INTRODUCTION .ttttttttttittteeeeee ettt e e et e e et e e aeeeaeeeeeaeeeeteeaeeee e e et e e eeeaeaeeee et e eeeee e e e e e eeeeeeeeeeeeeeeeeeeeeeees 5

ABOUT THE AUTHORSuttieiuteteateeeateesasstesassseesssseassssessssesesssessassesasssesssssessansesssnseessnes 15
PART | INTRODUCTION TO OPENGLuviiiiiiiieiiiee sttt 17
CHAPTER L WHAT ISOPENGL ...ttt st e s e nnaee e 18
ADOUL OPENGL .ttt sttt e et e e e bb e e e st e e e snse e e anseeesnseeennes 19
HOW OPENGL WOIKS ...ttt 20
OpenGL UNAEr WINCAOWSooiiiiieiiiieeiieeesiee ettt e s sna e ne e enneas 20
Future Prospects for OpenGL in WINAOWScooiiiiiiiieiiiie e 22
CHAPTER 2 3D GRAPHICS FUNDAMENTALS ...ceittiiesitieesteeesieeesieeesseessssseesssseessnsesesnseeens 23
I I 0= o (] o] o [RPR 23
COOITINALE SYSEIMS. ...ttt sse e et e e e e sre e e enneeesnneeens 28
Projections, The ESSENCE OF 3Deiiiiiieiiiie et 33
SUMITIBTY .ttt e e e ettt e e e et e e e e e e sbe e e e e aasee e e e e ansse e e e e ansnneeeeannnneeeaannnneaeann 36
CHAPTER 3 LEARNING OPENGL WITH THE AUX LIBRARY ...coiiiiiieiiiieeniieeeniieeesieeeseeens 37
OpenGL: AN AP, NOt @ LaNQUAGE.........coiiiieeieeeaiieeeeeeieeee et e e e e e eneeee e 37
THE AUX LIBIAIY....co ittt ettt e e e 42
Dissecting a Short OpenGL Program............ecoeeeeeeeeniee e esieeeseeeesseessseesseeeeens 44
Draming Shapes WIth OPENGLcooiiiiiiiieiie e 52
SCaling t0 the WINAOW........cooeiieee e 55
ANIMALTION WITN AUX ...t 61
Finally, SOME D! ...t 65
SUMITIATY .ttt e e e ekttt e e e et et e e e e see e e e e e mse e e e e e ansbe e e e e ansnneeeeannnneeeaannnneaeann 67
REFEIENCE SECLION.....ei i e e e e e snee e enes 68
CHAPTER 4 OPENGL FOR WINDOWS: OPENGL + WIN32 = WIGGLEccvveeeiieeerieeeneee 105
Drawing in WINAOWS WINAOWS.........cooiiiiiiiie et 106
UsiNg the WIGQIE FUNCLIONS.........coouiiiiiiiecieee et 110
Preparing the WINAOw fOor OPENGLcoociiiiiiieiiie e 112
Return of the BOUNCING SQUAIE.........eiiiiiieiiiee et 115
SUMITIBTY .ttt e e ekt et e e e st e e e e e e sse e e e e e aasee e e e e amne e e e e e amnneeeeasnnnneeeannnnneas 121
REFEIENCE SECLION.....eiiie ettt e sb e e ae e nnee e 122
CHAPTER 5 ERRORS AND OTHER MESSAGES FROM OPENGLcvviiiiieiiiieeiee e 146
When Bad Things Happen to GOOd COUE............eueiieieiiiiieeiiee e 147
Who AmM T and What Can | DO7?ooiiiiiiiiiie e 148
Get aClueWIth gIHINE........ooe e 150
SUMITIBTY .ttt e e ekt et e e e st e e e e e e sse e e e e e aasee e e e e amne e e e e e amnneeeeasnnnneeeannnnneas 150
REFEIENCE SECLION.....eeiie et re e e nnee e 151
PART [T USING OPENGL......ceiiiutieiiiiieesieeesieeesteeesteeesseeessseesassaeesssseessnsesssnseeesnseessnsenens 158
CHAPTER 6 DRAWING IN 3D: LINES, POINTS, AND POLYGONS.......cccccuiriririraniieeesienenneens 159
Draming POINES TN 3Dcooiiiieiiiieeiiee sttt e sttt e e ssse e snsee e ssneeesnneeeas 159
Draming LINES TN 3Doiiiiieiiie ettt ettt e s e st e e snse e e enneeesnneeeas 169
Draming TrangleS 1N 3Dccoiiieeiiiie ettt e s ssne e nee e snneeeas 177
BUIldiNg SOlIA ODJECLS.ccueiieiiiie ettt e e e e snnee e 181
Other PriMITIVES. ..ottt ne et e e nne e e eneeeeenes 191
SUMITIBTY .ttt e e ettt e e e st e e e e e sse e e e e e aasse e e e e amsse e e e e amneeeeeaannnneeeannnnneas 202

Page 2 OpenGL Super Bible!

CHAPTER 7 MANIPULATING 3D SPACE: COORDINATE TRANSFORMATIONS......ccerveeennnen. 221
Is Thisthe Dreaded Math Chapter?...........ccuev e 221
Understanding TransforMatioNS...........cueeeiiueeeiriieeaiieeeseee e seeeesseesseeeesseeesseeeas 222
MaLtriX MUNCRING......coiiiiieiii et re e e nee e 228
USING PrOJECLIONS.coiiuiiiiiiiie sttt ettt ettt et e et e e snse e s snneeesnneeennneeeas 240
Advanced Matrix Manipulation............cceoiueeeiiieeiieee et 249
SUMITIBTY .ttt e e et et e e e st e e e e e e sse e e e e e amsse e e e e ansse e e e e annnneeeaannenaeeannnnneas 251
REFEIENCE SECLION.....eiiiie et e e re e e nnee e 252

CHAPTER 8 COLOR AND SHADINGceetutvteatteeesiteaessseeesseeesseeessssesanssesssssesssssesssssesssnsees 266
LAY 0 L = W o o] R RTTRRURROTI 266
PC COlOr HAarWaI€........cooiieeeiiee ettt ettt e e s ne e e s nnee e 270
PC DiSPlay MOUES.eeeiiiiieieiee ettt ettt e e e e s ne e e ennee e 272
SEECHNG @ COlON ... 274
WINAOWS PalELES ...ttt e e e nee e 280
Creating @ PalEtte.........c.eii e 285
(@70] Vol gl 1 070 (> q 1Y/ oo /= PSPPSR 291
SUMITIBTY .ottt e e et et e e e e st e e e e e e e sse e e e e e amse e e e e e amsse e e e e annenaeeaannneeeeannnnneas 295
REFEIENCE SECLION.....ciiiiii ettt a e e nee e 296

CHAPTER O LIGHTING AND LAMPS.....coiiiiiiitiieeeiie et stee ettt e e e snneas 305
Light inthe Real WOIToooeeeee e 306
MaterialsSinthe Real WOrldccooo i 309
AddiNg LIGNE £0 @ SCENE.......eiiiiiieiiie ettt ae e snee s 311
USING @ LIGNE SOUMCE.......eiiiiiieeiie ettt e e s 316
LIGNtiNG EFfECES ...ccueieeiiee ettt et e e nnee s 326
S 010 1 1o o1 RS 335
S =0 (01, PRI 339
Lighting and Color INdeX MOGE............cueiiiiieiiiie e 345
SUMITIBTY .ttt ettt e e et et e e e et e e e e e e sse e e e e e aasee e e e e amsse e e e e amnneeeeaannaneeeennnnneas 346
REFEIENCE SECLION.....ei it e e snnee e 347

CHAPTER 10 3D MODELING AND OBJECT COMPOSITION ..c.uuvveesieeeeieeesseeeessnseessnsenssnnens 361
DefiNING the TASKeeiiiiie ittt e e nn e e nne e e snneeeas 361
Constructing a Model, One Pieceat @ TIME......ccceeeiiieiiiiie e 364
A Makeshift BENCHMAIK.........coiiiiiie e 378
IMProviNg PerfOrMaNCE........coouiii e enee e 381
S 100 0072 OUUPRPPIP 385
REFEIENCE SECLION.....eiiiee et e e b e e nnee e 386

