0.0f);
glEnd();
See Also

glBegin, glVertex

OpenGL Super Bible! Page 209

glFrontFace

Purpose
Defines which side of a polygon is the front or back.

Include File
<gl.h>

Syntax
void glFrontFace(GLenum mode);

Description
When a scene comprises objects that are closed (you cannot see the inside), color or
lighting calculations on the inside of the object are unnecessary. The glCullFace
function turns off such calculations for either the front or back of polygons. The
glFrontFace function determines which side of the polygons is considered the front.
If the vertices of a polygon as viewed from the front are specified so that they travel
clockwise around the polygon, the polygon is said have clockwise winding. If the
vertices travel counterclockwise, the polygon is said to have counterclockwise
winding. This function allows you to specify either the clockwise or
counterclockwise wound face to be the front of the polygon.

Parameters

mode
GLenum: Specifies the orientation of front-facing polygons: clockwise (GL_CW) or
counterclockwise (GL_CCW).

Returns
None.

Example

The following code from the TRIANGLE example in this chapter shows how the color and
drawing operations are disabled for the inside of the cone. It is also necessary to indicate
which side of the triangles are the outside by specifying clockwise winding.

 // Clockwise wound polygons are front facing, this is reversed
 // because we are using triangle fans
 glFrontFace(GL_CW);

 …
 …
 // Turn culling on if flag is set
 if(bCull)
 glEnable(GL_CULL_FACE);
 else
 glDisable(GL_CULL_FACE);
See Also

glCullFace, glLightModel

Page 210 OpenGL Super Bible!

glGetPolygonStipple

Purpose
Returns the current polygon stipple pattern.

Include File
<gl.h>

Syntax
void glGetPolygonStipple(GLubyte *mask);

Description
This function returns a 32 x 32-bit pattern that represents the polygon stipple pattern.
The pattern is copied to the memory location pointed to by mask. The packing of the
pixels is affected by the last call to glPixelStore.

Parameters

*mask
GLubyte: A pointer to the polygon stipple pattern.

Returns
None.

Example

The following code segment retrieves the current stipple pattern:

 GLubyte mask[32*4];
 // 4 bytes = 32bits per row X 32 rows

 …
 …
 glGetPolygonStipple(mask);
See Also

glPolygonStipple, glLineStipple, glPixelStore

OpenGL Super Bible! Page 211

glLineStipple

Purpose
Specifies a line stipple pattern for line-based primitivesGL_LINES,
GL_LINE_STRIP, and GL_LINE_LOOP.

Include File
<gl.h>

Syntax
void glLineStipple(GLint factor, GLushort pattern);

Description
This function uses the bit pattern to draw stippled (dotted and dashed) lines. The bit
pattern begins with bit 0 (the rightmost bit), so the actual drawing pattern is the
reverse of what is actually specified. The factor parameter is used to widen the
number of pixels drawn or not drawn along the line specified by each bit in pattern.
By default, each bit in pattern specifies one pixel. To use line stippling, you must
first enable stippling by calling

 glEnable(GL_LINE_STIPPLE);
Line stippling is disabled by default. If you are drawing multiple line segments, the
pattern is reset for each new segment. That is, if a line segment is drawn such that it
is terminated halfway through pattern, the next line segment specified is unaffected.

Parameters

factor
GLint: Specifies a multiplier that determines how many pixels will be affected by
each bit in the pattern parameter. Thus the pattern width is multiplied by this value.
The default value is 1 and the maximum value is clamped to 255.

pattern
GLushort: Sets the 16-bit stippling pattern. The least significant bit (bit 0) is used
first for the stippling pattern. The default pattern is all 1’s.

Returns
None.

Example

The following code from the LSTIPPLE example program show a series of lines drawn
using a stipple pattern of 0x5555 (01010101), which draws a dotted line. The repeat factor is
increased for each line drawn to demonstrate the widening of the dot pattern.

// Called to draw scene
void RenderScene(void)
 {
 GLfloat y; // Storage for varying Y coordinate
 GLint factor = 1; // Stippling factor
 GLushort pattern = 0x5555; // Stipple pattern

Page 212 OpenGL Super Bible!

 …
 …
 // Enable Stippling
 glEnable(GL_LINE_STIPPLE);
 // Step up Y axis 20 units at a time
 for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
 // Reset the repeat factor and pattern
 glLineStipple(factor,pat tern);
 // Draw the line
 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);
 glEnd();
 factor++;
 }
 …
 …
 }
See Also

glPolygonStipple

OpenGL Super Bible! Page 213

glLineWidth

Purpose
Sets the width of lines drawn with GL_LINES, GL_LINE_STRIP, or
GL_LINE_LOOP.

Include File
<gl.h>

Syntax
void glLineWidth(GLfloat width);

Description
This function sets the width in pixels of lines drawn with any of the line-based
primitives.

You can get the current line width setting by calling
 GLfloat fSize;
 …
 glGetFloatv(GL_LINE_WIDTH, &fSize);

The current line-width setting will be returned in fSize. In addition, the minimum
and maximum supported line widths can be found by calling

 GLfloat fSizes[2];
 …
 glGetFloatv(GL_LINE_WIDTH_RANGE,fSizes);

In this instance, the minimum supported line width will be returned in fSizes[0], and
the maximum supported width will be stored in fSizes[1]. Finally, the smallest
supported increment between line widths can be found by calling

 GLfloat fStepSize;
 …
 glGetFloatv(GL_LINE_WIDTH_GRANULARITY,&fStepSize);

For any implementation of OpenGL, the only line width guaranteed to be supported
is 1.0. For the Microsoft Windows generic implementation, the supported line widths
range from 0.5 to 10.0, with a granularity of 0.125.

Parameters

width
GLfloat: Sets the width of lines that are drawn with the line primitives. The default
value is 1.0.

Returns
None.

Example

The following code from the LINESW example program demonstrates drawing lines of
various widths.

 void RenderScene(void)
 {

Page 214 OpenGL Super Bible!

 GLfloat y; // Storage for varying Y coordinate
 GLfloat fSizes[2]; // Line width range metrics
 GLfloat fCurrSize; // Save current size

 …
 …
 …

 // Get line size metrics and save the smallest value
 glGetFloatv(GL_LINE_WIDTH_RAN GE,fSizes);
 fCurrSize = fSizes[0];

 // Step up Y axis 20 units at a time
 for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
 // Set the line width
 glLineWidth(fCurrSize);

 // Draw the line
 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);
 glEnd();

 // Increase the line width
 fCurrSize += 1.0f;
 }

 …
 …
 }
See Also

glPointSize

OpenGL Super Bible! Page 215

glPointSize

Purpose
Sets the point size of points drawn with GL_POINTS.

Include File
<gl.h>

Syntax
void glPointSize(GLfloat size);

Description
This function sets the diameter in pixels of points drawn with the GL_POINTS
primitive. You can get the current pixel size setting by calling

 GLfloat fSize;
 …
 glGetFloatv(GL_POINT_SIZE, &fSize);

The current pixel size setting will be returned in fSize. In addition, the minimum and
maximum supported pixel sizes can be found by calling

 GLfloat fSizes[2];
 …
glGetFloatv(GL_POINT_SIZE_RANGE,fSizes);

In this instance, the minimum supported point size will be returned in fSizes[0], and
the maximum supported size will be stored in fSizes[1]. Finally, the smallest
supported increment between pixel sizes can be found by calling

 GLfloat fStepSize;
 …
 glGetFloatv(GL_POINT_SIZE_GRANULARITY,&fStepSize);

For any implementation of OpenGL, the only point size guaranteed to be supported
is 1.0. For the Microsoft Windows generic implementation, the point sizes range
from 0.5 to 10.0, with a granularity of 0.125.

Parameters

size
GLfloat: Sets the diameter of drawn points. The default value is 1.0.

Returns
None.

Example

The following code from the POINTSZ sample program from this chapter gets the point size
range and granularity and uses them to gradually increase the size of points used to plot a
spiral pattern.

 GLfloat x,y,z,angle; // Storage for coordinates and angles
 GLfloat sizes[2]; // Store supported point size range
 GLfloat step; // Store supported point size increments
 GLfloat curSize; // Store current size

Page 216 OpenGL Super Bible!

 …
 …

 // Get supported point size range and step size
 glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
 glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

 // Set the initial point size
 curSize = sizes[0];

 // Set beginning z coordinate
 z = -50.0f;

 // Loop around in a circle three times
 for(angle = 0.0f; angle <= (2.0f*3.1415f)*3.0f; angle += 0.1f)
 {
 // Calculate x and y values on the circle
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Specify the point size before the primitive
 glPointSize(curSize);

 // Draw the point
 glBegin(GL_POINTS);
 glVertex3f(x, y, z);
 glEnd();

 // Bump up the z value and the point size
 z += 0.5f;
 curSize += step;
 }
See Also

glLineWidth

OpenGL Super Bible! Page 217

glPolygonMode

Purpose
Sets the rasterization mode used to draw polygons.

Include File
<gl.h>

Syntax
void glPolygonMode(GLenum face, GLenum mode);

Description
This function allows you to change how polygons are rendered. By default, polygons
are filled or shaded with the current color or material properties. However, you may
also specify that only the outlines or only the vertices are drawn. Furthermore, you
may apply this specification to the front, back, or both sides of polygons.

Parameters

face
GLenum: Specifies which face of polygons is affected by the mode change:
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

mode
GLenum: Specifies the new drawing mode. GL_FILL is the default, producing filled
polygons. GL_LINE produces polygon outlines, and GL_POINT only plots the
points of the vertices. The lines and points drawn by GL_LINE and GL_POINT are
affected by the edge flag set by glEdgeFlag.

Returns
None.

Example

The following code from the TRIANGLE example of this chapter sets the back side of
polygons to be drawn as outlines or filled regions, depending on the value of the Boolean
variable bOutline.

 // Draw back side as a polygon only, if flag is set
 if(bOutline)
 glPolygonMode(GL_BACK,GL_LINE);
 else
 glPolygonMode(GL_BACK,GL_FILL);
See Also

glEdgeFlag, glLineStipple, glLineWidth, glPointSize,glPolygonStipple

Page 218 OpenGL Super Bible!

glPolygonStipple

Purpose
Sets the pattern used for polygon stippling.

Include File
<gl.h>

Syntax
void glPolygonStipple(const GLubyte *mask);

Description
A 32 x 32-bit stipple pattern may be used for filled polygons by using this function
and enabling polygon stippling by calling glEnable(GL_POLYGON_STIPPLE). The
1’s in the stipple pattern are filled with the current color, and 0’s are not drawn.

Parameters

*mask
const GLubyte: Points to a 32 x 32-bit storage area that contains the stipple pattern.
The packing of bits within this storage area is affected by glPixelStore. By default,
the MSB (Most Significant Bit) is read first when determining the pattern.

Returns
None.

Example
The following code from the PSTIPPLE program on the CD in this chapter’s
subdirectory enables polygon stippling, establishes a stipple pattern, and then draws
a polygon in the shape of a hexagon (a stop sign).

See Also
glLineStipple, glGetPolygonStipple, glPixelStore

OpenGL Super Bible! Page 219

glVertex

Purpose
Specifies the 3D coordinates of a vertex.

Include File
<gl.h>

Variations
void glVertex2d(GLdouble x, GLdouble y);
void glVertex2f(GLfloat x, GLfloat y);
void glVertex2i(GLint x, GLint y);
void glVertex2s(GLshort x, GLshort y);
void glVertex3d(GLdouble x, GLdouble y, GLdouble z);
void glVertex3f(GLfloat x, GLfloat y, GLfloat z);
void glVertex3i(GLint x, GLint y, GLint z);
void glVertex3s(GLshort x, GLshort y, GLshort z);
void glVertex4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w);
void glVertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w);
void glVertex4i(GLint x, GLint y, GLint z, GLint w);
void glVertex4s(GLshort x, GLshort y, GLshort z, GLshort w);
void glVertex2dv(const GLdouble *v);
void glVertex2fv(const GLfloat *v);
void glVertex2iv(const GLint *v);
void glVertex2sv(const GLshort *v);
void glVertex3dv(const GLdouble *v);
void glVertex3fv(const GLfloat *v);
void glVertex3iv(const GLint *v);
void glVertex3sv(const GLshort *v);
void glVertex4dv(const GLdouble *v);
void glVertex4fv(const GLfloat *v);
void glVertex4iv(const GLint *v);
void glVertex4sv(const GLshort *v);

Description
This function is used to specify the vertex coordinates of the points, lines, and
polygons specified by a previous call to glBegin. This function may not be called
outside the scope of a glBegin/glEnd pair.

Parameters

x, y, z
The x, y, and z coordinates of the vertex. When z is not specified, the default value is
0.0.

w

Page 220 OpenGL Super Bible!

The w coordinate of the vertex. This coordinate is used for scaling purposes and by
default is set to 1.0. Scaling occurs by dividing the other three coordinates by this
value.

*v
An array of values that contain the 2, 3, or 4 values needed to specify the vertex.

Returns
None.

Example

You can find this ubiquitous function in literally every example and supplementary sample
in this chapter. The following code shows a single point being drawn at the origin of the
x,y,z coordinate system.

 glBegin(GL_POINTS)
 glVertex3f(0.0f, 0.0f, 0.0f);
 glEnd();
See Also

glBegin, glEnd

OpenGL Super Bible! Page 221

Chapter 7
Manipulating 3D Space: Coordinate Transformations

What you’ll learn in this chapter:

How to... Functions You’ll Use

Establish your position in the scene gluLookAt/glTranslate/glRotate
Position objects within the scene glTranslate/glRotate
Scale objects glScale
Establish a perspective transformation gluPerspective
Perform your own matrix transformations glLoadMatrix/glMultMatrix

In Chapter 6, you learned how to draw points, lines, and various primitives in 3D. To turn a
collection of shapes into a coherent scene, you must arrange them in relation to one another
and to the viewer. In this chapter, you’ll start moving shapes and objects around in your
coordinate system. (Actually, you don’t move the objects, but rather shift the coordinate
system to create the view you want.) The ability to place and orient your objects in a scene is
a crucial tool for any 3D graphics programmer. As you will see, it is actually very
convenient to describe your objects’ dimensions around the origin, and then translate and
rotate the objects into the desired position.

Is This the Dreaded Math Chapter?

Yes, this is the dreaded math chapter. However, you can relax— we are going to take a more
moderate approach to these principles than some texts.

The keys to object and coordinate transformations are two modeling matrices maintained by
OpenGL. To familiarize you with these matrices, this chapter strikes a compromise between
two extremes in computer graphics philosophy. On the one hand, we could warn you,
“Please review a textbook on linear algebra before reading this chapter.” On the other hand,
we could perpetuate the deceptive reassurance that you can “learn to do 3D graphics without
all those complex mathematical formulas.” But we don’t agree with either camp.

In reality, yes, you can get along just fine without understanding the finer mathematics of
3D graphics, just as you can drive your car every day without having to know anything at all
about automotive mechanics and the internal combustion engine. But you’d better know
enough about your car to realize that you need an oil change every so often, that you have to
fill the tank with gas regularly and change the tires when they get bald. This makes you a

Page 222 OpenGL Super Bible!

responsible (and safe!) automobile owner. If you want to be a responsible and capable
OpenGL programmer, the same standards apply. You want to understand at least the basics,
so you know what can be done and what tools will best suit the job.

So, even if you don’t have the ability to multiply two matrices in your head, you need to
know what matrices are and that they are the means to OpenGL’s 3D magic. But before you
go dusting off that old linear algebra textbook (doesn’t everyone have one?), have no fear—
OpenGL will do all the math for you. Think of it as using a calculator to do long division
when you don’t know how to do it on paper. Though you don’t have to do it yourself, you
still know what it is and how to apply it. See— you can have your cake and eat it too!

Understanding Transformations

Transformations make possible the projection of 3D coordinates onto a 2D screen.
Transformations also allow you to rotate objects around, move them about, and even stretch,
shrink, and wrap them. Rather than modifying your object directly, a transformation
modifies the coordinate system. Once a transformation rotates the coordinate system, then
the object will appear rotated when it is drawn. There are three types of transformations that
occur between the time you specify your vertices and the time they appear on the screen:
viewing, modeling, and projection. In this section we will examine the principles of each
type of transformation, which you will find summarized in Table 7-1.

Table 7-1 Summary of the OpenGL Transformations

Transformation Use

Viewing Specifies the location of the viewer or camera
Modeling Moves objects around scene
Modelview Describes the duality of viewing and modeling transformations
Projection Clips and sizes the viewing volume
Viewport Scales final output to the window

Eye Coordinates

An important concept throughout this chapter is that of eye coordinates. Eye coordinates are
from the viewpoint of the observer, regardless of any transformations that may occur— think
of them as “absolute” screen coordinates. Thus, eye coordinates are not real coordinates, but

OpenGL Super Bible! Page 223

rather represent a virtual fixed coordinate system that is used as a common frame of
reference. All of the transformations discussed in this chapter are described in terms of their
effects relative to the eye coordinate system.

Figure 7-1 shows the eye coordinate system from two viewpoints. On the left (a), the eye
coordinates are represented as seen by the observer of the scene (that is, perpendicular to the
monitor). On the right (b), the eye coordinate system is rotated slightly so you can better see
the relation of the z-axis. Positive x and y are pointed right and up, respectively, from the
viewer’s perspective. Positive z travels away from the origin toward the user, and negative z
values travel farther away from the viewpoint into the screen.

Figure 7-1 Two perspectives of eye coordinates

When you draw in 3D with OpenGL, you use the Cartesian coordinate system. In the
absence of any transformations, the system in use would be identical to the eye coordinate
system. All of the various transformations change the current coordinate system with respect
to the eye coordinates. This, in essence, is how you move and rotate objects in your scene—
by moving and rotating the coordinate system with respect to eye coordinates. Figure 7-2
gives a two-dimensional example of the coordinate system rotated 45º clockwise by eye
coordinates. A square plotted on this rotated coordinate system would also appear rotated.

Page 224 OpenGL Super Bible!

Figure 7-2 A coordinate system rotated with respect to eye coordinates

In this chapter you’ll study the methods by which you modify the current coordinate system
before drawing your objects. You can even save the state of the current system, do some
transformations and drawing, and then restore the state and start over again. By chaining
these events, you will be able to place objects all about the scene and in various orientations.

Viewing Transformations

The viewing transformation is the first to be applied to your scene. It is used to determine
the vantage point of the scene. By default, the point of observation is at the origin (0,0,0)
looking down the negative z-axis (“into” the monitor screen). This point of observation is
moved relative to the eye coordinate system to provide a specific vantage point. When the
point of observation is located at the origin, then objects drawn with positive z values would
be behind the observer.

The viewing transformation allows you to place the point of observation anywhere you
want, and looking in any direction. Determining the viewing transformation is like placing
and pointing a camera at the scene.

In the scheme of things, the viewing transformation must be specified before any other
transformations. This is because it moves the currently working coordinate system in respect
to the eye coordinate system. All subsequent transformations then occur based on the newly
modified coordinate system. Later you’ll see more easily how this works, when we actually
start looking at how to make these transformations.

Modeling Transformations

Modeling transformations are used to manipulate your model and the particular objects
within it. This transformation moves objects into place, rotates them, and scales them.
Figure 7-3 illustrates three modeling transformations that you will apply to your objects.

OpenGL Super Bible! Page 225

Figure 7-3a shows translation, where an object is moved along a given axis. Figure 7-3b
shows a rotation, where an object is rotated about one of the axes. Finally, Figure 7-3c
shows the effects of scaling, where the dimensions of the object are increased or decreased
by a specified amount. Scaling can occur nonuniformly (the various dimensions can be
scaled by different amounts), and this can be used to stretch and shrink objects.

Figure 7-3 The modeling transformation

The final appearance of your scene or object can depend greatly on the order in which the
modeling transformations are applied. This is particularly true of translation and rotation.
Figure 7-4a shows the progression of a square rotated first about the z-axis and then
translated down the newly transformed x-axis. In Figure 7-4b, the same square is first
translated down the x-axis and then rotated around the z-axis. The difference in the final
dispositions of the square occurs because each transformation is performed with respect to
the last transformation performed. In Figure 7-4a, the square is rotated with respect to the
origin first. In 7-4b, after the square is translated, the rotation is then performed around the
newly translated origin.

Page 226 OpenGL Super Bible!

Figure 7-4 Modeling transforms: rotation/translation and translation/rotation

The Modelview Duality

The viewing and the modeling transformations are, in fact, the same in terms of their
internal effects as well as the final appearance of the scene. The distinction between the two
is made purely as a convenience for the programmer. There is no real difference between
moving an object backward, and moving the reference system forward— as shown in Figure
7-5, the net effect is the same. (You experience this firsthand when you’re sitting in your car
at an intersection and you see the car next to you roll forward; it may seem to you that your
own car is rolling backwards.). The term “modelview” is used here to indicate that you can
think of this transformation either as the modeling transformation, or the viewing
transformation, but in fact there is no distinction— thus, it is the modelview transformation.

OpenGL Super Bible! Page 227

Figure 7-5 Two ways of viewing the viewing transformation

The viewing transformation, therefore, is essentially nothing but a modeling transformation
that you apply to a virtual object (the viewer) before drawing objects. As you will soon see,
new transformations are repeatedly specified as you place more and more objects in the
scene. The initial transformation provides a reference from which all other transformations
are based.

Projection Transformations

The projection transformation is applied to your final Modelview orientation. This
projection actually defines the viewing volume and establishes clipping planes. More
specifically, the projection transformation specifies how a finished scene (after all the
modeling is done) is translated to the final image on the screen. You will learn about two
types of projections in this chapter: orthographic and perspective.

In an orthographic projection, all the polygons are drawn on screen with exactly the relative
dimensions specified. This is typically used for CAD, or blueprint images where the precise
dimensions are being rendered realistically.

A perspective projection shows objects and scenes more as they would appear in real life
than in a blueprint. The trademark of perspective projections is foreshortening, which makes
distant objects appear smaller than nearby objects of the same size. And parallel lines will
not always be drawn parallel. In a railroad track, for instance, the rails are parallel, but with
perspective projection they appear to converge at some distant point. We call this point the
vanishing point.

The benefit of perspective projection is that you don’t have to figure out where lines
converge, or how much smaller distant objects are. All you need to do is specify the scene
using the Modelview transformations, and then apply the perspective projection. It will work
all the magic for you.

Page 228 OpenGL Super Bible!

Figure 7-6 compares orthographic and perspective projections on two different scenes.

Figure 7-6 Two examples of orthographic vs. perspective projections

In general, you should use orthographic projections when you are modeling simple objects
that are unaffected by the position and distance of the viewer. Orthographic views usually
occur naturally when the ratio of the object’s size to its distance from the viewer is quite
small (say, a large object that’s far away). Thus, an automobile viewed on a showroom floor
can be modeled orthographically, but if you are standing directly in front of the car and
looking down the length of it, perspective would come into play. Perspective projections are
used for rendering scenes that contain many objects spaced apart, for walk-through or flying
scenes, or for modeling any large objects that may appear distorted depending on the
viewer’s location. For the most part, perspective projections will be the most typical.

Viewport Transformations

When all is said and done, you end up with a two-dimensional projection of your scene that
will be mapped to a window somewhere on your screen. This mapping to physical window
coordinates is the last transformation that is done, and it is called the viewport
transformation. The viewport was discussed briefly in Chapter 3, where you used it to
stretch an image or keep a scene squarely placed in a rectangular window.

Matrix Munching

Now that you’re armed with some basic vocabulary and definitions of transformations,
you’re ready for some simple matrix mathematics. Let’s examine how OpenGL performs
these transformations and get to know the functions you will call to achieve your desired
effects.

The mathematics behind these transformations are greatly simplified by the mathematical
notation of the matrix. Each of the transformations we have discussed can be achieved by
multiplying a matrix that contains the vertices, by a matrix that describes the transformation.

OpenGL Super Bible! Page 229

Thus all the transformations achievable with OpenGL can be described as a multiplication of
two or more matrices.

What Is a Matrix?

A matrix is nothing more than a set of numbers arranged in uniform rows and columns— in
programming terms, a two-dimensional array. A matrix doesn’t have to be square, but each
row or column must have the same number of elements as every other row or column in the
matrix. Figure 7-7 presents some examples of matrices. (These don’t represent anything in
particular but only serve to demonstrate matrix structure.) Note that a matrix can have but a
single column.

Figure 7-7 Examples of matrices

Our purpose here is not to go into the details of matrix mathematics and manipulation. If you
want to know more about manipulating matrices and hand-coding some special
transformations, see Appendix B for some good references.

The Transformation Pipeline

To effect the types of transformations described in this chapter, you will modify two
matrices in particular: the Modelview matrix, and the Projection matrix. Don’t worry,
OpenGL gives you some high-level functions that you can call for these transformations.
Only if you want to do something unusual do you need to call the lower-level functions that
actually set the values contained in the matrices.

The road from raw vertex data to screen coordinates is a long one. Figure 7-8 is a flowchart
of this process. First, your vertex is converted to a 1 x 4 matrix in which the first three
values are the x, y, and z coordinates. The fourth number is a scaling factor that you can
apply manually by using the vertex functions that take four values. This is the w coordinate,
usually 1.0 by default. You will seldom modify this value directly but will apply one of the
scaling functions to the Modelview matrix instead.

Page 230 OpenGL Super Bible!

Figure 7-8 The vertex transformation pipeline

The vertex is then multiplied by the Modelview matrix, which yields the transformed eye
coordinates. The eye coordinates are then multiplied by the Projection matrix to yield clip
coordinates. This effectively eliminates all data outside the viewing volume. The clip
coordinates are then divided by the w coordinate to yield normalized device coordinates.
The w value may have been modified by the Projection matrix or the Modelview matrix,
depending on the transformations that may have occurred. Again, OpenGL and the high-
level matrix functions will hide all this from you.

Finally, your coordinate triplet is mapped to a 2D plane by the viewport transformation. This
is also represented by a matrix, but not one that you will specify or modify directly. OpenGL
will set it up internally depending on the values you specified to glViewport.

The Modelview Matrix

The Modelview matrix is a 4 x 4 matrix that represents the transformed coordinate system
you are using to place and orient your objects. The vertices you provide for your primitives
are used as a single-column matrix and multiplied by the Modelview matrix to yield new
transformed coordinates in relation to the eye coordinate system.

In Figure 7-9, a matrix containing data for a single vertex is multiplied by the Modelview
matrix to yield new eye coordinates. The vertex data is actually four elements, with an extra
value w, that represents a scaling factor. This value is set by default to 1.0, and rarely will
you change this yourself.

OpenGL Super Bible! Page 231

Figure 7-9 Matrix equation that applies the Modelview transformation to a single vertex

Translation

Let’s take an example that modifies the Modelview matrix. Say you wanted to draw a cube
using the AUX library’s auxWireCube() function. You would simply call

auxWireCube(10.0f);

and you would have a cube centered at the origin that measures 10 units on a side. To move
the cube up the y-axis by 10 units before drawing it, you would multiply the Modelview
matrix by a matrix that describes a translation of 10 units up the y-axis, and then do your
drawing. In skeleton form, the code looks like this:

// Construct a translation matrix for positive 10 Y
...

// Multiply it by the Modelview matrix
...

// Draw the cube
auxWireCube(10.0f);

Actually, such a matrix is fairly easy to construct, but it would require quite a few lines of
code. Fortunately, a high-level function is provided that does this for you:

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

This function takes as parameters the amount to translate along the x, y, and z directions. It
then constructs an appropriate matrix and does the multiplication. Now the pseudocode from
above looks like the following, and the effect is illustrated in Figure 7-10.

// Translate up the y-axis 10 units
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the cube
auxWireCube(10.0f);

Page 232 OpenGL Super Bible!

Figure 7-10 A cube translated 10 units in the positive y direction

Rotation

To rotate an object about one of the three axes, you would have to devise a Rotation matrix
to be multiplied by the Modelview matrix. Again, a high-level function comes to the rescue:

glRotatef((GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

Here we are performing a rotation around the vector specified by the x, y, and z arguments.
The angle of rotation is in the counterclockwise direction measured in degrees and specified
by the argument angle. In the simplest of cases, the rotation is around one of the axes, so
only that value needs to be specified.

You can also perform a rotation around an arbitrary axis by specifying x, y, and z values for
that vector. To see the axis of rotation, you can just draw a line from the origin to the point
represented by (x,y,z). The following code rotates the cube by 45º around an arbitrary axis
specified by (1,1,1), as illustrated in Figure 7-11.

// Perform the transformation
glRotatef(90.0f, 1.0f, 1.0f, 1.0f);

// Draw the cube
auxWireCube(10.0f);

OpenGL Super Bible! Page 233

Figure 7-11 A cube rotated about an arbitrary axis

Scaling

A scaling transformation increases the size of your object by expanding all the vertices
along the three axes by the factors specified. The function

glScalef(GLfloat x, GLfloat y, GLfloat z);

multiplies the x, y, and z values by the scaling factors specified.

Scaling does not have to be uniform. You can use it to stretch or squeeze objects, as well.
For example, the following code will produce a cube that is twice as large along the x- and
z-axis as the cubes discussed in the previous examples, but still the same along the y-axis.
The result is shown in Figure 7-12.

// Perform the scaling transformation
glScalef(2.0f, 1.0f, 2.0f);

// Draw the cube
auxWireCube(10.0f);

Page 234 OpenGL Super Bible!

Figure 7-12 A nonuniform scaling of a cube

The Identity Matrix

You may be wondering about now why we had to bother with all this matrix stuff in the first
place. Can’t we just call these transformation functions to move our objects around and be
done with it? Do we really need to know that it is the Modelview matrix that is being
modified?

The answer is yes and no, but only if you are drawing a single object in your scene. This is
because the effects of these functions are cumulative. Each time you call one, the
appropriate matrix is constructed and multiplied by the current Modelview matrix. The new
matrix then becomes the current Modelview matrix, which is then multiplied by the next
transformation, and so on.

Suppose you want to draw two spheres— one 10 units up the positive y-axis, and one 10
units out the positive x-axis, as shown in Figure 7-13. You might be tempted to write code
that looks something like this:

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
auxSolidSphere(1.0f);

// Go 10 units out the x-axis
glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere
auxSolidSphere(1.0f);

OpenGL Super Bible! Page 235

Figure 7-13 Two spheres drawn on the y- and x-axis

Consider, however, that each call to glTranslate is cumulative on the Modelview matrix, so
the second call would translate 10 units in the positive x direction from the previous
translation in the y direction. This would yield the results shown in Figure 7-14.

Figure 7-14 The result of two consecutive translations

You could make an extra call to glTranslate to back down the y-axis 10 units in the negative
direction, but this would make some complex scenes very difficult to code and debug. A
simpler method would be to reset the Modelview matrix to a known state— in this case,
centered at the origin of our eye coordinate system.

This is done by loading the Modelview matrix with the Identity matrix. The Identity matrix
specifies that no transformation is to occur, in effect saying that all the coordinates you
specify when drawing are in eye coordinates. An Identity matrix contains all 0’s with the

Page 236 OpenGL Super Bible!

exception of a diagonal row of ones. When this matrix is multiplied by any vertex matrix,
the result is that the vertex matrix is unchanged. Figure 7-15 shows this equation.

Figure 7-15 Multiplying a vertex matrix by the identity matrix yields the same vertex
matrix

As we’ve already stated, the details of performing matrix multiplication are outside the
scope of this book. For now, just remember this: Loading the Identity matrix means that no
transformations are performed on the vertices. In essence, you are resetting the Modelview
matrix back to the origin.

The following two lines load the identity matrix into the Modelview matrix:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

The first line specifies that the current operating matrix is the Modelview matrix. Once you
set the current operating matrix (the matrix that your matrix functions are affecting), it
remains the active matrix until you change it. The second line loads the current matrix (in
this case, the Modelview matrix) with the identity matrix.

Now the following code will produce results as shown in Figure 7-13:

// Set current matrix to Modelview and reset
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
auxSolidSphere(1.0f);

// Reset Modelview matrix again
glLoadIdentity();

// Go 10 units out the x-axis
glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere
auxSolidSphere(1.0f);

OpenGL Super Bible! Page 237

The Matrix Stacks

It is not always desirable to reset the Modelview matrix to Identity before placing every
object. Often you will want to save the current transformation state and then restore it after
some objects have been placed. This is most convenient when you have initially transformed
the Modelview matrix as your viewing transformation (and thus are no longer located at the
origin).

To facilitate this, OpenGL maintains a matrix stack for both the Modelview and Projection
matrices. A matrix stack works just like an ordinary program stack. You can push the
current matrix onto the stack to save it, then make your changes to the current matrix.
Popping the matrix off the stack then restores it. Figure 7-16 shows the stack principle in
action.

Figure 7-16 The matrix stack in action

Texture Matrix Stack:
The texture stack is another matrix stack available to the programmer. This is used for the
transformation of texture coordinates. Chapter 12 examines texture mapping and texture
coordinates and contains a discussion of the texture matrix stack.

The stack depth can reach a maximum value that can be retrieved with a call to either

glGet(GL_MAX_MODELVIEW_STACK_DEPTH);

or

glGet(GL_MAX_PROJECTION_STACK_DEPTH);

Page 238 OpenGL Super Bible!

If you exceed the stack depth, you’ll get a GL_STACK_OVERFLOW; if you try to pop a
matrix value off the stack when there is none, you will generate a
GL_STACK_UNDERFLOW. The stack depth is implementation dependent. For the
Microsoft software implementation these values are 32 for the Modelview and 2 for the
Projection stack.

A Nuclear Example

Let’s put to use what we have learned. In the next example, we will build a crude, animated
model of an atom. This atom will have a single sphere at the center to represent the nucleus,
and three electrons in orbit about the atom. Here we’ll use an orthographic projection, as we
have previously in this book. (Some other interesting projections are covered in the
upcoming section, “Using Projections.”)

Our ATOM program uses a timer to move the electrons four times a second (undoubtedly
much slower than any real electrons!). Each time the Render function is called, the angle of
revolution about the nucleus is incremented. Also, each electron lies in a different plane.
Listing 7-1 shows the Render function for this example, and the output from the ATOM
program is shown in Figure 7-17.

Figure 7-17 Output from the ATOM example program

Listing 7-1 Render function from ATOM example program

// Called to draw scene
void RenderScene(void)
 {
 // Angle of revolution around the nucleus
 static float fElect1 = 0.0f;

OpenGL Super Bible! Page 239

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Reset the modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // Translate the whole scene out and into vi ew
 // This is the initial viewing transformation
 glTranslatef(0.0f, 0.0f, -100.0f);

 // Red Nucleus
 glRGB(255, 0, 0);
 auxSolidSphere(10.0f);

 // Yellow Electrons
 glRGB(255,255,0);

 // First Electron Orbit
 // Save viewing transformation
 glPushMatrix();

 // Rotate by angle of revolution
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

 // Translate out from origin to orbit distance
 glTranslatef(90.0f, 0.0f, 0.0f);

 // Draw the electron
 auxSolidSphere(6.0f);

 // Restore the viewing transformation
 glPopMatrix();

 // Second Electron Orbit
 glPushMatrix();
 glRotatef(45.0f, 0.0f, 0.0f, 1.0f);
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);
 glTranslatef(-70.0f, 0.0f, 0.0f);
 auxSolidSphere(6.0f);
 glPopMatrix();

 // Third Electron Orbit
 glPushMatrix();
 glRotatef(360.0f, -45.0f, 0.0f, 0.0f, 1.0f);
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);
 glTranslatef(0.0f, 0.0f, 60.0f);
 auxSolidSphere(6.0f);
 glPopMatrix();

 // Increment the angle of revolution
 fElect1 += 10.0f;
 if(fElect1 > 360.0f)
 fElect1 = 0.0f;

Page 240 OpenGL Super Bible!

 // Flush drawing commands
 glFlush();
 }

Let’s examine the code for placing one of the electrons, a couple of lines at a time. The first
line saves the current Modelview matrix by pushing the current transformation on the stack:

// First Electron Orbit
// Save viewing transformation
glPushMatrix();

Now the coordinate system is rotated around the y axis by an angle fElect1:

// Rotate by angle of revolution
glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

Now the electron is drawn by translating down the newly rotated coordinate system:

// Translate out from origin to orbit distance
glTranslatef(90.0f, 0.0f, 0.0f);

Then the electron is drawn (as a solid sphere), and we restore the Modelview matrix by
popping it off the matrix stack:

// Draw the electron
auxSolidSphere(6.0f);

// Restore the viewing transformation
glPopMatrix();

The other electrons are placed similarly.

Using Projections

In our examples so far we have used the Modelview matrix to position our vantage point of
the viewing volume and to place our objects therein. The Projection matrix actually specifies
the size and shape of our viewing volume.

Thus far in this book, we have created a simple parallel viewing volume using the function
glOrtho, setting the near and far, left and right, and top and bottom clipping coordinates.
When the Projection matrix is loaded with the Identity matrix, the diagonal line of 1’s
specifies that the clipping planes extend from the origin to positive 1 in all directions. The
projection matrix does no scaling or perspective adjustments. As you will soon see, there are
some alternatives to this approach.

OpenGL Super Bible! Page 241

Orthographic Projections

An orthographic projection, used for most of this book thus far, is square on all sides. The
logical width is equal at the front, back, top, bottom, left, and right sides. This produces a
parallel projection, which is useful for drawings of specific objects that do not have any
foreshortening when viewed from a distance. This is good for CAD or architectural
drawings, for which you want to represent the exact dimensions and measurements on
screen.

Figure 7-18 shows the output from the example program ORTHO on the CD in this
chapter’s subdirectory. To produce this hollow, tube-like box, we used an orthographic
projection just as we did for all our previous examples. Figure 7-19 shows the same box
rotated more to the side so you can see how long it actually is.

Figure 7-18 A hollow square tube shown with an orthographic projection

Page 242 OpenGL Super Bible!

Figure 7-19 A side view showing the length of the square tube

In Figure 7-20, you’re looking directly down the barrel of the tube. Because the tube does
not converge in the distance, this is not an entirely accurate view of how such a tube would
appear in real life. To add some perspective, we use a perspective projection.

Figure 7-20 Looking down the barrel of the tube

OpenGL Super Bible! Page 243

Perspective Projections

A perspective projection performs perspective division to shorten and shrink objects that are
farther away from the viewer. The width of the back of the viewing volume does not have
the same measurements as the front of the viewing volume. Thus an object of the same
logical dimensions will appear larger at the front of the viewing volume than if it were
drawn at the back of the viewing volume.

The picture in our next example is of a geometric shape called a frustum. A frustum is a
section of a pyramid viewed from the narrow end to the broad end. Figure 7-21 shows the
frustum, with the observer in place.

Figure 7-21 A perspective projection defined by a frustum

You can define a frustum with the function glFrustum. Its parameters are the coordinates
and distances between the front and back clipping planes. However, glFrustum is not very
intuitive about setting up your projection to get the desired effects. The utility function
gluPerspective is easier to use and somewhat more intuitive:

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear,
 GLdouble zFar);

Parameters for the gluPerspective function are a field-of-view angle in the vertical direction;
the aspect ratio of the height to width; and the distances to the near and far clipping planes.
See Figure 7-22. The aspect ratio is then found by dividing the width (w) by the height (h) of
the front clipping plane.

Page 244 OpenGL Super Bible!

Figure 7-22 The frustum as defined by gluPerspective

Listing 7-2 shows how we change our orthographic projection from the previous examples
to use a perspective projection. Foreshortening adds realism to our earlier orthographic
projections of the square tube, as shown in Figures 7-23, 7-24, and 7-25. The only
substantial change we made for our typical projection code in Listing 7-2 is the added call to
gluPerspective.

Figure 7-23 The square tube with a perspective projection

OpenGL Super Bible! Page 245

Figure 7-24 Side view with foreshortening

Figure 7-25 Looking down the barrel of the tube with perspective added

Page 246 OpenGL Super Bible!

Listing 7-2 Setting up the perspective projection for the PERSPECT example program

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat fAspect;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 fAspect = (GLfloat)w/(GLfloat)h;

 // Reset coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Produce the perspective projection
 gluPerspective(60.0f, fAspect, 1.0, 400.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

A Far-Out Example

For a complete example showing Modelview manipulation and perspective projections, we
have modeled the Sun and the Earth/Moon system in revolution. We have enabled some
lighting and shading for drama, so you can more easily see the effects of our operations.
You’ll be learning about shading and lighting in the next two chapters.

In our model, we have the Earth moving around the Sun, and the Moon revolving around the
Earth. A light source is placed behind the observer to illuminate the Sun sphere. The light is
then moved to the center of the Sun in order to light the Earth and Moon from the direction
of the Sun, thus producing phases. This is a dramatic example of how easy it is to produce
realistic effects with OpenGL.

Listing 7-3 shows the code that sets up our projection, and the rendering code that keeps the
system in motion. A timer elsewhere in the program invalidates the window four times a
second to keep the Render function in action. Notice in Figures 7-26 and 7-27 that when the
Earth appears larger, it’s on the near side of the Sun; on the far side, it appears smaller.

OpenGL Super Bible! Page 247

Figure 7-26 The Sun/Earth/Moon system with the Earth on the near side

Figure 7-27 The Sun/Earth/Moon system with the Earth on the far side

Page 248 OpenGL Super Bible!

Listing 7-3 Code that produces the Sun/Earth/Moon System

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat fAspect;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 // Calculate aspect ratio of the window
 fAspect = (GLfloat)w/(GLfloat)h;

 // Set the perspective coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Field of view of 45 degrees, near and far planes 1.0 and 425
 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Modelview matrix reset
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

// Called to draw scene
void RenderScene(void)
 {
 // Earth and Moon angle of revolution
 static float fMoonRot = 0.0f;
 static float fEarthRot = 0.0f;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | G L_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Set light position before viewing transformation
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

 // Translate the whole scene out and into view
 glTranslatef(0.0f, 0.0f, -300.0f);

 // Set material color, Red
 // Sun
 glRGB(255, 255, 0);
 auxSolidSphere(15.0f);

 // Move the light after we draw the sun!

OpenGL Super Bible! Page 249

 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

 // Rotate coordinate system
 glRotatef(fEarthRot, 0.0f, 1.0f, 0.0f);

 // Draw the Earth
 glRGB(0,0,255);
 glTranslatef(105.0f,0.0f,0.0f);
 auxSolidSphere(15.0f);

 // Rotate from Earth-based coordinates and draw Moon
 glRGB(200,200,200);
 glRotatef(fMoonRot,0.0f, 1.0f, 0.0f);
 glTranslatef(30.0f, 0.0f, 0.0f);
 fMoonRot+= 15.0f;
 if(fMoonRot > 360.0f)
 fMoonRot = 0.0f;

 auxSolidSphere(6.0f);

 // Restore the matrix state
 glPopMatrix();// Modelview matrix

 // Step earth orbit 5 degrees
 fEarthRot += 5.0f;
 if(fEarthRot > 360.0f)
 fEarthRot = 0.0f;

 // Flush drawing commands
 glFlush();
 }

Advanced Matrix Manipulation

You don’t have to use the high-level functions to produce your transformations. We
recommend that you do, however, because those functions often are highly optimized for
their particular purpose, whereas the low-level functions are designed for general use. Two
of these high-level functions make it possible for you to load your own matrix and multiply
it into either the Modelview or Projection matrix stacks.

Loading a Matrix

You can load an arbitrary matrix into the Projection, Modelview, or Texture matrix stacks.
First, declare an array to hold the 16 values of a 4 x 4 matrix. Make the desired matrix stack
the current one, and call glLoadMatrix.

The matrix is stored in column-major order, which simply means that each column is
traversed first from top to bottom. Figure 7-28 shows the matrix elements in numbered
order. The following code shows an array being loaded with the Identity matrix, then being
loaded into the Modelview matrix stack. This is equivalent to calling glLoadIdentity using
the higher-level functions.

Page 250 OpenGL Super Bible!

// Equivalent, but more flexible
glFloat m[] = { 1.0f, 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f };

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m);

Figure 7-28 Column-major matrix ordering

Performing Your Own Transformations

You can load an array with an arbitrary matrix if you want, and multiply it, too, into one of
the three matrix stacks. The following code shows a Transformation matrix that translates 10
units along the x-axis. This matrix is then multiplied into the Modelview matrix. You can
also achieve this affect by calling glTranslatef.

 // Define the Translation matrix
 glFloat m[] = { 1.0f, 0.0f, 0.0f, 10.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f };

 // Multiply the translation matr ix by the current modelview
 // matrix. The new matrix becomes the modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glMultMatrixf(m);

Other Transformations

There’s no particular advantage in duplicating the functionality of gLoadIdentity or
glTranslatef by specifying a matrix. The real reason for allowing manipulation of arbitrary
matrices is to allow for complex matrix transformations. One such use is for drawing
shadows, and you’ll see that in action in Chapter 9. Some other uses are wrapping one object
around another object, and certain lens effects. For information on these advanced uses, see
Appendix B.

OpenGL Super Bible! Page 251

Summary

In this chapter, you’ve learned concepts crucial to using OpenGL for creation of 3D scenes.
Even if you can’t juggle matrices in your head, you now know what matrices are and how
they are used to perform the various transformations. You’ve also learned how to
manipulate the Modelview and Projection matrix stacks to place your objects in the scene
and to determine how they are viewed on screen.

Finally, we also showed you the functions needed to perform your own matrix magic if you
are so inclined. These functions allow you to create your own matrices and load them into
the matrix stack, or multiply them by the current matrix first.

The tank/robot simulation at this point in the book will now allow you to move around in a
three-dimensional world and explore objects placed all around. If you study the simulation
code thus far, you will find excellent use of perspective projections, as well as the
gluLookAt utility function that provides a simple way to specify your viewing
transformation. Your 3D world is made of wire for now, but that will be changing very soon.

Page 252 OpenGL Super Bible!

Reference Section

glFrustum

Purpose
Multiplies the current matrix by a Perspective matrix.

Include File
<gl.h>

Syntax
void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Description
This function creates a Perspective matrix that produces a perspective projection.
The eye is assumed to be located at (0,0,0), with -far being the location of the far
clipping plane, and -near specifying the location of the near clipping plane. This
function can adversely affect the precision of the depth buffer if the ratio of far to
near (far/near) is large.

Parameters

left, right
GLdouble: Coordinates for the left and right clipping planes.

bottom, top
GLdouble: Coordinates for the bottom and top clipping planes.

near, far
GLdouble: Distance to the near and far clipping planes. Both of these values must be
positive.

Returns
None.

Example

The code below sets up a Perspective matrix that defines a viewing volume from 0 to –100
on the z-axis. The x and y extents are 100 units in the positive and negative directions.

 glLoadMatrix(GL_PROJECTION);
 glLoadIdentify();
 glFrustum(-100.0f, 100.0f, -100.0f, 100.0f, 0.0f, 100.0f);
See Also

glOrtho, glMatrixMode, glMultMatrix, glViewport

OpenGL Super Bible! Page 253

glLoadIdentity

Purpose
Sets the current matrix to Identity.

Include File
<gl.h>

Syntax
void glLoadIdentity(void);

Description
This function replaces the current Transformation matrix with the Identity matrix.
This essentially resets the coordinate system to eye coordinates.

Returns
None.

Example

The following code shows the Modelview matrix being set to identity:

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
See Also

glLoadMatrix, glMatrixMode, glMultMatrix, glPushMatrix�

Page 254 OpenGL Super Bible!

glLoadMatrix

Purpose
Sets the current matrix to the one specified.

Include File
<gl.h>

Variations
void glLoadMatrixd(const GLdouble *m);
void glLoadMatrixf(const GLfloat *m);

Description
Replaces the current Transformation matrix with an arbitrary matrix supplied. It may
be more efficient to use some of the other matrix manipulation functions such as
glLoadIdentity, glRotate, glTranslate, and glScale.

Parameters

*m
GLdouble or GLfloat: This array represents a 4 x 4 matrix that will be used for the
current Transformation matrix. The array is stored in column-major order as 16
consecutive values.

Returns
None.

Example

The following two segments of code are equivalent. They both load the Modelview matrix
with the Identity matrix.

 // Efficient way
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // Equivalent, but more flexible
 glFloat m[] = { 1.0f, 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f };

 glMatrixMode(GL_MODELVIEW);
 glLoadMatrixf(m);
See Also

glLoadIdentity, glMatrixMode, glMultMatrix, glPushMatrix

OpenGL Super Bible! Page 255

glMatrixMode

Purpose
Specifies the current matrix (PROJECTION, MODELVIEW, TEXTURE).

Include File
<gl.h>

Syntax
void glMatrixMode(GLenum mode);

Description
This function is used to determine which matrix stack (GL_MODELVIEW,
GL_PROJECTION, or GL_TEXTURE) will be used for matrix operations.

Parameters

mode
GLenum: Identifies which matrix stack will be used for subsequent matrix
operations. Any of the values in Table 7-2 are accepted.

Returns
None.

Example

The following common two lines of code select the Modelview matrix stack for matrix
operations, then loads the Identity matrix.

 glMatrixMode(GL_MODELVIEW);
 glLoadMatrixf(m);
See Also

glLoadMatrix, glPushMatrix

Table 7-2 Valid Matrix Mode Identifiers for glMatrixMode()

Mode Matrix Stack

GL_MODELVIEW Matrix operations affect the Modelview matrix stack. (Used to
move objects around scene.)

GL_PROJECTION Matrix operations affect the Projection matrix stack. (Used to
define clipping volume.)

GL_TEXTURE Matrix operations affect the Texture matrix stack. (Manipulates
texture coordinates.)

Page 256 OpenGL Super Bible!

glMultMatrix

Purpose
Multiplies the current matrix by the one specified.

Include File
<gl.h>

Variations
void glMultMatrixd(const GLdouble *m); void glMultMatrixf(const GLfloat *m);

Description
This function multiplies the currently selected matrix stack with the one specified.
The resulting matrix is then stored as the current matrix at the top of the matrix stack.

Parameters

*m
GLdouble or GLfloat: This array represents a 4 x 4 matrix that will be multiplied by
the current matrix. The array is stored in column-major order as 16 consecutive
values.

Returns
None.

Example

The following code creates a Translation matrix and multiplies it by the current Modelview
matrix. The newly created matrix replaces the values in the Modelview matrix. The
multiplication shown here could also have been accomplished by calling glTranslate(10.0f,
0.0f, 0.0f);.

 // Define the Translation matrix
 glFloat m[] = { 1.0f, 0.0f, 0.0f, 10.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f };

 // Multiply the Translation matrix by the current Modelview
 // matrix. The new matrix becomes the Modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glMultMatrixf(m);
See Also

glMatrixMode, glLoadIdentity, glLoadMatrix, glPushMatrix

OpenGL Super Bible! Page 257

glPopMatrix

Purpose
Pops the current matrix off the matrix stack.

Include File
<gl.h>

Syntax
void glPopMatrix(void);

Description
This function is used to pop the last (topmost) matrix off the current matrix stack.
This is most often used to restore the previous condition of the current
Transformation matrix if it was saved with a call to glPushMatrix.

Returns
None.

Example

The code below is from the ATOM example program for this chapter. This section saves the
Modelview matrix state with a call to glPushMatrix (which is centered in the atom). Then
the coordinate system is rotated and translated appropriately to place the electron, which is
represented by a small sphere. The coordinate system is then restored by a call to
glPopMatrix before the next electron is drawn.

 // First Electron Orbit
 glPushMatrix();
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);
 glTranslatef(90.0f, 0.0f, 0.0f);
 auxSolidSphere(6.0f);
 glPopMatrix();
See Also

glPushMatrix

Page 258 OpenGL Super Bible!

glPushMatrix

Purpose
Pushes the current matrix onto the matrix stack.

Include File
<gl.h>

Syntax
void glPushMatrix(void);

Description
This function is used to push the current matrix onto the current matrix stack. This is
most often used to save the current Transformation matrix so that it can be restored
later with a call to glPopMatrix.

Returns
None.

Example
See glPopMatrix.

See Also
glPopMatrix

OpenGL Super Bible! Page 259

glRotate

Purpose
Rotates the current matrix by a Rotation matrix.

Include File
<gl.h>

Variations
void glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z); void
glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

Description
This function multiplies the current matrix by a Rotation matrix that performs a
counterclockwise rotation around a directional vector that passes from the origin
through the point (x,y,z). The newly rotated matrix becomes the current
Transformation matrix.

Parameters

angle
GLdouble or GLfloat: The angle of rotation in degrees. The angle produces a
counterclockwise rotation.

x,y,z
GLdouble or GLfloat: A direction vector from the origin that is used as the axis of
rotation.

Returns
None.

Example

The code below from the SOLAR example program places the Moon in orbit around the
earth. The current Modelview matrix stack is centered at the Earth’s position, when it is
rotated by the current revolution of the Moon, then translated out to its position away from
the Earth.

 // Moon
 glRGB(200,200,200);
 glRotatef(fMoonRot,0.0f, 1.0f, 0.0f);
 glTranslatef(30.0f, 0.0f, 0.0f);
 fMoonRot+= 15.0f;
 if(fMoonRot > 360.0)
 fMoonRot = 15.0f;

 auxSolidSphere(6.0f);
See Also

glScale, glTranslate

Page 260 OpenGL Super Bible!

glScale

Purpose
Multiplies the current matrix by a Scaling matrix.

Include File
<gl.h>

Variations
void glScaled(GLdouble x, GLdouble y, GLdouble z); void glScalef(GLfloat x,
GLfloat y, GLfloat z);

Description
This function multiplies the current matrix by a Scaling matrix. The newly scaled
matrix becomes the current Transformation matrix.

Parameters

x,y,z
GLdouble or GLfloat: Scale factors along the x, y, and z axes.

Returns
None.

Example

The following code modifies the Modelview matrix to produce flattened-out objects. The
vertices of all subsequent primitives willbe reduced by half in the y direction.

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glScalef(1.0f, 0.5f, 1.0f);
See Also

glRotate, glTranslate

OpenGL Super Bible! Page 261

glTranslate

Purpose
Multiplies the current matrix by a Translation matrix.

Include File
<gl.h>

Variations
void glTranslated(GLdouble x, GLdouble y, GLdouble z); void
glTranslatef(GLfloat x, GLfloat y, GLfloat z);

Description
This function multiplies the current matrix by a Translation matrix. The newly
translated matrix becomes the current Transformation matrix.

Parameters

x,y,z
GLdouble or GLfloat: The x, y, and z coordinates of a translation vector.

Returns
None.

Example

The following code is from the example program SOLAR. It places a blue sphere 105 units
along the positive x-axis away from the origin.

 // Earth
 glColor3f(0.0f,0.0f,1.0f);
 glTranslatef(105.0f,0.0f,0.0f);
 auxSolidSphere(15.0f);
See Also

glRotate, glScale

Page 262 OpenGL Super Bible!

gluLookAt

Purpose
Defines a viewing transformation.

Include File
<glu.h>

Syntax
void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble
centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy,
GLdouble upz);

Description
Defines a viewing transformation based on the position of the eye, the position of the
center of the scene, and a vector pointing up from the viewer’s perspective.

Parameters

eyex,eyey,eyz
GLdouble: x, y, and z coordinates of the eye point.

centerx, centery,
centerz

GLdouble: x, y, and z coordinates of the center of the scene being looked at.
upx,upy,upz

GLdouble: x, y, and z coordinates that specifies the up vector.
Returns

None.

Example

The following code is from the TANK example program. It shows how the viewing
transformation is changed every time the tank or robot changes position.

 // Reset the Modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // Set viewing transformation based on position and direction.
 gluLookAt(locX, locY, locZ, dirX, dirY, dirZ, 0.0f, 1.0f, 0.0f);

Here locX through locY specify the location of the tank or robot (the observer’s
point of view), and dirX through dirZ represent the direction in which the tank is
pointed. The last three values specify the direction pointed up, which for this
simulation will always be in the positive y direction.

See Also
glFrustum, gluPerspective

OpenGL Super Bible! Page 263

gluOrtho2D

Purpose
Defines a two-dimensional orthographic projection.

Include File
<glu.h>

Syntax
void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);

Description
This function defines a 2D orthographic projection matrix. This projection matrix is
equivalent to calling glOrtho with near and far set to 0 and 1, respectively.

Parameters

left, right
GLdouble: Specifies the far-left and -right clipping planes.

bottom, top
GLdouble: Specifies the top and bottom clipping planes.

Returns
None.

Example

The following line of code sets up a 2D viewing volume that allows drawing in the xy plane
from –100 to +100 along the x- and y-axis. Positive y will be up, and positive x will be to
the right.

 gluOrtho2D(-100.0, 100.0, -100.0, 100.0);
See Also

glOrtho, gluPerspective

Page 264 OpenGL Super Bible!

gluPerspective

Purpose
Defines a viewing perspective Projection matrix.

Include File
<glu.h>

Syntax
void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble
zFar);

Description
This function creates a matrix that describes a viewing frustum in world coordinates.
The aspect ratio should match the aspect ratio of the viewport (specified with
glViewport). The perspective division is based on the field-of-view angle and the
distance to the near and far clipping planes.

Parameters

fovy
GLdouble: The field of view in degrees, in the y direction.

aspect
GLdouble: The aspect ratio. This is used to determine the field of view in the x
direction. The aspect ratio is x/y.

zNear, zFar
GLdouble: The distance from the viewer to the near and far clipping plane. These
values are always positive.

Returns
None.

Example

The following code is from the example program SOLAR. It creates a Perspective
projection that makes planets on the far side of the Sun appear smaller than when on the near
side.

 // Change viewing volume and viewport.
 // Called when window is resized
 void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat fAspect;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

OpenGL Super Bible! Page 265

 // Calculate aspect ratio of the window
 Aspect = (GLfloat)w/(GLfloat)h;

 // Reset coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Modelview matrix reset
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }
See Also

glFrustum, gluOrtho2D

Page 266 OpenGL Super Bible!

Chapter 8
Color and Shading

What you’ll learn in this chapter:

How to… Functions You’ll Use

Specify a color in terms of RGB components glColor
Set the shading model glShadeModel
Create a 3-3-2 palette CreatePalette

Make use of a palette RealizePalette, SelectPalette,
UpdateColors

At last we are going to talk about color! This is perhaps the single most important aspect of
any graphics library— even above animation support. You must remember one thing as you
develop graphics applications: In this case, the old adage isn’t true; looks ARE everything!
Don’t let anyone tell you otherwise. Yes, it’s true that features, performance, price, and
reliability are important factors when you’re selecting and working with a graphics
application, but let’s face it— on the scales of product evaluation, looks have the largest
impact most of the time.

If you want to make a living in this field, you cannot develop just for the intellectual few
who may think as you do. Go for the masses! Consider this: Black-and-white TVs were
cheaper to make than color sets. Black-and-white video cameras, too, were cheaper and
more efficient to make and use— and for a long time they were more reliable. But look
around at our society today and draw your own conclusions. Of course, black-and-white has
its place, but color is now paramount. (Then again, we wish they hadn’t colorized all those
Shirley Temple movies…)

What Is a Color?

First let’s talk a little bit about color itself. How is a color made in nature, and how do we
see colors? Understanding color theory and how the human eye sees a color scene will lend
some insight into how you create a color programmatically. (If color theory is old hat to you,
you can probably skip this section.)

OpenGL Super Bible! Page 267

Light as a Wave

Color is simply a wavelength of light that is visible to the human eye. If you had any physics
classes in school, you may remember something about light being both a wave and a
particle. It is modeled as a wave that travels through space much as a ripple through a pond;
and it is modeled as a particle, such as a raindrop falling to the ground. If this seems
confusing, you know why most people don’t study quantum mechanics!

The light you see from nearly any given source is actually a mixture of many different kinds
of light. These kinds of light are identified by their wavelengths. The wavelength of light is
measured as the distance between the peaks of the light wave, as illustrated in Figure 8-1.

Figure 8-1 How a wavelength of light is measured

Wavelengths of visible light range from 390 nanometers (one billionth of a meter) for violet
light, to 720 nanometers for red light; this range is commonly called the spectrum. You’ve
undoubtedly heard the terms ultraviolet and infrared; these represent light not visible to the
naked eye, lying beyond the ends of the spectrum You will recognize the spectrum as
containing all the colors of the rainbow. See Figure 8-2.

Figure 8-2 The spectrum of visible light

Light as a Particle

“OK, Mr. Smart Brain,” you may ask, “If color is a wavelength of light and the only visible
light is in this 'rainbow’ thing, where is the brown for my Fig Newtons or the black for my
coffee, or even the white of this page?” We’ll begin answering that question by telling you
that black is not a color; nor is white. Actually, black is the absence of color, and white is an
even combination of all the colors at once. That is, a white object reflects all wavelengths of
colors evenly, and a black object absorbs all wavelengths evenly.

Page 268 OpenGL Super Bible!

As for the brown of those fig bars and the many other colors that you see, they are indeed
colors. Actually, at the physical level they are composite colors. They are made of varying
amounts of the “pure” colors found in the spectrum. To understand how this works, think of
light as a particle. Any given object when illuminated by a light source is struck by “billions
and billions” (my apologies to Carl Sagan) of photons, or tiny light particles. Remembering
our physics mumbo jumbo, each of these photons is also a wave, which has a wavelength,
and thus a specific color in the spectrum.

All physical objects are made up of atoms. The reflection of photons from an object depends
on the kinds of atoms, the amount of each kind, and the arrangement of atoms in the object.
Some photons will be reflected and some will be absorbed (the absorbed photons are usually
converted to heat), and any given material or mixture of materials (such as your fig bar) will
reflect more of some wavelengths than others. Figure 8-3 illustrates this principle.

Figure 8-3 An object reflects some photons and absorbs others

Your Personal Photon Detector

The reflected light from your fig bar, when seen by your eye, is interpreted as color. The
billions of photons enter your eye and are focused onto the back of your eye, where your
retina acts as sort of a photographic plate. The retina’s millions of cone cells are excited
when struck by the photons, and this causes neural energy to travel to your brain, which
interprets the information as light and color. The more photons that strike the cone cells, the
more excited they get. This level of excitation is interpreted by your brain as the brightness
of the light, which makes sense— the brighter the light, the more photons there are to strike
the cone cells.

OpenGL Super Bible! Page 269

The eye has three kinds of cone cells. All of them respond to photons, but each kind
responds most to a particular wavelength. One is more excited by photons that have reddish
wavelengths, one by green wavelengths, and one by blue wavelengths. Thus light that is
composed mostly of red wavelengths will excite red-sensitive cone cells more than the other
cells, and your brain receives the signal that the light you are seeing is mostly reddish. You
do the math— a combination of different wavelengths of various intensities will, of course,
yield a mix of colors. All wavelengths equally represented thus is perceived as white, and no
light of any wavelength is black.

You can see that any “color” that your eye perceives is actually made up of light all over the
visible spectrum. The “hardware” in your eye detects what it sees in terms of the relative
concentrations and strengths of red, green, and blue light. Figure 8 -4 shows how brown
comprises a photon mix of 60% red photons, 40% green photons, and 10% blue photons.

Figure 8-4 How the “color” brown is perceived by the eye

The Computer as a Photon Generator

It makes sense that when we wish to generate a color with a computer, we do so by
specifying separate intensities for red, green, and blue components of the light. It so happens
that color computer monitors are designed to produce three kinds of light (can you guess
which three?), each with varying degrees of intensity. In the back of your computer monitor
is an electron gun that shoots electrons at the back of the screen you view. This screen
contains phosphors that emit red, green, and blue light when struck by the electrons. The
intensity of the light emitted varies with the intensity of the electron beam. These three color
phosphors are then packed closely together to make up a single physical dot on the screen.
See Figure 8-5.

Page 270 OpenGL Super Bible!

Figure 8-5 How a computer monitor generates colors

You may recall that in Chapter 3 we explained how OpenGL defines a color exactly as
intensities of red, green, and blue, with the glColor command. Here we will cover more
thoroughly the two color modes supported by OpenGL.

• RGBA color mode is what we have been using all along for the examples in this
book. When drawing in this mode, you set a color precisely by specifying it in terms
of the three color components (Red, Green, and Blue).
• With color index mode, you choose a color while drawing by specifying an index
into an array of available colors called a palette. Within this palette, you specify the
exact color you want by setting the intensities of the red, green, and blue
components.

PC Color Hardware

There once was a time when state-of-the-art PC graphics hardware meant the Hercules
graphics card. This card could produce bitmapped images with a resolution of 720 × 348.
The drawback was that each pixel had only two states: on and off. At that time, bitmapped
graphics of any kind on a PC was a big deal, and you could produce some great
monochrome graphics. Your author even did some 3D graphics on a Hercules card back in
college.

Actually predating the Hercules card was the CGA card, the Color Graphics Adapter.
Introduced with the first IBM PC, this card could support resolutions of 320 ×200 pixels and

OpenGL Super Bible! Page 271

could place any four of 16 colors on the screen at once. A higher resolution (640 ×200) with
two colors was also possible, but wasn’t as effective or cost conscious as the Hercules card
(color monitors = $$$). CGA was puny by today’s standards— it was even outmatched then
by the graphics capabilities of a $200 Commodore 64 or Atari home computer. Lacking
adequate resolution for business graphics or even modest modeling, CGA was used
primarily for simple PC games or business applications that could benefit from colored text.
Generally though, it was hard to make a good business justification for this more expensive
hardware.

The next big breakthrough for PC graphics came when IBM introduced the Enhanced
Graphics Adapter (EGA) card. This one could do more than 25 lines of colored text in new
text modes, and for graphics could support 640 ×350-pixel bitmapped graphics in 16 colors!
Other technical improvements eliminated some flickering problems of the CGA ancestor
and provided for better and smoother animation. Now arcade-style games, real business
graphics, and even 3D graphics became not only possible but even reasonable on the PC.
This advance was a giant move beyond CGA, but still PC graphics were in their infancy.

The last mainstream PC graphics standard set by IBM was the VGA card (which stood for
Vector Graphics Array rather than the commonly held Video Graphics Adapter). This card
was significantly faster than the EGA, could support 16 colors at a higher resolution (640
×480) and 256 colors at a lower resolution of 320 ×200. These 256 colors were selected
from a palette of over 16 million possible colors. That’s when the floodgates opened for PC
graphics. Near photo-realistic graphics become possible on PCs. Ray tracers, 3D games, and
photo-editing software began to pop up in the PC market.

IBM, as well, had a high-end graphics card— the 8514— for their “workstations.” This card
could do 1024 ×768 graphics at 256 colors. IBM thought this card would only be used by
CAD and scientific applications! But one thing is certain about the consumer market: They
always want more. It was this short-sightedness that cost IBM its role as standard-setter in
the PC graphics market. Other vendors began to ship “Super-VGA” cards that could display
higher and higher resolutions, with more and more colors. First 800 ×600, then 1024 ×768
and even higher, with first 256 colors, then 32,000, to 65,000. Today 24-bit color cards can
display 16 million colors at resolutions up to 1024 ×768. Inexpensive PC hardware can
support full color at VGA resolutions, or 8 00 ×600 Super-VGA resolutions. Most Windows
PCs sold today can support at least 65,000 colors at resolutions of 1024 ×768.

All this power makes for some really cool possibilities— photo-realistic 3D graphics to name
just one. When Microsoft ported OpenGL to the Windows platform, that enabled creation of
high-end graphics applications for PCs. Today’s Pentium and Pentium Pro P Cs are still no
match for modern SGI Workstations. But combine them with 3D-graphics accelerated
graphics cards, and you can get the kind of performance possible only a few years ago on
$100,000 graphics workstations— at a Wal-Mart Christmas special! In the very near future,
typical home machines will be capable of very sophisticated simulations, games, and more.
Our children will laugh at the term “virtual reality” in the same way we smile at those old
Buck Rogers rocket ships.

Page 272 OpenGL Super Bible!

PC Display Modes

Microsoft Windows revolutionized the world of PC graphics in two respects. First, it created
a mainstream graphical operating environment that was adopted by the business world at
large and, soon thereafter, the consumer market. Second, it made PC graphics significantly
easier for programmers to do. With Windows, the hardware was “virtualized” by Windows
display device drivers. Instead of having to write instructions directly to the video hardware,
programmers today can write to a single API, and Windows handles the specifics of talking
to the hardware. Typically, Microsoft provides in the Windows base package (usually with
vendor assistance) drivers for the more popular graphics cards. Hardware vendors with later
hardware and software revisions ship their cards with Windows drivers and often provide
updates to these drivers on BBSs or on the Internet.

There was a time when Windows shipped with drivers for the Hercules monochrome cards,
and standard CGA, and EGA video adapters. Not anymore. Standard VGA is now
considered the bottom of the barrel. New PCs sold today are capable of at least 640 ×480
resolution with 16 colors, and the choices of resolution and color depth go up from there.

Screen Resolution

Screen resolution for today’s PCs can vary from 640 ×480 pixels up to 1280 ×1024 or more.
Screen resolution, however, is not usually a prime limiting factor in writing graphics
applications. The lower resolution of 640 ×480 is considered adequate for most graphics
display tasks. More important is the size of the window, and this is taken into account easily
with clipping volume and viewport settings (see Chapter 3). By scaling the size of the
drawing to the size of the window, you can easily account for the various resolutions and
window size combinations that can occur. Well-written graphics applications will display
the same approximate image regardless of screen resolution. The user should automatically
be able to see more and sharper details as the resolution increases.

Color Depth

If an increase in screen resolution or in the number of available drawing pixels in turn
increases the detail and sharpness of the image, so too should an increase in available colors
improve the clarity of the resulting image. An image displayed on a computer that can
display millions of colors should look remarkably better than the same image displayed with
only 16 colors. In programming, there are really only three color depths that you need to
worry about: 4-bit, 8-bit, and 24-bit.

4-Bit Color

On the low end, your program may be run in a video mode that only supports 16 colors—
called 4-bit mode because there are 4 bits devoted to color information for each pixel. These
4 bits represent a value from 0 to 15 that provides an index into a set of 16 predefined
colors. With only 16 colors at your disposal, , there is little you can do to improve the clarity

OpenGL Super Bible! Page 273

and sharpness of your image. It is generally accepted that most serious graphics applications
can ignore the 16-color mode.

8-Bit Color

The 8-bit mode supports up to 256 colors on the screen. This is a substantial improvement,
and when combined with dithering (explained later in this chapter) can produce satisfactory
results for many applications. There are 8 bits devoted to each pixel, which are used to hold
a value from 0 to 255 that references an index into a color table called the palette. The colors
in this color table can be selected from over 16 million possible colors. If you need 256
shades of red, the hardware will support it.

Each color in the palette is selected by specifying 8 bits each for separate intensities of red,
green, and blue, which means the intensity of each component can range from 0 to 255. This
effectively yields a choice of over 16 million different colors for the palette. By selecting
these colors carefully, near-photographic quality can be achieved on the PC screen.

24-Bit Color

The best quality image production available today on PCs is 24-bit color mode. In this
mode, a full 24 bits are devoted to each pixel to hold eight bits of color data for each of the
red, green, and blue color components (8 + 8 + 8 = 24). You have the capability to put any
of over 16 million possible colors in every pixel on the screen. The most obvious drawback
to this mode is the amount of memory required for high-resolution screens (over 2MB for a
1024 ×768 screen). Also indirectly, it is much slower to move larger chunks of memory
around when doing animation, or just drawing on the screen. Fortunately, today’s
accelerated graphics adapters are optimized for these types of operations.

Other Color Depths

For saving memory or improving performance, many display cards also support various
other color modes.

In the area of performance improvement, some cards support a 32-bit color mode sometimes
called true color mode. Actually, the 32-bit color mode cannot display any more colors than
the 24-bit mode, but it improves performance by aligning the data for each pixel on a 32-bit
address boundary. Unfortunately, this results in a wasted 8-bits (1 byte) per pixel. On
today’s 32-bit Intel PCs, a memory address evenly divisible by 32 results in much faster
memory access.

Two other popular display modes are sometimes supported to use memory more efficiently.
The first is 15-bit color mode, which uses 5 bits each for storing red, green, and blue
components. Each pixel can display any of 32,768 different colors. And in 16-bit mode, an
additional bit is added for one of the color components (usually green), allowing one of
65,536 possible colors for each pixel. This last mode, especially, is practically as effective as

Page 274 OpenGL Super Bible!

24-bit for photographic image reproduction. It is difficult to tell the difference between 16-
bit and 24-bit color modes for most photographic images, although some banding may be
observed on smoothly shaded surfaces with only 16 bits of color.

Programmatically, a color in the 15- or 16-bit color mode is set in the same way as for the
24-bit color modes— that is, as a set of three 8-bit intensities. The hardware or device driver
takes this 24-bit color value and scales it to the nearest matching 15- or 16-bit color value
before setting the pixel color.

Selecting a Color

You now know that OpenGL specifies an exact color as separate intensities of red, green,
and blue components. You also know that Windows-supported PC hardware may be able to
display nearly all of these combinations, or only a very few. How, then, do we specify a
desired color in terms of these red, green, and blue components? And how will Windows
fulfill this request using the colors it has available?

The Color Cube

Since a color is specified by three positive color values, we can model the available colors as
a volume that we shall call the RGB color space. Figure 8-6 shows what this color space
looks like at the origin with red, green, and blue as the axes. The red, green, and blue
coordinates are specified just like x, y, and z coordinates. At the origin (0,0,0), the relative
intensities of all the components is zero, and the resulting color is black. The maximum
available on the PC for storage information is 24 bits, so with 8 bits for each component,
let’s say that a value of 255 along the axis would represent full saturation of that component.
We would then end up with a cube measuring 255 on each side. The corner directly opposite
black, where the concentrations are (0,0,0), is white with relative concentrations of
(255,255,255). At full saturation (255) from the origin along each axis would lie the pure
colors of red, green, and blue, respectively.

OpenGL Super Bible! Page 275

Figure 8-6 The origin of RGB color space

This “color cube” (Figure 8-7) then contains all the possible colors, either on the surface of
the cube or within the interior of the cube. For example, all possible shades of gray between
black and white lie internally on the diagonal line between the corner (0,0,0) and
(255,255,255).

Figure 8-7 The RGB color space

Page 276 OpenGL Super Bible!

Figure 8-8 is a screenshot of the smoothly shaded color cube produced by a sample program
from this chapter, CCUBE. The surface of this cube shows the color variations from black
on one corner to white on the opposite corner. Red, green, and blue are present on their
corners 255 units from black. Additionally, the colors yellow, cyan, and magenta have
corners showing the combination of the other three primary colors. This program will do an
adequate job of rendering the color cube, even in a 16-color Windows display mode, and
you’ll learn how this is done later in this chapter. You can also spin the color cube around to
examine all of its sides, by pressing the arrow keys.

Figure 8-8 Output from CCUBE is this color cube

Setting the Drawing Color

Let’s briefly review the glColor() function. It is prototyped as follows:

void glColor<x><t>(red, green, blue, alpha);

In the function name, the <x> represents the number of arguments; it may be 3 for three
arguments of red, green, and blue, or 4 for four arguments to include the alpha component.
(The alpha component specifies the translucency of the color and will be covered in more
detail in (Chapter 15.) For the time being, just use a three-argument version of the function.

The <t> in the function name specifies the argument’s data type and can be b, d, f, i, s, ub,
ui, us, for byte, double, float, integer, short, unsigned byte, unsigned integer, and unsigned
short data types, respectively. Another version of the function has a v appended to the end;
this version takes an array that contains the arguments (the v stands for vectored). In the
Reference Section you will find an entry with more details on the glColor() function.

OpenGL Super Bible! Page 277

Most OpenGL programs that you’ll see will use glColor3f and will specify the intensity of
each component as 0.0 for none or 1.0 for full intensity. However, it may be easier, if you
have Windows programming experience, to use the glColor3ub version of the function. This
version takes three unsigned bytes, from 0 to 255, to specify the intensities of red, green, and
blue. Using this version of the function is like using the Windows RGB macro to specify a
color:

 glColor3ub(0,255,128) = RGB(0,255,128)

In fact, this may make it easier for you to match your OpenGL colors to existing RGB colors
used by your program for other non-OpenGL drawing tasks.

Remember that the RGB macro specifies a color to Windows but does not itself set the
current drawing color, as glColor does. To do this, you’d use the RGB macro in conjunction
with the creation of a GDI pen or brush.

Shading

Our previous working definition for glColor was that this function set the current drawing
color, and all objects drawn after this command would have the last color specified. Now
that we have discussed the OpenGL drawing primitives (Chapter 6), we can expand this
definition to this: The glColor function sets the current color that is used for all vertices
drawn after the command. So far, all of our examples have drawn wireframe objects, or
solid objects with each face a different but solid color. If we specify a different color for
each vertex of a primitive (either point, line, or polygon), what color is the interior?

Let’s answer this question first regarding points. A point has only one vertex, and whatever
color you specify for that vertex will be the resulting color for that point.

A line, however, has two vertices and each can be set to a different color. The color of the
line depends on the shading model. Shading is simply defined as the smooth transition from
one color to the next. Any two points in our RGB color space (Figure 8-7) can be connected
by a straight line.

Smooth shading causes the colors along the line to vary as they do through the color cube
from one color point to the other. In Figure 8-9, the color cube is shown with the black and
white corners pointed out. Below it is a line with two vertices, one black and one white. The
colors selected along the length of the line match the colors along the straight line in the
color cube, from the black to the white corners. This results in a line that progresses from
black through lighter and lighter shades of gray and eventually to white.

Page 278 OpenGL Super Bible!

Figure 8-9 How a line is shaded from black to white

You can do shading mathematically by finding the equation of the line connecting two
points in the three-dimensional RGB color space. Then simply loop through from one end of
the line to the other, retrieving coordinates along the way to provide the color of each pixel
on the screen. Many good books on computer graphics will explain the algorithm to
accomplish this and scale your color line to the physical line on the screen, etc. Fortunately,
OpenGL will do all this for you!

The shading exercise becomes slightly more complex for polygons. A triangle, for instance,
can also be represented as a plane within the color cube. Figure 8-10 shows a triangle with
each vertex at full saturation for the red, green, and blue color components. The code to
display this triangle is in Listing 8-1, and in the example program TRIANGLES on the CD.

OpenGL Super Bible! Page 279

Figure 8-10 A triangle in RGB color space

Listing 8-1 Drawing a smooth-shaded triangle with red, green, and blue corners

// Enable smooth shading
 glShadeModel(GL_SMOOTH);
 // Draw the triangle
 glBegin(GL_TRIANGLES);
 // Red Apex
 glColor3ub((GLubyte)255,(GLubyte)0,(GLubyte)0);
 glVertex3f(0.0f,200.0f,0.0f);

 // Green on the right bottom corner
 glColor3ub((GLubyte)0,(GLubyte)255,(GLubyte)0);
 glVertex3f(200.0f,-70.0f,0.0f);

 // Blue on the left bottom corner
 glColor3ub((GLubyte)0,(GLubyte)0,(GLubyte)255);
 glVertex3f(-200.0f, -70.0f, 0.0f);
glEnd();

Setting the Shading Model

The first line of Listing 8-1 actually sets the shading model OpenGL uses to do smooth
shading— the model we have been discussing. This is the default shading model, but it’s a
good idea to call this function anyway to ensure that your program is operating the way you
intended.

(The other shading model that can be specified with glShadeModel is GL_FLAT for flat
shading. Flat shading means that no shading calculations are performed on the interior of
primitives. Generally, with flat shading the color of the primitive’s interior is the color that

Page 280 OpenGL Super Bible!

was specified for the last vertex. The only exception is for a GL_POLYGON primitive, in
which case the color is that of the first vertex.)

Then the code in Listing 8-1 sets the top of the triangle to be pure red, the lower-right corner
to be green, and the remaining bottom-left corner to be blue. Because smooth shading is
specified, the interior of the triangle is shaded to provide a smooth transition between each
corner.

The output from the TRIANGLE program is shown in Figure 8-11. This represents the plane
shown graphically in Figure 8-10.

Figure 8-11 Output from the TRIANGLES program

Polygons, more complex than triangles, can also have different colors specified for each
vertex. In these instances, the underlying logic for shading can become more intricate.
Fortunately, you never have to worry about it with OpenGL. No matter how complex your
polygon, OpenGL will successfully shade the interior points between each vertex.

Note that you will rarely wish to do this type of shading yourself, anyway. This is primarily
used to produce lighting effects, and OpenGL once again comes to the rescue. We’ll cover
lighting in the Chapter 9.

Windows Palettes

The TRIANGLE and CCUBE example programs work reasonably well regardless of how
many colors are available. If you can change the color depth of your system, try running
these programs at the various color depths, starting at 16 colors and going up to 16 million if
possible. You’ll notice that the colors make a smooth transition regardless of color depth,
but the higher color depths provide a smoother and more appealing image. Figures 8-12a
and 8-12b show the output of the TRIANGLES sample with 16 colors and 16 million colors,
respectively. Even though these pictures are not in color, you can see how much smoother
the second triangle appears.

OpenGL Super Bible! Page 281

Figure 8-12a Output of the TRIANGLES sample with 16 colors

Figure 8-12b With 16 million colors the triangle is much smoother

Color Matching

What happens when you try to draw a pixel of a particular color using the RGB values we
have discussed? Internally, Windows defines a color using 8 bits each for the red, green, and
blue components using the RGB macro, and you can use glColor3ub to duplicate this
functionality within OpenGL.

Page 282 OpenGL Super Bible!

If the PC graphics card is in 24-bit color mode, then each pixel is displayed precisely in the
color specified by the 24-bit value (three 8-bit intensities). In the 15- and 16-bit color modes,
Windows passes the 24-bit color value to the display driver, which converts the color to a
15- or 16-bit color value before displaying it. In 24-bit color mode, the RGB color cube
measured 255 (or 8 bits) per side. In 15- or 16-bit color mode, the color cube measures 32 (5
bits) or 64 (6 bits) on a side. The device driver then matches the 24-bit color value to the
nearest color match in the 15 or 16-bit color cube.

Figure 8-13 shows how an 8-bit red value might be mapped to a 5-bit red value.

Figure 8-13 A medium-intensity red being mapped from an 8-bit value to a 5-bit value

At the low end of the scale, 4-bit color mode can only display 16 colors. These colors are
fixed and cannot be modified. Internally, Windows still represents each color with a 24-bit
RGB value. When you specify a color to use for drawing operations using the RGB macro
or glColor3ub, Windows uses the nearest color of the 16 available to fulfill the request. If
the color is being used for fill operations, the color is approximated by dithering the
available colors.

Dithering

Having only 16 colors to work with makes the 4-bit color modes poorly suited for graphics.
One thing the Windows GDI will do to help is to perform dithering on solid shapes and
objects in this mode. Dithering is a means of placing different colors close together to
produce the illusion of another composite color. For example, if you place yellow and blue
squares together in a checkerboard pattern, the pattern will take on a greenish appearance.
Without actually mixing the colors, the green would have a grainy appearance. By changing
the proportion of yellow to green squares, you are effectively changing the intensities of
yellow and green.

OpenGL Super Bible! Page 283

Windows uses dithering to produce colors not available in the current palette. In 16-color
mode, image quality is typically very poor for more complex scenes. Figure 8-12 is a vivid
demonstration of Windows dithering; we attempted to produce the RGB triangle on a system
with only 16 colors. Generally, Windows does not perform dithering for OpenGL.

OpenGL can also do its own dithering, providing the command

glEnable(GL_DITHER);

This can sometimes improve image quality substantially in 8- and 15-bit color modes. You
can see dithering in action in the example program DITHER from this chapter’s
subdirectory on the CD. This program draws a cube with sides of various colors and allows
dithering to be enabled or disabled from the menu. When run in 8-bit color mode or better,
dithering has little effect, but in the 4-bit, 16-color mode the dithered scene is remarkably
different.

Advantages of a Palette in 8-Bit Mode

The 8-bit color modes can display 256 colors, and this results in a remarkable improvement
for color graphics. When Windows is running in a color mode that supports 256 colors, it
would make sense if those colors were evenly distributed across RGB color space. Then all
applications would have a relatively wide choice of colors, and when a color was selected,
the nearest available color would be used. Unfortunately, this is not very practical in the real
world.

Since the 256 colors in the palette for the device can be selected from over 16 million
different colors, an application can substantially improve the quality of its graphics by
carefully selecting those colors— and many do. For example, to produce a seascape,
additional shades of blue will be needed. CAD and modeling applications modify the palette
to produce smooth shading of a surface of a particular single color. For example, the scene
may require as many as 200 shades of gray to accurately render the image of a pipe’s cross
section. Thus, applications for the PC typically change this palette to meet their needs,
resulting in near-photographic quality for many images and scenes. For 256 color bitmaps,
the Windows .bmp format even has an array that’s 256 entries long, containing 24-bit RGB
values specifying the palette for the stored image.

An application can create a palette with the CreatePalette function, identifying the palette by
a handle of type HPALETTE. This function takes a logical palette structure
(LOGPALETTE) that contains 256 entries, each specifying 8-bit values for red, green, and
blue components. But before we examine palette creation, let’s take a look at how
multitasked applications can share the single system palette in 8-bit color mode.

Page 284 OpenGL Super Bible!

Palette Arbitration

Windows multitasking allows many applications to be on screen at once. The hardware
supports only 256 colors on screen at once, however, so all applications must share the same
system palette. If one application changes the system palette, images in the other windows
may have scrambled colors, producing some undesired psychedelic effects. To arbitrate
palette usage among applications, Windows sends a set of messages. Applications are
notified when another application has changed the system palette, and they are notified
when their window has received focus and palette modification is possible.