CHAPTER 11 RASTER GRAPHICS IN OPENGLcviiiiiiiiiiiie sttt 397
Draming BitMaPScooiiiieiiiie ettt e et e et e s e e e nneeennneeeas 397
Pixmaps: BitmapS WIth COIOrccueiiiiiieiee e 404
A BITMAP FIIE VIBWES ...ttt e e e 413
S 100 0072 Y TSP OUUPRPPPP 424
REFEIENCE SECLION.....eiiiiie et e e nnee e 425

CHAPTER 12 TEXTURE MAPPINGctvtitieiieesteeesieeasseesseeesseesnseesssesssesaseesssesssesansessnsennns 437
The BasiCs Of TeXXUre MapPingccooveeeiieieaiiieeiieeesiiee e siiee e sieee s seee e e sne e sneeeeenes 437

Defining TEXIUrE IMAJGEScoeieieeeiiie ittt sttt e s ssne e e s sseeesnneeeas 439

OpenGL Super Bible! Page 3

Draming TexXtured POlYGONS.........couiii ettt eee e snee s 443
MiIPMAPPEA TEXLUIES.......eeeiiieeieiee ettt eiee e et e st e et e e e e e s s et e s sabe e e snseeesnseeesnseeesnneeeas 445
ATerrain VIEWING PrOgraMm.......coooueiiiiieeiiieesiieesieeessieeessieee s siseesssaeesssseessnneeesnseeens 447
SUMITIBTY .ottt e e et et e e e et ee e e e e e sse e e e e e amsse e e e e ansse e e e e annaneeeeanneneeeannnnneas 454
REFEIENCE SECLION.....ciiii et e e ne e e nee e 483
CHAPTER 13 QUADRICS: SPHERES, CYLINDERS, AND DISKS.......ccetiiiieiniieenieeeseeee e 493
Creating @ QUAANCooveie ettt e et e e e e snae e e snbe e e snneeeenneas 493
Changing the Way QUadriCS Are DIraWN..........coocuueeiiieeiiiie e 493
Draming CYIINAEIS.......eeeeieieeiie ettt e e snne e e s nne e e snneeeas 495
DIraWMING DISKS ...cooiiiiiiiiieeiie ettt sttt st e et e e s bt e e ente e e snne e e snneeennneeeas 496
Draming SONEIES.......oo ittt r e nee e 497
Draming @ PENCIlcooeiiiiieee e 498
SUMITIBTY .ottt e e et et e e e et e e e e e e sbee e e e e aasse e e e e amnse e e e e annnneeeaanseneeeannnnneas 500
REFEIENCE SECLION.....ciiiiie ettt e e ae e e nee e 511
PART [11 ADVANCED TOPICSAND SPECIAL EFFECTScoiviiiiiiie et 522
CHAPTER 14 THE OPENGL STATE MACHINEcviiiiiiiieeieee st et e et e e e 523
Basic OpenGL Sate FUNCLIONS..........coiiiieiiiee et snee s 523
Saving and RESIONNG STALEScccueie i 524
REFEIENCE SECLION.....ei ettt e e e ae e e nnee e 531
CHAPTER 15 BUFFERS. NOT JUST FOR ANIMATION ...cceiiutiieaieeesieeeanseeessssesssssesssseessnnes 537
WWhat Are BUFFEIS? ...ttt e e 537
T COlOr BUFTEY ... e 542
The DEPtN BUFFEN ... 544
The SIENCH BUFFEN ... 554
The AcCUMUIALION BUFTEY ... 560
REFEIENCE SECLION.....ei i re e e snee e 566
CHAPTER 16 VISUAL EFFECTS. BLENDING AND FOG.......cciiiiiieiiiie i 575
BlENAING. ..t a e re e nee e 575
OO0 et r e e e e e e e e e e e e e e aaaa 590
Revisiting the Terrain VIiewing Programc.ceeeieeeenieeeniee e siee s 595
S 1000072 601
REFEIENCE SECLION.....cii et sb e e ne e e nnee e 602
CHAPTER 17 CURVES AND SURFACES: WHAT THE #0@!&* ARENURBS?................... 604
CUIVES aNd SUMACES........eieiiiie ettt et e e nne e e enneas 605
EVAIUBLOLS. ...ttt ettt e et e st e e snne e e e nneeennneeeas 607
NURBS. ...ttt ettt e e et e e bt e e e bt e e s aate e e enee e e enseeeanseeeanseeennneeeas 616
S 1000072 623
REFEIENCE SECLION.....ei i esnnee e 624
CHAPTER 18 POLYGON TESSELLATION ...ceiittieesuteeesuteeesseeesseeesnseesasssesssssesssssessssesssnsees 656
COMPIEX POIYGONS......coiiieiiie ettt e e e nne e e enneas 656
Draming Concave POIYGONScouiii ittt snee e 657
Draming ComplexX POIYGONS.........oocuiiiiiiieiiiee ettt aee e e snee e 658
CallbAaCK FUNCLIONS ...ttt e e e 663
SUMITIBTY .ttt et e e ettt e e e et e e e e e e sse e e e e e amsee e e e e emsse e e e e annneeeeaannneaeeannnnneas 664

Page 4 OpenGL Super Bible!

CHAPTER 19 INTERACTIVE GRAPHICS......ceiittiriiiiieeaiieeesieeesteeesnseeesssseessssesssssesssnsesssnses 672
S 1< ot 0] o ORI 673
FEEADACK. ... nee e 683
AN EXAMPIC......eeee e e ree e 685
S 100 0072 690
REFEIENCE SECLION.....eiiiiie et se e e r e e nnee e 691

CHAPTER 20 OPENGL ON THE 'NET: VRML ...ttt 705
WHhen WOrTAS COlIITE. ... 705
LY 0 7= Lol TSRS 707
Open INVeNtor aNd VRIML.........cooiiiiiieeiie et snee e 711
SUMITIBTY .ttt e e ettt e e e eat e e e e e e e sne e e e e e aasse e e e e annee e e e e amnneaeeaanneeeeeannnnneas 712

PART IV OPENGL WITH. . 1.etiiiiiieeeiieesiie ettt ettt e e snte e e snnee e snseeennsenens 713

CHAPTER 21 MFC-BASED OPENGL PROGRAMMING. ... uvetesuteiesieeeateeessseesssssessssesssnens 714
| solate YOUr OPENGL COURcoeiiiieeiiieeiiie ettt e s e snnee e 715
Sarting With APPWAZArdoooiiiiiieeee e 716
Get CView Ready fOr OPENGL.........cocuiiiiiieeiie et e e 718
Pixel Format and Rendering CONEXL..........c.uueiieeiiiieeiiie e 719
Handling WANAOW RESIZING.........eeiiiiieiiiie ettt snee e 721
Rendering the SCENE.........oo e 721
CPRalette HaNAIING........coueieiiieeie et 722
SUMITIBTY .ottt e e et e e e et e e e e e sse e e e e e aasee e e e e smsse e e e e amnneeeeaannnneeeannnnneas 726

CHAPTER 22 OWL-BASED OPENGL PROGRAMMINGccteiieiesieeeaieeessireeassseesssesesnens 727
| solate YOUr OPENGL COURcoeiieieiiiieeiiieeeiee ettt sneee e snnee e 728
Sarting WIth APPEXDENT ..ottt nne e 729
Fleshing Out the SNEL ..o 732
Pixel Format and Rendering CONEXL..........cuuiiieeiiiieiiiie e 733
Handling WANAOW RESIZING..........ceiiiiieiiiie ettt snee s 735
Rendering the SCENE.........oo e 735
TPRaAlEtte HaNAIiNGeeeieiieee e 738
SUMITIBIY ..ttt ettt e ettt e e e eat e e e e e e ssb e e e e e aass e e e e e amnse e e e e amneeeeeaanneneeeennnnneas 742

CHAPTER 23 VISUAL BASIC AND 4GL-BASED OPENGL PROGRAMMING.........cceeruveeennnen. 743
LOW-Level ACCESS REQUITEU........coiiiiie ittt nee s 743
The MagiC Of ODJECEScueiieiiiie ettt e e snneeeenes 744
Use and Operation of WaItEGL.OCX........cociiiiiiieaiiie et 745
Installing and Using WaiteGL from VB 4.0cooiiiiiiiiieieeeeee e 746
Installing the OCX iN DElPhi 2.0cooiiiiiiieee e 749
Some NOteS ADOUL the SOUICE.........ee it 753
SUMITIBTY .ottt e e ettt e e e et e e e e e e e sse e e e e e easee e e e e amnee e e e e amnneeeeaannnneeeennnnneas 754

CHAPTER 24 THE FUTURE OF OPENGL AND WINDOWS......cccttieiiiieeieeeenireeesieeeeseeeeseeas 755
(@00] 070! 1115 o o PSSP 758

APPENDIX A PERFORMANCE-TUNING OPENGL FORWINDOWS........ccoiiieeaiierenieeenieenns 760

APPENDIX B FURTHER READINGccitiiiiiiiieiiie e siiee ettt esiee e sneee s sneeeesnneeennseeens 763

APPENDIX C OPENGL VERSION L1 ...ciiiiiiiiiiiiieesiieesiee e siee et e st ee s e e snseeenneee e 765

APPENDIX D GLOSSARYiiitiiiiieiee e e e sttt e e e e s e s s st bar e e e e e e e s ssssaaaeeaaeeeessnsnsnsaneeaaeeeanns 766

OpenGL Super Bible! Page 5

| ntr oduction

Welcome to OpenGL SuperBible! The first time | ever heard of OpenGL was at the 1992
Win32 Developers Conference in San Francisco. Windows NT 3.1 was in early beta (or late
apha) and many vendors were present, pledging their future support for this exciting new
platform. Among them was a company caled Silicon Graphics, Inc. (SGI). They were
showing off their graphics workstations and playing video demos of special effects from
some popular movies. NT was running on MIPS processors—now owned by SGI—but their
primary purpose in this booth was to promote a new 3D graphics standard called OpenGL. It
was based on SGI’s proprietary IRIS GL and was fresh out of the box as a graphics
standard. Significantly, Microsoft was pledging future support for OpenGL in Windows NT.

| had to wait until the beta release of NT 3.5 before | got my first persona taste of OpenGL.
Those first OpenGL-based screensavers only scratched the surface of what was possible
with this graphics API. Like many other people, | struggled through the Microsoft help files
and bought a copy of the OpenGL Programming Guide (now called simply “The Red Book”
by most). The Red Book avoids platform issues and uses for al its examples the Auxiliary
(AUX) library, a platform-independent program framework for OpenGL graphics.

At that time, the Red Book was the only book available for learning OpenGL. Though quite
thorough in its coverage of OpenGL functions, it is lacking in two important respects. First,
it is not a primer. Whatever the intent of the authors, the book assumes a substantial working
knowledge of 3D graphics concepts in general. The Red Book’s second drawback is its
platform independence. As a Windows developer, | needed answers to some important
guestions, such as how to use a .BMP file as a texture, how to create an OpenGL-usable
palette for an 8-bit display device, and how to use all those “ wiggle’ functions Microsoft
threw in.

OpenGL SuperBible fills in those gaps. | wanted to provide a 3D graphics introduction and
an OpenGL tutoria rolled into one. In addition, | approached the whole subject within the
context of the single most popular desktop operating system of all time, Microsoft Windows.
And | added a Reference Section of thorough function definitions at the end of each chapter,
making this book a good complement to the Waite Group line of bible reference books.

Who ThisBook IsFor

This book will suit a wide audience of OpenGL and Windows programmers. Windows
programmers wanting to learn about 3D graphics and how to implement them using
OpenGL will find what they need. So will experienced Windows and 3D graphics
programmers wanting to learn more about the industry standard OpenGL. This book will
also be of value to seasoned OpenGL programmers who have a workstation background but
need some assistance porting their applications and experience to the Microsoft Windows
platforms.

Page 6 OpenGL Super Bible!

System Requirementsfor OpenGL

OpenGL is not available on the 16-bit versions of Microsoft Windows (3.1, 3.11, and so
forth) from Microsoft. Microsoft added OpenGL to Windows NT 3.5, and to Windows 95
via a separate distribution of some DLLs. (These DLLs are available via Microsoft's FTP
and Web sites and are included on this book’s CD, in the \Windows95 subdirectory.)

OpenGL SuperBible does not attempt to cover any third-party OpenGL or OpenGL-like
libraries for the 32- or 16-bit environments. Programmatically, OpenGL used under
Windows 95 is the same as OpenGL used under Windows NT. The first set of DLLs shipped
by Microsoft for Windows NT supports al of the OpenGL 1.0 functions that are also
available under Windows NT 3.5 and 3.51. OpenGL 1.1 functions are being added to
Windows NT 4.0, and a new set of DLLs should be ready for Windows 95 by the time this
book ships. See the readme.txt file on the CD for any late-breaking information.

All of the samples in the book should run fine on a fast 486 (that’s a “real” 486, mind you,
which means a built-in math coprocessor!) with at least 8MB of RAM. Most programming
environments will require at least this much horsepower, anyway. If you're interested, all
the code in the book and on the CD was developed and found to run acceptably on a 90MHz
Pentium with 32MB of RAM and a 16/24-hit color display card. You will need a display
card capable of at least 256 colors (an 8-bit color card). There is significant improvement in
OpenGL’s speed and appearance when you give it a good color depth to work with. If you
can run in amode that gives you 65,000 or more colors, your results will be even better.

L anguage

With the exception of two chapters that specifically deal with C++ frameworks, al the
source code in this book is written in C. The choice between C and C++ can become an
amost religious crusade between two warring camps. It is reasonable to expect that any
competent C++ programmer can also follow well-structured C code, but the converse is not
aways true. There is a popular C++ library for OpenGL called Open Inventor; any attempt
here to build a C++ class library around OpenGL would be a duplication of an aready fine
effort and is beyond the scope and purpose of this book anyway. This brings us to our choice
of tools.

Compilers

All of the sample code was originaly developed using Microsoft’s Visua C++ 4.0. (Yes,
you can compile C with it!) With each sample you will find Visual C++ project files. Since
al samples are in C and make no use of vendor-specific libraries, you shouldn’'t have any
trouble building the projects with any other 32-bit compiler. | will assume that you are
familiar with your environment of choice and know how to add libraries and header files to
your projects.

OpenGL Super Bible! Page 7

For programmers who prefer C++ application frameworks such as MFC or OWL, chapters
are included that dea with these two in particular. In addition, many of the C samples are
also provided in an MFC (Visual C++) version and an OWL (Borland C++) version.These
samples can be found in the \MFC and \OWL subdirectories on the CD. Project files for the
Borland Compiler are also provided for these samples, prepared using Borland C++ 5.0.

Another special consideration has been made for users of Borland tools: the CD contains a
Borland-specific version of the OpenGL Auxiliary library. This library isn't part of the
official OpenGL specification, but it is usualy implemented on the same various platforms
as OpenGL. For reasons unknown, Borland includes a header file for this library but not the
library itself, and the version of the AUX library that ships with Microsoft tools is
incompatible with Borland C++. For additional notes on using Borland C++ with this book,
see the \Borland subdirectory on the CD.

What'sin This Book

OpenGL SuperBible is divided into four sections. Part | is an introduction to OpenGL and
the fundamentals of using it from within Microsoft Windows. In Part |11 we cover the basics
of programming with OpenGL. This includes primitives, viewing and modeling
transformations, lighting, and texture mapping. In Part 1Il we dig into some of the more
advanced topics and functionality within OpenGL—the OpenGL State Machine, specid
visual effects, more detail on the OpenGL buffers, advanced surface generation, and some
interactive graphics. For Part IV, we've added supplementary information on using OpenGL
from different programming environments (MFC, OWL, and Visual Basic). Findly, there's
adiscussion of the future of OpenGL under Windows.