When an application receives keyboard or mouse input focus, Windows sends a
WM_QUERYNEWPALETTE message to the main window of the application. This
message asks the application if it wants to realize a new palette. Realizing a palette means
the application copies the palette entries from its private palette to the system palette. To do
this, the application must first select the palette into the device context for the window being
updated, and then call RealizePalette. Listing 8-2 presents the code for this message handler;
it will be in all subsequent examples from this book.

Listing 8-2 Typical palette-arbitration code for Windows-based applications

 static HPALETTE hPalette = NULL; // Permenant palette handle

 …
 …
 // Palette is created and referenced by hPalette
 …
 …
 // Windows is telling the application that it may modify
 // the system palette. This message in essance asks the
 // application for a new palette.
 case WM_QUERYNEWPALETTE:
 // If the palette was created.
 if(hPalette)
 {
 int nRet;

 // Selects the palette into the current device context
 SelectPalette(hDC, hPalette, FALS E);

 // Map entries from the currently selected palette to
 // the system palette. The return value is the number
 // of palette entries modified.
 nRet = RealizePalette(hDC);

 // Repaint, forces remap of palette in current window
 InvalidateRect(hWnd,NULL,FALSE);

 return nRet;
 }
 break;

OpenGL Super Bible! Page 285

 // This window may set the palette, even though i t is not the
 // currently active window.
 case WM_PALETTECHANGED:
 // Don't do anything if the palette does not exist, or if
 // this is the window that changed the palette.
 if((hPalette != NULL) && ((HWND)wPar am != hWnd))
 {
 // Select the palette into the device context
 SelectPalette(hDC,hPalette,FALSE);

 // Map entries to system palette
 RealizePalette(hDC);

 // Remap the current colors to the newly realized
 palette
 UpdateColors(hDC);
 return 0;
 }
 break;

Another message sent by Windows for palette realization is WM_PALETTECHANGED.
This message is sent to windows that can realize their palette but may not have the current
focus. When this message is sent, you must also check the value of wParam. If wParam
contains the handle to the current window receiving the message, then
WM_QUERYNEWPALETTE has already been processed, and the palette does not need to
be realized again.

Note also in Listing 8-2 that the value of hPalette is checked against NULL before either of
these palette-realization messages is processed. If the application is not running in 8-bit
color mode, then no palette needs to be created or realized by these functions. Structuring
your code in this way makes it useful for displays that don’t use palettes as well as those that
do.

Creating a Palette

Unfortunately, palette considerations are a necessary evil if your application is to run on the
8-bit hardware that’s still in use in some environments. So what do you do if your code is
executing on a machine that only supports 256 colors?

For image reproduction, we recommend selecting a range of colors that closely match the
original colors. For OpenGL rendering under most circumstances, however, you want the
widest possible range of colors for general-purpose use. The trick is to select the palette
colors so that they’re evenly distributed throughout the color cube. Then, whenever a color
is specified that is not already in the palette, Windows will select the nearest color in the
color cube. As mentioned earlier, this is not ideal for some applications, but for OpenGL
rendered scenes it is the best we can do. Unless there is substantial texture mapping in the
scene with a wide variety of colors, results are usually acceptable.

Page 286 OpenGL Super Bible!

Do You Need a Palette?

To determine if your application needs a palette, you can call DescribePixelFormat() after
you have set the pixel format. Test the dwFlags member of the
PIXELFORMATDECRIPTOR returned by DescribePixelFormat(), for the bit value
PFD_NEED_PALETTE. If this bit is set, you will need to create a palette for use by your
application. Listing 8-3 shows the necessary code for this test.

Listing 8-3 Testing to see if an application needs a palette

 PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor
 int nPixelFormat;
 // Pixel format index

 // Get the pixel format index and retrieve the pixel format
 description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 // Does this pixel format require a palette?
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return NULL;// Does not need a palette

 // Palette creation code
 …
 …

The Palette’s Structure

To create a palette, you must first allocate memory for a LOGPALETTE structure. This
structure is filled with the information that describes the palette, and then is passed to the
Win32 function CreatePalette(). The LOGPALETTE structure is defined as follows:

 typedef struct tagLOGPALETTE { // lgpl
 WORD palVersion;
 WORD palNumEntries;
 PALETTEENTRY palPalEntry[1];
 } LOGPALETTE;

The first two members are the palette header and contain the palette version (always set to
0x300) and the number of color entries (256 for 8-bit modes). Each entry is then defined as a
PALETTEENTRY structure that contains the RGB components of the color entry.

The following code allocates space for the logical palette:

LOGPALETTE *pPal; // Pointer to memory for logical palette
 …
 …
// Allocate space for a logical palette structure plus all the palette

OpenGL Super Bible! Page 287

// entries
pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) +
nColors*sizeof(PALETTEENTRY));

Here, nColors specifies the number of colors to place in the palette, which for our purposes
is always 256.

Each entry in the palette then is a PALETTEENTRY structure, which is defined as follows:

 typedef struct tagPALETTEENTRY { // pe
 BYTE peRed;
 BYTE peGreen;
 BYTE peBlue;
 BYTE peFlags;
 } PALETTEENTRY;

The peRed, peGreen, and peBlue members specify an 8-bit value that represents the relative
intensities of each color component. In this way, each of the 256 palette entries contains a
24-color definition. The peFlags member describes advanced usage of the palette entries.
For OpenGL purposes you can just set this to NULL.

In addition to the 3-3-2 palette, Windows can support other 8-bit palettes for doing things
such as specifying 200 shades of gray.

The 3-3-2 Palette

Now comes the tricky part. Not only must our 256 palette entries be spread evenly
throughout the RGB color cube, but they must be in a certain order. It is this order that
enables OpenGL to find the color it needs, or the closest available color in the palette.
Remember that in an 8-bit color mode you have 3 bits each for red and green, and 2 bits for
blue. This is commonly referred to as a 3-3-2 palette. So our RGB color cube measures 8 by
8 by 3 along the red, green, and blue axes, respectively.

To find the color needed in the palette, an 8-8-8 color reference (the 24-bit color mode
setup) is scaled to a 3-3-2 reference. This 8-bit value is then the index into our palette array.
The red intensities of 0–7 in the 3-3-2 palette must correspond to the intensities 0–255 in the
8-8-8 palette. Figure 8-14 illustrates how the red, green, and blue components are combined
to make the palette index.

When we build the palette, we loop through all values from 0 to 255. We then decompose
the index into the red, green, and blue intensities represented by these values (in terms of the
3-3-2 palette). Each component is multiplied by 255 and divided by the maximum value
represented, which has the effect of smoothly stepping the intensities from 0 to 7 for red and
green, and from 0 to 3 for the blue. Table 8-1 shows some sample palette entries, to
demonstrate component calculation.

Page 288 OpenGL Super Bible!

Table 8-1 A Few Sample Palette Entries for a 3-3-2 Palette

Palette
Entry Binary (B G R) Blue Component Green Component Red

Component

0 000 000 000000 0 0 0
1 00 000 001 0 0 1*255/7
2 00 000 010 0 0 2*255/7
3 00 000 011 0 0 3*255/7
9 00 001 001 0 1*255/7 1*255/7
10 00 001 010 0 1*255/7 2*255/7
137 10 001 001 2*255/3 1*255/7 1*255/7
138 10 001 010 2*255/7 1*255/7 2*255/3
255 11 111 111 3*255/3 7*255/7 7*255/7

Building the Palette

Unfortunately, at this time OpenGL for Windows will only support 3-3-2 palettes in RGBA
color mode. This is actually specified in the PIXELFORMATDESCRIPTOR returned by
DescribePixelFormat(). The members cRedBits, cGreenBits, and cBluebits specify 3, 3, and
2, respectively, for the number of bits that can represent each component. Furthermore, the
cRedShift, cGreenShift, and cBlueShift values specify how much to shift the respective
component value to the left (in this case, 0, 3, and 6 for red, green, and blue shifts). These
sets of values compose the palette index (Figure 8-14).

Figure 8-14 3-3-2 palette packing

The code in Listing 8-4 creates a palette if needed and returns its handle. This function
makes use of the component bit counts and shift information in the
PIXELFORMATDESCRIPTOR to accommodate any subsequent palette requirements, such
as a 2-2-2 palette .

OpenGL Super Bible! Page 289

Listing 8-4 Function to create a palette for OpenGL

// If necessary, creates a 3-3-2 palette for the device context listed.
HPALETTE GetOpenGLPalette(HDC hDC)
 {
 HPALETTE hRetPal = NULL; // Handle to palette to be created
 PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor
 LOGPALETTE *pPal; // Pointer to memory for logica l palette
 int nPixelFormat; // Pixel format index
 int nColors; // Number of entries in palette
 int i; // Counting variable
 BYTE RedRange,GreenRange,BlueRange;
 // Range for each color entry (7,7,and 3)

 // Get the pixel format index and retrieve the pixel format description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 // Does this pixel format require a palette? If not, do not create a
 // palette and just return NULL
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return NULL;

 // Number of entries in palette. 8 bits yields 256 entries
 nColors = 1 << pfd.cColorBits;

 // Allocate space for a logical palette structure plus all the palette
 // entries
 pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) +
 nColors*sizeof(PALETTEENTRY));

 // Fill in palette header
 pPal->palVersion = 0x300;// Windows 3.0
 pPal->palNumEntries = nColors; // table size

 // Build mask of all 1's. This creates a number represented by having
 // the low order ×bits set, where ×= pfd.cRedBits, pfd.cGreenBits,and
 // pfd.cBlueBits.
 RedRange = (1 << pfd.cRedBits) -1; // 7 for 3-3-2 palettes
 GreenRange = (1 << pfd.cGreenBits) - 1; // 7 for 3-3-2 palettes
 BlueRange = (1 << pfd.cBlueBits) -1; // 3 for 3-3-2 palettes

 // Loop through all the palette entries
 for(i = 0; i < nColors; i++)
 {
 // Fill in the 8-bit equivalents for each component
 pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) & RedRange;
 pPal->palPalEntry[i].peRed = (unsigned char)(
 (double) pPal->palPalEntry[i].peRed * 255.0
 / RedRange);

 pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift)
 & GreenRange;
 pPal->palPalEntry[i].peGreen = (unsigned char)(

Page 290 OpenGL Super Bible!

 (double)pPal->palPalEntry[i].peGreen * 255.0
 /GreenRange);

 pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift)
 & BlueRange;
 pPal->palPalEntry[i].peBlue = (unsigned char)(
 (double)pPal->palPalEntry[i].peBlue * 255.0
 / BlueRange);

 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

 // Create the palette
 hRetPal = CreatePalette(pPal);

 // Go ahead and select and realize the palette for this device context
 SelectPalette(hDC,hRetPal,FALSE);
 RealizePalette(hDC);

 // Free the memory used for the logical palette structure
 free(pPal);

 // Return the handle to the new palette
 return hRetPal;
 }

Palette Creation and Disposal

The palette should be created and realized before the rendering context is created or made
current. The function in Listing 8-4 requires only the device context, once the pixel format
has been set. It will then return a handle to a palette if one is needed. Listing 8-5 shows the
sequence of operations when the window is created and destroyed. This is similar to code
presented previously for the creation and destruction of the rendering context, only now it
also takes into account the possible existence of a palette.

Listing 8-5 A palette is created and destroyed

 // Window creation, setup for OpenGL
 case WM_CREATE:
 // Store the device context
 hDC = GetDC(hWnd);

 // Select the pixel format
 SetDCPixelFormat(hDC);

 // Create the palette if needed
 hPalette = GetOpenGLPalette(hDC);

 // Create the rendering context and make it current
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);
 break;

OpenGL Super Bible! Page 291

 // Window is being destroyed, cleanup
 case WM_DESTROY:
 // Deselect the current rendering context and delete it
 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 // If a palette was created, destroy it here
 if(hPalette != NULL)
 DeleteObject(hPalette);

 // Tell the application to terminate after the window
 // is gone.
 PostQuitMessage(0);
 break;

Some Restrictions Apply

Not all of your 256 palette entries will actually be mapped to the system palette. Windows
reserves 20 entries for static system colors that include the standard 16 VGA/EGA colors.
This protects the standard windows components (title bars, buttons, etc.) from alteration
whenever an application changes the system palette. When your application realizes its
palette, these 20 colors will not be overwritten. Fortunately, some of these colors already
exist or are closely matched in the 3-3-2 palette. Those that don’t are closely enough
matched that you shouldn’t be able to tell the difference.

Color Index Mode

OpenGL also supports the alternative color index mode. In this mode, you specify a color
for drawing operations by specifying an index into an array of colors, rather than as an RGB
triplet.

You cannot use color index mode and RGBA color mode together. This means if you use
color index mode on a true-color device (or near true-color, such as a 16-bit color card), you
won’t have access to all the available colors. Under some implementations, the color index
palette can be up to 4,096 entries long. The Microsoft implementation however, only
supports 256 entries.

You can use color index mode to do contour mapping in which some function of the surface
returns an index into the palette. It is somewhat faster than RGBA, and the limitations of the
3-3-2 palette do not exist. For example, if you need 200 shades of gray, you can have them.
However, some of the lighting effects discussed in the next chapter are not available under
color index mode either.

Why Use Color Index Mode?

There are really very few good reasons to use color index mode. Typically, this mode is
used to get more control over the palette. You can also do palette animation, but only on

Page 292 OpenGL Super Bible!

devices that support palettes (8-bit display cards). This doesn’t mean you can’t use color
index mode on these devices; it only means there is no corresponding hardware palette with
which you can perform animation. Palette animation occurs when you change the entries in
the palette, which causes a corresponding change in all screen pixels having that palette
index. This can produce color cycling for some special effects.

Another reason to use color index mode is for applications that use color to indicate a third
dimension— to indicate the pressure at certain spatialregions, for instance. You can also use
this mode for false color images that do not require an organized palette. Finally, color index
mode can be somewhat faster in 8-bit color modes because only one color channel (as
opposed to three, one each for red, green, and blue) needs to be manipulated instead of three.

In addition to limiting the color selection, color index mode does not support some of
OpenGL’s other special effects— including many lighting effects and shading, fog, anti-
aliasing, and alpha blending. Generally, it is better to use RGBA mode.

As mentioned, the most significant advantage of using color index mode is for more palette
control on 8-bit display devices. The 3-3-2 palette limits your color choices, and if you want
200 shades of red to do really smooth shading on an 8-bit display, you are out of luck. In
color index mode, however, the palette entries range from darkest to lightest colors. You can
separate the palette into as many or as few bands as you like. The INDEX sample program
displays a triangle shaded from black to bright red (see Figure 8-15). This shading is not
possible in 8-bit color mode using at 3-3-2 palette.

Figure 8-15 Output from INDEX showing over 200 shades of red for smooth shading

OpenGL Super Bible! Page 293

Using Color Index Mode

To specify color index mode, all you need to do is set the iPixelType member of the
PIXELFORMATDESCRIPTOR to PFD_TYPE_COLORINDEX. First, though, you need to
create a palette. With color index mode, the palette is specific to the application. For our
INDEX sample program, we want a palette consisting only of shades of red to do very
smooth shading in an 8-bit color mode. Listing 8-6 is the code to create this palette.

Listing 8-6 Code to create a palette consisting only of shades of red

// Creates a color ramp from black to bright red
HPALETTE GetRedPalette(HDC hDC)
 {
 HPALETTE hRetPal = NULL; // Handle to palette to be created
 LOGPALETTE *pPal; // Pointer to memory for logical palette
 int i; // Counting variable

// Allocate space for a logical palette structur e plus all the palette
// entries
pPal =
 {LOGPALETTE*)malloc(sizeof(LOGPALETTE)+256*sizeof(PALETTEENTRY));

// Fill in palette header
pPal->palVersion = 0x300;// Windows 3.0
pPal->palNumEntries = 256;// table size

// Loop through all the palette entries, creating a graduated red
// palette containing only shades of red
for(i = 10; i < 246; i++)
 {
 pPal->palPalEntry[i].peRed = i;// Red intensity from 0 to 255
 pPal->palPalEntry[i].peGreen = 0;
 pPal->palPalEntry[i].peBlue = 0;
 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

// Create the palette
hRetPal = CreatePalette(pPal);

// Go ahead and select and realize the palette for this device context
SelectPalette(hDC,hRetPal,FALSE);
RealizePalette(hDC);

// Free the memory used for the logical palette structure
free(pPal);

// Return the handle to the new palette
return hRetPal;
}

Page 294 OpenGL Super Bible!

Notice that this code always returns a palette. No check is made to see if the pixel format
required a palette. This is because you can use color index mode even in the high-color
modes. All of the other code concerning palette realization remains unaffected.

Show the Triangle

Now the code to render the triangle sets the color of the triangle’s apex to color index 0,
which is the darkest entry in the palette with 0 intensity (black). The color for the bottom
two corners is set to palette index 255, the brightest shade of red. With smooth shading
enabled, this code (Listing 8-7) produces the triangle seen in Figure 8-15.

Listing 8-7 Code to render the shaded triangle in the INDEX program

void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Enable smooth shading
 glShadeModel(GL_SMOOTH);

 // Draw the triangle
 glBegin(GL_TRIANGLES);
 // Darkest Red Apex (black)
 glIndexi(0);
 glVertex3f(0.0f,200.0f,0.0f);

 // Brightest red bottom corners
 glIndexi(255);
 glVertex3f(200.0f,-70.0f,0.0f);
 glVertex3f(-200.0f, -70.0f, 0.0f);
 glEnd();

 // Flush drawing commands
 glFlush();
 }

OpenGL Super Bible! Page 295

Summary

This chapter covers one of the most important features supported by a graphics package:
color. You have seen how to specify a color in terms of its RGB components, and how these
components relate to one another in the RGB color cube. Your understanding of glColor has
been expanded to include the coloring of vertices, and you have seen how this affects
shading. We explained OpenGL’s selection of colors in 4-, 8-, 16-, and 24-bit Windows
color modes. We demonstrated the building of a 3-3-2 palette for use by OpenGL in 8-bit
color modes. Finally, we took a brief look at color index mode and its utilization to gain
better palette control in 8-bit color modes.

Good use of color and shading is a prerequisite for good 3D graphics. The upcoming chapter
explains how OpenGL uses shading to produce lighting effects. You’ll learn how to specify
material colors and lighting conditions and allow OpenGL to select the drawing colors.

Page 296 OpenGL Super Bible!

Reference Section

glClearIndex

Purpose
Sets the clear value for the color index buffers.

Include File
<gl.h>

Syntax
void glClearIndex(GLfloat color);

Description
This function specifies the color index to use in color index mode to clear the color
buffers. This has the net effect of clearing the window and setting the background
color to the color in the index specified by the color parameter.

Parameters

color
GLfloat: The value to use when the color index buffers are cleared with glClear. The
default is 0.

Returns
None.

Example
See the sample program INDEX in this chapter.

See Also
glClear, glGet

OpenGL Super Bible! Page 297

glColor

Purpose
Sets the current color when in RGBA color mode.

Include File
<gl.h>

Variations
void glColor3b(GLbyte red,GLbyte green, GLbyte blue);
void glColor3d(GLdouble red, GLdouble green, GLdouble blue);
void glColor3f(GLfloat red, GLfloat green, GLfloat blue);
void glColor3i(GLint red, GLint green, GLint blue);
void glColor3s(GLshort red, GLshort green, GLshort blue);
void glColor3ub(GLubyte red, GLubyte green, GLubyte blue);
void glColor3ui(GLuint red, GLuint green, GLuint blue);
void glColor3us(GLushort red, GLushort green, GLushort blue);
void glColor4b(GLbyte red, GLbyte green, GLbyte blue, GLbyte alpha);
void glColor4d(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha);
void glColor4f(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha);
void glColor4i(GLint red, GLint green, GLint blue, GLint alpha);
void glColor4s(GLshort red, GLshort green, GLshort blue, GLshort alpha);
void glColor4ub(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha);
void glColor4ui(GLuint red, GLuint green, GLuint blue, GLuint alpha);
void glColor4us(GLushort red, GLushort green, GLushort blue, GLushort alpha);
void glColor3bv(const GLbyte *v);
void glColor3dv(const GLdouble *v);
void glColor3fv(const GLfloat *v);
void glColor3iv(const GLint *v);
void glColor3sv(const GLshort *v);
void glColor3ubv(const GLubyte *v);
void glColor3uiv(const GLuint *v);
void glColor3usv(const GLushort *v);
void glColor4bv(const GLbyte *v);
void glColor4dv(const GLdouble *v);
void glColor4fv(const GLfloat *v);
void glColor4iv(const GLint *v);
void glColor4sv(const GLshort *v);
void glColor4ubv(const GLubyte *v);
void glColor4uiv(const GLuint *v);
void glColor4usv(const GLushort *v);

Description
This function sets the current color by specifying separate red, green, and blue
components of the color. Some functions also accept an alpha component. Each
component represents the range of intensity from zero (0.0) to full intensity (1.0).
Functions with the v suffix take a pointer to an array that specifies the components.

Page 298 OpenGL Super Bible!

Each element in the array must be of the same type. When the alpha component is
not specified, it is implicitly set to 1.0. When non-floating point types are specified,
the range from zero to the largest value represented by that type is mapped to the
floating point range 0.0 to 1.0.

Parameters

red
Specifies the red component of the color.

green
Specifies the green component of the color.

blue
Specifies the blue component of the color.

alpha
Specifies the alpha component of the color. Used only in variations that take four
arguments.

*v
A pointer to an array of red, green, blue, and possibly alpha values.

Returns
None.

Example

The following code from the CCUBE example in this chapter sets one of the corners of the
color cube to white.

 // Front face
 glBegin(GL_POLYGON);

 // White
 glColor3ub((GLubyte) 255, (GLubyte)255, (GLubyte)255);
 glVertex3f(50.0f,50.0f,50.0f);
See Also

glIndex

OpenGL Super Bible! Page 299

glColorMask

Purpose
Enables or disables modification of color components in the color buffers.

Include File
<gl.h>

Syntax
void glColorMask(GLboolean bRed, GLboolean bGreen, GLboolean bBlue,
GLboolean bAlpha);

Description
This function allows changes to individual color components in the color buffer to be
disabled or enabled (all are enabled by default). For example, setting the bAlpha
argument to GL_FALSE disallows changes to the alpha color component.

Parameters

bRed
GLboolean: Specifies whether the red component may be modified.

bGreen
GLboolean: Specifies whether the green component may be modified.

bBlue
GLboolean: Specifies whether the blue component may be modified.

bAlpha
GLboolean: Specifies whether the alpha component may be modified.

Returns
None.

Example
See the sample program MASK on the CD for this chapter.

See Also
glColor, glIndex, glIndexMask, glDepthMask, glStencilMask

Page 300 OpenGL Super Bible!

glIndex

Purpose
Sets the current color index to be used for color operations.

Include File
<gl.h>

Variations
void glIndexd(GLdouble c);
void glIndexf(GLfloat c);
void glIndexi(GLint c);
void glIndexs(GLshort c);
void glIndexdv(const GLdouble *c);
void glIndexfv(const GLfloat *c);
void glIndexiv(const GLint *c);
void glIndexsv(const GLshort *c);

Description
This function changes the current color index to the one specified by c. This
indexvalue is maintained internally as a floating point number.

Parameters

c
The new color index to use for all subsequent operations.

*cA
pointer to the new color index to use for all subsequent operations.

Returns
None.

Example

The following code from the sample program INDEX draws a smoothly shaded triangle.
The top of the triangle is set to color index 0 which has been set to zero, and the bottom
corners to color index 255 which has been set to bright red.

 // Draw the triangle
 glBegin(GL_TRIANGLES);
 // Darkest Red Apex (black)
 glIndexi(0);
 glVertex3f(0.0f,200.0f,0.0f);
 // Brightest red bottom corners
 glIndexi(255);
 glVertex3f(200.0f,-70.0f,0.0f);
 glVertex3f(-200.0f, -70.0f, 0.0f);
 glEnd();
See Also

glColor

OpenGL Super Bible! Page 301

glIndexMask

Purpose
Protects individual bits in the color index buffer from being set.

Include File
<gl.h>

Syntax
void glIndexMask(GLuint mask);

Description
This function allows masking of individual bits in the color index buffer. Where the
mask bit is set, the bits are writeable; where they are zero, they are write-protected
from pixel operations. This function only applies to color index mode.

Parameters

mask
GLuint: Specifies the binary bit mask to enable or disable writing to individual bits
in the color index buffer.

Returns
None.

Example
See the sample program MASK on the CD for this chapter.

See Also
glIndex, glDepthMask, glStencilMask

Page 302 OpenGL Super Bible!

glLogicOp

Purpose
Sets the logical pixel operation for color index mode.

Include File
<gl.h>

Syntax
void glLogicOp(GLenum opcode);

Description
The logical pixel operation defines the combination of pixel values. When a new
color index value is specified for a pixel location, it is combined logically with the
current color index value for that pixel. To enable logical pixel operations, call
glEnable(GL_LOGIC_OP), to disable call glDisable(GL_LOGIC_OP). When
logical pixel operations are enabled, incoming pixel values are combined with
existing pixel values in the manner specified by opcode. When logical operations are
not enabled, the net effect of pixel operations is as if GL_COPY were specified.
Logical pixel operations are not supported in RGBA color mode.

Parameters

opcode
GLEnum: Specifies the logical pixel mode to use. Any of the values listed in Table
8-2 are valid. This table lists the logical operation and the result of the operation,
with s representing the source color index value, and d representing the destination
color index value.

Returns
None.

Example
See the FLASHER example program from the CD. This example uses GL_XOR to
produce smooth animation without double buffering.

See Also
glGet, glIsEnabled, glEnable, glDisable

Table 8-2 Valid Pixel Copy Operations

Opcode% Resulting Value

GL_CLEAR 0
GL_SET 1
GL_COPY s
GL_COPY_INVERTED! !s

OpenGL Super Bible! Page 303

GL_NOOP d
GL_INVERT !d
GL_AND s & d
GL_NAND !(s & d)
GL_OR s | d
GL_NOR !(s | d)
GL_XOR s ^ d
GL_EQUIV !(s ^ d)
GL_AND_REVERSE s & !d
GL_AND_INVERTED !s & d
GL_OR_REVERSE s | !d
GL_OR_INVERTED !s | d

Page 304 OpenGL Super Bible!

glShadeModel

Purpose
Sets default shading to flat or smooth.

Include File
<gl.h>

Syntax
void glShadeModel(GLenum mode);

Description
OpenGL primitives are always shaded, but the shading model may be flat
(GL_FLAT) or smooth (GL_SMOOTH). In the simplest of scenarios, one color is
set with glColor() before a primitive is drawn. This primitive is solid and flat (does
not vary) throughout, regardless of the shading. If a different color is specified for
each vertex, then the resulting image will vary with the shading model. With smooth
shading, the color of the polygon’s interior points are interpolated from the colors
specified at the vertices. This means the color will vary from one color to the next
between two vertices. The color variation follows a line through the color cube
between the two colors. If lighting is enabled, OpenGL will do other calculations to
determine the correct colors (see Chapter 9). In flat shading, the color specified for
the last vertex is used throughout the region of the primitive. The only exception is
for GL_POLYGON, in which case the color used throughout the region is the one
specified for the first vertex.

Parameters

mode
Specifies the shading model to use, either GL_FLAT or GL_SMOOTH. The default
is GL_SMOOTH.

Returns
None.

Example
See the TRIANGLE and CCUBE examples from Chapter 8’s subdirectory on the
CD.

See Also
glColor, glLight, glLightModel

OpenGL Super Bible! Page 305

Chapter 9
Lighting and Lamps

What you’ll learn in this chapter:

How to… Functions You’ll Use

Set the lighting model glLightModel
Set lighting parameters glLight
Set material reflective properties glColorMaterial, glMaterial
Use surface normals glNormal

This chapter discusses lighting: in our opinion, the honey spot of OpenGL. You’ve been
learning OpenGL from the ground up— how to put programs together, then how to assemble
objects from primitives and manipulate them in 3D space. In Chapter 8 we showed you how
to add color to your objects and do smooth shading. All well and good, but let’s face it— any
good summer co-op student with a good book on computer graphics could have put this
much together themselves building only on the Windows GDI. To recoin a phrase, “Where’s
the Beef?”

To put it succinctly, the beef starts here. For most of the rest of this book, science takes a
back seat and magic rules. According to Arthur C. Clarke, “Any sufficiently advanced
technology is indistinguishable from magic.” Of course there is no real magic involved in
lighting, but it sure can seem that way at times. (If you want to dig into the mathematics, see
Appendix B.)

Another name for this chapter might be “Adding Realism to Your Scenes.” You see, there is
more to an object’s color in the real world than what we explained in Chapter 8. In addition
to having a color, objects can appear shiny or dull or may even glow with their own light.
An object’s apparent color will vary with bright or dim lighting, and even the color of the
light hitting an object will make a difference. An illuminated object can even be shaded
across its surface when lit or viewed from an angle.

Most of the rest of Parts II and III are concerned with techniques that allow you to add more
and more realism to your scenes. So put away your calculators (if you want), bring out your
wizard’s cap, and take a deep breath… The magic show starts here!

Page 306 OpenGL Super Bible!

Light in the Real World

Real objects don’t appear in a solid or shaded color based solely on their RGB value. Figure
9-1 shows the output from the program JET from the CD. It’s a simple jet airplane, hand
plotted with triangles using only the methods covered so far in this book. As usual, JET and
the other programs in this chapter allow you to spin the object around by using the arrow
keys to better see the effects.

Figure 9-1 A simple jet built by setting a different color for each triangle

The selection of colors is meant to highlight the three-dimensional structure of the jet. Aside
from the crude assemblage of triangles, however, you can see that it looks hardly anything
like a real object. Suppose you constructed a model of this airplane and painted each flat
surface the colors represented. The model would still appear glossy or flat depending on the
kind of paint used, and the color of each flat surface would vary with the angle of your view
and any sources of light.

OpenGL does a very good job of approximating the real world in terms of lighting
conditions. Unless an object emits its own light, it is illuminated by three different kinds of
light: ambient, diffuse, and specular.

Ambient Light

Ambient light is light that doesn’t come from any particular direction. It has a source, but the
rays of light have bounced around the room or scene and become directionless. Objects
illuminated by ambient light are evenly lit on all surfaces in all directions. You can think of
all previous examples in this book as being lit by a bright ambient light, because the objects
were always visible and evenly colored (or shaded) regardless of their rotation or viewing
angle. Figure 9-2 shows an object illuminated by ambient light.

OpenGL Super Bible! Page 307

Figure 9-2 An object illuminated purely by ambient light

Diffuse Light

Diffuse light comes from a particular direction but is reflected evenly off a surface. Even
though the light is reflected evenly, the object surface is brighter if the light is pointed
directly at the surface than if the light grazes the surface from an angle. A good example of a
diffuse light source is fluorescent lighting, or sunlight streaming in a side window at noon.
In Figure 9-3 the object is illuminated by a diffuse light source.

Figure 9-3 An object illuminated by a purely diffuse light source

Specular Light

Like diffuse light, specular light is directional, but it is reflected sharply and in a particular
direction. A highly specular light tends to cause a bright spot on the surface it shines upon,

Page 308 OpenGL Super Bible!

which is called the specular highlight. A spotlight and the Sun are examples of specular
light. Figure 9-4 shows an object illuminated by a purely specular light source.

Figure 9-4 An object illuminated by a purely specular light source

Put It All Together

No single light source is composed entirely of any of the three types of light just described.
Rather, it is made up of varying intensities of each. For example, a red laser beam in a lab is
composed of almost a pure-red specular component. However, smoke or dust particles
scatter the beam, so it can be seen traveling across the room. This scattering represents the
diffuse component of the light. If the beam is bright and no other light sources are present,
you’d notice objects in the room taking on a red hue. This would be a very small ambient
component of that light.

Thus a light source in a scene is said to be composed of three lighting components: ambient,
diffuse, and specular. Just like the components of a color, each lighting component is
defined with an RGBA value that describes the relative intensities of red, green, and blue
light that make up that component. (We will ignore the alpha component until Chapter 15.)
For example, our red laser light might be described by the component values in Table 9-1.

Table 9-1 Color and Light Distribution for a Red Laser Light Source

 Red Green Blue Alpha

Specular 0.99 0.0 0.0 1.0
Diffuse 0.10 0.0 0.0 1.0
Ambient 0.05 0.0 0.0 1.0

OpenGL Super Bible! Page 309

Note that the red laser beam has no green or blue light. Also, note that specular, diffuse, and
ambient light can each range in intensity from 0.0 to 1.0. You could interpret this table as
saying that the red laser light in some scenes has a very high specular component, a small
diffuse component, and a very small ambient component. Wherever it shines, you are
probably going to see a reddish spot. Also, because of conditions (smoke, dust, etc.) in the
room, the diffuse component will allow the beam to be seen traveling through the air.
Finally, the ambient component— likely due to smoke or dust particles, as well— will scatter
a tiny bit of light all about the room. Ambient and diffuse components of light are frequently
combined because they are so similar in nature.

Materials in the Real World

Light is only part of the equation, though. In the real world, objects do have a color of their
own. In Chapter 8, we described the color of an object as being defined by its reflected
wavelengths of light. A blue ball reflects mostly blue photons and absorbs most others. This
assumes that the light shining on the ball has blue photons in it to be reflected and detected
by the observer. Generally, most scenes in the real world are illuminated by a white light
containing an even mixture of all the colors. Under white light, therefore, most objects
appear in their proper or “natural” colors. However, this is not always so; put the blue ball in
a dark room with only a yellow light, and the ball would appear black to the viewer, because
all the yellow light would be absorbed and there would be no blue to be reflected.

Material Properties

When we use lighting, we do not describe polygons as having a particular color, but rather
as being made up of materials that have certain reflective properties. Instead of saying that a
polygon is red, we say that the polygon is made of a material that reflects mostly red light.
We are still saying that the surface is red, but now we must also specify the material’s
reflective properties for ambient, diffuse, and specular light sources. A material may be
shiny and reflect specular light very well, while absorbing most of the ambient or diffuse
light. Conversely, a flat colored object may absorb all specular light and won’t be shiny
under any circumstances. Another property to be specified is the emission property for
objects that emit their own light, such as taillights or glow-in-the-dark watches.

Adding Light to Materials

Setting lighting and material properties to achieve the desired effect takes some practice.
There are no color cubes or rules of thumb to give you quick and easy answers. This is
where analysis gives way to art, and science yields to magic. The CD subdirectory for this
chapter contains a supplementary sample program called MATLIGHT (for Materials and
Lighting Studio). This program allows you to change material and lighting properties on the
fly for a scene composed of some simple objects. You can use MATLIGHT to get a feel for
the various lighting and material property settings. In addition, because the source is
included, you can also substitute your own objects in MATLIGHT and work out the lighting
and material details before committing your scene to code.

Page 310 OpenGL Super Bible!

When drawing an object, OpenGL decides which color to use for each pixel in the object.
That object has reflective “colors,” and the light source has “colors” of its own. How does
OpenGL determine which colors to use? Understanding this is not difficult, but it does take
some simple grade-school multiplication. (See, that teacher told you you’d need it one day!)

Each vertex of your primitives is assigned an RGB color value based on the net effect of the
ambient, diffuse, and specular illumination multiplied by the ambient, diffuse, and specular
reflectance of the material properties. By making use of smooth shading between the
vertices, the illusion of illumination is achieved!

Calculating Ambient Light Effects

First you need to put away the notion of color and instead think only in terms of red, green,
and blue intensities. For an ambient light source of half-intensity red, green, and blue
components, you’d have an RGB value for that source of (0.5, 0.5, 0.5). If this ambient light
illuminates an object with ambient reflective properties specified in RGB terms of (.50, 1.0,
.50), then the net “color” component from the ambient light would be

(0.50 * .50, 0.5 * 1.0, 0.50 * .50) = (0.25, 0.5, 0.25)

which would be the result of multiplying each of the ambient light source terms by each of
the ambient material property terms. See Figure 9-5.

Figure 9-5 Calculating the ambient color component of an object

Thus, the material color components actually determine the percentage of incident light that
is reflected. In our example, the ambient light had a red component that was at one-half
intensity, and the material ambient property of .5 specified that one-half of that half-intensity
light was reflected. Half of a half is a fourth, or 0.25.

OpenGL Super Bible! Page 311

Diffuse and Specular Effects

For ambient light, this is as simple as it gets. Diffuse light, too, has RGB intensities that
interact in the same way with material properties. However, diffuse light is directional, and
the intensity at the surface of the object will vary depending on the angle between the
surface and the light source. The same goes for specular light sources and intensities. The
net effect in terms of RGB values is figured the same way as for ambient light, with the
intensity of the light source (adjusted for the angle of incidence) being multiplied by the
material reflectance. Finally, all three RGB terms are added to yield a final color for the
object. If any single color component is above 1.0, it is clamped to that value (you can’t get
more intense than full intensity!).

Generally, the ambient and diffuse components of light sources and materials are the same
and have the greatest effect in determining the color of the object. Specular light and
material properties tend to be light gray or white. The specular component depends
significantly on the angle of incidence, and specular highlights on an object are usually
white.

Adding Light to a Scene

This may seem like a lot of theory to digest all of a sudden. So let’s slow down and start
exploring some examples of the OpenGL code needed for lighting; this will also help
reinforce what you’ve just learned. We will also be demonstrating some additional features
and requirements of lighting in OpenGL. The next few examples build on our JET program.
The initial version contains no lighting code and just draws triangles with hidden surface
elimination enabled. But when we’re done, the jet’s metallic surface will glisten in the
sunlight as you rotate it with the arrow keys.

Enable the Lighting

To tell OpenGL to use lighting calculations, call glEnable() with the GL_LIGHTING
parameter, like this:

glEnable(GL_LIGHTING);

This alone tells OpenGL to use material properties and lighting parameters in determining
the color for each vertex in your scene. However, without any specified material properties
or lighting parameters, your object will remain dark and unlit as shown in Figure 9-6. Look
at the code for any of the JET-based example programs, and you’ll see that we have called a
function SetupRC() right after creating the rendering context. This is where we will do any
initialization of lighting parameters.

Page 312 OpenGL Super Bible!

Figure 9-6 Jet with lighting enabled, but no light or material properties defined

Set Up the Lighting Model

After enabling lighting calculations, the first thing you need to do is set up the lighting
model. The three parameters that affect the lighting model are set with the glLightModel()
function.

The first lighting parameter used in our next example is GL_LIGHT_MODEL_AMBIENT.
This allows a global ambient light to be specified that illuminates all objects evenly from all
sides. The following code specifies that a bright white light is to be used:

// Bright white light - full intensity RGB values
GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

// Enable lighting
glEnable(GL_LIGHTING);

// Set light model to use ambient light specif ied by ambientLight[]
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);

The variation of glLightModel shown here, glLightModelfv, takes as its first parameter the
lighting model parameter being modified or set, and then an array of the RGBA values that
make up the light. The default RGBA values of this global ambient light are (0.2, 0.2, 0.2,
1.0), which is fairly dim. Other lighting model parameters allow you to determine if the
front, back, or both sides of polygons are illuminated, and the calculation of specular
lighting angles. See the Reference Section for more information on these parameters.

OpenGL Super Bible! Page 313

Set Material Properties

Now that we have an ambient light source, we need to set some material properties so that
our polygons reflect light and we can see our jet. There are two ways to set material
properties. The first is to use the function glMaterial before specifying each polygon or set
of polygons. Examine the following code fragment:

Glfloat gray[] = { 0.75f, 0.75f, 0.75f, 1.0f };
…
…
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);

glBegin(GL_TRIANGLES);
 glVertex3f(-15.0f,0.0f,30.0f);
 glVertex3f(0.0f, 15.0f, 30.0f);
 glVertex3f(0.0f, 0.0f, -56.0f);
glEnd();

The first parameter to glMaterialfv specifies whether the front, back, or both (GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK) take on the material properties specified. The
second parameter tells which properties are being set; in this instance both the ambient and
diffuse reflectances are being set to the same values. The final parameter is an array
containing the RGBA values that make up these properties. All primitives specified after the
glMaterial call are affected by the last values set, until another call to glMaterial is made.

Under most circumstances, the ambient and diffuse components are the same, and unless
you want specular highlights (sparkling, shiny spots), you don’t need to define specular
reflective properties. Even so, it would still be quite tedious if we had to define an array for
every color in our object and call glMaterial() before each polygon or group of polygons.

This leads us to the second and preferred way of setting material properties, called color
tracking. With color tracking you can tell OpenGL to set material properties by only calling
glColor. To enable color tracking, call glEnable() with the GL_COLOR_MATERIAL
parameter:

glEnable(GL_COLOR_MATERIAL);

Then the function glColorMaterial specifies the material parameters that will follow the
values set by glColor.

For example, to set the ambient and diffuse properties of the fronts of polygons to track the
colors set by glColor, call

glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

Page 314 OpenGL Super Bible!

The earlier code fragment setting material properties would then be as follows. This looks
like more code, but it will actually save many lines of code and execute faster as the number
of polygons grows.

// Enable color tracking
glEnable(GL_COLOR_MATERIAL);

// Front material ambient and diffuse colors track glColor
glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);

…
…
glcolor3f(0.75f, 0.75f, 0.75f);
glBegin(GL_TRIANGLES);
 glVertex3f(-15.0f,0.0f,30.0f);
 glVertex3f(0.0f, 15.0f, 30.0f);
 glVertex3f(0.0f, 0.0f, -56.0f);
glEnd();

Listing 9-1 contains the code we add with the SetupRC function to our JET example, to set
up a bright ambient light source, and to set the material properties that allow the object to
reflect light and be seen. We have also changed the colors of the jet so that each section is a
different color rather than each polygon. Notice in the final output (Figure 9-7) that it’s not
much different from the image before we had lighting. However, if we reduce the ambient
light by half, we get the image shown in Figure 9-8. This is accomplished by setting the
ambient light RGBA values to the following:

GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f };

Figure 9-7 Output from completed AMBIENT example program

OpenGL Super Bible! Page 315

Figure 9-8 Output from AMBIENT when the light source is cut in half

You can see how we might reduce the ambient light in a scene to produce a dimmer image.
This is useful for simulations in which dusk approaches gradually or when a more direct
light source is blocked, as when an object is in the shadow of another, larger object.

Listing 9-1 Set up for ambient lighting conditions

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values
 // Bright white light
 GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Co unter clock-wise polygons face
out

 // Lighting stuff
 glEnable(GL_LIGHTING); // Enable lighting

 // Set light model to use ambient light specified by
ambientLight[]
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight) ;

 glEnable(GL_COLOR_MATERIAL); // Enable Material color tracking

 // Front material ambient and diffuse colors track glColor
 glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

Page 316 OpenGL Super Bible!

 // Nice light blue background
 glClearColor(0.0f, 0.0f, 05.f,1.0f);
 }

Using a Light Source

Manipulating the ambient light has its uses, but for most applications attempting to model
the real world, one or more specific sources of light must be specified. In addition to their
intensities and colors, these sources will have a location and a direction. The placement of
these lights can dramatically affect the appearance of your scene.

OpenGL supports up to eight independent light sources located anywhere in your scene or
out of the viewing volume. You can locate a light source an infinite distance away and make
its light rays parallel, or make it a nearby light source radiating outward. You can also
specify a spotlight with a specific cone of light radiating from it, as well as manipulate its
characteristics.

Which Way Is Up?

When you specify a light source, you tell OpenGL where it is and in which direction it’s
shining. Often the light source will be shining in all directions, or it may be directional.
Either way, for any object you draw, the rays of light from any source (other than a pure
ambient source) will strike the surface of the polygons that make up the object at an angle.
Of course, in the case of a directional light, the surface of all polygons may not necessarily
be illuminated. To calculate the shading effects across the surface of the polygons, OpenGL
must be able to calculate this angle.

In Figure 9-9, a polygon (a square) is being struck by a ray of light from some source. The
ray makes an angle (A) with the plane as it strikes the surface. The light is then reflected at
an angle (B) toward the viewer (or you wouldn’t see it). These angles are used in
conjunction with the lighting and material properties we have discussed thus far to calculate
the apparent color of that location. It happens by design that the locations used by OpenGL
are the vertices of the polygon. By calculating the apparent colors for each vertex and then
doing smooth shading between them (explained in Chapter 8), the illusion of lighting is
created. Magic!

OpenGL Super Bible! Page 317

Figure 9-9 Light is reflected off objects at specific angles

From a programming standpoint, this presents a slight conceptual difficulty. Each polygon is
created as a set of vertices, which are nothing more than points. Each vertex is then struck
by a ray of light at some angle. How then do you (or OpenGL) calculate the angle between a
point and a line (the ray of light)? Of course you can’t geometrically find the angle between
a single point and a line in 3D space, because there are an infinite number of possibilities.
Therefore, you must associate with each vertex some piece of information that denotes a
direction upward from the vertex and away from the surface of the primitive.

Surface Normals

A line from the vertex in this upward direction would then start in some imaginary plane (or
your polygon) at a right angle. This line is called a normal vector. That word vector may
sound like something the Star Trek crew members toss around, but it just means a line
perpendicular to a real or imaginary surface. A vector is a line pointed in some direction,
and the word normal is just another way for eggheads to say perpendicular (intersecting at a
90º angle). As if the word perpendicular weren’t bad enough! Therefore, a normal vector is
a line pointed in a direction that is at a 90º angle to the surface of your polygon. Figure 9-10
presents examples of 2D and 3D normal vectors.

Figure 9-10 A 2D and a 3D normal vector

Page 318 OpenGL Super Bible!

You may already be asking why we must specify a normal vector for each vertex. Why can’t
we just specify a single normal for a polygon and use it for each vertex? We can— and for
our first few examples, we will. However, there are times when you don’t want each normal
to be exactly perpendicular to the surface of the polygon. You may have noticed that many
surfaces are not flat! You can approximate these surfaces with flat, polygonal sections, but
you will end up with a jagged or multifaceted surface. Later we’ll discuss a technique to
produce the illusion of smooth curves with straight lines by “tweaking” your surface
normals (more magic!). But first things first.

Specifying a Normal

To see how we specify a normal for a vertex, let’s take a look at Figure 9-11— a plane
floating above the xz plane in 3D space. We’ve made this simple to demonstrate the
concept. Notice the line through the vertex (1,1,0) that is perpendicular to the plane. If we
select any point on this line, say (1,10,0), then the line from the first point (1,1,0) to the
second point (1,10,0) is our normal vector. The second point specified actually indicates that
the direction from the vertex is up in the y direction. This is also used to indicate the front
and back sides of polygons, as the vector travels up and away from the front surface.

Figure 9-11 A normal vector traveling perpendicular from the surface

You can see that this second point is the number of units in the x, y, and z directions for
some point on the normal vector away from the vertex. Rather than specifying two points for
each normal vector, we can subtract the vertex from the second point on the normal, yielding
a single coordinate triplet that indicates the x, y, and z steps away from the vertex. For our
example this would be

(1,10,0) - (1,1,0) = (1-1, 10-1, 0) = (0, 9, 0)

OpenGL Super Bible! Page 319

Another way of looking at this is, if the vertex were translated to the origin, the point
specified by subtracting the two original points would still specify the direction pointing
away and at a 90º angle from the surface. Figure 9-12 shows the newly translated normal
vector.

Figure 9-12 The newly translated normal vector

The vector is a directional quantity that tells OpenGL which direction the vertices (or
polygon) face. This next code segment shows a normal vector being specified for one of the
triangles in the JET example program:

glBegin(GL_TRIANGLES);
 glNormal3f(0.0f, -1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 60.0f);
 glVertex3f(-15.0f, 0.0f, 30.0f);
 glVertex3f(15.0f,0.0f,30.0f);
glEnd();

The function glNormal3f takes the coordinate triplet that specifies a normal vector pointing
in the direction perpendicular to the surface of this triangle. In this example, the normals for
all three vertices have the same direction, which is down the negative y axis. This is a very
simple example because the triangle is lying flat in the xz plane, and it actually represents a
bottom section of the jet.

The prospect of specifying a normal for every vertex or polygon in your drawing may seem
daunting, especially since very few surfaces will lie cleanly in one of the major planes.
Never fear, we will shortly present a reusable function that you can call again and again to
calculate your normals for you.

Page 320 OpenGL Super Bible!

Polygon Winding:
Take special note of the order of the vertices in the jet’s triangle. If you viewed this triangle
being drawn from the direction in which the normal vector points, the corners would appear
counterclockwise around the triangle. This is called polygon winding. By default, the front of
a polygon is defined as the side from which the vertices appear to be wound in a
counterclockwise fashion.

Unit Normals

As OpenGL does its magic, all surface normals must eventually be converted to unit
normals. A unit normal is just a normal vector that has a length of 1. The normal in Figure
9-12 has a length of 9. You can find the length of any normal by squaring each component,
adding them together, and taking the square root. Divide each component of the normal by
the length and you get a vector pointed in exactly the same direction, but only 1 unit long. In
this case, our new normal vector would be specified as (0,1,0). This is called normalization.
Thus, for lighting calculations, all normal vectors must be normalized. Talk about jargon!

You can tell OpenGL to convert your normals to unit normals automatically, by enabling
normalization with glEnable and a parameter of GL_NORMALIZE:

 glEnable(GL_NORMALIZE);

This does, however, have performance penalties. It’s far better to calculate your normals
ahead of time as unit normals instead of relying on OpenGL to do this for you.

Given any normal vector specified by a coordinate triplet that indicates the direction from
the origin, you can easily find the equivalent unit normal vector with the function in Listing
9-2.

Listing 9-2 A function that reduces any normal vector to a unit normal vector

// Reduces a normal vector specified as a set of three coordinates,
// to a unit normal vector of length 1.
void ReduceToUnit(float vector[3])
 {
 float length;

 // Calculate the length of the vector
 length = (float)sqrt((vector[0]*vector[0]) +
 (vector[1]*vector[1]) +
 (vector[2]*vector[2]));

 // Keep the program from blowing up by providing an acceptable

OpenGL Super Bible! Page 321

 // value for vectors whose length may be calculated too close to
 zero.
 if(length == 0.0f)
 length = 1.0f;

 // Dividing each element by the length will result in a
 // unit normal vector.
 vector[0] /= length;
 vector[1] /= length;
 vector[2] /= length;
 }

Finding a Normal

Figure 9-13 presents another polygon that is not simply lying in one of the axis planes. The
normal vector pointing away from this surface is more difficult to guess, so we need an easy
way to calculate the normal for any arbitrary polygon in 3D coordinates.

Figure 9-13 A nontrivial normal problem

You can easily calculate the normal vector for any polygon consisting of at least three points
that lie in a single plane (a flat polygon). Figure 9-14 shows three points, P1, P2, and P3,
that you can use to define two vectors: vector V1 from P1 to P2, and vector V2 from P1 to
P2. Mathematically, two vectors in three-dimensional space define a plane (your original
polygon lies in this plane). If you take the cross product of those two vectors (written
mathematically as V1 X V2, the resulting vector is perpendicular to that plane (or normal).
Figure 9-15 shows the vector V3 derived by taking the cross product of V1 and V2.

Page 322 OpenGL Super Bible!

Figure 9-14 Two vectors defined by three points on a plane

Figure 9-15 A normal vector as cross product of two vectors

Don’t worry if you don’t know how to take the cross product of two vectors; all you need is
the function in Listing 9-3. To use this function, pass it an array containing any three
vertices from your polygon (specify in counterclockwise winding order), and an array that
will contain the normal vector on return. The constant values x, y, and z are provided for
your benefit if you want to see how the function works.

Listing 9-3 Function to calculate a normal vector with any three vertices from a polygon

// Points p1, p2, & p3 specified in counterclockwise order
void calcNormal(float v[3][3], float out[3])
 {
 float v1[3],v2[3];
 static const int x = 0;
 static const int y = 1;

OpenGL Super Bible! Page 323

 static const int z = 2;

 // Calculate two vectors from the three points
 v1[x] = v[0][x] - v[1][x];
 v1[y] = v[0][y] - v[1][y];
 v1[z] = v[0][z] - v[1][z];

 v2[x] = v[1][x] - v[2][x];
 v2[y] = v[1][y] - v[2][y];
 v2[z] = v[1][z] - v[2][z];

 // Take the cross product of the two vectors to get
 // the normal vector which will be stored in out[]
 out[x] = v1[y]*v2[z] - v1[z]*v2[y];
 out[y] = v1[z]*v2[x] - v1[x]*v2[z];
 out[z] = v1[x]*v2[y] - v1[y]*v2[x];

 // Normalize the vector (shorten length to one)
 ReduceToUnit(out);
 }

Setting Up a Source

Now that you understand the requirements of setting up your polygons to receive and
interact with a light source, it’s time to turn on the lights! Listing 9-4 shows the SetupRC()
function from the example program LITJET. Part of the setup process for this sample
program creates a light source and places it to the upper-left, slightly behind the viewer. The
light source GL_LIGHT0 has its ambient and diffuse components set to the intensities
specified by the arrays ambientLight[], and diffuseLight[].This results in a moderate white
light source.

GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
…
…
// Setup and enable light 0
glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);

The light is positioned by this code:

GLfloat lightPos[] = { -50.f, 50.0f, 100.0f, 1.0f };
…
…
glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

Here lightPos[] contains the position of the light. The last value in this array is 1.0, which
specifies that the designated coordinates are the position of the light source. If the last value
in the array is 0.0, it indicates that the light is an infinite distance away along the vector
specified by this array. We’ll touch more on this later.

Page 324 OpenGL Super Bible!

Finally, the light source GL_LIGHT0 is enabled:

glEnable(GL_LIGHT0);

Listing 9-4 Light and rendering context setup for LITJET

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values and coordinates
 GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
 GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
 Glfloat lightPos[] = { -50.f, 50.0f, 100.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counter clock -wise polygons face out
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Setup and enable light 0
 glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set Material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // Light blue background
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 }

Setting the Material Properties

Notice in Listing 9-4 that color tracking is enabled, and the properties to be tracked are the
ambient and diffuse reflective properties for the front surface of the polygons. This is just as
it was defined in the AMBIENT sample program:

// Enable color tracking
glEnable(GL_COLOR_MATERIAL);

// Set Material properties to follow glColor values
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

OpenGL Super Bible! Page 325

Specifying the Polygons

The rendering code from the first two JET samples changes considerably now, to support the
new lighting model. Listing 9-5 is taken from the RenderScene() function from LITJET.

Listing 9-5 Code sample that sets color, calculates and specifies normals and polygons

 float normal[3]; // Storage for calculated surface normal
 …
 …
 // Set material color
 glRGB(0, 255, 0);
 glBegin(GL_TRIANGLES);
 glNormal3f(0.0f, -1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 60.0f);
 glVertex3f(-15.0f, 0.0f, 30.0f);
 glVertex3f(15.0f,0.0f,30.0f) ;
 //glEnd();

 {
 // Vertices for this triangle
 float v[3][3] = {{ 15.0f, 0.0f, 30.0f},
 { 0.0f, 15.0f, 30.0f},
 { 0.0f, 0.0f, 60.0f}};

 // Calculate the normal for the pl ane
 calcNormal(v,normal);

 // Draw the triangle using the plane normal
 // for all the vertices
 //glBegin(GL_TRIANGLES);
 glNormal3fv(normal);
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);
 glVertex3fv(v[2]);
 //glEnd();

 }

You’ll notice that we are calculating the normal vector using our code in Listing 9-3. Also,
the material properties are now following the colors set by glColor (which is wrapped by our
glRGB macro). One other thing you’ll notice is that not every triangle is blocked by
glBegin()/glEnd() functions. You can specify once that you are drawing triangles, and every
three vertices will be used for a new triangle until you specify otherwise with glEnd(). For

Page 326 OpenGL Super Bible!

very large numbers of polygons, this can considerably boost performance by eliminating
many unnecessary function calls.

Figure 9-16 shows the output from the completed LITJET example program. By rotating the
jet around with the arrow keys, you can see the dramatic shading effects as the surface of the
jet moves in the light.

Figure 9-16 Output from LITJET sample

Performance Tip:
The most obvious way to improve the performance of this code would be to calculate all the
normal vectors ahead of time and store them for use in the Render function. Before you
pursue this, read Chapter 10’s material on display lists. Display lists provide a means of
storing calculated values not only for the normal vectors, but for the polygon data as well.
Remember, these examples are meant to demonstrate the concepts. They are not necessarily
the most efficient code possible.

Lighting Effects

The ambient and diffuse light from the LITJET example are sufficient to provide the illusion
of lighting. The surface of the jet appears shaded according to the angle of the incident light.
As the jet rotates, these angles change and you can see the lighting effects changing in such
a way that you can easily guess where the light is coming from.

We ignored the specular component of the light source, however, as well as the specular
reflectivity of the material properties on the jet. Although the lighting effects are
pronounced, the surface of the jet is rather flatly colored. Ambient and diffuse lighting and

OpenGL Super Bible! Page 327

material properties are all you need if you are modeling clay, wood, cardboard, cloth, or
some other flatly colored object. But for metallic surfaces like the skin of an airplane, some
shine is often necessary.

Specular Highlights

Specular lighting and material properties add needed gloss to the surface of your objects.
This shininess has a whitening effect on an object’s color and can produce specular
highlights when the angle of incident light is sharp in relation to the viewer. A specular
highlight is what occurs when nearly all the light striking the surface of an object is reflected
away. The white sparkle on a shiny red ball in the sunlight is good example of a specular
highlight.

Specular Light

Adding a specular component to a light source is very easily done. The following code
shows the light source setup for the LITJET program, modified to add a specular component
to the light.

// Light values and coordinates
// Light values and coordinates
GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
Glfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };
…
…

// Enable lighting
glEnable(GL_LIGHTING);

// Setup and enable light 0
glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
glLightfv(GL_LIGHT0,GL_SPECULAR,specular);
glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
glEnable(GL_LIGHT0);

The specular[] array specifies a very bright white light source for the specular component of
the light. Our purpose here is to model bright sunlight. The line

glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

simply adds this specular component to the light source GL_LIGHT0.

If this were the only change you made to LITJET, you wouldn’t see any difference in the
jet’s appearance. This is because we haven’t yet defined any specular reflectance properties
for the material properties.

Page 328 OpenGL Super Bible!

Specular Reflectance

Adding specular reflectance to material properties is just as easy as adding the specular
component to the light source. This next code segment shows the code from LITJET, again
modified to add specular reflectance to the material properties.

// Light values and coordinates
GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };
…
…

// Enable color tracking
glEnable(GL_COLOR_MATERIAL);

// Set Material properties to follow glColor values
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

// All materials hereafter have full specular reflectivity
// with a high shine
glMaterialfv(GL_FRONT, GL_SPECULAR,spec ref);
glMateriali(GL_FRONT,GL_SHININESS,128);

As before, we enable color tracking so that the ambient and diffuse reflectance of the
materials follow the current color set by the glColor() functions. (Of course, we don’t want
the specular reflectance to track glColor, because we are specifying it separately and it
doesn’t change.)

Now we’ve added an array specref[] that contains the RGBA values for our specular
reflectance. This array of all 1’s will produce a surface that reflects nearly all incident
specular light. The line

glMaterialfv(GL_FRONT, GL_SPECULAR,specref);

sets the material properties for all subsequent polygons to have this reflectance. Since we do
not call glMaterial again with the GL_SPECULAR property, all materials will have this
property. We did this on purpose because we want the entire jet to appear made of metal or
very shiny composites.

What we have done here in our setup routine is important: We have specified that the
ambient and diffuse reflective material properties of all future polygons (until we say
otherwise with another call to glMaterial or glColorMaterial) will change as the current
color changes, but that the specular reflective properties will remain the same.

Specular Exponent

As stated earlier, high specular light and reflectivity brighten the colors of the object. For
this example, the present extremely high specular light (full intensity) and specular
reflectivity (full reflectivity) will result in a jet that appears almost totally white or gray

OpenGL Super Bible! Page 329

except where the surface points away from the light source (in which case it would be black
and unlit). To temper this effect, we use the next line of code after the specular component is
specified, as follows:

glMateriali(GL_FRONT,GL_SHININESS,128);

The GL_SHININES property sets the specular exponent of the material, which specifies
how small and focused the specular highlight is. A value of 0 specifies an unfocused
specular highlight, which is actually what is producing the brightening of the colors evenly
across the entire polygon. If you set this value, you reduce the size and increase the focus of
the specular highlight, causing a shiny spot to appear. The larger the value, the more shiny
and pronounced the surface. The range of this parameter is 1–128 for all implementations of
OpenGL.

Listing 9-6 shows the new SetupRC code in the sample program SHINYJET. This is the
only code that changed from LITJET (other than the title of the window) to produce a very
shiny and glistening jet. Figure 9-17 shows the output from this program, but to fully
appreciate the effect, you should run the program and hold down one of the arrow keys to
spin the jet about in the sunlight.

Figure 9-17 Output from the SHINYJET program

Page 330 OpenGL Super Bible!

Listing 9-6 Setup from SHINYJET to produce specular highlights on the jet

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values and coordinates
 GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
 GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
 GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
 Glfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };
 GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counterclockwise polygons face out
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up and enable light 0
 glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
 glLightfv(GL_LIGHT0,GL_SPECULAR,specular);
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos) ;
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set Material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // All materials hereafter have full specular reflectivity
 // with a high shine
 glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
 glMateriali(GL_FRONT,GL_SHININESS,128);

 // Light blue background
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 }

Normal Averaging

Earlier we mentioned that by “tweaking” your normals you can produce smooth surfaces
with straight lines. This technique, known as normal averaging, produces some interesting
optical illusions. Say you have a surface like that shown in Figure 9-18, with the usual
surface normals.

OpenGL Super Bible! Page 331

Figure 9-18 Jagged surface with the usual surface normals

Although the normals are shown in between the corners, they are actually specified for each
vertex. If you take into account that each vertex actually boarders another surface, you can
specify the normal for that vertex as the average of the two normals at that point for each
surface. Figure 9-19 shows that for two adjoining surfaces, their common corner would have
a different normal specified as each surface is drawn. If we take the average of these two
normals and use it when we specify each surface, the joining of the two surfaces will appear
less sharp after OpenGL does its surface shading.

Figure 9-19 Averaging the normals will make sharp corners appear softer

Listing 9-7 shows the rendering function that creates the surface shown in Figure 9-18. (This
code is from the example program WAVEY in the CD subdirectory for this chapter.) The
surface is created by stepping from left to right for the x coordinates, and alternating up and
down in the y coordinate direction. The z coordinates are constant, with –50 being the front
of the image and 50 being at the back.

Page 332 OpenGL Super Bible!

Listing 9-7 The rendering function from the WAVEY example program

// Called to draw scene
void RenderScene(void)
 {
 float normal[3]; // Storage for calculate normal
 float v[4][3]; // Storage for rectangle coordinates
 float lastY; // Left-hand side of rectangle
 float nextY; // Right-hand side of rectangle
 float temp; // Temporary storage for swapping
 float x; // X coordinate storage

 // Menu state specifies if wireframe or not
 if(iState == WIRE)
 glPolygonMode(GL_FRONT_AND_BACK,G L_LINE);
 else
 glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);

 // Menu state specifies if smooth or flat shading
 if(iState == SMOOTH || iState == AVERAGE)
 glShadeModel(GL_SMOOTH);
 else
 glShadeModel(GL_FLAT);

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Reset viewing volume and viewport
 ChangeSize(lastWidth,lastHeight);

 // Rotate the image according to accumulated angle set
 // by the arrow key handlers
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Set surface color to blue
 glRGB(0,0,255);

 // Initialize the y steppings
 lastY = 0.0f;
 nextY = 10.0f;

 // Loop through x coordinate from left to right, build
 // a rectangle with alternating slopes upward and downward
 for(x = -60.0f; x < 60.0f; x+= 20.0f)
 {
 // 1st Vertices
 v[0][0] = x; // X coord for left
 v[0][1] = lastY;
 v[0][2] = 50.0f; // Z coord for back

 // 2nd vertices
 v[1][0] = x; // X coord for left
 v[1][1] = lastY;
 v[1][2] = -50.0f; // Z coord for front

OpenGL Super Bible! Page 333

 // 3rd Vertices
 v[2][0] = x + 20.0f; // X coord for right
 v[2][1] = nextY;
 v[2][2] = -50.0f; // Z coord for front

 // 4th Vertices
 v[3][0] = x + 20.0f; // X coord for right
 v[3][1] = nextY;
 v[3][2] = 50.0f; // Z coord for back

 // Begin the polygon
 glBegin(GL_POLYGON);
 if(iState != AVERAGE)
 {
 // Calculate and set the normal vector,
 unless
 // averaging selecte d from the menu.
 calcNormal(v,normal);
 glNormal3fv(normal);
 }
 else // Average normals. Here we cheat because
we
 know
 // the normal points either up or down
 {
 // Normal points straight up
 if(nextY == 10)
 glNormal3f(0.0f,1.0f, 0.0f);
 else
 // Normal points straight down
 glNormal3f(0.0f, -1.0f, 0.0f);
 }

 // Specify the left two verticies
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);

 // Do the same, but the normal on the other side
 points
 // the other direction
 if(iState == AVERAGE)
 {
 if(nextY == 10)
 glNormal3f(0.0f, -1.0f, 0.0f);
 // points down
 else
 glNormal3f(0.0f,1.0f, 0.0f);
 // points up
 }

 // Specify the right t wo vertices
 glVertex3fv(v[2]);
 glVertex3fv(v[3]);
 glEnd();

Page 334 OpenGL Super Bible!

 // Swap the y coordinate positions
 temp = lastY;
 lastY = nextY;
 nextY = temp;
 }

 // Flush drawing commands
 glFlush();
 }

The WAVEY program has menu options to render just a wireframe image, do flat or smooth
shading, and finally do the normal averaging. Figure 9-20 shows this folding image using
flat shading, and Figure 9-21 is the same object with the normals averaged. You can see that
the second image appears to have a smooth rippling effect across its surface.

Figure 9-20 Bent surface with regular surface normals

Figure 9-21 Bent surface with surface normals averaged together

OpenGL Super Bible! Page 335

Spotlights

So far, we have been specifying a light’s position with glLight as follows:

// Array to specify position
GLfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };

…
…

// Set the light position
glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

The array lightPos[] contains the x, y, and z values that specify either the light’s actual
position in the scene, or the direction from which the light is coming. The last value, a 1.0 in
this case, indicates that the light is actually present at this location. By default, the light will
radiate equally in all directions from this location— but this can be changed to make a
spotlight effect.

To make a light source an infinite distance away and coming from the direction specified by
this vector, you would place a 0.0 in this last lightPos[] array element. A directional light
source, as this is called, strikes the surface of your objects evenly. That is, all the light rays
are parallel. In a positional light source on the other hand, the light rays diverge from the
light source. The specular highlights achieved in the SHINYJET example would not be
possible with a directional light source. Rather than the glistening spot, the entire face of the
triangles that make up the jet would be white when they faced the light source dead on (the
light rays strike the surface at a 90º angle).

Creating a Spotlight

Creating a spotlight is no different from creating any other directional light source. The code
in Listing 9-8 shows the SetupRC() function from the SPOT example program. This
program places a blue sphere in the center of the window. A spotlight is created that can be
moved vertically with the up and down arrow keys, and horizontally with the left and right
arrow keys. As the spotlight moves over the surface of the sphere, a specular highlight
follows it on the surface.

Listing 9-8 Lighting setup for the SPOT sample program

// Light values and coordinates
GLfloat lightPos[] = { 0.0f, 0.0f, 75.0f, 1.0f };
GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f};
GLfloat spotDir[] = { 0.0f, 0.0f, -1.0f };

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for

Page 336 OpenGL Super Bible!

// the scene.
void SetupRC()
 {
 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counterclockwise polygons face out
 glEnable(GL_CULL_FACE); // Do not try to display the back sides

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up and enable light 0
 // Supply a slight ambient light so the objects can be seen
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientLight);

 // The light is composed of just diffuse and specular components
 glLightfv(GL_LIGHT0,GL_DIFFUSE,ambientLight);
 glLightfv(GL_LIGHT0,GL_SPECULAR,specular);
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

 // Specific spot effects
 // Cut off angle is 60 degrees
 glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,60.0f);

 // Fairly shiny spot
 glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,100.0f);

 // Enable this light in particular
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set Material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // All materials hereafter have full specula r reflectivity
 // with a high shine
 glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
 glMateriali(GL_FRONT, GL_SHININESS,128);

 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }

The following lines are actually what make a positional light source into a spotlight:

// Specific spot effects
// Cut off angle is 60 degrees
glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,60.0f);

// Fairly shiny spot
glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,100.0f);

OpenGL Super Bible! Page 337

The GL_SPOT_CUTOFF value specifies the radial angle of the cone of light emanating
from the spotlight. For a normal positional light, this is 180º so that the light is not confined
to a cone. Spotlights emit a cone of light, and objects outside this cone are not illuminated.
Figure 9-22 shows how this angle translates to the cone width.

Figure 9-22 The angle of the spotlight’s cone

Drawing a Spotlight

When you place a spotlight in a scene, the light must come from somewhere. Just because
you have a source of light at some location doesn’t mean that you will see a bright spot
there. For our SPOT example program, we placed a red cone at the spotlight source to show
where the light was coming from. Inside the end of this cone, we placed a bright yellow
sphere to simulate a light bulb. Listing 9-9 shows the complete code to render the scene.

Make special note of the statement

glPushAttrib(GL_LIGHTING_BIT);

Just following this statement, we disable lighting and render a bright yellow sphere. Then
we make a call to

glPopAttrib();

The first statement saves the state of all the lighting state variables. Then we can just disable
lighting long enough to draw a yellow light bulb and put the lighting system back the way it
was. See the Chapter 14 Reference Section entries for glPushAttrib and glPopAttrib for
more information on saving and restoring state variables. A sample screen from our SPOT
example program is shown in Figure 9-23.

Page 338 OpenGL Super Bible!

Figure 9-23 Output of the SPOT program demonstrating spotlights

Listing 9-9 The rendering function for SPOT, showing how the spotlight is moved

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Set material color and draw a sph ere in the middle
 glRGB(0, 0, 255);
 auxSolidSphere(30.0f);

// Now place the light
// Save the coordinate transformation
glPushMatrix();
 // Rotate coordinate system
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);

 // Specify new position and direction in rotated coords.
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spotDir);

 // Draw a red cone to enclose the light source
 glRGB(255,0,0);

 // Translate origin to move the cone out to where the light
 // is positioned.
 glTranslatef(lightPos[0],lightPos[1],lightPos[2]);
 auxSolidCone(4.0f,6.0f);

 // Draw a smaller displaced sphere to denot e the light bulb

OpenGL Super Bible! Page 339

 // Save the lighting state variables
 glPushAttrib(GL_LIGHTING_BIT);

 // Turn off lighting and specify a bright yellow sphere
 glDisable(GL_LIGHTING);
 glRGB(255,255,0);
 auxSolidSphere(3.0f);

 // Restore lighting state variables
 glPopAttrib();

// Restore coordinate transformations
glPopMatrix();

// Flush drawing commands
glFlush();
}

Shadows

A chapter on lighting naturally begs the topic of shadows. Adding shadows to your scenes
can greatly improve their realism and visual effectiveness. In Figures 9-24a and 9-24b you
see two views of a lighted cube, one without and one with a shadow (this is the example
program from Chapter 2). The cube in Figure 9-24b with a shadow looks much more
believable.

Figure 9-24a Lighted cube without a shadow

Page 340 OpenGL Super Bible!

Figure 9-24b Lighted cube with a shadow

What Is a Shadow?

Conceptually, drawing a shadow is quite simple. A shadow is produced when an object
keeps light from a light source from striking some object or surface behind the object casting
the shadow. The area on the shadowed object’s surface, outlined by the object casting the
shadow, appears dark. We can produce a shadow programmatically by flattening the original
object into the plane of the surface in which the object lies. The object is then drawn in black
or some dark color, perhaps with some translucence (see the shadow sample in Chapter 16).
Figure 9-25 illustrates this flattening.

Figure 9-25 Flattening an object to create a shadow

OpenGL Super Bible! Page 341

The process of squishing an object against another surface is accomplished using some of
those advanced matrix manipulations we explored in Chapter 7. Here we will boil it down to
make it as simple as possible.

Squish Code

We need to flatten the Modelview projection matrix so that any and all objects drawn into it
are now in this flattened two-dimensional world. No matter how the object is oriented, it will
be squished into the plane in which the shadow lies. The second consideration is the distance
and direction of the light source. The direction of the light source determines the shape of
the shadow, and influences the size. If you’ve ever seen your shadow in the late or early
morning hours, you know how long and warped your shadow can appear depending on the
position of the Sun.

The function in Listing 9-10 takes three points that lie in the plane in which you want the
shadow to appear, the position of the light source, and finally a pointer to a transformation
matrix that this function will construct. Without delving too much into linear algebra, what
this function does is deduce the coefficients of the equation of the plane in which the
shadow will appear, and use it along with the lighting position to build a Transformation
matrix. If you multiply this matrix by the current Modelview matrix, all further drawing will
be flattened into this plane.

Listing 9-10 Function to make a shadow transformation matrix

// Creates a shadow projection matrix out of the plane equation
// coefficients and the position of the light. The return value is stored
// in destMat[][]
void MakeShadowMatrix(GLfloat points[3][3], GLfloat lightPos[4],
 GLfloat destMat[4][4])
 {
 GLfloat planeCoeff[4];
 GLfloat dot;

 // Find the plane equation coefficients
 // Find the first three coefficients the same way we
 // find a normal.
 calcNormal(points,planeCoeff);

 // Find the last coefficient by back substitutions
 planeCoeff[3] = - (
 (planeCoeff[0]*points[2][0]) +
 (planeCoeff[1]*points[2][1]) +
 (planeCoeff[2]*points[2][2]));

 // Dot product of plane and light position
 dot = planeCoeff[0] * lightPos[0] +
 planeCoeff[1] * lightPos[1] +
 planeCoeff[2] * lightPos[2] +
 planeCoeff[3] * lightPos[3];

Page 342 OpenGL Super Bible!

 // Now do the projection
 // First column
 destMat[0][0] = dot - lightPos[0] * planeCoeff[0];
 destMat[1][0] = 0.0f - lightPos[0] * planeCoeff[1];
 destMat[2][0] = 0.0f - lightPos[0] * planeCoeff[2];
 destMat[3][0] = 0.0f - lightPos[0] * planeCoeff[3];

 // Second column
 destMat[0][1] = 0.0f - lightPos[1] * planeCoeff[0];
 destMat[1][1] = dot - lightPos[1] * planeCoeff[1];
 destMat[2][1] = 0.0f - lightPos[1] * planeCoeff[2];
 destMat[3][1] = 0.0f - lightPos[1] * planeCoeff[3];

 // Third Column
 destMat[0][2] = 0.0f - lightPos[2] * planeCoeff[0];
 destMat[1][2] = 0.0f - lightPos[2] * planeCoeff[1];
 destMat[2][2] = dot - lightPos[2] * planeCoeff[2];
 destMat[3][2] = 0.0f - lightPos[2] * planeCoeff[3];

 // Fourth Column
 destMat[0][3] = 0.0f - lightPos[3] * planeCoeff[0];
 destMat[1][3] = 0.0f - lightPos[3] * planeCoeff[1];
 destMat[2][3] = 0.0f - lightPos[3] * planeCoeff[2];
 destMat[3][3] = dot - lightPos[3] * planeCoeff[3];
 }

A Shadow Example

To demonstrate the use of the function in Listing 9-10, we will suspend our jet in air high
above the ground. We’ll place the light source directly above and a bit to the left of the jet.
As you use the arrow keys to spin the jet around, the shadow cast by the jet will appear
flattened on the ground below. The output from this SHADOW example program is shown
in Figure 9-26.

Figure 9-26 Output from the SHADOW example program

OpenGL Super Bible! Page 343

The code in Listing 9-11 shows how the shadow projection matrix was created for this
example. Note that we create the matrix once in SetupRC() and save it in a global variable.

Listing 9-11 Setting up the shadow projection matrix

GLfloat lightPos[] = { -75.0f, 150.0f, -50.0f, 0.0f };
…
…

// Transformation matrix to project shadow
GLfloat shadowMat[4][4];
…
…

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Any three points on the ground (counterclockwise order)
 GLfloat points[3][3] = {{ -30.0f, -149.0f, -20.0f },
 { -30.0f, -149.0f, 20.0f },
 {40.0f, -149.0f, 20.0f }};

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counterclockwise polygons
 face out
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet

 // Enable lighting
 glEnable(GL_LIGHTING);

 …
 // Code to setup lighting, etc.
 …

 // Light blue background
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Calculate projection matrix to draw shadow on the ground
 MakeShadowMatrix(points, lightPos, shadowMat);
 }

Listing 9-12 shows the rendering code for the SHADOW example. We first draw the jet as
we normally would; then we restore the Modelview matrix and multiply it by the shadow
matrix. This creates our squish Projection matrix. Then we draw the jet again (we’ve
modified our code to accept a flag telling the DrawJet function to render in color or black).
After restoring the Modelview matrix once again, we draw a small yellow sphere to
approximate the position of the light, and then draw a plane below the jet to indicate the
ground. This rectangle lies in the same plane in which our shadow will be drawn.

Page 344 OpenGL Super Bible!

Listing 9-12 Render the jet and its shadow

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glPushMatrix();

 // Draw jet at new orientation, put light in correct position
 // before rotating the jet
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 DrawJet(FALSE);

 // Restore original matrix state
 glPopMatrix();

 // Get ready to draw the shadow and the ground
 // First disable lighting and save the projection state
 glPushAttrib(GL_LIGHTING_BIT);
 glDisable(GL_LIGHTING);
 glPushMatrix();

 // Multiply by shadow project ion matrix
 glMultMatrixf((GLfloat *)shadowMat);

 // Now rotate the jet around in the new flattened space
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Pass true to indicate drawing shadow
 DrawJet(TRUE);

 // Restore the projection to normal
 glPopMatrix();

 // Draw the light source
 glPushMatrix();
 glTranslatef(lightPos[0],lightPos[1], lightPos[2]);
 glRGB(255,255,0);
 auxSolidSphere(5.0f);
 glPopMatrix();

 // Draw the ground; we do manual shading to a darker green
 // in the background to give the illusion of depth
 glBegin(GL_QUADS);
 glRGB(0,128,0);
 glVertex3f(400.0f, -150.0f, -200.0f);
 glVertex3f(-400.0f, -150.0f, -200.0f);

OpenGL Super Bible! Page 345

 glRGB(0,255,0);
 glVertex3f(-400.0f, -150.0f, 200.0f);
 glVertex3f(400.0f, -150.0f, 200.0f);
 glEnd();

 // Restore lighting state variables
 glPopAttrib();

 // Flush drawing commands
 glFlush();
 }

Lighting and Color Index Mode

In Chapter 8, you learned that in color index mode, color is specified as an index into a
palette rather than as components of red, green, and blue light. This has some obvious
implications for lighting effects. Most of the lighting functions expect light and material
properties to be specified in terms of these RGBA components.

Some consideration is made for color index mode by OpenGL, but in color index mode your
lights may only contain diffuse and specular components. Material properties can include
shininess, ambient, diffuse, and specular light, and although this may be enough to do some
lighting, it is questionable whether it’s actually worth the effort.

In order to do lighting, your palette must contain three color ramps for ambient, diffuse, and
specular colorings. To achieve satisfactory results, your ramps will usually progress from
black to shades of a single color and finally to white. It’s possible to define these such that
you produce a smoothly shaded object in a single color, but this has few if any practical
applications.

Generally, most recognized OpenGL texts recommend that you avoid color index mode for
lighting effects. Still, if you must use it, the CD contains a supplementary example called
ILIGHT that shows how to use color index mode to illuminate a scene with some objects.
However, all these objects are the same color!

Page 346 OpenGL Super Bible!

Summary

In this chapter you have been introduced to some of the more magical and powerful
capabilities of OpenGL. You’ve seen how to specify one or more light sources and define
their lighting characteristics in terms of ambient, diffuse, and specular components. We
explained how the corresponding material properties interact with these light sources, and
demonstrated some special effects such as adding specular highlights and softening sharp
edges.

Also covered were lighting positions, and creation and manipulation of spotlights. The high-
level matrix munching function presented here will make shadow generation as easy as it
gets. Finally, we explained why you should avoid color index mode for lighting effects. The
demonstration programs in this chapter are fairly simple, but you’ll find more samples on
the CD in the subdirectory for this chapter. The programs on the CD further demonstrate all
of these effects, including scenes with more than one light source.

OpenGL Super Bible! Page 347

Reference Section

glColorMaterial

Purpose
Allows material colors to track the current color as set by glColor.

Include File
<gl.h>

Syntax
void glColorMaterial(GLenum face, GLenum mode);

Description
This function allows material properties to be set without having to call glMaterial
directly. By using this function, certain material properties can be set to follow the
current color as specified by glColor. By default, color tracking is disabled; to enable
it, you must also call glEnable(GL_COLOR_MATERIAL). To disable color tracking
again, call glDisable(GL_COLOR_MATERIAL).

Parameters

face
GLenum: Specifies if the front (GL_FRONT), back (GL_BACK), or both
(GL_FRONT_AND_BACK) should follow the current color.

mode
GLenum: Specifies which material property should be following the current color.
This can be GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, or
GL_AMBIENT_AND_DIFFUSE.

Returns
None.

Example

The following code from the AMBIENT example program enables color tracking, then sets
the front material parameters for ambient and diffuse reflectivity to follow the colors
specified by glColor.

 glEnable(GL_COLOR_MATERIAL); // Enable Material color tracking

 // Front material ambient and diffuse colors track glColor
 glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);
See Also

glColor, glMaterial, glLight, glLightModel

Page 348 OpenGL Super Bible!

glCullFace

Purpose
Specifies whether the front or back of polygons should be eliminated from drawing.

Include File
<gl.h>

Syntax
void glCullFace(GLenum mode);

Description
This function disables lighting, shading, and color calculations and operations on
either the front or back of a polygon. If, for instance, an object is closed in so that the
back side of the polygons will never be visible regardless of rotation or translation,
this will eliminate unnecessary computations in the display of the scene. Culling is
enabled or disabled by calling glEnable and glDisable with the GL_CULL_FACE
parameter. The front and back of the polygon are defined by use of the glFrontFace
function and the order in which the vertices are specified (clockwise or
counterclockwise winding).

Parameters

mode
GLenum: Specifies which face of polygons should be culled. May be either
GL_FRONT, or GL_BACK.

Returns
None.

Example

The following code from the AMBIENT example from this chapter shows how the color
and drawing operations are disabled for the inside of the jet. It is also necessary to indicate
which side of the polygon is the outside by specifying clockwise or counterclockwise
winding.

 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Counterclockwise polygons face out
See Also

glFrontFace, glLightModel

OpenGL Super Bible! Page 349

glFrontFace

Purpose
Defines which side of a polygon is the front or back.

Include File
<gl.h>

Syntax
void glFrontFace(GLenum mode);

Description
When a scene is made up of objects that are closed (you cannot see the inside), there
is no need to do color or lighting calculations on the inside of the object. The
glCullFace function will turn off such calculations for either the front or back of
polygons. The glFrontFace function determines which side of the polygons is
considered the front. If the vertices of a polygon are specified such that they travel
around the polygon in a clockwise fashion, the polygon is said to have clockwise
winding. If the vertices travel counterclockwise, the polygon is said to have
counterclockwise winding. This function allows either the clockwise or
counterclockwise wound face to be considered the front of the polygon.

Parameters

mode
GLenum: Specifies the orientation of front facing polygons, clockwise (GL_CW) or
counterclockwise (GL_CCW).

Returns
None.

Example

The following code from the AMBEINT example from this chapter shows how the color
and drawing operations are disabled for the inside of the jet. It is also necessary to indicate
which side of the polygon is the outside by specifying clockwise or counterclockwise
winding.

 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Counterclockwise polygons face out
See Also

glCullFace, glLightModel

Page 350 OpenGL Super Bible!

glGetMaterial

Purpose
Returns the current material property settings.

Include File
<gl.h>

Variations
void glGetMaterialfv(GLenum face, GLenum pname, GLfloat *params);
void glGetMaterialiv(GLenum face, GLenum pname, GLint *params);

Description
Use this function to query the current front or back material properties. The return
values are stored at the address pointed to by params. For most properties this is an
array of four values containing the RGBA components of the property specified.

Parameters

face
GLenum: Specifies whether the front (GL_FRONT), or back (GL_BACK) material
properties are being sought.

pname
GLenum: Specifies which material property is being queried. Valid values are:
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION,
GL_SHININESS, and GL_COLOR_INDEXES.

params
GLint* or GLfloat*: An array of integer or floating point values representing the
return values. For GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and
GL_EMISSION this is a four-element array containing the RGBA values of the
property specified. For GL_SHININESS a single value representing the specular
exponent of the material is returned. GL_COLOR_INDEXES returns an array of
three elements containing the ambient, diffuse, and specular components in the form
of color indexes. GL_COLOR_INDEXES is only used for color index lighting.

Returns
None.

Example

The following code shows how all the current material properties are read and stored.