Part |: Introduction to OpenGL

Chapter 1 - What Is OpenGL?

In this chapter, we provide you with a working knowledge of what OpenGL is, where it
came from, and where it is going. We also discuss at a high level the differences between
and compatibilities of OpenGL and the Microsoft Windows graphics system.

Chapter 2 - 3D Graphics Fundamentals

This chapter is for newcomers to 3D graphics. It introduces fundamental concepts and some
common vocabulary.

Page 8 OpenGL Super Bible!

Chapter 3 - Learning OpenGL with the AUX Library

In this chapter, you will begin writing programs that use OpenGL. For starters, we'll make
things simple by using the AUX library. This common toolkit library is platform- and
windowing system-independent. We aso cover OpenGL function and variable naming
conventions, aswell asthe DLLs and libraries that contain the OpenGL functionality.

Chapter 4 - OpenGL for Windows: OpenGL + Win32 = Wiggle

Here you'll begin writing real Windows (message-based) programs that use OpenGL. You'll
learn about Microsoft’s “wiggle” functions that glue OpenGL rendering code to Windows
device contexts. We'll also talk about which Windows messages should be responded to and
how.

Chapter 5 - Errors and Other Message from OpenGL

WEe'll explore OpenGL’s method of reporting errors, and how it provides information about
its version and vendor.

Part I1: Using OpenGL
Chapter 6 - Drawing in 3D: Lines, Points, and Polygons

Here you'll learn how all 3D objects are created by assembling 2D primitives. All the
OpenGL primitives are covered, as well as how to hide surfaces within your scenes.

Chapter 7 - Manipulating 3D Space: Coordinate Transformations

In this chapter you'll learn about moving your objects or view within your scenes. You'll
learn how to rotate, trandate, and scale. We take a smplified approach to our study of
matrix transformations, so you will understand how to use them even if youdon't know the
first thing about matrices.

Chapter 8 - Color and Shading

Here you'll learn how to liven up your objects by adding color. Shading objects smoothly
from one color to another will be child's play after you've completed this chapter. We also
show you how and why you need to construct a 3-3-2 palette for OpenGL when your code
runs on a 256-color video card.

OpenGL Super Bible! Page 9

Chapter 9 - Lighting and Lamps

OpenGL supports up to eight independent light sources per scene. You'll learn how to use
these lamps, how to set lighting parameters and properties, and how they interact with
reflective material properties that you can assign to your objects.

Chapter 10 - 3D Modeling and Object Composition

For this chapter, we show you how to build complex 3D objects out of smaller, less complex
3D objects. We aso introduce OpenGL display lists as a method of breaking down your
objects and improving performance, as well.

Chapter 11 - Raster Graphicsin OpenGL

In this chapter you'll learn how to manipulate bitmap graphics from within OpenGL. This
includes reading in a Windows .BMP file and displaying it in an OpenGL scene.

Chapter 12 - Texture Mapping

Texture mapping is one of the most useful features of any 3D graphics toolkit. You'll learn
how to wrap bitmaps onto polygons, and how to use automatic texture coordinate
generation.

Chapter 13 - Quadrics. Spheres, Cylinders, and Disks

This chapter covers the OpenGL Utility library (glu) functions for quickly constructing
some common shapes.

Part [11: Advanced Topics and Special Effects

Chapter 14 - The OpenGL Sate Machine

Many global OpenGL parameters and settings are maintained via the OpenGL State
Machine. In this chapter you'll learn about this mechanism, as well as some generalized
functions for setting and accessing the various parameters.

Chapter 15 - Buffers: Not Just for Animation

This chapter goes into more depth about the various OpenGL buffers. As you'll see, they're
not just for doing screen flipping.

Page 10 OpenGL Super Bible!

Chapter 16 - Visual Effects, Blending, and Fog

Some other visual special effects are covered in this chapter. These include alpha blending
and fog effects for transparency and depth cues.

Chapter 17 - Curves and Surfaces. What the #%@!&* Are NURBS?

This chapter explores the utility functions that evaluate Bézier and NURBS curves and
surfaces. Y ou can use these functions to create complex shapes with a small amount of code.

Chapter 18 - Polygon Tessellation

Here you'll learn how to break down complex or concave polygons into smaller, more
manageable pieces.

Chapter 19 - Interactive Graphics

This chapter explains two OpenGL features. selection and feedback. These groups of
functions make it possible for the user to interact with objects in the scene. You can also get
rendering details about any single object in the scene.

Chapter 20 - OpenGL on the * Net: VRML

This chapter introduces VRML (Virtual Reality Modeling Language) and its history with
OpenGL. Open Inventor is discussed, as well, and its relationship to OpenGL and VRML.

Part IV: OpenGL with...

Chapter 21 - MFC-Based OpenGL Programming

This chapter is for C++ programmers using Microsoft’s MFC class library. We'll show you
how to use OpenGL from an MFC-based application, and how to add rendering capabilities
to any CWnd window.

Chapter 22 - OWL-Based OpenGL Programming

This chapter is for C++ programmers using Borland C++ and the OWL application

framework. You'll learn how to add OpenGL rendering capabilities to any OWL TWindow-
derived window.

OpenGL Super Bible! Page 11

Chapter 23 - OpenGL Programming from Visual Basic and 4GL

In this chapter we give you an OCX that wraps most of the OpenGL functions and
commands. This allows easy OpenGL programming from Visual Basic (4.0 or later) or any
32-bit environment that supports OCXs. Examples are given for both Visual Basic 4.0 and
Delphi 2.0.

Chapter 24 - The Future of OpenGL and Windows

This chapter looks at the future of 3D graphics and OpenGL in Windows. We discuss the
implications of the Microsoft DirectX API, which includes Direct Draw, Direct Sound,

Direct Play, Direct Input, and Direct 3D, and will ultimately incorporate the Reality Labs 3D
API.

Appendixes
Appendix A - Performance-Tuning OpenGL for Windows

Here we will provide some general-purpose performance-tuning tips for using OpenGL
under Windows NT and Windows 95.

Appendix B - Further Reading

A list of additional reading materials is provided for more in-depth research on any of the
topics covered by this book.

Appendix C - OpenGL Version 1.1

OpenGL 1.1 was finalized during development of this book. The new functions and
capabilities are not covered here, but Appendix C gives you a high-level overview of the
new version's additions. The CD also contains more up-to-date and complete documentation
on the new functions and capabilities being added for Windows NT 4.0, as well as some
example programs.

Appendix D - Glossary

A glossary of common 3D graphics and OpenGL terms.

Page 12 OpenGL Super Bible!

About the Companion CD

OpenGL SuperBible comes with a CD-ROM that’s jam-packed with samples and other
OpenGL goodies. A directory called Book, off the root directory of the CD, contains all the
source code from the book. In addition, there are many examples demonstrating the concepts
presented from each chapter that may not have been described in the text of the book.

Each chapter of the book has its own subdirectory in the Book directory. Within each
chapter subdirectory is another subdirectory for each example on the disk. For instance, the
bouncing sguare program from Chapter 3 is located in the X:\Book\Chapt3\bounce
subdirectory (where X isyour CD-ROM drive).

Some of the chapter directories have a subdirectory called \Tank. This is a roving tank/robot
simulation program that we observe as we progress through the book. Though it's not
analyzed chapter by chapter, the smulation becomes more complex as we gradually add
more of the functions and features of OpenGL. See the readme.txt file for details on the
construction of this example program.

Some of the sample programs from each chapter will also be written in C++ using MFC or
OWL. These sample programs are under X:\MFC\ or X:\OWL\. Again, within the MFC and
OWL subdirectories there is an additional directory for each chapter.

The two final major subdirectories in the CD root are \Borland and \OpenGL11. The
\Borland subdirectory contains a Borland-specific version of the AUX library. See the
readme.txt file in that directory for details on the library’s functionality and use.The
\OpenGL11directory contains a document describing the OpenGL 1.1 additions that
Microsoft is incorporating for Windows NT 4.0. In addition, you'll aso find severd
example programs that demonstrate these new capabilities.

Be sure to consult the file readme.txt in the root directory for any late-breaking news or
additions to the content of the CD. This file also contains a complete listing of al the files
and programs on the CD ROM.

OpenGL Super Bible! Page 13

Engage!

If you are learning OpenGL or 3D graphics for the first time, then | sincerely envy you.
Nothing is more satisfying and just plain fun than learning a new technology or tool for the
first time. Although OpenGL has its roots in scientific modeling and simulation, you don't
need to be a rocket scientist to master it. The step-by-step approach taken throughout this
book will guide you to new levels of programming skill. Learning OpenGL is comparable to
learning SQL for database programming. Before | knew SQL, | could not quite imagine the
new power | would wield as a database developer. If you have been tinkering with 3D
graphics or are just wanting to get started, you are only just beginning to glimpse the new
power and capabilities that OpenGL will afford you!

—Richard S Wright, Jr.

Page 14 OpenGL Super Bible!

Foreword

Due to its enormous processing and hardware requirements, three-dimensional computer
graphics had until recently been available only on specialized workstations, even though the
technology has been around for decades. Today, personal computers have become so
powerful that interactive 3D graphics is no longer out of reach of such systems. A PC today
performs as well as a graphics workstation from a few years ago, but at a small fraction of
the cost.

OpenGL is an industry effort that brings traditional workstation graphics technology to the
PC. Microsoft has been an active advocate of this technology since it was first developed. It
has worked with many hardware vendors to enable high performance3D graphics hardware
on PCs.

The Windows platform now offers OpenGL applications ranging from VRML browsers to
CAD/CAM and animation packages. It will aso be the platform with which to release an
OpenGL 1.1 implementation well ahead of all other platforms!

Richard Wright has long been an advocate of Win32 and OpenGL technology. He is an
active participant in the comp.graphics.api.opengl newsgroup, and has helped resolve many
programmers problems. Richard and | regularly exchange notes and ideas in e-mail. | am
glad that he is sharing his years of knowledge with others in OpenGL SuperBible from
Waite Group Press, and I’'m confident you will benefit from his insight and knowledge in
developing your OpenGL applications for Windows.

Hock San Lee

OpenGL Development Manager

Microsoft Corporation

June 1996

OpenGL Super Bible! Page 15

About the Authors

Richard S. Wright, Jr. works for Visteon Corporation in Maitland, Florida, developing
Windows-based applications for the healthcare industry. Richard first learned to program in
the eighth grade in 1978 on a paper terminal. At age 16, his parents let him buy a computer
instead of a car, and he sold his first computer program less than a year later. When he
graduated from high school, his first job was teaching programming and computer literacy
for a local consumer education company. He studied electrical engineering and computer
science at the University of Louisville's Speed Scientific School and made it to his senior
year before his career got the best of him. A native of Louisville, Kentucky, he now lives
with his wife and three children in sunny Lake Mary, Florida. When not programming or
dodging hurricanes, Richard is an amateur astronomer, a beach bum, and Sunday School
teacher.

Michael Sweet works at the Chesapeake Test Range at Patuxent River, Maryland, and is co-
owner of Easy Software Products, a small software firm specializing in computer graphics
on Silicon Graphics workstations. He first started using a computer terminalat the age of six
and sold his first program at 12. Michael was hired as a consultant doing computer graphics
while finishing his bachelors degree in computer science at the SUNY Ingtitute of
Technology in UticalRome, New York. He moved to Maryland shortly after graduating.
When he has free time, he enjoys cycling, photography, and playing the trumpet.

Dedications
Dedicated to the memory of Richard S. Wright, Sr. | Thessalonians 4:16
—Richard S Wright, Jr.

To my folks for putting a computer terminal in front of me at age six, and to my girlfriend,
Sandra, for putting up with me while | worked on this book.

—NMuichael Sneet

Page 16 OpenGL Super Bible!

Acknowledgments

There are many people who provided inspiration, technical assistance, ideas, and just lots of
really strong iced tea when | badly needed it. Most of all, | wish to acknowledge my own
family's sacrifice: Thank you to LeeAnne, my wife, who gave up countless nights,
weekends, and quiet evenings, not to mention taking on many extra responsibilities at home
so her husband could “get famous.” Many thanks to my three children (Sara, Stephen, and
Alex), who missed not a few bedtime stories, trips to the park, and bike rides, or who just
got grumped at for no reason other than that Daddy hadn't dept in a week. No career
achievement would have been worth losing them. | know how fortunate | am that at the end
of this| can till have my cake and edt it, too.

Many thanks go out to all the people at Waite Group Press, who really brought the book
together. Specia thanks to John Crudo for getting my foot in the door a few years ago, and
for recommending me for my first writing assignment before my first “real” book. Thanks to
Harry Henderson for keeping me on track and encouraging me whenever | started feeling
sorry for myself. Thank you to Kurt Stephan for seeing me through, and for being flexible
but firm with the schedule whenever disaster struck, or whenl decided to suddenly change
the fabric of the universe (usually over a weekend before a deadline). Lest | forget, thanks to
Jill Pisoni and Joanne Miller, who got the book rolling in the first place—Jill for pulling
teeth at one particular software company, and Joanne for sticking through four or five title
changes, countless proposal revisions, three revisions of a sample chapter, and a hurricane
before this thing took off. Finally, thank you to Mitch Waite himself for helping me shape
the first “prototype” chapter, not to mention introducing me to the game Mech Warrior 2.

Credit and thanks aso go out to Mike Sweet, author of Chapters 11 through 16 and 18, who
jumped in at the last minute and bailed me out when my first co-author fell through. Thanks
to Jeff Bankston for checking all the samples and for pointing out the important fact that not
everyone has a 24-bit graphics card.

| also would like to thank everyone in the OpenGL community at large. | spent a lot of time
in the OpenGL newsgroup asking and answering questions, and from there much of the
content of the book was shaped. Special thanks to Hock San Lee a Microsoft, who
answered many questions on and off line, and provided me with advance material on the
new OpenGL features in NT 4.0. John Schimpf at SGI and Robert Weideman at Template
graphics were also very helpful.

—Richard S Wright, Jr.

Many thanks to Harry Henderson, Jeff Bankston, and, of course, Kurt Stephan for making
this book come together so quickly.

—NMuichael Sneet

OpenGL Super Bible! Page 17

Part |
| ntroduction To OpenGL

Part | of this book introduces you to 3D graphics and programming with OpenGL. We start
with a brief discussion of OpenGL, its background, purpose, and how it works. Then, before
getting into any code, we'll talk generally about 3D graphics on computers, including how
and why we “think” we see 3D, and how an object’s position and orientation in 3D space is
specified. You'll get the fundamental background and terminology you need to get the best
out of this book.

In Chapter 3 you'll start writing your first OpenGL programs. You'll learn about the various
libraries and headers that are needed, and how OpenGL functions and data types are called
and named. Initialy we'll cover the AUX library, a toolkit for learning OpenGL
independently of any particular platform. Then we'll “wiggle’ our way into writing
programs that use OpenGL under Windows 95 and Windows NT, in Chapter 4. We'll cover
the extensions to the Windows GDI (graphical device interface) to support OpenGL under
Windows and describe how they must be used.

In Chapter 5 you'll get some essential information on OpenGL’s handling and reporting of
error conditions. We'll tell you how you can ask the AUX library to identify itself and who
makes it, and how to give performance “hints’ to the library. With this knowledge in hand,
you'll be ready to tackle the meatier issues of OpenGL in Part 11, where the examples will
get alot better!

Page 18 OpenGL Super Bible!

Chapter 1
What 1s OpenGL ?