 // Storage for all the material properties
 GLfloat mbientMat[4],diffuseMat[4],sp ecularMat[4],emissionMat[4];
 GLfloat shine;
 …
 // Read all the material properties
 glGetMaterialfv(GL_FRONT,GL_AMBIENT,ambientMat);
 glGetMaterialfv(GL_FRONT,GL_DIFFUSE,diffuseMat);

OpenGL Super Bible! Page 351

 glGetMaterialfv(GL_FRONT,GL_SPECULAR,specularMat);
 glGetMaterialfv(GL_FRONT,GL_EMISSION,emissionMat);
 glGetMaterialfv(GL_FRONT,GL_SHININESS,&shine);
See Also

glMaterial

Page 352 OpenGL Super Bible!

glGetLight

Purpose
Returns information about the current light source settings.

Include File
<gl.h>

Variations
void glGetLightfv(GLenum light, GLenum pname, GLfloat *params);void
glGetLightiv(GLenum light, GLenum pname, GLint *params);

Description
Use this function to query the current settings for one of the eight supported light
sources. The return values are stored at the address pointed to by params. For most
properties this is an array of four values containing the RGBA components of the
properties specified.

Parameters

light
GLenum: The light source for which information is being requested. This will range
from 0 to GL_MAX_LIGHTS (8 for Windows NT and Windows 95). Constant light
values are enumerated from GL_LIGHT0 to GL_LIGHT7.

pname
GLenum: Specifies which property of the light source is being queried. Any of the
following values are valid: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_POSITION, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION , and GL_QUADRATIC_ATTENUATION.

params
GLfloat* or GLint*: An array of integer or floating point values representing the
return values. These return values will be in the form of an array of four, three, or a
single value. Table 9-2 shows the return value meanings for each property.

Returns
None.

Example

The following code shows how all the lighting properties for the light source GL_LIGHT0
are retrieved and stored.

 // Storage for the light properties
 GLfloat ambientComp[4],diffuseComp[4],specularComp[4]
 …
 …
 // Read the light components
 glGetLightfv(GL_LIGHT0,GL_AMBIENT,ambientComp);

OpenGL Super Bible! Page 353

 glGetLightfv(GL_FRONT,GL_DIFFUSE,diffuseComp);
 glGetLightfv(GL_FRONT,GL_SPECULAR,specularComp);
See Also

glLight

Table 9-2 Valid Lighting Parameters for glGetLight

Property Meaning of Return Values

GL_AMBIENT Four RGBA components.
GL_DIFFUSE Four RGBA components.
GL_SPECULAR Four RGBA components.
GL_POSITION Four elements that specify the position of the light

source. The first three elements specify the position
of the light. The fourth, if 1.0, specifies that the
light is at this position. Otherwise, the light source
is directional and all rays are parallel.

GL_SPOT_DIRECTION Three elements specifying the direction of the
spotlight. This vector will not be normalized, and
will be in eye coordinates.

GL_SPOT_EXPONENT A single value representing the spot exponent.
GL_SPOT_CUTOFF A single value representing the cutoff angle of the

spot source.
GL_CONSTANT_ATTENUATION A single value representing the constant attenuation

of the light.
GL_LINEAR_ATTENUATION A single value representing the linear attenuation of

the light.
GL_QUADRATIC_ATTENUATION A single value representing the quadratic

attenuation of the light.

Page 354 OpenGL Super Bible!

glLight

Purpose
Sets light source parameters for one of the eight available light sources.

Include File
<gl.h>

Variations
void glLightf(GLenum light, GLenum pname, GLfloat param);
void glLighti(GLenum light, GLenum pname, GLint param);
void glLightfv(GLenum light, GLenum pname, const GLfloat *params);
void glLightiv(GLenum light, GLenum pname, const GLint *params);

Description
Use this function to set the lighting parameters for one of the eight supported light
sources. The first two variations of this function require only a single parameter
value to set one of the following properties: GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION. The
second two variations are used for lighting parameters that require an array of
multiple values. These include: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_POSITION, and GL_SPOT_DIRECTION. These variations may also be used
with single valued parameters by specifying a single element array for *params.

Parameters

light
GLenum: Specifies which light source is being modified. This will range from 0 to
GL_MAX_LIGHTS (8 for Windows NT and Windows 95). Constant light values are
enumerated from GL_LIGHT0 to GL_LIGHT7.

pname
GLenum: Specifies which lighting parameter is being set by this function call. See
Table 9-2 for a complete listing and the meaning of these parameters.

param
GLfloat, or GLint: For parameters that are specified by a single value, this specifies
that value. These parameters are: GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION. These parameters only have meaning for spot
lights.

params
GLfloat*, or GLint*: An array of values that fully describe the parameters being set.
See Table 9-2 for a listing and the meaning of these parameters.

Returns
None.

Example

OpenGL Super Bible! Page 355

The following code from the LITJET example program sets up a single light source to the
upper-left behind the viewer. The light source is composed only of moderate ambient and
diffuse components.

 // Light values and coordinates
 GLfloat whiteLight[] = { 0.5f, 0.5f, 0.5f, 1.0f };
 GLfloat lightPos[] = { -50.f, 50.0f, -100.0f, 0.0f };
 …
 …

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up and enable light 0
 glLightfv(GL_LIGHT0,GL_AMBIENT_AND_DIFFUSE,whiteLight);
 glLightfv(GL_LIGHT0,GL_POSITION,lightP os);
 glEnable(GL_LIGHT0);
See Also

glGetLight

Page 356 OpenGL Super Bible!

glLightModel

Purpose
Sets the lighting model parameters used by OpenGL.

Include File
<gl.h>

Variations
void glLightModelf(GLenum pname, GLfloat param)
void glLightModeli(GLenum pname, GLint param);
void glLightModelfv(GLenum pname, const GLfloat *params);
void glLightModeliv(GLenum pname, const GLint *params);

Description
This function is used to set the lighting model parameters used by OpenGL. Any or
all of three lighting model parameters may be set. GL_LIGHT_MODEL_AMBIENT
is used to set a default ambient illumination for a scene. By default, this light has an
RGBA value of (0.2, 0.2, 0.2, 1.0). Only the last two variations may be used to set
this lighting model because they take pointers to an array that can contain the RGBA
values. The GL_LIGHT_MODEL_TWO_SIDE parameter is specified to indicate
whether both sides of polygons are illuminated. By default, only the front (defined
by winding) of polygons is illuminated, using the front material properties as
specified by glMaterial(). Finally, specifying a lighting model parameter of
GL_LIGHT_MODEL_LOCAL_VIEWER modifies calculation of specular
reflection angles, whether the view is down along the –z axis or from the origin of
the eye coordinate system (see Chapter 6).

Parameters

pname
GLenum: Specifies a lighting model parameter. GL_LIGHT_MODEL_AMBIENT,
GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE
are accepted.

param
GLfloat or GLint: For GL_LIGHT_MODEL_LOCAL_VIEWER, a value of 0.0
indicates that specular lighting angles take the view direction to be parallel to and in
the direction of the –z axis. Any other value indicates that the view is from the origin
of eye coordinate system. For GL_LIGHT_MODEL_TWO_SIDE, a value of 0.0
indicates that only the fronts of polygons are to be included in illumination
calculations. Any other value indicates that both the front and back are included.
This parameter has no effect on points, lines, or bitmaps.

params
GLfloat* or GLint*: For GL_LIGHT_MODEL_AMBIENT or
GL_LIGHT_MODEL_LOCAL_VIEWER this points to an array of integers or
floating point values, only the first element of which is used to set the parameter

OpenGL Super Bible! Page 357

value. For GL_LIGHT_MODEL_AMBIENT this array points to four values that
indicate the RGBA components of the ambient light.

Returns
None.

Example

The following code from this chapter’s AMBIENT example sets up a global ambient light
source consisting of a full-intensity white light.

 // Bright white light
 GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Counterclockwise polygons face out

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set light model to use ambient light specified by ambientLight
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);
See Also

glLight, glMaterial

Page 358 OpenGL Super Bible!

glMaterial

Purpose
Sets material parameters for use by the lighting model.

Include File
<gl.h>

Variations
void glMaterialf(GLenum face, GLenum pname, GLfloat param);
void glMateriali(GLenum face,GLenum pname,GLint param);
void glMaterialfv(GLenum face, GLenum pname, const GLfloat *params)
void glMaterialiv(GLenum face, GLenum pname, const GLint *params);

Description
This function is used to set the material reflectance properties of polygons. The
GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR properties affect how these
components of incident light are reflected. GL_EMISSION is used for materials that
appear to give off their own light. GL_SHININESS can vary from 0 to 128, with the
higher values producing a larger specular highlight on the material surface. Finally,
GL_COLOR_INDEXES is used for material reflectance properties in color Index
mode.

Parameters

face
GLenum: Specifies whether the front, back, or both material properties of the
polygons are being set by this function. May be either GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

pname
GLenum: For the first two variations, this specifies the single-valued material
parameter being set. Currently, the only single-valued material parameter is
GL_SHININESS. The second two variations, which take arrays for their parameters,
may set the following material properties: GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_EMISSION, GL_SHININESS,
GL_AMBIENT_AND_DIFFUSE, or GL_COLOR_INDEXES.

param
GLfloat or GLint: Specifies the value to which the parameter specified by pname
(GL_SHININESS) will be set.

params
GLfloat* or GLint*: An array of floats or integers that contain the components of the
property being set.

Returns None.
Example

See the LITJET sample program from this chapter.
See Also

glGetMaterial, glColorMaterial, glLight, glLightModel

OpenGL Super Bible! Page 359

glNormal

Purpose
Defines a surface normal for the next vertex or set of vertices specified.

Include File
<gl.h>

Variations
void glNormal3b(GLbyte nx, GLbyte ny, GLbyte nz);
void glNormal3d(GLdouble nx, GLdouble ny, GLdouble nz);
void glNormal3f(GLfloat nx, GLfloat ny, GLfloat nz);
void glNormal3i(GLint nx, GLint ny, GLint nz);
void glNormal3s(GLshort nx, GLshort ny, GLshort nz);
void glNormal3bv(const GLbyte *v);
void glNormal3dv(const GLdouble *v);
void glNormal3fv(const GLfloat *v);
void glNormal3iv(const GLint *v);
void glNormal3sv(const GLshort *v);

Description
The normal vector specifies which direction is up and perpendicular to the surface of
the polygon. This is used for lighting and shading calculations. Specifying a unit
vector of length 1 will improve rendering speed. OpenGL will automatically convert
your normals to unit normals if you enable this with glEnable(GL_NORMALIZE);

Parameters

nx
Specifies the x magnitude of the normal vector.

ny
Specifies the y magnitude of the normal vector.

nz
Specifies the z magnitude of the normal vector.

v
Specifies an array of three elements containing the x, y, and z magnitudes of the
normal vector.

Returns
None.

Example

The following code from the LITJET sample program from this chapter demonstrates setting
a normal vector for each polygon before it is rendered.

 // Vertices for this panel
 float normal[3];

Page 360 OpenGL Super Bible!

 float v[3][3] = {{ 15.0f, 0.0f, 30.0f},
 { 0.0f, 15.0f, 30.0f},
 { 0.0f, 0.0f, 60.0f}};

 // Calculate the normal for the pla ne
 calcNormal(v,normal);

 // Draw the triangle using the plane normal
 // for all the vertices
 glBegin(GL_TRIANGLES);
 glNormal3fv(normal);
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);
 glVertex3fv(v[2]);
 glEnd();
See Also

glTexCoord, glVertex

OpenGL Super Bible! Page 361

Chapter 10
3D Modeling and Object Composition

What you’ll learn in this chapter:

How to… Functions You’ll Use

Assemble polygons to create 3D objects glBegin/glEnd/glVertex
Optimize object display with display lists glNewList/glEndList/glCallList

Your quiver is quite full of OpenGL arrows by now and it’s time to go hunting. Unlike
previous chapters, this is going to be a project chapter, where you can put some of this stuff
to practical use. We are going to define a problem or goal and pursue it to its logical end: a
finished program. Along the way, you’ll gain some insight in how to break your objects and
scenes into smaller, more manageable pieces. We’ll compose a complex object out of
smaller, simpler objects, which in turn are composed of just the OpenGL primitives.

As a finishing touch we’ll show you why and how to apply display lists. One of the biggest
reasons for using display lists is speed, so for the icing on the cake, we’ll even give you a
crude but effective means of benchmarking your code.

Defining the Task

To demonstrate building a figure out of smaller simpler figures, we will use an interesting,
yet simple example that creates a model of a metallic bolt (like those holding your disk drive
together). Although this particular bolt may not exist in any hardware store, it will have the
essential features. We shall make the bolt as simple as possible while still retaining the
flavor of our task.

The bolt will have a six-sided head and a threaded shaft, like many typical steel bolts. Since
this is a learning exercise, we’ll simplify the threads by making them raised on the surface of
the bolt shaft rather than carved out of the shaft.

Figure 10-1 is a rough sketch of what we’re aiming for. We will build the three major
components of this bolt— the head, the shaft, and the threads— individually and then put
them together to form the final object.

Page 362 OpenGL Super Bible!

Figure 10-1 The hex bolt to be modeled in this chapter

Choosing a Projection

Before we start constructing, we need a projection, a frame of reference for placing the
objects. For an example like this, an orthogonal projection is the best choice. This is a
typical choice for applications such as CAD, in which an object is being modeled and
measured exactly. This bolt has a specific width, height, and number of threads and is
comparatively small. Using a perspective projection would make sense if we were modeling
something larger such as a landscape, where the effect would be more apparent.

Listing 10-1 is the code that creates the viewing volume. It creates an orthogonal projection
and represents a coordinate system that reaches 100 units along the x- and y-axis. An extra
100 units is supplied along the z-axis where the viewer will be located.

Listing 10-1 Setting up the orthogonal projection for this chapter’s examples

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat nRange = 100.0f;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

OpenGL Super Bible! Page 363

 // Reset coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Establish clipping volume (left, right, bottom, top, near, far)
 if (w <= h)
 glOrtho (-nRange, nRange, -nRange*h/w, nRange*h/w,
 -nRange*2.0f, nRange*2.0f);
 else
 glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange,
 -nRange*2.0f, nRange*2.0f);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

Choosing the Lighting and Material Properties

With the projection chosen, the next step is to select a lighting model for our view of the
bolt. Listing 10-2 is the code to set up the rendering context including the lighting and
material properties. We make sure the ambient light is bright enough to see all the features,
and include a specular component to make it glisten just as a real metal bolt would. The
single light source is positioned to the upper-left of the viewer.

Listing 10-2 Setting up the rendering context and lighting conditions

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values and coordinates
 GLfloat ambientLight[] = {0.4f, 0.4f, 0.4f, 1.0f };
 GLfloat diffuseLight[] = {0.7f, 0.7f, 0.7f, 1.0f };
 GLfloat specular[] = { 0.9f, 0.9f, 0.9f, 1.0f};
 Glfloat lightPos[] = { -50.0f, 200.0f, 200.0f, 1.0f };
 GLfloat specref[] = { 0.6f, 0.6f, 0.6f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glEnable(GL_CULL_FACE);// Do not calculate inside of solid object
 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up light 0
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
 glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

 // Position and turn on the light
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glEnable(GL_LIGHT0);

Page 364 OpenGL Super Bible!

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // All materials hereafter have full specular reflectivity
 // with a moderate shine
 glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
 glMateriali(GL_FRONT,GL_SHININESS,64);

 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }

Displaying the Results

Once we have determined the viewing, lighting, and material parameters, all that remains is
to render the scene. Listing 10-3 shows the code outline used to display our bolt and bolt
pieces. The SomeFunc() line is just a placeholder for function calls to render the head, shaft,
and threads individually. We save the matrix state, perform any rotations (defined by the
keyboard activity, as in all this book’s previous examples), and call a function that renders
some specific object or part of an object.

Listing 10-3 Rendering the object, allowing for rotated views

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Rotate about x and y axes
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Specific code to draw the object …
 …
 … SomeFunc(); // Place Holder
 glPopMatrix();

 // Flush drawing commands
 glFlush();
 }

Constructing a Model, One Piece at a Time

OpenGL Super Bible! Page 365

Any given programming task can be separated into smaller, more manageable tasks. This
makes the smaller pieces easier to handle and code, and introduces some reusability into our
code base, as well. Three-dimensional modeling is no exception, you will create large
complex systems out of many smaller and more manageable pieces.

We have decided to break the bolt down into three pieces: head, shaft, and thread. Certainly
this makes it much simpler for us to consider each section graphically, but it also give us
three objects that we can reuse. In more complex modeling applications, this reusability is of
crucial importance. In a CAD-type application, for example, you would probably have many
different bolts to model— with various lengths, thickness, and thread density. Instead of the
RenderHead() function that draws the head of the bolt in this example, you might want to
write a function that takes parameters specifying the number of sides, thickness, and
diameter of the bolt head.

Another thing we will do is model each piece of our bolt in coordinates that are most
convenient for describing the object. Most often, objects are modeled around the origin and
then translated and rotated into place. Later, when composing the final object, we can
translate the components, rotate them, and even scale them if necessary to assemble our
composite object.

The Head

The head of our bolt has six smooth sides and is smooth on top and bottom, as well. We can
construct this solid object with two hexagons that represent the top and bottom of the head,
and a series of quadrilaterals around the edges to represent the sides. We could use
GL_QUAD and GL_POLYGON to draw this with a minimum number of vertices; however,
as we’ve mentioned previously, you should always use triangles whenever possible. For any
accelerated OpenGL hardware (and even some software routines), it may actually be faster
to draw two triangles arranged together rather than a single quadrilateral.

Figure 10-2 illustrates how the bolt head will be constructed with triangles. We use a
triangle fan with six triangles for the top and bottom sections of the head. Then each face of
the side of the bolt is composed of two triangles.

Figure 10-2 Triangle outline of bolt head

Page 366 OpenGL Super Bible!

A total of 24 triangles are used to draw the head of the bolt: 6 each on the top and bottom,
and 12 more to compose the sides of the bolt head. Listing 10-4 is the function that renders
the head of the bolt. Figure 10-3 shows the output of this program, HEAD, in this chapter’s
subdirectory on the CD. Notice that this code contains no functions that we haven’t yet
covered, but it’s more substantial than any of the simpler chapter examples.

Figure 10-3 Output from the HEAD program

Listing 10-4 Rendering the head of the bolt

// Creates the head of the bolt
void RenderHead(void)
 {
 float x,y,angle; // Calculated positions
 float height = 25.0f; // Thickness of the head
 float diameter = 30.0f; // Diameter of the head
 float normal[3],corners[4][3]; // Storage of vertices and normals
 float step = (3.1415f/3.0f); // step = 1/6th of a circle =
 hexagon

// Set material color for head of bolt
glColor3f(0.0f, 0.0f, 0.7f);

// Clockwise polygons face out, set for fans
glFrontFace(GL_CW);

// Begin a new triangle fan to cover the top
glBegin(GL_TRIANGLE_FAN);

 // All the normals for the top of the bolt point straight up
 // the z axis.
 glNormal3f(0.0f, 0.0f, 1.0f);

OpenGL Super Bible! Page 367

 // Center of fan is at the origin
 glVertex3f(0.0f, 0.0f, 0.0f);

 // Divide the circle up into 6 sections and start dropping
 // points to specify the fan
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Specify the next vertex for the triangle fan
 glVertex3f(x, y, 0.0f);
 }

 // Last vertex closes the fan
 glVertex3f(0.0f, diameter, 0.0f);

// Done drawing the fan that covers the bottom
glEnd();

// Now draw the bottom of the bolt head. Switch to
// clockwise polygons facing out.
glFrontFace(GL_CCW);

// Begin a new triangle fan to cover the bottom
glBegin(GL_TRIANGLE_FAN);

 // Normal for bottom points straight down the negative z axis
 glNormal3f(0.0f, 0.0f, -1.0f);

 // Center of fan is at the origin
 glVertex3f(0.0f, 0.0f, -height);

 // Divide the circle up into 6 sections and start dropping
 // points to specify the fan
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Specify the next vertex for the triangle fan
 glVertex3f(x, y, -height);
 }
 // Last vertex, used to close the fan
 glVertex3f(0.0f, diameter, -height);

 // Done drawing the fan that covers the bottom
 glEnd();

 // Build the sides out of triangles (two each). Each face
 // will consist of two triangles arranged to form a
 // quadrilateral

Page 368 OpenGL Super Bible!

 glBegin(GL_TRIANGLES);

 // Go around and draw the sides
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next hex
point
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // start at bottom of head
 corners[0][0] = x;
 corners[0][1] = y;
 corners[0][2] = -height;

 // extrude to top of head
 corners[1][0] = x;
 corners[1][1] = y;
 corners[1][2] = 0.0f;

 // Calculate the next hex point
 x = diameter*(float)sin(angle+step);
 y = diameter*(float)cos(angle+step);

 // Make sure we aren't done before proceeding
 if(angle+step < 3.1415*2.0)
 {
 // If we are done, just close the fan at a
 // known coordinate.
 corners[2][0] = x;
 corners[2][1] = y;
 corners[2][2] = 0.0f;

 corners[3][0] = x;
 corners[3][1] = y;
 corners[3][2] = -height;
 }
 else
 {
 // We aren't done, the points at the top
 and bottom
 // of the head.
 corners[2][0] = 0.0f;
 corners[2][1] = diameter;
 corners[2][2] = 0.0f;

 corners[3][0] = 0.0f;
 corners[3][1] = diameter;
 corners[3][2] = -height;
 }

 // The normal vectors for the entire face will
 // all point the same direction
 calcNormal(corners, normal);
 glNormal3fv(normal);

OpenGL Super Bible! Page 369

 // Specify each triangle separately to lie next
 // to each other.
 glVertex3fv(corners[0]);
 glVertex3fv(corners[1]);
 glVertex3fv(corners[2]);

 glVertex3fv(corners[0]);
 glVertex3fv(corners[2]);
 glVertex3fv(corners[3]);
 }

glEnd();
}

The Shaft

The shaft of the bolt is nothing more than a cylinder with a bottom on it. We compose a
cylinder by plotting xy values around in a circle, and then take two z values at these points
and get polygons that approximate the wall of a cylinder. Once again, however, we will
compose this wall entirely out of triangles. Figure 10-4 shows the outline of the cylinder.

Figure 10-4 Triangle outline of the bolt shaft

We also create the bottom of the shaft with a triangle fan. Notice that the smaller the step
size is around the circle, the smaller the flat facets that make up the cylinder wall and the
more closely the wall will approximate a smooth curve.

Listing 10-5 is the code to produce this cylinder. Notice that the normals are not calculated
for the triangles using the vertices of the triangles. We usually set the normal to be the same
for all vertices, but here we’ll break with this tradition to specify a new normal for each
vertex. Since we are simulating a curved surface, the normal specified for each vertex would
be normal to the actual curve.

Listing 10-5 Rendering the shaft of the bolt

// Creates the shaft of the bolt as a cylinder with one end
// closed.
void RenderShaft(void)
 {
 float x,y,angle; // Used to calculate cylinder
 wall
 float height = 75.0f; // Height of the cylinder
 float diameter = 20.0f; // Diameter of the cylinder

Page 370 OpenGL Super Bible!

 float normal[3],corners[4][3]; // Storage for vertices
 calculations
 float step = (3.1415f/50.0f); // Approximate the cylinder
 wall with
 // 100 flat segments.

 // Set material color for head of screw
 glColor3f(0.0f, 0.0f, 0.7f);

 // counterclockwise polygons face out (the default for triangles)
 glFrontFace(GL_CCW);

 // First assemble the wall as 100 quadrilaterals formed by
 // placing adjoining triangles together
 glBegin(GL_TRIANGLES);

 // Go around and draw the sides
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin (angle);
 y = diameter*(float)cos(angle);

 // Get the coordinate for this point and extrude the
 // length of the cylinder.
 corners[0][0] = x;
 corners[0][1] = y;
 corners[0][2] = -height;

 corners[1][0] = x;
 corners[1][1] = y;
 corners[1][2] = 0.0f;

 // Get the next point and do the same
 x = diameter*(float)sin(angle+step);
 y = diameter*(float)cos(angle+step);

 // If finished, use known starting point to close the
 surface
 if(angle+step < 3.1415*2.0) // Not Finished
 {
 corners[2][0] = x;
 corners[2][1] = y;
 corners[2][2] = 0.0f;

 corners[3][0] = x;
 corners[3][1] = y;
 corners[3][2] = -height;
 }
 else
 {
 // Finished, use the starting point
 corners[2][0] = 0.0f;
 corners[2][1] = diameter;

OpenGL Super Bible! Page 371

 corners[2][2] = 0.0f;

 corners[3][0] = 0.0f;
 corners[3][1] = diameter;
 corners[3][2] = -height;
 }

 // Instead of using real normal to actual flat section,
 // use what the normal would be if the surface were really
 // curved. Since the cylinder goes up the z axis, the
normal
 // points from the z axis out directly through each vertex.
 // Therefore we can use the vertex as the normal, as long
as
 // we reduce it to unit length first.

 // First Triangle //
 // Fill the normal vector with the coordinate points
 normal[0] = corners[0][0];
 normal[1] = corners[0][1];
 normal[2] = corners[0][2];

 // Reduce to length of one and specify for this point
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[0]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[1][0];
 normal[1] = corners[1][1];
 normal[2] = corners[1][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[1]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[2][0];
 normal[1] = corners[2][1];
 normal[2] = corners[2][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[2]);

 // Second Triangle //

 // Get vertex, calculate unit normal and go
 normal[0] = corners[2][0];
 normal[1] = corners[2][1];
 normal[2] = corners[2][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[2]);

 // Get vertex, calculate unit normal and go

Page 372 OpenGL Super Bible!

 normal[0] = corners[3][0];
 normal[1] = corners[3][1];
 normal[2] = corners[3][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[3]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[0][0];
 normal[1] = corners[0][1];
 normal[2] = corners[0][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[0]);
 }

 glEnd(); // Done with cylinder sides

 // Begin a new triangle fan to cover the bottom
 glBegin(GL_TRIANGLE_FAN);

 // Normal points down the z axis
 glNormal3f(0.0f, 0.0f, -1.0f);

 // Center of fan is at the origin
 glVertex3f(0.0f, 0.0f, -height);

 // Spin around, matching step size of cylinder wall
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Specify the next vertex for the triangle fan
 glVertex3f(x, y, -height);
 }

 // Close the fan
 glVertex3f(0.0f, diameter, -height);
 glEnd();
 }

Fortunately, the cylinder is wrapped symmetrically around the z-axis. Thus, the normal for
each vertex can be found by normalizing (reducing to length 1) the vertex itself. Figure 10-5
shows the output from the SHAFT program.

OpenGL Super Bible! Page 373

Figure 10-5 Output from the SHAFT program

The Thread

The thread is the most complex part of the bolt. It’s composed of two planes arranged in a V
shape that follows a corkscrew pattern up the length of the shaft. It is created as two flat
segments arranged in a V pattern. Figure 10-6 illustrates the triangle outline of this shape
and Listing 10-6 is the OpenGL code used to produce this shape.

Figure 10-6 Progression of triangle outline of thread

Page 374 OpenGL Super Bible!

Listing 10-6 Rendering the thread of the bolt

// Creates the thread of the bolt
void RenderThread(void)
 {
 float x,y,z,angle; // Calculate coordinates and step
 angle
 float height = 75.0f; // Height of the threading
 float diameter = 20.0f; // Diameter of the threading
 float normal[3],corners[4][3]; // Storage for normal and corners
 float step = (3.1415f/32.0f); // One revolution
 float revolutions = 7.0f; // How many times around the shaft
 float threadWidth = 2.0f; // How wide is the thread
 float threadThick = 3.0f; // How thick is the thread
 float zstep = .125f; // How much does the thread move up
 // the z axis each time a new
 segment
 // is drawn.
 // 360 degrees in radians
 #define PI2 (2.0f*3.1415f)

 // Set material color for thread
 glColor3f(0.0f, 0.0f, 0.4f);

 z = -height+2;// Starting spot almost to the end

 // Go around and draw the sides until finished spinning up
 for(angle = 0.0f; angle < PI2*revolutions; angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Store the next vert ex next to the shaft
 corners[0][0] = x;
 corners[0][1] = y;
 corners[0][2] = z;

 // Calculate the position away from the shaft
 x = (diameter+threadWidth)*(float)sin(angle);
 y = (diameter+threadWidth)*(float)cos(angle);

 corners[1][0] = x;
 corners[1][1] = y;
 corners[1][2] = z;

 // Calculate the next position away from the shaft
 x = (diameter+threadWidth)*(float)sin(angle+step);
 y = (diameter+threadWidth)*(float)cos(angle+step);

 corners[2][0] = x;
 corners[2][1] = y;
 corners[2][2] = z + zstep;

OpenGL Super Bible! Page 375

 // Calculate the next position along the shaft
 x = (diameter)*(float)sin(angle+step);
 y = (diameter)*(float)cos(angle+step);

 corners[3][0] = x;
 corners[3][1] = y;
 corners[3][2] = z+ zstep;

 // We'll be using triangles, so make
 // counterclockwise polygons face out
 glFrontFace(GL_CCW);
 glBegin(GL_TRIANGLES);// Start the top section of thread

 // Calculate t he normal for this segment
 calcNormal(corners, normal);
 glNormal3fv(normal);

 // Draw two triangles to cover area
 glVertex3fv(corners[0]);
 glVertex3fv(corners[1]);
 glVertex3fv(corners[2]);

 glVertex3fv(corners[2]);
 glVertex3fv(corners[3]);
 glVertex3fv(corners[0]);

 glEnd();

 // Move the edge along the shaft slightly up the z axis
 // to represent the bottom of the thread
 corners[0][2] += threadThick;
 corners[3][2] += threadThick;

 // Recalculate the nor mal since points have changed. This
 // time it points in the opposite direction, so reverse it
 calcNormal(corners, normal);
 normal[0] = -normal[0];
 normal[1] = -normal[1];
 normal[2] = -normal[2];

 // Switch to clockwise facing out for underside of the
 // thread.
 glFrontFace(GL_CW);

 // Draw the two triangles
 glBegin(GL_TRIANGLES);
 glNormal3fv(normal);

 glVertex3fv(corners[0]);
 glVertex3fv(corners[1]);
 glVertex3fv(corners[2]);

 glVertex3fv(corners[2]);
 glVertex3fv(corners[3]);
 glVertex3fv(corners[0]);

Page 376 OpenGL Super Bible!

 glEnd();

 // Creep up the z axis
 z += zstep;
 }
}

Figure 10-7 shows the output of the THREAD program.

Figure 10-7 Output from the THREAD program

Putting the Model Together

The bolt is assembled by drawing all three sections in their appropriate location. All sections
are translated appropriately up the z-axis. The shaft and threads are translated the same
amount because essentially they occupy the same location. All that needs to be done is to put
the pieces in the appropriate locations, and hidden surface removal will automatically
eliminate hidden surfaces for us.

Listing 10-7 is the rendering code that manipulates and renders the three bolt components.
Figure 10-8 shows the final output of the BOLT program.

Listing 10-7 Rendering code to draw the completed bolt

// Called to draw the entire bolt
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

OpenGL Super Bible! Page 377

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);

 // Rotate and translate, then render the bolt head
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);
 glTranslatef(0.0f, 0.0f, 55.0f);
 RenderHead();
 glPopMatrix();

 // Save matrix state, rotate, translate and draw the
 // shaft and thread together
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);
 glTranslatef(0.0f, 0.0f, 40.0f);

 // Render just the hexagonal head of the nut
 RenderShaft();
 RenderThread();

 glPopMatrix();

 // Flush drawing commands
 glFlush();

Figure 10-8 Output from the BOLT program

Page 378 OpenGL Super Bible!

A Makeshift Benchmark

Our final program produces a fairly good representation of the metal bolt we set out to
model. Consisting of over 1,700 triangles, this is the most complex example in this book so
far. Comparatively speaking, however, this number of triangles isn’t anywhere close to the
largest number of polygons you’ll encounter when composing larger scenes and more
complex objects. In fact, the latest 3D accelerated graphics cards are rated at hundreds of
thousands of triangles per second, and that’s for the cheap ones! One of the goals of this
chapter is to introduce you to using display lists to optimize rendering speed. Before we can
get into a comparison of rendering speeds, however, we will need a way to measure this— a
benchmark.

When we get into the subject of display lists, we want you to be able to see that there is a
performance difference rather than just take our word for it. So let’s modify our BOLT
program slightly. Rather than spinning the object about its axes when arrow keys are
pressed, we’ll have it spin repeatedly around just the y-axis in particular. As you might
imagine, this turns the program into a continual triangle-generator that we can use to more
easily see differences in performance. Listing 10-8 is the changed RenderScene() function
used for SPINBOLT.

Listing 10-8 New RenderScene() function to spin bolt around the y-axis

// Called to draw the entire bolt
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Make sure we have the correct matrix mode
 glMatrixMode(GL_MODELVIEW);

 // Rotate and translate the coordinate system
 glRotatef(5.0f, 0.0f, 1.0f, 0.0f);

 // Translate and render the head
 glTranslatef(0.0f, 0.0f, 55.0f);
 RenderHead();

 // Translate back some and render the shaft and thread
 glTranslatef(0.0f, 0.0f, -15.0f);
 RenderShaft();
 RenderThread();

 // Translate back some again for next pass
 glTranslatef(0.0f, 0.0f, -40.0f);

 // Flush drawing commands
 gl Flush();
 }

OpenGL Super Bible! Page 379

This new rendering function does not save or restore the matrix state. We use glTranslate to
manually restore the translation state of the matrix before leaving the function, but the
effects of glRotate are cumulative. This causes the bolt to be rotated around its y-axis by 5º
every time the bolt is rendered.

One simple animation technique would be to create a timer, and when the WM_TIMER
message is received, invalidate the window causing a redraw. In this manner we can speed
up and slow down the animation as desired. Our goal is not simple animation, however, but
to get a feel for the rate of the rotations. A reasonable criterion is the amount of time
required to spin the bolt completely around the y-axis (360º).

Using WM_TIMER messages would be a poor choice for benchmarking for two reasons.
First, your window is not guaranteed to receive all the WM_TIMER messages (the OS could
be too busy). And second, if you specify the time intervals, what good does it do to then
measure those intervals with any confidence that they truly indicate performance?

What we really want to do is time the interval between the starting and stopping of
rendering. This could provide a value that is too small for practical use, so we can just time
the interval between a given number of renderings. By repeatedly rendering the scene a
number of times and measuring the time it takes to perform these renderings, we have a
fairly good benchmark.

Caution: This Is Only an Approximation!
This benchmark is very informal and uses a method of timing computer programs that’s not
accurate enough for publishing important results. We only use it here to demonstrate an
easily detectable performance gain when using display lists. To compare your real programs
(as well as the two presented here), you should at least have the rest of your system idle
when running the test. Many factors can increase or decrease the values you get, but as long
as conditions are more or less equal, you will see a time difference between the two bolt-
spinning programs.

You might be tempted to just stack together a bunch of calls to RenderScene and obtain the
time before and after to calculate the elapsed time. This would work, but closing the
application would be very difficult because it would not have the chance to service any other
messages (such as WM_CLOSE). The best way to get a Windows program to repeatedly
paint its client area is to omit validation of the client area when the WM_PAINT handler is
finished. If the client area is still invalid, Windows will just keep posting WM_PAINT
messages to your application forever. In the midst of these WM_PAINT messages, other
messages such as WM_CLOSE will still appear and be processed.

Page 380 OpenGL Super Bible!

Listing 10-9 is the WM_PAINT handler for our new program, SPINBOLT.

Listing 10-9 WM_PAINT message handler for SPINBOLT

 // Storage for timing values
 static unsigned long ulStart = 0L;
 static unsigned long ulFinish = 0L;
 static double dTime = 0.0;

 // Storage for performance statistics
 char cBuffer[80];
 RECT cRect;

 …
 …
 …

 // The painting function. This message sent by Windows
 // whenever the screen needs updating.
 case WM_PAINT:
 {
 // Count how many times rendered
 static iRenderCount = 0;

 // Get time at beginning of spin
 if(iRenderCount == 0)
 ulStart = ulGetProfileTime();

 // Call OpenGL drawing code
 RenderScene();

 // Bring image to front
 SwapBuffers(hDC);

 // Increment count. If 71 or over get the finish
 time
 iRenderCount++;

 if(iRenderCount > 71)
 {
 iRenderCount = 0;

 ulFinish = ulGetProfileTime();

 // Calculate the time in seconds
 dTime = ulFinish - ulStart;
 dTime /= 1000.0;
 }

 // Display time (be s ure and set background
colors)
 sprintf(cBuffer,"%3.1f Seconds for 360 degrees.",
 dTime);
 GetClientRect(hWnd,&cRect);

OpenGL Super Bible! Page 381

 SetBkColor(hDC,RGB(0,0,255));
 SetTextColor(hDC,RGB(255,255,0));
 TextOut(hDC,0,cRect.bottom -20,cBuffer,strlen
 (cBuffer));

 // Do not validate, forcing a continuous repaint
 }
 break;

This message handler gets the current system time and counts the number of times it is
called. After 71 times, it gets the new time, subtracts the difference, and displays the lapsed
time. Remember that our bolt is rotating 5º each time it is rendered, so this technique
effectively measures the amount of time it takes to spin the bolt 360º.

The function ulGetProfileTime simply gets the system time in clock ticks and converts it to
thousandths of a second. (You can examine this yourself in the source listing if you want,
but its operation is not germane to our discussion here.) SPINBOLT’s output is shown in
Figure 10-9. The time to spin the bolt around in this example was just under 15 seconds (on
a 90MHz Pentium with no hardware 3D acceleration).

Figure 10-9 Output from the SPINBOLT program

Improving Performance

You may have spotted a glaring performance problem with the WM_PAINT technique,
however. Each time the bolt is drawn, a large number of calculations must be performed to
redraw the thread, the shaft, and the bolt head. Among these calculations are some pretty
expensive calls to sin() and cos().

Page 382 OpenGL Super Bible!

What we need is a way of storing all these vertices and normals as they are calculated, so we
can reuse them rather than go back through all that trigonometry to calculate spiral paths and
such. OpenGL has just what we need: display lists. With a display list, you can record
OpenGL function calls (and their results) and play them back at a later time. Display lists are
faster than just reexecuting the same OpenGL functions singly. Further, non-OpenGL calls
such as our trigonometry and normal calculations are not stored, but their results, which are
passed to the OpenGL functions, are. You should be getting an inkling of why display lists
are such a good idea.

Human Beings and Computer Performance
A good rule of thumb in any type of software engineering is to work first on improvements
that yield at least a 20% increase in performance. It is universally accepted that human
beings, for the most part, have difficulty “detecting” an increase in software performance that
is less than 20%. For OpenGL, this 20% value can often be attained quickly by using display
lists when the number of polygons is high. It’s a good idea to get in the habit of using them.

Creating a Display List

Creating a display list is a very straightforward process. Just as you delimit an OpenGL
primitive with glBegin/glEnd, you delimit a display list with glNewList/glEndList. A
display list, however, is named with an integer value that you supply. The following code
represents a typical example of display list creation:

glNewList(1,GL_COMPILE);
 …
 …
 // Some OpenGL Code
 …
 …
glEndList();

As the second parameter to glNewList, you can specify GL_COMPILE or
GL_COMPILE_AND_EXECUTE. This tells OpenGL whether to compile and store the
OpenGL commands, or to compile, store, and execute the commands as they occur. Later,
when you need to execute the display list, simply call

glCallList(1);

The identifier you supply is the same as that supplied in the corresponding call to
glNewList.

Listing 10-10 is the code for our new example, SLSTBOLT, which makes use of display
lists to produce the spinning bolt. Notice that you can nest calls to display lists. The
maximum number of nested calls is 64 to prevent infinite recursion. In this code, we create a

OpenGL Super Bible! Page 383

display list for each part of the bolt, and then one display list that does all the coordinate
transformations and calls the lists to create the completed bolt.

Listing 10-10 New spinning bolt code using display lists

#define HEAD_LIST 1
#define SHAFT_LIST 2
#define THREAD_LIST 3
#define BOLT_LIST 4
 …
 …
// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene, and creates display lists used later
void SetupRC()
 {
 …
 …
 …
 // Create display list for Bolt head
 glNewList(HEAD_LIST,GL_COMPILE);
 RenderHead();
 glEndList();

 // Create display list for shaft
 glNewList(SHAFT_LIST,GL_COMPILE);
 RenderShaft();
 glEndList();

 // Create display list for thread
 glNewList(THREAD_LIST,GL_COMPILE);
 RenderThread();
 glEndList();

 // Create nested display list for entire bolt
 glNewList(BOLT_LIST,GL_COMPILE);

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Make sure we have the correct matrix mode
 glMatrixMode(GL_MODELVIEW);

 // Rotate and translate the coordinate system
 // Note this will be cumulative
 glRotatef(5.0f, 0.0f, 1.0f, 0.0f);

 // Translate and render the head
 glTranslatef(0.0f, 0.0f, 55.0f);
 glCallList(HEAD_LIST);

 // Translate back some and render the shaft and thread
 together
 glTranslatef(0.0f, 0.0f, -15.0f);

Page 384 OpenGL Super Bible!

 glCallList(SHAFT_LIST);
 glCallList(THREAD_LIST);

 // Translate back again for next pass
 glTranslatef(0.0f, 0.0f, -40.0f);

 // End Bolt list
 glEndList();
 }
// Called to draw the entire bolt
void RenderScene(void)
 {
 glCallList(BOLT_LIST);

 // Flush drawing commands
 glFlush();
 }

You’ll see that we defined some macros to identify the display lists more easily. These
macros simply map to the numeric value that identifies the display list. Figure 10-10 shows
the output from this new and improved spinning bolt program. The elapsed time for the
example using display lists was just over 13 seconds, about a 2-second improvement. This
may not seem like much, but wait a few chapters and come back and try it again with special
effects such as texture mapping or NURBS surfaces. As mentioned earlier, 1,700 triangles is
really a very small portion of what some larger and more complex scenes will consist of.

Figure 10-10 Output from SLSTBOLT using display lists

OpenGL Super Bible! Page 385

The Tank Simulator
Try the tank simulator as it stood after the last chapter, and compare it to the one for this
chapter. This version, which makes heavy use of display lists, consists of many thousands of
triangles, and you won’t need any benchmarking program or stopwatch to know that the
performance has been enhanced!

Summary

We used this chapter to slow down somewhat and just talk about how to build a three-
dimensional object, starting with using the OpenGL primitives to create simple 3D pieces,
and then assembling them into a larger and more complex object. Learning the API is the
easy part, but your level of experience in assembling 3D objects and scenes will be what
differentiates you from your peers. Once an object or scene is broken down into small and
potentially reusable components, you can save building time by using display lists. You’ll
find many more functions for utilizing and managing display lists in the Reference Section.
You also learned a simple way to benchmark your OpenGL programs so you can get
firsthand experience of the effects of optimizing your code.

Page 386 OpenGL Super Bible!

Reference Section

glCallList

Purpose
Executes a display list.

Include File
<gl.h>

Syntax
void glCallList(GLuint list);

Description
Executes the display list identified by list. The OpenGL State Machine is not
restored after this function is called, so it is a good idea to call glPushMatrix
beforehand and glPopMatrix afterwards. Calls to glCallList may be nested. The
function glGet with the argument GL_MAX_LIST_NESTING returns the maximum
number of allowable nests. For Microsoft Windows, this value is 64.

Parameters

list
GLuint: Identifies the display list to be executed.

Returns
None.

Example

The following code saves the matrix state before calling a display list. It then restores the
state afterwards. This code is from the BOLTL example program from this chapter’s
subdirectory on the CD.

 // Save the current transform state
 glPushMatrix();

 // Draw the bolt including nested display lists
 glCallList(BOLT_HEAD);

 // Restore state
 glPopMatrix();
See Also

glCallLists, glDeleteLists, glGenLists, glNewList

OpenGL Super Bible! Page 387

glCallLists

Purpose
Executes a list of display lists.

Include File
<gl.h>

Syntax
void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

Description
This function calls the display lists listed in the *lists array sequentially. This array
can be of nearly any data type. The result is converted or clamped to the nearest
integer value to determine the actual index of the display list. Optionally, the list
values can be offset by a value specified by the function glListBase.

Parameters

n
GLsizei: Number of elements in the array of display lists.

type
GLenum: Specifies the datatype of the array stored at *lists. This can be any one of
the following values: GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT,
GL_2_BYTES, GL_3_BYTES, and GL_4_BYTES.

*lists
GLvoid: An array of elements of the type specified in type. The data type is void to
allow any of the above data types to be used.

Returns
None.

Example

The following code shows how to call a list of display lists with a single call:

 // Storage for the display list identifiers
 int lists[50];
 int i;
 …
 …
 // Create list names
 for(i = 0; i < 50; i++)
 lists[i] = i+1;

 // Build some fifty display lists //////////
 // First list
 glNewList(lists[0],GL_COMPILE);
 …

Page 388 OpenGL Super Bible!

 …
 glEndList();

 // Second list
 glNewList(lists[1],GL_COMPILE);
 …
 …
 glEndList();

 // And so on …
 …
 …

 // Call all fifty lists with a single call
 glCallLists(50, GL_INT, lists);
See Also

glCallList, glDeleteLists, glGenLists, glListBase, glNewList

OpenGL Super Bible! Page 389

glDeleteLists

Purpose
Deletes a continuous range of display lists.

Include File
<gl.h>

Syntax
void glDeleteLists(GLuint list, GLsizei range);

Description
This function deletes a range of display lists. The range goes from an initial value
and proceeds until the number of lists deleted as specified by range is completed.
Deleting unused display lists can save considerable memory. Unused display lists in
the range of those specified are ignored and do not cause an error.

Parameters

list
GLuint: The integer name of the first display list to delete.

range
GLsizei: The number of display lists to be deleted following the initially specified
list.

Returns
None.

Example

The following single line of code shows any and all display lists with identifiers between 1
and 50 being deleted:

 glDeleteLists(1, 50);
See Also

glCallList, glCallLists, glGenLists, glIsList, glNewList

Page 390 OpenGL Super Bible!

glEndList

Purpose
Delimits the end of a display list.

Include File
<gl.h>

Syntax
void glEndList(void);

Description
Display lists are created by first calling glNewList. Thereafter, all OpenGL
commands are compiled and placed in the display list. The glEndList function
terminates the creation of this display list.

Returns
None.

Example

The following example code shows an example of a display list being delimited by
glNewList and glEndList. This particular display list is composed by nesting two other
display lists within it.

 // Begin delimit of list
 glNewList(BOLT_LIST,GL_COMPILE);

 // Display list calls two previously defined display lists
 glCallList(SHAFT_LIST);
 glCallList(THREAD_LIST);

 // End this display list
 glEndList();
See Also

glCallList, glCallLists, glDeleteLists, glGenLists, glIsList

OpenGL Super Bible! Page 391

glGenLists

Purpose
Generates a continuous range of empty display lists.

Include File
<gl.h>

Syntax
GLuint glGenLists(GLsizei range);

Description
This function creates a range of empty display lists. The number of lists generated
depends on the value specified in range. The return value is then the first display list
in this range of empty display lists. The purpose of this function is to reserve a range
of display list values for future use.

Parameters

range
GLsizei: The number of empty display lists requested.

Returns
The first display list of the range requested. The display list values following the
return value up to range -1 are created empty.

Example

The following code allocates an array of 25 integers that will be used to store 25 display
lists. Each element in the array must be assigned a valid display list name that can be used
later.

 int lists[25]; // Space for 25 display lists
 int first; // Index of the first display list name
 available
 int x; // Looping variable
 …
 …

 // Get the first display list identifier
 first = glGenLists(25);
 // Loop and assign each element in the array with a valid display
 list
 for(x = 0; x < 25; x++)
 lists[25] = first + x + 1;
See Also

glCallList, glCallLists, glDeleteLists, glNewList

Page 392 OpenGL Super Bible!

glIsList

Purpose
Tests for the existence of a display list.

Include File
<gl.h>

Syntax
GLboolean glIsList(GLuint list);

Description
This function is used to find out if a display list exists for a given identifier. You can
use this function to test display list values before using them.

Parameters

list
GLuint: The value of a potential display list. This function tests this value to see if a
display list is defined for it.

Returns
GL_TRUE if the display list exists, otherwise GL_FALSE.

Example

The following code loops through an array that should contain valid display lists. The
display list identifier is tested for validity, and if valid it is called

 int lists[25]; // Array of display lists
 int x; // Looping variable
 …
 …

 for(x = 0; x < 25; x++)
 if(glIsList(lists[x])
 glCallList();
See Also

glCallList, glCallLists, glDeleteLists, glGenLists, glNewList

OpenGL Super Bible! Page 393

glListBase

Purpose
Specifies an offset to be added to the list values specified in a call to glCallLists.

Include File
<gl.h>

Syntax
void glListBase(GLuint base);

Description
The function glCallLists calls a series of display lists listed in an array. This function
sets an offset value that can be added to each display list name for this function. By
default this is zero. You can retrieve the current value by calling
glGet(GL_LIST_BASE).

Parameters

base
GLuint: Sets an integer offset value that will be added to display list names specified
in calls to glCallLists. This value is zero by default.

Returns
None.

Example

The following code fragment creates 20 display lists numbered 0 through 19. An array of
display list names (listA) is created that contains the numbers 0 through 9. Then glCallLists
is used to execute all the display lists named in the listA array. Then, rather than reload the
array with the next 10 display lists names, an offset value is specified with a call to
glListBase. When glCallLists is called using the listA array, each element in listA will be
offset by the value specified (10).

 int listA[10];
 int i;

 for(i = 0; i < 10; i++)
 listA[i] = i;

 // Build display Lists 1 - 20
 glNewList(1,GL_COMPILE);
 …
 …
 glEndList();

 // Second list
 glNewList(2,GL_COMPILE);
 …
 …

Page 394 OpenGL Super Bible!

 glEndList();

 // And so on …

 // Call first ten lists
 glCallLists(10,GL_INT,listA);

 // Call next ten lists, using the same array
 glListBase(10);
 glCallIsts(10,GL_INT,listA);
See Also

glCallLists

OpenGL Super Bible! Page 395

glNewList

Purpose
Begins the creation or replacement of a display list.

Include File
<gl.h>

Syntax
void glNewList(GLuint list, GLenum mode);

Description
A display list is a group of OpenGL commands that are stored for execution on
command. You can use display lists to speed up drawings that are computationally
intensive or that require data to be read from a disk. The glNewList function begins a
display list with an identifier specified by the integer list parameter. The display list
identifier is used by glCallList and glCallLists to refer to the display list. If it’s not
unique, a previous display list may be overwritten. You can use glGenLists to
reserve a range of display list names, and glIsList to test a display list identifier
before using it. Display lists can be compiled only, or compiled and executed. After
glNewList is called, all OpenGL commands are stored in the display list in the order
they were issued until glEndList is called. The following commands are executed
when called and are never stored in the display list itself: glIsList, glGenLists,
glDeleteLists, glFeedbackBuffer, glSelectBuffer, glRenderMode, glReadPixels,
glPixelStore, glFlush, glFinish, glIsEnabled, and glGet.

Parameters

list
GLuint: The numerical name of the display list. If the display list already exists, it is
replaced by the new display list.

mode
GLenum: Display lists may be compiled and executed later, or compiled and
executed simultaneously. Specify GL_COMPILE to only compile the display list, or
GL_COMPILE_AND_EXECUTE to execute the display list as it is being compiled.

Returns
None.

Example

The following is an example of a display list being delimited by glNewList and glEndList.
This particular display list is composed by nesting two other display lists within it.

 // Begin delimit of list
 glNewList(BOLT_LIST,GL_COMPILE);

 // Display list calls two previously defined display lists
 glCallList(SHAFT_LIST);

Page 396 OpenGL Super Bible!

 glCallList(THREAD_LIST);

 // End this display listglEndList();
See Also

glCallList, glCallLists, glDeleteLists, glGenLists, glIsList

OpenGL Super Bible! Page 397

Chapter 11
Raster Graphics in OpenGL

What you’ll learn in this chapter:

How to… Functions You’ll Use

Draw bitmap images glBitmap/glRasterPos
Use bitmap fonts wglUseFontBitmaps/glGenLists/glCallLists
Draw color images glDrawPixels
Read and copy color images on the screen glCopyPixels/glReadPixels
Read and write Windows bitmap files LoadDIBitmap/SaveDIBitmap

You’ve probably heard a lot of sales hype lately about how much better it is to work with
3D graphics than with those old 2D graphics from years ago. While this is true for the most
part, ultimately those 3D graphics are drawn in two dimensions on your screen. Raster
graphics are two-dimensional arrays of colors and are used not only for displaying 3D
graphics on the screen but also for printing images on raster printers or motion-picture film

In addition to the vector and polygon functions we’ve examined so far, OpenGL provides
several functions that directly manage 2D bitmaps and images. Those functions are the
subject of this chapter.

Drawing Bitmaps

Bitmaps in OpenGL are two-color images that are used to quickly draw characters or
symbols (such as icons) on the screen. This diverges from the (incorrect) Microsoft
Windows definition that includes multicolored images, as well. OpenGL provides a single
function to draw bitmaps: glBitmap. When you draw a bitmap with glBitmap, the first color
(0) is transparent. The second color (1) is drawn using the current color and lighting material
attributes.

Figure 11-1 shows an OpenGL bitmap image of smiley faces. The code (Listing 11-1) to
draw this window consists of the bitmap data followed by a call to glBitmap.

Page 398 OpenGL Super Bible!

Figure 11-1 Output from glBitmap example

Listing 11-1 Drawing the window of smiley faces

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 static GLubyte smiley[] = /* 16x16 smiley face */
 {
 0x03, 0xc0, 0, 0, /* **** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x1e, 0x78, 0, 0, /* **** **** */
 0x39, 0x9c, 0, 0, /* *** ** *** */
 0x77, 0xee, 0, 0, /* *** ****** *** */
 0x6f, 0xf6, 0, 0, /* ** ******** ** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x3f, 0xfc, 0, 0, /* ************ */
 0x1f, 0xf8, 0, 0, /* ********** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x03, 0xc0, 0, 0 /* **** */
 };
 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);

OpenGL Super Bible! Page 399

 /*
 * This bitmap is aligned to 4-byte boundaries…
 */

 glPixelTransferi(GL_UNPACK_ALIGNMENT, 4);

 glColor3f(1.0, 0.0, 0.0);
 for (i = 0; i < 100; i ++)
 {
 glRasterPos2i(rand() % rect->right, rand() % rect->bottom);
 glBitmap(16, 16, 8.0, 8.0, 0.0, 0.0, smiley);
 };

 glFinish();
}

In this example, we have defined a 16 x 16-pixel bitmap image of a smiley face. The bitmap
is an array of 32 unsigned bytes (GLubyte), with bit 7 of the first byte corresponding to the
bottom-left corner.

Some Things to Note About Bitmaps:
OpenGL bitmaps are usually defined “upside down.” That is, they are stored from bottom to
top. (In fact, you can see that the happy face defined as “smiley” is upside down.) To define
them from top to bottom, you must specify a negative height. Also, because of bugs in the
Microsoft OpenGL libraries, you must align each scanline (row) of bitmap data to a 4-byte
boundary. With a properly functioning OpenGL library, you could use the glPixelStore
function described later in this chapter to change the bitmap alignment.

After defining a bitmap image to draw, we must specify the current raster position by
calling the glRasterPos function:

glRasterPos2i(rand() % rect->right, rand() % rect->bottom);

In this example, we are positioning our smiley face randomly within the client area of our
window with the bitmap offset by 8 pixels from the left and bottom. The raster position is
specified in world/model coordinates, just like a glVertex position. In addition to setting the
current raster position, glRasterPos also sets a raster position valid flag. This Boolean flag is
True if the raster position lies inside the current viewport, and False otherwise.

Page 400 OpenGL Super Bible!

A Note About Clipping:
Polygons and other vector-drawing primitives will still be drawn if they lie partially out of
the current viewport, and clipped to the edges of the viewport. Clipping for bitmaps works a
little differently. If the raster position you specify lies outside of the current viewport, the
bitmap will not be drawn.

To draw the bitmap, call the glBitmap function:

glBitmap(16, 16, 8.0, 8.0, 0.0, 0.0, smiley);

In this case we are drawing a 16 x 16 bitmap whose center lies at (8.0, 8.0) in the bitmap.
After the bitmap is drawn, the raster position is moved (0.0, 0.0) pixels.

The prototype for this function is as follows:

glBitmap(GLsizei width, GLsizei height,
 Gfloat xorig, GLfloat yorig,
 GLfloat xmove, GLfloat ymove,
 const GLubyte *bits)

The width and height parameters specify the width and height of the bitmap. The bits
parameter contains the bitmap you want to draw and is 32-bit aligned. The xorig and yorig
parameters contain the center location of the bitmap. After the bitmap is drawn, the current
raster position is moved by (xmove,ymove) pixels, and the raster position valid flag is left
unchanged. The xmove and ymove parameters are normally used for bitmap fonts (described
in the upcoming section) to advance to the next character “cell.”

A Note About the Current Raster Position:
As stated earlier, bitmaps will not be drawn if the raster position is outside the bitmap.
However, since the raster position valid flag is left unchanged after a call to glBitmap, you
can use glBitmap to position and draw bitmaps that are partially clipped on the edge of the
current viewport. For example, here’s how to draw the smiley bitmap just to the left of the
current viewport:

 glRasterPos2i(0, 0);
 glBitmap(0, 0, 0.0, 0.0, -4.0, 0.0, NULL);
 glBitmap(16, 16, 8.0, 8.0, 0.0, 0.0, smiley);

The NULL parameter in the first call to glBitmap simply specifies that there is no bitmap to
draw. After the first call to glBitmap, the current raster position will be moved 4 pixels to the
left (–4.0) before the real bitmap is drawn in the second call. This solution also applies to
drawing pixmaps, explained later in this chapter.

OpenGL Super Bible! Page 401

Bitmap Fonts

One very important application of bitmaps is displaying character strings. Under ordinary
circumstances, you would have to define a bitmap array for each character and then draw the
bitmaps as necessary to display the string. Fortunately, the Microsoft Windows Win32
libraries provide a function called wglUseFontBitmaps to generate these bitmaps from font
files loaded on your system.

To use the font bitmaps, OpenGL provides three functions: glGenLists, glListBase and
glCallLists (described in Chapter 10). The glGenLists function generates a contiguous series
of OpenGL display list IDs that will hold the character bitmaps created by
wglUseFontBitmaps.

GLuint base;
HDC hdc;

base = glGenLists(96);
wglUseFontBitmaps(hdc, 32, 96, base);

This creates 96 character bitmaps from the current font starting at character 32, the ASCII
code for the space character. The base variable contains the first display list bitmap in the
font— in this case, character 32 (ASCII space). To display a string of characters using these
bitmaps, you use a combination of glListBase and glCallLists:

char *s;

glListBase(base - 32);
glCallLists(strlen(s), GL_UNSIGNED_BYTE, s);

The glListBase function sets the base display list ID. The glCallList and glCallLists
functions will add this number to the display list ID(s) passed to them, effectively selecting
the font you just defined. The glCallLists function calls a series of display lists based upon
the array of characters (unsigned bytes) you pass in, which draws the character string.

Building a Simple Font Library

Certainly the wglCreateFontBitmaps function simplifies font creation, but you still have to
do a lot just to output a character string. You can build a usable font library fairly easily,
however. To start, you’ll need a font creation function (Listing 11-2).

Listing 11-2 The beginning of the FontCreateBitmaps function

GLuint
FontCreateBitmaps(HDC hdc, /* I - Device Context */
 char *typeface, /* I - Font specification */
 int height, /* I - Font height/size in pixels */
 int weight, /* I - Weight of font (bold, etc) */
 DWORD italic) /* I - Text is italic */

Page 402 OpenGL Super Bible!

{
 Gluint base; /* Base display list for font */
 HFONT font; /* Windows font ID */

 if ((base = glGenLists(96)) == 0)
 return (0);

The typeface argument is simply the name of the font, such as Courier or Helvetica, and
specifies the style of character that you want. The height, weight, and italic arguments are
passed directly to wglUseFontBitmaps and set the size and appearance of the characters.

Before you create the font bitmaps, you need to decide on a character set. Normally you’ll
use the ANSI or UNICODE character sets. The ANSI character set (ANSI_CHARSET)
provides the standard 7-bit ASCII character set. To support international characters and
diacritical marks, use the UNICODE character set instead (UNICODE_CHARSET). Some
fonts use special character sets. The Symbol font, for example, provides Greek letters and
many scientific symbols.

For this simple implementation, we will set the character set to ANSI_CHARSET for
normal fonts, and SYMBOL_FONTSET for the Symbol font. See Listing 11-3.

Listing 11-3 Continuation of the FontCreateBitmaps function

 if (stricmp(typeface, "symbol") == 0)
 font = CreateFont(height, 0, 0, 0, weight, italic, FALSE, FALSE,
 SYMBOL_CHARSET, OUT_TT_PRECIS,
 CLIP_DEFAULT_PRECIS, DRAFT_QUALITY,
 DEFAULT_PITCH, typeface);
 else
 font = CreateFont(height, 0, 0, 0, weight, italic, FALSE, FALSE,
 ANSI_CHARSET, OUT_TT_PRECIS,
 CLIP_DEFAULT_PRECIS, DRAFT_QUALITY,
 DEFAULT_PITCH, typeface);

 SelectObject(hdc, font);

 wglUseFontBitmaps(hdc, 32, 96, base);

 return (base);
 }

If you need to use international characters, change the “normal” character set to
UNICODE_CHARSET, and define 224 characters (256 minus 32), as shown here:

OpenGL Super Bible! Page 403

 else
 font = CreateFont(height, 0, 0, 0, wei ght, italic, FALSE, FALSE,
 UNICODE_CHARSET, OUT_TT_PRECIS,
 CLIP_DEFAULT_PRECIS, DRAFT_QUALITY,
 DEFAULT_PITCH, typeface);

 SelectObject(hdc, font);

 wglUseFontBitmaps(hdc, 32, 224, base);

To complement FontCreateBitmaps you’ll need a font deletion function (Listing 11-4). Here
the glDeleteLists function simply deletes the specified display lists, in this case our font
bitmaps. As with the FontCreateBitmaps function, to make this function work with
international character sets you need to change the number of display lists from 96 to 224.

Listing 11-4 FontDelete function

void
FontDelete(GLuint font) /* I - Font to delete */
{
 if (font == 0)
 return;

 glDeleteLists(font, 96);
}

Finally, to make drawing character strings easier, you can make put-string and printf-string
functions. FontPuts (Listing 11-5) uses the glPushAttrib and glPopAttrib functions to save
and restore the current display list base ID. If you forget to do this, you might inadvertently
affect your other drawing code that uses display lists!

Listing 11-5 FontPuts function

void
FontPuts(GLuint font, /* I - Font to use */
 char *s) /* I - String to display */
{
 if (font == 0)
 return;

 if (s == NULL)
 return;

 glPushAttrib(GL_LIST_BIT);
 glListBase(font - 32);
 glCallLists(strlen(s), GL_UNSIGNED_BYTE, s);
 glPopAttrib();
}

Page 404 OpenGL Super Bible!

A Note About glCallLists and Strings:
It is important to remember that glCallLists and the font functions presented here do not
handle control characters such as tab and newline. If you include control characters in the
string you display, other display lists may be called that affect your final output. This
behavior can be controlled by parsing the incoming string prior to using glCallLists. Newline
and tab functionality can be simulated using the glBitmap technique outlined in the previous
note, “A Note About the Current Raster Position,” along with a call to glGetIntegerv
(described in Chapter 14).

The FontPrintf function (Listing 11-6) uses the <stdarg.h> header file to manage the variable
number of arguments needed for vsprintf, which formats the string to be drawn.

Listing 11-6 FontPrintf function

#define MAX_STRING 1024

void
FontPrintf(GLuint font, /* I <?> - Font to use */
 char *format, /* I - printf() style format string */
 …)/* I - Other arguments as necessary */
{
 va_list ap; /* Argument pointer */
 char s[MAX_STRING + 1]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format); /* Start variable argument processing */
 vsprintf(s, format, ap); /* Format the text into our output string */
 va_end(ap); /* End variable argument processing */

 FontPuts(font, s);
}

The complete code for FontCreate, FontDelete, FontPuts, and FontPrintf can be found in the
CH11\FONT.C file. Prototypes are in the CH11\FONT.H file on the source code CD-ROM.

Pixmaps: Bitmaps with Color

Images with more than two colors are usually called pixmaps (short for pixel maps) and are
used as background images or textures (covered in Chapter 12). In OpenGL, pixmaps are
generally either 8-bit color index images or 24-bit RGB images.

OpenGL Super Bible! Page 405

Drawing Pixmaps

OpenGL provides a single function for drawing pixmaps called glDrawPixels. Like
glBitmap, glDrawPixels uses the current raster position to define the lower-left corner of the
image. You cannot specify a raster origin or movement as you can for glBitmap.

BITMAPINFO *BitmapInfo;
GLubyte *BitmapBits;

glRasterPos2i(xoffset, yoffset);
glDrawPixels(BitmapInfo->bmiHeader.biWidth,
 BitmapInfo->bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);

The glDrawPixels function accepts five arguments:

glDrawPixels(GLsizei width, GLsizei height,
 GLenum format, GLenum type,
 Glvoid *pixels)

The format parameter specifies the colorspace of the pixmap; valid formats are in Table 11-
1. The GL_COLOR_INDEX format specifies that each color value in the pixmap is an index
into the current Windows logical color palette. Color index images are often used for icons.
The GL_LUMINANCE format maps each color value to a grayscale value on the screen,
with the minimum value being completely black and the maximum value being completely
white. The GL_RGB format specifies the exact red, green, and blue values for each pixel in
the image.

Table 11-1 OpenGL Pixel Formats

Format Description

GL_COLOR_INDEX Color index pixels
GL_LUMINANCE Grayscale pixels
GL_RGB RGB pixels

The type parameter of glDrawPixels specifies the type and range of each color value or
component, as listed in Table 11-2.

Page 406 OpenGL Super Bible!

Table 11-2 OpenGL Pixel Types

Type Description

GL_BYTE Signed 8-bit values (from –128 to 127)
GL_UNSIGNED_BYTE Unsigned 8-bit values (from 0 to 255)
GL_BITMAP Bitmap image (from 0 to 1)

Remapping Colors

When using GL_COLOR_INDEX colors, you can remap the colors in your pixmap or
bitmap using the glPixelMap or glPixelTransfer functions. The glPixelTransfer function lets
you specify scaling and offsets for color index and RGB values. For example, here is the
code to brighten an RGB image by 10%:

glPixelTransferf(GL_RED_SCALE, 1.1)
glPixelTransferf(GL_GREEN_SCALE, 1.1);
glPixelTransferf(GL_BLUE_SCALE, 1.1);

Similarly, to offset the color indices of a bitmap to the palette entries you have defined for it,
use

glPixelTransferi(GL_INDEX_OFFSET, bitmap_entry);

In the “smiley” bitmap example (Listing 11-7), we might use this to remap the two colors in
the bitmap to difference indices:

Listing 11-7 Repaint Window function to draw smiley faces

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 static GLubyte smiley[] = /* 16x16 sm iley face */
 {
 0x03, 0xc0, 0, 0, /* **** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x1e, 0x78, 0, 0, /* **** **** */
 0x39, 0x9c, 0, 0, /* *** ** *** */
 0x77, 0xee, 0, 0, /* *** ****** *** */
 0x6f, 0xf6, 0, 0, /* ** ******** ** */
 0xff, 0xff, 0, 0, /* **************** */

OpenGL Super Bible! Page 407

 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x3f, 0xfc, 0, 0, /* ************ */
 0x1f, 0xf8, 0, 0, /* ********** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x03, 0xc0, 0, 0 /* **** */
 };

 glViewport(0, 0, rect->right, rect->bottom);

 glClearIndex(0.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);

 /* * This bitmap is aligned to 4-byte boundaries…
 */

 glPixelTransferi(GL_UNPACK_ALIGNMENT, 4);
 glPixelTransferi(GL_INDEX_OFFSET, 1);

 for (i = 0; i < 100; i ++)
 {
 glRasterPos2i(rand() % rect->right, rand() % rect->bottom);
 glDrawPixels(16, 16, GL_COLOR_INDEX, GL_BITMAP, smiley);
 };

 glFinish();
}

Color Mapping Tables

Sometimes it is necessary to apply color corrections that are more complicated than simple
linear scale and offset. One application is gamma correction, in which the intensity of each
color value is adjusted to a power curve that compensates for irregularities on your monitor
or printer (see Figure 11-2). The glPixelMap function allows you to do this by specifying a
lookup table, as follows:

GLfloatlut[256];
GLfloatgamma_value;
int i;

gamma_value = 1.7; /* For NTSC video monitors */
for (i = 0; i < 256; i ++)
 lut[i] = pow(i / 255.0, 1.0 / gamma_value);

Page 408 OpenGL Super Bible!

glPixelTransferi(GL_MAP_COLOR, GL_TRUE);
glPixelMap(GL_PIXEL_MAP_R_TO_R, 256, lut);
glPixelMap(GL_PIXEL_MAP_G_TO_G, 256, lut);
glPixelMap(GL_PIXEL_MAP_B_TO_B, 256, lut);

Figure 11-2 Image without gamma correction (left) and with a gamma correction of 1.7
(right)

Scaling a Pixmap

Besides adjusting the colors of a pixmap, you can adjust the size of the pixmap using the
glPixelZoom function. This function accepts two floating point parameters specifying the X
and Y scaling factors for the image:

glPixelZoom(1.0, 1.0); /* Don’t scale the image */
glPixelZoom(-1.0, 1.0); /* Flip the image horizontally */
glPixelZoom(1.0, -2.0); /* Flip the image and double the h eight */
glPixelZoom(0.33, 0.33); /* Draw the image 1/3 size */

As you can see, glPixelZoom allows you to scale and flip an image just about any way you
like. For other nonlinear effects, such as rippling water or perspective correction, you’ll need
to use texture mapping (Chapter 12).

Panning a Pixmap

The glPixelStore function can be used to pan inside an image. For example, to display the
center 300 x 300 pixel area of a 640 x 480 pixel image, you would use

glPixelStorei(GL_UNPACK_ROW_LENGTH, 640);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, (640 - 300) / 2);
glPixelStorei(GL_UNPACK_SKIP_ROWS, (480 - 300) / 2);
glDrawPixels(300, 300, GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);

OpenGL Super Bible! Page 409

In this example, the GL_UNPACK_ROW_LENGTH value specifies the width of the
original image in pixels. Set this when the width specified with glDrawPixels is different
from the width of the image.

GL_UNPACK_SKIP_PIXELS specifies the number of pixels to skip on the left side of the
image. Here we skip the first (640 – 300) / 2, or 170 pixels on the left side of the image to
show the middle.

GL_UNPACK_SKIP_ROWS is similar but specifies the number of rows or scanlines in the
image to skip. Normally, this value represents the number of rows from the bottom, but you
can change this by specifying a negative Y scaling with glPixelZoom.

NOTE: The GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_PIXELS, and
GL_UNPACK_SKIP_ROWS attributes refer to the original pixmap size in pixels, not the
size after zooming!

Reading Pixmaps

OpenGL provides a function called glReadPixels that can read an image from the screen.
Beyond the obvious application of saving your created image to disk, it can also be used for
cool effects with texture mapping.

Unlike glDrawPixels, glReadPixels ignores the current raster position and requires you to
specify an (x,y) viewport coordinate for the lower-left corner of the image to read. Listing
11-8 demonstrates how to read the current viewport into a Windows bitmap structure
suitable for saving to a file or using as a texture.

Listing 11-8 ReadDIBitmap function

/*
 * 'ReadDIBitmap()' - Read the current OpenGL viewport into a
 * 24-bit RGB bitmap.
 *
 * Returns the bitmap pixels if successful and NULL otherwise.
 */

void *
ReadDIBitmap(BITMAPINFO **info) /* O - Bitmap information */
{
 long i, j, /* Looping var */
 bitsize, /* Total size of bitmap */
 width; /* Aligned width of a scanline */
 GLint viewport[4]; /* Current viewport */
 void *bits; /* RGB bits */
 GLubyte *rgb, /* RGB looping var */

Page 410 OpenGL Super Bible!

 temp; /* Temporary var for swapping */
 /*
 * Grab the current viewport…
 */

 glGetIntegerv(GL_VIEWPORT, viewport);

 /*
 * Allocate memory for the header and bitmap…
 */

 if ((*info = (BITMAPINFO *)malloc(sizeof(BITMAPINFOHEADER))) == NULL)
 {
 /*
 * Couldn't allocate memory for bitmap info - return NULL…
 */

 return (NULL);
 };

 width = viewport[2] * 3; /* Real wid th of scanline */
 width = (width + 3) & ~3; /* Aligned to 4 bytes */
 bitsize = width * viewport[3]; /* Size of bitmap, aligned */

 if ((bits = calloc(bitsize, 1)) == NULL)
 {
 /*
 * Couldn't allocate memory for bitmap pixels - return NULL…
 */

 free(*info);
 return (NULL);
 };

 /*
 * Read pixels from the framebuffer…
 */

 glFinish(); /* Finish all OpenGL commands */
 glPixelStorei(GL_PACK_ALIGNMENT, 4); /* Force 4 -byte alignment */
 glPixelStorei(GL_PACK_ROW_LENGTH, 0);
 glPixelStorei(GL_PACK_SKIP_ROWS, 0);
 glPixelStorei(GL_PACK_SKIP_PIXELS, 0);

 glReadPixels(0, 0, viewport[2], viewport[3], GL_RGB, GL_UNSIGNED_BYTE,
 bits);

 /*
 * Swap red and blue for the bitmap…
 */

 for (i = 0; i < viewport[3]; i ++)
 for (j = 0, rgb = ((GLubyte *)bits) + i * width;
 j < viewport[2];
 j ++, rgb += 3)

OpenGL Super Bible! Page 411

 {
 temp = rgb[0];
 rgb[0] = rgb[2];
 rgb[2] = temp;
 };
 /*
 * Finally, initialize the bitmap header infor mation…
 */

 (*info)->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
 (*info)->bmiHeader.biWidth = viewport[2];
 (*info)->bmiHeader.biHeight = viewport[3];
 (*info)->bmiHeader.biPlanes = 1;
 (*info)->bmiHeader.biBitCount = 24;
 (*info)->bmiHeader.biCompression = BI_RGB;
 (*info)->bmiHeader.biSizeImage = bitsize;
 (*info)->bmiHeader.biXPelsPerMeter = 2952; /* 75 DPI */
 (*info)->bmiHeader.biYPelsPerMeter = 2952; /* 75 DPI */
 (*info)->bmiHeader.biClrUsed = 0;
 (*info)->bmiHeader.biClrImportant = 0;

 return (bits);
}

The first thing you need to do is find out the size of the current viewport, using
glGetIntegerv as shown just below. (This function is described in Chapter 14). This places
the current X origin, Y origin, X size, and Y size into the viewport array, as shown in Table
11-3.

/*
 * Grab the current viewport…
 */

 glGetIntegerv(GL_VIEWPORT, viewport);

Table 11-3 Viewport Array Definitions

Index Description

0 X origin of viewport (pixels)
1 Y origin of viewport (pixels)
2 X size of viewport (pixels)
3 Y size of viewport (pixels)

Page 412 OpenGL Super Bible!

Once you have the size of the viewport, you then allocate memory for the pixmap. It’s
important to note that Windows bitmaps (and OpenGL pixmaps by default) must have the
beginning of each line at a 32-bit boundary. To accomplish this, we do the following:

width = viewport[2] * 3; /* Real width of scanline *
width = (width + 3) & ~3; /* Aligned to 4 bytes */

You must round the computed actual byte width of the viewport (in this case, 3 bytes for
every pixel wide) up to the nearest 32-bit (or 4-byte) boundary. The total size of the pixmap
then becomes

bitsize = width * viewport[3]; /* Size of bitmap, aligned */

After allocating memory for the pixmap, we call glReadPixels to get the contents of the
current viewport and fill in the Windows BITMAPHEADER structure with all the necessary
information.

Copying Pixmaps

OpenGL also provides a function to copy an area on the screen to another location— as
needed, for instance, in scrolling or “magnifying glass” views:

int mousex, mousey;

glReadBuffer(GL_FRONT);
glDrawBuffer(GL_FRONT);
glPixelZoom(2.0, 2.0);
glRasterPos2i(0, 0);
glCopyPixels(mousex - 8, mousey - 8, 16, 16, GL_COLOR);

Here the glCopyPixels function copies pixels from the given location to the current raster
position:

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum
type)

The x and y parameters specify the lower-left corner of the area to be copied. Width and
height specify the size of the image to be copied. Pixels are copied from the specified (x,y)
location to the current raster position. The type argument specifies which values are to be
copied. For most applications, the pixel type is GL_COLOR to copy color indices or RGB
values.

Pixel zoom is applied to the output pixels but not to the input pixels. In the example just
above, a 16 x 16-pixel image will be copied to the lower-left corner of the window and
scaled to 32 x 32 pixels. Offsets and sizes specified with calls to glPixelStore do not affect
glCopyPixels. Changes made with glPixelTransfer and glPixelMap do, however.

OpenGL Super Bible! Page 413

A Bitmap File Viewer

Now that we’ve covered all the bitmap-related functions that are available, let’s write a
Windows .BMP file-viewing program using OpenGL. Our goals for this program are fairly
straightforward:

• Load any Windows .BMP file
• Scale the image to the current window size
• Provide simple controls to change the image brightness and gamma correction
• Show a magnified view of the image underneath the mouse pointer
• Save the displayed image to disk
• Print the displayed image

The final code for this program can be found in CH11\OGLVIEW.C.

About Windows Bitmap Files

Before we write the code, let’s review the ubiquitous Windows bitmap format. Despite their
limitations, Windows .BMP files are probably the most common and widely supported files
used by PCs capable of from 2 to 16.7 million colors. With only a few exceptions, .BMP
files do not utilize data compression schemes, so it’s easy to read and use these files in your
OpenGL programs.

A .BMP file is organized into three or four sections, depending on the type of colors used
(see Figure 11-3). All .BMP files start with a BITMAPFILEHEADER structure containing
an identification string (“BM”) the total size of the file, and an offset to the actual image
data. Here is that structure:

typedef struct
{
 WORD bfType; /* “BM” */
 DWORD bfSize; /* Size of file in bytes */
 WORD bfReserved1; /* Reserved, always 0 */
 WORD bfReserved2; /* Reserved, always 0 */
 DWORD bfOffBits; /* Offset to image in bytes */
} BITMAPFILEHEADER;

Figure 11-3 Organization of a .BMP file

Page 414 OpenGL Super Bible!

Following the file header is a BITMAPINFOHEADER structure that describes the contents
of the image, as follows:

typedef struct
{
 DWORD biSize; /* Size of BITMAPINFOHEADER in bytes */
 LONG biWidth; /* Width of image in pixels */
 LONG biHeight; /* Height of image in pixels */
 WORD biPlanes; /* # of color planes (always 1) */
 WORD biBitCount; /* # of color bits */
 DWORD biCompression; /* Type of compression used */
 DWORD biSizeImage; /* Size of the image in bytes */
 LONG biXPelsPerMeter; /* Horizontal pixels per meter */
 LONG biYPelsPerMeter; /* Vertical pixels per meter */
 DWORD biClrUsed; /* Number of color used */
 DWORD biClrImportant; /* Number of 'important’ colors */
} BITMAPINFOHEADER;

For color index (palette) images, a color palette follows the BITMAPINFOHEADER
structure for every color in the image. Image data follows immediately after.

Reading the .BMP File

Because the .BMP file format is so simple, reading a .BMP file is almost trivial. You start by
opening the file and reading a BITMAPFILEHEADER structure.

if ((fp = fopen(filename, "rb")) == NULL)
 return (NULL);

fread(&header, sizeof(BITMAPFILEHEADER), 1, fp);

if (header.bfType != 'MB') /* Check f or BM reversed… */
{
 /*
 * Not a bitmap file - return NULL…
 */

 fclose(fp);
 return (NULL);
};

If the header looks good, you then read the BITMAPINFO structure along with any color
palette definitions.

infosize = header.bfOffBits - sizeof(BITMAPFILEHEADER);
fread(*info, 1, infosize, fp);

And finally, you read the bitmap data and close the file.

if ((bitsize = (*info)->bmiHeader.biSizeImage) == 0)
 bitsize = ((*info)->bmiHeader.biWidth *

OpenGL Super Bible! Page 415

 (*info)->bmiHeader.biBitCount + 7) / 8 *
 abs((*info)->bmiHeader.biHeight);

fread(bits, 1, bitsize, fp);
fclose(fp);

Listing 11-9 contains the final code for LoadDIBitmap, with error checking.

Listing 11-9 LoadDIBitmap function

void *
LoadDIBitmap(char *filename, /* I - File to load */
 BITMAPINFO **info) /* O - Bitmap information */
{
 FILE *fp; /* Open file pointer */
 void *bits; /* Bitmap pixel bits */
 long bitsize, /* Size of bitmap */
 infosize; /* Size of header information */
 BITMAPFILEHEADER header; /* File header */

 /*
 * Try opening the file; use "rb" mode to read this *binary* file.
 */

 if ((fp = fopen(filename, "rb")) == NULL)
 return (NULL);

 /*
 * Read the file header and any following bitmap information…
 */

 if (fread(&header, sizeof(BITMAPFILEHEADER), 1, fp) < 1)
 {
 /*
 * Couldn't read the file header - return NULL…
 */

 fclose(fp);
 return (NULL);
 };

 if (header.bfType != 'MB') /* Check for BM reversed… */
 {
 /*
 * Not a bitmap file - return NULL…
 */

 fclose(fp);
 return (NULL);
 };
 infosize = header.bfOffBits - sizeof(BITMAPFILEHEADER);
 if ((*info = (BITMAPINFO *)malloc(infosize)) == NULL)
 {
 /*

Page 416 OpenGL Super Bible!

 * Couldn't allocate memory for bitmap info - return NULL…
 */

 fclose(fp);
 return (NULL);
 };

 if (fread(*info, 1, infosize, fp) < infosize)
 {
 /*
 * Couldn't read the bitmap header - return NULL…
 */

 free(*info);
 fclose(fp);
 return (NULL);
 };

 /*
 * Now that we have all the header info read in, allocate memory for the
 * bitmap and read *it* in…
 */

 if ((bitsize = (*info)->bmiHeader.biSizeImage) == 0)
 bitsize = ((*info)->bmiHeader.biWidth *
 (*info)->bmiHeader.biBitCount + 7) / 8 *
 abs((*info)->bmiHeader.biHeight);

 if ((bits = malloc(bitsize)) == NULL)
 {
 /*
 * Couldn't allocate memory - return NULL!
 */

 free(*info);
 fclose(fp);
 return (NULL);
 };

 if (fread(bits, 1, bitsize, fp) < bitsize)
 {
 /*
 * Couldn't read bitmap - free memory and return NULL!
 */

 free(*info);
 free(bits);
 fclose(fp);
 return (NULL);
 };

 /*
 * OK, everything went fine - return the allocated bitmap…
 */

OpenGL Super Bible! Page 417

 fclose(fp);
 return (bits);
}

Writing the .BMP File

As they say in the car repair manuals, “Installation is the reverse of removal.” To write a
.BMP file, you simply add a BITMAPFILEHEADER structure to the bitmap in memory and
write it to disk. Listing 11-10 is the SaveDIBitmap function.

Listing 11-10 SaveDIBitmap function

int
SaveDIBitmap(char *filename, /* I - File to save to */
 BITMAPINFO *info, /* I - Bitmap information */
 void *bits) /* I - Bitmap pixel bits */
{
 FILE *fp; /* Open file pointer */
 long size, /* Size of file */
 infosize, /* Size of bitmap info */
 bitsize; /* Size of bitmap pixels */
 BITMAPFILEHEADER header; /* File header */

 /*
 * Try opening the file; use "wb" mode to write this *binary* file.
 */

 if ((fp = fopen(filename, "wb")) == NULL)
 return (-1);

 if (info->bmiHeader.biSizeImage == 0)/* Figure out the bitmap size */
 bitsize = (info->bmiHeader.biWidth *
 info->bmiHeader.biBitCount + 7) / 8 *
 abs(info->bmiHeader.biHeight);
 else
 bitsize = info->bmiHeader.biSizeImage;

 infosize = sizeof(BITMAPINFOHEADER);
 switch (info->bmiHeader.biCompression)
 {
 case BI_BITFIELDS :
 infosize += 12; /* Add 3 RGB doubleword masks */
 if (info->bmiHeader.biClrUsed == 0)
 break;
 case BI_RGB :
 if (info->bmiHeader.biBitCount > 8 &&
 info->bmiHeader.biClrUsed == 0)
 break;
 case BI_RLE8 :
 case BI_RLE4 :
 if (info->bmiHeader.biClrUsed == 0)
 infosize += (1 << info->bmiHeader.biBitCount) * 4;
 else

Page 418 OpenGL Super Bible!

 infosize += info->bmiHeader.biClrUsed * 4;
 break;
 };

 size = sizeof(BITMAPFILEHEADER) + infosize + bitsize;

 /*
 * Write the file header, bitmap information, and bitmap pixel data…
 */

 header.bfType = 'MB'; /* Non-portable… sigh */
 header.bfSize = size;
 header.bfReserved1 = 0;
 header.bfReserved2 = 0;
 header.bfOffBits = sizeof(BITMAPFILEHEADER) + infosize;
 if (fwrite(&header, 1, sizeof(BITMAPFILEHEADER), fp) <
 sizeof(BITMAPFILEHEADER))
 {
 /*
 * Couldn't write the file header - return…
 */

 fclose(fp);
 return (-1);
 };

 if (fwrite(info, 1, infosize, fp) < infosize)
 {
 /*
 * Couldn't write the bitmap header - return…
 */

 fclose(fp);
 return (-1);
 };

 if (fwrite(bits, 1, bitsize, fp) < bitsize)
 {
 /*
 * Couldn't write the bitmap - return…
 */

 fclose(fp);
 return (-1);
 };

 /*
 * OK, everything went fine - return…
 */

 fclose(fp);
 return (0);
}

OpenGL Super Bible! Page 419

Printing the Bitmap

Because Windows provides several convenient functions for printing within an application,
it only makes sense to be able to print from our bitmap viewing program. For this example
program, you will be using the standard GDI printing services.