OpenGL is grictly defined as “a software interface to graphics hardware.” In essence, it isa
3D graphics and modeling library that is extremely portable and very fast. Using OpenGL,
you can create elegant and beautiful 3D graphics with nearly the visua quality of a ray-
tracer. The greatest advantage to using OpenGL is that it is orders of magnitude faster than a
ray-tracer. It uses algorithms carefully developed and optimized by Silicon Graphics, Inc.
(SGI), an acknowledged world leader in computer graphics and animation.

OpenGL is intended for use with computer hardware that is designed and optimized for the
display and manipulation of 3D graphics. Software-only, “generic’ implementations of
OpenGL are dso possble, and the Microsoft Windows NT and Windows 95
implementations fall into this category. Soon this may not strictly be the case, because more
and more PC graphics hardware vendors are adding 3D acceleration to their products.
Although this is mostly driven by the market for 3D games, it closely parallels the evolution
of 2D Windows-based graphics accelerators that optimize operations such as line drawing
and bitmap filling and manipulation. Just as today no one would consider using an ordinary
VGA card to run Windows on a new machine, soon 3D accelerated graphics cards will
become commonplace.

The Windows Graphics APIs

First there was GDI (Graphics Device Interface), which made it possible to write hardware-
independent graphics—but at the cost of speed. Then graphics card makers began writing
optimized GDI drivers to considerably speed up GDI. Then Microsoft introduced WinG to
lure game developers. WinG consisted of little more than a few functions that got bitmaps to
the display much faster, but it was still too slow. Microsoft next created the Direct Draw API
for really low-level access to the hardware. This became rolled in with awhole set of
DirectX APIsfor writing directly to hardware, making games easier to write and improving
their performance. Finally, 3DDI (a part of DirectX) gives high-performance 3D games a
much needed shot in the arm. In Chapter 24 we talk more about the evolution and
relationship of Windows and 3D graphics acceleration.

OpenGL is used for a variety of purposes, from CAD engineering and architectura
applications to computer-generated dinosaurs in blockbuster movies. The introduction of an
industry standard 3D API to a mass-market operating system such as Microsoft Windows
has some exciting repercussions. With hardware acceleration and fast PC microprocessors
becoming commonplace, 3D graphics will soon be typica components of consumer and
business applications, not just of games and scientific applications.

Who remembers when spreadsheets had only 2D graphics and charting capahilities? If you
think adding 3D to ordinary applications is extravagant, take a look at the bottom line of the

OpenGL Super Bible! Page 19

companies that first exploited this idea. Quattro Pro, one of the first to simplify 3D charting,
nearly captured the entire spreadsheet market. Today it takes far more than flat, two-
dimensional pie charts to guarantee long-term success for spreadsheet applications.

This isn't to say that everyone will be using OpenGL to do pie and bar charts for business
applications. Nevertheless, appearances count for a lot. The success or failure of products
with otherwise roughly equivalent features often depends on “sex appeal.” And you can add
alot of sex appeal with good 3D graphics!

About OpenGL

Let’stake alook at OpenGL’s origins, who's “in charge” of OpenGL, and where OpenGL is
going. We'll also examine the principles of OpenGL implementation.

A History of OpenGL

OpenGL is a relatively new industry standard that in only a few years has gained an
enormous following. The forerunner of OpenGL was GL from Silicon Graphics. “IRIS GL”
was the 3D programming API for that company’s high-end IRIS graphics workstations.
These computers were more than just genera-purpose computers, they had speciaized
hardware optimized for the display of sophisticated graphics. This hardware provided
ultrafast matrix transformations (a prerequisite for 3D graphics), hardware support for depth
buffering, and other features. When SGI tried porting IRIS GL to other hardware platforms,
however, problems occurred.

OpenGL is the result of SGI's efforts to improve IRIS GL’s portability. The new language
would offer the power of GL but would be “ Open,” allowing for easier adaptability to other
hardware platforms and operating systems. (SGI still maintains IRIS GL, but no
enhancements or features other than bug fixes are being made.)

On Jduly 1, 1992, Version 1.0 of the OpenGL specification was introduced. Just five days
later, at the very first Win32 developers conference, SGI demonstrated OpenGL running on
their IRIS Indigo hardware. Video clips from films such as Terminator Two: Judgment Day,
and medical imaging applications were popular attractions in the vendor exhibit hall.
Already, SGI and Microsoft were working together to bring OpenGL to a future version of
Windows NT.

Further Developmentsin OpenGL

An open standard is not really open if only one vendor controls it. Thus, all enhancements to
OpenGL are decided by the OpenGL Architecture Review Board (ARB), whose founding
members are SGI, Digital Equipment Corporation, IBM, Intel, and Microsoft. The OpenGL
ARB meets twice a year.

Page 20 OpenGL Super Bible!

These meetings are open to the public, and nonmember companies may participate in
discussions (although they can’t vote). Permission to attend must be requested in advance,
and meetings are kept small to improve productivity. Members of the ARB frequently
participate in the Internet newsgroup comp.graphics.api.opengl. Questions and
recommendations can also be aired there.

In December 1995 the ARB ratified the final specification for Verson 1.1 of OpenGL.
Many of the additions and changes from Version 1.0 were for performance reasons and are
summarized in Appendix A.

How OpenGL Works

OpenGL is a procedural rather than a descriptive graphics language. Instead of describing
the scene and how it should appear, the programmer actually describes the steps necessary to
achieve a certain appearance or effect. These “steps’ involve calls to a highly portable API
that includes approximately 120 commands and functions. These are used to draw graphics
primitives such as points, lines, and polygons in three dimensions. In addition, OpenGL
supports lighting and shading, texture mapping, animation, and other special effects.

OpenGL does not include any functions for window management, user interaction, or file
1/0O. Each host environment (such as Microsoft Windows) has its own functions for this
purpose and is responsible for implementing some means of handing over to OpenGL the
drawing control of awindow or bitmap.

OpenGL under Windows

OpenGL made its debut in the release of Windows NT 3.5. A set of DLLs was also made
available to add support for OpenGL to Windows 95 shortly after its release. This book, in
fact, is specifically about Microsoft’s generic implementation of OpenGL. We will guide
you, the developer, through the fundamentals of 3D graphics first, and then show you how
to compile and link some OpenGL programs under Windows NT or Windows 95. Moving
on, we'll cover the “wiggle’ functions provided by Microsoft—the glue that enables the
OpenGL graphics API to work with Microsoft’s GDI. From there we will cover the entire
OpenGL API, using the context of Microsoft Windows NT and/or Windows95.

Graphics Architecture: Softwar e ver sus Har dwar e

Using OpenGL is not at al like using GDI for drawing in windows. In fact, the current
selection of pens, brushes, fonts, and other GDI objects will have no effect on OpenGL. Just
as GDI uses the device context to control drawing in a window, OpenGL uses a rendering
context. A rendering context is associated with a device context, which in turn is associated
with a window, and voila—OpenGL is rendering in a window. Chapter 4 discusses al the
mechanics associated with this process.

OpenGL Super Bible! Page 21

As we said earlier, OpenGL was meant to run on systems with hardware acceleration. PC
graphics vendors are adding OpenGL support for their cards. Properly written OpenGL
applications should not know the difference between hardware accelerated rendering and the
purely software rendering of the generic implementation. The user will notice, however, that
performance is significantly enhanced when hardware acceleration is present.

Figure 1-1 illustrates hardware acceleration under Windows, including norma GDI
acceleration and Direct Draw acceleration, as well as OpenGL acceleration. On the far left
you can see how an application makes norma GDI calls that are routed down through
WINSRV.DLL to the Win32 Device Driver Interface. The Win32 DDI then communicates
directly with the graphics card device driver, where the GDI acceleration is performed.

Winaenes Applcation
el [orest Dras {peatzl {Hbey
| rall Tl | ol s
GOITRL Diei e L32IHL "'l;!
G iz 4
Lf’”ﬂ el
Ehient [wiver
= HIHDLL . Y
Server et Mo o
upparied
(]
W2 00 FO00I
G Mative pest; ﬂ
Mabt | ot Card Devie Drive Seppt Sopport
A | Hib | v i
Tiraphits Hardane:

Figure 1-1 Overview of how Windows graphics acceleration works

Direct Draw is optimized for direct access to graphics hardware. It bypasses the GDI
completely and talks directly to the graphics hardware with perhaps only a thin hardware
abstraction layer in between, and some software emulation for unsupported features. Direct

Page 22 OpenGL Super Bible!

Draw is typically used for games and allows direct manipulation of graphics memory for
ultrafast 2D graphics and animation.

On the far right of Figure 1-1 you see OpenGL and other 3D API calls routed through a 3D
device driver interface. 3DDI is specifically designed to allow hardware manufacturers to
accelerate OpenGL and gaming 3D APIs such as the Reality Labs API. (For a discussion of
OpenGL and the Redlity Labs API, see Chapter 24. In addition, hardware vendors with
specific hardware acceleration for OpenGL (such as the GLINT chipset) may instal their
own OpenGL client drivers along with specialized device-driver interfaces.

Limitations of the Generic Implementation

Unless specifically supported by hardware, Microsoft’s generic implementation of OpenGL
has some limitations. There is no direct support for printing OpenGL graphics to a
monochrome printer or to a color printer with less than 4-bit planes of color (16 colors).
Hardware palettes for various windows are not supported. Instead, Windows has a single
hardware palette that must be arbitrated among multiple running applications.

Findly, some OpenGL features are not implemented, including stereoscopic images,
auxiliary buffers, and alpha bit planes. These features may or may not be implemented in
hardware, however. Your application should check for their availability before making use
of them (see Chapter 5).

Future Prospectsfor OpenGL in Windows

The introduction of OpenGL into the Windows family of operating systems opens up some
exciting possibilities. As millions of PCs become OpenGL-enabled, Windows may well
become the most popular platform for OpenGL-based applications. Initidly this
implementation may be for scientific and engineering modeling and visualization
applications, but commonplace hardware will make high-performance games and other
consumer applications possible before long.

Even for vendors producing OpenGL based applications on other platforms, Microsoft
Windows implementations could prove to be a substantial source of secondary revenue.
Windows-based workstations are an attractive aternative to high-cost specialty
workstations, with the added bonus of being able to run some of today’s best business and
productivity applications.

OpenGL Super Bible! Page 23

Chapter 2
3D Graphics Fundamentals

What you’ll learn in this chapter:

How the eyes perceive three dimensions

How a 2D image can have the appearance of 3D

How Cartesian coordinates specify object positions

What aclipping volumeis

How viewports affect image dimensions

How 3D objects are built from 2D primitives

How to work with orthographic and perspective projections

Before getting into the specifics of using OpenGL to create 3D graphics, we'll take some
time out to establish some 3D vocabulary. In doing so, we will orient you to the fundamental
concepts of 3D graphics and coordinate systems. You'll find out why we can get away with
caling 2D images on a flat computer screen 3D graphics. Readers experienced in 3D
graphics who are ready to get started using OpenGL may want to just skim this chapter.

3D Per ception

“3D computer graphics’ are actually two-dimensional images on a flat computer screen that
provide an illusion of depth, or a third “dimension.” In order to truly see in 3D, you need to
actually view the object with both eyes, or supply each eye with separate and unique images
of the object. Take a look at Figure 2-1. Each eye receives a two-dimensional image that is
much like a temporary photograph on the retina (the back part of your eye). These two
images are dightly different because they are received at two different angles (your eyes are
gpaced apart on purpose). The brain then combines these dightly different images to
produce a single, composite 3D picture in your head, as shown in Figure 2-1.

Page 24 OpenGL Super Bible!

Left eve Right eye

Retinaimage 1 Retinaimage 2

Figure 2-1 How the eyes“see” three dimensions

In Figure 2-1, the angle [theta] between the images gets smaller as the object goes farther
away. This 3D effect can be amplified by increasing the angle between the two images.
Viewmasters (those hand-held stereoscopic viewers you probably had as a kid) and 3D
movies capitalize on this effect by placing each of your eyes on a separate lens, or by
providing color-filtered glasses that separate two superimposed images. These images are
overenhanced for dramatic or cinematic purposes.

So what happens when you cover one eye? You may think you are still seeing in 3D, but try
this experiment: Place a glass or some other object just out of arm’'s reach, off to your left
side. Cover your right eye with your right hand and reach for the glass. (Maybe you should
use an empty plastic one!) Notice that you have a more difficult time estimating how much
farther you need to reach (if at all) before you touch the glass. Now uncover your right eye
and reach for the glass, and you can easlly discern how far you need to lean to reach the
glass. This is why people who have lost one eye often have difficulty with distance
perception.

2D + Per spective = 3D

The reason the world doesn’'t become suddenly flat when you cover one eye is that many of
a 3D world's effects are aso present in a 2D world. This is just enough to trigger your
brain’s ability to discern depth. The most obvious cue is that nearby objects appear larger
than distant objects. This effect is called perspective. And perspective plus color changes,
textures, lighting, shading, and variations of color intensities (due to lighting) together add
up to our perception of athree-dimensional image.

OpenGL Super Bible! Page 25

Perspective alone is enough to lend the appearance of three dimensions. Figure 2-2 presents
a simple wireframe cube. Even without coloring or shading, the cube still has the appearance
of a three-dimensional object. Stare at the cube for long enough, however, and the front and
back of the cube will switch places. This is because your brain is confused by the lack of any
surface in the drawing.

Figure 2-2 This smple wireframe cube demonstrates perspective
Hidden Line Removal

Figure 2-2 contains just enough information to lend the appearance of three dimensions, but
not enough to let you discern the front of the cube from the back. When viewing a red
object, how do you tell the front from the back? Simple—the back is obscured by the front.
If the cube in Figure 2-2 were a solid, you wouldn't be able to see the cornersin the back of
the cube, and thus you wouldn’t confuse them for the corners in the front of the cube. Even
if the cube were made of wire, parts of the wires in front would obscure parts of the wiresin
the back. To smulate this in a two-dimensiona drawing, lines that would be obscured by
surfaces in front of them must be removed. This is called hidden line removal and it has
been done to the cube in Figure 2-3.

Page 26 OpenGL Super Bible!

Figure 2-3 The cube after hidden lines are removed
Colorsand Shading

Figure 2-3 till doesn't look much like a real-world object. The faces of the cube are exactly
the same color as the background, and all you can see are the front edges of the object. A
real cube would have some color and/or texture; in a wooden cube, for example, the color
and grain of the wood would show. On a computer (or on paper), if all we did was color the
cube and draw it in two dimensions, we would have something similar to Figure 2-4.

Figure 2-4 The cube with color, but no shading

Now we are back to an object that appears two-dimensional, and unless we specifically draw
the edges in a different color, there is no perception of three dimensions at all. In order to
regain our perspective of a solid object (without drawing the edges a different color), we
need to either make each of the three visible sides a different color, or make them the same

OpenGL Super Bible! Page 27

color with shading to produce the illusion of lighting. In Figure 2-5, the faces of the cube all
have a different color or shade.

Figure 2-5 The cube with its visible faces in three different shades

Lightsand Shadows

One last element we must not neglect is lighting. Lighting has two important effects on
objects viewed in three dimensions. First, it causes a surface of a uniform color to appear
shaded when viewed or illuminated from an angle. Second, objects that do not transmit light
(most solid objects) cast a shadow when they obstruct the path of aray of light. See Figure

2-6.

Shadow

Figure 2-6 A solid cube illuminated by a single light

Two sources of light can influence our three-dimensional objects. Ambient light, which is
undirected light, is simply a uniform illumination that can cause shading effects on objects

Page 28 OpenGL Super Bible!

of a solid color; ambient light causes distant edges to appear dimmer. Another source of
light is from a light source, caled a lamp. Lamps can be used to change the shading of solid
objects and for shadow effects.