The first thing you do is display a standard Windows print dialog using PrintDlg, as shown
here:

memset(&pd, 0, sizeof(pd));
pd.lStructSize = sizeof(pd);
pd.hwndOwner = owner;
pd.Flags = PD_RETURNDC;
pd.hInstance = NULL;
if (!PrintDlg(&pd))
 return (0);

If the PrintDlg function returns 0, the user has clicked the Cancel button. Otherwise, the
PRINTDLG structure will contain a device context (HDC) handle that we can use for
printing.

Next, you need to start the print job.

di.cbSize = sizeof(DOCINFO);
di.lpszDocName = "OpenGL Image";
di.lpszOutput = NULL;
StartDoc(pd.hDC, &di);

After this, you draw the bitmap using the StretchBlt function and end the print job.

StretchBlt(pd.hDC, xoffset, yoffset, xsize, ysize,
 hdc, 0, 0, info->bmiHeader.biWidth,
 info->bmiHeader.biHeight, SRCCOPY);

EndPage(pd.hDC);
EndDoc(pd.hDC);

We compute the first 4 parameters to StretchBlt based on the size of the output page.
Basically, we want to scale the image to the page yet keep the aspect ratio (width/height) the
same.

xsize = rect.right;
ysize = xsize * info->bmiHeader.biHeight / info->bmiHeader.biWidth;
if (ysize > rect.bottom)
{
 ysize = rect.bottom;
 xsize = ysize * info->bmiHeader.biWidth / info->bmiHeader.biHeight;
};

Page 420 OpenGL Super Bible!

The offsets are computed by taking half of the difference of widths and heights:

xoffset = (rect.right - xsize) / 2;
yoffset = (rect.bottom - ysize) / 2;

Normally you might pop up a “busy printing” dialog for the user, but in this case printing
happens so fast it wouldn’t be useful.

The final code for the PrintDIBitmap function is in Listing 11-11.

Listing 11-11 PrintDIBitmap function

int
PrintDIBitmap(HWND owner, /* I - Owner/parent window */
 BITMAPINFO *info, /* I - Bitmap information */
 void *bits) /* I - Bitmap pixel bits */
{
 PRINTDLG pd; /* Print dialog infor mation */
 long xsize, /* Size of printed image */
 ysize,
 xoffset, /* Offset from edges for image */
 yoffset;
 RECT rect; /* Page rectangle */
 DOCINFO di; /* Document info */
 HDC hdc; /* Device context for bitmap */
 HBITMAP bitmap; /* Bitmap image */
 HBRUSH brush; /* Background brush for page */
 HCURSOR busy, /* Busy cursor */
 oldcursor; /* Old cursor */
 /*
 * Range check…
 */

 if (info == NULL || bits == NULL)
 return (0);

 /*
 * Initialize a PRINTDLG structure before displaying a standard Windows
 * print dialog…
 */

 memset(&pd, 0, sizeof(pd));
 pd.lStructSize = sizeof(pd);
 pd.hwndOwner = owner;
 pd.Flags = PD_RETURNDC;
 pd.hInstance = NULL;
 if (!PrintDlg(&pd))
 return (0); /* User chose 'cancel'… */

 /*
 * OK, user wants to print, so set the cursor to 'bus y' and start the
 * print job…
 */

OpenGL Super Bible! Page 421

 busy = LoadCursor(NULL, IDC_WAIT);
 oldcursor = SetCursor(busy);

 SetMapMode(pd.hDC, MM_TEXT);
 di.cbSize = sizeof(DOCINFO);
 di.lpszDocName = "OpenGL Image";
 di.lpszOutput = NULL;

 StartDoc(pd.hDC, &di);
 StartPage(pd.hDC);

 /*
 * Clear the background to white…
 */

 rect.top = 0;
 rect.left = 0;
 rect.right = GetDeviceCaps(pd.hDC, HORZRES);
 rect.bottom = GetDeviceCaps(pd.hDC, VERTRES);
 brush = CreateSolidBrush(0x00ffffff);
 FillRect(pd.hDC, &rect, brush);

 /*
 * Stretch the bitmap to fit the page…
 */

 hdc = CreateCompatibleDC(pd.hDC);
 bitmap = CreateDIBitmap(hdc, &(info ->bmiHeader), CBM_INIT, bits, info,
 DIB_RGB_COLORS);
 SelectObject(hdc, bitmap);

 xsize = rect.right;
 ysize = xsize * info->bmiHeader.biHeight / info->bmiHeader.biWidth;
 if (ysize > rect.bottom)
 {
 ysize = rect.bottom;
 xsize = ysize * info->bmiHeader.biWidth / info->bmiHeader.biHeight;
 };

 xoffset = (rect.right - xsize) / 2;
 yoffset = (rect.bottom - ysize) / 2;

 StretchBlt(pd.hDC, xoffset, yoffset, xsize, ysize,
 hdc, 0, 0, info->bmiHeader.biWidth, info->bmiHeader.biHeight,
 SRCCOPY);

 /*
 * That's it. End the print job and free anything we allocated…
 */

 EndPage(pd.hDC);
 EndDoc(pd.hDC);
 DeleteDC(pd.hDC);

Page 422 OpenGL Super Bible!

 DeleteObject(bitmap);
 DeleteObject(brush);
 DeleteObject(busy);
 DeleteDC(hdc);
 /*
 * Restore the cursor and return…
 */
 SetCursor(oldcursor);

 return (1);
}

Displaying the Bitmap

The OpenGL part of our example program begins with displaying the .BMP file. Like most
OpenGL programs, this one starts out by setting the current viewport and viewing
transformations.

glViewport(0, 0, rect->right, rect->bottom);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);

After this, you draw the bitmap. Here we are scaling the image to fit the current window
while maintaining a 1:1 aspect ratio. The following code should look very familiar— you
used it in the PrintDIBitmap function above:

xsize = rect->right;
ysize = BitmapInfo->bmiHeader.biHeight * xsize /
 BitmapInfo->bmiHeader.biWidth;
if (ysize > rect->bottom)
{
 ysize = rect->bottom;
 xsize = BitmapInfo->bmiHeader.biWidth * ysize /
 BitmapInfo->bmiHeader.biHeight;
};

xscale = (float)xsize / (float)BitmapInfo ->bmiHeader.biWidth;
yscale = (float)ysize / (float)BitmapInfo ->bmiHeader.biHeight;

xoffset = (rect->right - xsize) * 0.5;
yoffset = (rect->bottom - ysize) * 0.5;

glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelZoom(xscale, yscale);
glRasterPos2i(xoffset, yoffset);
glDrawPixels(BitmapInfo->bmiHeader.biWidth,
 BitmapInfo->bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);

OpenGL Super Bible! Page 423

Interestingly enough, the Windows StretchBlt function can display bitmap images faster
than glDrawPixels. Of course, StretchBlt cannot perform the glPixelMap and
glPixelTransfer functions, though.

The final code for the RepaintWindow function is in Listing 11-12.

Listing 11-12 RepaintWindow function

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 GLint xoffset, /* X offset of image */
 yoffset; /* Y offset of image */
 GLint xsize, /* X size of scaled image */
 ysize; /* Y size of scaled image */
 GLfloat xscale, /* Scaling in X direction */
 yscale; /* Scaling in Y direction */

 /*
 * Reset the viewport and clear the window to white…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);

 glClearColor(1.0, 1.0, 1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 /*
 * If we have loaded a bitmap image, scale it to fit the window…
 */

 if (BitmapBits != NULL)
 {
 xsize = rect->right;
 ysize = BitmapInfo->bmiHeader.biHeight * xsize /
 BitmapInfo->bmiHeader.biWidth;
 if (ysize > rect->bottom)
 {
 ysize = rect->bottom;
 xsize = BitmapInfo->bmiHeader.biWidth * ysize /
 BitmapInfo->bmiHeader.biHeight;
 };

 xscale = (float)xsize / (float)BitmapInfo ->bmiHeader.biWidth;
 yscale = (float)ysize / (float)BitmapInfo ->bmiHeader.biHeight;

 xoffset = (rect->right - xsize) * 0.5;
 yoffset = (rect->bottom - ysize) * 0.5;

Page 424 OpenGL Super Bible!

 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
 glPixelZoom(xscale, yscale);
 glRasterPos2i(xoffset, yoffset);
 glDrawPixels(BitmapInfo->bmiHeader.biWidth,
 BitmapInfo->bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);
 };

 glFinish();
}

Summary

In this chapter you have learned about most of the OpenGL bitmap functions. Beyond the
simple application of character fonts, bitmaps can be full-color images for window
backgrounds or texture images (explored in the chapter coming up). OpenGL functions such
as glPixelMap, glPixelTransfer, and glPixelZoom can be used for special effects, as well.

OpenGL Super Bible! Page 425

Reference Section

glCopyPixels

Purpose
Copies a rectangular block of pixels in the frame buffer.

Include File
<GL/gl.h>

Syntax
void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type);

Description
This function copies pixel data from the indicated area in the framebuffer to the
current raster position. Use glRasterPos to set the current raster position. If the
current raster position is not valid, then no pixel data is copied.
Calls to glPixelMap, glPixelTransfer, and glPixelZoom affect the operation of
glCopyPixels, as indicated in their pages in this Reference Section.

Parameters

x
GLint: The lower-left corner window horizontal coordinate.

y
GLint: The lower-left corner window vertical coordinate.

width
GLsizei: The width of the image in pixels.

height
GLsizei: The height of the image in pixels. If negative, the image is drawn from top
to bottom. By default, images are drawn bottom to top.

type
GLenum: The type of pixel values to be copied. Valid types are as follows:

GL_COLOR Color buffer values
GL_STENCIL Stencil buffer values
GL_DEPTH Depth buffer values

Returns
None.

Example
See the example in CH11\OGLVIEW.C.

See Also
glPixelMap, glPixelStore, glPixelTransfer, glPixelZoom

Page 426 OpenGL Super Bible!

glDrawPixels

Purpose
Draws a block of pixels into the frame buffer.

Include File
<GL/gl.h>

Syntax
void glDrawPixels(GLsizei width, GLsizei height, GLenum format, GLenum type,
const Glvoid *pixels);

Description
This function copies pixel data from memory to the current raster position. Use
glRasterPos to set the current raster position. If the current raster position is not
valid, then no pixel data is copied.
Besides the format and type arguments, several other parameters define the encoding
of pixel data in memory and control the processing of the pixel data before it is
placed in the frame buffer. See the Reference Section pages for glPixelMap,
glPixelStore, glPixelTransfer, and glPixelZoom.

Parameters

width
GLsizei: The width of the image in pixels.

height
GLsizei: The height of the image in pixels. If negative, the image is drawn from top
to bottom. By default, images are drawn bottom to top.

format
GLenum: The colorspace of the pixels to be drawn. Valid formats are as follows:

GL_COLOR_INDEX Color index pixels
GL_LUMINANCE Grayscale pixels

GL_LUMINANCE_ALPHA Grayscale + alpha pixels (2
components)

GL_RGB RGB pixels (3 components)
GL_RGBA RGBA pixels (4 components)
GL_RED Red pixels
GL_GREEN Green pixels
GL_BLUE Blue pixels
GL_ALPHA Alpha pixels
GL_STENCIL_INDEX Stencil buffer values
GL_DEPTH_COMPONENT Depth buffer values

type

OpenGL Super Bible! Page 427

GLenum: The data type of the pixels to be drawn. Valid types are as follows:
GL_BYTE Signed 8-bit values (–128 to 127)
GL_UNSIGNED_BYTE Unsigned 8-bit values (0 to 255)
GL_BITMAP Bitmap image (0 to 1)
GL_SHORT Signed 16-bit values (–32,768 to 32,767)
GL_UNSIGNED_SHORT Unsigned 16-bit values (0 to 65,535)
GL_INT Signed 32-bit values (–2,147,483,648 to

2,147,483,647)
GL_UNSIGNED_INT Unsigned 32-bit values (0 to

4,294,967,295)
GL_FLOAT 32-bit floating point values (GLfloat)

pixels
Glvoid *: A pointer to the pixel data for the image.

Returns
None.

Known Bugs
The GL_UNPACK_ALIGNMENT parameter for glPixelStore is presently ignored
by glDrawPixels.

Example
See the example in CH11\OGLVIEW.C.

See Also
glPixelMap, glPixelStore, glPixelTransfer, glPixelZoom

Page 428 OpenGL Super Bible!

glPixelMap

Purpose
Defines a lookup table for pixel transfers.

Include File
<GL/gl.h>

Syntax
void glPixelMapfv(GLenum map, GLint mapsize, const GLfloat *values);void
glPixelMapuiv(GLenum map, GLint mapsize, const GLuint *values);void
glPixelMapusv(GLenum map, GLint mapsize, const GLushort *values);

Description
This function sets lookup tables for glCopyPixels, glDrawPixel, glReadPixels,
glTexImage1D, and glTexImage2D. Lookup tables, or maps, are only used if the
corresponding GL_MAP_COLOR or GL_MAP_STENCIL option is enabled with
glPixelTransfer. Maps are applied prior to drawing and after reading values from the
framebuffer.

Parameters

map
GLenum: The type of map being defined. Valid maps are as follows:

GL_PIXEL_MAP_I_TO_I Define a map for color indices.
GL_PIXEL_MAP_S_TO_S Define a map for stencil values.
GL_PIXEL_MAP_I_TO_R Define a map from color indices to

red values.
GL_PIXEL_MAP_I_TO_G Define a map from color indices to

green values.
GL_PIXEL_MAP_I_TO_B Define a map from color indices to

blue values.
GL_PIXEL_MAP_I_TO_A Define a map from color indices to

alpha values.
GL_PIXEL_MAP_R_TO_R Define a map for red values.
GL_PIXEL_MAP_G_TO_G Define a map for green values.
GL_PIXEL_MAP_B_TO_B Define a map for blue values.
GL_PIXEL_MAP_A_TO_A Define a map for alpha values.

mapsize
GLint: The size of the lookup table.

values
GLfloat *, GLuint *, GLushort *: The lookup table.

Returns
None.

OpenGL Super Bible! Page 429

Example
See the example in CH11\OGLVIEW.C.

See Also
glCopyPixels, glDrawPixels, glPixelStore, glPixelTransfer, glReadPixels,
glTexImage1D, glTexImage2D

Page 430 OpenGL Super Bible!

glPixelStore

Purpose
Controls how pixels are stored or read from memory.

Include File
<GL/gl.h>

Syntax
void glPixelStorei(GLenum pname, GLint param);void glPixelStoref(GLenum
pname, GLfloat param);

Description
This function controls how pixels are stored with glReadPixels and read for
glDrawPixels, glTexImage1D, and glTexImage2D. It does not affect the operation of
glCopyPixels.

Parameters

pname
GLenum: The parameter to set. Valid names are as follows:

GL_PACK_SWAP_BYTES* GL_TRUE If True, all multibyte
values have their
bytes swapped when
stored in memory.

GL_PACK_LSB_FIRST GL_FALSE If True, bitmaps have
their leftmost pixel
stored in bit 0 instead
of bit 7.

GL_PACK_ROW_LENGTH 0 Set the pixel width of
the image. If 0, the
width argument is
used instead.

GL_PACK_SKIP_PIXELS 0 Set the number of
pixels to skip
horizontally in the
image.

GL_PACK_SKIP_ROWS 0 Set the number of
pixels to skip
vertically in the
image.

GL_PACK_ALIGNMENT 4 Set the alignment of
each scanline in the
image. See Known
Bugs section below.

OpenGL Super Bible! Page 431

GL_UNPACK_SWAP_BYTES
(GL_TRUE for little-endian,
GL_FALSE for big-endian)

GL_TRUE If True, all multibyte
values have their
bytes swapped when
read from memory.

GL_UNPACK_LSB_FIRST GL_FALSE If True, bitmaps have
their leftmost pixel
read from bit 0
instead of bit 7.

GL_UNPACK_ROW_LENGTH 0 Set the pixel width of
the image. If 0, the
width argument is
used instead.

GL_UNPACK_SKIP_PIXELS 0 Set the number of
pixels to skip
horizontally in the
image.

GL_UNPACK_SKIP_ROWS 0 Set the number of
pixels to skip
vertically in the
image.

GL_UNPACK_ALIGNMENT 4 Set the alignment of
each scanline in the
image. See Known
Bugs section below.

param
GLint, GLfloat: The parameter value.

Returns
None.

Known Bugs
The GL_PACK_ALIGNMENT and GL_UNPACK_ALIGNMENT parameters for
glPixelStore are presently ignored.

Example
See the example in CH11\BITMAP.C.

See Also
glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D

Page 432 OpenGL Super Bible!

glPixelTransfer

Purpose
Sets pixel transfer modes and options for glCopyPixels, glDrawPixels, glReadPixels,
glTexImage1D, and glTexImage2D

Include File
<GL/gl.h>

Syntax
void glPixelTransferi(GLenum pname, GLint param);void glPixelTransferf(GLenum
pname, GLfloat param);

Description
This function sets pixel transfer modes and options for glCopyPixels, glDrawPixels,
glReadPixels, glTexImage1D, and glTexImage2D.

Parameters

pname
GLenum: The transfer parameter to set. Valid names are as follows:

GL_MAP_COLOR When set to GL_TRUE, enables pixel maps
defined with glPixelMap for color indices and
RGBA values.

GL_MAP_STENCIL When set to GL_TRUE, enables pixel maps
defined with glPixelMap for stencil values.

GL_INDEX_SHIFT Specifies the amount to bitshift color indices.
Positive values shift indices to the left. Negative
values shift indices to the right.

GL_INDEX_OFFSET Specifies an offset to be added to every color
index.

GL_RED_SCALE Specifies a floating point scaling factor for red
color values.

GL_RED_BIAS Specifies a bias that is added to every red color
value.

GL_GREEN_SCALE Specifies a floating point scaling factor for
green color values.

GL_GREEN_BIAS Specifies a bias that is added to every green
color value.

GL_BLUE_SCALE Specifies a floating point scaling factor for blue
color values.

GL_BLUE_BIAS Specifies a bias that is added to every blue color
value.

OpenGL Super Bible! Page 433

GL_ALPHA_SCALE Specifies a floating point scaling factor for
alpha color values.

GL_ALPHA_BIAS Specifies a bias that is added to every alpha
color value.

GL_DEPTH_SCALE Specifies a floating point scaling factor for
depth values.

GL_DEPTH_BIAS Specifies a bias that is added to every depth
value.

param

GLint, GLfloat: The parameter value.
Returns

None.
Example

See the example in CH11\OGLVIEW.C.
See Also

glCopyPixels, glDrawPixels, glPixelMap, glReadPixels, glTexImage1D,
glTexImage2D

Page 434 OpenGL Super Bible!

glPixelZoom

Purpose
Sets the scaling for pixel transfers.

Include File
<GL/gl.h>

Syntax
void glPixelZoom(GLfloat xfactor, GLfloat yfactor);

Description
This function sets pixel scaling for glCopyPixels, glDrawPixels, glReadPixels,
glTexImage1D, and glTexImage2D.
Pixels are scaled using the “nearest neighbor” algorithm when they are read from
memory or the framebuffer. In the case of glCopyPixels and glDrawPixels, the
scaled pixels are drawn in the framebuffer at the current raster position.
For glReadPixels, pixels are written to the supplied memory buffer. When reading a
zoomed image, you should compute the image size as follows:

int new_width, new_height;
int width, height;
new_width = xfactor * width + 0.5;
new_height = yfactor * height + 0.5;

Parameters

xfactor
GLfloat: The horizontal scalingfactor (1.0 is no scaling).

yfactor
GLfloat: The vertical scaling factor (1.0 is no scaling).

Returns
None.

Example
See the example in CH11\OGLVIEW.C.

See Also
glCopyPixels, glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D

OpenGL Super Bible! Page 435

glReadPixels

Purpose
Reads a block of pixels from the framebuffer.

Include File
<GL/gl.h>

Syntax
void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum
format, GLenum type, const Glvoid *pixels);

Description
This function copies pixel data from the framebuffer to memory. Besides the format
and type arguments, several other parameters define the encoding of pixel data in
memory and control the processing of the pixel data before it is placed in the
memory buffer. See the references for glPixelMap, glPixelStore, glPixelTransfer.

Parameters

x
GLint: The lower-left corner window horizontal coordinate.

y
GLint: The lower-left corner window vertical coordinate.

width
GLsizei: The width of the image in pixels.

height
GLsizei: The height of the image in pixels.

format
GLenum: The colorspace of the pixels to be read. Valid formats are as follows:

GL_COLOR_INDEX Color index pixels
GL_LUMINANCE Grayscale pixels
GL_LUMINANCE_ALPHA Grayscale + alpha pixels (2 components)
GL_RGB RGB pixels (3 components)
GL_RGBA RGBA pixels (4 components)
GL_RED Red pixels
GL_GREEN Green pixels
GL_BLUE Blue pixels
GL_ALPHA Alpha pixels
GL_STENCIL_INDEX Stencil buffer values
GL_DEPTH_COMPONENT Depth buffer values

type
Glenum: The data type of the pixels to be drawn. Valid types are as follows:

Page 436 OpenGL Super Bible!

GL_BYTE Signed 8-bit values (–128 to 127)
GL_UNSIGNED_BYTE Unsigned 8-bit values (0 to 255)
GL_BITMAP Bitmap image (0 to 1)
GL_SHORT Signed 16-bit values (–32768 to 32767)
GL_UNSIGNED_SHORT Unsigned 16-bit values (0 to 65535)
GL_INT Signed 32-bit values (–2147483648 to

2147483647)
GL_UNSIGNED_INT Unsigned 32-bit values (0 to 4294967295)
GL_FLOAT 32-bit floating point values (GLfloat)

pixels
Glvoid *: A pointer to the pixel data for the image.

Returns
None.

Known Bugs
The GL_PACK_ALIGNMENT parameter for glPixelStore is presently ignored by
glReadPixels.

Example
See the example in CH11\BITMAP.C.

See Also
glPixelMap, glPixelStore, glPixelTransfer

OpenGL Super Bible! Page 437

Chapter 12
Texture Mapping

What you’ll learn in this chapter:

How to… Functions You’ll Use

Drape images onto polygons (texture mapping) glTexImage1D/glTexImage2D
Use .BMP files as textures TextureLoadBitmap/TextureLoadMipmapy
Use automatic texture coordinate generation glTexGen

Texture mapping is probably the most significant advance in computer graphics in the last
ten years. OpenGL provides texture image mapping functions that fit images onto polygons
in your scene. How those images are put onto the polygons is up to you.

Texture mapping is used in games, including DOOM, for realistic images of rooms and
monsters. Unlike OpenGL, these games use a texturing method called raycasting to map
texture images onto polygons. Though raycasting is much faster on standard graphics cards
than the texture mapping provided by OpenGL, it is also limited to flat surfaces in a 2D
plane. That is, you can’t look up or down. Texture mapping in OpenGL doesn’t have this
limitation, but you can expect it to work more slowly on standard graphics cards.

The good news is that some newer, affordable 3D graphics cards support OpenGL and
hardware texturing. When a board supports hardware texture mapping, your CPU doesn’t
have to do all the texture mapping calculations and preparation— the graphics card does it
for you.

The examples in this chapter will run on any Windows-compatible graphics card. If your
graphics card supports 16- or 24-bit “true color” displays, you’ll want to use them. Besides
better-looking scenes, you’ll find that the 16- and 24-bit modes are actually faster.

The Basics of Texture Mapping

Texture mapping in OpenGL is fairly straightforward. To begin with, every texture is an
image of some sort.

A 1D texture is an image with width but no height, or vise versa; 1D textures are a single
pixel wide or high. You might think that 1D textures aren’t very useful, but in fact they can
take the place of more conventional color-shading techniques and accelerate rendering in the
process! Figure 12-1 shows a 1D “ROY-G-BIV” (Red, Orange, Yellow - Green - Blue,

Page 438 OpenGL Super Bible!

Indigo, Violet) texture to display a rainbow. The texture image is a line of pixels (color
values) covering the color spectrum seen in a rainbow. The equivalent nontextured scene
would contain seven times the polygons of the textured one and require much more
rendering time.

Figure 12-1 A 1D textured rainbow

A 2D texture is an image that is more than 1 pixel wide and high and is generally loaded
from a Windows .BMP file. Two-dimensional textures are commonly used to replace
complex surface geometry (lots of polygons) on buildings, trees, and so forth. These 2D
textures can also be used to add realistic background details, like the clouds in the sky in
Figure 12-2.

Figure 12-2 A 2D sky texture and the resulting scene

OpenGL Super Bible! Page 439

The 1D and 2D textures you’ve seen so far are composed of RGB color values. Textures can
also be composed of color indices or luminance (gray) levels, and can include alpha
(transparency) values. The latter is useful for defining natural objects such as trees, because
the alpha value can be used to make the tree visible but let the background show through.
You’ll learn more about this in Chapter 16.

Some hardware also supports 3D (volume) textures with OpenGL. Volume textures are used
for viewing CAT, MRI, and other 3D “scans.” Unfortunately, even a small 256 x 256 x 256
grayscale texture image will need a whopping 16 MB of memory. Currently an extension to
OpenGL, 3D texturing may be included as a required feature in the OpenGL 1.1
specification.

Defining Texture Images

Naturally, you must define a texture image before you can draw textured polygons in
OpenGL. Texture images follow the same storage rules as bitmaps (discussed in Chapter
11).

A Note About Texture Images:
The OpenGL standard requires that texture images’ dimensions must be a power of 2.
Texture images can also have 1 or 2 border pixels around their edges to define the color of
polygons that fall outside the texture image.

Defining 1D Textures

OpenGL provides a single function for defining 1D textures: glTexImage1D. The
glTexImage1D function accepts eight arguments:

void glTexImage1D(GLenum target, GLint level, GLint components,
 GLsizei width, GLint border, GLenum format,
 GLenum type, const GLvoid *pixels)

The target argument specifies which texture should be defined; this argument must be
GL_TEXTURE_1D. The level argument indicates the texture image’s level of detail and is
usually 0. Other values are used for mipmapped textures (described later in this chapter).
The components argument specifies the number of color values used for each pixel. For
color index textures, components must be 1. Values of 3 and 4 are used for RGB and RGBA
texture images, respectively.

Width and border specify the size of the texture image. The border value controls the
number of border pixels OpenGL should expect (and use) and may have a value of 0, 1, or 2.

Page 440 OpenGL Super Bible!

The width parameter specifies the width of the main texture image (without the border
pixels) and must be a power of 2.

The format argument indicates the type of color values to expect— GL_COLOR_INDEX,
GL_LUMINANCE, GL_RGB, or GL_RGBA.

You’ll find an example of defining a 1D texture in Listing 12-1 and in the example code
CH12\TEX1D.C on the source code CD-ROM.

Listing 12-1 Defining a 1D texture image

void
LoadAllTextures(void)
{
 static unsigned char roygbiv_image[8][3] =
 {
 { 0x3f, 0x00, 0x3f }, /* Dark Violet (fo r 8 colors…) */
 { 0x7f, 0x00, 0x7f }, /* Violet */
 { 0xbf, 0x00, 0xbf }, /* Indigo */
 { 0x00, 0x00, 0xff }, /* Blue */
 { 0x00, 0xff, 0x00 }, /* Green */
 { 0xff, 0xff, 0x00 }, /* Yellow */
 { 0xff, 0x7f, 0x00 }, /* Orange */
 { 0xff, 0x00, 0x00 } /* Red */
 };
 glNewList(RainbowTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexImage1D(GL_TEXTURE_1D, 0, 3, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image);
 glEndList();
}

The example code creates a display list containing the texture image and the desired
magnification and minification filter, GL_LINEAR. The minification filter is used when the
polygon to be drawn is smaller than the texture image, in this case 8 pixels. The
magnification filter is used when the polygon is larger than the texture image. By
designating the GL_LINEAR filter, you tell OpenGL to linearly interpolate color values in
the texture image before drawing anything on the screen. The other filters you can use for
GL_TEXTURE_MIN_FILTER are listed in Table 12-1.

OpenGL Super Bible! Page 441

Table 12-1 Texture Image Filters

Filter Description

GL_NEAREST Nearest-neighbor filtering.
GL_LINEAR Linear interpolation.
GL_NEAREST_MIPMAP_NEAREST Nearest-neighbor mipmapped filtering.
GL_NEAREST_MIPMAP_LINEAR Linear interpolated mipmaps.
GL_LINEAR_MIPMAP_NEAREST Linear interpolation of mipmaps.

GL_LINEAR_MIPMAP_LINEAR Linear interpolation of interpolated
mipmaps.

GL_NEAREST filtering takes the closest pixel in the texture image rather than interpolating
between pixels. You’ll learn more about mipmap filtering later in the chapter.

Defining 2D Textures

To define a 2D texture image in OpenGL, you call glTexImage2D. The glTexImage2D
function takes a height argument in addition to the ones that glTexImage1D uses, as follows:

void glTexImage2D(GLenum target, GLint level, GLint components,
 GLsizei width, GLsize i height, GLint border,
 GLenum format, GLenum type, const GLvoid *pixels)

Like glTexImage1D, the width and height arguments must be a power of 2.

Listing 12-2 shows how to load a sky texture image complete with clouds.

Listing 12-2 Defining a 2D texure image

void
LoadAllTextures(void)
{
 BITMAPINFO *info; /* Bitmap information */
 void *bits; /* Bitmap pixel bits */
 GLubyte *rgb; /* Bitmap RGB p ixels */

 /*
 * Try loading the bitmap and converting it to RGB…
 */

Page 442 OpenGL Super Bible!

 bits = LoadDIBitmap('textures/sky.bmp’, &info);
 if (bits == NULL)
 return;

 rgb = ConvertRGB(info, bits);
 if (rgb == NULL)
 {
 free(info);
 free(bits);

 return;
 };

 glNewList(SkyTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINE AR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

 /*
 * Define the 2D texture image.
 */

 glPixelStorei(GL_UNPACK_ALIGNMENT, 4); /* Force 4 -byte alignment */
 glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
 glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
 glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);

 glTexImage2D(GL_TEXTURE_2D, 0, 3, info ->bmiHeader.biWidth,
 info->bmiHeader.biHeight, 0, GL_RGB, GL_UNSIGNED_BYTE,
 rgb);

 glEndList();

 /*
 * Free the bitmap and RGB images, then return 0 (no errors).
 */

 free(rgb);
 free(info);
 free(bits);
}

A Note About Textures:
You’ll notice that all the examples presented in this chapter use display lists to store texture
images. Display lists generally speed up the drawing of static graphics commands, and
texture images are no exception. In addition, the forthcoming OpenGL 1.1 API includes
texture object support that optimizes texture images stored in display lists by keeping them
loaded in the graphics hardware texture memory if available.

OpenGL Super Bible! Page 443

Drawing Textured Polygons

Once you have defined a texture, you still have to enable texturing. To enable 1D texturing,
you’d use the following:

glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_1D);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

The glEnable call enables 1D texturing. If you forget to enable texturing, none of your
polygons will be textured! The glTexEnvi function sets texturing to “decal” mode, meaning
that images are overlaid directly upon the polygons.

Other texturing modes are listed in Table 12-2.

Table 12-2 Texture Modes for GL_TEXTURE_ENV_MODE

Mode Description

GL_MODULATE Texture pixels “filter” existing pixel colors on the screen.
GL_DECAL Texture pixels replace existing pixels on the screen.
GL_BLEND Texture pixels “filter” existing pixels colors and are combined

with a constant color.

The GL_MODULATE texture mode multiplies the current texture color (or luminance) by
the color on the screen. For one-component (luminance) textures, this translates into a
brightness filter that will vary the brightness of the screen image based upon the texture
image. For three-component (RGB) textures, you can generate “colored lens filter” effects.

Unlike GL_MODULATE texturing, GL_BLEND texturing allows you to blend a constant
color into the scene based upon the texture image. You’d use GL_BLEND texturing for
things like clouds; the constant color would be off-white, and the texture image would be of
a cloud.

Once you have defined the texturing mode to use, you can then proceed with the drawing of
your polygons. Listing 12-3 shows how to draw the rainbow in Figure 12-1.

Page 444 OpenGL Super Bible!

Listing 12-3 Drawing a 1D textured rainbow

glEnable(GL_TEXTURE_1D);
glCallList(RainbowTexture);
glBegin(GL_QUAD_STRIP);
 for (th = 0.0; th <= M_PI; th += (0.03125 * M_PI))
 {
 /*
 * Bottom edge of rainbow…
 */

 x = cos(th) * 50.0;
 y= sin(th) * 50.0;
 z = -50.0;
 glTexCoord1f(0.0);
 glVertex3f(x, y, z);

 /*
 * Top edge of rainbow…
 */

 x = cos(th) * 55.0;
 y = sin(th) * 55.0;
 z = -50.0;
 glTexCoord1f(1.0);
 glVertex3f(x, y, z);
};
glEnd();

To position the ROY-G-BIV texture on the rainbow, you call glTexCoord. For 1D textures,
you call one of the glTexCoord1f, glTexCoord1d, glTexCoord1s, or glTexCoord1i
functions. A value of 0.0 represents the leftmost pixel in the image, and 1.0 represents the
rightmost pixel. Values outside this range are handled differently depending on the value of
the GL_TEXTURE_WRAP_S parameter. If GL_TEXTURE_WRAP_S is set to
GL_CLAMP (the default), then texture coordinates are restricted to a range of 0.0 to 1.0,
inclusive. When a polygon strays from the texture image, it is drawn using the color(s) along
the texture image’s edges (see Figure 12-3) or the texture image border colors, if defined.
Texture coordinates are traditionally referred to as S and T, or (s,t) instead of X and Y.

Figure 12-3 GL_CLAMP textures

OpenGL Super Bible! Page 445

If you use GL_REPEAT instead, the texture image is tiled over the polygon. Texture
coordinates are used modulo 1.0— that is, the texture image repeats at regular intervals.
GL_REPEAT texturing can be used to reduce the size of texture images on repetitive
surfaces. The challenge with these kinds of textures is to make the edges of each tile blend
into the next.

Automatically Generating Texture Coordinates:
Generating texture coordinates can be a tedious task. Later in this chapter you’ll learn about
the glTexGen functions that can generate these coordinates automatically for you.

Mipmapped Textures

So far, we’ve dealt exclusively with single-texture images. That is, whenever we draw a
textured polygon, the polygon is painted with a single 1D or 2D image. This is fine for some
scenes, but animated displays often need various levels of detail depending on the distance
from the viewer. For example, when walking through a virtual room, you might want a high-
resolution image of a picture close up, but only the outline at a distance.

OpenGL supports textures with multiple images, called mipmapped textures. Mipmapping
selects the texture image closest to the screen resolution for a polygon. Loading mipmapped
textures takes slightly longer than standard textures, but the visual results are impressive. In
addition, mipmapped textures can improve display performance by reducing the need for
GL_LINEAR image filters.

What Does the 'Mip’ in 'Mipmapped’ Mean?:
'mip’ is latin for 'many’. 'Mipmapping’ means 'many images’.

Mipmapped textures are defined by providing a specific level parameter for each image. For
the ROY-G-BIV texture in the previous example, you would use the following:

static unsigned char roygbiv_image0[16][3];
static unsigned char roygbiv_image1[8][3];
static unsigned char roygbiv_image2[4][3];
static unsigned char roygbiv_image3[2][3];
static unsigned char roygbiv_image4[1][3];
glNewList(RainbowTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_LINEAR);

Page 446 OpenGL Super Bible!

 glTexImage1D(GL_TEXTURE_1D, 0, 3, 16, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image0);
 glTexImage1D(GL_TEXTURE_1D, 1, 3, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image1);
 glTexImage1D(GL_TEXTURE_1D, 2, 3, 4, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image2);
 glTexImage1D(GL_TEXTURE_1D, 3, 3, 2, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image3);
 glTexImage1D(GL_TEXTURE_1D, 4, 3, 1, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image4);
glEndList();

The image levels are specified in the first parameter to glTexImage1D(). The level 0 image
is your primary, highest-resolution image for the texture. The level 1 image is half the size
of the primary image, and so forth. When drawing polygons with a mipmapped texture, you
need to use one of the minification filters (GL_TEXTURE_MIN_FILTER) in Table 12-3.

Table 12-3 Minification Filters

Filter Description

GL_NEAREST_MIPMAP_NEAREST Use the image nearest to the screen (polygon)
resolution. Use the GL_NEAREST filter when
texturing with this image.

GL_NEAREST_MIPMAP_LINEAR Use the image nearest to the screen (polygon)
resolution. Use the GL_LINEAR filter when
texturing with this image.

GL_LINEAR_MIPMAP_NEAREST Linearly interpolate between the two images
nearest to the screen (polygon) resolution. Use
the GL_NEAREST filter when texturing with
this image.

GL_LINEAR_MIPMAP_LINEAR Linearly interpolate between the two images
nearest to the screen (polygon) resolution. Use
the GL_LINEAR filter when texturing with this
image.

The GL_LINEAR_MIPMAP_NEAREST and GL_LINEAR_MIPMAP_LINEAR filters can
be very expensive in terms of display performance. GL_NEAREST_MIPMAP_NEAREST
is roughly equivalent to GL_NEAREST in performance, but generally produces much better
results. Mipmap images are chosen by comparing the size of the polygon as it will be drawn
on the screen, to the sizes of the mipmap images.

OpenGL Super Bible! Page 447

To make your life a bit easier, the OpenGL utility library (GLU32.LIB) provides two
functions that automatically generate mipmapped images based on a single, high-resolution
texture. In the following code, the gluBuild1DMipmaps and gluBuild2DMipmaps functions
take the place of glTexImage1D and glTexImage2D:

/* 1D texture */
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_LINEAR);
gluBuild1DMipmaps(GL_TEXTURE_1D, 3, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image);

/* 2D texture */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_NEAREST);
gluBuild2DMipmaps(GL_TEXTURE_2D, 3, info ->bmiHeader.biWidth,
 info->bmiHeader.biHeight, 0, GL_RGB,
 GL_UNSIGNED_BYTE, rgb);

Because the gluBuild1DMipmaps and gluBuild2DMipmaps functions create images from
one image, the appearance of some textured images may not be accurate. It’s like drawing
text characters at different sizes— scaling the bitmaps doesn’t always generate good-looking
results! When you run into this sort of problem, generate your mipmap images manually.

A Terrain Viewing Program

Our project for this chapter is a terrain viewing program that takes advantage of some of the
texture-mapping features we have discussed. With this program, we’ll want to accomplish
the following:

• View textured terrain scenes
• Edit the terrain interactively in 3D
• Fly through the terrain
• Print the current scene
• Save the current scene to a .BMP file

The entire terrain program is listed at the end of this chapter, just before the Reference
Section. A copy of the program is in the CH12 source directory on your CD-ROM. Double-
click on the TEXSCENE.EXE program icon to try it out!

Page 448 OpenGL Super Bible!

Defining the Terrain

To keep things simple, we’ll define our terrain as a grid of elevation points with a texture
attribute such as “this is water” or “this is a mountain.” Each point in the grid will also have
an associated lighting normal to add realism.

#define TERRAIN_SIZE 21

int TerrainType[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainHeight[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainNormal[TERRAIN_SIZE][TERRAIN_SIZE][3];

Here the TerrainType array contains the type of terrain at each point and is assigned one of
the following control IDs from our user-interface resource file:

IDC_GRASS Grasslands
IDC_WATER Water
IDC_TREES Trees/woodland
IDC_ROCKS Rocks/cliffs
IDC_MOUNTAINS Mountains

Drawing Terrain

Our terrain drawing controls consist of a toolbar dialog window with five buttons that select
the current type of terrain. To draw the terrain, you just click and drag in the main window
(see Figure 12-4).

Figure 12-4 Textured terrain editing window

OpenGL Super Bible! Page 449

The heart of the drawing interface is in the DrawTerrain function. It uses the OpenGL
selection mechanism to determine which terrain points are under the mouse pointer. Instead
of drawing the terrain to the screen, selection rendering records “hits” inside the selection
area (in this case, the mouse pointer) to a buffer you provide. In DrawTerrain, we record the
(x,y) location of the terrain in the selection buffer, as in a “paint-by-numbers” book (see
Figure 12-5). OpenGL selection is covered in more detail in Chapter 19.

Figure 12-5 Picking a terrain cell

Once we have the (x,y) terrain locations, we then reset the height and type of these points in
the draw_cell function (Listing 12-4).

Listing 12-4 The draw_cell function

void
draw_cell(int x, /* I - Terrain X location */
 int y) /* I - Terrain Y location */
{
 /*
 * Range check the terrain location…
 */

 if (x < 0 || x >= TERRAIN_SIZE ||
 y < 0 || y >= TERRAIN_SIZE)
 return;

 if (TerrainType[y][x] == TerrainCurrent)
 return; /* Already the right type */

 TerrainType[y][x] = TerrainCurrent;

 /*
 * Force a redraw…
 */
 InvalidateRect(SceneWindow, NULL, TRUE);

Page 450 OpenGL Super Bible!

 /*
 * Set the height of the terrain 'cell’. For water, the
 * height is constant at WATER_HEIGHT. Other other types,
 * we add a random pertubation to make the terrain more
 * interesting/realistic.
 */

 switch (TerrainCurrent)
 {
 case IDC_WATER :
 TerrainHeight[y][x] = WATER_HEIGHT;
 break;
 case IDC_GRASS :
 TerrainHeight[y][x] = GRASS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_TREES :
 TerrainHeight[y][x] = TREES_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_ROCKS :
 TerrainHeight[y][x] = ROCKS_HEIGHT + 0.1 * (ran d() % 5);
 break;
 case IDC_MOUNTAINS :
 TerrainHeight[y][x] = MOUNTAINS_HEIGHT + 0.15 * (rand() % 5);
 break;
 };
}

For the IDC_WATER terrain type, the point height is just set to WATER_HEIGHT (0.0).
For other types, we add a small amount of random “jitter” to make the terrain look more
realistic. Once the selected cell is drawn, we recompute the lighting normals using the new
height values in UpdateNormals. Each lighting normal is calculated using the points above
and to the right of the current point with the following formula:

N = lighting normal
H = height of current point
Hu = height of point above
Hr = height of point to the right

Nx = (Hr - H) / |N|
Ny = 1 / |N|
Nz = (Hu - H) / |N|

This is just a simplification of the cross product of adjacent terrain grid-cells. Once all the
normals are recalculated, the scene is redrawn.

Drawing the Scene

Now that we’ve taken care of the drudge work, we can concentrate on displaying the terrain.
You’ll remember that besides displaying a pretty textured image, we also want to fly
through this terrain. To accomplish this, we need to draw the terrain without textures—

OpenGL Super Bible! Page 451

basically because texture mapping on a standard PC is too slow for animation. When the
user isn’t flying around (or drawing, for that matter), we want to draw with the textures. We
will take care of this with a little conditional code and a few lighting parameters.

Also, because drawing the textured scene will be slower than the fly-through scene, we need
to provide some feedback to the user that our program is doing something. For simplicity,
we’ll just draw to the front buffer (the visible one) when texturing, and to the back buffer
(the invisible one for animation) when flying or drawing. This way, when the program
updates the textured scene, the user will see the image being drawn. You’ll learn more about
buffers in Chapter 15.

The RepaintWindow function handles redrawing the terrain for the user. It starts off by
selecting the front or back buffer (as described just above). Then it clears the color and depth
bits, as follows:

glViewport(0, 0, rect->right, rect->bottom);

glClearColor(0.5, 0.5, 1.0, 1.0);

glEnable(GL_DEPTH_TEST);

if (Moving || Drawing)
{
 glDisable(GL_TEXTURE_2D);
 glDrawBuffer(GL_BACK);
}
else
{
 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glDrawBuffer(GL_FRONT);
};

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

After this, RepaintWindow draws in the sky. For performance reasons, the sky is only drawn
when the user is not flying over or drawing the terrain. Since the background is cleared to a
light blue, this isn’t really a problem. The sky is shaped like a pyramid and has the
SKY.BMP texture image mapped to it for a nice, cloudy blue sky.

Once the sky is drawn, RepaintWindow starts drawing the terrain. The algorithm used is
quite simple and basically generates strips of quadrilaterals (squares) along the terrain
points. Each strip uses a different texture or lighting material color, so we have to issue
glBegin/glEnd calls for each one. See Figure 12-6 for a graphical depiction of the algorithm.

Page 452 OpenGL Super Bible!

Figure 12-6 The terrain-drawing algorithm

As you can see, this algorithm won’t track the terrain exactly, but it is fast and simple to
implement. It scans the terrain from left to right and from bottom to top, and starts a new
GL_QUAD_STRIP primitive whenever the terrain type changes. Along the way it assigns
lighting normals and texture coordinates for each point on the terrain.

Automatically Generating Texture Coordinates

Generating all those texture coordinates can be tedious. Fortunately, OpenGL has an answer
that we can use! In the current drawing code, we issue glTexCoord2i calls

glTexCoord2i(x * 2, y * 2);

for each and every point in the terrain. But instead of doing this for each point, we can use
the glTexGen functions to define the S and T coordinates in terms of the X and Z position in
the scene (Y is used for the height). To generate coordinates for our terrain, then, we can use
the following:

static GLint s_vector[4] = { 2, 0, 0, 0 };
static GLint t_vector[4] = { 0, 0, 2, 0 };

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeniv(GL_S, GL_OBJECT_PLANE, s_vector);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeniv(GL_T, GL_OBJECT_PLANE, t_vector);

Here the GL_OBJECT_LINEAR mapping mode maps the texture coordinates from object
coordinates:

coordinate = X * vector[0] + Y * vector[1] +
 Z * vector[2] + W * vector[3]

The vector array is specified with glTexGen function:

OpenGL Super Bible! Page 453

void glTexGeniv(GLenum coord, GLenum pname, GLint *params)

where the coord parameter specifies which texture image coordinate to generate, GL_S or
GL_T, and the pname parameter specifies the vector to define; in this case
GL_OBJECT_PLANE. Finally, the params array specifies the object plane vector that is
used to compute the texture coordinate.

The previous code for our terrain would generate these coordinates:

S = 2 * X
T = 2 * Z

To make OpenGL use these generated coordinates, you must enable texture coordinate
generation, as follows:

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

The file TEXSCENE.C contains a version of our terrain viewing program that uses
generated texture coordinates. The same techniques can be used with a 1D texture image.
For the 1D image, you’d probably generate the S coordinate from the height (Y) to color the
terrain based upon the height of the terrain. Generating texture coordinates is usually faster
than specifying them manually in immediate mode, but is slower when using display lists.

Flying Through the Terrain

When the user is flying through the terrain, we need to regulate the flying speed based on
the update rate of our scene. Rather than trying to maintain a fixed update rate— which can
vary depending on the graphics card and CPU being used— we will measure the elapsed
time from the last update to the current time. The FlyTerrain function manages this by
measuring the time in milliseconds between each call, and moving the viewer forward at a
fixed speed relative to the elapsed time.

Page 454 OpenGL Super Bible!

Summary

In this chapter you’ve learned how to texture-map images onto polygons and other
primitives using OpenGL. Texturing can provide that extra measure of realism that makes
computer graphics so exciting to work with.

The OpenGL glTexParameter functions provide many ways to improve the quality of
texture images when they are drawn. Mipmapped texture images provide multiple levels of
detail that improve rendering quality and speed. Linear interpolation of texture images can
improve certain types of textures, such as the sky texture used in the example project.

The glTexGen functions can simplify generation of texture coordinates by removing
unnecessary or tedious calculations. By removing large amounts of conditional glTexCoord
calls, automatic coordinate generation also simplifies programs that must display both
textured and nontextured scenes

For games and other interactive, animated displays, you may want to support both textured
and nontextured displays until accelerated OpenGL graphics boards become more widely
available.

OpenGL Super Bible! Page 455

Now here is Listing 12-5, the complete terrain viewing program, TEXSCENE.C.

Listing 12-5 TEXSCENE.C: The terrain viewing program

#include 'texture.h’
#include 'texscene.h’
#include <stdarg.h>
#include <math.h>
#ifndef M_PI
define M_PI (double)3.14159265358979323846
#endif /* !M_PI */

/*
 * Constants…
 */

#define TERRAIN_SIZE 21
#define TERRAIN_EDGE ((TERRAIN_SIZE - 1) / 2)
#define TERRAIN_SCALE (500.0 / TERRAIN_EDGE)

#define GRASS_HEIGHT 0.0
#define WATER_HEIGHT 0.0
#define TREES_HEIGHT 0.0
#define ROCKS_HEIGHT 0.5
#define MOUNTAINS_HEIGHT 1.0

/*
 * Globals…
 */

HWND SceneWindow; /* Scen e window */
HPALETTE ScenePalette; /* Color palette (if necessary) */
HDC SceneDC; /* Drawing context */
HGLRC SceneRC; /* OpenGL rendering context */

GLuint SkyTexture, /* Sky texture image */
 GrassTexture, /* Grass… */
 RocksTexture, /* Rock… */
 WaterTexture, /* Water… */
 TreesTexture, /* Trees… */
 MountainsTexture; /* Mountains… */

HBITMAP GrassDownBitmap, /* Grass button down image */
 GrassUpBitmap, /* Grass button up image */
 GrassSelectBitmap, /* Grass button selected image */
 RocksDownBitmap, /* … */
 RocksUpBitmap,
 RocksSelectBitmap,
 WaterDownBitmap,
 WaterUpBitmap,
 WaterSelectBitmap,
 TreesDownBitmap,
 TreesUpBitmap,

Page 456 OpenGL Super Bible!

 TreesSelectBitmap,
 MountainsDownBitmap,
 MountainsUpBitmap,
 MountainsSelectBitmap;

HWND TerrainWindow; /* Terrain dialog */
int TerrainCurrent = IDC_WATER ;
int TerrainType[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainHeight[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainNormal[TERRAIN_SIZE][TERRAIN_SIZE][3];

double MoveTime; /* Last update time */
GLboolean Moving = GL_FALSE, /* GL_TRUE if flying */
 Drawing = GL_FALSE; /* GL_TRUE if drawing */
POINT CenterMouseXY; /* Initial mouse pos */
GLfloat Position[3] = { 0.0, TERRAIN_SCALE, 0.0 };
 /* Viewer position */
GLfloat Heading = 0.0, /* Viewer heading */
 Pitch = 0.0, /* Viewer pitch */
 Roll = 0.0; /* Viewer roll */

/*
 * Local functions…
 */

void DisplayErrorMessage(char *, …);
void MakePalette(int);
LRESULT CALLBACK SceneProc(HWND, UINT, WPARAM, LPARAM);
UINT CALLBACK TerrainDlgProc(HWND, UINT, WPARAM, LPARAM);
void InitializeTerr ain(void);
void LoadAllTextures(void);
void LoadAllBitmaps(HINSTANCE);
void DrawTerrain(int, int);
void FlyTerrain(int, int);
void RepaintWindow(RECT *);
void SaveBitmapFile(void);
void PrintBitmap(void);
double GetClock(void);

/*
 * 'WinMain()’ - Main entry…
 */

int APIENTRY
WinMain(HINSTANCE hInst, /* I - Current process instance */
 HINSTANCE hPrevInstance, /* I - Parent process instance */
 LPSTR lpCmdLine, /* I - Command-line arguments */
 int nCmdShow) /* I - Show window at startup? */
{
 MSG msg; / * Window UI event */

OpenGL Super Bible! Page 457

 WNDCLASS wc; /* Window class */
 POINT pos; /* Current mouse pos */

 /*
 * Initialize the terrain to all grasslands…
 */
 InitializeTerrain();

 /*
 * Register main window…
 */

 wc.style = 0;
 wc.lpfnWndProc = (WNDPROC)SceneProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = 0;
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = 'Textured Scene’;

 if (RegisterClass(&wc) == 0)
 {
 DisplayErrorMessage('Unable to register window class!’);
 return (FALSE);
 };

 /*
 * Then create it…
 */

 SceneWindow = CreateWindow('Textured Scene’, 'Textured Scene’,
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN |
 WS_CLIPSIBLINGS,
 32, 32, 400, 300,
 NULL, NULL, hInst, NULL);

 if (SceneWindow == NULL)
 {
 DisplayErrorMessage('Unable to create window!’);
 return (FALSE);
 };

 ShowWindow(SceneWindow, nCmdShow);
 UpdateWindow(SceneWindow);

 /*
 * Load the bitmaps for the buttons, and then create the terrain
 * editing dialog.
 */

 LoadAllBitmaps(hInst);

Page 458 OpenGL Super Bible!

 TerrainWindow = CreateDialog(hInst,
MAKEINTRESOURCE(IDD_TERRAIN_DIALOG),
 SceneWindow, (DLGPROC)TerrainDlgProc);

 /*
 * Loop on events until the user quits this application…
 */

 while (TRUE)
 {
 /*
 * Process all messages in the queue…
 */

 while (!Moving ||
 PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE) == TRUE)
 if (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 else
 return (1);

 /*
 * Handle flying as necessary…
 */

 GetCursorPos(&pos);
 FlyTerrain(pos.x, pos.y);
 };

 return (msg.wParam);
}

/*
 * 'DisplayErrorMessage()’ - Display an error message dialog.
 */

void
DisplayErrorMessage(char *format, /* I - printf() style
 format string */
 ...) /* I - Other arguments
 as neces sary */
{
 va_list ap; /* Argument pointer */
 char s[1024]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format);
 vsprintf(s, format, ap);
 va_end(ap);

OpenGL Super Bible! Page 459

 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, s, 'Error’, MB_OK | MB_ICONEXCLAMATION);
}

/*
 * 'MakePalette()’ - Make a color palette for RGB colors if necessary.
 */

void
MakePalette(int pf) /* I - Pixel format ID */
{
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 LOGPALETTE *pPal; /* Pointer to logical
 palette */
 int nColors; /* Number of entries
 in palette */
 int i, /* Color index */
 rmax, /* Maximum red value */
 gmax, /* Maximum green va6lue */
 bmax; /* Maximum blue value */

 /*
 * Find out if we need to define a color palette…
 */

 DescribePixelFormat(SceneDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 if (!(pfd.dwFlags & PFD_NEED_PALETTE))
 {
 ScenePalette = NULL;
 return;
 };

 /*
 * Allocate memory for a color palette…
 */

 nColors = 1 << pfd.cColorBits;

 pPal = (LOGPALETTE *)malloc(sizeof(LOGPALETTE) +
 nColors * sizeof(PALETTEENTRY));

 pPal->palVersion = 0x300;
 pPal->palNumEntries = nColors;

 /*
 * Get the maximum values for red, green, and blue. Then build 'nColors’
 * colors…
 */

 rmax = (1 << pfd.cRedBits) - 1;
 gmax = (1 << pfd.cGreenBits) - 1;
 bmax = (1 << pfd.cBlueBits) - 1;

Page 460 OpenGL Super Bible!

 for (i = 0; i < nColors; i ++)
 {
 pPal->palPalEntry[i].peRed = 255 * ((i >>
 pfd.cRedShift) & rmax) / rmax;
 pPal->palPalEntry[i].peGreen = 255 * ((i >>
 pfd.cGreenShift) & gmax) / gmax;
 pPal->palPalEntry[i].peBlue = 255 * ((i >>
 pfd.cBlueShift) & bmax) / bmax;

 pPal->palPalEntry[i].peFlags = 0;
 };

 /*
 * Create, select, and realize the palette…
 */

 ScenePalette = CreatePalette(pPal);
 SelectPalette(SceneDC, ScenePalette, FALSE);
 RealizePalette(SceneDC);

 free(pPal);
}

/*
 * 'SceneProc()’ - Handle window events in the viewing window.
 */

LRESULT CALLBACK
SceneProc(HWND hWnd, /* I - Window triggering this event */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word’ parameter value */
 LPARAM lParam) /* I - 'long’ parameter value */
{
 int pf; /* Pixel format ID */
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 PAINTSTRUCT ps; /* WM_PAINT message info */
 RECT rect; /* Current client area rectangle */

 switch (uMsg)
 {
 case WM_CREATE :
 /*
 * 'Create' message. Get device and rendering contexts, and
 * setup the client area for OpenGL drawing…
 */

 SceneDC = GetDC(hWnd);

 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL
 | PFD_DOUBLEBUFFER;
 /* Do OpenGL drawing */
 pfd.dwLayerMask = PFD_MAIN_PLANE; /* Main drawing plane */
 pfd.iPixelType = PFD_TYPE_RGBA; /* RGB color buffer */

OpenGL Super Bible! Page 461

 pfd.cColorBits = 0; /* Bes t color buffer
 please */
 pfd.cDepthBits = 32; /* Need a depth buffer */
 pfd.cStencilBits = 0; /* No stencil buffer */
 pfd.cAccumBits = 0; /* No accumulation buffer
*/

 pf = ChoosePixelFormat(SceneDC, &pfd);
 if (pf == 0)
 DisplayErrorMessage('texscene was unable to choose a
 suitable pixel format!’);
 else if (!SetPixelFormat(SceneDC, pf, &pfd))
 DisplayErrorMessage('texscene was unable to set the pixel
 format!’);

 MakePalette(pf);

 SceneRC = wglCreateContext(SceneDC);
 wglMakeCurrent(SceneDC, SceneRC);

 /*
 * Load all the texture images int o display lists…
 */

 LoadAllTextures();
 break;

 case WM_SIZE :
 case WM_PAINT :
 /*
 * Repaint the client area with our bitmap…
 */

 BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &rect);
 RepaintWindow(&rect);

 EndPaint(hWnd, &ps);
 break;

 case WM_COMMAND :
 /*
 * Handle menu selections…
 */

 switch (LOWORD(wParam))
 {
 case IDM_FILE_SAVEAS :
 SaveBitmapFile();
 break;
 case IDM_FILE_PRINT :
 PrintBitmap();
 break;
 case IDM_FILE_EXIT :

Page 462 OpenGL Super Bible!

 DestroyWindow(SceneWindow);
 break;

 case IDM_WINDOW_TERRAIN :
 /*
 * Toggle the terrain dialog window on and off…
 */

 if (GetMenuState(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND) & MF_CHECKED)
 {
 CheckMenuItem(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND | MF_UNCHECKED);
 ShowWindow(TerrainWindow, SW_HIDE);
 }
 else
 {
 CheckMenuItem(GetMenu(SceneWindow), IDM _WINDOW_TERRAIN,
 MF_BYCOMMAND | MF_CHECKED);
 ShowWindow(TerrainWindow, SW_SHOW);
 };
 break;
 };
 break;

 case WM_QUIT :
 case WM_CLOSE :
 /*
 * Destroy the windows and bitmaps and exit…
 */

 DestroyWindow(SceneWindow);
 DestroyWindow(TerrainWindow);

 DeleteObject(GrassDownBitmap);
 DeleteObject(GrassSelectBitmap);
 DeleteObject(GrassUpBitmap);
 DeleteObject(WaterDownBitmap);
 DeleteObject(WaterSelectBitmap);
 DeleteObject(WaterUpBitmap);
 DeleteObject(RocksDownBitmap);
 DeleteObject(RocksSelectBitmap);
 DeleteObject(RocksUpBitmap);
 DeleteObject(TreesDownBitmap) ;
 DeleteObject(TreesSelectBitmap);
 DeleteObject(TreesUpBitmap);
 DeleteObject(MountainsDownBitmap);
 DeleteObject(MountainsSelectBitmap);
 DeleteObject(MountainsUpBitmap);

 exit(0);
 break;

 case WM_DESTROY :
 /*

OpenGL Super Bible! Page 463

 * Release and free the device context, rendering
 * context, and color palette…
 */

 if (SceneRC)
 wglDeleteContext(SceneRC);

 if (SceneDC)
 ReleaseDC(SceneWindow, SceneDC);

 if (ScenePalette)
 DeleteObject(ScenePalette);

 PostQuitMessage(0);
 break;

 case WM_QUERYNEWPALETTE :
 /*
 * Realize the color palette if necessary…
 */

 if (ScenePalette)
 {
 SelectPalette(SceneDC, ScenePalette, FALSE);
 RealizePalette(SceneDC);

 InvalidateRect(hWnd, NULL, FALSE);
 return (TRUE);
 };
 break;

 case WM_PALETTECHANGED:
 /*
 * Reselect our color palette if neces sary…
 */

 if (ScenePalette && (HWND)wParam != hWnd)
 {
 SelectPalette(SceneDC, ScenePalette, FALSE);
 RealizePalette(SceneDC);

 UpdateColors(SceneDC);
 };
 break;

 case WM_LBUTTONDOWN :
 /*
 * The left mouse button just was pressed. If we have
 * the terrain dialog window open, then this signifies
 * the beginning of drawing.
 *
 * Otherwise, set the 'Moving’ flag to true to indicate
 * flying.
 */

Page 464 OpenGL Super Bible!

 SetCapture(SceneWindow);

 if (IsWindowVisible(TerrainWindow))
 {
 DrawTerrain(LOWORD(lParam), HIWORD(lParam));
 Drawing = GL_TRUE;
 }
 else
 {
 GetCursorPos(&CenterMouseXY);
 Moving = GL_TRUE;
 MoveTime = GetClock();
 };
 break;

 case WM_MOUSEMOVE :
 /*
 * The mouse pointer moved. If we are in the process of
 * drawing some terrain, do it.
 *
 * Otherwise, ignore the message because we fly from the
 * main loop.
 */

 if (Drawing)
 DrawTerrain(LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_LBUTTONUP :
 /*
 * The user released the left mouse butt on. Stop drawing
 * or flying…
 */

 Moving = GL_FALSE;
 Drawing = GL_FALSE;
 ReleaseCapture();

 InvalidateRect(SceneWindow, NULL, TRUE);
 break;

 default :
 /*
 * Pass all other messages through the default window
 * procedure…
 */

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
 };

 return (FALSE);
}

/*
 * 'TerrainDlgProc()' - Process messages in the terrain dialog window.

OpenGL Super Bible! Page 465

 */

UINT CALLBACK
TerrainDlgProc(HWND hWnd, /* I - Source window */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word' parameter value */
 LPARAM lParam) /* I - 'long' parameter value */
{
 HDC hdc; /* Drawing context for buttons */
 LPDRAWITEMSTRUCT lpdis; /* Button state info */
 UINT idCtl; /* Button ID */

 switch (uMsg)
 {
 case WM_DRAWITEM :
 /*
 * Windows wants us to draw a button. Figure out which
 * button it is, and display as necessary…
 */

 idCtl = (UINT)wParam;
 lpdis = (LPDRAWITEMSTRUCT)lParam;
 hdc = CreateCompatibleDC(lpdis ->hDC);

 switch (idCtl)
 {
 case IDC_WATER :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, WaterDownBitmap);
 else if (TerrainCurrent == IDC_WATER)
 SelectObject(hdc, WaterSelectBitmap);
 else
 SelectObject(hdc, WaterUpBitm ap);
 break;
 case IDC_GRASS :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, GrassDownBitmap);
 else if (TerrainCurrent == IDC_GRASS)
 SelectObject(hdc, GrassSelectBit map);
 else
 SelectObject(hdc, GrassUpBitmap);
 break;
 case IDC_TREES :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, TreesDownBitmap);
 else if (TerrainCurrent == IDC_TREES)
 SelectObject(hdc, TreesSelectBitmap);
 else
 SelectObject(hdc, TreesUpBitmap);
 break;
 case IDC_ROCKS :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, RocksDownBitmap);
 else if (TerrainCurrent == IDC_ROCKS)
 SelectObject(hdc, RocksSelectBitmap);

Page 466 OpenGL Super Bible!

 else
 SelectObject(hdc, RocksUpBitmap);
 break;
 case IDC_MOUNTAINS :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, MountainsDownBitmap);
 else if (TerrainCurrent == IDC_MOUNTAINS)
 SelectObject(hdc, MountainsSelectBitmap);
 else
 SelectObject(hdc, MountainsUpBitmap);
 break;
 };

 /*
 * Stretch the bitmap to fit the button area…
 */

 StretchBlt(lpdis->hDC, lpdis->rcItem.left,
 lpdis->rcItem.top, lpdis->rcItem.right,
 lpdis->rcItem.bottom,
 hdc, 0, 0, 24, 24, SRCCOPY);
 DeleteDC(hdc);
 break;

 case WM_CLOSE :
 /*
 * Close the window (hide it) and turn the check mark off
 * in the main menu.
 */

 ShowWindow(TerrainWindow, SW_HIDE);
 CheckMenuItem(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND | MF_UNCHECKED);
 break;

 case WM_COMMAND :
 /*
 * A button was selected - choose the new current terrain
 * type.
 */

 switch (LOWORD(wParam))
 {
 case IDC_GRASS :
 case IDC_TREES :
 case IDC_ROCKS :
 case IDC_WATER :
 case IDC_MOUNTAINS :
 TerrainCurrent = LOWORD(wParam);

 InvalidateRect(TerrainWindow, NULL, TRUE);
 UpdateWindow(TerrainWindow);
 return (TRUE);
 };
 break;

OpenGL Super Bible! Page 467

 };

 return (FALSE);
}

/*
 * 'LoadAllBitmaps()’ - Load bitmap images for the terrain control
buttons.
 */

void
LoadAllBitmaps(HINSTANCE hInstance) /* I - Process instance */
{
 GrassDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_GRASS_DOWN));
 GrassSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_GRASS_SELECT));
 GrassUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_GRASS_UP));

 WaterDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_WATER_DOWN));
 WaterSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_WATER_SELECT));
 WaterUpBitmap = LoadBitmap((HANDLE)hInsta nce,
 MAKEINTRESOURCE(IDB_WATER_UP));

 RocksDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_ROCKS_DOWN));
 RocksSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_ROCKS_SELECT));
 RocksUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_ROCKS_UP));

 TreesDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_TREES_DOWN));
 TreesSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_TREES_SELECT));
 TreesUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURC E(IDB_TREES_UP));

 MountainsDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_MOUNTAINS_DOWN));
 MountainsSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOUR CE(IDB_MOUNTAINS_
 SELECT));
 MountainsUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_MOUNTAINS_UP));
}

/*
 * 'LoadAllTextures()’ - Load texture images for the scene.
 */

void

Page 468 OpenGL Super Bible!

LoadAllTextures(void)
{
 glNewList(SkyTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadBitmap('textures/sky.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glEndList();

 glNewList(RocksTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_T EXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/rock.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(GrassTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/grass.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(WaterTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL _REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/water.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEA REST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(TreesTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/trees.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(MountainsTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/mountain.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();
}

OpenGL Super Bible! Page 469

/*
 * 'UpdateNormals()’ - Update the lighting normals for the
 * terrain…
 */

void
UpdateNormals(void)
{
 int x, y; /* Terrain (x,y) location */
 GLfloat (*n)[3], /* Current terrain normal */
 nx, ny, nz, /* Normal components */
 d, /* Normal magnitude */
 height; / Current terrain heig ht */
 /*
 * Loop through the terrain arrays and regenerate the
 * lighting normals based on the terrain height.
 */

 n = TerrainNormal[0];
 height = TerrainHeight[0];
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++, n ++, height ++)
 {
 for (x = 0; x < (TERRAIN_SIZE - 1); x ++, n ++, height ++)
 {
 /*
 * Compute the cross product of the vectors above and to
 * the right (simplified for this special case).
 */

 nx = height[0] - height[1];
 ny = -1.0;
 nz = height[0] - height[TERRAIN_SIZE];

 d = -sqrt(nx * nx + ny * ny + nz * nz);

 n[0][0] = nx / d; /* Normalize the normal vector */
 n[0][1] = ny / d;
 n[0][2] = nz / d;
 };

 /*
 * Compute the cross product of the vectors above an d to
 * the left (simplified for this special case) for the last
 * column in the grid.
 */

 nx = height[0] - height[-1];
 ny = -1.0;
 nz = height[0] - height[TERRAIN_SIZE];

 d = -sqrt(nx * nx + ny * ny + nz * nz);

 n[0][0] = nx / d; /* Normalize the normal vector */

Page 470 OpenGL Super Bible!

 n[0][1] = ny / d;
 n[0][2] = nz / d;
 };

 /*
 * Set the top row of normals to be the same as the second -to-
 * last row of normals.
 */

 for (x = 0; x < TERRAIN_SIZE; x ++, n ++)
 {
 n[0][0] = n[-TERRAIN_SIZE][0];
 n[0][1] = n[-TERRAIN_SIZE][1];
 n[0][2] = n[-TERRAIN_SIZE][2];
 };
}

/*
 * 'InitializeTerrain()’ - Initialize the terrain arrays…
 */

void
InitializeTerrain(void)
{
 int x, y; /* Terrain (x,y) location */

 /*
 * Fill the terrain array with grass…
 */

 TerrainCurrent = IDC_WATER;

 for (y = 0; y < TERRAIN_SIZE; y ++)
 for (x = 0; x < TERRAIN_SIZE; x ++)
 {
 TerrainType[y][x] = IDC_GRASS;
 TerrainHeight[y][x] = GRASS_HEIGHT + 0.1 * (rand() % 5);
 };

 /*
 * Update the lighting normals…
 */

 UpdateNormals();
}

/*
 * 'draw_cell()’ - Draw (fill-in) a single terrain cell…
 */

void
draw_cell(int x, /* I - Terrain X location */
 int y) /* I - Terrain Y location */
{
 /*

OpenGL Super Bible! Page 471

 * Range check the terrain location…
 */

 if (x < 0 || x >= TERRAIN_SIZE ||
 y < 0 || y >= TERRAIN_SIZE)
 return;

 if (TerrainType[y][x] == TerrainCurrent)
 return; /* Already the right type */

 TerrainType[y][x] = TerrainCurrent;

 /*
 * Force a redraw…
 */

 InvalidateRect(SceneWindow, NULL, TRUE);

 /*
 * Set the height of the terrain 'cell’. For water, the
 * height is constant at WATER_HEIGHT. For other types,
 * we add a random pertubation to make the terrain more
 * interesting/realistic.
 */

 switch (TerrainCurrent)
 {
 case IDC_WATER :
 TerrainHeight[y][x] = WATER_HEIGHT;
 break;
 case IDC_GRASS :
 TerrainHeight[y][x] = GRASS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_TREES :
 TerrainHeight[y][x] = TREES_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_ROCKS :
 TerrainHeight[y][x] = ROCKS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_MOUNTAINS :
 TerrainHeight[y][x] = MOUNTAINS_HEIGHT + 0.15 * (rand() % 5);
 break;
 };
}

/*
 * 'DrawTerrain()’ - Draw a terrain cell at the given mouse
 * position.
 */

void
DrawTerrain(int mousex, /* I - Horizontal mouse position */
 int mousey) /* I - Vertical mouse position */
{
 int i, /* Looping var */

Page 472 OpenGL Super Bible!

 count, /* Selection count */
 x, y; /* Terrain (x,y) location */
 GLfloat *height; /* Current height */
 GLuint buffer[100]; /* Selection buffer */
 GLint viewport[4]; /* OpenGL viewport */

 /*
 * Get the current OpenGL viewport and make the vertical
 * mouse position start from the bottom of the viewport.
 */

 glGetIntegerv(GL_VIEWPORT, viewport);
 mousey = viewport[3] - 1 - mousey;

 /*
 * Begin selection into a 100 'hit’ buffer…
 *
 * Allow picks within 4 pixels of the current mouse position.
 */

 glSelectBuffer(100, buffer);
 glRenderMode(GL_SELECT);

 glInitNames();
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPickMatrix((GLdouble)mousex, (GLdouble)mousey, 4.0, 4.0,
 viewport);
 gluPerspective(45.0, (float)viewport[2] / (float)viewport[3],
 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 /*
 * Rotate/translate for the current viewing position and
 * orientation.
 */

 glRotatef(Roll, 0.0, 0.0, 1.0);
 glRotatef(Pitch, -1.0, 0.0, 0.0);
 glRotatef(Heading, 0.0, 1.0, 0.0);
 glTranslatef(-Position[0],
 -Position[1],
 -Position[2]);
 glScalef(TERRAIN_SCALE, TERRAIN_SCALE, TERRAIN_SCALE);

 /*
 * Draw the terrain into the selection buffer. This is
 * done differently than the RepaintWindow() function does
 * so that we can select individual cells rather than whole
 * strips of one type.
 *
 * The select buffer has names pushed on the stack for both
 * the X and Y locations in the terrain…
 */

OpenGL Super Bible! Page 473

 height = TerrainHeight[0];
 glPushName(0);
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++, height ++)
 {
 glLoadName(y);
 glPushName(0);

 for (x = 0; x < (TERRAIN_SIZE - 1); x ++, height ++)
 {
 glLoadName(x);
 glBegin(GL_POLYGON);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[0],
 (GLfloat)(y - TERRAIN_EDGE));
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[TERRAIN_SIZE],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 glVertex3f((GLfloat)(x - TERRAIN_EDGE + 1),
 height[1],
 (GLfloat)(y - TERRAIN_EDGE));
 glVertex3f((GLfloat)(x - TERRAIN_EDGE + 1),
 height[TERRAIN_SIZE + 1],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 glEnd();
 };

 glPopName();
 };
 glPopName();
 glPopMatrix();
 glFinish();

 /*
 * Get the 'hits’ in the selection buffer…
 */

 count = glRenderMode(GL_RENDER);
 for (i = 0; i < count; i += 3)
 {
 if (buffer[i] == 0)
 continue;

 /*
 * Each 'hit’ will contain the following parameters:
 *
 * 0 - count (2)
 * 1 - Z minimum value
 * 2 - Z maximum value
 * 3 - Y location in terrain
 * 4 - X location in terrain
 */

 x = buffer[i + 4];
 y = buffer[i + 3];

Page 474 OpenGL Super Bible!

 i += buffer[i];

 /*
 * Fill-in the 4 corners of the selected cell…
 */

 draw_cell(x, y);
 draw_cell(x + 1, y);
 draw_cell(x, y + 1);
 draw_cell(x + 1, y + 1);

 /*
 * Update lighting normals for the terrain.
 */

 UpdateNormals();
 };
}

/*
 * 'FlyTerrain()’ - Fly using the given mouse position.
 */

void
FlyTerrain(int mousex, /* I - Horizontal mouse position */
 int mousey) /* I - Vertical mouse position */
{
 RECT rect; /* Current client rectangle */
 GLfloat movex, movey; /* Scale mouse movement */
 double curtime, /* Current time in seconds */
 distance; /* Distance to move */
 GLfloat cheading, /* Cosine of heading */
 sheading, /* Sine of heading */
 cpitch, /* Cosine of pitch */
 spitch; /* Sine of pitch */

 /*
 * Get the current system time to figure out how far to move.
 */

 curtime = GetClock();
 distance = 10.0 * (curtime - MoveTime);
 MoveTime = curtime;

 /*
 * See how far the mouse pointer is from the 'center’ (click)
 * position.
 */

 movex = 0.05 * (mousex - CenterMouseXY.x);
 movey = 0.05 * (mousey - CenterMouseXY.y);

 /*
 * Adjust roll, pitch, and heading according to the current
 * mouse inputs and orientation.

OpenGL Super Bible! Page 475

 */

 Roll += movex;
 Pitch += movey * cos(Roll * M_PI / 180.0);
 Heading += movey * sin(Roll * M_PI / 180.0);

 if (Heading < 0.0)
 Heading += 360.0;
 else if (Heading >= 360.0)
 Heading -= 360.0;

 if (Pitch < -180.0)
 Pitch += 360.0;
 else if (Pitch >= 180.0)
 Pitch -= 360.0;

 if (Roll < -180.0)
 Roll += 360.0;
 else if (Roll >= 180.0)
 Roll -= 360.0;

 /*
 * Move based upon the current orientation…
 */

 cheading = cos(Heading * M_PI / 180.0);
 sheading = sin(Heading * M_PI / 180.0);
 cpitch = cos(Pitch * M_PI / 180.0);
 spitch = sin(Pitch * M_PI / 180.0);

 Position[0] += distance * sheading * c pitch;
 Position[2] -= distance * cheading * cpitch;
 Position[1] += distance * spitch;

 /*
 * Redraw the window using the new position and orientation…
 */

 GetClientRect(SceneWindow, &rect);
 RepaintWindow(&rect);
}

/*
 * 'RepaintWindow()’ - Redraw the client area with our scene.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 int x, y; /* Terrain (x,y) location */
 int last_type; /* Previous terra in type */
 int *type; /* Current terrain type */
 GLfloat *height, /* Current terrain height */
 (*n)[3]; /* Current terrain normal */

Page 476 OpenGL Super Bible!

 static GLfloat sky_top[4][3] =
 { /* Sky coordin ates */
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE },
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE }
 };
 static GLfloat sky_bottom[4][3] =
 {
 { -TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, TERRAIN_EDGE },
 { -TERRAIN_EDGE, 0.0, TERRAIN_EDGE }
 };
 static GLfloat sunpos[4] = { 0.0, 1.0 , 0.0, 0.0 };
 static GLfloat suncolor[4] = { 64.0, 64.0, 64.0, 1.0 };
 static GLfloat sunambient[4] = { 0.001, 0.001, 0.001, 1.0 };

 /*
 * Reset the viewport and clear the window to light blue…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.5, 0.5, 1.0, 1.0);

 glEnable(GL_DEPTH_TEST);

 if (Moving || Drawing)
 {
 /*
 * Don’t texture while flying or drawing; it’s too slow…
 * Also, draw to the back buffer for smooth animation.
 */

 glDisable(GL_TEXTURE_2D);
 glDrawBuffer(GL_BACK);
 }
 else
 {
 /*
 * Enable textures when we’ve stopped moving or drawing.
 * This generates a nice scene that we can printout or
 * save to a bitmap file…
 *
 * Because it takes longer, we draw to the front buffer
 * so the user can see some progress…
 */

 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glDrawBuffer(GL_FRONT);
 };

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

OpenGL Super Bible! Page 477

 /*
 * Setup viewing transformations for the current position and
 * orientation…
 */

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)rect->right / (float)rect->bottom,
 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glRotatef(Roll, 0.0, 0.0, 1.0);
 glRotatef(Pitch, -1.0, 0.0, 0.0);
 glRotatef(Heading, 0.0, 1.0, 0.0);
 glTranslatef(-Position[0],
 -Position[1],
 -Position[2]);
 glScalef(TERRAIN_SCALE, TERRAIN_SCALE, TERRAIN_SCALE);

 if (!(Moving || Drawing))
 {
 /*
 * Draw the sky…
 */

 glDisable(GL_LIGHTING);
 glCallList(SkyTexture);
 glBegin(GL_QUAD_STRIP);
 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.0);
 glVertex3fv(sky_bottom[i]);
 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

 glTexCoord2f(4.0, 0.0);
 glVertex3fv(sky_bottom[0]);

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();

 glBegin(GL_TRIANGLE_FAN);
 glTexCoord2f(0.5, 1.0);
 glVertex3f(0.0, TERRAIN_SIZE, 0.0);

 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

Page 478 OpenGL Super Bible!

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();
 };

 /*
 * Setup lighting…
 */

 glEnable(GL_LIGHTING);
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_POSITION, sunpos);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, suncolor);
 glLightfv(GL_LIGHT0, GL_AMBIENT, sunambient);

 if (Moving || Drawing)
 glEnable(GL_COLOR_MATERIAL);
 else
 glDisable(GL_COLOR_MATERIAL);

 /*
 * Then the terrain…
 */

 type = TerrainType[0];
 height = TerrainHeight[0];
 n = TerrainNormal[0];
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++)
 {
 last_type = -1;

 for (x = 0; x < TERRAIN_SIZE; x ++, type ++, height ++, n ++)
 {
 if (last_type != *type)
 {

 /*
 * If the type of terrain changes, end any existing
 * strip of quads and reset color/texture parameters…
 */

 if (last_type != -1)
 glEnd();

 switch (*type)
 {
 case IDC_WATER :
 if (Moving || Drawing)
 glColor3f(0.0, 0.0, 0.5);
 else
 glCallList(WaterTexture);
 break;
 case IDC_GRASS :

OpenGL Super Bible! Page 479

 if (Moving || Drawing)
 glColor3f(0.0, 0.5, 0.0);
 else
 glCallList(GrassTexture);
 break;
 case IDC_ROCKS :
 if (Moving || Drawing)
 glColor3f(0.25, 0.25, 0.25);
 else
 glCallList(RocksTexture);
 break;
 case IDC_TREES :
 if (Moving || Drawing)
 glColor3f(0.0, 0.25, 0.0);
 else
 glCallList(TreesTexture);
 break;
 case IDC_MOUNTAINS :
 if (Moving || Drawing)
 glColor3f(0.2, 0.1, 0.05);
 else
 glCallList(MountainsTexture);
 break;
 };

 glBegin(GL_QUAD_STRIP);
 if (last_type != -1)
 {
 /*
 * Start from the previous location to prevent
 * holes…
 */

 glTexCoord2i(x * 2 - 2, y * 2);
 glNormal3fv(n[-1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[-1],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2 - 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE - 1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[TERRAIN_SIZE - 1],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };
 last_type = *type;
 };

 glTexCoord2i(x * 2, y * 2);
 glNormal3fv(n[0]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[0],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),

Page 480 OpenGL Super Bible!

 height[TERRAIN_SIZE],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };

 glEnd();
 };
 glPopMatrix();

/*
 * While we fly or draw we’re double-buffering. Swap buffers
 * as necessary…
 */

 glFinish();
 if (Moving || Drawing)
 SwapBuffers(SceneDC);
}

/*
 * 'SaveBitmapFile()’ - Save the currently displayed scene to disk.
 */

void
SaveBitmapFile(void)
{
 char title[256], /* Title of file * /
 filename[256], /* Name of file */
 directory[256]; /* Current directory */
 OPENFILENAME ofn; /* Filename dialog structure */
 void *bits; /* Screen bitmap bits */
 BITMAPINFO *info; /* Screen bitmap info */

 /*
 * Grab the screen bitmap…
 */

 bits = ReadDIBitmap(&info);
 if (bits == NULL)
 {
 DisplayErrorMessage('Unable to get OpenGL bitmap from screen!’);
 return;
 };

 /*
 * Pop up a filename dialog…
 */

 strcpy(directory, '.’);
 strcpy(filename, 'untitled.bmp’);
 strcpy(title, '');

 memset(&ofn, 0, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = SceneWindow;

OpenGL Super Bible! Page 481

 ofn.lpstrFilter = 'Bitmaps\0*.BMP\0\0’;
 ofn.nFilterIndex = 1;
 ofn.lpstrFile = filename;
 ofn.nMaxFile = sizeof(filename) - 1;
 ofn.lpstrFileTitle = title;
 ofn.nMaxFileTitle = sizeof(title) - 1;
 ofn.lpstrInitialDir = directory;
 ofn.lpstrTitle = 'Save Bitmap File’;
 ofn.Flags = OFN_HIDEREADONLY | OFN_PATHMUSTEXIST |
 OFN_NONETWORKBUTTON;

 if (GetSaveFileName(&ofn))
 {
 /*
 * Save the named bitmap to disk…
 */

 if (SaveDIBitmap(filename, info, bits))
 DisplayErrorMessage('Could not save to file \’%s\’ -\n%s’,
 filename, strerror(errno));
 };

 /*
 * Free memory and return…
 */

 free(info);
 free(bits);
}

 /*
 * 'PrintBitmap()’ - Print the currently displayed scene.
 */

void
PrintBitmap(void)
{
 void *bits; /* Screen bitmap bits */
 BITMAPINFO *info; /* Screen bitmap info */

 /*
 * Grab the screen bitmap…
 */

 bits = ReadDIBitmap(&info);
 if (bits == NULL)
 {
 DisplayErrorMessage('Unable to get O penGL bitmap from screen!’);
 return;
 };

 /*
 * Print the bitmap…
 */

Page 482 OpenGL Super Bible!

 PrintDIBitmap(SceneWindow, info, bits);

 /*
 * Free memory and return…
 */

 free(info);
 free(bits);
}

/*
 * 'GetClock()’ - Return an increasing clock time in milliseco nds…
 */

double
GetClock(void)
{
 SYSTEMTIME curtime; /* Current system time */

 GetSystemTime(&curtime);
 return (curtime.wHour * 3600.0 +
 curtime.wMinute * 60.0 +
 curtime.wSecond +
 curtime.wMilliseconds * 0.00 1);
}

OpenGL Super Bible! Page 483

Reference Section

glTexCoord

Purpose
Specifies the current texture image coordinate for textured polygon rendering.

Include File
<GL/gl.h>

Syntax
void glTexCoord1{dfis}(TYPE s);
void glTexCoord1{dfis}v(TYPE *s);
void glTexCoord2{dfis}(TYPE s, TYPE t);
void glTexCoord2{dfis}v(TYPE *st);
void glTexCoord3{dfis}(TYPE s, TYPE t, TYPE r);
void glTexCoord3{dfis}v(TYPE *stq);
void glTexCoord4{dfis}(TYPE s, TYPE t, TYPE r, TYPE q);
void glTexCoord4{dfis}v(TYPE *strq);

Description
These functions set the current texture image coordinate in 1–4 dimensions. For
example, the s and t parameters correspond to the horizontal and vertical image
coordinates of a 2D texture image.

Parameters

s
The horizontal texture image coordinate.

t
The vertical texture image coordinate.

r
The texture image depth coordinate.

q
The texture image “time” coordinate.

Returns
None.

Example
See the example in CH12\TEXSCENE.C on the source code CD-ROM.

See Also
glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexParameter

Page 484 OpenGL Super Bible!

glTexEnv

Purpose
Sets texturing parameters.

Include File
<GL/gl.h>

Syntax
void glTexEnvf(GLenum target, GLenum pname, GLfloat param);
void glTexEnvfv(GLenum target, GLenum pname, GLfloat *param);
void glTexEnvi(GLenum target, GLenum pname, GLint param);
void glTexEnviv(GLenum target, GLenum pname, GLint *param);

Description
The glTexEnv functions set texture-mapping parameters that control how texture
images are mapped to polygons. The GL_DECAL texturing mode uses a texture
image directly to draw polygon. GL_BLEND and GL_MODULATE texture modes
use the GL_TEXTURE_ENV_COLOR color and the current framebuffer to
determine what pixels are textured.

Parameters

target
GLenum: The texture environment to define; must be GL_TEXTURE_ENV.
pname
GLenum: The parameter name to define. Valid names are as follows:
GL_TEXTURE_ENV_MODE Specifies the type of texturing to do.
GL_TEXTURE_ENV_COLOR Specifies the color to use for blending.

param
The parameter value. For GL_TEXTURE_ENV_COLOR, param is a pointer to an
RGBA color value. For GL_TEXTURE_ENV_MODE, it can be one of the
following constants:

GL_DECAL Texture images are directly mapped to the framebuffer.
GL_BLEND Texture images are blended with a constant color

(GL_TEXTURE_ENV_ COLOR) before being mapped
to the framebuffer.

GL_MODULATE Texture images are multiplied with the framebuffer
before being mapped to it.

Returns
None.

Example
See the example in CH12\TEXSCENE.C on the source code CD-ROM.

See Also
glTexCoord, glTexGen, glTexImage1D, glTexImage2D, glTexParameter

OpenGL Super Bible! Page 485

glTexGen

Purpose Defines parameters for texture coordinate generation.
Include File

<GL/gl.h>
Syntax

void glTexGend(GLenum coord, GLenum pname, GLdouble param);
void glTexGenf(GLenum coord, GLenum pname, GLfloat param);
void glTexGeni(GLenum coord, GLenum pname, GLint param);
void glTexGendv(GLenum coord, GLenum pname, GLdouble *param);
void glTexGenfv(GLenum coord, GLenum pname, GLfloat *param);
void glTexGeniv(GLenum coord, GLenum pname, GLint *param);

Description
This function sets parameters for texture coordinate generation when one or more of
GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or
GL_TEXTURE_GEN_Q is enabled with glEnable.
When GL_TEXTURE_GEN_MODE is set to GL_OBJECT_LINEAR, texture
coordinates are generated by multiplying the current object (vertex) coordinates by
the constant vector specified by GL_OBJECT_PLANE:

 coordinate = v[0] * p[0] + v[1] * p[1] + v[2] * p[2] + v[3] * p[3]
For GL_EYE_LINEAR, the eye coordinates (object coordinate multiplied through
the GL_MODELVIEWmatrix) are used.
When GL_TEXTURE_GEN_MODE is set to GL_SPHERE_MAP, coordinates are
generated in a sphere about the current viewing position or origin.

Parameters

coord
GLenum: The texture coordinate to map. Must be one of GL_S, GL_T, GL_R, or
GL_Q.

pname
GLenum: The parameter to set. Must be one of GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE.

param
The parameter value. For GL_TEXTURE_GEN_MODE, param is one of the
following:

GL_OBJECT_LINEAR Texture coordinates are calculated from object
(vertex) coordinates.

GL_EYE_LINEAR Texture coordinates are calculated by eye
coordinates (object coordinates multiplied
through the GL_MODELVIEW matrix).

GL_SPHERE_MAP Texture coordinates are generated in a sphere
around the viewing position.

Page 486 OpenGL Super Bible!

For GL_OBJECT_PLANE and GL_EYE_PLANE, param is a 4-element array that
is used as a multiplier for object or eye coordinates.

Returns
None.

Example
See the example in CH12\TEXSCEN2.C on the source code CD-ROM.

See Also
glTexCoord, glTexEnv, glTexImage1D, glTexImage2D, glTexParameter

OpenGL Super Bible! Page 487

glTexImage1D

Purpose
Defines a one-dimensional texture image.

Include File
<GL/gl.h>

Syntax
void glTexImage1D(GLenum target, GLint level, Glint components, GLsizei width,
GLint border GLenum format, GLenum type, const GLvoid *pixels);

Description
This function defines a one-dimensional texture image. The image data is subject to
modes defined with glPixelMap, glPixelStore, and glPixelTransfer.

Parameters

target
GLenum: Must be GL_TEXTURE_1D.

level
GLint: The level of detail. Usually 0 unless mipmapping is used.

components
GLint: The number of color components, from 1 to 4.

width
GLsizei: The width of the texture image. This must be a power of 2 or follow the
formula 2n + 2*border.

border
GLint: The width of the border. Must be 0, 1, or 2.

format
GLenum: The format of the pixel data. Valid formats are as follows:

GL_COLOR_INDEX Pixel values are color indices.
GL_RED Pixel values are red intensities.
GL_GREEN Pixel values are green intensities.
GL_BLUE Pixel values are blue intensities.
GL_ALPHA Pixel values are alpha intensities.
GL_RGB Pixel values are RGB colors.
GL_RGBA Pixel values are RGBA colors.
GL_LUMINANCE Pixel values are grayscale colors.
GL_ALPHA_LUMINANCE Pixel values are alpha and grayscale colors.

type
GLenum: The data type of each pixel value (see glDrawPixels).

pixels
GLvoid *: The pixel data.

Page 488 OpenGL Super Bible!

Returns
None.

Known Bugs
The GL_PACK_ALIGNMENT and GL_UNPACK_ALIGNMENT parameters for
glPixelStore are presently ignored.

Example
See the example in CH12\TEX1D.C on the source code CD-ROM.

See Also
glPixelMap, glPixelStore, glPixelTransfer, glTexImage2D

OpenGL Super Bible! Page 489

glTexImage2D

Purpose
Defines a two-dimensional texture image.

Include File
<GL/gl.h>

Syntax
void glTexImage2D(GLenum target, GLint level, Glint components, GLsizei width,
GLsizei height, GLint border GLenum format, GLenum type, const GLvoid *pixels);

Description
This function defines a two-dimensional texture image. The image data is subject to
modes defined with glPixelMap, glPixelStore, and glPixelTransfer.

Parameters

target
GLenum: Must be GL_TEXTURE_2D.

level
GLint: The level of detail. Usually 0 unless mipmapping is used.

components
GLint: The number of color components, from 1 to 4.

width
GLsizei: The width of the texture image. This must be a power of 2 or follow the
formula 2n + 2*border.

height
GLsizei: The height of the texture image. This must be a power of two or follow the
formula 2m+2*border.

border
GLint: The width of the border. Must be 0, 1, or 2.

format
GLenum: The format of the pixel data. Valid formats are as follows:

GL_COLOR_INDEX Pixel values are color indices.
GL_RED Pixel values are red intensities.
GL_GREEN Pixel values are green intensities.
GL_BLUE Pixel values are blue intensities.
GL_ALPHA Pixel values are alpha intensities.
GL_RGB Pixel values are RGB colors.
GL_RGBA Pixel values are RGBA colors.
GL_LUMINANCE Pixel values are grayscale colors.
GL_ALPHA_LUMINANCE Pixel values are alpha and grayscale colors.

type

Page 490 OpenGL Super Bible!

GLenum: The data type of each pixel value (see glDrawPixels).
pixels

GLvoid *: The pixel data.
Returns

None.
Known Bugs

The GL_PACK_ALIGNMENT and GL_UNPACK_ALIGNMENT parameters for
glPixelStore are presently ignored.

Example
See the example in CH12\TEX2D.C on the source code CD-ROM.

See Also
glPixelMap, glPixelStore, glPixelTransfer, glTexImage1D

OpenGL Super Bible! Page 491

glTexParameter

Purpose
Sets texture image parameters.

Include File
<GL/gl.h>

Syntax
void glTexParameterf(GLenum target, GLenum pname, GLfloat param);
void glTexParameterfv(GLenum target, GLenum pname, GLfloat *param);
void glTexParameteri(GLenum target, GLenum pname, GLint param);
void glTexParameteriv(GLenum target, GLenum pname, GLint *param);

Description
This function sets filter and repetition parameters for texture images.

Parameters

target
GLenum: Must be one of GL_TEXTURE_1D or GL_TEXTURE_2D.

pname
GLenum: The texturing parameter to set. Valid names are:

Parameter Description
GL_TEXTURE_MIN_FILTER Specifies the texture image minification

(reduction) method or filter.
GL_TEXTURE_MAX_FILTER Specifies the texture image

magnification (enlargement) method or
filter.

GL_TEXTURE_WRAP_S Specifies handling of texture S
coordinates outside the range of 0.0 to
1.0.

GL_TEXTURE_WRAP_T Specifies handling of texture T
coordinates outside the range of 0.0 to
1.0.

GL_BORDER_COLOR Specifies a border color for textures
without borders.

param
For GL_TEXTURE_MIN_FILTER, param is one of the following:
For GL_TEXTURE_MAX_FILTER, param is either GL_NEAREST or
GL_LINEAR.GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T can be set
to GL_REPEAT or GL_CLAMP. GL_REPEAT causes the texture image to be
repeated over the polygon. GL_CLAMP uses the specified border pixels or a
constant border color (see below) on areas that fall outside of the 0.0–1.0 texture
coordinate range.

Page 492 OpenGL Super Bible!

For GL_BORDER_COLOR, param is an RGBA color array that is used as a
constant border color when a texture image has no border pixels defined.

Returns
None.

Example
See the example in CH12\TEXSCENE.C on the source code CD-ROM.

See Also
glTexCoord, glTexEnv, glTexGen, glTexImage1D, glTexImage2D

OpenGL Super Bible! Page 493

Chapter 13
Quadrics: Spheres, Cylinders, and Disks

What you’ll learn in this chapter:

How to… Functions You’ll Use

Create quadrics to draw simple geometric shapes gluNewQuadric
Control the quality of drawn shapes
Draw the shapes using different OpenGL
primitives

gluQuadricDrawStyle

Use lighting and texturing with quadrics gluQuadricNormals/gluQuadricTexture

We can hear you asking: “What the heck are quadrics?” Well, quadrics are a part of the
OpenGL Utility Library (GLU32.LIB) that supports the drawing of simple three-
dimensional geometric shapes. In particular, functions are provided to draw cones, cylinders,
disks, and spheres. In this chapter we’ll explore the practical uses of these quadric functions
in your programs.

Creating a Quadric

Every quadric you draw on the screen has a state (or collection of settings) associated with
it. The gluNewQuadric function creates an opaque state variable that describes the current
drawing style, orientation, lighting mode, texturing mode, and callback functions, as
follows:

GLUquadricObj *obj;

obj = gluNewQuadric();

Note that a quadric state does not include the geometric shape to be drawn. Instead, it
describes how to draw geometric shapes. This allows you to reuse quadrics for many
different kinds of shapes.

Changing the Way Quadrics Are Drawn

Once you have created a quadric, you can customize the drawing of shapes by changing the
quadric state. The GLU functions for this are gluQuadricDrawStyle, gluQuadricNormals,
gluQuadricOrientation, and gluQuadricTexture.

Page 494 OpenGL Super Bible!

void gluQuadricDrawStyle(GLUquadricObj *obj, GLenum drawStyle)
void gluQuadricNormals(GLUquadricObj *obj, GLenum normals)
void gluQuadricOrientation(GLUquadricObj *obj, GLenum orientation)
void gluQuadricTexture(GLUquadricObj *obj, GLboolean textureCoords)

The gluQuadricDrawStyle function selects the type of OpenGL drawing primitives that are
used to draw the shape. The default style is to fill shapes using polygon and strip primitives
(GLU_FILL). Table 13-1 shows the possible styles.

Table 13-1 Quadric Drawing Styles

Style Description

GLU_FILL Quadrics are drawn filled in, using polygon and strip
primitives.

GLU_LINE Quadrics are drawn “wireframe,” using line
primitives.

GLU_SILHOUETTE Quadrics are drawn using line primitives; only the
outside edges are drawn.

GLU_POINT Quadrics are drawn using point primitives.

Lighting normals are usually generated automatically for quadrics. The gluQuadricNormals
function controls calculation of normals. Table 13-2 lists the possible lighting calculations.

Table 13-2 Quadric Lighting Normal Modes

Normal Mode Description

GLU_NONE No lighting normals are generated.
GLU_FLAT Lighting normals are generated for each polygon to

create a faceted appearance.
GLU_SMOOTH Lighting normals are generated for each vertex to

create a smooth appearance.

OpenGL Super Bible! Page 495

To control the direction of lighting normals, the gluQuadricOrientation function is provided
to make normals point outwards (GLU_OUTSIDE) or inwards (GLU_INSIDE). This has
particular application with spheres (if you are inside or outside the sphere).

Finally, texture coordinates can be generated automatically for your quadrics. The
gluQuadricTexture function enables (GL_TRUE) or disables (GL_FALSE) texture
coordinate generation. We’ll cover exactly how texture coordinates are chosen as we start
drawing quadrics on the screen.

As you may remember, texture coordinates are used for texture mapping images onto
polygons (see Chapter 12).

Drawing Cylinders

Cylinders are drawn using gluCylinder. A cylinder drawn with this function is essentially a
tube that runs along the z-axis (see Figure 13-1). The ends of the cylinder are never filled in!

Figure 13-1 Quadric cylinders

void gluCylinder(GLUquadricObj *obj,
 GLdouble baseRadius,
 GLdouble topRadius,
 GLdouble height,
 GLint slices,
 GLint stacks)

The baseRadius and topRadius arguments specifiy the radius of the cylinder at the bottom
and top of the cylinder. The height argument specifies the actual height (or length) of the
tube.

Page 496 OpenGL Super Bible!

The slices and stacks arguments control how many subdivisions (sides) are generated around
and along the cylinder. Generally, you will make slices a number around 20 to give the
cylinder a smooth appearance. Values below this will yield a faceted appearance; values
greater than 20 may cause display jitter. When you utilize spotlighting or a lot of specular
highlights, you will also want the stacks argument set high, usually the same as the height
argument. Otherwise, set stacks to 2 to cover the top and bottom of the cylinder.

Cylinders can also be employed for the generation of faceted surfaces, such as a pencil or a
tool socket.

Drawing Cones

While the OpenGL Utility Library does not include a special cone-drawing function, the
gluCylinder function can be used to make cones simply by specifying a topRadius or
bottomRadius of 0.0.

Texturing and Cylinders

When texturing a gluCylinder shape, textures are wrapped from the forward edge
(0,radius,0) of the cylinder. This means your texture images should be upside-down to
display properly on the cylinder. We’ll use textures with cylinders in the pencil project in
this chapter.

Drawing Disks

Disks are round, flat shapes that may contain holes. Examples of disks include coins and
washers.

void gluDisk(GLUquadricObj *obj,
 GLdouble innerRadius,
 GLdouble outerRadius,
 GLint slices,
 GLint loops)

The innerRadius and outerRadius arguments control the size of the hole and disk,
respectively. If the innerRadius argument is 0.0, the disk is drawn as a solid circle (see
Figure 13-2).

OpenGL Super Bible! Page 497

Figure 13-2 Quadric disks

The slices argument sets the number of sides the disk has and generally should be a number
around 20 to make the disk look round. The loops argument controls the number of
concentric rings that are drawn for the disk (between the inner and outer radii); this usually
should be set to 1 for circles and 2 for washers. As is true for cylinders, using larger values
for loops will improve specular lighting and spotlight effects.

Disks and Textures

Texture images for disks are mapped so that the texture image just touches the cylinder at
the edges. The top of the texture image is mapped to the top of the disk, the left side to the
left side of the disk, and so forth.

Drawing Partial Disks

The OpenGL Utility Library also provides a function to display partial disks. When drawing
a partial disk, you specify a start angle and sweep angle for the disk. The startAngle
argument specifies a clockwise angle in degrees from the top of the disk. The sweepAngle
argument specifies the number of degrees of arc to draw. For instance, 90º would be a
quarter disk, and so forth.

void gluPartialDisk(GLUquadricObj *obj,
 GLdouble innerRadius,
 GLdouble outerRadius,
 GLint slices,
 GLint loops,
 GLdouble startAngle,
 GLdouble sweepAngle)

Drawing Spheres

Spheres are hollow balls or globes. When you draw a sphere, you specify the radius of the
sphere.

Page 498 OpenGL Super Bible!

void gluSphere(GLUquadricObj *obj,
 GLdouble radius,
 GLint slices,
 GLint stacks)

If you think of the sphere as a globe, the slices argument represents the number of lines of
longitude, and the stacks argument represents the number of lines of latitude (see Figure 13-
3).

Figure 13-3 A quadric sphere

Spheres and Textures

Texture images are mapped to spheres using longitude and latitude coordinates. A world
map image would wrap perfectly around the sphere.

Drawing a Pencil

To close this chapter, we’ll write a little program that rotates an image of a pencil (see
Figure 13-4). The pencil consists of three cylinders and two texture images. The first texture
image has the typical symbol for a #2 pencil, and the words “OpenGL Country Club”
wrapped around the pencil. For the end and the sharpened point of the pencil, we’ll use a
second image of wood with exposed lead (well, carbon).

OpenGL Super Bible! Page 499

Figure 13-4 Quadric pencil window

The point of the pencil, obviously, is a cone. The end of the pencil isn’t quite as obvious.
Since it’s flat, you might expect to use a disk for the end. Unfortunately, the result of the
way texture images are applied to disks doesn’t look right with our texture image (see Figure
13-5). So instead, the end is made using a cylinder with a height and topRadius of 0.0.

Figure 13-5 Pencil and lead texture images

Since quadrics are drawn from (0, 0, 0), you have to translate the coordinates of the pieces
prior to drawing them. For example, to draw the body of the pencil you would do this:

glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);
 gluCylinder(PencilObj, 5.0, 5.0, 40.0, 6, 2);

Page 500 OpenGL Super Bible!

glPopMatrix();

In the pencil drawing program, Listing 13-1, the RepaintWindow function handles drawing
everything. The first thing we display is the body of the pencil, which is a six-sided cylinder.

gluQuadricNormals(PencilObj, GLU_FLAT);
glCallList(PencilTexture);

glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 gluCylinder(PencilObj, 5.0, 5.0, 40.0, 6, 2);
glPopMatrix();

Next, we display the point and end of the pencil using the “lead” texture image. Again, we’ll
use six-sided cylinders to do the work we need.

gluQuadricNormals(PencilObj, GLU_SMOOTH);
glCallList(LeadTexture);

glPushMatrix();
 glTranslatef(0.0, 0.0, 20.0);

 gluCylinder(PencilObj, 5.0, 0.0, 7.5, 6, 2);
glPopMatrix();

glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 gluCylinder(PencilObj, 5.0, 0.0, 0.0, 6, 2);
glPopMatrix();

Summary

In this chapter we’ve covered the quadric drawing functions. OpenGL quadrics are
geometric shapes that form the basic “building blocks” of many objects, both manufactured
and natural. Using the quadric drawing functions is a convenient and fast way to avoid
writing a lot of extra code for drawing these shapes.

OpenGL Super Bible! Page 501

Now here’s Listing 13-1, the pencil program.

Listing 13-1 The pencil drawing program

/*
 * Include necessary headers.
 */

#include "texture.h"
#include "pencil.h"
#include <stdarg.h>
/*
 * Globals…
 */

HWND PencilWindow; /* Scene window */
HPALETTE PencilPalette; /* Color p alette (if necessary) */
HDC PencilDC; /* Drawing context */
HGLRC PencilRC; /* OpenGL rendering context */

GLuint PencilTexture, /* Pencil texture image */
 LeadTexture; /* Lead… */

GLfloat PencilRoll = 0.0, /* Pencil orientation */
 PencilPitch = 90.0,
 PencilHeading = 0.0;
GLUquadricObj *PencilObj;
/*
* Local functions…
 */
void DisplayErrorMessage(char *, …);
void MakePalette(int);
LRESULT CALLBACK PencilProc(HWND, UINT, WPARAM, LPARAM);
void LoadAllTextures(void);
void RepaintWindow(RECT *);
void PrintBitmap(void);

/*
 * 'WinMain()' - Main entry…
 */

int APIENTRY
WinMain(HINSTANCE hInst, /* I - Current process instance */
 HINSTANCE hPrevInstance, /* I - Parent process instance */
 LPSTR lpCmdLine, /* I - Command-line arguments */
 int nCmdShow) /* I - Show window at startup? */
{
 MSG msg; /* Window UI event */
 WNDCLASS wc; /* Window class */
 RECT rect; /* Current client area rectangle
*/

 /*
 * Register main window…

Page 502 OpenGL Super Bible!

 */

 wc.style = 0;
 wc.lpfnWndProc = (WNDPROC)PencilProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = 0;
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = "Textured Quadric Pencil";

 if (RegisterClass(&wc) == 0)
 {
 DisplayErrorMessage("Unable to register window class!");
 return (FALSE);
 };

 /*
 * Then create it…
 */
 PencilWindow = CreateWindow("Textured Quadric Pencil", "Textured
 Quadric Pencil", WS_OVERLAPPEDWINDOW
 | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
 32, 32, 400, 300,
 NULL, NULL, hI nst, NULL);

 if (PencilWindow == NULL)
 {
 DisplayErrorMessage("Unable to create window!");
 return (FALSE);
 };

 ShowWindow(PencilWindow, nCmdShow);
 UpdateWindow(PencilWindow);
 /*
 * Loop on events until the user quits this application…
 */

 while (TRUE)
 {
 /*
 * Process all messages in the queue…
 */

 while (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE) == TRUE)
 if (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 else
 return (1);

OpenGL Super Bible! Page 503

 /*
 * Spin the pencil…
 */

 PencilRoll += 1.0;
 PencilPitch += 2.0;
 PencilHeading += 3.0;

 GetClientRect(PencilWindow, &rect);
 RepaintWindow(&rect);
 };

 return (msg.wParam);
}
/*
 * 'DisplayErrorMessage()' - Display an error message dialog.
 */

void
DisplayErrorMessage(char *format, /* I - printf() style format string */
 …) /* I - Other arguments as necessary */
{
 va_list ap; /* Argument pointer */
 char s[1024]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format);
 vsprintf(s, format, ap);
 va_end(ap);

 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, s, "Error", MB_OK | M B_ICONEXCLAMATION);
}

/*
 * 'MakePalette()' - Make a color palette for RGB colors if necessary.
 */

void
MakePalette(int pf) /* I - Pixel format ID */
{
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 LOGPALETTE *pPal; /* Pointer to logical palette */
 int nColors; /* Number of entries in palette */
 int i, /* Color index */
 rmax, /* Maximum red value */
 gmax, /* Maximum green value */
 bmax; /* Maximum blue value */

 /*
 * Find out if we need to define a color palette…
 */

Page 504 OpenGL Super Bible!

 DescribePixelFormat(PencilDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 if (!(pfd.dwFlags & PFD_NEED_PALETTE))
 {
 PencilPalette = NULL;
 return;
 };

 /*
 * Allocate memory for a color palette…
 */

 nColors = 1 << pfd.cColorBits;

 pPal = (LOGPALETTE *)malloc(sizeof(LOGPALETTE) +
 nColors * sizeof(PAL ETTEENTRY));
 pPal->palVersion = 0x300;
 pPal->palNumEntries = nColors;

 /*
 * Get the maximum values for red, green, and blue. Then build 'nColors'
 * colors…
 */

 rmax = (1 << pfd.cRedBits) - 1;
 gmax = (1 << pfd.cGreenBits) - 1;
 bmax = (1 << pfd.cBlueBits) - 1;

 for (i = 0; i < nColors; i ++)
 {
 pPal->palPalEntry[i].peRed = 255 *
 ((i >> pfd.cRedShift) & rmax) /
 rmax;
 pPal->palPalEntry[i].peGreen = 255 *
 ((i >> pfd.cGreenShift) & gma x) /
 gmax;
 pPal->palPalEntry[i].peBlue = 255 *
 ((i >> pfd.cBlueShift) & bmax) /
 bmax;

 pPal->palPalEntry[i].peFlags = 0;
 };

 /*
 * Create, select, and realize the palette…
 */

 PencilPalette = CreatePalette(pPal);
 SelectPalette(PencilDC, PencilPalette, FALSE);
 RealizePalette(PencilDC);

 free(pPal);
}

OpenGL Super Bible! Page 505

/*
 * 'PencilProc()' - Handle window events in the viewing window.
 */

LRESULT CALLBACK
PencilProc(CHWND hWnd, /* I - Window triggering this event */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word' parameter value */
 LPARAM lParam) /* I - 'long' parameter value */
{
 int pf; /* Pixel format ID */
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 PAINTSTRUCT ps; /* WM_PAINT message info */
 RECT rect; /* Current client area rectangle */

 switch (uMsg)
 {
 case WM_CREATE :
 /*
 * 'Create' message. Get device and rendering contexts, and
 * setup the client area for OpenGL drawing…
 */

 PencilDC = GetDC(hWnd);
 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL
 | PFD_DOUBLEBUFFER;
 /* Do OpenGL drawing */
 pfd.dwLayerMask = PFD_MAIN_PLANE; /* Main drawing plane */
 pfd.iPixelType = PFD_TYPE_RGBA; / * RGB color buffer */
 pfd.cColorBits = 0; /* Best color buffer
 please*/
 pfd.cDepthBits = 32; /* Need a depth buffer */
 pfd.cStencilBits = 0; /* No stencil buffer */
 pfd.cAccumBits = 0; /* No accumulation buffer
 */

 pf = ChoosePixelFormat(PencilDC, &pfd);
 if (pf == 0)
 DisplayErrorMessage("texscene was unable to choose a suita ble
 pixel format!");
 else if (!SetPixelFormat(PencilDC, pf, &pfd))
 DisplayErrorMessage("texscene was unable to set the pixel
 format!");

 MakePalette(pf);

 PencilRC = wglCreateContext(Pencil DC);
 wglMakeCurrent(PencilDC, PencilRC);

 /*
 * Load all the texture images into display lists…
 */

Page 506 OpenGL Super Bible!

 LoadAllTextures();
 PencilObj = gluNewQuadric();
 gluQuadricTexture(PencilObj, GL_TRUE);
 break;

case WM_SIZE :
case WM_PAINT :
 /*
 * Repaint the client area with our bitmap…
 */

 BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &rect);
 RepaintWindow(&rect);

 EndPaint(hWnd, &ps);
 break;

 case WM_COMMAND :
 /*
 * Handle menu selections…
 */

 switch (LOWORD(wParam))
 {
 case IDM_FILE_PRINT :
 PrintBitmap();
 break;
 case IDM_FILE_EXIT :
 DestroyWindow(PencilWindow);
 break;
 };
 break;
 case WM_QUIT :
 case WM_CLOSE :
 /*
 * Destroy the windows and bitmaps and exit…
 */

 DestroyWindow(PencilWindow);

 exit(0);
 break;

 case WM_DESTROY :
 /*
 * Release and free the device context, rendering
 * context, and color palette…
 */

 if (PencilRC)
 wglDeleteContext(PencilRC);

 if (PencilDC)

OpenGL Super Bible! Page 507

 ReleaseDC(PencilWindow, Penci lDC);

 if (PencilPalette)
 DeleteObject(PencilPalette);

 PostQuitMessage(0);
 break;

 case WM_QUERYNEWPALETTE :
 /*
 * Realize the color palette if necessary…
 */

 if (PencilPalette)
 {
 SelectPalette(PencilDC, PencilPalette, FALSE);
 RealizePalette(PencilDC);

 InvalidateRect(hWnd, NULL, FALSE);
 return (TRUE);
 };
 break;

 case WM_PALETTECHANGED:
 /*
 * Reselect our color palette if necessary…
 */

 if (PencilPalette && (HWND)wParam != hWnd)
 {
 SelectPalette(PencilDC, PencilPalette, FALSE);
 RealizePalette(PencilDC);

 UpdateColors(PencilDC);
 };
 break;

default :
 /*
 * Pass all other messages through the default window
 * procedure…
 */

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
 };

 return (FALSE);
}

/*
 * 'LoadAllTextures()' - Load texture images for the scene.
 */

void
LoadAllTextures(void)

Page 508 OpenGL Super Bible!

{
 glNewList(PencilTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadBitmap("textures/pencil.bmp");
 glEndList();

 glNewList(LeadTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadBitmap("textures/lead. bmp");
 glEndList();
}

/*
 * 'RepaintWindow()' - Redraw the client area with our pencil.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 /*
 * Reset the viewport and clear the window to light blue…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.7, 0.7, 1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Setup viewing transformations for the current position and
 * orientation…
 */

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)rect->right / (float)rect->bottom,
 0.1, 1000.0);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL) ;

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glTranslatef(0.0, 0.0, -80.0);
 glRotatef(PencilHeading, 0.0, -1.0, 0.0);
 glRotatef(PencilPitch, 1.0, 0.0, 0.0);
 glRotatef(PencilRoll, 0.0, 0.0, -1.0);

 /*
 * First the pencil body - this uses a 6-sided cylinder…
 */

OpenGL Super Bible! Page 509

 gluQuadricNormals(PencilObj, GLU_FLAT);
 glCallList(PencilTexture);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 gluCylinder(PencilObj, 5.0, 5.0, 40.0, 6, 2);
 glPopMatrix();

 /*
 * Then the ends - a cone at the tip and a flat cone at the base…
 */

 gluQuadricNormals(PencilObj, GLU_SMOOTH);
 glCallList(LeadTexture);

 glPushMatrix();
 glTranslatef(0.0, 0.0, 20.0);

 gluCylinder(PencilObj, 5.0, 0.0, 7.5, 6, 2);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 /*
 * Normally we might use a disk shape for this, but unfortunately the
 texture
 * coordinates don't match up…
 */
 gluCylinder(PencilObj, 5.0, 0.0, 0.0, 6, 2);
 glPopMatrix();
 glPopMatrix();

 /*
 * Swap buffers and return…
 */

 glFinish();
 SwapBuffers(PencilDC);
}
/*
 * 'PrintBitmap()' - Print the currently displayed scene.
 */

void
PrintBitmap(void)
{
 void *bits; /* Screen bitmap bits */
 BITMAPINFO *info; /* Screen bitmap info */

 /*
 * Grab the screen bitmap…
 */

Page 510 OpenGL Super Bible!

 bits = ReadDIBitmap(&info);
 if (bits == NULL)
 {
 DisplayErrorMessage("Unable to get OpenGL bitmap from screen!");
 return;
 };

 /*
 * Print the bitmap…
 */

 PrintDIBitmap(PencilWindow, info, bits);

 /*
 * Free memory and return…
 */

 free(info);
 free(bits);
}

OpenGL Super Bible! Page 511

Reference Section

gluCylinder

Purpose
Draws a quadric cylinder.

Include File
<GL/glu.h>

Syntax
void gluCylinder(GLUquadricObj *obj, GLdouble baseRadius, GLdouble topRadius,
GLdouble height, GLint slices, GLint stacks);

Description
This function draws a hollow cylinder with no ends along the z-axis. If topRadius or
bottomRadius is 0, a cone is drawn instead. The cylinder is projected height units
along the positive z-axis. The slices argument controls the number of sides along the
cylinder. The stacks argument controls the number of segments along the z-axis
(across the cylinder) that are generated.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

baseRadius
GLdouble: The radius of the base (Z=0) of the cylinder.

topRadius
GLdouble: The radius of the top (Z=height) of the cylinder.

height
GLdouble: The height or length of the cylinder along the z-axis.

slices
GLint: The number of sides on the cylinder.

stacks
GLint: The number of segments in the cylinder along the z-axis.

Returns
None.

Example
See the example in CH13\PENCIL.C.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation, gluQuadricTexture

Page 512 OpenGL Super Bible!

gluDeleteQuadric

Purpose
Deletes a quadric state object.

Include File
<GL/glu.h>

Syntax
void gluDeleteQuadric(GLUquadricObj *obj);

Description
This function deletes a quadric state object. Once an object has been deleted it cannot
be used for drawing again.

Parameters

obj
GLUquadricObj *: The quadric state object to delete.

Returns
None.

See Also
gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle, gluQuadricNormals,
gluQuadricOrientation, gluQuadricTexture

OpenGL Super Bible! Page 513

gluDisk

Purpose
Draws a quadric disk.

Include File
<GL/glu.h>

Syntax
void gluDisk(GLUquadricObj *obj, GLdouble innerRadius, GLdouble outerRadius,
GLint slices, GLint loops);

Description
This function draws a disk perpendicular to the z-axis. If innerRadius is 0, a solid
(filled) circle is drawn instead of a washer. The slices argument controls the number
of sides on the disk. The loops argument controls the number of rings generated out
from the z-axis.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

innerRadius
GLdouble: The inside radius of the disk.

outerRadius
GLdouble: The outside radius of the disk.

slices
GLint: The number of sides on the cylinder.

loops
GLint: The number of rings out from the z-axis.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation, gluQuadricTexture

Page 514 OpenGL Super Bible!

gluNewQuadric

Purpose
Creates a new quadric state object.

Include File
<GL/glu.h>

Syntax
GLUquadricObj *gluNewQuadric(void);

Description
This function creates a new opaque quadric state object to be used for drawing. The
quadric state object contains specifications that determine how subsequent images
will be drawn.

Parameters
None.

Returns
GLUquadricObj *: NULL if no memory is available; otherwise, a valid quadric state
object pointer.

Example
See the example in CH13\PENCIL.C.

See Also
gluDeleteQuadric, gluQuadricCallback, gluQuadricDrawStyle, gluQuadricNormals,
gluQuadricOrientation, gluQuadricTexture

OpenGL Super Bible! Page 515

gluPartialDisk

Purpose
Draws a partial quadric disk.

Include File
<GL/glu.h>

Syntax
void gluPartialDisk(GLUquadricObj *obj, GLdouble innerRadius, GLdouble
outerRadius, GLint slices, GLint loops, GLdouble startAngle, GLdouble
sweepAngle);

Description
This function draws a partial disk perpendicular to the z-axis. If innerRadius is 0, a
solid (filled) circle is drawn instead of a washer. The slices argument controls the
number of sides on the disk. The loops argument controls the number of rings out
from the z-axis that are generated. The startAngle argument specifies the starting
angle of the disk with 0º at the top of the disk and 90º at the right of the disk. The
sweepAngle argument specifies the portion of the disk in degrees.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

innerRadius
GLdouble: The inside radius of the disk.

outerRadius
GLdouble: The outside radius of the disk.

slices
GLint: The number of sides on the cylinder.

loops
GLint: The number of rings out from the z-axis.

startAngle
GLdouble: The start angle of the partial disk.

sweepAngle
GLdouble: The angular size of the partial disk.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation, gluQuadricTexture

Page 516 OpenGL Super Bible!

gluQuadricCallback

Purpose
Defines a quadric callback function.

Include File
<GL/glu.h>

Syntax
void gluQuadricCallback(GLUquadricObj *obj, GLenum which, void (*fn)());

Description
This function defines callback functions to be used when drawing quadric shapes. At
present, the only defined callback function is GLU_ERROR, which is called
whenever an OpenGL or GLU error occurs.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

which
GLenum: The callback function to define. Must be GLU_ERROR.

fn
void (*)(): The callback function (receives one GLenum containing the error).

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricDrawStyle, gluQuadricNormals,
gluQuadricOrientation, gluQuadricTexture

OpenGL Super Bible! Page 517

gluQuadricDrawStyle

Purpose
Sets the drawing style of a quadric state object.

Include File
<GL/glu.h>

Syntax
void gluQuadricDrawStyle(GLUquadricObj *obj, GLenum drawStyle);

Description
This function selects a drawing style for all quadric shapes.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

drawStyle
GLenum: The drawing style. Valid styles are as follows:

GLU_FILL Quadrics are drawn filled, using polygon and strip
primitives.

GLU_LINE Quadrics are drawn “wireframe,” using line primitives.
GLU_SILHOUETTE Quadrics are drawn using line primitives; only the outside

edges are drawn.
GLU_POINT Quadrics are drawn using point primitives.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricNormals,
gluQuadricOrientation, gluQuadricTexture

Page 518 OpenGL Super Bible!

gluQuadricNormals

Purpose
Sets the type of lighting normals used for quadric objects.

Include File
<GL/glu.h>

Syntax
void gluQuadricNormals(GLUquadricObj *obj, GLenum normals);

Description
This function sets the type of lighting normals that are generated when drawing
shapes using the specified quadric state object.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

normals
GLenum: The type of normals to generate. Valid types are as follows:

GLU_NONE No lighting normals are generated.
GLU_FLAT Lighting normals are generated for each polygon to

generate a faceted appearance.
GLU_SMOOTH Lighting normals are generated for each vertex to

generate a smooth appearance.
Returns

None.
Example

See the example in CH13\PENCIL.C.
See Also

gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricOrientation, gluQuadricTexture

OpenGL Super Bible! Page 519

gluQuadricOrientation

Purpose
Sets the orientation of lighting normals for quadric objects.

Include File
<GL/glu.h>

Syntax
void gluQuadricOrientation(GLUquadricObj *obj, GLenum orientation);

Description
This function sets the direction of lighting normals for hollow objects. The
orientation parameter may be GLU_OUTSIDE to point lighting normals outward, or
GLU_INSIDE to point them inward.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

orientation
GLenum: The orientation of lighting normals, GLU_OUTSIDE or GLU_INSIDE.
The default is GLU_OUTSIDE.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricTexture

Page 520 OpenGL Super Bible!

gluQuadricTexture

Purpose
Enables or disables texture coordinate generation for texture-mapping images onto
quadrics.

Include File
<GL/glu.h>

Syntax
void gluQuadricTexture(GLUquadricObj *obj, GLboolean textureCoords);

Description
This function controls whether or not texture coordinates are generated for quadric
shapes.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

textureCoords
GLboolean: GL_TRUE if texture coordinates should be generated; GL_FALSE
otherwise.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation

OpenGL Super Bible! Page 521

gluSphere

Purpose
Draws a quadric sphere.

Include File
<GL/glu.h>

Syntax
void gluSphere(GLUquadricObj *obj, GLdouble radius, GLint slices, GLint stacks);

Description
This function draws a hollow sphere centered at the origin. The slices argument
controls the number of lines of longitude on the sphere. The stacks argument controls
the number of lines of latitude on the sphere.

Parameters

obj
GLUquadricObj *: The quadric state information to use for rendering.

radius
GLdouble: The radius of the sphere.

slices
GLint: The number of lines of longitude on the sphere.

stacks
GLint: The number of lines of latitude on the sphere.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation, gluQuadricTexture

Page 522 OpenGL Super Bible!

Part III
Advanced Topics and Special Effects

If you’ve been reading this book from front to back as a tutorial, you are now quite well
grounded in the use of OpenGL for a variety of purposes. In the third part of this book, we
are going to cover a few remaining topics that will enhance your knowledge and
understanding of OpenGL. We will also be covering some special effects and capabilities of
the API that may take a little more time to digest than the previous material.

First, we visit the OpenGL State Machine in Chapter 14. Until now we have taken this for
granted and covered some of the variables only when they have been relevant to our
discussion. Now a look at the entire concept and how to take advantage of it is in order.
Then a more complete discussion of the OpenGL buffers (Chapter 15) will be in order.

Many scenes and objects can benefit by some of the visual fine-tuning that is afforded by the
techniques presented in Chapter 16. Here you will see how to soften or sharpen images, and
how to create some spectacular effects made possible with translucence.

Complex surface generation can be a real headache. Chapter 17 will give you some high-
level tools that can make these surfaces easier to create. Useful techniques for breaking
down your polygons into smaller ones are shown in Chapter 18, and in Chapter 19 you’ll
learn how to interact with your scenes and objects using the OpenGL features of selection
and feedback.

Finally, we will end our coverage of the API with a closer look at just one use for OpenGL.
You’ll see how Virtual Reality over the Internet has its roots in an OpenGL C++ class
library called Open Inventor.

OpenGL Super Bible! Page 523

Chapter 14
The OpenGL State Machine

What you’ll learn in this chapter:

How to… Functions You’ll Use

Enable and disable rendering options glEnable/glDisable
Query the state of rendering options glIsEnabled/glGetInteger/glGetFloat/glGetDouble
Save and restore some or all of the
current state

glPushAttrib/glPopAttrib

The rendering state is one of the things that make OpenGL so fast and efficient at drawing
3D graphics. This state is grouped logically into different categories such as color, lighting,
texturing, and so forth. Each rendering context (HRC) that you create has its own rendering
state specific to a window or off-screen bitmap.

Unlike most of the other chapters, this chapter does not contain any complete example
programs. Rather, you will find these state functions used in examples for every other
chapter in the book.

Basic OpenGL State Functions

OpenGL’s two functions that enable and disable rendering features are called, appropriately
enough, glEnable and glDisable. You pass these functions a single enumerated constant,
such as GL_DEPTH_TEST, as follows:

glEnable(GL_DEPTH_TEST); /* Enable depth buffer testing */
glDisable(GL_DEPTH_TEST); /* Disable depth buffer testing */

You can retrieve the current state using glIsEnabled, glIsDisabled, and glGetBooleanv, as in
the following:

GLboolean state;

/*
 * GL_TRUE if depth testing is enabled…
 */
state = glIsEnabled(GL_DEPTH_TEST);

/*
 * GL_TRUE if depth testing is disabled…
 */

Page 524 OpenGL Super Bible!

state = glIsDisabled(GL_DEPTH_TEST);

/*
 * Returns Boolean state value; GL_TRUE if depth testing is enabled…
 */
glGetBooleanv(GL_DEPTH_TEST, &state);

Most OpenGL state variables are Boolean values, on or off. Some, like the current viewport,
are an array of integers, or an array of floating point numbers for the current RGBA color.
To address these types of state values, OpenGL adds glGetDoublev, glGetFloatv, and
glGetInteger:

GLint istate[4];
GLfloat fstate[4];
GLdouble dstate[3];

glGetIntegerv(GL_VIEWPORT, istate);
glGetFloatv(GL_CURRENT_COLOR, fstate);
glGetDoublev(GL_CURRENT_NORMAL, dstate);

You’ll learn more about the various state variables further into the chapter.

Saving and Restoring States

Just as OpenGL maintains a stack of Projection, Modelview, and Texture matrices, it has a
stack for the current rendering state. Unlike the matrix stack, the state stack gives you much
more control over exactly what you save (push) or restore (pop) from the stack; see Figure
14-1.

Figure 14-1 OpenGL attribute stack

OpenGL Super Bible! Page 525

The OpenGL functions to save and restore rendering state attributes are glPushAttrib and
glPopAttrib. The glPushAttrib function works a lot like glPushMatrix, except that you can
select the state values to put on the stack! To save all of the current rendering state, you
would call

glPushAttrib(GL_ALL_ATTRIB_BITS);

Usually, however, you’re only interested in saving a specific set of information, such as the
current color, line width, and so forth. OpenGL defines many constants for specific types of
information (see Table 14-1). For example:

glPushAttrib(GL_CURRENT_BIT); /* Save current drawing color, etc */
glPushAttrib(GL_LIGHTING_BIT); /* Save curr ent lighting settings */
glPushAttrib(GL_TEXTURING_BIT); /* Save current texturing settings */

Table 14-1 glPushAttrib attribute bits

Attribute Bit Description

GL_ACCUM_BUFFER_BIT Accumulation buffer clear value.
GL_COLOR_BUFFER_BIT Alpha test state, function, and values. Blending state,

function, and values. GL_DITHER state. Current
drawing buffer(s). Current logical operation state and
function. Current RGBA/index clear color and write
masks.

GL_CURRENT_BIT Current RGBA color or color index. Current lighting
normal and texture coordinate. Current raster position,
GL_CURRENT_RASTER_POSITION_VALID, and
GL_EDGE_FLAG.
GL_DEPTH_BUFFER_BITGL_DEPTH_TEST state,
depth buffer function, depth buffer clear value, and
GL_DEPTH_WRITEMASK state.

GL_ENABLE_BIT GL_ALPHA_TEST, GL_AUTO_NORMAL, and
GL_BLEND state. User-defined clipping plane state.
GL_COLOR_MATERIAL, GL_CULL_FACE,
GL_DEPTH_TEST, GL_DITHER, GL_FOG,
GL_LIGHTi, GL_LIGHTING, GL_LINE_SMOOTH,
GL_LINE_STIPPLE, GL_LOGIC_OP,
GL_MAP1_x, GL_MAP2_x, GL_NORMALIZE,
GL_POINT_SMOOTH, GL_POLYGON_SMOOTH,
GL_POLYGON_STIPPLE, GL_SCISSOR_TEST,
GL_STENCIL_TEST, GL_TEXTURE_1D,

Page 526 OpenGL Super Bible!

GL_TEXTURE_2D, and GL_TEXTURE_GEN_x
states.

GL_EVAL_BIT GL_MAP1_x and GL_MAP2_x state, 1D and 2D grid
endpoints and divisions, GL_AUTO_NORMAL state.

GL_FOG_BIT GL_FOG state, fog color, fog density, linear fog start,
linear fog end, fog index, GL_FOG_MODE value.

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT,
GL_POINT_SMOOTH_HINT,
GL_LINE_SMOOTH_HINT,
GL_POLYGON_SMOOTH_HINT, and
GL_FG_HINT state.

GL_LIGHTING_BIT GL_COLOR_MATERIAL state.
GL_COLOR_MATERIAL_FACE value. Color
material parameters that are tracking the ambient
scene color.
GL_LIGHT_MODEL_LOCAL_VIEWER and
GL_LIGHT_MODEL_TWO_SIDE values.
GL_LIGHTING and GL_LIGHTx states. All light
parameters. GL_SHADE_MODEL value.

GL_LINE_BIT GL_LINE_SMOOTH and GL_LINE_STIPPLE
states. Line stipple pattern and repeat counter. Line
width.

GL_LIST_BIT GL_LIST_BASE value.
GL_PIXEL_MODE_BIT GL_RED_BIAS, GL_RED_SCALE,

GL_GREEN_BIAS, GL_GREEN_SCALE,
GL_BLUE_BIAS, GL_BLUE_SCALE,
GL_ALPHA_BIAS, GL_ALPHA_SCALE,
GL_DEPTH_BIAS, GL_DEPTH_SCALE,
GL_INDEX_OFFSET, GL_INDEX_SHIFT,
GL_MAP_COLOR, GL_MAP_DEPTH,
GL_ZOOM_X, GL_ZOOM_Y, and
GL_READ_BUFFER settings.

GL_POINT_BIT GL_POINT_SMOOTH state, point size.
GL_POLYGON_BIT GL_CULL_FACE, GL_CULL_FACE_MODE,

GL_FRONT_FACE, GL_POLYGON_MODE,
GL_POLYGON_SMOOTH,
GL_POLYGON_STIPPLE.

GL_POLYGON_STIPPLE_BIT Polygon stipple image.
GL_SCISSOR_BIT GL_SCISSOR_TEST state, scissor box.
GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST state. Stencil function and

reference value. Stencil value mask. Stencil fail, pass,

OpenGL Super Bible! Page 527

and depth buffer pass action. Stencil buffer clear
value and writemask.

GL_TEXTURE_BIT Enable bits for all texture coordinates. Border color
for each texture image. Minification filter and
magnification filter. Texture coordinates and wrap
modes. Color and mode for each texture environment.
GL_TEXTURE_GEN_x,
GL_TEXTURE_GEN_MODE settings. glTexGen
plane equations.

GL_TRANSFORM_BIT Coefficients of the six clipping planes, enable bits for
the clipping planes, GL_MATRIX_MODE setting,
GL_NORMALIZE state.

GL_VIEWPORT_BIT Depth range, viewport origin, and extent.

Once you have done your rendering, you restore those state bits with glPopAttrib. This
function accepts no arguments and restores only what was saved with the last glPushAttrib

Drawing States

OpenGL has a large number of states associated with drawing actions for the basic
glBegin/glEnd primitives. Most are saved with a call to glPushAttrib(GL_CURRENT_BIT |
GL_LINE_BIT). See Table 14-2.

Table 14-2 Drawing state variables

State Variable Description

GL_ALPHA_TEST Do alpha value testing.
GL_BLEND Perform pixel blending operations.
GL_CLIP_PLANEx Clip drawing operations outside the specified clipping
GL_CULL_FACE Cull back- or front-facing polygons.
GL_DITHER Dither color values.
GL_LINE_SMOOTH Anti-alias lines.
GL_LINE_STIPPLE Apply a bit pattern to lines.
GL_LOGIC_OP Do logical operations on pixels when drawing.
GL_POINT_SMOOTH Anti-alias points.

Page 528 OpenGL Super Bible!

GL_POINT_SMOOTH Anti-alias points.
GL_POLYGON_SMOOTH Anti-alias polygons.
GL_POLYGON_STIPPLE Apply a bit pattern to polygons.
GL_SCISSOR_TEST Clip drawing outside the glScissor region.

Depth Buffer States

The most common mistake made by beginning OpenGL programmers is to forget to enable
depth testing with glEnable(GL_DEPTH_TEST). Without depth testing, hidden surface
removal is not performed using the depth buffer (see Chapter 15). Calling glPushAttrib with
GL_DEPTH_BUFFER_BIT takes care of saving the GL_DEPTH_TEST state.

Stencil Buffer States

The stencil buffer supports many special effects, including shadows. Like the depth buffer,
however, the stencil buffer is very easy to control. Save stencil buffer state information with
glPushAttrib(GL_STENCIL_BUFFER_BIT). which saves the current GL_STENCIL_TEST
value.

Lighting States

Of all the OpenGL features, lighting has the most OpenGL state information. The state
information for lighting includes the current lighting environment (model) settings for color
and lighting mode; material definitions; the color, position, and direction of light; and other
parameters. Moreover, OpenGL adds even more state information with automatic lighting
normal generation.

Table 14-3 lists all the available variables. At the very minimum, you’ll need to call
glEnable(GL_LIGHTING) and glEnable(GL_LIGHT0). To save the current lighting state,
call glPushAttrib(GL_LIGHTING_BIT | GL_EVAL_BIT).

Table 14-3 Lighting State Variables

State Variable Description

GL_AUTO_NORMAL Automatically generate lighting normals from glMap
GL_COLOR_MATERIAL Assign material colors from the current drawing

OpenGL Super Bible! Page 529

color.
GL_LIGHTING Enable lighting calculations.
GL_LIGHTx Enable lighx.
GL_MAP1_NORMAL Enable mapping of lighting normals from 1D

coordinates.
GL_MAP2_NORMAL Enable mapping of lighting normals from 2D

coordinates.
GL_NORMALIZE Normalize all lighting normals prior to doing

calculations.

Texturing States

In terms of complexity, texturing in OpenGL is second only to lighting. Table 14-4 lists the
available variables.

Table 14-4 Texturing State Variables

State Variable Description

GL_MAP1_TEXTURE_COORD_1 The s texture coordinate will be generated by
GL_MAP1_TEXTURE_COORD_2 The s and t texture coordinates will be
GL_MAP1_TEXTURE_COORD_3 The s, t, and r texture coordinates will be
GL_MAP1_TEXTURE_COORD_4 The s, t, r, and q texture coordinates will be
GL_MAP2_TEXTURE_COORD_1 The s texture coordinate will be generated by
GL_MAP2_TEXTURE_COORD_2 The s and t texture coordinates will be

Page 530 OpenGL Super Bible!

glEvalMesh2, and glEvalCoord2.
GL_MAP2_TEXTURE_COORD_3 The s, t, and r texture coordinates will be

generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL�_MAP2_TEXTURE_COORD_4 The s, t, r, and q texture coordinates will be
generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL_TEXTURE_1D Enable 1D texturing unless 2D texturing is
enabled.

GL_TEXTURE_2D Enable 2D texturing.
GL_TEXTURE_GEN_Q Automatically generate the q texture

coordinate from calls to glVertex.
GL_TEXTURE_GER Automatically generate the r texture

coordinate from calls to glVertex.
GL_TE�XTURE_ GEN_S Automatically generate the s texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_T Automatically generate the t texture

coordinate from calls to glVertex.

To save the current texturing parameters, call glEnable with GL_TEXTURE_BIT and
GL_EVAL_BIT. When you’re enabling texturing, make sure to enable onlone of the
texturing modes— either GL_TEXTURE_1D or GL_TEXTURE_2D. The OpenGL spec
states that 2D texturing overrides 1D texturing, but some implementations do not comply
with this.

Pixel States

Pixel transfer, storage, and mapping modes are probably the least understood and least
optimized OpenGL features. Save them with a call to glPushAttrib(GL_PIXEL_BIT). There
are no glEnable states for these modes.

OpenGL Super Bible! Page 531

Reference Section

glDisable, glEnable

Purpose
Disables or enables an OpenGL feature.

Include File
<GL/gl.h>

Syntax
void glDisable(GLenum feature); glEnable

Description
glDisable disables an OpenGL drawing feature, and glEnable enables an OpenGL
drawing feature.

Parameters

feature
GLenum: The feature to disable or enable, from Table 14-5.

Returns
None.

See Also
glIsEnabled, glPopAttrib, glPushAttrib

Table 14-5 Features Enabled/Disabled by glEnable/glDisable

Feature Description

GL_AUTO_NORMAL Automatically generate lighting normals
from glMap parameters.

GL_COLOR_MATERIAL Assign material colors from the current
drawing color.

GL_LIGHTING Enable lighting calculations.
GL_LIGHTx Enable lightx.
GL_MAP1_NORMAL Enable mapping of lighting normals from 1D

coordinates.
GL_MAP2_NORMAL Enable mapping of lighting normals from 2D

coordinates.
GL_NORMALIZE Normalize all lighting normals prior to doing

calculations.
GL_MAP1_TEXTURE_COORD_1 The s texture coordinate will be generated by

Page 532 OpenGL Super Bible!

calls to glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP1_TEXTURE_COORD_2 The s and t texture coordinates will be
generated by calls to glEvalPoint1,
glEvalMesh1, and glEvalCoord1.

GL_MAP1_TEXTURE_COORD_3 The s, t, and r texture coordinates will be
generated by calls to glEvalPoint1,
glEvalMesh1, and glEvalCoord1.

GL_MAP1_TEXTURE_COORD_4 The s, t, r, and q texture coordinates will be
generated by calls to glEvalPoint1,
glEvalMesh1, and glEvalCoord1.

GL_MAP2_TEXTURE_COORD_1 The s texture coordinate will be generated by
calls to glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL_MAP2_TEXTURE_COORD_2 The s and t texture coordinates will be
generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL_MAP2_TEXTURE_COORD_3 The s, t, and r texture coordinates will be
generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL_MAP2_TEXTURE_COORD_4 The s, t, r, and q texture coordinates will be
generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL_TEXTURE_1D Enable 1D texturing unless 2D texturing is
enabled.

GL_TEXTURE_2D Enable 2D texturing.
GL_TEXTURE_GEN_Q Automatically generate the q texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_R Automatically generate the r texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_S Automatically generate the s texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_T Automatically generate the t texture

coordinate from calls to glVertex.
GL_STENCIL_TEST Enable stencil buffer comparisons.
GL_DEPTH_TEST Enable depth buffer comparisons.
GL_ALPHA_TEST Do alpha value testing.
GL_BLEND Perform pixel blending operations.
GL_CLIP_PLANEx Clip drawing operations outside the

OpenGL Super Bible! Page 533

specified clipping plane.
GL_CULL_FACE Cull back- or front-facing polygons.
GL_DITHER Dither color values.
GL_LINE_SMOOTH Anti-alias lines.
GL_LINE_STIPPLE Apply a bit pattern to lines.
GL_LOGIC_OP Do logical operations on pixels when

drawing.
GL_POINT_SMOOTH Anti-alias points.
GL_POLYGON_SMOOTH Anti-alias polygons.
GL_POLYGON_STIPPLE Apply a bit pattern to polygons.
GL_SCISSOR_TEST Clip drawing outside the glScissor region.

Page 534 OpenGL Super Bible!

glIsEnabled

Purpose
Tests if an OpenGL feature is enabled.

Include File
<GL/gl.h>

Syntax
GLboolean glIsEnabled(GLenum feature);

Description
This function returns GL_TRUE if the specified feature has been enabled and
GL_FALSE otherwise.

Parameters

feature
GLenum: The feature to test (see glEnable).

Returns
GLboolean: GL_TRUE if the feature is enabled, GL_FALSE otherwise.

See Also
glDisable, glEnable, glPopAttrib, glPushAttrib

OpenGL Super Bible! Page 535

glPopAttrib

Purpose
Restores state information saved with glPushAttib.

Include File
<GL/gl.h>

Syntax
void glPopAttrib(void);

Description
glPopAttrib restores previously saved state information from a call to glPushAttrib.
If the attribute stack is empty, the current OpenGL error state is set and the call is
ignored.

Parameters
None.

Returns
None.

See Also
glDisable, glEnable, glIsEnabled, glPushAttrib

Page 536 OpenGL Super Bible!

glPushAttrib

Purpose
Saves OpenGL state information.

Include File
<GL/gl.h>

Syntax
void glPushAttrib(GLuint bits);

Description
This function saves OpenGL state information specified by bits. If the attribute stack
is full, the current OpenGL error state is set and the top of the stack is overwritten.

Parameters

bits
GLuint: The state information to save (see Table 14-1).

Returns
None.

See Also
glDisable, glEnable, glIsEnabled, glPopAttrib

OpenGL Super Bible! Page 537

Chapter 15
Buffers: Not Just for Animation

What you’ll learn in this chapter:

How to... Functions You’ll Use

Set up buffers ChoosePixelFormat/SetPixelFormat
Use the depth buffer glEnable/glDepthFunc/glDepthRange
Use the stencil buffer glEnable/glStencilFunc
Use the accumulation buffer glEnable/glAccum

In the previous chapters, we’ve used buffers for color and depth information. OpenGL
provides several kinds of buffers that are linked by the OpenGL graphics context:

• Color buffer
• Depth buffer
• Stencil buffer
• Accumulation buffer

Each buffer has specific capabilities beyond simple double-buffering for animation and
depth-buffering for hidden surface removal as described in this chapter.

What Are Buffers?

A buffer in OpenGL is essentially a two-dimensional array of values that correspond to a
pixel in a window or off-screen image. Each buffer has the same number of columns and
rows (width and height) as the current client area of a window but holds a different range
and type of values. See Figure 15-1.

Page 538 OpenGL Super Bible!

Figure 15-1 OpenGL buffer organization

Configuring Buffers

Before using OpenGL, you must configure the window’s hardware device context (HDC)
for the buffers and color mode you require. The PIXELFORMATDESCRIPTOR structure
contains this information. Here’s the typical way this buffer is set up:

// This structure holds buffer, layer, and color mode information.
PIXELFORMATDESCRIPTOR pfd;

// First initialize the pfd size and version...
pfd.nSize = sizeof(pfd);
pfd.nVersion = 1;

// Next, layer and buffering information...
pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL;
pfd.dwLayerMask = PFD_MAIN_PLANE;
pfd.iLayerType = PFD_MAIN_PLANE;

// The pixel type indicates whether we use color indices or RGBA
pfd.iPixelType = PFD_TYPE_RGBA;

// Now we specify the *minimum* number of bitplanes we need for
// each buffer. Windows will choose the closest pixel format
// satisfying our minimum requirements.
pfd.cColorBits = 8;
pfd.cDepthBits = 16;
pfd.cAccumBits = 0;
pfd.cStencilBits = 0;

The dwFlags bitfield specifies that we want to draw into the window using OpenGL. It also
tells Windows the number of color buffers we require. See Table 15-1.

OpenGL Super Bible! Page 539

Table 15-1 PIXELFORMATDESCRIPTOR Option Flags

Flag Description

PFD_DRAW_TO_WINDOW Draw into a window.
PFD_DRAW_TO_BITMAP Draw into an off-screen bitmap.
PFD_SUPPORT_GDI The color buffer supports GDI drawing

commands.
PFD_SUPPORT_OPENGL The buffers support OpenGL drawing

commands.
PFD_DOUBLEBUFFER The color values are double buffered.
PFD_STEREO Two sets of buffers are available (left and right).
PFD_DOUBLE_BUFFER_DONTCARE It doesn’t matter if the color values are double

buffered.
PFD_STEREO_DONTCARE It doesn’t matter if the buffers are in stereo.

The dwLayerMask and iLayerType fields specify the drawing planes that are to be used and
are usually set to PFD_MAIN_PLANE. Some OpenGL graphics cards provide auxiliary
buffers above and below the normal Windows color plane allowing you to draw menus or
other graphical constructs without overwriting the main image. The generic implementation
provided by Microsoft does not support auxiliary drawing planes.

The iPixelType field specifies how color values are represented and can be one of the two
values in Table 15-2.

Table 15-2 PIXELFORMATDESCRIPTOR Pixel Types

Pixel Type Description

PFD_TYPE_RGBA Colors are composed of red, green, blue, and alpha values.
PFD_TYPE_COLORINDEX Colors are composed of an index value in the current

logical palette.

Page 540 OpenGL Super Bible!

The cColorBits, cDepthBits, cAccumBits, and cStencilBits fields specify the size of each
buffer for the window. Specifying 0 for a field disables that buffer, except for cColorBits. If
you specify 0 for cColorBits, Windows will provide the minimum number of bits
available— usually 4 or 8 bits (16 or 256 colors). When iPixelType is set to
PFD_TYPE_RGBA, the cColorBits field specifies the total number of red, green, and blue
color bits. The current generic implementation of OpenGL provided by Microsoft does not
support alpha color bits.

Once you have filled in all the necessary PIXELFORMATDESCRIPTOR information, you
can set the pixel format for the window with a few simple calls, as shown here:

// The device context refers to the graphics driver for this window.
HDC hdc;

// This integer holds the Windows pixel format code
int pf;

// Choose and select the pixel format...
pf = ChoosePixelFormat(hdc, &pfd);
if (pf == 0)
{
 // Could not find the pixel format...
 MessageBox(NULL, "ChoosePixelFormat failed!", "Error", MB_OK);
}
else if (!SetPixelFormat(hdc, pf, &pfd))
{
 // Could not set the pixel format...
 MessageBox(NULL, "SetPixelFormat failed!", "Error", MB_OK);
}

After calling ChoosePixelFormat, the PIXELFORMATDESCRIPTOR information is filled
with the actual hardware values that were chosen. On return, the dwFlags field can contain
three additional flags that require your attention; they are listed in Table 15-3.

OpenGL Super Bible! Page 541

Table 15-3 PIXELFORMATDESCRIPTOR Return Values

Return Value Description

PFD_GENERIC_FORMAT The requested format is supported by the generic
implementation.

PFD_NEED_PALETTE The RGBA color buffer will be drawn on a palette-
managed device and requires a logical palette.

PFD_NEED_SYSTEM_PALETTE The color values require a fixed system palette to
display correctly. Call SetSystemPaletteUse() to force
a one-to-one mapping of the logical palette and the
system palette.

If PFD_NEED_PALETTE is set, you should define a logical palette as specified by the
cRedBits, cRedShift, cGreenBits, cGreenShift, cBlueBits, and cBlueShift fields. Following
is an example of a defined palette.

HDC hdc;
PIXELFORMATDESCRIPTOR pfd;
HPALETTE palette;
LOGPALETTE *pal;
int i,
 pf,
 num_colors,
 red, num_reds,
 blue, num_blues,
 green, num_greens;

// Get the current pixel format information
pf = GetPixelFormat(hdc);
DescribePixelFormat(hdc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

// Check to see if we need to make a palette
if (pfd.dwFlags & PFD_NEED_PALETTE)
{
 // Yes, we do. First, allocate logical color palette entries...
 num_colors = 1 << pfd.cColorBits;
 pal = (PLOGPALETTE)LocalAlloc(LMEM_FIXED, sizeof(LOGPALETTE) +
 num_colors * sizeof(PALETTEENTRY));
 pal->palVersion = 0x300;
 pal->palNumEntries = num_colors;

 num_reds = (1 << pfd.cRedBits) - 1;
 num_greens = (1 << pfd.cGreenBits) - 1;
 num_blues = (1 << pfd.cBlueBits) - 1;

Page 542 OpenGL Super Bible!

 for (blue = 0, i = 0; blue <= num_blues; blue ++)
 for (green = 0; green <= num_greens; green ++)
 for (red = 0; red <= num_reds; red ++, i ++)
 {
 pal->palPalEntry[i].peRed = 255 * red / num_reds;
 pal->palPalEntry[i].peGreen = 255 * green / num_greens;
 pal->palPalEntry[i].peBlue = 255 * blue / num_blues;
 pal->palPalEntry[i].peFlags = 0;
 }

 palette = CreatePalette(pal);
 SelectPalette(hdc, palette, FALSE);
 RealizePalette(hdc);

 LocalFree(pal);
}

The Color Buffer

The color buffer holds pixel color information. Each pixel can contain a color index or
red/green/blue/alpha (RGBA) values that describes the appearance of that pixel. RGBA
pixels are displayed directly using the closest available color(s) on the screen. The generic
OpenGL implementation from Microsoft does not support alpha color values at this time.

The appearance of color index pixels is determined by looking up the index in an RGB color
table. Under Windows these color tables are implemented using a logical color palette.
Color index mode is very useful for displaying tabular data graphically (for example, stress
or force meters), as shown in the second depth buffer example in “Another Application of
the Depth Buffer.”

Double Buffering

Double buffering provides an additional off-screen color buffer that is often used for
animation. With double buffering you can draw a scene off screen and quickly “swap” it
onto the screen, eliminating the annoying flicker that would otherwise be present.

Double buffering only affects the color buffer and does not provide a second depth,
accumulation, or stencil buffer. If you choose a pixel format with double buffering, OpenGL
selects the “back” buffer for drawing. You can change this using the glDrawBuffer function
to specify one of the values in Table 15-4.

OpenGL Super Bible! Page 543

Table 15-4 glDrawBuffer Values

Buffer Description

GL_FRONT Draw only to the front (visible) color buffer.
GL_BACK Draw only to the back (hidden) color buffer.
GL_FRONT_AND_BACK Draw to both the front and back color buffers.

Stereo Buffering

Stereo buffering provides an additional color buffer in single-buffered mode and two
additional color buffers in double-buffered mode, to generate a left- and right-eye screen
image. (See Table 15-5.) True three-dimensional images can be generated by choosing the
correct viewing positions for each eye, usually offset by a few “inches” to simulate the
distance between our eyes. Stereo buffering is not available on most PC graphics cards.

Table 15-5 Stereo Buffer Values

Buffer Description

GL_LEFT_FRONT Draw only to the left-front buffer.
GL_LEFT_BACK Draw only to the left-back buffer.
GL_RIGHT_FRONT Draw only to the right-front buffer.
GL_RIGHT_BACK Draw only to the right-back buffer.
GL_FRONT Draw to both the left- and right-front buffers.
GL_BACK Draw to both the left- and right-back buffers.

In addition to specifying the front or back buffer for drawing, the glDrawBuffer function can
select the left- or right-eye buffers.

Page 544 OpenGL Super Bible!

Swapping Buffers

Open GL does support double buffering, but there is no OpenGL function to actually swap
the front and back buffers! Fortunately, every windowing system with OpenGL support has
a function call to accomplish this. Under Windows, this call is

SwapBuffers(hdc);

where hdc is the device context for the window in which you are drawing. If you have
chosen a stereo-buffered pixel format, both the left and right eyes are swapped by the one
call.

The Depth Buffer

The depth buffer holds distance values for each pixel. Each value represents the pixel’s
distance from the viewer and is scaled to fill the current near/far clipping volume. The
software implementation of OpenGL under Windows supports both 16- and 32-bit depth
values.

The depth buffer is normally used to perform hidden surface removal. Hidden surface
removal is a process that occurs naturally in the real world; when one solid (opaque) object
is placed in front of another, the nearer object will hide some or all of the one behind it.

In OpenGL, the depth buffer can also be used for some interesting effects, such as cutting
away the front of objects to show the inner surfaces (see Figures 15-2a and 15-2b).

Figure 15-2a Typical depth buffering with GL_LESS

OpenGL Super Bible! Page 545

Figure 15-2b Typical depth buffering with GL_GREATER

Depth Comparisons

When you draw in a window using OpenGL, the Z position of each pixel is compared with
the value in the depth buffer. If the result of the comparison is True, the pixel is stored in the
color buffer along with its depth. OpenGL defines eight depth-comparison functions that can
be used for depth buffering (Table 15-6).

Table 15-6 Depth Comparison Functions

Name Function

GL_NEVER Always False.
GL_LESS True if source Z < depth Z.
GL_EQUAL True if source Z = depth Z.
GL_LEQUAL True if source Z <= depth Z.
GL_GREATER True if source Z > depth Z.
GL_NOTEQUAL True if source Z != depth Z.
GL_GEQUAL True if source Z >= depth Z.
GL_ALWAYS Always True.

Page 546 OpenGL Super Bible!

The default comparison function is GL_LESS. To change it, call glDepthFunc:

glDepthFunc(function);

Using the GL_LESS function, pixels in a polygon are drawn if the depth value of the pixel is
less than the depth value in the depth buffer.

Depth Values

When using the GL_EQUAL and GL_NOTEQUAL depth comparisons, it is sometimes
necessary to alter the range of depth values used, in order to reduce the number of available
values (keeping the number of values to a minimum). Use glDepth Range, as follows:

glDepthRange(near, far);

The near and far parameters are floating point numbers between 0.0 and 1.0, inclusive. The
defaults are 0.0 for near and 1.0 for far. Normally, near is less than far, but you may also
reverse the order to achieve special effects (or use the GL_GREATER and GL_GEQUAL
functions). Reducing the range of values stored in the depth buffer does not affect clipping,
but it will make the depth buffer less accurate and can lead to errors in hidden surface
removal in the display.

Some depth comparisons need a different initial depth value. By default, the depth buffer is
cleared to 1.0 with the glClear function. To specify a different value, use the glClearDepth
function:

glClearDepth(depth);

The depth parameter is a floating point number between 0.0 and 1.0, inclusive, unless you
have defined a smaller range with glDepthRange. In general, use a value of 0.0 for
GL_GREATER and GL_GEQUAL comparisons, and 1.0 for GL_LESS and GL_LEQUAL
comparisons.

Applications of the Depth Buffer

The usual application of the depth buffer is to remove hidden surfaces. As noted earlier, the
depth buffer can also be used to cut away the front parts of a scene. Listing 15-1
demonstrates this type of application. The key to this program is the use of glDepthFunc and
glClearDepth:

glDepthFunc(depth_function);

Here we use a global variable to hold the current depth function. The depth_function
variable is initialized to GL_LESS when the program starts. When the user presses the D
key, the toggle_depth callback function switches this between GL_GREATER and
GL_LESS.

OpenGL Super Bible! Page 547

if (depth_function == GL_LESS)
 glClearDepth(1.0);
else
 glClearDepth(0.0);

The glClearDepth call is needed to provide the correct initial depth value for the window,
since the depth value is 1.0 by default. Nothing would be drawn when the depth function is
set to GL_GREATER, because no pixel could possibly have a depth value greater than 1.0.

Listing 15-1 Depth buffer example using glDepthFunc

/*
 * "depth.c" - A test program demonstrating the use of glDepthFunc().
 *
 * Press the 'd' key to toggle between GL_LESS and GL_GREATER depth
 * tests. Press the 'ESC' key to quit.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLenum depth_function = GL_LESS; /* Current depth function */

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

Page 548 OpenGL Super Bible!

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);
 glDepthFunc(depth_function);

 /*
 * Clear the color and depth buffers...
 */

 if (depth_function == GL_LESS)
 glClearDepth(1.0);
 else
 glClearDepth(0.0);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second
 * is blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light) ;
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);

OpenGL Super Bible! Page 549

 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();

 glFlush();
}

/*
 * 'toggle_depth()' - Toggle the depth function between GL_LESS and
 * GL_GREATER.
 */

void CALLBACK
toggle_depth(void)
{
 if (depth_function == GL_LESS)
 depth_function = GL_GREATER;
 else
 depth_function = GL_LESS;
}

/*
 * 'main()' - Initialize the window and display the scene until the
 * user presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_SINGLE | AUX_DEPTH);
 auxInitWindow(?Depth Function?);

 auxKeyFunc(AUX_d, toggle_depth);
 auxReshapeFunc(reshape_scene);

 auxMainLoop(draw_scene);
}

/*
 * End of "depth.c".
 */

Another Application of the Depth Buffer

The depth buffer can also be used to generate a contour mapping of a scene, which shows
different colors for each depth. Contour maps can be generated using the glReadPixels
function and by specifying the depth component as the value of interest, as follows:

glReadPixels(x, y, width, height, GL_DEPTH_COMPONENT, type, pixels);

Page 550 OpenGL Super Bible!

The returned depth values can then be scaled and assigned to color values that can be
displayed as a contour image, especially in color index mode, like this:

#define WIDTH 320
#define HEIGHT 200
GLfloat pixels[WIDTH * HEIGHT];
int i;

// draw the scene...
glEnable(GL_DEPTH_TEST);
...
// Grab the depth buffer
glReadPixels(0, 0, WIDTH, HEIGHT, GL_DEPTH_COMPONENT, GL_FLOAT,
 pixels);
// Convert depth values to color indices
for (i = 0; i < (WIDTH * HEIGHT); i ++)
 pixels[i] = pixels[i] * 255.0; // Assume 256 color palette
// Display the new pixels on the screen
glDisable(GL_DEPTH_TEST);
glDrawPixels(0, 0, WIDTH, HEIGHT, GL_COL OR_INDEX, GL_FLOAT, pixels);

In a real application, you’d probably want to provide some user control over the color
palette and range of values. You can also use RGBA color values to enhance a scene, using
glBlendFunc to mix the “normal” image with the “depth” image.

Cutting Away Parts of a Scene

Let’s see how to cut away parts of a scene— an engine block, for instance— to show some
internal operation that would not normally be visible. Listing 15-2 is an example of using
the depth buffer for this purpose.

The heart of this program is the draw_scene function, which draws a picture of a cube and
sphere being cut by a moving plane. To cut away parts of the scene, we first draw the cutting
plane. Instead of drawing to the color buffer, we begin by disabling drawing to the color
buffer with glDrawBuffer.

glDrawBuffer(GL_NONE);

glBegin(GL_POLYGON);
 glVertex3f(-100.0, 100.0, cutting_plane);
 glVertex3f(100.0, 100.0, cutting_plane);
 glVertex3f(100.0, -100.0, cutting_plane);
 glVertex3f(-100.0, -100.0, cutting_plane);
glEnd();

glDrawBuffer(GL_BACK);

Once the cutting plane is drawn, we reenable color buffer drawing and proceed with drawing
the cube and sphere. The invisible plane we drew will restrict what is drawn on the screen to
polygons that lie behind it, effectively cutting away parts of the scene.

OpenGL Super Bible! Page 551

Listing 15-2 Using glDrawBuffer to cut away selected pieces of an object

/*
 * "depthcut.c" - A test program demonstrating the use of glDepthFunc()
 * and glDrawBuffer() to cut away parts of a sc ene.
 *
 * Press the 'd' key to toggle between GL_LESS and GL_GREATER depth
 * tests. Press the 'ESC' key to quit.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLenum depth_function = GL_LESS; /* Current depth function */
GLfloat cutting_plane = -15.0, /* Cutting plane distance */
 cutting_dir = -1.0; /* Cutting plane direction */

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{

 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

Page 552 OpenGL Super Bible!

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0 .0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);
 glDepthFunc(depth_function);

 /*
 * Clear the color and depth buffers...
 */

 if (depth_function == GL_LESS)
 glClearDepth(1.0);
 else
 glClearDepth(0.0);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cutting plane. Note that we disable drawing into the normal
 * color buffer while we do this...
 */

 glDrawBuffer(GL_NONE);
 glBegin(GL_POLYGON);
 glVertex3f(-100.0, 100.0, cutting_plane);
 glVertex3f(100.0, 100.0, cutting_plane);
 glVertex3f(100.0, -100.0, cutting_plane);
 glVertex3f(-100.0, -100.0, cutting_plane);
 glEnd();

 glDrawBuffer(GL_BACK);

 /*
 * Draw the cube and sphere in different colors...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second

 * is blue and located below, to the left, and in front of t he viewer.
 */

OpenGL Super Bible! Page 553

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'toggle_depth()' - Toggle the depth function between GL_LESS and
 * GL_GREATER.
 */

void CALLBACK
toggle_depth(void)
{
 if (depth_function == GL_LESS)
 depth_function = GL_GREATER;
 else
 depth_function = GL_LESS;
}

/*
 * 'move_plane()' - Move the cutting plane while we are idle...
 */

void CALLBACK
move_plane(void)
{
 cutting_plane += cutting_dir;

 /*
 * Reverse directions as needed...
 */

 if (cutting_plane <= -30.0 ||
 cutting_plane >= -15.0)
 cutting_dir = -cutting_dir;

 draw_scene();
}

Page 554 OpenGL Super Bible!

/*
 * 'main()' - Initialize the window and display the scene until the
 * user presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("Depth Function");

 auxKeyFunc(AUX_d, toggle_depth);
 auxReshapeFunc(reshape_scene);
 auxIdleFunc(move_plane);

 auxMainLoop(draw_scene);
}

/*
 * End of "depthcut.c".
 */

The Stencil Buffer

The stencil buffer provides many options to restrict drawing on the screen and has many
applications that the depth buffer just can’t do. At its simplest level, the stencil buffer can be
used to block out certain areas on the screen. For example, a flight simulation program
might use the stencil buffer to restrict drawing operations to the inside of the aircraft’s round
controls such as the artificial horizon and airspeed indicators.

Perhaps the most exciting application of the stencil buffer is for shadows. Depending on
your graphics hardware, you can generate hard and soft shadows from multiple light
sources, making your scenes much more realistic and exciting.

Using the Stencil Buffer

To use the stencil buffer, you have to first request one. For Windows, this means setting the
cStencilBits field in the Pixel Format Descriptor (PFD) for your window, as in

pfd.cStencilBits = 1;

Once you have requested a stencil buffer, you must enable stenciling by calling
glEnable(GL_STENCIL_TEST). Without this call, all stencil buffer operations are disabled.

Stencil Buffer Functions

There are four stenciling functions in OpenGL:

OpenGL Super Bible! Page 555

void glClearStencil(GLint s)
void glStencilFunc(GLenum func, GLint ref, GLuint mask)
void glStencilMask(GLuint mask)
void glStencilOp(GLenum fail, GLenum zfail, GLzpass)

The glClearStencil function is similar to glClearColor, glClearDepth, and glClearIndex; it
provides the initial value that is stored in the stencil buffer when
glClear(GL_STENCIL_BIT) is called. By default, a 0 stencil value is stored in the stencil
buffer. Unlike the depth and color buffers, you don’t always clear the stencil buffer every
time you redisplay your scene. In the flight simulator example mentioned earlier, the aircraft
control area might never change position or size, so redrawing into the stencil buffer would
be unnecessary.

Drawing into the Stencil Buffer

Once you have enabled the GL_STENCIL_TEST attribute with glEnable, you’ll still need to
set up how the stencil buffer operates. By default, it does nothing, allowing drawing to occur
anywhere on the screen without updating the stencil buffer. To make stenciling work
effectively, however, we need to put values into the stencil buffer. The glStencilFunc and
glStencilOp functions handle this interaction.

The glStencilFunc function defines a comparison function, reference value, and mask for all
stencil buffer operations. The valid functions are in Table 15-7.

Table 15-7 Stenciling Functions

Function Description

GL_NEVER The stencil test always fails (no drawing occurs).
GL_LESS Passes if the reference value is less than the stencil value.
GL_LEQUAL Passes if the reference value is less than or equal to the stencil

value.
GL_GREATER Passes if the reference value is greater than the stencil value.
GL_GEQUAL Passes if the reference value is greater than or equal to the

stencil value.
GL_EQUAL Passes if the reference value is equal to the stencil value.
GL_NOTEQUAL Passes if the reference value is not equal to the stencil value.
GL_ALWAYS The default; stencil test always passes (drawing always

occurs).

Page 556 OpenGL Super Bible!

Coupled with the stencil function is the stencil operation, defined with glStencilOp. Valid
operations are in Table 15-8.

Table 15-8 Stenciling Operations

Operation Description

GL_KEEP Keep the current stencil buffer contents.
GL_ZERO Set the stencil buffer value to 0.
GL_REPLACE Set the stencil buffer value to the function reference value.
GL_INCR Increment the current stencil buffer value.
GL_DECR Decrement the current stencil buffer value.
GL_INVERT Bitwise invert the current stencil buffer value.

Normally a mask image is used to outline the area in which drawing is to take place. Here is
an example of drawing a mask image into the stencil buffer:

glStencilFunc(GL_ALWAYS, 1, 1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

Then you would issue drawing commands that store a value of 1 in the stencil buffer. To
draw using the stencil buffer mask, do the following prior to drawing the scene:

glStencilFunc(GL_EQUAL, 1, 1);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

Because this operates with all OpenGL drawing functions including glBitmap, you can use
the stencil buffer to create many special “hole” effects for animations! Listing 15-3 contains
a version of DEPTHCUT.C called STENCILCT.C that uses the stencil buffer instead of the
depth buffer to cut away the middle of the cube.

Following is the heart of this program, which uses the functions described above:

glStencilFunc(GL_ALWAYS, 1, 1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
glPopMatrix();

OpenGL Super Bible! Page 557

Once the stencil image is drawn, we draw the cube wherever the sphere was not drawn:

glStencilFunc(GL_NOTEQUAL, 1, 1); /* Draw where sphere isn’t */
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

...

glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
glPopMatrix();

Listing 15-3 STENCILCT.C, a stencil buffer example

/*
 * "stencilct.c" - A test program demonstrating the use of glStencilFunc()
 * and glStencilOp() to cut away the middle of a cube.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers und er MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);

Page 558 OpenGL Super Bible!

}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float
 blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color, depth, and stencil buffers...
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
 GL_STENCIL_BUFFER_BIT);

 /*
 * Draw the sphere that will be cutting away parts of the cube...
 */

 glStencilFunc(GL_ALWAYS, 1, 1);
 glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 /*
 * Clear the color and depth buffers once again...
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

OpenGL Super Bible! Page 559

 /*
 * Draw the cube...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second
 * is blue and located below, to the left, and in front of the viewer.
 */

 glStencilFunc(GL_NOTEQUAL, 1, 1);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

int APIENTRY
WinMain(HINSTANCE hInstance,
 HINSTANCE hPrev,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH | AUX_STENCIL);
 auxInitWindow("Stenciling");

 auxReshapeFunc(reshape_scene);
 auxMainLoop(draw_scene);
}

/*
 * End of "stencilct.c".
 */

Page 560 OpenGL Super Bible!

The Accumulation Buffer

The accumulation buffer provides support for many special effects such as motion blur and
depth of field. It also supports full-screen anti-aliasing, although other methods (such as
multisampling) are better suited to this task.

The accumulation buffer is considerably less complex than the other buffers discussed so
far. It has a single function, glAccum, that manages all accumulation buffer actions. The
actions that can be performed are in Table 15-9.

Table 15-9 Accumulation Operations

Operation Description

GL_ACCUM Add scaled color-buffer values to the accumulation buffer.
GL_LOAD Load scaled color-buffer values into the accumulation buffer,

replacing whatever had been there before.
GL_ADD Add a constant color to the accumulation buffer’s values.
GL_MULT Multiply color values in the accumulation buffer by a constant

color (filtering effects).
GL_RETURN Copy the accumulation buffer into the main color buffer.

The normal way you use the accumulation buffer is to render multiple views into it and
display the final composite scene with glAccum(GL_RETURN, 1.0).

Using the Accumulation Buffer for Motion Blur

As a coworker of ours once said, “It’s easy to make any application of the accumulation
buffer look like motion blur!” The problem is akin to what happens when your hands shake
as you take a picture with a camera— too much jitter will blur the image.

You’ll find that rendering motion blur is a little more complicated than just drawing a
sequence of frames with the camera moving between each frame. We perceive motion blur
when an object moves faster than our eyes can track it. In essence, the picture changes as the
brain is “processing” the image, but the focus on the moving target is never lost. In a
camera, light entering the lens exposes the film for a finite amount of time. Depending on

OpenGL Super Bible! Page 561

the camera and photographer, the amount of blur seen may be small around the edges, or it
could streak across the image.

When you simulate motion blur with computer graphics, it is important to remember that the
current (or final) position of the object you are blurring must look more solid (or focused)
than the rest of the frames. The easiest way to accomplish this is to use a larger color scaling
factor when accumulating the current frame so that more of the color values from the final
frame used will stand out from the rest. A typical implementation looks something like this:

/* Draw the current frame */
draw_frame(0);
/* Load the accumulation buffer with 50% of the current frame */
glAccum(GL_LOAD, 0.5);

/* Draw the last 10 frames and accumulate 5% for each */
for (i = 1; i <= 10; i ++)
{
 draw_frame(-i);
 glAccum(GL_ACCUM, 0.05);
};

/* Display the final scene */
glAccum(GL_RETURN, 1.0);

Notice that you don’t have to use glClear to initialize the accumulation buffer contents, as
you do with the color, depth, and stencil buffers. Instead, most often you’ll use
glAccum(GL_LOAD, s) on the first frame of the scene. The program in Listing 15-4
demonstrates motion blur on the cube and sphere.

Listing 15-4 MOTION.C: Motion blur using the accumulation buffer

/*
 * "motion.c" - A test program demonstrating the use of glAccum() for
 * motion blur.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

Page 562 OpenGL Super Bible!

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 GLfloat frame;
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float
 blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers...
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

OpenGL Super Bible! Page 563

 /*
 * Draw the cube and sphere in different colors...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second
 * is blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 /*
 * Draw the objects 11 times starting at the current rotation...
 */

 for (frame = 0.0; frame <= 11.0; frame ++)
 {
 glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);
 glRotatef(rotation - frame, 0.0, 1.0, 0.0);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, 0.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, 0.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();
 glPopMatrix();

 /*
 * Accumulate 50% the first time, 5% every other time...
 */

 if (frame == 0.0)
 glAccum(GL_LOAD, 0.5);
 else
 glAccum(GL_ACCUM, 0.05);
 };

 /*
 * Copy the accumulated results back to the color buffer...
 */

 glAccum(GL_RETURN, 1.0);

 auxSwapBuffers();
}

Page 564 OpenGL Super Bible!

/*
 * 'rotate_objects()' - Rotate while we are idle...
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene unti l the user
 * presses the ESCape key.
 */

int APIENTRY
WinMain(HINSTANCE hInstance,
 HINSTANCE hPrev,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH | AUX_ACCUM);
 auxInitWindow("Motion Blur");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

/*
 * End of "motion.c".
 */

Using the Accumulation Buffer for Anti-Aliasing

Another application of the accumulation buffer is full-scene anti-aliasing. The basic strategy
is to jitter the image one-half a pixel in several directions, to blur the edges of an image but
not the solid areas. Accumulating as little as four of these “jittered” scenes will produce
remarkably smoother images. The Microsoft Visual C++ compiler includes many OpenGL
examples that use jitter for anti-aliasing. See the file OPENGL\BOOK\JITTER.H from the
Visual C++ CD-ROM for many different sets of jitter values.

Anti-aliasing with the accumulation buffer does carry a price in speed, however. If you want
to do any real-time anti-aliased animation, you’ll have to look at graphics hardware that
supports multisampling to do your anti-aliasing for you. The accumulation buffer is just too
slow for interactive work.

OpenGL Super Bible! Page 565

If you are generating stills or stop-motion animations, the accumulation buffer will give you
anti-aliasing and simulated depth-of-field that simply are not possible with multisampling.

Page 566 OpenGL Super Bible!

Reference Section

glAccum

Purpose
Operates on the accumulation buffer to establish pixel values.

Include File
<GL/gl.h>

Syntax
void glAccum(GLenum func, GLfloat value);

Description
This function operates on the accumulation buffer. Except for GL_RETURN, color
values are scaled by the value parameter and added or stored into the accumulation
buffer. For GL_RETURN, the accumulation buffer’s color values are scaled by the
value parameter and stored in the current color buffer.

Parameters

func
GLenum: The accumulation function to apply. Valid functions are as follows:

GL_ACCUM Add scaled color-buffer values to the accumulation buffer.
GL_LOAD Load scaled color-buffer values into the accumulation buffer,

replacing whatever was there before.
GL_ADD Add a constant color to the accumulation buffer values.
GL_MULT Multiply color values in the accumulation buffer by a

constant color (filtering effects).
GL_RETURN Copy the accumulation buffer into the main color buffer.

Returns
None.

Example
See the CH15\MOTION.C example on the source code CD-ROM.

See Also
ChoosePixelFormat, SetPixelFormat

OpenGL Super Bible! Page 567

glClearColor

Purpose
Specifies a color value for the color buffer.

Include File
<GL/gl.h>

Syntax
void glClearColor(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha);

Description
This function sets the color value that will be used when clearing the color buffer
with glClear(GL_COLOR_BUFFER_BIT).

Parameters

red
GLfloat: The red color value for the color buffer.

green
GLfloat: The green color value for the color buffer.

blue
GLfloat: The blue color value for the color buffer.

alpha
GLfloat: The alpha color value for the color buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

Page 568 OpenGL Super Bible!

glClearDepth

Purpose
Specifies a depth value for the depth buffer.

Include File
<GL/gl.h>

Syntax
void glClearDepth(GLclampd depth);

Description
This function sets the depth value that will be used when clearing the depth buffer
with glClear(GL_DEPTH_BUFFER_BIT).

Parameters

depth
GLclampd: The clear value for the depth buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

OpenGL Super Bible! Page 569

glClearIndex

Purpose
Specifies a color index value for the color buffer.

Include File
<GL/gl.h>

Syntax
void glClearIndex(GLfloat index);

Description
This function sets the color index value that will be used when clearing the color
buffer with glClear(GL_COLOR_BUFFER_BIT).

Parameters

index
GLfloat: The color index value for the color buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

Page 570 OpenGL Super Bible!

glClearStencil

Purpose
Specifies a stencil value for the stencil buffer.

Include File
<GL/gl.h>

Syntax
void glClearStencil(GLint value);

Description
This function sets the stencil value that will be used when clearing the stencil buffer
with glClear(GL_STENCIL_BUFFER_BIT).

Parameters

value
GLint: The clear value for the stencil buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

OpenGL Super Bible! Page 571

glDrawBuffer

Purpose
Selects a color buffer for drawing.

Include File
<GL/gl.h>

Syntax
void glDrawBuffer(GLenum mode);

Description
This function selects a color buffer for subsequent drawing operations. You will
typically call it to select the front or back color-buffer in a double-buffered drawing
context.

Parameters

mode
GLenum: A constant (see Table 15-10) selecting the color buffer to draw into. For
example, to select the back color-buffer for drawing, you would use:
glDrawBuffer(GL_BACK)

Returns
None.

Known Bugs
The generic Microsoft implementation does not support stereo drawing buffers or
mode value GL_NONE.

Example
See the CH15\DEPTHCUT.C example on the source code CD-ROM.

See Also
ChoosePixelFormat, SetPixelFormat

Table 15-10 Valid Modes for glDrawBuffer

Mode Value Meaning

GL_NONE Do not draw into any color buffer.
GL_FRONT Draw into the front color buffer.
GL_BACK Draw into the back color buffer (double-buffered contexts

only).
GL_FRONT_AND_BACK Draw into both the front and back color buffers (double-

buffered contexts only).
GL_LEFT Draw into the left-eye color buffer (stereo contexts only;

Page 572 OpenGL Super Bible!

selects front and back buffers when double-buffered).
GL_RIGHT Draw into the right-eye color buffer (stereo contexts only;

selects front and back buffers when double-buffered).
GL_BACK_LEFT Draw into the back color buffer for the left eye (stereo,

double-buffered contexts only) .
GL_BACK_RIGHT Draw into the back color buffer for the right eye (stereo,

double-buffered contexts only).
GL_FRONT_LEFT Draw into the front color buffer for the left eye (stereo,

double-buffered contexts only).
GL_FRONT_RIGHT Draw into the front color buffer for the right eye (stereo,

double-buffered contexts only).

OpenGL Super Bible! Page 573

glDepthFunc

Purpose
Sets the depth test function.

Include File
<GL/gl.h>

Syntax
void glDepthFunc(GLenum func);

Description
This function sets the depth buffer test function for hidden surface removal.

Parameters

func
GLenum: The depth buffer comparison function to use. Valid functions are as
follows:

GL_NEVER Always False
GL_LESS True if source Z < depth Z
GL_EQUAL True if source Z = depth Z
GL_LEQUAL True if source Z <= depth Z
GL_GREATER True if source Z > depth Z
GL_NOTEQUAL True if source Z != depth Z
GL_GEQUAL True if source Z >= depth Z
GL_ALWAYS Always True

Returns
None.

Example
See the CH15\DEPTH.C example on the source code CD-ROM.

See Also
ChoosePixelFormat, SetPixelFormat

Page 574 OpenGL Super Bible!

glDepthRange

Purpose
Sets the range of depth values in the depth buffer.

Include File
<GL/gl.h>

Syntax
void glDepthRange(GLclampd near, GLclampd far);

Description
This function sets the range of depth buffer values that will be used for depth
comparisons for hidden surface removal. It is legal for near to be greater than far.

Parameters

near
GLclampd: the near depth value.

far
GLclampd: the far depth value.

Returns
None.

Example
See the CH15\DEPTH.C example on the source code CD-ROM.

See Also
ChoosePixelFormat, SetPixelFormat

OpenGL Super Bible! Page 575

Chapter 16
Visual Effects: Blending and Fog

What you’ll learn in this chapter:

How to… Functions You’ll Use

Display transparent or translucent lines and
polygons

glBlendFunc

Add weather haze and fog effects glFog

This chapter introduces the color blending and fog functions provided by OpenGL, both of
which can be used to add that last bit of realism you need.

The color blending functions support effects such as transparency that can be used to
simulate windows, drink glasses, and other transparent objects. The fog functions add a
variable amount of color to the polygons you draw, producing a scene that looks “hazy” or
just downright dreary!

Something to remember when using these special effects is that they don’t look good on an
8-bit display. Make sure your programs contain the option of disabling these effects when
running on 8-bit displays.

Blending

Blending in OpenGL provides pixel-level control of RGBA color storage in the color buffer.
Blending operations cannot be used in color index mode and are disabled in color index
windows.

To enable blending in RGBA windows, you must first call glEnable(GL_BLEND). After
this, you call glBlendFunc with two arguments: the source and the destination colors’
blending functions (see Tables 16-1 and 16-2). By default, these arguments are GL_ONE
and GL_ZERO, respectively, which is equivalent to glDisable(GL_BLEND).

Page 576 OpenGL Super Bible!

Table 16-1 Blending Functions for Source Color

Function Blend Factor

GL_ZERO Source color = 0,0,0,0.
GL_ONE Uses <?> Source color.
GL_DST_COLOR Source color is multiplied by the destination pixel

color.
GL_ONE_MINUS_DST_COLOR Source color is multiplied by (1,1,1,1 – destination

color).
GL_SRC_ALPHA Source color multiplied by source alpha.
GL_ONE_MINUS_SRC_ALPHA Source color multiplied by (1 – source alpha).
GL_DST_ALPHA Source color multiplied by destination alpha; not

supported by Microsoft OpenGL.
GL_ONE_MINUS_DST_ALPHA Source color multiplied by (1 – destination alpha); not

supported by Microsoft OpenGL.
GL_SRC_ALPHA_SATURATE Source color multiplied by the minimum of the source

and (1 – destination) alphas; not supported by
Microsoft OpenGL.

Table 16-2 Blending Functions for Destination Color

Function Blend Factor

GL_ZERO Destination color = 0,0,0,0.
GL_ONE Use <?> Destination color.
GL_SRC_COLOR Destination color is multiplied by the source pixel

color.
GL_ONE_MINUS_SRC_COLOR Destination color is multiplied by (1,1,1,1 – source

color).
GL_SRC_ALPHA Destination color multiplied by source alpha.
GL_ONE_MINUS_SRC_ALPHA Destination color multiplied by (1 – source alpha).
GL_DST_ALPHA Destination color multiplied by destination alpha; not

supported by Microsoft OpenGL.

OpenGL Super Bible! Page 577

GL_ONE_MINUS_DST_ALPHA Destination color multiplied by (1 – destination
alpha); not supported by Microsoft OpenGL.

GL_SRC_ALPHA_SATURATE Destination color multiplied by the minimum of the
source and (1 – destination) alphas; not supported by
Microsoft OpenGL.

Using Blending for Transparency

Transparency is perhaps the most typical use of blending, often used for windows, bottles,
and other 3D objects that you can see through. Transparency can also be used to combine
multiple images, or for “soft” brushes in a paint program.

Following are the blending functions for all of these applications:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

This combination takes the source color and scales it based on the alpha component, and
then adds the destination pixel color scaled by 1 minus the alpha value. Stated more simply,
this blending function takes a fraction of the current drawing color and overlays it on the
pixel on the screen. The alpha component of the color can be from 0 (completely
transparent) to 1 (completely opaque), as follows:

Rd = Rs * As + Rd * (1 - As)
Gd = Gs * As + Gd * (1 - As)
Bd = Bs * As + Bd * (1 - As)

Because only the source alpha component is used, you do not need a graphics board that
supports alpha color planes in the color buffer. This is important because the standard
Microsoft OpenGL implementation does not support alpha color planes.

Something to remember with alpha-blended transparency is that the normal depth-buffer test
can interfere with the effect you’re trying to achieve. To make sure that your transparent
polygons and lines are drawn properly, always draw them from back to front.

Listing 16-1 shows the code that was used to draw the transparent teapot in Figure 16-1. In
the draw_scene function, we draw the two teapots from back to front to ensure that the rear
teapot can be seen through the front one. You’ll notice some artifacts remain visible in the
front teapot where the surface polygons intersect. You can’t eliminate these completely, but
you can reduce them by sorting the polygons by depth first and enabling back-face culling
with glEnable(GL_CULL_FACE).

Page 578 OpenGL Super Bible!

Figure 16-1 Transparent teapot using blending

The first thing draw_scene does is set the blending function to do transparency based on the
drawing (source) color’s alpha component:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Next, the opaque teapot is drawn with blending disabled so that we can always see the teapot
through the transparent one:

glDisable(GL_BLEND);
glColor3f(1.0, 1.0, 0.0);
auxSolidTeapot(1.0);

Finally, blending is enabled and the transparent teapot is drawn with an alpha (transparency)
value of 0.25:

glEnable(GL_BLEND);
glColor4f(1.0, 1.0, 1.0, 0.25);
auxSolidTeapot(1.0);

Listing 16-1 BLENDPOT.C: Using glBlendFunc for transparency

/*
 * "blendpot.c" - A test program demonstrating the use of glBlendFunc()
 * for transparency.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *

OpenGL Super Bible! Page 579

 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene…
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation…
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in front
 * of it.
 */

void CALLBACK
draw_scene(void)
{
 GLfloat frame;
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need…
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

Page 580 OpenGL Super Bible!

 /*
 * Clear the color and depth buffers…
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors…
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second is
 * blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glEnable(GL_COLOR_MATERIAL);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -15.0);
 glRotatef(-rotation, 0.0, 1.0, 0.0);

 glDisable(GL_BLEND);
 glColor3f(1.0, 1.0, 0.0);
 auxSolidTeapot(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(0.0, 0.0, -10.0);
 glRotatef(rotation, 0.0, 1.0, 0.0);
 glEnable(GL_BLEND);
 glColor4f(1.0, 1.0, 1.0, 0.25);
 auxSolidTeapot(1.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle…
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

OpenGL Super Bible! Page 581

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("Blended Teapot");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

/*
 * End of "blendpot.c".
 */

Using Blending with Anti-Aliasing

The appearance of anti-aliased points, lines, and polygons can be enhanced by using the
same two blending functions as for transparency, GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA. On systems with hardware-assisted anti-aliasing and
blending, blending will produce results similar to full-screen anti-aliased scenes made using
the accumulation buffer. At the same time, blending is several times faster than
accumulation because the scene needs to be drawn only once.

To draw a scene using blending and anti-aliased primitives, call the following functions:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POINT_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);

Using Blending for a Paint Program

The same techniques used for 3D graphics can be applied to 2D graphics. In the case of
paint programs, we can use blending to create soft-edged “brushes.” To start, we will define
alpha images of each brush. An alpha image contains alpha values but no RGB (color)
values and will define how much color actually is drawn on the page (see Figure 16-2).

Page 582 OpenGL Super Bible!

Figure 16-2 Alpha “brush” image

To “paint” using this brush image, we’re going to use a different set of blending functions:

glBlendFunc(GL_SRC_COLOR, GL_ONE_MINUS_SRC_ALPHA);

Instead of the GL_SRC_ALPHA function for the source color, we use the
GL_SRC_COLOR function, which uses the current color instead of the alpha component.
Thus, the color that will be applied is as follows:

R = Rs * Ab + Rd * (1.0 - Ab)
G = Gs * Ab + Gd * (1.0 - Ab)
B = Bs * Ab + Bd * (1.0 - Ab)

That is, the alpha values from the brush image will be used instead of the current alpha color
value!

Listing 16-2 is a simple “paint” program that uses a 7 x 7 pixel brush image for painting.
The main event loop handles drawing in the window. When you hold the left mouse button
down, the event loop will call the DrawXY function to paint at the current mouse position:

glRasterPos2i(mousex, mousey);
glDrawPixels(7, 7, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, BlendBrush[0]);

The RepaintWindow function clears the client area whenever the window is resized or needs
to be redrawn:

glViewport(0, 0, rect->right, rect->bottom);
glOrtho(0.0, (float)rect->right, (float)rect->bottom, 0.0, -1.0, 1.0);

glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

OpenGL Super Bible! Page 583

Unfortunately, this means you’ll lose your painting. A real paint application could use
glReadPixels to copy the drawn pixels to an off-screen buffer, which could be used to
redraw the screen later using glDrawPixels.

Listing 16-2 BLENDRAW.C: Paint program using glBlendFunc

/*
 * Include necessary headers.
 */

#include <windows.h>
#include <GL/gl.h>
#include "blendraw.h"
#include <stdarg.h>
#include <math.h>
#ifndef M_PI
define M_PI (double)3.14159265358979323846
#endif /* !M_PI */

/*
 * Globals…
 */

HWND BlendWindow; /* Ble nd window */
HPALETTE BlendPalette; /* Color palette (if necessary) */
HDC BlendDC; /* Drawing context */
HGLRC BlendRC; /* OpenGL rendering context */

unsigned char BlendBrush[7][16] =
{
 {0xff,0x00,0xff,0x00,0xff,0x08,0xff,0x10,0xff,0x08,0xff,0x00,0xff,0x00},
 {0xff,0x00,0xff,0x08,0xff,0x10,0xff,0x20,0xff,0x10,0xff,0x08,0xff,0x00},
 {0xff,0x08,0xff,0x10,0xff,0x20,0xff,0x40,0xff,0x20,0xff,0x10,0xff,0x08},
 {0xff,0x10,0xff,0x20,0xff,0x40,0xff,0x8 0,0xff,0x40,0xff,0x20,0xff,0x10},
 {0xff,0x08,0xff,0x10,0xff,0x20,0xff,0x40,0xff,0x20,0xff,0x10,0xff,0x08},
 {0xff,0x00,0xff,0x08,0xff,0x10,0xff,0x20,0xff,0x10,0xff,0x08,0xff,0x00},
 {0xff,0x00,0xff,0x00,0xff,0x08,0xff,0x10,0xff,0x08,0xff,0x00,0xff,0x00},
};

GLboolean Drawing = GL_FALSE; /* GL_TRUE if drawing */

/*
 * Local functions…
 */

void DisplayErrorMessage(char *, …);
void MakePalette(int);
LRESULT CALLBACK BlendProc(HWND, UINT, WPARAM, LPARAM);
void DrawXY(int, int);
void RepaintWindow(RECT *);

/*
 * 'WinMain()' - Main entry…
 */

Page 584 OpenGL Super Bible!

int APIENTRY
WinMain(HINSTANCE hInst, /* I - Current process instance */
 HINSTANCE hPrevInstance, /* I - Parent process instance */
 LPSTR lpCmdLine, /* I - Command-line arguments */
 int nCmdShow) /* I - Show window at startup? */
{
 MSG msg; /* Window UI event */
 WNDCLASS wc; /* Window class */
 POINT pos; /* Current mouse pos */

 /*
 * Register main window…
 */

 wc.style = 0;
 wc.lpfnWndProc = (WNDPROC)BlendProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = 0;
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = "Blend Paint";

 if (RegisterClass(&wc) == 0)
 {
 DisplayErrorMessage("Unable to register win dow class!");
 return (FALSE);
 };

 /*
 * Then create it…
 */

 BlendWindow = CreateWindow("Blend Paint", "Blend Paint",
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN |
 WS_CLIPSIBLINGS,
 32, 32, 400, 300,
 NULL, NULL, hInst, NULL);

 if (BlendWindow == NULL)
 {
 DisplayErrorMessage("Unable to create window!");
 return (FALSE);
 };

 ShowWindow(BlendWindow, nCmdShow);
 UpdateWindow(BlendWindow);

 /*
 * Loop on events until the user quits this application…
 */

OpenGL Super Bible! Page 585

 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 };

 return (msg.wParam);
}

/*
 * 'DisplayErrorMessage()' - Display an error message dialog.
 */

void
DisplayErrorMessage(char *format, /* I - printf() style format string */
 ...) /* I - Other arguments as necessary */
{
 va_list ap; /* Argument pointer */
 char s[1024]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format);
 vsprintf(s, format, ap);
 va_end(ap);

 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, s, "Error", MB_OK | MB_ICONEXCLAMATION);
}

/*
 * 'MakePalette()' - Make a color palette for RGB colors if necessary.
 */

void
MakePalette(int pf) /* I - Pixel format ID */
{
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 LOGPALETTE *pPal; /* Pointer to logical palett e */
 int nColors; /* Number of entries in palette */
 int i, /* Color index */
 rmax, /* Maximum red value */
 gmax, /* Maximum green value */
 bmax; /* Maximum blue value */

 /*
 * Find out if we need to define a color palette…
 */

 DescribePixelFormat(BlendDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 if (!(pfd.dwFlags & PFD_NEED_PALETTE))
 {
 BlendPalette = NULL;

Page 586 OpenGL Super Bible!

 return;
 };

 /*
 * Allocate memory for a color palette…
 */

 nColors = 1 << pfd.cColorBits;

 pPal = (LOGPALETTE *)malloc(sizeof(LOGPALETTE) + nColors *
 sizeof(PALETTEENTRY));

 pPal->palVersion = 0x300;
 pPal->palNumEntries = nColors;

 /*
 * Get the maximum values for red, green, and blue. Then build 'nColors'
 * colors…
 */

 rmax = (1 << pfd.cRedBits) - 1;
 gmax = (1 << pfd.cGreenBits) - 1;
 bmax = (1 << pfd.cBlueBits) - 1;

 for (i = 0; i < nColors; i ++)
 {
 pPal->palPalEntry[i].peRed = 255 * ((i >> pfd.cRedShift) & rmax) /
 rmax;
 pPal->palPalEntry[i].peGreen = 255 * ((i >> pfd.cGreenShift) & gmax) /
 gmax;
 pPal->palPalEntry[i].peBlue = 255 * ((i >> pfd.cBlueShift) & bmax) /
 bmax;

 pPal->palPalEntry[i].peFlags = 0;
 };

 /*
 * Create, select, and realize the palette…
 */

 BlendPalette = CreatePalette(pPal);
 SelectPalette(BlendDC, BlendPalette, FALSE);
 RealizePalette(BlendDC);

 free(pPal);
}

/*
 * 'BlendProc()' - Handle window events in the viewing window.
 */

LRESULT CALLBACK
BlendProc(HWND hWnd, /* I - Window triggering this event */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word' parameter value */

OpenGL Super Bible! Page 587

 LPARAM lParam) /* I - 'long' parameter value */
{
 int pf; /* Pixel format ID */
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 PAINTSTRUCT ps; /* WM_PAINT message info */
 RECT rect; /* Current client area rectangle */

 switch (uMsg)
 {
 case WM_CREATE :
 /*
 * 'Create' message. Get device and rendering contexts, and
 * setup the client area for OpenGL drawing…
 */

 BlendDC = GetDC(hWnd);

 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL;
 /* Do OpenGL drawing */

 pfd.dwLayerMask = PFD_MAIN_PLANE; /* Main drawing pla ne */
 pfd.iPixelType = PFD_TYPE_RGBA; /* RGB color buffer */
 pfd.cColorBits = 0; /* Best color buffer please */
 pfd.cDepthBits = 0; /* Don't need a depth buffer
*/
 pfd.cStencilBits = 0; /* No stencil buffer */
 pfd.cAccumBits = 0; /* No accumulation buffer */

 pf = ChoosePixelFormat(BlendDC, &pfd);
 if (pf == 0)
 DisplayErrorMessage("texscene was unable to choose a suitable
 pixel format!");
 else if (!SetPixelFormat(BlendDC, pf, &pfd))
 DisplayErrorMessage("texscene was unable to set the pixel
 format!");

 MakePalette(pf);

 BlendRC = wglCreateContext(BlendDC);
 wglMakeCurrent(BlendDC, BlendRC);
 break;

 case WM_SIZE :
 case WM_PAINT :
 /*
 * Repaint the client area with our bitmap…
 */

 BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &rect);
 RepaintWindow(&rect);

Page 588 OpenGL Super Bible!

 EndPaint(hWnd, &ps);
 break;

 case WM_COMMAND :
 /*
 * Handle menu selections…
 */

 switch (LOWORD(wParam))
 {
 case IDM_FILE_EXIT :
 DestroyWindow(BlendWindow);
 break;
 };
 break;

 case WM_QUIT :
 case WM_CLOSE :
 /*
 * Destroy the windows and bitmaps and exit…
 */

 DestroyWindow(BlendWindow);

 exit(0);
 break;

 case WM_DESTROY :
 /*
 * Release and free the device context, rendering
 * context, and color palette…
 */

 if (BlendRC)
 wglDeleteContext(BlendRC);

 if (BlendDC)
 ReleaseDC(BlendWindow, BlendDC);

 if (BlendPalette)
 DeleteObject(BlendPalette);

 PostQuitMessage(0);
 break;

 case WM_QUERYNEWPALETTE :
 /*
 * Realize the color palette if necessary…
 */

 if (BlendPalette)
 {
 SelectPalette(BlendDC, BlendPalette, FALSE) ;
 RealizePalette(BlendDC);

OpenGL Super Bible! Page 589

 InvalidateRect(hWnd, NULL, FALSE);
 return (TRUE);
 };
 break;

 case WM_PALETTECHANGED:
 /*
 * Reselect our color palette if necessary…
 */

 if (BlendPalette && (HWND)wParam != hWnd)
 {
 SelectPalette(BlendDC, BlendPalette, FALSE);
 RealizePalette(BlendDC);

 UpdateColors(BlendDC);
 };
 break;

 case WM_LBUTTONDOWN : /* Left button = red */
 Drawing = GL_TRUE;
 glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_TRUE);
 DrawXY(LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_MBUTTONDOWN : /* Middle button = green */
 Drawing = GL_TRUE;
 glColorMask(GL_FALSE, GL_TRUE, GL_FALSE, GL_TRUE);
 DrawXY(LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_ RBUTTONDOWN : /* Right button = blue */
 Drawing = GL_TRUE;
 glColorMask(GL_FALSE, GL_FALSE, GL_TRUE, GL_TRUE);
 DrawXY(LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_MOUSEMOVE :
 if (Drawing)
 DrawXY(LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_LBUTTONUP :
 case WM_MBUTTONUP :
 case WM_RBUTTONUP :
 Drawing = GL_FALSE;
 break;

 default :
 /*
 * Pass all other messages through the default window
 * procedure…
 */

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));

Page 590 OpenGL Super Bible!

 };

 return (FALSE);
}

/*
 * 'DrawXY()' - Draw at the given mouse position.
 */

void
DrawXY(int mousex, /* I - Horizontal mouse position */
 int mousey) /* I - Vertical mouse position */
{
 glRasterPos2i(mousex, mousey);
 glDrawPixels(7, 7, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, Ble ndBrush[0]);

 glFinish();
}

/*
 * 'RepaintWindow()' - Redraw the client area.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 /*
 * Reset the viewport and clear the window to white…
 */

 glViewport(0, 0, rect->right, rect->bottom);
 glOrtho(0.0, (float)rect->right, (float)rect->bottom, 0.0, -1.0, 1.0);

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
 glClear(GL_COLOR_BUFFER_BIT);

 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 glFinish();
}

Fog

OpenGL provides depth-cueing (shading based upon distance) and atmospheric effects
through the glFog function. Essentially, fog provides a way of adding (mixing) a predefined
color with each vertex or texture image based upon the distance from the user. Fog is often
used in flight simulators and animation packages to provide the final real-world look to
computer graphics.

OpenGL Super Bible! Page 591

OpenGL supports three kinds of fog: GL_LINEAR for depth-cueing, GL_EXP for heavy
fog or clouds, and GL_EXP2 for smoke and weather haze. Figure 16-3 shows GL_LINEAR
fog; later, in Figure 16-5, you can see the effect of GL_EXP fog.

Figure 16-3 Depth-cued teapots using glFog

You choose the type of fog (or fog mode) using glFogi:

glFogi(GL_FOG_MODE, GL_LINEAR);

glFogi(GL_FOG_MODE, GL_EXP);

glFogi(GL_FOG_MODE, GL_EXP2);

Once you have chosen the fog type, you must choose a fog color that will be mixed with
your scene using the glFogfv or glFogiv functions:

GLfloat fog_color[4] = { r, g, b, a };
glFogfv(GL_FOG_COLOR, fog_color);

GLint fog_color[4] = { r, g, b, a };
glFogiv(GL_FOG_COLOR, fog_color);

For depth-cueing, you’ll generally want to make the fog color the same as the background
(black, in Figure 16-3). This will make the depth-cueing look “correct” to the eye— that is,
objects farther away will appear to fade into the background. For some applications, you
might want to give the fog a bright color such as yellow, instead, so that things stand out
more against the background.

Drawing Depth-Cued Teapots

Listing 16-3 draws two teapots using depth-cueing. The draw_scene function handles all
graphics drawing and starts by setting the fog color to black and the fog mode to
GL_LINEAR.

Page 592 OpenGL Super Bible!

static float fog_color[4] = { 0.0, 0.0, 0.0, 0.0 };

glEnable(GL_FOG);
glFogf(GL_FOG_MODE, GL_LINEAR);
glFogfv(GL_FOG_COLOR, fog_color);

Finally, it draws both teapots at different distances from the viewer. The results are visibly
obvious.

Listing 16-3 FOGPOT.C: Depth-cued teapots using glFog

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene…
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation…
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in front
 * of it.
 */

void CALLBACK

OpenGL Super Bible! Page 593

draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };
 static float fog_color[4] = { 0.0, 0.0, 0.0, 0.0 };

 /*
 * Enable drawing features that we need…
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers…
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors…
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second is
 * blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glEnable(GL_COLOR_MATERIAL);

 glEnable(GL_FOG);
 glFogf(GL_FOG_MODE, GL_LINEAR);
 glFogfv(GL_FOG_COLOR, fog_color);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -15.0);
 glRotatef(-rotation, 0.0, 1.0, 0.0);

 glColor3f(1.0, 1.0, 0.0);
 auxSolidTeapot(1.0);
 glPopMatrix();

 glPushMatrix();

Page 594 OpenGL Super Bible!

 glTranslatef(1.0, 0.0, -10.0);
 glRotatef(rotation, 0.0, 1.0, 0.0);

 glColor3f(0.0, 1.0, 1.0);
 auxSolidTeapot(1.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle…
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("Fogged Teapots");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

Other Types of Fog

For the other fog types, you’ll probably make the fog color white or some other light color.
In addition to the fog color, GL_EXP and GL_EXP2 fog types have an additional density
parameter:

glFogf(GL_FOG_DENSITY, density);

The density parameter can be any number greater than 0.0, but typically you’ll keep it less
than 0.1. Figure 16-4 shows how the density of fog affects how much of the fog color is
used.

OpenGL Super Bible! Page 595

Figure 16-4 Fog density over distance

Fog Distance

The fog distance is the transformed Z component of all glVertex calls. This Z coordinate lies
in the range 0.0 to 1.0 and is the same number that is stored in the depth buffer. The fog
distance and density determine how much fog color is mixed in, as shown here:

By default, fog is applied at all depths from 0.0 to 1.0. The GL_FOG_START and
GL_FOG_END parameters restrict the range of depth values used for fog calculations. This
is typically used to more accurately model fog density when the immediate area in front of
the viewer is not covered (for example, when flying through clouds, the breaks between
clouds will not be as dense).

Revisiting the Terrain Viewing Program

Weather haze effects are the perfect addition to the terrain viewing program of Chapter 12.
In Figure 16-5 you can see the fantastic improvement in image quality. This was achieved
by adding the following three lines of code:

glFogf(GL_FOG_DENSITY, 0.0025);
glFogi(GL_FOG_MODE, GL_EXP);
glFogfv(GL_FOG_COLOR, fogcolor);

Page 596 OpenGL Super Bible!

Figure 16-5 Weather haze using glFog

The fog color in this case was defined as a solid white RGBA color (1.0, 1.0, 1.0, 1.0). To
improve the output even more at the expense of speed, we can also call

glHint(GL_FOG_HINT, GL_NICEST);

This forces fog to be evaluated at every pixel rather than every vertex. Unfortunately, for
most scenes this means 100 times as many calculations must be performed!

Now here is Listing 16-4, with the updated RepaintWindow function.

Listing 16-4 FOGSCENE.C: Updated RepaintWindow function using glFog for the terrain
viewing program

/*
 * 'RepaintWindow()' - Redraw the client area with our scene.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 int x, y; /* Terrain (x,y) location */
 int last_type; /* Previous terrain type */
 int *type; /* Current terrain type */
 GLfloat *height, /* Current terrain height */
 (*n)[3]; /* Current terrain normal */
 static GLfloat sky_top[4][3] =
 { /* Sky coordinates */
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },

OpenGL Super Bible! Page 597

 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE },
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE }
 };
 static GLfloat sky_bottom[4][3] =
 {
 { -TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, TERRAIN_EDGE },
 { -TERRAIN_EDGE, 0.0, TERRAIN_EDGE }
 };
 static GLfloat sunpos[4] = { 0.0, 1.0, 0.0, 0.0 };
 static GLfloat suncolor[4] = { 64.0, 64.0, 64.0, 1.0 };
 static GLfloat sunambient[4] = { 0.001, 0.001, 0.001, 1.0 };
 static GLfloat fogcolor[4] = { 1.0, 1.0, 1.0, 1.0 };

 /*
 * Reset the viewport and clear the window to light blue…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.5, 0.5, 1.0, 1.0);

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_FOG);
 glFogf(GL_FOG_DENSITY, 0.0025);
 glFogi(GL_FOG_MODE, GL_EXP);
 glFogfv(GL_FOG_COLOR, fogcolor);

 if (Moving || Drawing)
 {
 /*
 * Don't texture while flying or drawing; it's too slow…
 * Also, draw to the back buffer for smooth animation.
 */

 glDisable(GL_TEXTURE_2D);
 glDrawBuffer(GL_BACK);
 }
 else
 {
 /*
 * Enable textures when we've stopped moving or drawing.
 * This generates a nice scene that we can print out or
 * save to a bitmap file…
 *
 * Because it takes longer, we draw to the front buffer
 * so the user can see some progress…
 */

 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glDrawBuffer(GL_FRONT);
 };

Page 598 OpenGL Super Bible!

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Setup viewing transformations for the current position and
 * orientation…
 */

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)rect->right / (float)rect->bottom,
 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glRotatef(Roll, 0.0, 0.0, 1.0);
 glRotatef(Pitch, -1.0, 0.0, 0.0);
 glRotatef(Heading, 0.0, 1.0, 0.0);
 glTranslatef(-Position[0],
 -Position[1],
 -Position[2]);
 glScalef(TERRAIN_SCALE, TERRAIN_SCALE, TERRAIN_SCALE);

 if (!(Moving || Drawing))
 {
 /*
 * Draw the sky…
 */

 glDisable(GL_LIGHTING);
 glCallList(SkyTexture);
 glBegin(GL_QUAD_STRIP);
 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.0);
 glVertex3fv(sky_bottom[i]);

 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

 glTexCoord2f(4.0, 0.0);
 glVertex3fv(sky_bottom[0]);

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();

 glBegin(GL_TRIANGLE_FAN);
 glTexCoord2f(0.5, 1.0);
 glVertex3f(0.0, TERRAIN_SIZE, 0.0);

 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);

OpenGL Super Bible! Page 599

 };

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();
 };

 /*
 * Setup lighting…
 */

 glEnable(GL_LIGHTING);
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_POSITION, sunpos);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, suncolor);
 glLightfv(GL_LIGHT0, GL_AMBIENT, sunambient);

 if (Moving || Drawing)
 glEnable(GL_COLOR_MATERIAL);
 else
 glDisable(GL_COLOR_MATERIAL);

 /*
 * Then the terrain…
 */

 type = TerrainType[0];
 height = TerrainHeight[0];
 n = TerrainNormal[0];
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++)
 {
 last_type = -1;

 for (x = 0; x < TERRAIN_SIZE; x ++, type ++, height ++, n ++)
 {
 if (last_type != *type)
 {
 /*
 * If the type of terrain changes, end any existing
 * strip of quads and reset color/texture parameters…
 */

 if (last_type != -1)
 glEnd();

 switch (*type)
 {
 case IDC_WATER :
 if (Moving || Drawing)
 glColor3f(0.0, 0.0, 0.5);
 else
 glCallList(WaterTexture);
 break;

Page 600 OpenGL Super Bible!

 case IDC_GRASS :
 if (Moving || Drawing)
 glColor3f(0.0, 0.5, 0.0);
 else
 glCallList(GrassTexture);
 break;
 case IDC_ROCKS :
 if (Moving || Drawing)
 glColor3f(0.25, 0.25, 0.25);
 else
 glCallList(RocksTexture);
 break;
 case IDC_TREES :
 if (Moving || Drawing)
 glColor3f(0.0, 0.25, 0.0);
 else
 glCallList(TreesTexture);
 break;
 case IDC_MOUNTAINS :
 if (Moving || Drawing)
 glColor3f(0.2, 0.1, 0.05);
 else
 glCallList(MountainsTexture);
 break;
 };

 glBegin(GL_QUAD_STRIP);
 if (last_type != -1)
 {
 /*
 * Start from the previous location to prevent
 * holes…
 */

 glTexCoord2i(x * 2 - 2, y * 2);
 glNormal3fv(n[-1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[-1],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2 - 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE - 1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[TERRAIN_SIZE - 1],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };

 last_type = *type;
 };

 glTexCoord2i(x * 2, y * 2);
 glNormal3fv(n[0]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[0],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2, y * 2 + 2);

OpenGL Super Bible! Page 601

 glNormal3fv(n[TERRAIN_SIZE]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[TERRAIN_SIZE],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };

 glEnd();
 };
 glPopMatrix();

/*
 * While we fly or draw we're double-buffering. Swap buffers
 * as necessary…
 */

 glFinish();
 if (Moving || Drawing)
 SwapBuffers(SceneDC);
}

Summary

Blending and fog complete the OpenGL library and are yet another source for making the
images you generate more realistic. Blending provides transparency effects and improves
anti-aliasing of points, lines, and polygons. Fog supports a variety of depth-cueing and
weather effects that make images look less exact and, ironically, more like the real world.

Page 602 OpenGL Super Bible!

Reference Section

glBlendFunc

Purpose
Sets color blending functions.

Include File
<GL/gl.h>

Syntax
void glBlendFunc(GLenum sfactor, GLenum dfactor);

Description
This function sets the source and destination blending factors for color blending. You
must call glEnable(GL_BLEND) to enable color blending. Blending is only available
in RGBA drawing contexts. The default settings for blending are
glBlendFunc(GL_ONE, GL_ZERO).

Parameters

sfactor
GLenum: The source color’s blending function.

dfactor
GLenum: The destination pixel color’s blending function.

Returns
None.

Example
See the example in CH16\BLENDPOT.C on the CD.

OpenGL Super Bible! Page 603

glFog

Purpose
Specifies fog parameters.

Include File
<GL/gl.h>

Syntax
void glFogf(GLenum pname, GLfloat param);
void glFogfv(GLenum pname, GLfloat *params);
void glFogi(GLenum pname, GLint param);
void glFogiv(GLenum pname, GLint *params);

Description
The glFog functions set fog parameters. To draw using fog you must call
glEnable(GL_FOG).

Parameters

pname
GLenum: The parameter to set. Valid names are as follows:

GL_FOG_COLOR The color of the fog; must be an array of 4
numbers representing the RGBA color.

GL_FOG_DENSITY The fog density; a number greater than 0.0.
The density is only used for the GL_EXP
and GL_EXP2 fog modes.

GL_FOG_END The farthest distance to which the fog is
applied. This is a transformed Z (depth)
value from 0.0 to 1.0.

GL_FOG_MODE The fog type; specifies the formula used to
render fog effects (GL_LINEAR, GL_EXP,
or GL_EXP2).

GL_FOG_START The closest distance to which fog is
applied. This is a transformed Z (depth)
value from 0.0 to 1.0.

param
GLfloat, GLint: The parameter value.

params
GLfloat *, GLint *: A pointer to the parameter array.

Returns
None.

Example
See the example in CH16\FOGSCENE.C on the CD.

Page 604 OpenGL Super Bible!

Chapter 17
Curves and Surfaces: What the #%@!&* Are NURBS?

What you’ll learn in this chapter:

How to… Functions You’ll Use

Use maps to render Bázier curves and surfaces glMap, glEvalCoord
Use evaluators to simplify surface mapping glMapGrid, glEvalMesh
Create NURBS surfaces gluNewNurbsRenderer,

gluBeginSurface, gluNurbsSurface,
gluEndSurface,
gluDeleteNurbsRenderer

Create trimming curves gluBeginTrim, gluPwlCurve,
gluEndTrim

For most applications that make use of 3D graphics, you’ll need smooth curves and surfaces.
Making use of the techniques discussed elsewhere in this book, you could divide such a
surface into many smaller quads or triangles, then calculate the normals at the various
vertices, and apply lighting— producing what appears to be a very smooth and flowing
surface. Or, with little more than basic algebra you could even write code that evaluates an
equation for a surface and uses something like triangle strips or quads to generate a surface
with either a fine or coarse visual resolution.

Suppose, however, you want to create a curve or surface and you don’t have an algebraic
equation to start with. It’s far from a trivial task to figure it out in reverse, starting from what
you visualize as the end result and working down to a second- or third-order polynomial.
Taking a rigorous mathematical approach is time consuming and error prone, even with the
aid of a computer. And forget about doing it in your head.

Recognizing this fundamental need in the art of computer-generated graphics, Pierre Bázier,
an automobile designer for Renault in the 1970s, created a set of mathematical models that
could represent curves and surfaces by specifying only a small set of control points. In
addition to simplifying the representation of curved surfaces, the models facilitated
interactive adjustments to the shape of the curve or surface..

Other types of curves and surfaces, and indeed a whole new vocabulary for computer-
generated surfaces soon evolved. The mathematics behind this magic show are no more
complex than the matrix manipulations in Chapter 7, and an intuitive understanding of these

OpenGL Super Bible! Page 605

curves is easy to grasp. As we did in Chapter 7, we will take the approach that you can do a
lot with these functions without a deep understanding of their mathematics.

Curves and Surfaces

A curve has a single starting point, a length, and an endpoint. It’s really just a line that
squiggles about in 3D space. A surface, on the other hand, has width and length and thus a
surface area. We’ll begin by showing you how to draw some smooth curves in 3D space,
and then extend this to surfaces. But first let’s establish some common vocabulary and math
fundamentals.

Parametric Representation

When you think of straight lines, you may think of this famous equation:

Y = mX + b

Here m equals the slope of the line, and b is the Y intercept of the line (the place where the
line crosses the y-axis). This may take you back to your eighth-grade algebra class, where
you also learned about the equations for parabolas, hyperbolas, exponential curves, and so
on. All of these equations expressed Y (or X) in terms of some function of X (or Y).

Another way of expressing the equation for a curve or line is as a parametric equation. A
parametric equation expresses both X and Y in terms of another variable that varies across
some predefined range of values, that is not explicitly a part of the geometry of the curve.
Sometimes in physics, for example, the X, Y, and Z coordinates of a particle may be in
terms of some functions of time, where time is expressed in seconds. In the following, f(),
g(), and h() are unique functions that vary with time (t):

 X = f(t)
 Y = g(t)
 Z = h(t)

When we define a curve in OpenGL, we will also define it as a parametric equation. The
parametric parameter of the curve, which we’ll call u, and its range of values will be the
domain of that curve. Surfaces will be described using two parametric parameters: u and v.
Figure 17-1 shows both a curve and a surface defined in terms of u and v domains. The
important thing to realize here is that the parametric parameters (u and v) represent the
extents of the equations that describe the curve; they do not reflect actual coordinate values.

Page 606 OpenGL Super Bible!

Figure 17-1 Parametric representations of curves and surfaces

Control Points

Curves are represented by a number of control points that influence the shape of the curve.
For the Bázier curves, the first and last control points are actually part of the curve. The
other control points act as magnets, pulling the curve towards them. Figure 17-2 shows some
examples of this concept, with varying numbers of control points.

Figure 17-2 How control points affect curve shape

The order of the curve is represented by the number of control points used to describe its
shape. The degree is one less than the order of the curve. The mathematical meaning of
these terms pertains to the parametric equations that exactly describe the curve, with the
order being the number of coefficients, and the degree being the highest exponent of the
parametric parameter. If you want to read more about the mathematical basis of Bázier
curves, see Appendix B.

The curve in Figure 17-2(b) is called a quadratic curve (degree 2), and Figure 17-2(c) is
called a cubic (degree 3). Cubic curves are the most typical. Theoretically, you could define
a curve of any order, but higher-order curves start to oscillate uncontrollably and can vary
wildly with the slightest change to the control points.

OpenGL Super Bible! Page 607

Continuity

If two curves placed side by side share an endpoint (called the breakpoint), they together
form a piecewise curve. The continuity of these curves at this breakpoint describes how
smooth the transition is between them. The four categories of continuity are none (C0),
positional (C1), tangential (C2), and curvature (C3).

As you can see in Figure 17-3, no continuity is when the two curves don’t meet at all.
Positional continuity is achieved when the curves at least meet and share a common
endpoint. Tangential continuity occurs when the two curves have the same tangent at the
breakpoint. Finally, curvature continuity means the two curves’ tangents also have the same
rate of change at the breakpoint (thus an even smoother transition).

Figure 17-3 Continuity of piecewise curves

When assembling complex surfaces or curves from many pieces, you will usually strive for
C2 or C3 continuity. You’ll see later that some parameters for curve and surface generation
can be chosen to produce the desired continuity.

Evaluators

OpenGL contains several functions that make it very easy to draw Bázier curves and
surfaces by specifying the control points and the range for the parametric u and v
parameters. Then, by calling the appropriate evaluation function (the evaluator), the points
that make up the curve or surface are generated. We’ll start with a 2D example of a Bázier
curve and then extend this to three dimensions to create a Bázier surface.

A 2D Curve

The best way to get started is with an example, explaining it line by line. Listing 17-1 shows
some code from the example program BEZIER in this chapter’s subdirectory on the CD.
This program specifies four control points for a Bázier curve and then renders the curve
using an evaluator. The output from Listing 17-1 is shown in Figure 17-4.

Page 608 OpenGL Super Bible!

Figure 17-4 Output from the BEZIER example program

Listing 17-1 Code from BEZIER that draws a Bázier curve with four control points

// The number of control points for this curve
GLint nNumPoints = 4;

GLfloat ctrlPoints[4][3]= {{ -4.0f, 0.0f, 0.0f}, // Endpoint
 { -6.0f, 4.0f, 0.0f}, // Control Point
 { 6.0f, -4.0f, 0.0f}, // Control Point
 { 4.0f, 0.0f, 0.0 f }}; // Endpoint
…
…

// This function is used to superimpose the control points over the curve
void DrawPoints(void)
 {
 int i; // Counting variable

 // Set point size larger to make more visible
 glPointSize(5.0f);

 // Loop through all control points for this example
 glBegin(GL_POINTS);
 for(i = 0; i < nNumPoints; i++)
 glVertex2fv(ctrlPoints[i]);
 glEnd();
 }

// Change viewing volume and viewport. Called when wind ow is resized
void ChangeSize(GLsizei w, GLsizei h)

OpenGL Super Bible! Page 609

 {
 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluOrtho2D(-10.0f, 10.0f, -10.0f, 10.0f);

 // Modelview matrix reset
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

// Called to draw scene
void RenderScene(void)
 {
 int i;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap1f(GL_MAP1_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 100.0f, // Upper u range
 3, // Distance between points in the
 data
 nNumPoints, // Number of control points
 &ctrlPoints[0][0]); // Array of control points

 // Enable the evaluator
 glEnable(GL_MAP1_VERTEX_3);

 // Use a line strip to "connect the dots"
 glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
 glEnd();

 // Draw the Control Points
 DrawPoints();

 // Flush drawing commands
 glFlush();
 }

Page 610 OpenGL Super Bible!

The first thing we do in Listing 17-1 is define the control points for our curve:

// The number of control points for this curv e
GLint nNumPoints = 4;

GLfloat ctrlPoints[4][3]= {{ -4.0f, 0.0f, 0.0f}, // Endpoint
 { -6.0f, 4.0f, 0.0f}, // Control Point
 { 6.0f, -4.0f, 0.0f}, // Control Point
 { 4.0f, 0.0f, 0.0f }}; // Endpoint

We defined global variables for the number of control points and the array of control points.
To experiment, you can change these by adding more control points, or just modifying the
position of these points.

The function DrawPoints() is pretty straightforward. We call this function from our
rendering code to display the control points along with the curve. This also is very useful
when you are experimenting with control-point placement. Our standard ChangeSize()
function establishes a 2D orthographic projection that spans from –10 to +10 in the x and y
directions.

Finally, we get to the rendering code. The function RenderScene() first calls glMap1f (after
clearing the screen) to create a mapping for our curve:

// Called to draw scene
void RenderScene(void)
 {
 int i;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap1f(GL_MAP1_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 100.0f, // Upper u range
 3, // Distance between points in the
 data
 nNumPoints, // Number of control points
 &ctrlPoints[0][0]); // Array of control points
 …
 …

The first parameter to glMap1f, GL_MAP1_VERTEX_3, sets up the evaluator to generate
vertex coordinate triplets (x, y, and z), as opposed to GL_MAP1_VERTEX_4 which would
generate the coordinates and an alpha component. You can also have the evaluator generate
other values, such as texture coordinates and color information. See the Reference Section
for details.

OpenGL Super Bible! Page 611

The next two parameters specify the lower and upper bounds of the parametric u value for
this curve. The lower value specifies the first point on the curve, and the upper value
specifies the last point on the curve. All the values in between correspond to the other points
along the curve. Here we set the range to 0–100.

The fourth parameter to glMap1f specifies the number of floating point values between the
vertices in the array of control points. Each vertex consists of three floating point values (for
x, y, and z), so we set this value to 3. This flexibility allows the control points to be placed
in an arbitrary data structure, as long as they occur at regular intervals.

The last parameter is a pointer to a buffer containing the control points used to define the
curve. Here, we pass a pointer to the first element of the array. Once the mapping for the
curve is created, we enable the evaluator to make use of this mapping. This is maintained
through a state variable, and the following function call is all that is needed to enable the
evaluator to produce points along the curve:

// Enable the evaluator
glEnable(GL_MAP1_VERTEX_3);

The function glEvalCoord1f takes a single argument: a parametric value along the curve.
This function then evaluates the curve at this value and calls glVertex internally for that
point. By looping through the domain of the curve and calling glEvalCoord to produce
vertices, we can draw the curve with a simple line strip:

// Use a line strip to "connect the dots"
glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
glEnd();

Finally, we wish to display the control points themselves:

// Draw the Control Points
DrawPoints();
// Flush drawing commands
glFlush();
}

Evaluating a Curve

OpenGL can make things even easier than this. We set up a grid with the function
glMapGrid, which tells OpenGL to create an evenly spaced grid of points over the u domain
(the parametric argument of the curve). Then we call glEvalMesh to “connect the dots”
using the primitive specified (GL_LINE or GL_POINTS). The following two function calls:

Page 612 OpenGL Super Bible!

// Use higher level functions to map to a grid, then evaluate the
// entire thing.

// Map a grid of 100 points from 0 to 100
glMapGrid1d(100,0.0,100.0);

// Evaluate the grid, using lines
glEvalMesh1(GL_LINE,0,100);

completely replace this code:

// Use a line strip to "connect-the-dots"
glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
glEnd();

As you can see, this is more compact and efficient, but its real benefit comes when
evaluating surfaces rather than curves.

A 3D Surface

Creating a 3D Bázier surface is much like the 2D version. In addition to defining points
along the u domain, we must define them along the v domain as well.

Listing 17-2 is from our next example program, BEZ3D, and displays a wire mesh of a 3D
Bázier surface. The first change from the preceding example is that we have defined three
more sets of control points for the surface along the v domain. To keep this surface simple,
the control points are the same except for the Z value. This will create a uniform surface, as
if we simply extruded a 2D Bázier along the Z axis.

Listing 17-2 BEZ3D code to create a Bázier surface

// The number of control points for this curve
GLint nNumPoints = 3;

GLfloat ctrlPoints[3][3][3]= {{{ -4.0f, 0.0f, 4.0f}, // V = 0
 { -2.0f, 4.0f, 4.0f},
 { 4.0f, 0.0f, 4.0f }},

 {{ -4.0f, 0.0f, 0.0f}, // V = 1
 { -2.0f, 4.0f, 0.0f},
 { 4.0f, 0.0f, 0.0f }},

 {{ -4.0f, 0.0f, -4.0f}, // V = 2
 { -2.0f, 4.0f, -4.0f},
 { 4.0f, 0.0f, -4.0f }}};
…

OpenGL Super Bible! Page 613

…

// Called to draw scene
void RenderScene(void)
 {
 //int i;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Save the modelview matrix stack
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Rotate the mesh around to make it easier to see
 glRotatef(45.0f, 0.0f, 1.0f, 0.0f);
 glRotatef(60.0f, 1.0f, 0.0f, 0.0f);

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap2f(GL_MAP2_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 10.0f, // Upper u range
 3, // Distance between points in the
 data
 3, // Dimension in u direction (order)
 0.0f, // Lower v range
 10.0f, // Upper v range
 9, // Distance between points in the
 data
 3, // Dimension in v direction (order)
 &ctrlPoints[0][0][0]); // array of control points

 // Enable the evaluator
 glEnable(GL_MAP2_VERTEX_3);

 // Use higher level functions to map t o a grid, then evaluate the
 // entire thing.

 // Map a grid of 100 points from 0 to 100
 glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

 // Evaluate the grid, using lines
 glEvalMesh2(GL_LINE,0,10,0,10);

 // Draw the Control Points
 DrawPoints();

 // Restore the modelview matrix
 glPopMatrix();

 // Flush drawing commands
 glFlush();
 }

Page 614 OpenGL Super Bible!

Our rendering code is different now, too. In addition to rotating the figure for better effect,
we call glMap2f instead of glMap1f. This specifies control points along two domains (u and
v) instead of just one (u).

// Sets up the Bzier
// This actually only needs to be called once and could go in
// the setup function
glMap2f(GL_MAP2_VERTEX_3, // Type of data generated
0.0f, // Lower u range
10.0f, // Upper u range
3, // Distance between points in the data
3, // Dimension in u dir ection (order)
0.0f, // Lower v range
10.0f, // Upper v range
9, // Distance between points in the data
3, // Dimension in v direction (order)
&ctrlPoints[0][0][0]); // array of control points

We must still specify the lower and upper range for u; and the distance between points in the
u domain is still 3. Now, however, we must also specify the lower and upper range in the v
domain. The distance between points in the v domain is now 9 values, because we have a
three-dimensional array of control points, with each span in the u domain being three points
of three values each (3 × 3 = 9). Then we tell glMap2f how many points in the v direction
are specified for each u division, followed by a pointer to the control points themselves.

The two-dimensional evaluator is enabled just like the one-dimensional one, and we call
glMapGrid2f with the number of divisions in the u and v direction.

// Enable the evaluator
glEnable(GL_MAP2_VERTEX_3);

// Use higher level functions to map to a grid, then evaluate the
// entire thing.

// Map a grid of 10 points from 0 to 10
glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

After the evaluator is set up, we can call the two-dimensional (meaning u and v) version of
glEvalMesh to evaluate our surface grid. Here we evaluate using lines, and specify the u and
v domains values to range from 0 to 10.

// Evaluate the grid, using lines
glEvalMesh2(GL_LINE,0,10,0,10);

OpenGL Super Bible! Page 615

The end result is shown in Figure 17-5.

Figure 17-5 Output from the BEZ3D program

Lighting and Normal Vectors

Another valuable features of evaluators is the automatic generation of surface normals. By
simply changing this code:

// Evaluate the grid, using lines
glEvalMesh2(GL_LINE,0,10,0,10);

to this:

// Evaluate the grid, using lines
glEvalMesh2(GL_FILL,0,10,0,10);

and then calling

glEnable(GL_AUTO_NORMAL);

in our initialization code, we enable easy lighting of surfaces generated by evaluators. Figure
17-6 shows the same surface as Figure 17-5, but with lighting enabled and automatic
normalization turned on. The code for this program is found in BEZLIT in the CD
subdirectory for this chapter. The program is only slightly modiied from BEZ3D.

Page 616 OpenGL Super Bible!

Figure 17-6 Output from BEZLIT program

NURBS

You can use evaluators to your heart’s content to evaluate Bázier surfaces of any degree, but
for more complex curves you will have to assemble your Bázier’s piecewise. As you add
more control points, it becomes difficult to create a curve that has good continuity. A higher
level of control is available through the glu library’s NURBS functions. NURBS stands for
non-uniform rational B-spline. Mathematicians out there might know immediately that this
is just a more generalized form of curves and surfaces that can produce Bázier curves and
surfaces, as well as some other kinds (mathematically speaking). They allow you to tweak
the influence of the control points you specified for the evaluators, to produce smoother
curves and surfaces with larger numbers of control points.

From Bázier to B-Splines

A Bázier curve is defined by two points that act as endpoints, and any number of other
control points that influence the shape of the curve. The three Bázier curves in Figure 17-7
have 3, 4, and 5 control points specified. The curve is tangent to a line that connects the
endpoints with their adjacent control points. For quadratic (3 points) and cubic (4 points)
curves, the resulting Báziers are quite smooth, usually with a continuity of C3 (curvature).
For higher numbers of control points, however, the smoothness begins to break down as the
additional control points pull and tug on the curve.

OpenGL Super Bible! Page 617

Figure 17-7 Bázier continuity as the order of the curve increases

B-splines (bi-cubic splines), on the other hand, work much as the Bázier curves do, but the
curve is broken down into segments. The shape of any given segment is influenced only by
the nearest four control points, producing a piecewise assemblage of a curve with each
segment exhibiting characteristics much like a fourth-order Bázier curve. This means a long
curve with many control points is inherently smoother, with the junction between each
segment exhibiting C3 continuity. It also means that the curve does not necessarily have to
pass through any of the control points.

Knots

The real power of NURBS is that you can tweak the influence of the four control points for
any given segment of a curve to produce the smoothness needed. This control is done via a
sequence of values called knots.

Two knot values are defined for every control point. The range of values for the knots
matches the u or v parametric domain, and must be nondescending. This is because the knot
values determine the influence of the control points that fall within that range in u/v space.
Figure 17-8 shows a curve demonstrating the influence of control points over a curve having
four units in the u parametric domain. Points in the middle of the u domain have a greater
pull on the curve, and only points between 0 and 3 have any effect on the shape of the curve.

Figure 17-8 Control point influence along u parameter

Page 618 OpenGL Super Bible!

The key here is that one of these influence curves exists at each control point along the u/v
parametric domain. The knot sequence then defines the strength of the influence of points
within this domain. If a knot value is repeated, then points near this parametric value have
even greater influence. The repeating of knot values is called knot multiplicity. Higher knot
multiplicity decreases the curvature of the curve or surface within that region.

Creating a NURBS Surface

The glu NURBS functions provide a useful high-level facility for rendering surfaces. You
don’t have to explicitly call the evaluators or establish the mappings or grids. To render a
NURBS, you first create a NURBS object that you will reference whenever you call the
NURBS-related functions to modify the appearance of the surface or curve.

The function gluNewNurbsRenderer creates a renderer for the NURB, and
gluDeleteNurbsRenderer destroys it. The following code fragments demonstrate these
functions in use:

// NURBS object pointer
GLUnurbsObj *pNurb = NULL;
…
…

// Setup the NURBS object
 pNurb = gluNewNurbsRenderer();

…
// Do your NURBS things…
…
…

// Delete the NURBS object if it was created
if(pNurb)
 gluDeleteNurbsRenderer(pNurb);

NURBS Properties

Once you have created a NURBS renderer, you can set various high-level NURBS
properties for the NURB, like this:

// Set sampling tolerance
gluNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, 2 5.0f);

// Fill to make a solid surface (use GLU_OUTLINE_POLYGON to create a
// polygon mesh)
gluNurbsProperty(pNurb, GLU_DISPLAY_MODE, (GLfloat)GLU_FILL);

You will typically call these functions in your setup routine, rather than repeatedly in your
rendering code. In this example, the GLU_SAMPLING_TOLERANCE defines how fine the

OpenGL Super Bible! Page 619

mesh that defines the surface is, and GLU_FILL tells OpenGL to fill in the mesh instead of
generating a wireframe.

Define the Surface

The surface definition is passed as arrays of control points and knot sequences to the
gluNurbsSurface function. As shown here, this function is also bracketed by calls to
gluBeginSurface and gluEndSurface:

// Render the NURB
// Begin the NURB definition
gluBeginSurface(pNurb);

// Evaluate the surface
gluNurbsSurface(pNurb, // pointer to NURBS renderer
 8, Knots, // No. of knots and knot array u direction
 8, Knots, // No. of knots and knot array v direction
 4 * 3, // Distance between contro l points in u dir.
 3, // Distance between control points in v dir.
 &ctrlPoints[0][0][0], // Control points
 4, 4, // u and v order of surface
 GL_MAP2_VERTEX_3); // Type of surface

// Done with surface
gluEndSurface(pNurb);

You can make more calls to gluNurbsSurface to create any number of NURBS surfaces, but
the properties you set for the NURBS renderer will still be in effect. Often this is desired,
anyway— you rarely want two surfaces (perhaps joined) to have different fill styles (one
filled, and one a wire mesh).

Using the control points and knot values shown in the next code segment, we produce the
NURBS surface shown in Figure 17-9. This NURBS program is found in this chapter’s
subdirectory on the CD.

Figure 17-9 Output from the NURBS program

Page 620 OpenGL Super Bible!

// Mesh extends four units -6 to +6 along x and y axis
// Lies in Z plane
// u v (x,y,z)
GLfloat ctrlPoints[4][4][3]= {{{ -6.0f, -6.0f, 0.0f}, // u = 0,
v = 0
 { -6.0f, -2.0f, 0.0f}, //
v = 1
 { -6.0f, 2.0f, 0.0f}, //
v = 2
 { -6.0f, 6.0f, 0.0f}}, //
v = 3

 {{ -2.0f, -6.0f, 0.0f}, // u = 1
v = 0
 { -2.0f, -2.0f, 8.0f}, //
v = 1
 { -2.0f, 2.0f, 8.0f}, //
v = 2
 { -2.0f, 6.0f, 0.0f}}, //
v = 3

 {{ 2.0f, -6.0f, 0.0f }, // u =2
v = 0
 { 2.0f, -2.0f, 8.0f }, //
v = 1
 { 2.0f, 2 .0f, 8.0f }, //
v = 2
 { 2.0f, 6.0f, 0.0f }}, //
v = 3

 {{ 6.0f, -6.0f, 0.0f}, // u = 3
v = 0
 { 6.0f, -2.0f, 0.0f}, //
v = 1
 { 6.0f, 2.0f, 0.0f}, //
v = 2
 { 6.0f, 6.0f, 0.0f}}}; //
v = 3

// Knot sequence for the NURB
GLfloat Knots[8] = {0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};

Trimming

Trimming means creating cutout sections from NURBS surfaces. This is often used for
literally trimming sharp edges of a NURBS surface. You can also create holes in your
surface just as easily. The output from the NURBT program is shown in Figure 17-10. This
is the same NURBS surface used in the preceding sample (without the control points
shown), with a triangular region removed. This program, too, is on the CD

OpenGL Super Bible! Page 621

Figure 17-10 Output from the NURBT program

Listing 17-3 is the code that was added to the NURBS example program to produce this
trimming effect. Within the gluBeginSurface/gluEndSurface delimiters, we call
gluBeginTrim and specify a trimming curve with gluPwlCurve, and finish the trimming
curve with gluEndTrim.

Listing 17-3 Modifications to NURBS to produce trimming

// Outside trimming points to include entire surface
GLfloat outsidePts[5][2] = /* counter clockwise */
 {{0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}, {0.0f,
0.0f}};

// Inside trimming points to create triangle shaped hole in surface
GLfloat insidePts[4][2] = /* clockwise */
 {{0.25f, 0.25f}, {0.5f, 0.5f}, {0.75f, 0.25f}, { 0.25f, 0.25f}};
…
…
…

// Render the NURB
// Begin the NURB definition
gluBeginSurface(pNurb);

// Evaluate the surface
gluNurbsSurface(pNurb, // pointer to NURBS renderer
 8, Knots, // No. of knots and knot array u direction
 8, Knots, // No. of knots and knot array v direction
 4 * 3, // Distance between control points in u dir.
 3, // Distance between control points in v dir.
 &ctrlPoints[0][0][0], // Control points
 4, 4, // u and v order of surface

Page 622 OpenGL Super Bible!

 GL_MAP2_VERTEX_3); // Type of surface

// Outer area, include entire curve
gluBeginTrim (pNurb);
gluPwlCurve (pNurb, 5, &outsidePts[0][0], 2, GLU_MAP1_TRIM_2);
gluEndTrim (pNurb);

// Inner triangluar area
gluBeginTrim (pNurb);
gluPwlCurve (pNurb, 4, &insidePts[0][0], 2, GLU_MAP1_TRIM_2);
gluEndTrim (pNurb);

// Done with surface
gluEndSurface(pNurb);

Within the gluBeginTrim/gluEndTrim delimiters, you can specify any number of curves as
long as they form a closed loop in a piecewise fashion. You can also use gluNurbsCurve to
define a trimming region or part of a trimming region. These trimming curves must,
however, be in terms of the unit parametric u and v space. This means the entire u/v domain
is scaled from 0.0 to 1.0.

The gluPwlCurve defines a piecewise linear curve— nothing more than a list of points
connected end to end. In this scenario, the inner trimming curve forms a triangle, but with
many points you could create an approximation of any curve needed.

Trimming a curve trims away surface area that is to the right of the curve’s winding. Thus a
clockwise-wound trimming curve will discard its interior. Typically an outer trimming curve
is specified, which encloses the entire NURBS parameter space. Then smaller trimming
regions are specified within this region with clockwise winding. Figure 17-11 illustrates this
relationship.

Figure 17-11 Area inside clockwise-wound curves is trimmed away

OpenGL Super Bible! Page 623

Summary

This chapter could easily have been the most intimidating in the entire book. As you have
seen, however, the concepts that lie behind these curves and surfaces are not at all difficult
to understand. Appendix B suggests further reading if you want in-depth mathematical
information.

The examples from this chapter give you a good starting point for experimenting with
NURBS. Try adjusting the control points and knot sequences to create warped or rumpled
surfaces. Also try some quadratic surfaces and some with higher order than the cubic
surfaces. Additional examples can also be found on the accompanying CD.

Watch out— one pitfall to avoid as you play with these curves is trying too hard to create one
complex surface out of a single NURB. You’ll find greater power and flexibility if you
compose complex surfaces out of several smaller and easy-to-handle NURBS or Bázier
surfaces.

Page 624 OpenGL Super Bible!

Reference Section

glEvalCoord

Purpose
Evaluates 1D and 2D maps that have been previously enabled.

Include File
<gl.h>

Variations
void glEvalCoord1d(GLdouble u);
void glEvalCoord1f(GLfloat u);
void glEvalCoord2d(GLdouble u, GLdouble v);
void glEvalCoord2f(GLfloat u, GLfloat v);
void glEvalCoord1dv(const GLdouble *u);
void glEvalCoord1fv(const GLfloat *u);
void glEvalCoord2dv(const GLdouble *u);
void glEvalCoord2fv(const GLfloat *u);

Description
This function uses a previously enabled evaluator (set up with glMap) to produce
vertex, color, normal, or texture values based on the parametric u/v values. The type
of data and function calls simulated are specified by the glMap1 and glMap2
functions.

Parameters

u,v
These parameters specify the v and/or u parametric value that is to be evaluated
along the curve or surface.

Returns None.

Example

The following code from the BEZIER example program produces equivalent calls to
glVertex3f each time glEvalCoord1f is called. The exact vertex produced is from the
equation for the curve at the parametric value i.

 // Use a line strip to "connect the dots"
 glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloa t) i);
 }
 glEnd();
See Also

glEvalMesh, glEvalPoint, glMap1, glMap2, glMapGrid

OpenGL Super Bible! Page 625

glEvalMesh

Purpose
Computes a 1D or 2D grid of points or lines.

Include File
<gl.h>

Variations
void glEvalMesh1(GLenum mode, GLint i1, GLint i2);
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

Description
This function is used with glMapGrid to efficiently create a mesh of evenly spaced u
and v domain values. glEvalMesh actually evaluates the mesh and produces the
points, line segments, or filled polygons.

Parameters

mode
GLdouble: Specifies whether the mesh should be computed as points (GL_POINT),
lines (GL_LINE), or filled meshes for surfaces (GL_FILL).

i1,i2
GLint: Specifies the first and last integer values for the u domain.

j1,j2
GLint: Specifies the first and last integer values for the v domain.

Returns
None.

Example

The following code from the BEZIER example program creates a grid map from 0 to 100
with 100 partitions. The call to glEvalMesh then evaluates the grid and draws line segments
between each point on the curve.

 // Use higher level functions to map to a grid, then evaluate the
 // entire thing.

 // Map a grid of 100 points from 0 to 100
 glMapGrid1d(100,0.0,100.0);

 // Evaluate the grid, using lines
 glEvalMesh1(GL_LINE,0,100);
See Also

glBegin, glEvalCoord, glEvalPoint, glMap1, glMap2, glMapGrid

Page 626 OpenGL Super Bible!

glEvalPoint

Purpose
Generates and evaluates a single point in a mesh.

Include File
<gl.h>

Variations
void glEvalPoint1(GLint i);
voidglEvalPoint2(GLint i, GLint j);

Description
This function can be used in place of glEvalMesh to evaluate a domain at a single
point. The evaluation produces a single primitive, GL_POINTS. The first variation
(glEvalPoint1) is used for curves, and the second (glEvalPoint2) is for surfaces.

Parameters

i,j
GLint: Specifies the u and v domain parametric values.

Returns
None.

Example

The following code renders the Bázier curve in the example program BEZIER as a series of
points rather than line segments. Here we have commented out the code that is no longer
needed from the previous example for glEvalCoord.

 // Use a line strip to "connect the dots"
 // glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 //glEvalCoord1f((GLfloat) i);
 glEvalPoint1(i);
 }
 // glEnd();
See Also

glEvalCoord, glEvalMesh, glMap1, glMap2, glMapGrid

OpenGL Super Bible! Page 627

glGetMap

Purpose
Returns evaluator parameters.

Include File
<gl.h>

Variations
void glGet1Mapdv(GLenum target, GLenum query, GLdouble *v);
void glGetMapfv(GLenum target, GLenum query, GLfloat *v);
void glGetMapiv(GLenum target, GLenum query, GLint *v);

Description
This function retrieves map settings that were set by the glMap functions. See
glMap1 and glMap2 in this section for explanations of the types of maps.

Parameters

target
GLenum: The name of the map; the following maps are defined:
GL_MAP1_COLOR_4, GL_MAP1_INDEX, GL_MAP1_NORMAL,
GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4,
GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4, GL_MAP2_COLOR_4 ,
GL_MAP2_INDEX, GL_MAP2_NORMAL, GL_MAP2_TEXTURE_COORD_1,
GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3,
GL_MAP2_TEXTURE_COORD_4, GL_MAP2_VERTEX_3, and
GL_MAP2_VERTEX_4. See glMap in this section for an explanation of these map
types.

query
GLenum: Specifies which map parameter to return in *v. May be one of the
following values:
GL_COEFF : Returns an array containing the control points for the map.
Coordinates are returned in row-major order. 1D maps return order control points,
and 2D maps return u-order times the v-order control points.
GL_ORDER: Returns the order of the evaluator function. For 1D maps, this is a
single value. For 2D maps, two values are returned (an array) that contain first the u-
order, then the v-order.
GL_DOMAIN: Returns the linear parametric mapping parameters. For 1D
evaluators, this is the lower and upper u value. For 2D maps, it’s lower and upper u
followed by lower and upper v.

*v
Pointer to storage that will contain the requested parameter. The data type of this
storage should match the function used (double, float, or integer).

Returns
None.

Page 628 OpenGL Super Bible!

Example

The following code shows mapping parameters being designated and later retrieved
(probably in another function). In comments we show the contents of the buffer.

 glMap2f(GL_MAP2_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 10.0f, // Upper u range
 3, // Distance between points in the data
 3, // Dimension in u direction (order)
 0.0f, // Lower v range
 10.0f, // Upper v range
 9, // Distance between points in the data
 3, // Dimension in v direction (order)
 &ctrlPoints[0][0][0]); // array of control points
 …
 …
 …

 float parametricRange[4];

 glGetMapfv(GL_MAP2_VERTEX_3,GL_DOMAIN,parametricRange);

 /* Now parametricRange[0] = 0.0 // Lower u
 parametricRange[1] = 10.0 // Upper u
 parametricRange[2] = 0.0 // Lower v
 parametricRange[3] = 10.0 // Upper v
 */
See Also

glEvalCoord, glMap1, glMap2

OpenGL Super Bible! Page 629

glMap

Purpose
Defines a 1D or 2D evaluator.

Include File
<gl.h>

Variations
void glMap1d(GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint
uorder, const GLdouble *points); void glMap1f(GLenum target, GLfloat u1,
GLfloat u2, GLint ustride, GLint uorder, const GLfloat *points); void
glMap2d(GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble *points);
void glMap2f(GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat *points);

Description
These functions define 1D or 2D evaluators. The glMap1x functions are used for 1D
evaluators (curves), and the glMap2x functions are used for 2D evaluators (surfaces).
Evaluators produce vertex or other information (see the target parameter below)
evaluated along one or two dimensions of a parametric range (u and v).

Parameters

target
GLenum: Specifies what kind of values are produced by the evaluator. Valid values
for 1D and 2D evaluators are as follows:
GL_MAP1_VERTEX_3 (or GL_MAP2_VERTEX_3): Control points are three
floats that represent x, y, and z coordinate values. glVertex3 commands are
generated internally when the map is evaluated.
GL_MAP1_VERTEX_4 (or GL_MAP2_VERTEX_4): Control points are four floats
that represent x, y, z, and w coordinate values. glVertex4 commands are generated
internally when the map is evaluated.
GL_MAP1_INDEX (or GL_MAP2_INDEX): The generated control points are
single floats that represent a color index value. glIndex commands are generated
internally when the map is evaluated. Note: The current color index is not changed as
it would be if glIndex were called directly.
GL_MAP1_COLOR_4 (or GL_MAP2_COLOR_4): The generated control points
are four floats that represent red, green, blue, and alpha components. glColor4
commands are generated internally when the map is evaluated. Note: The current
color is not changed as it would be if glColor4f were called directly.
GL_MAP1_NORMAL (or GL_MAP2_NORMAL): The generated control points are
three floats that represent the x, y, and z components of a normal vector. glNormal
commands are generated internally when the map is evaluated. Note: The current
normal is not changed as it would be if glNormal were called directly.

Page 630 OpenGL Super Bible!

GL_MAP1_TEXTURE_COORD_1 (or GL_MAP2_TEXTURE_COORD_1): The
generated control points are single floats that represent the s texture coordinate.
glTexCoord1 commands are generated internally when the map is evaluated. Note:
The current texture coordinates are not changed as they would be if glTexCoord
were called directly.
GL_MAP1_TEXTURE_COORD_2 (or GL_MAP2_TEXTURE_COORD_2): The
generated control points are two floats that represent the s and t texture coordinates.
glTexCoord2 commands are generated internally when the map is evaluated. Note:
The current texture coordinates are not changed as they would be if glTexCoord
were called directly.
GL_MAP1_TEXTURE_COORD_3 (or GL_MAP2_TEXTURE_COORD_3): The
generated control points are three floats that represent the s, t, and r texture
coordinates. glTexCoord3 commands are generated internally when the map is
evaluated. Note: The current texture coordinates are not changed as they would be if
glTexCoord were called directly.
GL_MAP1_TEXTURE_COORD_4 (or GL_MAP2_TEXTURE_COORD_4): The
generated control points are four floats that represent the s, t, r, and q texture
coordinates. glTexCoord4 commands are generated internally when the map is
evaluated. Note: The current texture coordinates are not changed as they would be if
glTexCoord were called directly.

u1,u2
Specifies the linear mapping of the parametric u parameter.

v1,v2
Specifies the linear mapping of the parametric v parameter. This is only used for 2D
maps.

ustride, vstride
Specifies the number of floats or doubles between control points in the *points data
structure. The coordinates for each point occupy consecutive memory locations, but
this parameter allows the points to be spaced as needed to let the data come from an
arbitrary data structure.

uorder, vorder
Specifies the number of control points in the u and v direction.

*points
A memory pointer that points to the control points. This may be a 2D or 3D array or
any arbitrary data structure.

Returns
None.

Example

The following code is from the example program BEZ3D from this chapter. It establishes a
quadratic Bázier spline mapping.

 // The number of control points for this curve
 GLint nNumPoints = 3;

OpenGL Super Bible! Page 631

 GLfloat ctrlPoints[3][3][3]= {{{ -4.0f, 0.0f, 4.0f},
 { -2.0f, 4.0f, 4.0f},
 { 4.0f, 0.0f, 4.0f }},

 {{ -4.0f, 0.0f, 0.0f},
 { -2.0f, 4.0f, 0.0f},
 { 4 .0f, 0.0f, 0.0f }},

 {{ -4.0f, 0.0f, -4.0f},
 { -2.0f, 4.0f, -4.0f},
 { 4.0f, 0.0f, -4.0f }}};

 …
 …

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap2f(GL_MAP2_VERTEX_3,
 // Type of data generated
 0.0f, // Lo wer u range
 10.0f, // Upper u range
 3, // Distance between points in
the
 data
 3, // Dimension in u direction
(order)
 0.0f, // Lower v range
 10.0f, // Upper v range
 9, // Distance between points in
the
 data
 3, // Dimension in v direction
(order)
 &ctrlPoints[0][0][0]); // array of control points
See Also

glBegin, glColor, glEnable, glEvalCoord, glEvalMesh, glEvalPoint, glMapGrid,
glNormal, glTexCoord, glVertex

Page 632 OpenGL Super Bible!

glMapGrid

Purpose
Defines a 1D or 2D mapping grid.

Include File
<gl.h>

Variations
void glMapGrid1d(GLint un, GLdouble u1, GLdouble u2);
void glMapGrid1f(GLint un, GLfloat u1, GLfloat u2);
void glMapGrid2d(GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1,
GLdouble v2);
void glMapGrid2f(GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1,
GLfloat v2);

Description
This function establishes a 1D or 2D mapping grid. This is used with glMap and
glEvalMesh to efficiently evaluate a mapping and create a mesh of coordinates.

Parameters

un,vn
GLint: Specifies the number of grid subdivisions in the u or v direction.

u1,u2
Specifies the lower and upper grid domain values in the u direction.

v1,v2
Specifies the lower and upper grid domain values in the v direction.

Returns
None.

Example

The following code from the BEZ3D example program shows a 3D Bázier mapping being
established and a mesh being created and evaluated for it.

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap2f(GL_MAP2_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 10.0f, // Upper u range
 3, // Distance between points in the
 data
 3, // Dimension in u direction (order)
 0.0f, // Lower v range
 10.0f, // Upper v rang e
 9, // Distance between points in the
 data

OpenGL Super Bible! Page 633

 3, // Dimension in v direction (order)
 &ctrlPoints[0][0][0]); // array of control points

 // Enable the evaluator
 glEnable(GL_MAP2_VERTEX_3);

 // Use higher level functions to map to a grid, then evaluate the
 // entire thing.

 // Map a grid of 10 points from 0 to 10
 glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

 // Evaluate the grid, using lines
 glEvalMesh2(GL_LINE,0,10,0,10);
See Also

glEvalCoord, glEvalMesh, glEvalPoint, glMap1, glMap2

Page 634 OpenGL Super Bible!

gluBeginCurve

Purpose
Begins a NURBS curve definition.

Include File
<glu.h>

Syntax
void gluBeginCurve(GLUnurbsObj *nObj);

Description
This function is used with gluEndCurve to delimit a NURBS curve definition.

Parameters

nObj
GLUnurbsObj: Specifies the NURBS object.

Returns
None.

Example

The following code from the example program NURBC from the CD demonstrates this
function delimiting the NURBS curve definition.

 // Render the NURB
 // Begin the NURB definition
 gluBeginCurve(pNurb);

 // Evaluate the surface
 gluNurbsCurve(pNurb,
 8, Knots,
 4 * 3,
 3,
 &ctrlPoints[0][0],
 4,
 GL_MAP1_VERTEX_3);

 // Done with surface
 gluEndCurve(pNurb);
See Also

gluEndCurve

OpenGL Super Bible! Page 635

gluBeginSurface

Purpose
Begins a NURBS surface definition.

Include File
<glu.h>

Syntax
void gluBeginSurface(GLUnurbsObj *nObj);

Description
This function is used with gluEndSurface to delimit a NURBS surface definition.

Parameters

nObj
GLUnurbsObj: Specifies the NURBS object.

Returns
None.

Example

The following code from the example program NURBS from this chapter demonstrates this
function delimiting the NURBS surface definition.

 // Render the NURB
 // Begin the NURB definition
 gluBeginSurface(pNurb);

 // Evaluate the surface
 gluNurbsSurface(pNurb,
 8, Knots,
 8, Knots,
 4 * 3,
 3,
 &ctrlPoints[0][0][0],
 4, 4,
 GL_MAP2_VERTEX_3);

 // Done with surface
 gluEndSurface(pNurb);
See Also

gluEndSurface

Page 636 OpenGL Super Bible!

gluBeginTrim

Purpose
Begins a NURBS trimming loop definition.

Include File
<glu.h>

Syntax
void gluBeginTrim(GLUnurbsObj *nObj);

Description
This function is used with gluEndTrim to delimit a trimming curve definition. A
trimming curve is a curve or set of joined curves defined with gluNurbsCurve or
gluPwlCurve. The gluBeginTrim and gluEndTrim functions must reside inside the
gluBeginSurface/gluEndSurface delimiters. When you use trimming, the direction of
the curve specifies which portions of the surface are trimmed. Surface area to the left
of the traveling direction of the trimming curve is left untrimmed. Thus clockwise-
wound trimming curves eliminate the area inside them, while counter clockwise-
wound trimming curves eliminate the area outside them.

Parameters

nObj
GLUnurbsObj: Specifies the NURBS object.

Returns
None.

Example

The following code from this chapter’s NURBT example program shows two trimming
curves being applied to a NURBS surface. The outer trimming curve includes the entire
surface area. The inner curve is actually triangular in shape and creates a cut-away section in
the surface.

 // Render the NURB
 // Begin the NURB definition
 gluBeginSurface(pNurb);

 // Evaluate the surface
 gluNurbsSurface(pNurb,
 8, Knots,
 8, Knots,
 4 * 3,
 3,
 &ctrlPoints[0][0][0],
 4, 4,
 GL_MAP2_VERTEX_3);

 // Outer area, include entire curve

OpenGL Super Bible! Page 637

 gluBeginTrim (pNurb);
 gluPwlCurve (pNurb, 5, &outsidePts[0][0], 2, GLU_MAP1_TRIM_2);
 gluEndTrim (pNurb);

 // Inner triangluar area
 gluBeginTrim (pNurb);
 gluPwlCurve (pNurb, 4, &insidePts[0][0], 2, GLU_MAP1_TRIM_2);
 gluEndTrim (pNurb);
See Also

gluEndTrim

Page 638 OpenGL Super Bible!

gluDeleteNurbsRenderer

Purpose
Destroys a NURBS object.

Include File
<glu.h>

Syntax
void gluDeleteNurbsRenderer(GLUnurbsObj *nobj);

Description
This function deletes the NURBS object specified and frees any memory associated
with it.

Parameters

nObj
GLUnurbsObj*: Specifies the NURBS object to delete.

Returns
None.

Example

Following is from the example program NURBS. It shows the NURBS object being deleted
when the main window is destroyed. Note the pointer was initialized to NULL when the
program begins, and thus is not deleted unless it was successfully created.

 // Window is being destroyed, cleanup
 case WM_DESTROY:
 // Deselect the current rendering context and delete it
 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 // Delete the NURBS object if it was created
 if(pNurb)
 gluDeleteNurbsRenderer(pNurb);

 // Tell the application to terminate after the win dow
 // is gone.
 PostQuitMessage(0);
 break;
See Also

gluNewNurbsRenderer

OpenGL Super Bible! Page 639

gluEndCurve

Purpose
Ends a NURBS curve definition.

Include File
<glu.h>

Syntax
void gluEndCurve(GLUnurbsObj *nobj);

Description
This function is used with gluBeginCurve to delimit a NURBS curve definition.

Parameters

nObj
GLUnurbsObj: Specifies the NURBS object.

Returns
None.

Example
See the example for gluBeginCurve.

See Also
gluBeginCurve

Page 640 OpenGL Super Bible!

gluEndSurface

Purpose
Ends a NURBS surface definition.

Include File
<glu.h>

Syntax
void gluEndSurface(GLUnurbsObj *nObj);

Description
This function is used with gluBeginSurface to delimit a NURBS surface definition.

Parameters

nObj
GLUnurbsObj*: Specifies the NURBS object.

Returns
None.

Example
See the example for gluBeginSurface.

See Also
gluBeginSrface

OpenGL Super Bible! Page 641

gluEndTrim

Purpose
Ends a NURBS trimming loop definition.

Include File
<glu.h>

Syntax
void gluEndTrim(GLUnurbsObj *nobj);

Description
This function is used with gluBeginTrim to mark the end of a NURBS trimming
loop. See gluBeginTrim for more information on trimming loops.

Parameters

nObj>
GLUnurbsObj*: Specifies the NURBS object.

Returns
None.

Example
See the example for gluBeginTrim.

See Also
gluBeginTrim

Page 642 OpenGL Super Bible!

gluGetNurbsProperty

Purpose
Retrieves a NURBS property.

Include File
<gl.h>

Syntax
void gluGetNurbsProperty(GLUnurbsObj *nObj, GLenum property, GLfloat
*value);

Description
This function retrieves the NURBS property specified for a particular NURBS
object. See gluNurbsProperty for an explanation of the various properties.

Parameters

nObj
GLUnurbsObj: Specifies the NURBS object.

property
GLenum: The NURBS property to be retrieved. Valid properties are
GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE, GLU_CULLING,
GLU_AUTO_LOAD_MATRIX, GLU_PARAMETRIC_TOLERANCE,
GLU_SAMPLING_METHOD, GLU_U_STEP, and GLU_V_STEP. See the
gluNurbsProperty function for details on these properties.

Returns
None.

Example

Following example shows how the NURBS property GLU_SAMPLING_TOLERANCE is
set to 25. Later in the program (presumably in some other function), gluGetNurbsProperty is
called to query the sampling tolerance.

 gluNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, 25.0f);

 …
 …
 GLfloat fTolerance;
 …

 gluGetNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, &fTolerance);
See Also

gluNewNurbsRenderer, gluNurbsProperty

OpenGL Super Bible! Page 643

gluLoadSamplingMatrices

Purpose
Loads NURBS sampling and culling matrices.

Include File
<gl.h>

Syntax
void gluLoadSamplingMatrices(GLUnurbsObj *nObj, const GLfloat
modelMatrix[16], const GLfloat projMatrix[16], const GLint viewport[4]);

Description
This function is used to recompute the sampling and culling matrices for a NURBS
surface. The sampling matrix is used to determine how finely the surface must be
tessellated to satisfy the sampling tolerance. The culling matrix is used to determine
if the surface should be culled before rendering. Usually this function does not need
to be called, unless the GLU_AUTO_LOAD_MATRIX property is turned off. This
might be the case when using selection and feedback modes.

Parameters

nObj
GLUnurbsObj*: Specifies the NURBS object.

modelMatrix
GLfloat[16]: Specifies the Modelview matrix.

projMatrix
GLfloat[16]: Specifies the Projection matrix.

viewport
GLint[4]: Specifies a viewport.

Returns
None.

Example

The following code can be used to manually set up and use the sampling and culling
matrices.

 GLfloat fModelView[16],fProjection[16],fViewport[4];
 …
 …

 pNurb = glNewNurbsRenderer(…..);
 …
 …

 // Get the current matrix and viewport info
 glGetFloatv(GL_MODELVIEW_MATRIX,fModelView);
 glGetFloatv(GL_PROJECTION_MATRIX,fProjection);

Page 644 OpenGL Super Bible!

 glGetIntegerv(GL_VIEWPORT,fViewport);

 …
 …
 // Load the matrices manually

 gluLoadSamplingMatrices(pNurb,fModelView,fProjection,fViewport);
See Also

gluNewNurbsRenderer, gluNurbsProperty

OpenGL Super Bible! Page 645

gluNewNurbsRenderer

Purpose
Creates a NURBS object.

Include File
<glu.h>

Syntax
GLUnurbsObj* gluNewNurbsRenderer(void);

Description
This function creates a NURBS rendering object. This object is used to control the
behavior and characteristics of NURBS curves and surfaces. The functions that allow
the NURBS properties to be set all require this pointer. You must delete this object
with gluDeleteNurbsRenderer when you are finished rendering your NURBS.

Returns
A pointer to a new NURBS object. This object will be used when you call the
rendering and control functions.

Example

This code demonstrates the creation of a NURBS object:

 // Setup the Nurbs object

 // Start by creating it
 pNurb = gluNewNurbsRenderer();

 // Set NURBS properties
 gluNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, 25.0f);
 gluNurbsProperty(pNurb, GLU_DISPLAY_MODE, (GLfloat)GLU_FILL);

 .. other properties
 …
 …
See Also

gluDeleteNurbsRenderer

Page 646 OpenGL Super Bible!

gluNurbsCallback

Purpose
Defines a callback for a NURBS function.

Include File
<glu.h>

Syntax
void gluNurbsCallback(GLUnurbsObj *nObj, GLenum which, void (*fn)());

Description
This function sets a NURBS callback function. The only supported callback is
GL_ERROR. When an error occurs, this function is called with an argument of type
GLenum. One of 37 NURBS errors can be specified by the defines
GLU_NURBS_ERROR1 - GLU_NURBS_ERROR37. A character string definition
of the error can be retrieved with the function gluErrorString(). These are listed in
Table 17-1.

Parameters

nObj
GLUnurbsObj*: Specifies the NURBS object.

which
GLEnum: Specifies the callback being defined. The only valid value is
GLU_ERROR.

fn
void *(): Specifies the function that should be called for the callback.

Returns
None.

Example

The following is an example error handler for NURBS errors. Some code that installs the
error handler is also shown. You can see this in the NURBS example program.

 // NURBS callback error handler
 void CALLBACK NurbsErrorHandler(GLenum nErrorCode)
 {
 char cMessage[64];

 // Extract a text message of the error
 strcpy(cMessage,"NURBS error occured: ");
 strcat(cMessage,gluErrorString(nErrorCode));

 // Display the message to the user
 MessageBox(NULL,cMessage,NULL,MB_OK | MB_ICONEXCLAMATION);
 }

OpenGL Super Bible! Page 647

 …
 …
 …

 // Setup the Nurbs object
 pNurb = gluNewNurbsRenderer();

 // Install error handler to notify user of NURBS errors
 gluNurbsCallback(pNurb, GLU_ERROR, NurbsErrorHandler);

 gluNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, 25.0f);
 … Other properties
 …
See Also

gluErrorString

Table 17-1 NURBS Error Codes

Error Code Definition
GLU_NURBS_ERROR1 Spline order un-supported.
GLU_NURBS_ERROR2 Too few knots.
GLU_NURBS_ERROR3 Valid knot range is empty.
GLU_NURBS_ERROR4 Decreasing knot sequence knot.
GLU_NURBS_ERROR5 Knot multiplicity greater than order of spline.
GLU_NURBS_ERROR6 endcurve() must follow bgncurve().
GLU_NURBS_ERROR7 bgncurve() must precede endcurve().
GLU_NURBS_ERROR8 Missing or extra geometric data.
GLU_NURBS_ERROR9 Can’t draw pwlcurves.
GLU_NURBS_ERROR10 Missing or extra domain data.
GLU_NURBS_ERROR11 Missing or extra domain data.
GLU_NURBS_ERROR12 endtrim() must precede endsurface().
GLU_NURBS_ERROR13 bgnsurface() must precede endsurface().
GLU_NURBS_ERROR14 Curve of improper type passed as trim curve.
GLU_NURBS_ERROR15 bgnsurface() must precede bgntrim().
GLU_NURBS_ERROR16 endtrim() must follow bgntrim().
GLU_NURBS_ERROR17 bgntrim() must precede endtrim().
GLU_NURBS_ERROR18 Invalid or missing trim curve.
GLU_NURBS_ERROR19 bgntrim() must precede pwlcurve().
GLU_NURBS_ERROR20 pwlcurve referenced twice.

Page 648 OpenGL Super Bible!

GLU_NURBS_ERROR21 pwlcurve and nurbscurve mixed.
GLU_NURBS_ERROR22 Improper usage of trim data type.
GLU_NURBS_ERROR23 nurbscurve referenced twice.
GLU_NURBS_ERROR24 nurbscurve and pwlcurve mixed.
GLU_NURBS_ERROR25 nurbssurface referenced twice.
GLU_NURBS_ERROR26 Invalid property.
GLU_NURBS_ERROR27 endsurface() must follow bgnsurface()
GLU_NURBS_ERROR28 Intersecting or misoriented trim curves.
GLU_NURBS_ERROR29 Intersecting trim curves.
GLU_NURBS_ERROR30 UNUSED.
GLU_NURBS_ERROR31 Unconnected trim curves.
GLU_NURBS_ERROR32 Unknown knot error.
GLU_NURBS_ERROR33 Negative vertex count encountered.
GLU_NURBS_ERROR34 Negative byte-stride encountered.
GLU_NURBS_ERROR35 Unknown type descriptor.
GLU_NURBS_ERROR36 Null control point reference.
GLU_NURBS_ERROR 37 Duplicate point on pwlcurve.

OpenGL Super Bible! Page 649

gluNurbsCurve

Purpose
Defines the shape of a NURBS curve.

Include File
<glu.h>

Syntax
void gluNurbsCurve(GLUnurbsObj *nObj, GLint nknots, GLfloat *knot, GLint
stride, GLfloat *ctlarray, GLint order, GLenum type);

Description
This function defines the shape of a NURBS curve. The definition of this curve must
be delimited by gluBeginCurve and gluEndCurve.

Parameters

nObj
GLUnurbsObj*: Pointer to the NURBS object (created with gluNewNurbsRenderer).

nkots
GLint: The number of knots in *knots. This is the number of control points plus
order.

knots
GLfloat*: An array of knot values in nondescending order.

stride
GLint: Specifies the offset, as a number of single-precision floating point values,
between control points.

ctlArray
GLfloat*: Pointer to an array or data structure containing the control points for the
NURBS surface.

order
GLint: The order of the NURBS surface. Order is 1 more than the degree.

type
GLenum: The type of surface. This can be any of the two-dimensional evaluator
types: GL_MAP2_VERTEX_3, GL_MAP2_VERTEX_4, GL_MAP2_INDEX,
GL_MAP2_COLOR_4, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, and GL_MAP2_TEXTURE_COORD_4.

Returns
None.

Example
See the example for gluBeginCurve.

See Also,
gluBeginCurve,gluEndCurve, gluNurbsSurface

Page 650 OpenGL Super Bible!

gluNurbsProperty

Purpose
Sets a NURBS property.

Include File
<glu.h>

Syntax
void gluNurbsProperty(GLUnurbsObj *nObj, GLenum property, GLfloat value);

Description
This function sets the properties of the NURBS object. Valid properties are as
follows:
GLU_SAMPLING_TOLERANCE: Sets the maximum length in pixels to use when
using the GLU_PATH_LENGTH sampling method. The default is 50.0.
GLU_DISPLAY_MODE: Defines how the NURBS surface is rendered. The value
parameter may be GLU_FILL to use filled and shaded polygons,
GLU_OUTLINE_POLYGON to draw just the outlines of the polygons (after
tessellation), and finally GLU_OUTLINE_PATCH to draw just the outlines of user
defined patches and trim curves. The default is GLU_FILL.
GLU_CULLING: The value parameter is interpreted as a Boolean value that
indicates whether the NURBS curve should be discarded if its control points are
outside the viewport.
GLU_PARAMETRIC_TOLERANCE: Sets the maximum pixel distance used when
the sampling method is set to GLU_PARAMETRIC_ERROR. The default is 0.5.
This property was introduced in GLU version 1.1.
GLU_SAMPLING_METHOD: Specifies how to tessellate the NURBS surface. This
property was introduced in GLU version 1.1. The following values are valid:
GLU_PATH_LENGTH specifies that surfaces rendered with the maximum pixel
length of the edges of the tessellation polygons are not greater than the value
specified by GLU_SAMPLING_TOLERANCE.
GLU_PARAMETRIC_ERROR specifies that the surface is rendered with the value
of GLU_PARAMETRIC_TOLERANCE designating the maximum distance, in
pixels, between the tessellation polygons and the surfaces they approximate.
GLU_DOMAIN_DISTANCE specifies, in parametric coordinates, how many
sample points per unit length to take in the u and v dimensions. The default is
GLU_PATH_LENGTH.
GLU_U_STEP: Sets the number of sample points per unit length taken along the u
dimension in parametric coordinates. This value is used when
GLU_SAMPLING_METHOD is set to GLU_DOMAIN_DISTANCE. The default is
100. This property was introduced in GLU version 1.1.
GLU_V_STEP: Sets the number of sample points per unit length taken along the v
dimension in parametric coordinates. This value is used when
GLU_SAMPLING_METHOD is set to GLU_DOMAIN_DISTANCE. The default is
100. This property was introduced in GLU version 1.1.

OpenGL Super Bible! Page 651

GLU_AUTO_LOAD_MATRIX: The value parameter is interpreted as a Boolean
value. When set to GL_TRUE, it causes the NURBS code to download the
Projection matrix, the Modelview matrix, and the viewport from the OpenGL server
to compute sampling and culling matric es for each NURBS curve. Sampling and
culling matrices are required to determine the tessellation of a NURBS surface into
line segments or polygons and to cull a NURBS surface if it lies outside of the
viewport. If this mode is set to GL_FALSE, the user needs to provide these matrices
and a viewport for the NURBS renderer to use in constructing sampling and culling
matrices. This can be done with the gluLoadSamplingMatrices function. The default
value for this mode GL_TRUE. Changing this mode does not affect the sampling
and culling matrices until gluLoadSamplingMatrices is called.

Parameters

nObj
GLUnurbsObj*: The NURB object that is having a property modified (this is created
by calling glNewNurbsRenderer).

property
GLenum: The property to be set or modified. This may be any of the following
values:GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE,
GLU_CULLING, GLU_AUTO_LOAD_MATRIX,
GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD,
GLU_U_STEP, and GLU_V_STEP.

value
GLfloat: The value to which the indicated property is being set.

Returns
None.

Example

The following code from this chapter’s NURBS program sets the NURBS display property
to render the surface as a wire mesh.

 gluNurbsProperty(pNurb, GLU_DISPLAY_MODE, GLU_OUTLINE_POLYGON);
See Also

gluGetNurbsProperty, gluGetString, gluLoadSamplingMatrices,
gluNewNurbsRenderer

Page 652 OpenGL Super Bible!

gluNurbsSurface

Purpose
Defines the shape of a NURBS surface.

Include File
<glu.h>

Syntax
void gluNurbsSurface(GLUnurbsObj *nObj, GLint uknotCount, GLfloat *uknot,
GLint vknotCount, GLfloat *vknot, GLint uStride, GLint vStride, GLfloat *ctlArray,
GLint uorder, GLint vorder, GLenum type);

Description
This function defines the shape of a NURBS surface. Must be delimited by
gluBeginSurface and gluEndSurface. The shape of the surface is defined before any
trimming takes place. A NURBS surface can be trimmed by using the
gluBeginTrim/gluEndTrim and gluNurbsCurve and/or gluPwlCurve to do the
trimming.

Parameters

nObj
GLUnurbsObj*: Pointer to the NURBS object (created with gluNewNurbsRenderer).

uknotCount
GLint: The number of knots in the parametric u direction.

uknot
GLfloat*: An array of knot values that represent the knots in the u direction. These
values must be nondescending. The length of the array is specified in uknotCount.

vknotCount
GLint: The number of knots in the parametric v direction.

vknot
GLfloat*: An array of knot values that represent the knots in the v direction. These
values must be nondescending. The length of the array is specified in vknotCount.

uStride
GLint: Specifies the offset, as a number of single-precision, floating point values,
between successive control points in the parametric u direction in ctlarray.

vStride
GLint: Specifies the offset, as a number of single-precision, floating point values,
between successive control points in the parametric v direction in ctlarray.

ctlArray
GLfloat*: Pointer to an array containing the control points for the NURBS surface.
The offsets between successive control points in the parametric u and v directions are
given by uStride and vStride.

uorder
GLint: The order of the NURBS surface in the parametric u direction. The order is 1
more than the degree; hence a surface that is cubic in u has a u order of 4.

OpenGL Super Bible! Page 653

vorder
GLint: The order of the NURBS surface in the parametric v direction. The order is 1
more than the degree; hence a surface that is cubic in v has a v order of 4.

type
GLenum: The type of surface. This can be any of the 2D evaluator types:
GL_MAP2_VERTEX_3, GL_MAP2_VERTEX_4, GL_MAP2_INDEX,
GL_MAP2_COLOR_4, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, and GL_MAP2_TEXTURE_COORD_4.

Returns
None.

Example
See the example for gluBeginSurface.

See Also
gluBeginSurface, gluBeginTrim, gluNewNurbsRenderer, gluNurbsCurve,
gluPwlCurve

Page 654 OpenGL Super Bible!

gluPwlCurve

Purpose
Specifies a piecewise NURBS trimming curve.

Include File
<glu.h>

Syntax
void gluPwlCurve(GLUnurbsObj *nObj, GLint count, GLfloat *array, GLint stride,
GLenum type);

Description
This function defines a piecewise linear trimming curve for a NURBS surface. The
array of points are in terms of the parametric u and v coordinate space. This space is
a unit square exactly 1 unit in length along both axes. Clockwise-wound trimming
curves eliminate the enclosed area; counterclockwise trimming curves discard the
exterior area. Typically, a trimming region is first established around the entire
surface area that trims away all points not on the surface. Then smaller trimming
areas wound clockwise are placed within it to cut away sections of the curve.
Trimming curves can be piecewise. This means one or more calls to gluPwlCurve or
gluNurbsCurve can be called to define a trimming region as long as they share
endpoints and define a close region in u/v space.

Parameters

nObj
GLUnurbsObj*: Specifies the NURBS object being trimmed.

count
GLint: Specifies the number of points on the curve listed in *array.

array
GLfloat*: Specifies the array of boundary points for this curve.

stride
GLint: Specifies the offset between points on the curve.

type
GLenum: Specifies the type of curve. May be GLU_MAP1_TRIM_2, used when the
trimming curve is specified in terms of u and v coordinates; or
GLU_MAP1_TRIM_3, used when a w (scaling) coordinate is also specified.

Returns
None.

Example

The following code from this chapter’s program NURBT shows a NURBS curve being
trimmed with a triangular shaped region. A large trimming area encloses the surface that
includes all the area within it. A secondary trimming area defines a triangle and discards any
surface area within it.

OpenGL Super Bible! Page 655

 // Outside trimming points to include entire surface
 GLfloat outsidePts[5][2] = /* counter clockwise */
 {{0.0f, 0.0f};, {1.0f, 0.0f} , {1.0f, 1.0f}, {0.0f, 1.0f},
{0.0f, 0.0f}};

 // Inside trimming points to create triangle shaped hole in surface
 GLfloat insidePts[4][2] = /* clockwise */
 {{0.25f, 0.25f}, {0.5f, 0.5f}, {0.75f, 0.25f}, { 0.25f,
0.25f}};

 ...
 ...

 // Render the NURB
 // Begin the NURB definition
 gluBeginSurface(pNurb);

 // Evaluate the surface
 gluNurbsSurface(pNurb,
 8, Knots,
 8, Knots,
 4 * 3,
 3,
 &ctrlPoints[0][0][0],
 4, 4,
 GL_MAP2_VERTEX_3);

 // Outer area, include entire curve
 gluBeginTrim (pNurb);
 gluPwlCurve (pNurb, 5, &outsidePts[0][0], 2, GLU_MAP1_TRIM_2);
 gluEndTrim (pNurb);

 // Inner triangluar area
 gluBeginTrim (pNurb);
 gluPwlCurve (pNurb, 4, &insidePts[0][0], 2, GLU_MAP1_TRIM_2);
 gluEndTrim (pNurb);

 // Done with surface
 gluEndSurface(pNurb);
See Also

gluBeginTrim, gluEndTrim, gluNurbsCurve

Page 656 OpenGL Super Bible!

Chapter 18
Polygon Tessellation

What you’ll learn in this chapter:

How to… Functions You’ll Use

Use the OpenGL Utility library to draw complex
polygons

gluBegin/gluEnd

Use the OpenGL Utility library to draw complex surfaces gluNextContour

The OpenGL Utility library (glu32.lib) includes a robust polygon tessellation interface that
can handle rendering of complex polygons and surfaces. What is tessellation, you ask?
According to the American Heritage Dictionary:

tes·sel·late verb, transitive
tes·sel·lat·ed, tes·sel·lat·ing, tes·sel·lates

To form into a mosaic pattern, as by using small squares of stone or glass.

te[sacute] sel·lá tion noun1

A computer graphics tessellator takes one or more connected sets of points and forms a
series of polygons that fill to form the described shape. In place of stone and glass, it uses
triangles and pixels. A polygon tessellator is specially designed to manage the drawing of
polygons that have unusual attributes such as holes.

Complex Polygons

What makes polygons complex? Well, in OpenGL a complex polygon is one that is either
concave (the polygon contains a “dent”) or has holes in it. Figure 18-1 contains some simple
and complex polygons that you may need to render at some time.

OpenGL Super Bible! Page 657

Figure 18-1 Simple and complex polygons

OpenGL’s GL_POLYGON primitive can only render simple, convex polygons. A polygon
is convex if no point lies inside a line between any two vertices. That is, if you can draw a
line between two vertices of a polygon and the line goes into empty space outside the
polygon edge, the polygon is not convex; it is concave or complex.

Concave polygons are nonconvex polygons that have no unfilled holes in their interiors. The
top-right polygon in Figure 18-1 is concave, but the one below it is not because it contains a
hole in the middle of the filled area.

Complex polygons have holes or twists in them. The lower-right polygon in Figure 18-1 is
complex.

Drawing Concave Polygons

Drawing concave polygons with the glu is not difficult. The first thing you must do is create
a tessellator object, as shown here:

GLUtriangulatorObj *tess;

tess = gluNewTess();

The GLUtriangulatorObj structure contains state information that is used by the tessellator
to render the polygon.

Next, you call a sequence of gluBeginPolygon, gluTessVertex, and gluEndPolygon to render
the polygon:

GLdouble vertices[100][3];

gluBeginPolygon(tess);
 gluTessVertex(tess, vertices[0], NULL);
 gluTessVertex(tess, vertices[1], NULL);
 …

Page 658 OpenGL Super Bible!

 gluTessVertex(tess, vertices[99], NULL);
gluEndPolygon(tess);

After the gluEndPolygon call, the tessellator does its work and generates a series of
triangles, triangle strips, and triangle fans. Because this process can take a long time, it’s a
good idea to put tessellated polygons into display lists to improve display performance (see
Chapter 10).

Drawing Complex Polygons

Drawing complex polygons is a little more involved than for concave polygons but is not as
hard as it would seem. Complex polygons can have holes and twists in them, so the
gluNextContour function is provided to identify the type of path you are defining. Table 18-
1 lists the path types for gluNextContour.

Table 18-1 gluNextContour Path Types

Path Type Description

GLU_EXTERIOR The path lies on the exterior of the polygon.
GLU_INTERIOR The path lies on the interior of the polygon (hole).
GLU_UNKNOWN You don’t know what the path is; the library will attempt to

figure it out.
GLU_CCW This should only be used once and defines that

counterclockwise paths are exterior paths and clockwise ones
are interior.

GLU_CW This should only be used once and defines that
counterclockwise paths are exterior paths and clockwise ones
are interior.

For the example shown in Figure 18-2, we will define an exterior path for the outline, and an
interior path for the triangular hole in the middle (see Figure 18-3).

OpenGL Super Bible! Page 659

Figure 18-2 The letter A as a complex polygon

Figure 18-3 Polygon paths for the letter A

To draw the letter A, we call gluNextContour only once before providing the interior points.
The example in Listing 18-1, LETTER.C, uses this code to display a rotating A.

tess = gluNewTess();
gluBeginPolygon(tess);
 gluTessVertex(tess, outside[0], outside[0]);
 gluTessVertex(tess, outside[1], outside[1]);
 gluTessVertex(tess, outside[2], outside[2]);
 gluTessVertex(tess, outside[3], outs ide[3]);
 gluTessVertex(tess, outside[4], outside[4]);
 gluTessVertex(tess, outside[5], outside[5]);
 gluTessVertex(tess, outside[6], outside[6]);
gluNextContour(tess, GLU_INTERIOR);
 gluTessVertex(tess, inside[0], inside[0]);
 gluTessVertex(tess, inside[1], inside[1]);
 gluTessVertex(tess, inside[2], inside[2]);
gluEndPolygon(tess);
gluDeleteTess(tess);

Page 660 OpenGL Super Bible!

Listing 18-1 LETTER.C: Tessellating the polygon for the letter A

/*
 * "letter.c" - A test program demonstrating the use of the GLU polygon
 * tessellator.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene…
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation…
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing the letter A.
 */

void CALLBACK
draw_scene(void)
{
 GLUtriangulatorObj *tess;
 static GLdouble outside[7][3] =
 {
 { 0.0, 1.0, 0.0 },

OpenGL Super Bible! Page 661

 { -0.5, -1.0, 0.0 },
 { -0.4, -1.0, 0.0 },
 { -0.2, -0.1, 0.0 },
 { 0.2, -0.1, 0.0 },
 { 0.4, -1.0, 0.0 },
 { 0.5, -1.0, 0.0 }
 };
 static GLdouble inside[3][3] =
 {
 { 0.0, 0.6, 0.0 },
 { -0.1, 0.1, 0.0 },
 { 0.1, 0.1, 0.0 }
 };
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

/*
 * Enable drawing features that we need…
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers…
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors…
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second is
blue
 * and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glEnable(GL_COLOR_MATERIAL);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -15.0);

Page 662 OpenGL Super Bible!

 glRotatef(-rotation, 0.0, 1.0, 0.0);

 glColor3f(0.0, 1.0, 0.0);

 tess = gluNewTess();
 gluTessCallback(tess, GLU_BEGIN, glBegin);
 gluTessCallback(tess, GLU_VERTEX, glVertex3d v);
 gluTessCallback(tess, GLU_END, glEnd);
 gluBeginPolygon(tess);
 gluTessVertex(tess, outside[0], outside[0]);
 gluTessVertex(tess, outside[1], outside[1]);
 gluTessVertex(tess, outside[2], outside[2]);
 gluTessVertex(tess, outside[3], outside[3]);
 gluTessVertex(tess, outside[4], outside[4]);
 gluTessVertex(tess, outside[5], outside[5]);
 gluTessVertex(tess, outside[6], outside[6]);
 gluNextContour(tess, GLU_INTERIOR);
 gluTessVertex(tess, inside[0], insi de[0]);
 gluTessVertex(tess, inside[1], inside[1]);
 gluTessVertex(tess, inside[2], inside[2]);
 gluEndPolygon(tess);
 gluDeleteTess(tess);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle…
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("GLU Polygon Letter");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

OpenGL Super Bible! Page 663

 auxMainLoop(draw_scene);
}

Callback Functions

The glu defines several callback functions that can be used for special effects. The
gluTessCallback function allows you to change these functions to do something of your
own. It takes three arguments:

void gluTessCallback(GLUtriangulatorObj *tobj, GLenum which, void
(*fn)());

The which argument specifies the callback function to define and must be one of the
arguments in Table 18-2.

Table 18-2 Tessellator Callback Functions

Which argument Description

GLU_BEGIN Specifies a function that is called to begin a GL_TRIANGLES,
GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN primitive.
The function must accept a single GLenum parameter that
specifies the primitive to be rendered and is usually set to
glBegin.

GLU_EDGE_FLAG Specifies a function that marks whether succeeding
GLU_VERTEX callbacks refer to original or generated vertices.
The function must accept a single GLboolean argument that is
GL_TRUE for original and GL_FALSE for generated vertices.

GLU_VERTEX Specifies a function that is called before every vertex is sent,
usually with glVertex3dv. The function receives a copy of the
third argument to gluTessVertex.

GLU_END Specifies a function that marks the end of a drawing primitive,
usually glEnd. It takes no arguments.

GLU_ERROR Specifies a function that is called when an error occurs. It must
take a single argument of type GLenum.

Normally, you will use the GLU_BEGIN, GLU_END, GLU_VERTEX, and GLU_ERROR
callback. GLU_BEGIN, GLU_END, and GLU_VERTEX correspond to glBegin, glEnd,
and glVertex3dv, respectively. A simple function to display errors sent from the tessellator
is in Listing 18-2.

Page 664 OpenGL Super Bible!

Listing 18-2 A simple tessllator error-callback function

void
tess_error_callback(GLenum error)
{
 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, gluErrorString(error), “GLU Error”, MB_OK |
 MB_ICONEXCLAMATION);
}

Summary

The OpenGL polygon tessellator can be used to render a variety of complex polygons that
OpenGL’s GL_POLYGON primitive just can’t handle. Polygon tessellation does come at a
price, and you will want to put these tessellated polygons into display lists to get good
performance from them.

The callback mechanism allows for some control over the generated results but does not
affect the tessellation algorithms used. Callback functions are rarely used because of this.

OpenGL Super Bible! Page 665

Reference Section

gluBeginPolygon

Purpose
Starts tessellation of a complex polygon.

Include File
<GL/glu.h>

Syntax
void gluBeginPolygon(GLUtriangulator *tobj);

Description
This function starts tessellation of a complex polygon.

Parameters

tobj
GLUtriangulatorObj *: The tessellator object to use for the polygon.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluEndPolygon, gluNextContour, gluTessVertex

Page 666 OpenGL Super Bible!

gluDeleteTess

Purpose
Deletes a tessellator object.

Include File
<GL/glu.h>

Syntax
void gluDeleteTess(GLUtriangulatorObj *tobj);

Description
The gluDeleteTess function frees all memory associated with a tessellator object.

Parameters

tobj
GLUtriangulatorObj *: The tessellator object to delete.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluNewTess

OpenGL Super Bible! Page 667

gluEndPolygon

Purpose
Ends tessellation of a complex polygon and renders it.

Include File
<GL/glu.h>

Syntax
void gluEndPolygon(GLUtriangulator *tobj);

Description
This function ends tessellation of a complex polygon and renders the final result.

Parameters

tobj
GLUtriangulatorObj *: The tessellator object to use for the polygon.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluBeginPolygon, gluNextContour, gluTessVertex

Page 668 OpenGL Super Bible!

gluNewTess

Purpose
Creates a tessellator object.

Include File
<GL/glu.h>

Syntax
GLUtriangulatorObj *gluNewTess(void);

Description
The gluNewTess function creates a tessellator object.

Parameters
None.

Returns
GLUtriangulatorObj *: The new tessellator object.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluDeleteTess

OpenGL Super Bible! Page 669

gluNextContour

Purpose
Specifies a new contour or hole in a complex polygon.

Include File
<GL/glu.h>

Syntax
void gluNextContour(GLUtriangulator *tobj, GLenum type);

Description
This function specifies a new contour or hole in a complex polygon.

Parameters

tobj
GLUtriangulatorObj *: The tessellator object to use for the polygon.

type
GLenum: The type of contour. Valid types are in Table 18-1 earlier in chapter.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluBeginPolygon, gluEndPolygon, gluTessVertex

Page 670 OpenGL Super Bible!

gluTessCallback

Purpose
To specify a callback function for tessellation.

Include File
<GL/glu.h>

Syntax
void gluTessCallback(GLUtriangulator *tobj, GLenum which, void (*fn)());

Description
This function specifies a callback function for various tesselation functions. Callback
functions do not replace or change the tessellator performance. Rather, they provide
the means to add information to the tessellated output (such as color or texture
coordinates).

Parameters

tobj
GLUtriangulatorObj *: The tessellator object to use for the polygon.

which
GLenum: The callback function to define. Valid functions are in Table 18-2 earlier
in chapter.

fn
void (*)(): The function to call.

Returns
None.

OpenGL Super Bible! Page 671

gluTessVertex

Purpose
Adds a vertex to the current polygon path.

Include File
<GL/glu.h>

Syntax
void gluTessVertex(GLUtriangulator *tobj, GLdouble v[3], void *data);

Description
This function adds a vertex to the current tessellator path. The data argument is
passed through to the GL_VERTEX callback function..

Parameters

tobj
GLUtriangulatorObj *: The tessellator object to use for the polygon.

v
GLdouble[3]: The 3D vertex.

data
void *: A data pointer to be passed to the GL_VERTEX callback function.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluBeginPolygon, gluEndPolygon, gluNextContour

Page 672 OpenGL Super Bible!

Chapter 19
Interactive Graphics

What you’ll learn in this chapter:

How to... Functions You’ll Use

Assign OpenGL selection names to primitives or
groups of primitives

glInitNames/glPushName/glPopName

Use selection to determine which objects are under
the mouse

glSelectBuffer/glRenderMode

Use feedback to get information about where objects
are drawn

glFeedbackBuffer/gluPickMatrix

Thus far you have learned to create some sophisticated 3D graphics using OpenGL, and
many applications do no more than generate these scenes. But many graphics applications
(notably, games) will require more interaction with the scene itself. In addition to the menu
and dialog boxes, you’ll need to provide a way for the user to interact with a graphical
scene. Under Windows, this is usually done with a mouse.

Selection, a very powerful feature of OpenGL, allows you to take a mouse click at some
position over a window and determine which of your objects are beneath it. The act of
selecting a specific object on the screen is called picking. With Open GL’s selection feature,
you can specify a viewing volume and determine which objects fall within that viewing
volume. A powerful utility function produces a matrix for you, based purely on screen
coordinates and the pixel dimensions you specify; you use this matrix to create a smaller
viewing volume placed beneath the mouse cursor. Then you use selection to test this
viewing volume to see which objects are contained by it.

Feedback allows you to get information from OpenGL about how your vertices are
transformed and illuminated when they are drawn to the framebuffer. You can use this
information to transmit rendering results over a network, send them to a plotter, or add GDI
graphics to your OpenGL scene that appear to interact with the OpenGL objects. Feedback
does not serve the same purpose as selection, but the mode of operation is very similar and
they work productively together. You’ll see this teamwork later in a specific example.

OpenGL Super Bible! Page 673

Selection

Selection is actually a rendering mode, but in selection mode no pixels are actually copied to
the framebuffer. Instead, primitives that are drawn within the viewing volume (and thus
would normally appear in the framebuffer) produce “hit” records in a selection buffer.

You must set up this selection buffer in advance, and name your primitives or groups of
primitives (your objects) so they can be identified in the selection buffer. You then parse the
selection buffer to determine which objects intersected the viewing volume. This has
marginal value unless you modify the viewing volume before entering selection mode and
calling your drawing code to determine which objects are in some restricted area of your
scene. In one common scenario, you specify a viewing volume that corresponds to the
mouse pointer, and then check to see which named objects the mouse is pointing to.

Naming Your Primitives

You can name every single primitive used to render your scene of objects, but this is rarely
useful. More often you will name groups of primitives, thus creating names for the specific
objects or pieces of objects in your scene. Object names, like display list names, are nothing
more than unsigned integers.

The names list is maintained on the name stack. After you initialize the name stack, you can
push names on the stack or simply replace the name currently on top of the stack. When a hit
occurs during selection, all the names on the names stack are copied into the selection
buffer. Thus, a single hit can return more than one name if needed.

For our first example, we’ll keep things simple. We’ll create a simplified (and not to scale)
model of the inner planets of the solar system. When the left mouse button is down, we’ll
display a message box describing which planet was clicked on. Listing 19-1 shows some of
the rendering code for our example program, PLANETS. We have created macro definitions
for the Sun, Mercury, Venus, Earth, and Mars.

Listing 19-1 Naming the Sun and planets in the PLANETS program

#define SUN 1
#define MERCURY 2
#define VENUS 3
#define EARTH 4
#define MARS 5

...
...
// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Page 674 OpenGL Super Bible!

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Translate the whole scene out and into view
 glTranslatef(0.0f, 0.0f, -300.0f);

 // Initialize the names stack
 glInitNames();
 glPushName(0);

 // Set material color, Yellow
 // Sun
 glRGB(255, 255, 0);
 glLoadName(SUN);
 auxSolidSphere(15.0f);

 // Draw Mercury
 glRGB(128,0,0);
 glPushMatrix();
 glTranslatef(24.0f, 0.0f, 0.0f);
 glLoadName(MERCURY);
 auxSolidSphere(2.0f);
 glPopMatrix();

 // Draw Venus
 glPushMatrix();
 glRGB(128,128,255);
 glTranslatef(60.0f, 0.0f, 0.0f);
 glLoadName(VENUS);
 auxSolidSphere(4.0f);
 glPopMatrix();

 ...
 ... Other planets
 ...

 // Restore the matrix state
 glPopMatrix(); // Modelview matrix

 // Flush drawing commands
 glFlush();
 }

In PLANETS, the glInitNames function initializes and clears the names stack, and
glPushName pushes 0 on the stack to put at least one entry on the stack. For the Sun and
each planet, we call glLoadName to name the object or objects about to be drawn. This
name, in the form of an unsigned integer, is not pushed on the name stack but rather replaces
the current name on top of the stack. Later we’ll discuss keeping an actual stack of names.
For now, we just replace the top name of the name stack each time we draw an object (the
Sun or a particular planet).

OpenGL Super Bible! Page 675

Working with Selection Mode

As mentioned, OpenGL can operate in three different rendering modes. The default mode is
GL_RENDER, in which all the drawing actually occurs on screen. To use selection, we
must change the rendering mode to selection by calling the OpenGL function:

glRenderMode(GL_SELECTION);

When we actually want to draw again, we call

glRenderMode(GL_RENDER);

to place OpenGL back in rendering mode. The third rendering mode is GL_FEEDBACK,
discussed later in this chapter.

The naming code in Listing 19-1 has no effect unless we first switch the rendering mode to
selection mode. Most often, you will use the same function to render the scene in both
GL_RENDER mode and GL_SELECTION modes, as we have done here.

Listing 19-2 is the code that is triggered by the clicking of the left mouse button. This code
gets the mouse coordinates from lParam and passes them to ProcessSelection, which will
process the mouse click for this example.

Listing 19-2 Code that responds to the left mouse button click

case WM_LBUTTONDOWN:
 {
 int xPos = LOWORD(lParam); // horizontal position of cursor
 int yPos = HIWORD(lParam); // vertical position of cursor

 // Render in selection mode and d isplay results
 ProcessSelection(xPos, yPos);
 }

The Selection Buffer

The selection buffer is filled with hit records during the rendering process. A hit record is
generated whenever a primitive or collection of primitives is rendered that would have been
contained in the viewing volume. Under normal conditions, this is simply anything that
would have appeared on screen.

The selection buffer is an array of unsigned integers, and each hit record occupies at least
four elements of the array. The first array index contains the number of names that are on
the names stack when the hit occurs. For the PLANETS example (Listing 19-1), this will
always be 1. The next two entries contain the minimum and maximum window z
coordinates of all the vertices contained by the viewing volume since the last hit record. This
value, which ranges from [0,1], is scaled to the size of an unsigned integer (2^32–1) for

Page 676 OpenGL Super Bible!

storage in the selection buffer. This pattern, illustrated in Figure 19-1, is then repeated for all
the hit records contained in the selection buffer.

Figure 19-1 Hit record format of the selection buffer

The format of the selection buffer gives you no way of knowing how many hit records you
will need to parse. This is because the selection buffer is not actually filled until you switch
the rendering mode back to GL_RENDER. When you do this with the glRenderMode
function, the return value of glRenderMode returns the number of hit records copied.

Listing 19-3 shows the processing function called when a mouse click occurs for the
PLANETS example program. It shows the selection buffer being allocated and specified
with glSelectBuffer. This function takes two arguments: the length of the buffer and a
pointer to the buffer itself.

Listing 19-3 Function to process the mouse click

// Process the selection, which is triggered by a right mouse
// click at (xPos, yPos).
#define BUFFER_LENGTH 64
void ProcessSelection(int xPos, int yPos)
 {
 // Space for selection buffer
 GLuint selectBuff[BUFFER_LENGTH];

 // Hit counter and viewport storage
 GLint hits, viewport[4];

 // Set up selection buffer
 glSelectBuffer(BUFFER_LENGTH, selectBuff);

 // Get the viewport
 glGetIntegerv(GL_VIEWPORT, viewport);

 // Switch to projection and save the matrix
 glMatrixMode(GL_PROJECTION);

OpenGL Super Bible! Page 677

 glPushMatrix();

 // Change render mode
 glRenderMode(GL_SELECT);

 // Establish new clipping volume to be unit cube around
 // mouse cursor point (xPos, yPos) and extending two pixels
 // in the vertical and horizontal direction
 glLoadIdentity();
 gluPickMatrix(xPos, yPos, 2,2, viewport);

 // Apply perspective matrix
 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Draw the scene
 RenderScene();

 // Collect the hits
 hits = glRenderMode(GL_RENDER);

 // If a single hit occurred, display the info.
 if(hits == 1)
 ProcessPlanet(selectBuff[3]);

 // Restore the projection matrix
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 // Go back to modelview for normal rendering
 glMatrixMode(GL_MODELVIEW);
 }

Picking

Picking occurs when you use the mouse position to create and use a modified viewing
volume during selection. By creating a smaller viewing volume positioned in your scene
under the mouse position, only objects that would be drawn within that viewing volume will
generate hit records. By examining the selection buffer, you can then see which objects, if
any, were clicked on by the mouse.

The gluPickMatrix function is a handy utility that will create a matrix describing the new
viewing volume:

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width, GLdoub le
height, GLint viewport[4]);

The x and y parameters are the center of the desired viewing volume in window coordinates.
The mouse position can be plugged in here, and the viewing volume will be centered
directly underneath the mouse. The width and height parameters then specify the dimensions
of the viewing volume in window pixels. For clicks near an object, use a large value; for
clicks right next to the object or directly on the object, use a smaller value. The viewport

Page 678 OpenGL Super Bible!

array contains the window coordinates of the currently defined viewport. This can easily be
obtained by calling

glGetIntegerv(GL_VIEWPORT, viewport);

To use gluPickMatrix, you should first save the current Projection matrix state (thus saving
the current viewing volume). Then call glLoadIdentity to create a unit-viewing volume.
Calling gluPickMatrix then translates this viewing volume to the correct location. Finally,
you must apply any further perspective projections you may have applied to your original
scene; otherwise, you won’t get a true mapping. Here’s how it’s done for the PLANETS
example (from Listing 19-3):

// Switch to projection and save the matrix
glMatrixMode(GL_PROJECTION);
glPushMatrix();

// Change render mode
glRenderMode(GL_SELECT);

// Establish new clipping volume to be unit cube around
// mouse cursor point (xPos, yPos) and extending two pixels
// in the vertical and horizontal direction
glLoadIdentity();
gluPickMatrix(xPos, yPos, 2,2, viewport);

// Apply perspective matrix
gluPerspective(45.0f, fAspect, 1.0, 425.0);

// Draw the scene
RenderScene();

// Collect the hits
hits = glRenderMode(GL_RENDER);

In this segment, the viewing volume is saved first. Then selection mode is entered, the
viewing volume is modified to include only the area beneath the mouse cursor, and the
scene is redrawn by calling RenderScene. After the scene is rendered, we call
glRenderMode again to place OpenGL back into normal rendering mode and get a count of
generated hit records.

In the next segment, if a hit occurred (for this example, there is either one hit or none), we
pass the entry in the selection buffer that contains the name of the object selected or our
ProcessPlanet function. Finally, we restore the Projection matrix (thus the old viewing
volume is restored) and switch the active matrix stack back to the Modelview matrix, which
is usually the default.

// If a single hit occurred, display the info.
if(hits == 1)
 ProcessPlanet(selectBuff[3]);

OpenGL Super Bible! Page 679

// Restore the projection matrix
glMatrixMode(GL_PROJECTION);
glPopMatrix();

// Go back to modelview for normal rendering
glMatrixMode(GL_MODELVIEW);

The ProcessPlanet function simply displays a message box telling which planet was clicked
on. This code is not shown because it is fairly trivial, consisting of no more than a switch
and some message-box function calls.

The output from PLANETS is shown in Figure 19-2, where you can see the result of
clicking on the second planet from the Sun.

Figure 19-2 Output from PLANETS, after clicking on a planet

Hierarchical Picking

For the PLANETS example, we didn’t push any names on the stack, but rather just replaced
the existing one. This single name residing on the name stack was then the only name
returned in the selection buffer. We can also get multiple names when a selection hit occurs,
by placing more than one name on the name stack. This is useful, for instance, in drill-down
situations when you need to know not only that a particular bolt was selected, but that it
belonged to a particular wheel, on a particular car, and so forth.

To demonstrate multiple names being returned on the names stack, we will stick with the
astronomy theme of our previous example. Figure 19-3 shows two planets (okay, so use a
little imagination)— a large blue planet with a single moon, and a smaller red planet with
two moons.

Page 680 OpenGL Super Bible!

Figure 19-3 Two planets with their respective moons

Rather than just identify the planet or moon that’s clicked on, we want to also identify the
planet that is associated with the particular moon. The code in Listing 19-4 shows our new
rendering code for this scene. We push the names of the moons onto the names stack so that
it will contain the name of the planet as well as the name of the moon when selected.

Listing 19-4 Rendering code for the MOONS example program

#define EARTH 1
#define MARS 2
#define MOON1 3
#define MOON2 4

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Translate the whole scene out and into view
 glTranslatef(0.0f, 0.0f, -300.0f);

 // Initialize the names stack
 glInitNames();
 glPushName(0);

 // Draw the Earth
 glPushMatrix();
 glRGB(0,0,255);
 glTranslatef(-100.0f,0.0f,0.0f);
 glLoadName(EARTH);
 auxSolidSphere(30.0f);

OpenGL Super Bible! Page 681

 // Draw the Moon
 glTranslatef(45.0f, 0.0f, 0.0f);
 glRGB(220,220,220);
 glPushName(MOON1);
 auxSolidSphere(5.0f);
 glPopName();
 glPopMatrix();

 // Draw Mars
 glRGB(255,0,0);
 glPushMatrix();
 glTranslatef(100.0f, 0.0f, 0.0f);
 glLoadName(MARS);
 auxSolidSphere(20.0f);

 // Draw Moon1
 glTranslatef(-40.0f, 40.0f, 0.0f);
 glRGB(220,220,220);
 glPushName(MOON1);
 auxSolidSphere(5.0f);
 glPopName();

 // Draw Moon2
 glTranslatef(0.0f, -80.0f, 0.0f);
 glPushName(MOON2);
 auxSolidSphere(5.0f);
 glPopName();
 glPopMatrix();

 // Restore the matrix state
 glPopMatrix(); // Modelview matrix

 // Flush drawing commands
 glFlush();
 }

Now in our ProcessSelection function, we still call the ProcessPlanet function that we wrote,
but this time we pass the entire selection buffer:

// If a single hit occurred, display the info.
if(hits == 1)
 ProcessPlanet(selectBuff);

Listing 19-5 shows the more substantial ProcessPlanet function for this example. In this
instance, the bottom name on the names stack will always be the name of the planet because
it was pushed on first. If a moon is clicked on, it will also be on the names stack. This
function displays the name of the planet selected, and if it was a moon, that information is
also displayed. A sample output is shown in Figure 19-4.

Page 682 OpenGL Super Bible!

Figure 19-4 Sample output from the MOONS sample program

Listing 19-5 Code that parses the selection buffer for the MOONS sample program

// Parse the selection buffer to see which planet/moon was selected
void ProcessPlanet(GLuint *pSelectBuff)
 {
 int id,count;
 char cMessage[64];

// How many names on the name stack
count = pSelectBuff[0];

// Bottom of the name stack
id = pSelectBuff[3];

// Select on earth or mars, whichever was picked
switch(id)
 {
 case EARTH:
 strcpy(cMessage,"You clicked Earth.");

 // If there is another name on the name stack,
 // then it must be the moon that was selected
 // This is what was actually clicked on
 if(count == 2)
 strcat(cMessage," \nSpecifically the moon.");
 break;

 case MARS:
 strcpy(cMessage,"You clicked Mars.");

 // We know the name stack is only two deep. The precise
 // moon that was selected will be here.
 if(count == 2)
 {
 if(pSelectBuff[4] == MOON1)

OpenGL Super Bible! Page 683

 strcat(cMessage," \nSpecifically Moon #1.");
 else
 strcat(cMessage," \nSpecifically Moon #2.");
 }
 break;
 // If nothing was clicked we shouldn't be here!
 default:
 strcpy(cMessage,"Error - Nothing was clicked on!");
 break;
 }

 // Display the message about planet and moon selection
 MessageBox(NULL,cMessage,"Selection Message",MB_OK);
 }

Feedback

Feedback, like selection, is a rendering mode that does not produce output in the form of
pixels on the screen. Instead, information is written to a feedback buffer about how the scene
would have been rendered. This information includes transformed vertex data in window
coordinates, color data resulting from lighting calculations, and texture data.

Feedback mode is entered just like selection mode, by calling glRenderMode with a
GL_FEEDBACK argument. You must reset the rendering mode to GL_RENDER to fill the
feedback buffer and return to normal rendering mode.

The Feedback Buffer

The feedback buffer is an array of floating point values specified with the glFeedback
function:

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

This function takes the size of the feedback buffer, the type and amount of drawing
information wanted, and finally a pointer to the buffer itself.

Valid values for type are shown in Table 19-1. The type of data specifies how much data is
placed in the feedback buffer for each vertex. Color data (C) is represented by a single value
in color index mode, or four values for RGBA color mode.

Page 684 OpenGL Super Bible!

Table 19-1 Feedback Buffer Types

Type Vertex
Coordinates

Color Data Texture
Data

Total Values

GL_2D x, y N/A N/A 2
GL_3D x, y, z N/A N/A 3
GL_3D_COLOR x, y, z C N/A 3 + C
GL_3D_COLOR_TEXTURE x, y, z C 4 7 + C
GL_4D_COLOR_TEXTURE x, y, z, w C 4 8 + C

Feedback Data

The feedback buffer contains a list of tokens followed by vertex data and possibly color and
texture data. You can parse for these tokens (see Table 19-2) to determine the types of
primitives that would have been rendered.

Table 19-2 Feedback Buffer Tokens

Token Primitive

GL_POINT_TOKEN Points
GL_LINE_TOKEN Line
GL_LINE_RESET_TOKEN Line segment when line stipple is reset
GL_POLYGON_TOKEN Polygon
GL_BITMAP_TOKEN Bitmap
GL_DRAW_PIXEL_TOKEN Pixel rectangle drawn
GL_COPY_PIXEL_TOKEN Pixel rectangle copied
GL_PASS_THROUGH_TOKEN User-defined marker

OpenGL Super Bible! Page 685

The point, bitmap, and pixel tokens are followed by data for a single vertex, and possibly
color and texture data. This depends on the data type from Table 19-1 specified in the call to
glFeedbackBuffer. The line tokens return two sets of vertex data, and the polygon token is
immediately followed by the number of vertices that follow. The user-defined marker
(GL_PASS_THROUGH_TOKEN) is followed by a single floating point value that is user
defined. Figure 19-5 shows an example of a feedback buffer’s memory layout if a GL_3D
type were specified.

Figure 19-5 An example memory layout for a feedback buffer

PassThrough Markers

When your rendering code is executing, the feedback buffer is filled with tokens and vertex
data as each primitive is specified. Just as you can in selection mode, you can flag certain
primitives by naming them. In feedback mode you can set markers between your primitives,
as well. This is done by calling glPassThrough:

void glPassThrough(GLfloat token);

This function places a GL_PASS_THROUGH_TOKEN in the feedback buffer, followed by
the value you specify when calling the function. This is somewhat similar to naming
primitives in selection mode. It’s the only way of labeling objects in the feedback buffer.

An Example

An excellent use of feedback is to obtain window coordinate information regarding any
objects that you render. You can then use this information to place controls near the objects
in the window, or other windows around them.

Page 686 OpenGL Super Bible!

To demonstrate feedback, we will use selection to determine which of two objects on the
screen have been clicked on by the user. Then we will enter feedback mode and render the
scene again to obtain the vertex information in window coordinates. Using this data, we will
determine the minimum and maximum x and y values for the object, and use those values to
draw a focus rectangle around the object. The end result is graphical selection and
deselection of one or both objects.

Label the Objects for Feedback

Listing 19-6 shows the rendering code for our example program, SELECT. Don’t confuse
this with a demonstration of selection mode! Even though selection mode is employed in our
example to select an object on the screen, we are demonstrating the process of getting
enough information about that object— using feedback— to draw a rectangle around it using
normal Windows GDI commands. Notice the use of glPassThrough to label the objects in
the feedback buffer, right after the calls to glLoadName to label the objects in the selection
buffer.

Listing 19-6 Rendering code for the SELECT example program

#define CUBE1
#define SPHERE2

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Translate the whole scene out and into view
 glTranslatef(-80.0f, 0.0f, -300.0f);

 // Initialize the names stack
 glInitNames();
 glPushName(0);

 // Set material color, Yellow
 // Cube
 glRGB(255, 255, 0);
 glLoadName(CUBE);
 glPassThrough((GLfloat)CUBE);
 auxSolidCube(75.0f);

 // Draw Sphere
 glRGB(128,0,0);
 glTranslatef(130.0f, 0.0f, 0.0f);
 glLoadName(SPHERE);
 glPassThrough((GLfloat)SPHERE);

OpenGL Super Bible! Page 687

 auxSolidSphere(50.0f);

 // Restore the matrix state
 glPopMatrix(); // Modelview matrix

 // Flush drawing commands
 glFlush();
 }

Step 1: Select the Object

Figure 19-6 shows the output from this rendering code, displaying a cube and a sphere.
When the user clicks on one of the objects, the function ProcessSelection is called (Listing
19-7). This is very similar to the selection code in the previous two examples.

Figure 19-6 Output from the SELECT program after the sphere has been clicked

Listing 19-7 Selection processing for the SELECT example program

// Process the selection, which is triggered by a right mouse
// click at (xPos, yPos).
#define BUFFER_LENGTH 64
void ProcessSelection(int xPos, int yPos)
 {
 // Space for selection buffer
 GLuint selectBuff[BUFFER_LENGTH];

 // Hit counter and viewport storage
 GLint hits, viewport[4];

 // Set up selection buffer
 glSelectBuffer(BUFFER_LENGTH, selectBuff);

Page 688 OpenGL Super Bible!

 // Get the viewport
 glGetIntegerv(GL_VIEWPORT, viewport);

 // Switch to projection and save the matrix
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();

 // Change render mode
 glRenderMode(GL_SELECT);

 // Establish new clipping volum e to be unit cube around
 // mouse cursor point (xPos, yPos) and extending two pixels
 // in the vertical and horizontal direction
 glLoadIdentity();
 gluPickMatrix(xPos, yPos, 2,2, viewport);

 // Apply perspective matrix
 gluPerspective(60.0f, fAspect, 1.0, 425.0);

 // Draw the scene
 RenderScene();

 // Collect the hits
 hits = glRenderMode(GL_RENDER);

 // Restore the projection matrix
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 // Go back to modelview for normal rendering
 glMatrixMode(GL_MODELVIEW);

 // If a single hit occurred, display the info.
 if(hits == 1)
 MakeSelection(selectBuff[3]);
 }

Step 2: Get Feedback on the Object

Now that we have determined which object was clicked on, we set up the feedback buffer,
and render again in feedback mode. Listing 19-8 is the code that sets up feedback mode for
this example and calls RenderScene to redraw the scene. This time, however, the
glPassThrough functions put markers for the objects in the feedback buffer.

Listing 19-8 Load and parse the feedback buffer

// Go into feedback mode and draw a rectangle around the object
#define FEED_BUFF_SIZE 4096
void MakeSelection(int nChoice)
 {
 // Space for the feedback buffer
 GLfloat feedBackBuff[FEED_BUFF_SIZE];

OpenGL Super Bible! Page 689

 // Storage for counters, etc.
 int size,i,j,count;

 // Min and max x and y values for 2D vertex positions
 float nMaxX,nMaxY,nMinX,nMinY;

 // Initial minimum and maximum values
 nMaxX = nMaxY = -999999.0f;
 nMinX = nMinY = 999999.0f;

 // Set the feedback buffer
 glFeedbackBuffer(FEED_BUFF_SIZE,GL_2D, feedBackBuff);

 // Enter feedback mode
 glRenderMode(GL_FEEDBACK);

 // Redraw the scene
 RenderScene();

 // Leave feedback mode
 size = glRenderMode(GL_RENDER);

 // Parse the feedback buffer and get the
 // min and max X and Y window coordinates
 i = 0;
 while(i < FEED_BUFF_SIZE)
 {
 // Search for appropriate token
 if(feedBackBuff[i] == GL_PASS_THROUGH_TOKEN)
 if(feedBackBuff[i+1] == (GLfloat)nChoice)
 {
 i+= 2;
 // Loop until next token is reached
 while(feedBackBuff[i] != GL_PASS_THROUGH_TOKEN)
 {
 // Just get the polygons
 if(feedBackBuff[i] == GL_POLYGON_TOKEN)
 {
 // Get all the values for this
 polygon
 // How many vertices
 count = (int)feedBackBuff[++i];
 i++;

 // Loop for each vertex
 for(j = 0; j < count; j++)
 {
 // Min and Max X
 if(feedBackBuff[i] > nMaxX)
 nMaxX = feedBackBuff[i];

 if(feedBackBuff[i] < nMinX)
 nMinX = feedBackBuff[i];

Page 690 OpenGL Super Bible!

 i++;

 // Min and Max Y
 if(feedBackBuff[i] > nMaxY)
 nMaxY = feedBackBuff[i];

 if(feedBack Buff[i] < nMinY)
 nMinY = feedBackBuff[i];

 i++;
 }
 }
 else
 i++; // Get next index and keep
 looking
 }
 break;
 }
 i++;
 }
 // Draw focus rectangle
 HighLight((int)floor(nMinX+0.5), (int)floor(nMinY+0.5),
 (int)floor(nMaxX+0.5), (int)floor(nMaxY+0.5));
 }

Once the feedback buffer is filled, we search it for GL_PASS_THROUGH_TOKEN. When
we find one, we get the next value and determine if it is the one we are looking for. If so, the
only thing that remains is to loop through all the polygons for this object and get the
minimum and maximum window x and y values. The HighLight function uses the Win32
function DrawFocusRect to draw a rectangle around the outside of the object that was
clicked on. This function uses XOR drawing mode, so calling it twice causes the rectangle to
disappear. This allows you to select by clicking on an object, and deselect by clicking again.

Summary

Selection and feedback are two very powerful features of OpenGL that give you the ability
to facilitate the user’s active interaction with the scene. Selection and picking are used to
identify an object or region of a scene in OpenGL coordinates rather than just window
coordinates. Feedback returns valuable information about how an object or primitive is
actually drawn in the window. You can use this information to supplement OpenGL’s
graphics with Windows-specific graphics and operations that appear to interact with your
OpenGL graphics.

OpenGL Super Bible! Page 691

Reference Section

glFeedbackBuffer

Purpose
Sets the feedback mode.

Include File
<gl.h>

Syntax
void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

Description
This function establishes the feedback buffer and the type of vertex information
desired. Feedback is a rendering mode; rather than rendering to the framebuffer,
OpenGL sends vertex data to the buffer specified here. These blocks of data can
include x, y, z, and w coordinate positions (in window coordinates); color data for
color index mode or RGBA color mode; and finally texture coordinates. The amount
and type of information desired is specified by the type argument.

Parameters

size
GLsizei: The maximum number of entries allocated for *buffer. If a block of data
written to the feedback would overflow the amount of space allocated, only the part
of the block that will fit in the buffer is written.

type
GLenum: Specifies the kind of vertex data to be returned in the feedback buffer.
Each vertex generates a block of data in the feedback buffer. For each of the
following types, the block of data contains a primitive token identifier followed by
the vertex data. The vertex data specifically will include the following:
GL_2D: x and y coordinate pairs.
GL_3D: x, y, and z coordinate triplets.
GL_3D_COLOR: x, y, z coordinates, and color data (one value for Color Index, four
for RGBA).
GL_3D_COLOR_TEXTURE: x, y, z coordinates, color data (one or four values),
and four texture coordinates.
GL_4D_COLOR_TEXTURE: x, y, z, and w coordinates, color data (one or four
values), and four texture coordinates.

buffer
GLfloat*: Buffer where feedback data will be stored.

Returns
None.

Example

Page 692 OpenGL Super Bible!

The following code from the SELECT sample program initializes the feedback buffer with
glFeedbackBuffer, then switches to feedback mode, renders the scene, and fills the feedback
buffer by switching back to rendering mode.

 #define FEED_BUFF_SIZE 4096
 ...
 ...

 // Space for the feedback buffer
 GLfloat feedBackBuff[FEED_BUFF_SIZE];

 ...
 ...

 // Set the feedback buffer
 glFeedbackBuffer(FEED_BUFF_SIZE,GL_2D, feedBackBuff);

 // Enter feedback mode
 glRenderMode(GL_FEEDBACK);

 // Redraw the scene
 RenderScene();

 // Leave feedback mode
 size = glRenderMode(GL_RENDER);
See Also

glPassThrough, glRenderMode, glSelectBuffer

OpenGL Super Bible! Page 693

glInitNames

Purpose
Initializes the name stack.

Include File
<gl.h>

Syntax
void glInitNames(void);

Description
The name stack is used to allow drawing primitives or groups of primitives, to be
named with an unsigned integer when rendered in selection mode. Each time a
primitive is named, its name is pushed on the names stack with glPushName, or the
current name is replaced with glLoadName. This function sets the name stack to its
initial condition with no names on the stack.

Returns
None.

Example

The following code is from the example program PLANETS. It initializes the names stack
and places a single value on the stack.

 // Initialize the names stack
 glInitNames();
 glPushName(0);
See Also

glInitNames, glPushName, glRenderMode, glSelectBuffer

Page 694 OpenGL Super Bible!

glLoadName

Purpose
Loads a name onto the name stack.

Include File
<gl.h>

Syntax
void glLoadName(GLuint name);

Description
This function places the name specified on the top of the names stack. The name
stack is used to name primitives or groups of primitives when rendered in selection
mode. The current name on the names stack is actually replaced by the name
specified with this function.

Parameters

name
GLuint: Specifies the name to be placed on the names stack. Selection names are
unsigned integers.

Returns
None.

Example

The following code from the PLANETS example program shows a name being loaded on
the name stack just before an object is rendered.

 // Set material color, Yellow
 // Sun
 glRGB(255, 255, 0);
 glLoadName(SUN);
 auxSolidSphere(15.0f);
See Also

glInitNames, glPushName, glRenderMode, glSelectBuffer

OpenGL Super Bible! Page 695

glPassThrough

Purpose
Places a marker in the feedback buffer.

Include File
<gl.h>

Syntax
void glPassThrough(GLfloat token);

Description
When OpenGL is placed in feedback mode, no pixels are drawn to the
framebuffer.Instead, information about the drawing primitives is placed in a
feedback buffer. This function allows you to place the token
GL_PASS_THROUGH_TOKEN in the midst of the feedback buffer, which will be
followed by the floating point value specified by this function. This function is called
in your rendering code and has no effect unless in feedback mode.

Parameters

token
GLfloat: A value to be placed in the feedback buffer following the
GL_PASS_THROUGH_TOKEN.

Returns
None.

Example

The following code from the SELECT example program demonstrates glPassThrough and
glLoadName being used together to identify an object. This marks the object in both the
selection and feedback buffers.

 // Set material color, Yellow
 // Cube
 glRGB(255, 255, 0);
 glLoadName(CUBE);
 glPassThrough((GLfloat)CUBE);
 auxSolidCube(75.0f);
See Also

glFeedbackBuffer, glRenderMode

Page 696 OpenGL Super Bible!

glPopName

Purpose
Pops (removes) the top entry from the name stack.

Include File
<gl.h>

Syntax
void glPopName(void);

Description
The names stack is used during selection to identify drawing commands. This
function removes a name from the top of the names stack. The current depth of the
name stack can be retrieved by calling glGet with GL_NAME_STACK_DEPTH.

Returns
None.

Example

The following code from the MOONS example program uses the name stack to place the
name of a planet and its moon on the name stack for selection. This code in particular shows
one moon’s name being popped off the name stack before the name of the next moon is
pushed on.

 // Draw Mars
 glRGB(255,0,0);
 glPushMatrix();
 glTranslatef(100.0f, 0.0f, 0.0f);
 glLoadName(MARS);
 auxSolidSphere(20.0f);

 // Draw Moon1
 glTranslatef(-40.0f, 40.0f, 0.0f);
 glRGB(220,220,220);
 glPushName(MOON1);
 auxSolidSphere(5.0f);
 glPopName();

 // Draw Moon2
 glTranslatef(0.0f, -80.0f, 0.0f);
 glPushName(MOON2);
 auxSolidSphere(5.0f);
 glPopName();
 glPopMatrix();
See Also

glInitNames, glLoadName, glRenderMode, glSelectBuffer, glPushName

OpenGL Super Bible! Page 697

glPushName

Purpose
Specifies a name that will be pushed on the name stack.

Include File
<gl.h>

Syntax
void glPushName(GLuint name);

Description
The names stack is used during selection to identify drawing commands. This
function pushes a name on the names stack to identify any subsequent drawing
commands. The names stack maximum depth can be retrieved by calling glGet with
GL_MAX_NAME_STACK_DEPTH, and the current depth by calling glGet with
GL_NAME_STACK_DEPTH. The maximum depth of the names stack can vary
with implementation, but all implementations must support at least 64 entries.

Parameters

name
GLuint: The name to be pushed onto the names stack.

Returns
None.

Example

The following code from the MOONS example program uses the name stack to place the
name of a planet and its moon on the name stack for selection. This code in particular shows
the names of the moons being pushed on the names stack after the name of the planet. This
moon’s name is then popped off before the next moon’s name is pushed on.

 // Draw Mars
 glRGB(255,0,0);
 glPushMatrix();
 glTranslatef(100.0f, 0.0f, 0.0f);
 glLoadName(MARS);
 auxSolidSphere(20.0f);

 // Draw Moon1
 glTranslatef(-40.0f, 40.0f, 0.0f);
 glRGB(220,220,220);
 glPushName(MOON1);
 auxSolidSphere(5.0f);
 glPopName();

 // Draw Moon2
 glTranslatef(0.0f, -80.0f, 0.0f);
 glPushName(MOON2);

Page 698 OpenGL Super Bible!

 auxSolidSphere(5.0f);
 glPopName();
 glPopMatrix();
See Also

glInitNames, glLoadName, glRenderMode, glSelectBuffer, glPopName

OpenGL Super Bible! Page 699

glRenderMode

Purpose
Sets one of three rasterization modes.

Include File
<gl.h>

Syntax
GLint glRenderMode(GLenum mode);

Description
OpenGL operates in three modes when you call your drawing functions:
GL_RENDER: Render mode (the default). Drawing functions result in pixels in the
framebuffer.
GL_SELECT: Selection mode. No changes to the framebuffer are made. Rather, hit
records are written to the selection buffer that record primitives that would have been
drawn within the viewing volume. The selection buffer must be allocated and
specified first with a call to glSelectBuffer. GL_FEEDBACK: Feedback mode. No
changes to the framebuffer are made. Instead coordinates and attributes of vertices
that would have been rendered in render mode are written to a feedback buffer. The
feedback buffer must be allocated and specified first with a call to glFeedbackBuffer.

Parameters

mode
GLenum: Specifies the rasterization mode. May be any one of GL_RENDER,
GL_SELECT, and GL_FEEDBACK. The default value is GL_RENDER.

Returns
The return value depends on the rasterization mode that was set the last time this
function was called:
GL_RENDER: Zero.
GL_SELECT: The number of hit records written to the selection buffer.
GL_FEEDBACK: The number of values written to the feedback buffer. Note, this is
not the same as the number of vertices written.

Example

The following code shows glRenderMode being called to enter selection mode for the
PLANETS example program. The function is called again with an argument of
GL_RENDER to enter rendering mode and to write the hit records into the selection buffer.

// Process the selection, which is triggered by a right mouse
// click at (xPos, yPos).
#define BUFFER_LENGTH 64
void ProcessSelection(int xPos, int yPo s)
 {
 // Space for selection buffer

Page 700 OpenGL Super Bible!

 GLuint selectBuff[BUFFER_LENGTH];

 // Hit counter and viewport storage
 GLint hits, viewport[4];

 // Set up selection buffer
 glSelectBuffer(BUFFER_LENGTH, selectBuff);

 // Get the viewport
 glGetIntegerv(GL_VIEWPORT, viewport);

 // Switch to projection and save the matrix
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();

 // Change render mode
 glRenderMode(GL_SELECT);

 // Establish new clipping volume to be unit cube aro und
 // mouse cursor point (xPos, yPos) and extending two pixels
 // in the vertical and horizontal direction
 glLoadIdentity();
 gluPickMatrix(xPos, yPos, 2,2, viewport);

 // Apply perspective matrix
 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Draw the scene
 RenderScene();

 // Collect the hits
 hits = glRenderMode(GL_RENDER);

 // If a single hit occurred, display the info.
 if(hits == 1)
 ProcessPlanet(selectBuff[3]);

 // Restore the projection matrix
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 // Go back to modelview for normal rendering
 glMatrixMode(GL_MODELVIEW);
 }
See Also

glFeedbackBuffer, glInitNames, glLoadName, glPassThrough, glPushName,
glSelectBuffer

OpenGL Super Bible! Page 701

glSelectBuffer

Purpose
Sets the buffer to be used for selection values.

Include File
<gl.h>

Syntax
void glSelectBuffer(GLsizei size, GLuint *buffer);

Description
When OpenGL is in selection mode (GL_SELECT), drawing commands do not
produce pixels in the framebuffer. Instead they produce hit records that are written to
the selection buffer that is established by this function. Each hit record consists of the
following data:
1. The number of names on the names stack when the hit occurred.
2. The minimum and maximum z values of all the vertices of the primitives that
intersected the viewing volume. This value is scaled to range from 0.0 to 1.0.
3. The contents of the name stack at the time of the hit, starting with the bottommost
element.

Parameters

size
GLsize: The number of values that can be written into the buffer established by
*buffer.

buffer
GLuint*: A pointer to memory that will contain the selection hit records.

Returns
None.

Example

The following code shows the selection buffer being created for the PLANETS example
program.

// Process the selection, which is triggered by a right mouse
// click at (xPos, yPos).
#define BUFFER_LENGTH 64
void ProcessSelection(int xPos, int yPos)
 {
 // Space for selection buffer
 GLuint selectBuff[BUFFER_LENGTH];

 ...
 ...

 // Set up selection buffer

Page 702 OpenGL Super Bible!

 glSelectBuffer(BUFFER_LENGTH, selectBuff);
See Also

glFeedbackBuffer, glInitNames, glLoadName, glPushName, glRenderMode

OpenGL Super Bible! Page 703

gluPickMatrix

Purpose
Defines a picking region that can be used to identify user selections.

Include File
<glu.h>

Syntax
void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width, GLdouble height,
GLint viewport[4]);

Description
This function creates a matrix that will define a smaller viewing volume based on
screen coordinates for the purpose of selection. By using the mouse coordinates with
this function in selection mode, you can determine which of your objects are under
or near the mouse cursor. The matrix created is multiplied by the current projection
matrix. Typically you should call glLoadIdentity before calling this function, then
multiply the perspective matrix that you used to create the viewing volume in the
first place. If you are using gluPickMatrix to pick NURBS surfaces, you must turn
off the NURBS property GLU_AUTO_LOAD_MATRIX before using this function.

Parameters

x,y
GLdouble: The center of the picking region in window coordinates.

width,height
GLdouble: The width and height of the desired picking region in window
coordinates.

viewport
GLint[4]: The current viewport. You can get the current viewport by calling
glGetIntegerv with GL_VIEWPORT.

Returns
None.

Example

The following code is from the PLANETS example program. It uses this function to create a
new clipping volume that will cover an area of the window only 2 pixels by 2 pixels,
centered on the mouse cursor. This is used to select the object that is directly underneath the
mouse cursor.

 // Hit counter and viewport storage
 GLint hits, viewport[4];

 // Set up selection buffer
 glSelectBuffer(BUFFER_LENGTH, selectBuff);

Page 704 OpenGL Super Bible!

 // Get the viewport
 glGetIntegerv(GL_VIEWPORT, viewport);

 // Switch to projection and save the matrix
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();

 // Change render mode
 glRenderMode(GL_SELECT);

 // Establish new clipping volume to be unit cube around
 // mouse cursor point (xPos, yPos) and extending two pixels
 // in the vertical and horizontal direction
 glLoadIdentity();
 gluPickMatrix(xPos, yPos, 2,2, viewport);

 // Apply perspective matrix
 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Draw the scene
 RenderScene();

 // Collect the hits
 hits = glRenderMode(GL_RENDER);

 // If a single hit occurred, display the info.
 if(hits == 1)
 ProcessPlanet(selectBuff[3]);

 // Restore the projection matrix
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 // Go back to modelview for normal rendering
 glMatrixMode(GL_MODELVIEW);
See Also

glGet, glLoadIdentity, glMultMatrix, glRenderMode, gluPerspective

OpenGL Super Bible! Page 705

Chapter 20
OpenGL On The 'Net: VRML

OpenGL has been put to many uses. This chapter is about one use in particular that has
recently become widely popular: virtual reality.

OpenGL is ideally suited for a variety of graphical and modeling purposes, and it is the
enabling technology behind the pseudorealism of virtual reality. These computer-generated
“worlds,” in which many of the user’s senses can be immersed, contain three-dimensional
scenes that include sound and sometimes feeling and resistance via tactile feedback
mechanisms. Some products offer technology as diverse as tactile feedback gloves, three-
dimensional goggles, and arcade-style computer games that allow realistic movement in all
directions.

The Internet, which is far more mature technologically than is virtual reality, has recently
become the popular playground of the modern computer enthusiast— not to mention a
necessity for the professional, academic, and military users for which it was originally
intended. Few of us today are unfamiliar with the term cyberspace— a virtual world of its
own with many places to visit and people to meet— and most of us have spent at least some
time surfing this network of computers and information resources.

In this chapter we will briefly discuss an implementation of virtual reality over the Internet
that has its origins in OpenGL. For the sake of brevity, we will assume you have some
familiarity with the Internet, the World Wide Web (the Web or WWW), and the Web
browsers that facilitate navigation across the World Wide Web.

When Worlds Collide

It didn’t take long for someone to make the connection between cyberspace and virtual
reality. If in cyberspace you are traveling around the world, visiting different places and
accessing various types of information, it makes sense to be able to do this in a visual
environment rather than with textual displays that are so hard to muddle through.

Graphical navigation of the Internet first began when Tim Berners-Lee at the European
Center for Nuclear Physics (CERN) in Geneva devised a set of protocols that made it
possible to easily encode the connection between various files contained in FTP archives.
These connections link documents to other documents of interest, allowing navigation from
one document to another, even across directories, computers, and continents. These
protocols use Universal Resource Locators (URLs) to identify document locations and were
the genesis of the World Wide Web.

Soon thereafter, Marc Anderson (who later founded Netscape Communications Corporation)
created a Web browser that could mix various kinds of files, including text and graphics,

Page 706 OpenGL Super Bible!

into a single presentation. This browser was NCSA Mosaic, and it could represent the
relationships within a document to other documents, as well as provide a protocol for
formatting the documents with embedded images and different types of text. The Internet
hasn’t been the same since. In less than a year, the Internet went from being a technical
thing-a-ma-bob to something anyone can use with point-and-click ease.

Two-Dimensional Navigation

Web pages comprise mostly text documents in a special format called HTML (HyperText
Markup Language). HTML documents can embed other documents, graphics, even video
and sound, as well as hypertext links to other documents and Web sites. Figure 20-1 shows a
typical Web home page; this one belongs to Silicon Graphics and is fairly graphics heavy.
By clicking on a button for a subject of interest to you, or on a “hot spot” on the larger
image, you are transported to another page containing the linked information of interest
and/or a whole new set of categories and links to other pages.

Figure 20-1 A typical Web home page with hypertext links

Enter VRML

The graphical yet two-dimensional method of Web navigation became immensely popular in
just a couple of years. “Navigating” through cyberspace in this manner was very efficient as
long as the information you were seeking could be represented as a document. However, the
world is not a library, and Internet entrepreneurs were pushing the limits of what could be
accomplished effectively with two-dimensional document-centric navigation.

OpenGL Super Bible! Page 707

Then in 1994 (not that long ago!), Mark Pesce and Tony Parisi created a new type of Web
document and browser that could navigate in three dimensions. On Valentine’s Day 1994,
the first virtual reality Web site was up and running. It was three-dimensional, and it allowed
you to navigate a 3D scene and click on objects of interest that were linked to other 3D
scenes or HTML Web pages.

These 3D files were modeled with a new scripting language, VRML (originally meaning
Virtual Reality Markup Language and eventually Virtual Reality Modeling Language).
Silicon Graphics (SGI), a world leader in computer graphics technology, graciously placed
their Open Inventor scene-description language file format in the public domain, and it
became the basis for VRML version 1.0.

About Open Inventor
Open Inventor is a much higher-level interface for 3D modeling than is provided by the
OpenGL API alone. Open Inventor is actually a C++ class library built on top of OpenGL.
Programmers use this library, or tools that use the library, to create complex 3D scenes and
objects that often aren’t practical by hand, using OpenGL alone. Open Inventor objects (in
the C++ sense) have a feature called persistence that allows them to be saved to disk and
reloaded later. SGI provided the VRML developer community with free source code. This
was used to parse the native scene-description script used by Open Inventor for persistent
storage of 3D scenes and objects (in binary), into more meaningful information about the
location and characteristics of the objects that make up the scene. Open Inventor is discussed
in more detail later in this chapter.

Fueled by free source code from SGI, by April of 1995 VRML became the darling of the
popular Internet press. VRML browsers from multiple vendors appeared on the market, for
all of the popular platforms including PCs. Now the technology existed for users to do more
than just select items from a menu. Now they could actually walk through a library or
museum or even a shopping mall, and pick up and examine items of interest.

WebSpace

Silicon Graphics was naturally the first to have a fully compliant, commercially available
VRML Web browser. WebSpace was its name, and it set the standard by which all other
VRML browsers were to be compared. WebSpace was developed to run on SGI’s own
workstations, but a third party, Template Graphics Software, has been allowed to develop a
version for Microsoft Windows and other platforms. All versions of this browser now fully
support the VRML 1.0 standard and make use of OpenGL to render the scenes.

Installation

WebSpace can be installed as a helper application in most WWW browsers. For installation
instructions, see the README file for your browser. WebSpace loads VRML files with a

Page 708 OpenGL Super Bible!

.wrl extension as well as Open Inventor scene files with an .iv extension. In addition, the
latest version of WebSpace from Template Graphics will automatically load .wrl files that
have been compressed with gzip, a popular Internet file-compression format. This makes for
substantially smaller files and thus faster loading.

WebSpace on CD
A copy of Template Graphics’s Windows version of WebSpace is available on this book’s
CD in the Chapter 20 subdirectory. The software and sample VRML scenes are courtesy of
Silicon Graphics Inc. and Template Graphics Software. These files are provided as
shareware. If you use this software for more than evaluation purposes, you should register
your copy. See the README file for licensing information.

The Walk Viewer

There are two modes of operation for navigation in WebSpace. The first is the Walk Viewer,
which lets you actually navigate through the model presented, such as a museum or
architectural model. The second is the Examiner Viewer, which is used to examine objects
in WebSpace, such as an airplane, tool, or piece of furniture. You’ll see both of these modes
in action shortly.

Figure 20-2 shows WebSpace viewing a sample VRML scene in the Walk Viewer mode.
This mode is used when the browser is being used to travel through a 3D scene. It could be a
simple 3D terrain, an architectural view of a building, a shopping mall, or even a small city
area (as shown).

Figure 20-2 WebSpace in the Walk Viewer mode

OpenGL Super Bible! Page 709

Detailed Use Instructions
This chapter is an introduction to VRML and Virtual Reality on the Internet. We used
WebSpace as our baseline to demonstrate the concepts of 3D Web navigation. For more
detailed information on use and features of the WebSpace browser, see the README and
help files that accompany the program.

Some objects in the scene may be hot-linked to other sites or to HTML documents, just like
a 2D Web page. The controls at the bottom of the window are collectively called the
Dashboard; they are used to navigate throughout the scene. The diamond on the far left is
the Seek tool; it helps you rapidly navigate to a point of interest in the scene. To use the
Seek Tool, simply click on it to activate the Seek mode and then click anywhere else in the
scene. The navigator smoothly proceeds to that place without your having to use any of the
other navigation tools.

The tool on the far right is an Arrow Pad that is used to slide the view of the scene vertically
or horizontally. This view is only a translation along the x- or y-axis (side-to-side or up-and-
down). The camera point of view is not tilted or rotated in any way.

Finally, in the center of the dashboard is the Joystick— used to move forward and backward
through the scene, turn left and right, and tilt the view up and down. Simply click on the
joystick and drag it up or down to move forward or backwards, and left or right to twist the
view to the left or right.

3D Navigation
The 3D interface of WebSpace may seem somewhat primitive to up-to-the-minute Internet
users. It’s reminiscent of a flight simulator or arcade game, and could use some improvement
in its ease of use. You can expect dramatic improvements in the coming years as more
browsers are introduced.

There is a red knob on the right side of the joystick, called the Tilt Knob, that is used to tilt
the view up or down. Click on the Tilt Knob and drag it up or down to view the ceiling or
floor, respectively. In Figure 20-3, the Tilt Knob is being used to look up at the top of some
buildings.

Page 710 OpenGL Super Bible!

Figure 20-3 Using the Tilt Knob to look “up” at the rooftops

The Examiner Viewer

The Examiner Viewer mode is for exploring an object, rather than traveling through a virtual
scene. Figure 20-4 shows WebSpace examining a model of the first Kitty Hawk airplane.
Imagine walking through a virtual museum in the Walk Viewer, then clicking on a small
picture of the plane. When the browser switches to the Examiner mode, you get a closer
look at the plane. In addition, there may be other hypertext links to a report about flight, or
the Wright brothers.

Figure 20-4 Examiner Viewer

OpenGL Super Bible! Page 711

You’ll notice the Dashboard in Figure 20-4 looks similar to that of the Walk Viewer, but the
joystick is now replaced by a Trackball and Thumbwheel. The Thumbwheel lets you move
the object closer or farther away from the point of view. Click on the Thumbwheel and drag
up to move the object farther away, or down to move the object closer. Figure 20-5 shows
the Kitty Hawk airplane at a greater distance.

Figure 20-5 The Examiner Viewer with the object at a greater distance away from the
viewer

With the Trackball you rotate the viewed object in any direction. Click anywhere on the
Trackball, and drag it to spin the object being viewed. If you release the left mouse button
while moving the mouse, the Trackball will continue to spin the principle object.

Open Inventor and VRML

To understand the relationship between Open Inventor and VRML, you may want a little
more background on Open Inventor. This object-oriented library and tool set is implemented
using OpenGL. The programming library is almost always used from C++, but C bindings
exist, as well. This object-oriented approach provides a much higher level of control over
the objects and scenes being composed.

When OpenGL is used to create a scene or object, each function and command has an
immediate effect on the frame buffer. Unless you are using double buffering, the results of
each action are immediately visible on screen. This is known as immediate mode rendering.

Open Inventor, on the other hand, operates in what is sometimes called a retained mode. In
this mode you use various commands and functions to compose a scene database. This
database of objects and materials is then rendered all at once to create the scene. The real

Page 712 OpenGL Super Bible!

power of retained mode is that individual objects in the scene can be manipulated very easily
programmatically. Furthermore, relationships between objects can be established that allow
the manipulation of one object to affect other objects (such as linked assemblages or
mechanical models). Object engines can also be used within the database to perform
rotations, animations, and other actions. This information is then embedded within the scene
description, and no further programming is necessary on the part of the developer.

The VRML 1.0 specification is based entirely on the Open Inventor 3D file interchange
format. This file format, which is nothing more than the scene database in a standardized
layout, allows 3D graphics designers to easily exchange objects and scenes when using
Open Inventor-based tools. It’s easy to store a single object or an entire scene filled with
objects, in a single file.

Summary

WebSpace is not the only way to visit cyberspace in 3D. Many other vendors (including
Microsoft) have hopped on the bandwagon and developed their own VRML viewers..
WebSpace does offer the unique advantage of compatibility with nearly any Web browser
and will load and view both VRML and Open Inventor files, either uncompressed or
compressed.

Even as this chapter went to production, the battle was raging over who will set the
standards for VRML version 2.0. These newer versions will add new features for animation
and multimedia enhancements to 3D scenes viewed over the Internet.

Is virtual reality over the Internet just a passing fad or the beginning of a revolution? Only
time will tell, but there is a universal law at play here: “Demand will always consume
available bandwidth,” whether it’s processing power, communication speed, or graphics
capabilities. As computer networks manage more speed and work with better graphics
hardware, you can be reasonably certain that virtual reality is here to stay. It is only going to
get faster, more realistic, and more capable of simulating the world in which we live.

OpenGL Super Bible! Page 713

Part IV
OpenGL with. . .

In the fourth and last part of this book, we are going to take a look at some general
programming issues that arise when using OpenGL. Two chapters will help C++
programmers who are using the most popular C++ frameworks in use for Windows
programmers, MFC and OWL. We won’t be leaving out the 4GL and other visual
programmers, either. In Chapter 23 we introduce you to an OpenGL OCX that will facilitate
the use of OpenGL from almost any 32-bit Windows programming environment.

Finally, no book on Windows and OpenGL would be complete without addressing the
interaction of OpenGL with the other graphics APIs. In addition to GDI, this group includes
the DirectX architecture and 3DDDI.

Page 714 OpenGL Super Bible!

Chapter 21
MFC-Based OpenGL Programming

What you’ll learn in this chapter:

How to… Functions You’ll Use

Set MFC window styles to support OpenGL PreCreateWindow
Create and set up the rendering context OnCreate
Clean up the rendering context when the program
terminates

OnDestroy

Place your projection and viewport code OnSize
Place your rendering code OnDraw
Prevent screen flicker between renderings OnEraseBkgnd
Place your palette management code OnQueryNewPalette, OnPaletteChanged

It is an undeniable fact that a large and growing number of developers are using C++ for
Windows development. Throughout this book, however, we have presented all our source
code in C. Fortunately, most C++ programmers can easily follow C source code. On the
other hand, unfortunately, the converse is not necessarily true (many C programmers cannot
follow C++ as easily). This is not to say that C++ is especially harder to grasp and use, but if
you picked up this book on graphics programming, you want to learn graphics
programming, you probably don’t want to have to learn some new syntax along the way as
well.

Although any of the samples in this book can be compiled with a C++ compiler as well as a
C compiler, most C++ programmers developing for Windows are not writing C code. Most
are using a commercial C++ application framework package, or their own C++ class
hierarchy. The point is, most C++ applications don’t have windows procedures like the ones
in this book, nor do they have those “case statements from hell” that handle every
conceivable message that may be posted to a window.

The purpose of this short chapter is to give C++ programmers using a popular application
framework a starting place for their OpenGL programs. The application framework for this
chapter is the Microsoft Foundation Classes (MFC). The samples and screenshots for this
chapter were prepared using Microsoft’s Visual C++ 4.0. Other compilers and environments
that support MFC should work similarly.

OpenGL Super Bible! Page 715

Note: If you are using OWL (Borland’s Object Windows Library), coverage of it is included
in Chapter 22.

For the purposes of this chapter, we will assume that you are already familiar with the
following:

• Visual C++ and MFC for building Windows NT and Windows 95 applications
• Chapter 4 of this book, covering OpenGL for Windows and the creation and use of
rendering contexts
• The palette handling material in Chapter 8

Isolate Your OpenGL Code

For any application, it is good design practice to keep your source code as modular as
possible. By isolating functional pieces, it becomes much easier to reuse and maintain the
code. By isolating your “pure” OpenGL code into a separate module, you can efficiently
replace this module with specific code, while retaining the functionality of the rest of the
application. Our sample here makes it relatively simple to take any C program in this book
and convert it to C++, using MFC and our test application shell.

We start by declaring three functions in a C source file called glcode.c. The file glcode.h
contains the declarations for these functions and is included for access in our CView-derived
class file.

// glcode.h
// Declarations for external OpenGL module. These functions are
// defined in glcode.c and are called appropriately by the CView
// derived classes.

extern "C" {
 void GLSetupRC(void *pData);
 void GLRenderScene(void *pData);
 void GLResize(GLsizei h, GLsizei w);
 }

The GLSetupRC function is where we will place any code that does initialization for our
rendering context. This may be as simple as setting the clear color, or as complex as
establishing our lighting conditions. The GLRenderScene function will be called by the
OnDraw member function of our CView derived class to do the actual rendering. Finally,
GLResize will be called by the WM_SIZE handler, passing the new width and height of the
window client area. Here you can do any necessary recalculations to establish the viewing
volume and viewport.

Page 716 OpenGL Super Bible!

Notice that the GLSetupRC and GLRenderScene functions take void pointers. This allows
you to pass data of any type to your rendering code without changing the interface.
Although we could have made the glcode file a C++ file instead of a C file, it’s easier to
move existing C code from any source and include it in the MFC program. Visual C++ will
just compile this module as a C file and link it into the rest of the application.

We don’t present the glcode.c file here because the code for our sample is quite lengthy, but
you can browse it from the CD to gain general familiarity. Also, we’ll reuse the same file for
our OWL sample in the next chapter.

Starting with AppWizard

Many an application written with Visual C++ started life with the AppWizard. The
document-view architecture can be compared favorably to the model-view architecture of
other object-oriented programming environments. Even for quick-and-dirty applications or
experimental projects, the AppWizard can provide a fully functional SDI (Single Document
Interface), MDI (Multiple Document Interface), or dialog-based application shell in less than
a minute. It makes sense to start here, building a sample SDI MFC application that uses
OpenGL. To create a sample OpenGL scene, we’ll add features and functionality to the
CView class. You can use the same methods to add OpenGL functionality to any CWnd-
derived class.

OpenGL Super Bible! Page 717

Build the Shell

We start by building an SDI shell application with AppWizard, skipping all the options for
database access and OLE functionality. Figure 21-1 shows the initial shell SDI application
created by AppWizard.

Figure 21-1 Initial AppWizard SDI shell application

You might also want to turn off the option to add Print and Print Preview. OpenGL scenes
can only be rendered to a printer device context if the printer is a color printer supporting
four or more bitplanes of color depth (16 or more colors). Printing to a monochrome laser or
dot-matrix printer is possible but cumbersome. See the supplementary program GLPRINT in
the \OpenGL11 subdirectory for an example of printing OpenGL scenes using the new
features in OpenGL version 1.1.

Add the Libraries

Before we start adding any OpenGL code to this shell, we have to add the OpenGL libraries
to the project. You do this by selecting Build/Settings from your main menu. The dialog in
Figure 21-2 illustrates where to put the OpenGL library names. You may have other libraries
you will want to include, depending on your application. These are only the libraries you’ll
need for OpenGL.

Page 718 OpenGL Super Bible!

Figure 21-2 Adding the OpenGL libraries to your Visual C++ project

You’ll also need to add the OpenGL header files to the project. The easiest place to put these
(so you can then just forget about them) is in stdafx.h. Just add the following two headers,
and they will be included in the precompiled header file as well:

#include <gl\gl.h> // OpenGL Libraries
#include <gl\glu.h> // GLU OpenGL Libraries

Get CView Ready for OpenGL

When you use the document-view architecture encouraged by AppWizard’s SDI application
generation, you end up with a class derived from CView that is responsible for the
presentation layer of your application. In our example, that class is named CMfcglView. It’s
declared in the file mfcglView.h and implemented in the file mfcglView.cpp.

The earliest requirement of any window that will be used for OpenGL is that the window
styles WS_CLIPCHILDREN and WS_CLIPSIBLINGS be set. We can do this easily in the
virtual member function PreCreateWindow of our derived CView class, which is already
provided in the file mfcglView.cpp. This function lets us modify the CREATESTRUCT
information before the window is created. One of the members of this structure contains the
windows styles used on creation. We can simply add these style bits by performing a logical
OR, like this:

BOOL CMfcglView::PreCreateWindow(CREATEST RUCT& cs)
 {
 // Add Window styles required for OpenGL before window is created
 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS | CS_OWNDC);

OpenGL Super Bible! Page 719

 return CView::PreCreateWindow(cs);
 }

Notice that we also set the style for CS_OWNDC, so the window can have its own private
device context. Although this is not strictly necessary, it saves time and works better with
MFC. Some device context pointers returned by MFC functions are temporary and cannot
be stored for later use. It’s better to get it once and keep it.

Space in the CMfcglView class is allocated to store the device context and the rendering
context, with the following code from MfcglView.h:

public:
 HGLRC m_hRC; // Rendering Context
 HDC m_hDC; // Device Context

Pixel Format and Rendering Context

Now that we have a window with the correct styles necessary for OpenGL, we need to set
the OpenGL pixel format. Since the device context is required to create a pixel format, we’ll
wait to do this until after the window is created. We can use the Class Wizard to add a
message map entry that will be called when the window receives the WM_CREATE
message. Figure 21-3 shows the relevant Class Wizard dialog, containing an entry for
WM_DESTROY, as well.

Figure 21-3 Adding the message maps for WM_CREATE and WM_DESTROY

Setting the pixel format within the WM_CREATE handler is relatively straightforward.
Listing 21-1 shows our message handler with the code that selects the pixel format for the
device context.

Page 720 OpenGL Super Bible!

Listing 21-1 WM_CREATE message handler that sets the Pixel Format

int CMfcglView::OnCreate(LPCREATESTRUCT lpCreateStruct)
 {
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 int nPixelFormat; // Pixel format index
 m_hDC = ::GetDC(m_hWnd); // Get the device context

 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1, // Version of this
 structure
 PFD_DRAW_TO_WINDOW | // Draw to Window
 (not bitmap)
 PFD_SUPPORT_OPENGL | // Support OpenGL in
window
 PFD_DOUBLEBUFFER, // Double -buffered mode
 PFD_TYPE_RGBA, // RGBA color mode
 24, // Want 24bit color
 0,0,0,0,0,0, // Not used to select mode
 0,0, // Not used to select mode
 0,0,0,0,0, // Not used to select mode
 32, // Size of depth buffer
 0, // Not used to select mode
 0, // Not used to select mode
 PFD_MAIN_PLANE, // Draw in main plane
 0, // Not used to select mode
 0,0,0 }; // Not used to select mode

// Choose a pixel format that best matches that described in pfd
nPixelFormat = ChoosePixelFormat(m_hDC, &pfd);

// Set the pixel format for the device context
VERIFY(SetPixelFormat(m_hDC, nPixelFormat, &pfd));

// Create the rendering context
m_hRC = wglCreateContext(m_hDC);

// Make the rendering context current, perform initialization, then
// deselect it
VERIFY(wglMakeCurrent(m_hDC,m_hRC));
GLSetupRC();
wglMakeCurrent(NULL,NULL);

return 0;
}

Notice that we store the device context and rendering contexts in the class variables m_hDC
and m_hRC. Immediately after creating the rendering context, we make it current and call
the external function GLSetupRC. This function will do any initialization we need for the
rendering context, after which we make it not current. This allows us to use more than one

OpenGL Super Bible! Page 721

rendering context in case we need multiple windows that use OpenGL. (We won’t for our
sample, but if you build on this, it’s wise to have the option for more than one OpenGL
window without the need to recode what you already have.)

Clean Up the Rendering Context

We should go ahead and add the code to clean up and delete the rendering context before we
forget. We do this in the WM_DESTROY handler, added in Figure 21-3. We also release
the device context obtained for the window.

// The window is being destroyed, delete the rendering context,
// and release the device context
void CMfcglView::OnDestroy()
 {
 wglDeleteContext(m_hRC);
 ReleaseDC(m_hWnd,m_hDC);

 CView::OnDestroy();
 }

Handling Window Resizing

When the window size changes, the WM_SIZE message is posted to the window. We add a
handler for this message with Class Wizard, and call the external function GLResize,
passing the new width and height of the window. The rendering context must be made
current before calling this function, or the OpenGL function calls in GLResize will have no
effect on the rendering context. Here’s the code:

void CMfcglView::OnSize(UINT nType, int cx, int cy)
 {
 CView::OnSize(nType, cx, cy);
 VERIFY(wglMakeCurrent(m_hDC,m_hRC));
 GLResize(cx, cy);
 VERIFY(wglMakeCurrent(NULL,NULL));
 }

Rendering the Scene

Now we are ready to add the code that actually draws the OpenGL scene. The member
function OnDraw is called whenever the window receives a WM_PAINT message. Here we
make the rendering context current and call the GLRenderScene function, which contains
only OpenGL function calls. Since we earlier requested a double-buffered window, we call
SwapBuffers afterward and then again make the rendering context not current.

// Called when window receives WM_PAINT, render our scene
void CMfcglView::OnDraw(CDC* pDC)
 {
 // Make the rendering context current
 wglMakeCurrent(m_hDC,m_hRC);

Page 722 OpenGL Super Bible!

 // Call our external OpenGL code
 GLRenderScene(NULL);

 // Swap our scene to the front
 SwapBuffers(m_hDC);

 // Allow other rendering contexts to coexist
 wglMakeCurrent(m_hDC,NULL);
 }

Don’t Erase First

Whenever the window is resized or invalidated, MFC will erase the window background
before repainting. Since our OpenGL background is black, this erasing (which sets the
window to white) will cause a flicker every time OnDraw is called.

To keep the window from flickering, we override the default handling of
WM_ERASEBACKGROUND. Usually, the window is erased before being repainted after a
resize. If we return FALSE from this function, however, the window will never be erased
before a repaint and there won’t be any flicker. Usually this function returns
CView::OnEraseBkgnd(pDC), which implements the default behavior of erasing the
background, but you can just return FALSE to prevent this behavior.

// Override to keep the background from being erased every time
// the window is repainted
BOOL CMfcglView::OnEraseBkgnd(CDC* pDC)
 {
 return FALSE;
 }

CPalette Handling

Our finishing touch in the MFC sample is creating and realizing the RGB palette on devices
that use palettes (256 color cards). Instead of maintaining a handle to the palette as in
Chapter 8, here we’ll create an MFC object of type CPalette.

For our function in Listing 21-2 we declare an instance of CPalette in mfcglView.h:

CPalette m_GLPalette; // Logical Palette

and then manually add a member function to CMfcGlView that initializes the palette. This
code is nearly identical to the function GetOpenGLPalette presented in Chapter 8, except
that a CPalette object is constructed instead of a handle to a palette returned.

Listing 21-2 CPalette creation and initialization code

// Initializes the CPalette object

OpenGL Super Bible! Page 723

void CMfcglView::InitializePalette(vo id)
 {
 PIXELFORMATDESCRIPTOR pfd; // Pixel format descriptor
 LOGPALETTE *pPal; // Pointer to memory for logical
 palette
 int nPixelFormat; // Pixel format index
 int nColors; // Number of entries in palette
 int i; // Counting variable

 BYTE RedRange,GreenRange,BlueRange;
 // Range for each color entry (7,7,and 3)

 // Get the pixel format index and retrieve the pixel format
 description
 nPixelFormat = GetPixelFormat(m_hDC);
 DescribePixelFormat(m_hDC, nPixelFormat,
 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 // Does this pixel format require a palette? If not, do not
 create a
 // palette and just return NULL
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return;

 // Number of entries in palette. 8 -bit yields 256 entries
 nColors = 1 << pfd.cColorBits;

 // Allocate space for a logical palette structure plus all the
 // palette entries
 pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE)
 +nColors*sizeof(PALETTEENTRY));

 // Fill in palette header
 pPal->palVersion = 0x300; // Windows 3.0
 pPal->palNumEntries = nColors; // table size

 // Build mask of all 1's. This creates a number represented
 by having
 // the low-order x bits set, where x = pfd.cRedBits ,
 pfd.cGreenBits,
 // and pfd.cBlueBits.
 RedRange = (1 << pfd.cRedBits) - 1;
 GreenRange = (1 << pfd.cGreenBits) - 1;
 BlueRange = (1 << pfd.cBlueBits) - 1;

 // Loop through all the palette entries
 for(i = 0; i < nColors; i++)
 {
 // Fill in the 8-bit equivalents for each component
 pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) &
 RedRange;
 pPal->palPalEntry[i].peRed = (unsigned char)(
 (double) pPal ->palPalEntry[i].peRed * 255.0 /
 RedRange);

Page 724 OpenGL Super Bible!

 pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift) &
 GreenRange;
 pPal->palPalEntry[i].peGreen = (unsigned char)(
 (double)pPal->palPalEntry[i].peGreen * 255.0/
 GreenRange);

 pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift) &
 BlueRange;
 pPal->palPalEntry[i].peBlue = (unsigned char)(
 (double)pPal->palPalEntry[i].peBlue * 255.0 /
 BlueRange);

 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

// Create the palette
m_GLPalette.CreatePalette(pPal);

// Go ahead and select and realize the palette for this device context
SelectPalette(m_hDC,(HPALETTE)m_GLPalette,FALSE);
RealizePalette(m_hDC);

// Free the memory used for the logical palette structure
free(pPal);
}

Using the Class Wizard again to add message response functions for
WM_QUERYNEWPALETTE and WM_PALETTECHANGED, our code to realize the
palette is shown in Listing 21-3.

Listing 21-3 Code to realize CPalette for the view class

BOOL CMfcglView::OnQueryNewPalette()
 {
 // If the palette was created.
 if((HPALETTE)m_GLPalette)
 {
 int nRet;

 // Selects the palette into the current device context
 SelectPalette(m_hDC, (HPALETTE)m_GLPalet te, FALSE);

 // Map entries from the currently selected palette to
 // the system palette. The return value is the number
 // of palette entries modified.
 nRet = RealizePalette(m_hDC);

 // Repaint, forces remap of palette in current window
 InvalidateRect(NULL,FALSE);

 return nRet;
 }

 return CView::OnQueryNewPalette();

OpenGL Super Bible! Page 725

 }

void CMfcglView::OnPaletteChanged(CWnd* pFocu sWnd)
 {
 if(((HPALETTE)m_GLPalette != NULL) && (pFocusWnd != this))
 {
 // Select the palette into the device context
 SelectPalette(m_hDC,(HPALETTE)m_GLPalette,FALSE);

 // Map entries to system palette
 RealizePalette(m_hDC);

 // Remap the current colors to the newly realized palette
 UpdateColors(m_hDC);
 return;
 }

CView::OnPaletteChanged(pFocusWnd);
}

This code to realize the palette is very much like that in Chapter 8. Here, though, Windows
does not send these messages to the CView-derived class directly, but rather to the
application’s CMainFrame class. This is because Windows only sends palette messages to
the application’s main window; it is this window’s responsibility to route the messages to
any child windows that need to be notified.

So use the Class Wizard once again to add the two palette message handlers to the
CMainFrame class. These handlers simply find the active view and post the palette
messages to it unchanged, allowing the view to respond as needed. These message handlers
are listed in Listing 21-4.

Listing 21-4 CMainFrame code to route palette-handling messages to the view

// Route message to CView-derived class
void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
 {
 CView* pView = GetActiveView();
 if (pView)
 {
 // OnPaletteChanged is not public, so send a message.
 pView->SendMessage(WM_PALETTECHANGED,
 (WPARAM)(pFocusWnd->GetSafeHwnd()),
 (LPARAM)0);
 }
 }

// Route message to CView-derived class.
BOOL CMainFrame::OnQueryNewPalette()
 {
 CView* pView = GetActiveView();
 if (pView)
 {

Page 726 OpenGL Super Bible!

 // OnQueryNewPalette is not public, so send a message.
 return pView->SendMessage(WM_QUERYNEWPALETTE,
 (WPARAM)0,
 (LPARAM)0);
 }

 return FALSE;
 }

We also added a WM_TIMER handler and created a timer in our view class to create an
animated OpenGL scene (Figure 21-4). The timer function simply invalidates the window,
forcing a repaint. In our glcode.c module the rendering function increments a rotation angle
each time the screen is redrawn, thus creating the animation effect. All of this code is in the
\MFCGL directory on the CD.

Figure 21-4 Final animated output of our MFC sample

Summary

This chapter covered the specific mechanics of using OpenGL from an MFC-based program,
demonstrating where to set the Windows styles required for OpenGL, where and when to set
the pixel format, and creation of the rendering context. The example program also illustrates
when and where to make the rendering context current, and how to realize an MFC CPalette
when needed.

You should be able to take the sample application from this chapter and easily add your own
custom OpenGL code. In addition, the framework— with all the OpenGL code in the
glcode.c module— makes it easy to port existing C/OpenGL samples to our MFC shell
program. You can study additional examples in many of the sample programs in this book,
which are implemented in C, and in C++ using MFC and OWL (see Chapter 22).

OpenGL Super Bible! Page 727

Chapter 22
OWL-Based OpenGL Programming

What you’ll learn in this chapter:

How to... Functions You’ll Use

Set OWL window styles to support OpenGL EvCreate
Create and set up the rendering context EvCreate
Clean up the rendering context when the program
terminates

EvDestroy

Place your projection and viewport code EvSize
Place your rendering code EvPaint
Prevent screen flicker between renderings EvEraseBkgnd
Place your palette-management code EvQueryNewPalette,

EvPaletteChanged

It is an undeniable fact that a large and growing number of developers are using C++ for
Windows development. Throughout this book, however, we have presented all our source
code in C. Fortunately, most C++ programmers can easily follow C source code. On the
other hand, if you picked up this book to learn graphics programming, you probably don’t
want to have to learn some new syntax along the way.

Although any of the samples in this book can be compiled with a C++ compiler as well as a
C compiler, most C++ programmers developing for Windows are not writing C code. Most
are using a commercial C++ application framework package, or their own C++ class
hierarchy. The point is, most C++ applications don’t have windows procedures like the ones
in this book, nor do they have those “case statements from hell” that handle every
conceivable message that may be posted to a window. Instead, there is a framework of
classes that embody the Windows screen objects, with member functions handling the
processing of messages.

The purpose of this short chapter is to give C++ programmers using a popular application
framework a starting place for their OpenGL programs. The application framework for this
chapter is Borland’s Object Windows Library (OWL). The samples and screenshots for this
chapter were prepared using Borland C++ 5.0. If you are using MFC (Microsoft Foundation
Classes), see Chapter 21.

For the purposes of this chapter, we will assume that you are already familiar with the
following:

Page 728 OpenGL Super Bible!

• Borland C++ and OWL for building Windows NT and Windows 95 applications
• Chapter 4 of this book, covering OpenGL for Windows and the creation and use of
rendering contexts
• The palette handling material in Chapter 8

Isolate Your OpenGL Code

For any application, it is good design practice to keep your source code as modular as
possible. By isolating functional pieces, it becomes much easier to reuse and maintain the
code. By isolating your “pure” OpenGL code into a separate module, you can efficiently
replace this module with specific code, while retaining the functionality of the rest of the
application. Our sample here makes it relatively simple to take any C program in this book
and convert it to C++, using OWL and our test application shell.

We start by declaring three functions in a C source file called glcode.c. The file glcode.h
contains the declarations for these functions and is included for access in our
TWindowView-derived class file.

// glcode.h
// Declarations for external OpenGL module. These functions are
// defined in glcode.c and are called appropriately by the TWindowView
// derived classes.

extern "C" {
 void GLSetupRC(void *pData);
 void GLRenderScene(void *pData);
 void GLResize(GLsizei h, GLsizei w);
 }

The GLSetupRC function is where we will place any code that does initialization for our
rendering context. This may be as simple as setting the clear color, or as complex as
establishing our lighting conditions. The GLRenderScene function will be called by the
WM_PAINT handler of our TWindowView-derived class to do the actual rendering.
Finally, GLResize will be called by the WM_SIZE handler, passing the new width and
height of the window client area. Here you can do any necessary recalculations to establish
the viewing volume and viewport.

Notice that the GLSetupRC and GLRenderScene functions take void pointers. This allows
you to pass data of any type to your rendering code without changing the interface.
Although we could have made the glcode file a C++ file instead of a C file, it’s easier to
move existing C code from any source and include it in the OWL program. Borland C++
will just compile this module as a C file and link it into the rest of the application.

We don’t present the glcode.c file here because the code for our sample is quite lengthy, but
we’ll use basically the same file for both the OWL and MFC sample programs.

OpenGL Super Bible! Page 729

Starting with AppExpert

Many an application written with Visual C++ started life with the AppExpert. The
document-view architecture endorsed by AppExpert can be compared favorably to the
model-view architecture of other object-oriented programming environments. Even for
quick-and-dirty applications or experimental projects, the AppExpert can provide a fully
functional SDI (Single Document Interface), MDI (Multiple Document Interface), or dialog-
based application shell in less than a minute. It makes sense to start here, building a sample
SDI OWL application that uses OpenGL. To create a sample OpenGL scene, we’ll add
features and functionality to the TWindowView class. You can use the same methods to add
OpenGL functionality to any TWindow-derived class.

Build the Shell

We’ll start by building an SDI shell application with AppExpert, skipping most of the
options for OLE functionality, drag and drop, and so forth. Figure 22-1 shows the first
AppExpert dialog to create our shell OWL application.

Figure 22-1 Starting a new SDI application with AppExpert

You might also want to turn off the option to add Print and Print Preview. OpenGL scenes
can only be rendered to a printer device context if the printer is a color printer supporting
four or more bitplanes of color depth (16 or more colors). Printing to a monochrome laser or
dot-matrix printer is possible but cumbersome. See the supplementary program GLPRINT in
the \OpenGL11 subdirectory for an example of printing OpenGL scenes using the new
features in OpenGL version 1.1.

You can leave the Application options at their default values, or go in and unselect the tool
bars, status bars, and so forth. In addition, it’s important to select the window styles for Clip
Children and Clip Siblings (which are required for OpenGL programs) in the MainWindow
Basic Options page. Finally, select the SDI Client page and specify that the main window be
derived from TWindowView, as shown in Figure 22-2.

Page 730 OpenGL Super Bible!

Figure 22-2 Set the Client window to be derived from TWindowView

Figure 22-3 shows the shell application after it has been built.

Figure 22-3 AppExpert-generated vanilla SDI application shell

Add the Headers

Before we start adding any OpenGL code to this shell, we have to add the OpenGL headers
to the project. Add these two headers to the top of the owlglapp.h header file:

#include <gl\gl.h> // OpenGL Libraries
#include <gl\glu.h> // GLU OpenGL Librarie s

This will define the OpenGL functions and commands for all our OWL-based files for this
project.

As a general rule, Borland automatically links to an import library that contains all the
Win32 API functions. Sometimes these libraries will be out of sync with later releases of the
operating system, and you will need to create your own import libraries and link to them.
(See the discussion of Borland C++ in the Introduction to the book.)

OpenGL Super Bible! Page 731

Add the Message Handlers

We finish fleshing out our OpenGL-capable shell with OWL by adding message handlers
for at least the first five of the messages listed in Table 22-1. These first five are required for
a well-behaved OpenGL Windows application. The palette messages are only necessary if
you are including palette-handling code so your application can run on 8-bit color systems.
The WM_TIMER message is optional, as well, but is useful when you need to do timed
events or animations. Our example later in this chapter makes use of WM_TIMER to
produce an animated effect.

Table 22-1 Typical Messages Handled by an OpenGL Application

Message Purpose

WM_CREATE Window creation. Sets required window styles and creates
the rendering context.

WM_DESTROY Cleans up by deleting the rendering context.
WM_ERASEBKGND Tells Windows GDI not to erase the background when the

window needs to be redrawn.
WM_PAINT Handles any required painting or repainting of window.

Call the OpenGL rendering code here.
WM_SIZE Calls code to modify OpenGL viewport information.

WM_QUERYNEWPALETTE Application gets the chance to realize its palette.
WM_PALETTECHANGED Application gets the chance to respond to palette changes.

WM_TIMER For timed events such as animation.

Figure 22-4 shows the ClassExpert window being used to add these messages.

Page 732 OpenGL Super Bible!

Figure 22-4 Adding message handlers with the class expert

Fleshing Out the Shell

At this point we have a complete skeleton application, with message handlers defined for
window initialization and cleanup, painting, resizing, and palette handling. To this shell we
will add the code that enables OpenGL to render in the window. This is accomplished by
calling the Win32 functions specific for OpenGL, and then calling our OpenGL-specific
code in the glcode.c module at the appropriate places.

Get TWindowView Ready for OpenGL

AppExpert generates a class, TOwlglWindowView, derived directly from TWindowView.
This class is responsible for the client window area of the application. In our example, that
class is declared in the file owlglwnv.h and implemented in the file owlglwnv.cpp.

Now we fill in the code for the WM_CREATE handler. As noted earlier in this Chapter, the
first requirement of any window that will be used for OpenGL is that the window styles
WS_CLIPCHILDREN and WS_CLIPSIBLINGS are set when the window is created. Since
we have already set these styles in the AppExpert before generating this program, we don’t
need to do anything further for this requirement. However, should you need to set this
programatically, you can do it easily in the WM_CREATE handler, as follows:

int TOwlglWindowView::EvCreate(CREATESTRUCT& cs)
 {
 int result;

OpenGL Super Bible! Page 733

 // Add Styles for OpenGL windows
 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS | CS_OWNDC);
 result = TWindowView::EvCreate(cs);
 ...
 ...

Notice that we also set the style for CS_OWNDC, so the window can have its own private
device context. Although this is not strictly necessary, it saves time and works better with
OWL. Some device context pointers returned by OWL functions are temporary and cannot
be stored for later use (this is also true for MFC, by the way). So it’s better to get it once and
keep it.

Space in the TOwlglWindowView class is allocated to store the device context, the
rendering context, and the palette, with the following code from owlglwnv.h:

public:
 HGLRC m_hRC; // Rendering context
 HDC m_hDC = NULL; // Device context
 TPalette *m_pPalette; // 3 -3-2 Palette

Pixel Format and Rendering Context

In the remainder of our WM_CREATE handler, we will set the pixel format and create a
rendering context for the window. Since the device context is required to create a pixel
format, we’ll wait to do this until after the window is created. Setting the Pixel Format
within the WM_CREATE handler is done the same way as for any of the C program
examples presented in this book after Chapter 3 (remember we ditched the AUX library
after this). Listing 22-1 shows our finished message handler, with the code that selects the
pixel format for the device context.

Listing 22-1 WM_CREATE message handler that sets the pixel format

// Handles WM_CREATE message
int TOwlglWindowView::EvCreate(CREATESTRUCT far& createStruct)
{
 int result;

 createStruct.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS | CS_OWNDC);

 result = TWindowView::EvCreate(createStruct);

 // Select pixel format/rendering context
 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this s tructure
 1, // Version of this structure
 PFD_DRAW_TO_WINDOW | // Draw to window (not to bitmap)
 PFD_SUPPORT_OPENGL | // Support OpenGL calls in window
 PFD_DOUBLEBUFFER, // Double-buffered mode
 PFD_TYPE_RGBA, // RGBA color mode

Page 734 OpenGL Super Bible!

 24, // Want 24 -bit color
 0,0,0,0,0,0, // Not used to select mode
 0,0, // Not used to select mode
 0,0,0,0,0, // Not used to select mode
 32, // Size of depth buffer
 0, // Not used to select mode
 0, // Not used to select mode
 PFD_MAIN_PLANE, // Draw in main plane
 0, // Not used to select mode
 0,0,0 }; // Not used to select mode
 // Get the device context
 m_hDC = ::GetDC(this->GetHandle());

 // Choose a pixel format that best matches that described in pfd
 int nPixelFormat = ChoosePixelFormat(m_hDC, &pfd);

 // Set the pixel format for the device context
 SetPixelFormat(m_hDC, nPixelFormat, &pfd);

 // Create a 3-3-2 palette
 SetupPalette(m_hDC);

 // Create the rendering context
 m_hRC = wglCreateContext(m_hDC);

 // Make the rendering context current and perform initializion.
 wglMakeCurrent(m_hDC,m_hRC);
 GLSetupRC(m_hDC);

 // Set a timer for 200 milliseconds
 SetTimer(200,101,NULL);

 return result;
}

Immediately after creating the rendering context, we make it current and call the external
function GLSetupRC(). This function will do any initialization we need for the rendering
context, after which we make it not current.This allows us to use more than one rendering
context in case we need multiple windows that use OpenGL. (We won’t for our sample, but
if you build on this, it’s wise to have the option for more than one OpenGL window without
the need to recode what you already have.)

Clean Up the Rendering Context

We should go ahead and add the code to clean up and delete the rendering context before we
forget. We do this in the WM_DESTROY handler, as shown in Listing 22-2.

OpenGL Super Bible! Page 735

Listing 22-2 WM_DESTROY handler cleans up rendering context

// Handles WM_DESTROY message
void TOwlglWindowView::EvDestroy()
{
// Kill the timer
KillTimer(101);

 // Free the rendering context
 wglMakeCurrent(NULL,NULL);
 wglDeleteContext(m_hRC);

 // Release the device context
 ::ReleaseDC(this->GetHandle(),m_hDC);

 TWindowView::EvDestroy();
}

Handling Window Resizing

When the window size changes, the WM_SIZE message is posted to the window. We added
a handler for this message with ClassExpert, and call the external function GLResize(),
passing the new width and height of the window. The rendering context must be made
current before calling this function, or the OpenGL function calls in GLResize will have no
effect on the rendering context for this window. This code is in Listing 22-3.

Listing 22-3 WM_SIZE handler that adjusts the OpenGL viewport

// Handles WM_SIZE message
void TOwlglWindowView::EvSize(uint sizeType, TSize& siz e)
{
 TWindowView::EvSize(sizeType, size);

 // Make the rendering context current, and call function
 // to make adjustments to OpenGL viewport
 wglMakeCurrent(m_hDC,m_hRC);
 GLResize(size.cx, size.cy);
 wglMakeCurrent(m_hDC,NULL);
}

Rendering the Scene

Now we are ready to add the code that actually draws the OpenGL scene. The member
function EvPaint was added by ClassExpert and is called whenever the window receives a
WM_PAINT message. Here we make the rendering context current and call the
GLRenderScene function, which contains only OpenGL function calls. The code for our
EvPaint() function is in Listing 22-4.

Page 736 OpenGL Super Bible!

Note that since we earlier requested a double-buffered window, we have to call
SwapBuffers() afterward. Also, any WM_PAINT handler needs to validate the window so
that Windows knows you are finished drawing in it. If you don’t do this, Windows will
continually post WM_PAINT messages to your window.

Listing 22-4 Code for handling WM_PAINT for our OWL-based OpenGL sample

// Handles WM_PAINT message
void TOwlglWindowView::EvPaint()
{
 // Make the rendering context current, and call OpenGL Rendering
 code wglMakeCurrent(m_hDC,m_hRC);
 GLRenderScene(NULL);
 wglMakeCurrent(NULL,m_hRC);

 // Finally swap buffers since this rendering context is double
 buffered SwapBuffers(m_hDC);

 // Validate the window
 Validate();
}

No Flickering Allowed

Whenever the window is resized or invalidated, Windows will erase the window background
before repainting. Since our OpenGL background is black, this erasing (which sets the
window to white) will cause a flicker every time EvPaint is called. Even if that weren’t so,
we are using SwapBuffer() to get our image in the window, which updates the entire client
region anyway.

To keep the window from flickering, we override the default handling of
WM_ERASEBACKGROUND. Usually, the window is erased before being repainted after a
resize. If we return FALSE from this function, however, the window will never be erased
before a repaint, and there won’t be any flicker. Usually this function returns
TWindowView::EvEraseBkgnd(dc), but you can just return FALSE to get this behavior. See
Listing 22-5.

Listing 22-5 Preventing the window from being erased everytime it is redrawn

// Handles WM_ERASEBACKGROUND message
bool TOwlglWindowView::EvEraseBkgnd(HDC dc)
 {
 return FALSE;// Do not erase background
 }

OpenGL Super Bible! Page 737

Keep It Moving

Though certainly not a requirement, the example for this chapter uses a timer to invalidate
the window every 200 milliseconds (thus forcing a repaint from our OpenGL code). The
code in glcode.c rotates a figure every time it is called. This has the effect of displaying a
smoothly rotating set of objects— in this case, three particular 3D letters. Implementing a
timer is simple: You set a timer in the EvCreate() function, add a handler for WM_TIMER,
and then kill the timer in the EvDestroy handler. This is standard Windows programming,
and the pertinent code is shown in Listing 22-6.

The output from our program thus far is shown in Figure 22-5.

Figure 22-5 Animated output from the OWL-based OpenGL program

Listing 22-6 Code that creates/destroys a timer to do some animation

// Handles WM_CREATE message
int TOwlglWindowView::EvCreate(CREATESTRUCT far& createStruct)
 {
 ...
 ...

 // Set a timer for 200 milliseconds
 SetTimer(200,101,NULL);
 ...
 ...

// Handles WM_TIMER message
void TOwlglWindowView::EvTimer(uint time rId)
 {
 TWindowView::EvTimer(timerId);

 // Force a repaint
 Invalidate();
 }

// Handles WM_DESTROY message

Page 738 OpenGL Super Bible!

void TOwlglWindowView::EvDestroy()
 {
 // Kill the timer
 KillTimer(101);
 ...
 ...

TPalette Handling

Our finishing touch for the OWL sample is creating and realizing the RGB palette on
devices that use palettes (256-color cards). Instead of maintaining a handle to the palette as
in Chapter 8, here we’ll create an OWL object of type TPalette.

We declare a pointer to a TPalette in owlglwnv.h:

TPalette *m_pPalette; // Logical Palette

and then manually add a member function to TOwlglWindowView that initializes the
palette. This code, shown in Listing 22-7, is nearly identical to the function
GetOpenGLPalette presented in Chapter 8, except that a TPalette object is constructed
instead of a handle to a palette returned.

Listing 22-7 TPalette creation and initialization code

// Create the palette if necessary
void TOwlglWindowView::SetupPalette(HDC hDC)
 {
 PIXELFORMATDESCRIPTOR pfd; // Pixel format descriptor
 LOGPALETTE *pPal; // Pointer to memory for logical
 // palette
 int nPixelFormat; // Pixel format index
 int nColors; // Number of entries in palette
 int i; // Counting variable

 BYTE RedRange,GreenRange,BlueRange; // Range for each color
 entry
 // (7,7,and 3)
 // Get the pixel format index and retrieve the pixel format
 description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat,
 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 // Does this pixel format require a palette? If not, do not
 // create a palette and just return
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return;

 // Number of entries in palette. 8-bit yields 256 entries
 nColors = 1 << pfd.cColorBits;

OpenGL Super Bible! Page 739

 // Allocate space for a logical palette structure plus all the
 // palette entries
 pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE)
 +nColors*sizeof(PALETTEENTRY));

 // Fill in palette header
 pPal->palVersion = 0x300; // Windows 3.0
 pPal->palNumEntries = nColors; // table size

 // Build mask of all 1's. This creates a number represented by
 // having the low-order x bits set, where x = pfd.cRedBits,
 pfd.cGreenBits,
 // and pfd.cBlueBits.
 RedRange = (1 << pfd.cRedBits) - 1;
 GreenRange = (1 << pfd.cGreenBits) - 1;
 BlueRange = (1 << pfd.cBlueBits) - 1;

 // Loop through all the palette entries
 for(i = 0; i < nColors; i++)
 {
 // Fill in the 8-bit equivalents for each component
 pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) &
 RedRange;
 pPal->palPalEntry[i].peRed = (unsigned char)(
 (double) pPal ->palPalEntry[i].peRed * 255.0 /
 RedRange);

 pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift) &
 GreenRange;
 pPal->palPalEntry[i].peGreen = (unsigned char)(
 (double)pPal ->palPalEntry[i].peGreen * 255.0/
 GreenRange);

 pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift) &
 BlueRange;
 pPal->palPalEntry[i].peBlue = (unsigned char)(
 (double)pPal ->palPalEntry[i].peBlue * 255.0 /
 BlueRange);

 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

 // Create the palette
 m_pPalette = new TPalette(pPal);

 // Go ahead and select and realize the palette for this device
 context
 if(SelectPalette(hDC,m_pPalette ->GetHandle(),FALSE) == NULL)
 ::MessageBox(NULL,"Cannot select Palette in Palette
 Creation", "Error",MB_OK);

 if(RealizePalette(hDC) == NULL)
 ::MessageBox(NULL,"Cannot realize Palette in Palette
 Creation", "Error",MB_OK);

Page 740 OpenGL Super Bible!

 // Free the memory used for the logical palette structure
 free(pPal);
 }

Don’t forget to call this function in the WM_CREATE handler. This should be done before
the rendering context is created:

// Set the pixel format for the device context
SetPixelFormat(m_hDC, nPixelFormat, &pfd);

// Create a 3-3-2 palette
SetupPalette(m_hDC);

// Create the rendering context
m_hRC = wglCreateContext(m_hDC);

Having used the ClassExpert to add message-response functions for
WM_QUERYNEWPALETTE and WM_PALETTECHANGED, our code to realize the
palette is shown in Listing 22-8.

Listing 22-8 Code to realize TPalette for the TWindowView class

// Handles WM_QUERYNEWPALETTE message
bool TOwlglWindowView::EvQueryNewPalette()
 {
 bool result;

 // Only if palette was created
 if(m_pPalette != NULL)
 {
 int nRet;

 // Select the palette into the current device context
 if(SelectPalette(m_hDC, m_pPalette ->GetHandle(),FALSE)
 == NULL)
 ::MessageBox(NULL,"Cannot select Palette","Error",
 MB_OK);

 // Map entries from the currently selected palette to
 // the system palette. The return value is the number
 // of palette entries modified.
 nRet = RealizePalette(m_hDC);

 if(nRet == 0)
 ::MessageBox(NULL,"Cannot realize Palette",
 "Error",MB_OK);

 // Repaint, forces remap of palette in current window
 Invalidate();

 return nRet;
 }

OpenGL Super Bible! Page 741

 // Call default function
 result = TWindowView::EvQueryNewPalette();
 return result;
 }

// Handles WM_PALETTECHANGED message
void TOwlglWindowView::EvPaletteChanged(THandle hWndPalChg)
 {
 // Only if palette created, or not this window
 if((m_pPalette != NULL) && (hWndPalChg != this ->HWindow))
 {
 // Select the palette into the device context
 ::SelectPalette(m_hDC,m_pPalette ->GetHandle(),FALSE);

 // Map entries to system palette
 ::RealizePalette(m_hDC);

 // Remap the current colors to the newly realized palette
 ::UpdateColors(m_hDC);
 return;
 }

 // Call default handler
 TWindowView::EvPaletteChanged(hWndPalChg);
 }

The code to realize the palette is very much like that in Chapter 8. Here, though, Windows
does not send these messages to the TWindowView-derived class directly, but rather to the
application’s class TDecoratedFrame (SDIDecFrame, for our example). This is because
Windows only sends palette messages to the application’s main window. It is this window’s
responsibility to route the messages to any child windows that need to be notified.

So use the Class Expert once again to add the two palette messages to the SDIDecFrame
class. These message handlers, shown in Listing 22-9, simply find the child TWindowView
and post the palette messages to it unchanged, allowing the window to respond as needed.

Listing 22-9 CMainFrame code to route palette-handling messages to the view

// Route WM_QUERYNEWPALETTE to child
bool SDIDecFrame::EvQueryNewPalette()
 {
 bool result;
 TWindow *pGLWindow;

 // Get the child SDI window
 pGLWindow = GetClientWindow();

 // Send the message
 if(pGLWindow)
 pGLWindow->SendMessage(WM_QUERYNEWPALETTE,0,0);

 return TRUE;

Page 742 OpenGL Super Bible!

 }

// Route the WM_PALETTECHANGES to child
void SDIDecFrame::EvPaletteChanged(THandle hWndPalChg)
 {
 TWindow *pGLWindow;

 // Get the child SDI window
 pGLWindow = GetClientWindow();

 // Send the message
 if(pGLWindow)
 pGLWindow->SendMessage(WM_PALETTECHANGED, (UINT)
 hWndPalChg, (UINT)0);
 }

Summary

This chapter covered the specific mechanics of using OpenGL from an OWL-based
program, demonstrating where to set the Windows styles required for OpenGL, where and
when to set the pixel format, and creation of the rendering context. The example program
also illustrates when and where to make the rendering context current, and how to realize an
OWL TPalette when needed.

You should be able to take the sample application from this chapter and easily add your own
custom OpenGL code. In addition, the framework— with all the OpenGL code in the
glcode.c module— makes it easy to port existing C/OpenGL samples to our OWL shell
program. You can study additional examples in many of the sample programs in this book,
which are implemented in C, and in C++ using OWL and MFC (see Chapter 21).

OpenGL Super Bible! Page 743

Chapter 23
Visual Basic and 4GL-Based OpenGL Programming

Other than Chapters 21 and 22, this book has focused on the OpenGL API from the
standpoint of a C program. No consideration of Windows programming is complete,
however, without a discussion of the many 4GLs and other visual environments popular
today. In this chapter we will briefly discuss the requirements of using the OpenGL API
from some of these environments. In addition, we will demonstrate an OpenGL OCX (OLE
custom control) that is included with this book for two widely used Win32 development
environments: Microsoft’s Visual Basic 4.0 and Borland’s Delphi 2.0.

For the purposes of this chapter we will assume you have a working knowledge of your
particular environment (Visual Basic or Delphi), and how to use and call OCX methods.
Even if you have no experience with OCX controls, you may be surprised by how easy they
are to use.

Low-Level Access Required

Any Windows development language or environment can make use of OpenGL, provided it
supports low-level access to the Win32 API and other libraries contained in DLLs. Most
environments and tools allow this in order that applications can be integrated with other
libraries, or simply so that the developer can take advantage of new operating systems
features introduced after the tool is released.

The entire OpenGL API is contained in two DLLs: opengl32.dll and glu32.dll. Just as most
Win32 APIs are accessed directly from DLLs, such as user32.dll, gdi32.dll, and others, you
can also get to OpenGL functions and commands from a high-level language environment.
Each tool and environment takes a different approach to accessing functions in external
DLLs. Usually, you need to specify the function name, its arguments, return type, and in
which DLL file the function is contained.

There are two disadvantages to using these methods for using OpenGL from one of the
aforementioned environments. First, it is extremely tedious! Every OpenGL function needs
to be defined and exported for a given environment. In addition, the argument and return
types must be mapped to the native data types of the particular environment. Not only the
functions must be defined, but so must all those state variables and flags (GL_ACCUM,
GL_LOAD, and on and on) from the header files. This is further compounded by the fact
that you must do it for each and every environment that would make use of OpenGL!

The second disadvantage is the requirement of Win32 that OpenGL-enabled windows have
the Windows styles WS_CLIPCHILDREN and WS_CLIPSIBLINGS set. Some of these
environments make it very difficult to get to any low-level window styles unless they’re on a
proprietary check box somewhere. The worst case is that you may even have to export
CreateWindow from Windows itself and call it from within your program.

Page 744 OpenGL Super Bible!

If you’re going through all this trouble to use OpenGL from say, Visual Basic, you might
just as well write a DLL in C that does all your OpenGL rendering, and then call into it from
your high-level environment. This answer, though it’s probably the most optimal in terms of
performance, is something of a cop-out that leaves non-C/C++ programmers out of the
picture.

But if you bought this book to learn about OpenGL, and you have been able to follow the
samples and function definitions, there is still hope!

The Magic of Objects

The term object oriented is perhaps, along with client/server, one of the most abused and
misused buzzwords of the 1990s. We want to avoid a serious debate on this issue, but we
think one important new technology holds significant promise for code reuse.

That technology is OLE (Object Linking and Embedding)— or, more importantly for this
chapter, the OCX (OLE Custom Control). When Microsoft introduced Visual Basic and
made development of custom controls possible through VBXs, a new industry was born
almost overnight. New companies and fortunes were made supplying Visual Basic
developers with new and interesting widgets. Soon competing environments (PowerBuilder,
Delphi, and others) allowed VBXs to be used for their applications. This further fueled the
fire of component reuse.

Plug and Play

These so-called plug-and-play software components revolutionized application development
for 16-bit Windows. The successor to VBXs was the OCX, which makes use of OLE
automation to create a framework for highly portable and reusable software modules.
Microsoft has of late made OCX development possible for 16-bit Windows, but the original
target was the new generation of 32-bit Windows operating systems.

By packaging your code into an OCX, it can be used by any environment that supports
OCXs. This includes MFC-based C++ applications, as well as Visual Basic 4.0, Borland’s
Delphi 2.0, PowerBuilder, and others. Furthermore, no special consideration is necessary for
the host environment. You just register the OCX with the operating system, and all its
methods are available. Code that interfaces with the OCX will, naturally, be dependent on
the syntax of the environment, but the control itself is merely “installed” into your
environment and is ready for use.

Wrap It Up

By wrapping the OpenGL API with an OCX control, we have effectively solved both
disadvantages of using OpenGL from a high-level visual language. Now all the functions are
defined for us, and we even have a window readily available to do our drawing! Moreover,
now we can use OpenGL from any environment that supports OCX controls!

OpenGL Super Bible! Page 745

There is one caveat: The OpenGL functions that require callbacks such as those used for
NURBS and polygon tessellation cannot be supported here in a manner that would work
with all environments. Many environments are not even compiled but rather are interpreted,
and passing a pointer to a function is just not possible. The exception may be environments
that produce true compiled code that is compatible with the C calling conventions (such as
Delphi).

See the document for your environment for details on accessing external functions, as well
as supplying C-callable routines from within the host environment.

Use and Operation of WaiteGL.OCX

The OpenGL OCX is named WaiteGL.OCX and is in this chapter’s subdirectory on the CD.
Using this control is very easy. Follow the directions in this chapter to register the control
and install it into your environment. Then just place the control on a form and start calling
its methods as if they were OpenGL functions and commands.

Each command is named just as it is in the OpenGL API, but with the leading gl dropped.
By naming your own control gl, your code will look very much like C code that uses
OpenGL. See the VB and Delphi examples that follow for an example of this.

This OCX fires two events that you can catch from your application. The first is SetupRC,
which is called the first time the OCX tries to paint its client area. At this point, the pixel
format and rendering context has already been created and set for the control. Here you can
set up your lighting, background colors, and so on. The second event is Render, which is
called every time the control needs to be painted. By placing your rendering code here, you
effectively draw in the client area with OpenGL.

There are a few other caveats to bear in mind as you use the OCX.

• Since you may wish to have more than one OpenGL control in your application,
the OCX cannot assume that the rendering context for any specific control will
always be current. Therefore, two methods— MakeCurrent and MakeNotCurrent—
are provided. All your OpenGL calls must be placed within calls to these two
functions; this includes within SetupRC and Render.
• Furthermore, you may always call the OpenGL API directly when you have made
the rendering context for the OpenGL OCX current. You can do this for performance
reasons, or in case new functions are added to later versions of OpenGL that aren’t
included in the OCX’s method list. The source is also included, so if you have Visual
C++ and the inclination, you can always make modifications in the control yourself.
• A 3-3-2 palette is created for this control and is realized every time the control
fires the Render event. Trying to manipulate the palette yourself can produce
unexpected results.
• Finally, the control window is double buffered, so you will always need to call the
SwapBuffers method to see your image.

Page 746 OpenGL Super Bible!

OpenGL Flags

It is impossible to make any use of the OpenGL functions and commands without access to
the many special flags and state variables. Each of these flag’s values is available via a
method by the same name as the flag itself. The method name is in lowercase, however;
having them match exactly leads to problems with the real defines in the header files.
Although it would make sense for some of these state variables to be implemented as
properties, for others it wouldn’t. For consistency, then, the methods match the OpenGL API
as closely as possible.

Although many functions have several variations, they are only implemented once as a
method. This means functions such as

void glVertex2fv(const GLfloat *v);

would be implemented as a method as

Vertex2(float x, float y)

A help file is included (WaiteGL.hlp) that contains all the methods defined for WaiteGL.
They are organized by the three OpenGL libraries (gl, glu, and glaux), and for all the
constant macro definitions. To use the help file, find the OpenGL function needed and then
look for the WaiteGL OCX method for that function.

Now let’s examine the specifics of setting up an OpenGL-enabled program in the two most
popular 4GL environments. The next section discusses Visual Basic. If you are using Delphi
2.0 (the 32bit version), you can skip to the following section.

Installing and Using WaiteGL from VB 4.0

To make use of WaiteGL.ocx, it must first be registered as an OCX by the operating system
(Windows NT or Windows 95). Copy the .ocx file into your system directory and run the
supplied ocxreg.exe program. In the command line argument, specify the .ocx filename and
either install or uninstall. For example:

ocxreg.exe WaiteGL.ocx install

You will find this program (with source) provided on the CD under the subdirectory for this
chapter.

Installing the Control

Once the control has been registered with the operating system, it must be installed into the
Visual Basic tool palette. Select Tools from the main menu, then Custom Controls. Choose

OpenGL Super Bible! Page 747

the Waite Group OpenGL OCX from the dialog as shown in Figure 23-1, and click OK.
Now you can drag the OpenGL control onto your forms, and size and place it accordingly.

Figure 23-1 Installing the WaiteGL OCX for use in Visual Basic

A Visual Basic Example

For our VB example, we placed our OpenGL control on a form and named it gl. We have
also placed a timer on the form with a time interval of 200 milliseconds. See Figure 23-2.
You may notice that the control does not paint or erase its client area. This is because the
drawing code must be written in Basic and placed in the Render event handler.

Figure 23-2 A VB form with the OpenGL OCX

As mentioned earlier, two events defined by the OCX must be supported in our code. One is
the SetupRC event. You put code here that initializes the rendering context by setting up the
initial viewing volume, setting the background, and perhaps drawing colors and any lighting
definitions you may want. Listing 23-1 is the code for our rendering context setup. This code
simply sets the background and drawing color along with the viewing volume.

Page 748 OpenGL Super Bible!

Listing 23-1 Set up the rendering context from Visual Basic

Private Sub gl_SetupRC()
 Rem Make the rendering context current
 gl.MakeCurrent

 Rem Set the background color to black
 gl.ClearColor 0#, 0#, 0#, 1#

 Rem Establish the viewing volume
 gl.LoadIdentity
 gl.Ortho -100#, 100#, -100#, 100#, -100#, 100#

 Rem Set the drawing color, flush, and
 Rem make the rendering context not current
 gl.Color 0, 0, 255, 255
 gl.Flush
 gl.MakeNotCurrent
End Sub

Painting the OpenGL Window

The other event you must support is the Render event. This event is fired by the control
whenever its window needs repainting. In this function you will place your code that
accesses the OCX’s methods to do the actual rendering. Listing 23-2 is the Visual Basic
code that draws a wireframe teapot from the AUX library.

Note that the rendering context is first made current, then made not current after the drawing
code. This is not strictly necessary if you have only one control and rendering context, but it
ensures that no code changes are needed later if you add another control. After the rendering
context is made not current, you must call SwapBuffers to bring the image to the
foreground.

Listing 23-2 Visual Basic code to draw the AUX library teapot

Private Sub gl_Render()
 Rem Make the rendering context current
 gl.MakeCurrent

 Rem Clear the screen and draw the aux lib teapot
 gl.Clear (gl.glColorBufferBit)
 gl.auxWireTeapot (55#)

 Rem Flush the commands, make rendering context
 Rem not current, and then finally swap buffers
 gl.Flush
 gl.MakeNotCurrent

 gl.SwapBuffers
End Sub

OpenGL Super Bible! Page 749

Now for Some Action

The code above is all that is needed to display our OpenGL images. For this example,
though, we have added some animation. We put a timer on the form shown in Figure 23-2,
and set the interval to 200 milliseconds. Every time this timer fires, our function will make
the rendering context for our OCX current, rotate the viewing matrix by 5º, and then clean
up by making the rendering context not current. Finally, we tell the control to repaint, by
calling the gl_Render function directly. See Listing 23-3.

Listing 23-3 Timer function that rotates the viewing volume by 5º

Private Sub Timer_Timer()
 Rem Make the rendering context current
 gl.MakeCurrent

 Rem Rotate 5 degrees
 gl.Rotate 5#, 0#, 1#, 0.5

 Rem Make rendering context not current, then
 Rem force a redraw
 gl.MakeNotCurrent
 gl_Render
End Sub

The completed Visual Basic program is shown running in Figure 23-3.

Figure 23-3 Output from the Visual Basic OpenGL program

Installing the OCX in Delphi 2.0

To make use of WaiteGL.ocx, it must first be registered as an OCX by the operating system
(Windows NT or Windows 95). Copy the .ocx file into your system directory and run the
supplied ocxreg.exe program. In the command line argument, specify the .ocx filename and
either install or uninstall. For example:

Page 750 OpenGL Super Bible!

 ocxreg.exe WaiteGL.ocx install

You will find this program (with source) provided on the CD under the subdirectory for this
chapter.

Installing the Control

Once the control has been registered with the operating system, it must be installed into the
Delphi Tool palette. Select Component from the main menu, then Install. Click the OCX
button, and the dialog shown in Figure 23-4 will display a list of registered OCX controls
that can be installed.

Figure 23-4 Delphi Install OCX dialog

Select the Waite Group OpenGL OXC and then click on OK. This installs the OCX into the
Delphi tool palette for your use. Just drag the control onto your forms and you will have a
window for OpenGL rendering.

A Delphi Example

For our Delphi example, we start with a new form and place our OpenGL OCX in the
middle, taking up most of the client area. We’ll also put a timer on the form to do some
animation. Figure 23-5 shows the completed form. You may notice that the control does not
paint or erase its client area. This is because the drawing code must be written in Pascal and
placed in the OnRender event.

OpenGL Super Bible! Page 751

Figure 23-5 Delphi form with the OpenGL OCX

Our Object Inspector Events tab shown in Figure 23-6 shows two events that are unique to
this control: OnRender and OnSetupRC.

Figure 23-6 Object inspector showing available events for WaiteGL

Double-click on the OnSetupRC and the glSetupRC function is created. Your editor is
opened to allow this function to be defined. The code in Listing 23-4 shows the setup,
making the background color black and initializing an orthogonal viewing volume.

Listing 23-4 Delphi code called in response to the SetupRC event from the OCX

procedure TMain.glSetupRC(Sender: TObject);
begin
 // Make the Rendering context current
 gl.MakeCurrent();

 // Set the clear color, and viewing volume
 gl.ClearColor(0.0, 0.0, 0.0, 1.0);
 gl.LoadIdentity();
 gl.Ortho(-100,100,-100,100,-100,100);

 // Flush the commands and make the rendering context
 // not current
 gl.Flush();
 gl.MakeNotCurrent();
end;

Page 752 OpenGL Super Bible!

Painting the OpenGL Window

The glRender function is created in the same way, by double-clicking on the OnSetupRC
event. The code for drawing the wireframe teapot is shown in Listing 23-5. Note that the
rendering context is first made current, then made not current after the drawing code. This is
not strictly necessary if you have only one control and rendering context, but it ensures that
no code changes are needed later if you add another control. After the rendering context is
made not current, you must call SwapBuffers to bring the image to the foreground.

Listing 23-5 Delphi code called in response to the Render event from the OCX

procedure TMain.glRender(Sender: TObject);
begin
 // Make the rendering context current
 gl.MakeCurrent();

 // Clear the background, and draw a teapot
 gl.Clear(gl.glColorBufferBit());
 gl.Color(0, 0, 255, 255);

 gl.auxWireTeapot(55.0);

 // Flush commands, free rendering context, and
 // swap buffers
 gl.Flush();
 gl.MakeNotCurrent();
 gl.SwapBuffers();
end;

Now for Some Action

The code above is all that is needed to display our OpenGL images. For this example,
though, we have added some animation. Recall that we put a timer on the form in Figure 23-
6, and set the interval to 200 milliseconds. Every time this timer fires, our function will
make the rendering context for our OCX current, rotate the viewing matrix by 5º, and then
clean up by making the rendering context not current. Finally, we tell the control to repaint,
which we can do indirectly by calling the Delphi function Invalidate(). In Delphi, because
all OCXs are windows, any command or message you can send a window can also easily be
sent to an OCX. See Listing 23-6.

Listing 23-6 Timer code to produce the rotating teapot

procedure TMain.Timer1Timer(Sender: TObject);
begin
 // Make rendering context current, then
 // rotate the scene somewhat
 gl.MakeCurrent();
 gl.Rotate(5.0,0.0,1.0,0.5);
 gl.MakeNotCurrent();

OpenGL Super Bible! Page 753

 // Repaint the OCX
 gl.Invalidate();
end;

Figure 23-7 shows the output from our OpenGL Delphi program.

Figure 23-7 Output from Delphi OpenGL program

Some Notes About the Source

The WaiteGL OCX was written with Visual C++ and uses MFC version 4.0. This new
version of Visual C++ makes OCX development a breeze and will likely spawn dozens of
useful and reusable OLE custom controls. The purpose of this chapter is not to explain how
to develop OCX controls. We wanted to present one that uses OpenGL, to let you do
OpenGL graphics from within Visual Basic, Delphi, or any other environment that supports
OCXs.

Nevertheless, the source code for this control is included on the CD in the subdirectory for
this chapter. The code was originally generated by the Microsoft Control Wizard and is fully
commented. In addition, the methods and flags are separated into four source files to make
maintenance easier. The file ocxgl.cpp contains wrappers for all the gl library functions;
similarly, ocxgl contains the glu library functions. The file ocxaux.cpp also contains
wrappers for the AUX library wireframe and solid objects, such as the teapot. Finally,
ocxflags.cpp contains the access functions that retrieve the OpenGL flags and other defines.

The main file of the project is WaiteGLCtl.cpp, which is the code responsible for setting up
the rendering context and firing the setup and painting events. Also, any of the wiggle or
OpenGL GDI-related functions are wrapped here. In addition, there are accessor functions
that will return the device and rendering contexts directly, in case you need them for your
own low-level code.

Note that the OCX uses the DLL versions of MFC. For your convenience, the redistributable
portions are in the \REDIST subdirectory, as well.

Page 754 OpenGL Super Bible!

Summary

In this chapter we have discussed the possibilities and challenges of using OpenGL from
some popular visual development environments. Although direct low-level access to the API
is certainly possible from any of these environments, a much easier means of access is
provided in the form of an OCX control. Most of the sample programs from this book can
easily be implemented in a 4GL using this OCX, and for your benefit some are provided in
the supplementary examples.

OpenGL Super Bible! Page 755

Chapter 24
The Future of OpenGL and Windows

This book is not just about OpenGL— more specifically, it’s about OpenGL on Microsoft
Windows. Let us look briefly at the current state of the art in OpenGL and graphics
implementation, and sketch out a picture of likely developments in the near future.

OpenGL is essentially a software interface to 3D hardware. Although what we call a
“generic” or “software-only” implementation is available for both Windows NT and
Windows 95, 3D hardware for the PC is just beginning to come of age. Naturally, it makes
sense for OpenGL to make use of 3D hardware (which is faster than 3D software) when it is
available.

At the time this book was written, the 3D graphics acceleration market was immature. Prices
of OpenGL-specific accelerator boards for the PC are beginning to come down, but the real
driving force behind this market is PC-based games. Video games require the fastest
hardware available and/or the most efficient coding. PCs make good gaming machines for a
number of reasons. With the right peripherals, you get a high-quality color monitor that can
produce higher resolution graphics than any TV set. You get sound, and even wave table
synthesis for realistic instrument sounds. In addition to a joystick and a button or two, you
also have a mouse and a whole keyboard, opening up new options for game input. Add to
this the massive storage capabilities of CD-ROMs, plus the ability to store (and, let’s admit
it, copy) game programs on hard disks or floppies. Put it all together, and you have a very
expensive yet supremely capable gaming machine.

Few people can justify buying a PC just to play games (unless, of course, they are
educational games). But hey, let’s face it— if you already have a PC for your home-based
business or for telecommuting, you might as well have a little fun with it, right? When
Microsoft Windows grew more dominant than DOS for business and productivity
applications, many people installed Windows for just that purpose. Nonetheless, until the
last year or so, game developers avoided Windows and kept right on writing games for
DOS.

The reason for this can be summed up in one word: performance. Windows did make life
easier for the applications developer because all graphics commands acquired similar
identities regardless of the underlying graphics hardware. Want to draw a rectangle? Just
call the rectangle function! You don’t need to know how to convert row and column
coordinates to a memory address, and there’s no fussing with algorithms. All you needed for
your graphics hardware was a Windows driver that would translate GDI calls into hardware
instructions.

Unfortunately, this approach added many layers of code between the programmer’s graphics
instructions and the hardware that actually produced the graphics on the screen. This
generated a graphics phenomenon commonly referred to as S-L-O-W. No sane games

Page 756 OpenGL Super Bible!

developer would consider writing Windows-hosted video games, and for a good long while,
the most stunning examples of Windows-based games were Solitaire and Reversi.

Hardware vendors seeking to capitalize on the emerging markets in desktop publishing and
Windows-based word processing started to bring out PC graphics cards that had hardware
acceleration of many common Windows-based drawing commands. A flood of 2D
accelerated graphics cards filled the market with speedy Windows-based workstations,
which promised to make Windows-based games more practical. Developers have a hard
time resisting a sexy new graphical environment that just plain looks cool in comparison to
DOS’s text-mode interface. Slowly, card games, strategy games, and even a few video
games began to emerge into the marketplace.

By the time nearly everyone recognized that Windows ruled the desktop, most of the best
games (particularly action games and vehicle simulators) were still being written for DOS.
Developers simply could not achieve the frame rates and lightning-fast bitmap transfers
under Windows that were possible under DOS.

Microsoft’s first attempt to help game developers along was called the WinG API. It was
really little more than just a few new functions that enabled very fast bitblts. The WinG API
was a substantial improvement, but it still wasn’t enough to woo the major players in the
games market.

The release of Windows 95 proved to be a major turning point in this chronology. Microsoft
desperately wanted to establish Windows 95 as the 32-bit successor to DOS for home and
corporate users. History would have it that Windows NT actually got the major mind-share
of corporate America, and that Windows 95 found a cozy place at home. But even before
this became obvious, Microsoft wanted to make Windows 95 a premium gaming platform.
For that, Microsoft would need to spruce up the multimedia capabilities of Windows 95 in a
very big way.

To give game developers more direct access to hardware, Microsoft devised a set of APIs
now known as DirectX. This includes Direct Draw for fast screen updates, Direct Sound for
fast sound and MIDI streaming, Direct Play for networked multiplayer games, and Direct
Input for better responsiveness to joysticks and other I/O devices. A new driver model rests
atop a very thin hardware abstraction layer and gives Windows game developers
unprecedented access to hardware— and thus unprecedented speed.

The latest component added to the Direct X family is Direct 3D. Today’s video games are
no longer flat, two-dimensional space games. They are highly complex flight simulators, and
dungeon adventure games with texture-mapped monsters, walls, and corridors. Direct 3D is
tightly integrated with Direct Draw and 3D accelerated hardware. If a feature does not exist
in hardware, it is emulated in software. This lets developers code and test their applications
and later seamlessly take advantage of extra performance benefits provided by new
hardware down the road.

OpenGL Super Bible! Page 757

What does all this have to do with OpenGL? Quite simply, what’s good for the goose is
good for the gander! Within one to two years of the printing of this book, 3D accelerated
graphics hardware will be practically ubiquitous. There are many historical parallels that
support this prediction. For example, when CD-ROMs where first introduced they didn’t
play music CDs. Then someone had the bright idea that adding this capability would
differentiate them from the rest of the market. Who wouldn’t want to listen to music while at
their workstation? Now, of course, you can’t buy a new CD-ROM that doesn’t play standard
musical CDs.

Page 758 OpenGL Super Bible!

The same was true of the original 2D graphics accelerators for Windows. Accelerated
boards quickly became affordable; it was virtually free to get the extra speed boost. Finally,
there’s the example of fax/modems. Go ahead, try to find a modem (a new one, now) that
won’t also work as a fax board. The chip manufacturers put all the logic on one chip and
mass-produced standard modems right out of existence.

Clearly, 3D on the PC is here to stay, and it is only going to get better and faster as time
moves on. In early 1995, Microsoft purchased RenderMorphics, Ltd., creators of the Reality
Lab 3D API. This is a high-performance 3D library for creating real-time 3D graphics on PC
hardware. The Reality Labs API is faster than OpenGL, but its performance comes at the
cost of some visual fidelity. In addition, not all of OpenGL’s special effects and capabilities
are present in the Reality Labs API. But it’s still perfectly well-suited for PC-based games in
which speed is more important than absolute visual realism (for now!).

With the next release of the DirectX libraries, the Reality Labs API will be folded into
Direct 3D. There will be two modes of operation for Direct3D: a retained mode, which is the
original Reality Labs functionality; and an immediate mode, which is a lower-level API that
operates closer to the hardware. The relationship between retained mode and immediate
mode is similar to that between Open Inventor and OpenGL. The retained mode is a higher-
level interface that simplifies scene creation and object manipulation, and is actually built
using the immediate mode API.

The good news for OpenGL developers is that OpenGL will be able to take advantage of
Direct 3D drivers that accelerate D3D immediate mode. Thus, the accelerated gaming
graphics cards are also going to accelerate OpenGL performance. As PCs get even faster, as
the competition among 3D graphics board vendors produces faster accelerators with even
more features, the time will come when real-time OpenGL performance will be available on
ordinary PCs. This time is approaching, and developers (maybe even you) will need to find
other ways to distinguish their 3D products besides brute speed.

OpenGL will be an excellent choice for producing visually stunning effects and more
realistic scenes and imagery. As fast 3D becomes a reality, your investment in OpenGL will
not go to waste. For the very near term, it’s likely that the DirectX API will continue to
dominate for fast games and blood-splattering action on Windows. However, OpenGL is
simply unchallenged when it comes to realistic cross-platform effects. Currently the hottest
markets for OpenGL-based software are the entertainment industry (movie and commercial
special effects), scientific and educational modeling, and simulation. In addition, many game
developers are discovering that they can use OpenGL to create their title screens,
background bitmaps, and textures, and even computer-generated animations (.avi or .mpg
files).

Conclusion

When 2D graphics acceleration first became available, it was only for the few “power users”
who really needed the extra boost in speed. Today, a Windows accelerated graphics card is

OpenGL Super Bible! Page 759

standard fare. Games may still be the driving force behind 3D acceleration, but the
development community is ready to take advantage of 3D acceleration “as long as it’s
there.”

You can be sure that the size, complexity, and functionality of software will always grow to
match or overcome capabilities of hardware. It’s hard to imagine that color computers were
once difficult to justify. Who remembers when the 386 was hailed as a “high-end” processor
intended only for servers and scientific or engineering workstations? They said the same
thing about the 486, the Pentium, and now the Pentium Pro. Anyone with a pulse and an IQ
over 2 should be able to see a pattern here.

Soon everyday PC graphics cards will support both 3D and 2D acceleration under Windows.
Just as color computers evolved from their “games” stereotyping, 3D gaming technology
will also evolve into a real and valuable feature that we will learn to take for granted. The
difference between hardware-accelerated 3D and software-only 3D is as dramatic as the
difference between making music with your PC speaker and having a Sound Blaster. In the
same way that sound cards are now becoming as commonplace as color monitors, 3D
acceleration will become just another feature bullet on the sides of all those computer boxes
in the electronics section of your local discount department store.

Page 760 OpenGL Super Bible!

Appendix A
Performance-Tuning OpenGL for Windows

The object of this book is to explain OpenGL from a functional point of view. If you’ve read
the entire book, you’ve covered the entire breadth of OpenGL from the standpoint of
functions and commands. You’ve also studied some techniques, such as shadows, that don’t
map directly to a specific function or set of functions. With this information you have a solid
foundation to carry you to new heights as you create applications that require 3D rendering.

But “there’s more than one way to skin a cat!” Even if you’ve been programming for only a
week, you know this is true— especially of software development. Any given problem can
be solved in an almost infinite number of ways. Strategies— from large-scale approaches
such as the choice of tools, to smaller details such as the use of specific algorithms— can
often vary to wide degrees and still accomplish a given task. Your challenge as an
accomplished software developer is to make optimal choices to yield cost-effective and
high-performance solutions for your programming issues.

Now that you know how to program using OpenGL, we want to offer some tips and hints for
writing the most optimal OpenGL code possible. These tips and hints are general
recommendations and can be applied to your programs regardless of the platform you are
using.

Display Lists

• Use display lists whenever you will render the same object more than once. Even
on a software-only implementation, display lists can significantly improve the
performance.
• Try to embed expensive matrix transformations and state changes in display lists—
especially texture compositions. This includes the Rotate, Translate, and Scale
functions, as well.
• Some systems/graphics boards can take an OpenGL display list directly (for
instance, using DMA), so employing display lists will improve CPU[rarr]graphics
board communication speed. However, operations such as glPushAttrib, glPopAttrib,
glCallList, and glCallLists can slow this process down because those parts of the
display list generally can’t be DMA’d. It might be better to call a series of display
lists rather than use nested lists.

Matrix Operations

• Use the native manipulation functions (glRotate, glTranslate, glScale) rather than
composing and multiplying your own matrices. These functions are highly
optimized, especially if rendering hardware is present.
• Use glLoadIdentity to clear a matrix stack rather than loading your own, for the
same reason cited just above.

OpenGL Super Bible! Page 761

• Push and pop state variables (glPushAttrib/glPopAttrib), rather than querying and
setting individual state variables.

Lighting Operations

• If you don’t need smooth shading, use glShadeModel(GL_FLAT) instead.
• Provide your own unit-length normals instead of making OpenGL calculate them
for you.
• Avoid using glScale when doing lighting calculations. It’s better to scale your
object manually before placing it in the scene.
• When possible, use glColorMaterial instead of glMaterial to vary material
properties. This is only practical when only one set of material properties is
changing.

Object Construction

• Use GL_TRIANGLES whenever possible. It is often faster to draw two or more
triangles than it is to draw a single GL_POLYGON. If necessary, GL_QUADS is
usually faster than GL_POLYGON and sometimes as fast or faster than
GL_TRIANGLES in software only implementations.
• Stack similar primitives within a single pair of glBegin/glEnd statements.
• Use the vector form of the vertex and other commands to transfer as much data as
possible in as few function calls as possible.
• When drawing or copying images, disable rasterization and per-fragment
operations; otherwise, OpenGL will apply textures to pixel images.
• Use the stripped primitives (GL_QUAD_STRIPS, for instance) when tessellating
flat surfaces; this drastically reduces the software computations involved in the
rendering pipeline.

Miscellaneous Tips

• Do not make redundant mode changes, such as repeatedly setting the same color or
enabling a state flag.
• Manually cull your scene. Try not to draw objects that you know will not appear in
the scene (such as objects behind you). Do not attempt to test every object for
visibility, but structure your code so that it’s easy to eliminate some obvious
candidates (see the tank simulator in Chapter 7).
• Under Windows, one of the biggest bottlenecks to performance is swapping
buffers. When only a small portion of your scene is changing, use the
glAddSwapHintRectWIN extension.
• Reduce the details of your drawings for better rendering speed. If you have a
hardware accelerator, you can increase the details for better effects. Test for
hardware acceleration by calling DescribePixelFormat. In version 1.1 and later, test
for the presence of PFD_GENERIC_ACCELERATED in the dwFlags field of the
PIXELFORMATDESCRIPTOR structure.

Page 762 OpenGL Super Bible!

• Use a 16-bit depth buffer unless your application needs the extra precision. Not
only does it save memory, but most of the low-end PC accelerators do not support
acceleration when a 32-bit depth buffer is used.

OpenGL Super Bible! Page 763

Appendix B
Further Reading

This appendix lists sources of supplementary information on OpenGL programming. The
books included here cover OpenGL programming issues specifically. You’ll also find a few
good books on Windows programming in general, and a couple on advanced 3D graphics
programming concepts. In addition, we would be remiss if we neglected to provide you with
a few hot Internet sites that are packed with OpenGL programming information, sample
codes, and links to other sites of interest.

Books on Windows Programming

Windows 95 Win32 Programming API Bible
Richard J. Simon, with Michael Conker and Brian Barnes
Waite Group Press
Windows 95 Common Controls & Messages API Bible
Richard J. Simon
Waite Group Press
Windows 95 Multimedia & ODBC API Bible
Richard J. Simon
Waite Group Press
Programming Windows
Charles Petzold
Microsoft Press
32-Bit Windows Programming
Ben Ezzell
SAMS

Books and References on OpenGL

The OpenGL Programming Guide
Jackie Neider/OpenGL Architecture Review Board
OpenGL Reference Manual
OpenGL Architecture Review Board
Addison-Wesley
The Inventor Mentor
Josie Wernecke/Open Inventor Architecture Group
Addison-Wesley
The Inventor Toolmaker
Josie Wernecke
Addison-Wesley Publishing Company
3D Graphics Programming with Open GL
Clayton Walnum

Page 764 OpenGL Super Bible!

QUE

Books and References on Graphics Programming (3D in Particular)

Computer Graphics: Principles and Practice
Foley, van Dam, Feiner, and Hughes
Addison-Wesley

OpenGL-Related Web and FTP
Sites Company

URL

Silicon Graphics http://www.sgi.com/
Silicon Graphics ftp://sgigate.sgi.com/

Silicon Graphics/OpenGL WWW
Center

http://www.sgi.com/Technology/openGL/

Template Graphics http://www.cts.com/~template/
Microsoft http://www.microsoft.com/ntworkstation/opengl.htm

Viewpoint Datalabs http://www.viewpoint.com/
3D Accelerator Information http://www.cs.columbia.edu/~bm/3dcards/3d-

cards1.html
Mark Kilgard’s home page http://reality.sgi.com/employees/mjk_asd/home.html

Silicon Graphics/Mark Kilgard http://www.sgi.com/Technology/openGL/glut3.html

VRML Repositories

The VRML Repository http://www.sdsc.edu/vrml/
Paragraph International http://vrml.paragraph.com/

Silicon Graphics http://webspace.sgi.com/Repository/
Vertex International http://www.vrml.com:80/models/vertex/

The Geometry Center http://www.geom.umn.edu/~daeron/bin/legitlist.cgi
Ziff-Davis http://www.zdnet.com/zdi/vrml/

ORC http://www.ocnus.com/models/models.html

OpenGL Super Bible! Page 765

Appendix C
OpenGL Version 1.1

In December 1995, during the writing of this book, the OpenGL Architecture Review Board
ratified and approved version 1.1 of the OpenGL specification. With the release of Windows
NT 4.0, Microsoft will become one of the first, if not the first vendor to ship a full
implementation of the new OpenGL specification for a desktop operating system. In
addition to compliance with the new specification, Microsoft has enhanced OpenGL’s
performance and added a few new features and capabilities, among them the ability to
include OpenGL calls in enhanced metafiles, and improved printing support.

Some highlights of OpenGL version 1.1 include the following:

• New Vertex Array features to allow faster transfer of vertex positions, normals,
colors and color indexes, texture coordinates, and edge flags.
• Allowing logical operations in RGBA color mode instead of just in color index
mode.
• Many new and enhanced texturing features (these are probably the most significant
additions).

OpenGL support for Windows 95 will follow within a few months of the shipment of NT
4.0, which isn’t due to ship until after the manuscript for this book is finished. So that we
could adequately cover the new specs and the Microsoft enhancements, we have included a
special directory on the CD. This \OpenGL11 directory contains more complete
documentation on the new 1.1 features, plus any new goodies thrown in by Microsoft.
Several example programs are also provided.

Page 766 OpenGL Super Bible!

Appendix D
Glossary

Alpha
A fourth color value added to provide a degree of transparency to the color of an
object. An alpha value of 0.0 would mean complete transparency: 1.0 denotes no
transparency (opaque).

Ambient light
Light in a scene that doesn’t come from any specific point source or direction.
Ambient light illuminates all surfaces evenly and on all sides.

Anti-aliasing
A rendering method used to smooth lines and curves. This technique averages the
color of pixels adjacent to the line. It has the visual effect of softening the transition
from the pixels on the line and those adjacent to the line, thus providing a smoother
appearance.

Aspect ratio
The ratio of the width of a window to the height of the window specifically, the
width of the window in pixels divided by the height of the window in pixels.

AUX library
A window system, independent utility library. Useful for quick and portable OpenGL
demonstration programs.

Bézier curve
A curve whose shape is defined by control points near the curve rather than by the
precise set of points that define the curve itself.

Bitplane
An array of bits mapped directly to screen pixels.

Buffer
An area of memory used to store image information. This may be color, depth, or
blending information. The red, green, blue, and alpha buffers are often collectively
referred to as the color buffers.

Cartesian
A coordinate system based on three directional axes placed at a 90º orientation to one
another. These coordinates are labeled x, y, and z.

Clipping
The elimination of a portion of a single primitive or group of primitives. The points
that would be rendered outside the clipping region or volume are not drawn. The
clipping volume is generally specified by the projection matrix.

Color index mode
A color mode in which colors in a scene are selected from a fixed number of colors
available in a palette. These entries are referenced by an index into the palette.

Convex
Refers to the shape of a polygon. A convex polygon has no indentations; and no
straight line can be drawn through the polygon that will intersect it more than twice
(once entering, once leaving).

OpenGL Super Bible! Page 767

Culling
Elimination of the front or back face of a primitive so that the face isn’t drawn.

Display list
A compiled list of OpenGL functions and commands. When called, a display list
executes faster than would a manually called list of single commands.

Dithering
A method used to simulate a wider range of color depth by placing different-colored
pixels together in patterns that give the illusion of shading between the two colors.

Double buffered
A drawing technique used by OpenGL. The image to be displayed is assembled in
memory and then placed on the screen in a single update operation, as opposed to
building the image primitive-by-primitive on the screen. Double buffering is a much
faster and smoother update operation and can produce animations.

Extruded
The process of taking a 2D image or shape and adding a third dimension uniformly
across the surface. This can transform 2D fonts into 3D lettering.

Eye coordinates
The coordinate system based on the position of the viewer. The viewer’s position is
placed along the positive z-axis, looking down the negative z-axis.

Frustum
A pyramid-shaped viewing volume that creates a perspective view (near objects are
large, far objects are small).

Immediate mode
A graphics rendering mode in which commands and functions have an immediate
effect on the state of the rendering engine.

Literal
A value, not a variable name. A specific string or numeric constant embedded
directly in source code.

Matrix
A 2D array of numbers. Matrices may be operated on mathematically and are used to
perform coordinate transformations.

Modelview matrix
The OpenGL matrix that transforms primitives to eye coordinates from object
coordinates.

Normal
A directional vector that points perpendicularly to a plane or surface. When used,
normals must be specified for each vertex in a primitive.

Normalize
Refers to the reduction of a normal to a unit normal. A unit normal is a vector that
has a length of exactly 1.0.

NURBS
An acronym for Non-Uniform Rational B-Spline. This is a method of specifying
parametric curves and surfaces.

Open Inventor

Page 768 OpenGL Super Bible!

A C++ class library and toolkit for building interactive 3D applications. Open
Inventor is built on OpenGL.

Orthographic
A drawing mode in which no perspective or foreshortening takes place. Also called
parallel projection, the lengths and dimensions of all primitives are undistorted
regardless of orientation or distance from the viewer.

Palette
A set of colors available for drawing operations. For 8-bit Windows color modes, the
palette contains 256 color entries, and all pixels in the scene may only be colored
from this set.

Parametric curve
A curve whose shape is determined by one (for a curve) or two (for a surface)
parameters. These parameters are used in separate equations that yield the individual
x, y, and z values of the points along the curve.

Perspective
A drawing mode in which objects farther from the viewer appear smaller than nearby
objects.

Pixel
Condensed from the words picture element. This is the smallest visual division
available on the computer screen. Pixels are arranged in rows and columns and are
individually set to the appropriate color to render any given image.

Polygon
A 2D shape drawn with any number of sides (must be at least three sides).

Primitive
A 2D polygonal shape defined by OpenGL. All objects and scenes are composed of
various combinations of primitives.

Projection
The transformation of lines, points, and polygons from eye coordinates to clipping
coordinates on the screen.

Quadrilateral
A polygon with exactly four sides.

Rasterize
The process of converting projected primitives and bitmaps into pixel fragments in
the framebuffer.

Render
The conversion of primitives in object coordinates to an image in the framebuffer.
The rendering pipeline is the process by which OpenGL commands and statements
become pixels on the screen.

Spline
A general term used to describe any curve created by placing control points near the
curve, which have a pulling effect on the curve’s shape. This is similar to the
reaction of a piece of flexible material when pressure is applied at various points
along its length.

Stipple

OpenGL Super Bible! Page 769

A binary bit pattern used to mask out pixel generation in the framebuffer. This is
similar to a monochrome bitmap, but one-dimensional patterns are used for lines,
and two-dimensional patterns are used for polygons.

Tessellation
The process of breaking down a complex polygon or analytic surface into a mesh of
convex polygons. This can also be applied to separate a complex curve into a series
of less complex lines.

Texel
Similar to pixel (picture element), a texel is a texture element. A texel represents a
color from a texture that will be applied to a pixel fragment in the framebuffer.

Texture
An image pattern of colors applied to the surface of a primitive.

Texture mapping
The process of applying a texture image to a surface. The surface does not have to be
planar (flat). Texture mapping is often used to wrap an image around a curved object
or to produce patterned surfaces such as wood or marble.

Transformation
The manipulation of a coordinate system. This can include rotation, translation,
scaling (both uniform and nonuniform), and perspective division.

Translucence
A degree of transparency of an object. In OpenGL, this is represented by an alpha
value ranging from 1.0 (opaque) to 0.0 (transparent).

Vertex
A single point in space. Except when used for point and line primitives, it also
defines the point at which two edges of a polygon meet.

Viewport
The area within a window that is used to display an OpenGL image. Usually, this
encompasses the entire client area. Stretched viewports can produce enlarged or
shrunken output within the physical window.

Viewing volume
The area in 3D space that can be viewed in the window. Objects and points outside
the viewing volume will be clipped (cannot be seen).

Wireframe
The representation of a solid object by a mesh of lines rather than solid shaded
polygons. Wireframe models are usually rendered faster and can be used to view
both the front and back of an object at the same time.