Coor dinate Systems

Now that you know how the eye can perceive three dimensions on a two-dimensiona
surface (the computer screen), let’s consider how to draw these objects on the screen. When
you draw points, lines, or other shapes on the computer screen, you usualy specify a
position in terms of a row and column. For example, on a standard VGA screen there are
640 pixels from left to right, and 480 pixels from top to bottom. To specify a point in the
middle of the screen, you specify that a point should be plotted at (320,240)—that is, 320
pixels from the left of the screen and 240 pixels down from the top of the screen.

In OpenGL, when you create a window to draw in, you must also specify the coordinate
system you wish to use, and how to map the specified coordinates into physical screen
pixels. Let’s first see how this applies to two-dimensional drawing, and then extend the
principle to three dimensions.

2D Cartesian Coordinates

The most common coordinate system for two-dimensional plotting is the Cartesian
coordinate system. Cartesian coordinates are specified by an x coordinate and a y
coordinate. The x coordinate is a measure of position in the horizontal direction and y is a
measure of position in the vertical direction.

The origin of the Cartesan system is at x=0, y=0. Cartesan coordinates are written as
coordinate pairs, in parentheses, with the x coordinate first and the y coordinate second,
separated by a comma. For example, the origin would be written as (0,0). Figure 2-7 depicts
the Cartesian coordinate system in two dimensions. The x and y lines with tick marks are
called the axes and can extend from negative to positive infinity. Note that this figure
represents the true Cartesian coordinate system pretty much as you used it in grade school.
Today, differing Windows mapping modes can cause the coordinates you specify when
drawing to be interpreted differently. Later in the book, you'll see how to map this true
coordinate space to window coordinates in different ways.

OpenGL Super Bible! Page 29

A
&) -
e, 1
| : SR ® 59
: 1 Origin :
| I on |
X et X
(3-0) @ |
T |
| I
————————————— 065
Y

Figure 2-7 The Cartesian plane

The x-axis and y-axis are perpendicular (intersecting at a right angle) and together define
the xy plane. A plane is, most smply put, aflat surface. In any coordinate system, two axes
that intersect at right angles define a plane. In a system with only two axes, there is naturaly
only one plane to draw on.

Coordinate Clipping

A window is measured physically in terms of pixels. Before you can start plotting points,
lines, and shapes in a window, you must tell OpenGL how to trandate specified coordinate
pairs into screen coordinates. This is done by specifying the region of Cartesian space that
occupies the window; this region is known as the clipping area. In two-dimensional space,
the clipping area is the minimum and maximum x and y values that are inside the window.
Another way of looking at this is specifying the origin's location in relation to the window.
Figure 2-8 shows two common clipping areas.

Page 30 OpenGL Super Bible!

* ¥ ¥

I S —]
Window [
client i l___ ___I___lij
are I i Window client i
3 il i — X) - : : P+
(0.0) 150 B ams i
| I, L Jd
el

Y - £
Figure 2-8 Two clipping areas

In the first example, on the left of Figure 2-8, x coordinates in the window range left to right
from O to +150, and y coordinates range bottom to top from 0 to +100. A point in the middle
of the screen would be represented as (75,50). The second example shows a clipping area
with x coordinates ranging left to right from —75 to +75, and y coordinates ranging bottom to
top from —50 to +50. In this example, a point in the middle of the screen would be at the
origin (0,0). It is aso possible using OpenGL functions (or ordinary Windows functions for
GDI drawing) to turn the coordinate system upside-down or flip it right to left. In fact, the
default mapping for Windows windows is for positive y to move down from the top to the
bottom of the window. Although useful when drawing text from top to bottom, this default
mapping is not as convenient for drawing graphics.

Viewports, Your Window to 3D

Rarely will your clipping area width and height exactly match the width and height of the
window in pixels. The coordinate system must therefore be mapped from logical Cartesian
coordinates to physical screen pixel coordinates. This mapping is specified by a setting
known as the viewport. The viewport is the region within the window’s client area that will
be used for drawing the clipping area . The viewport simply maps the clipping area to a
region of the window. Usually the viewport is defined as the entire window, but this is not
strictly necessary—for instance, you might only want to draw in the lower half of the
window.

Figure 2-9 shows a large window measuring 300 x 200 pixels with the viewport defined as
the entire client area. If the clipping area for this window were set to be 0 to 150 along the x-
axis and 0 to 100 along the y-axis, then the logical coordinates would be mapped to alarger
screen coordinate system in the viewing window. Each increment in the logical coordinate

OpenGL Super Bible!

Page 31

system would be matched by two increments in the physical coordinate system (pixels) of

the window.

A"

Clipping
walume

HEE

(150,100

P+ 3

Window elient area
300 3 200 Pixels
Viewport = 300 X 200

Figure 2-9 A viewport defined as twice the size of the clipping area

In contrast, Figure 2-10 shows a viewport that matches the clipping area. The viewing
window is still 300 x 200 pixels, however, and this causes the viewing area to occupy the
lower-left side of the window.

AY

wolurme

HEE

(150,100)

Y -

Figure 2-10 A viewport defined as the same dimensions as the clipping area

Window client area
300 3 200 Pixels

Viemport
150 X100

Page 32 OpenGL Super Bible!

Y ou can use viewports to shrink or enlarge the image inside the window, and to display only
a portion of the clipping area by setting the viewport to be larger than the window’s client
area.

Drawing Primitives

In both 2D and 3D, when you draw an object you will actualy compose it with several
smaller shapes called primitives. Primitives are two-dimensional surfaces such as points,
lines, and polygons (a flat, multisided shape) that are assembled in 3D space to create 3D
objects. For example, a three-dimensional cube like the one in Figure 2-5 is made up of six
two-dimensional squares, each placed on a separate face. Each corner of the square (or of
any primitive) is called a vertex. These vertices are then specified to occupy a particular
coordinate in 2D or 3D space. You'll learn about all the OpenGL primitives and how to use
them in Chapter 6.

3D Cartesian Coordinates

Now we'll extend our two-dimensional coordinate system into the third dimension and add a
depth component. Figure 2-11 shows the Cartesian coordinate system with a new axis, z.
The z-axis is perpendicular to both the x- and y-axes. It represents a line drawn
perpendicularly from the center of the screen heading toward the viewer. (We have rotated
our view of the coordinate system from Figure 2-7 to the left with respect to the y-axis, and
down and back with respect to the x-axis. If we hadn’t, the z-axis would come straight out at
you and you wouldn't see it.) Now we specify a position in three-dimensional space with
three coordinates—x, y, and z. Figure 2-11 shows the point (—4, 4, 4) for clarification.

OpenGL Super Bible! Page 33

+X

L
Figure 2-11 Cartesian coordinates in three dimensions

Projections, The Essence of 3D

Y ou’'ve seen how to specify a position in 3D space using Cartesian coordinates. No matter
how we might convince your eye, however, pixels on a screen have only two dimensions,
How does OpenGL trandate these Cartesian coordinates into two-dimensional coordinates
that can be plotted on a screen? The short answer is “trigonometry and simple matrix
manipulation.” Simple? Well, not really—we could actually go on for many pages and lose
most of our readers who didn't take or don't remember their linear algebra from college
explaining this “simple”’ technique. You'll learn more about it in Chapter 7, and for a deeper
discussion you can check out the references in Appendix B. Fortunately, you don't need to
understand the math in order to use OpenGL to create graphics.

All you really need to understand to get the most from this book is a concept called
projection. The 3D coordinates are projected onto a 2D surface (the window background).
It's like tracing the outlines of some object behind a piece of glass with a black marker.
When the object is gone or you move the glass, you can still see the outline of the object
with its angular edges. In Figure 2-12 a house in the background is traced onto a flat piece of
glass. By specifying the projection, you specify the clipping volume (remember clipping
areas?) that you want displayed in your window, and how it should be trandated.

Page 34 OpenGL Super Bible!

20 image

Figure2-12 A 3D image projected onto a 2D surface
Orthographic Projections

You will mostly be concerned with two main types of projections in OpenGL. The first is
called an orthographic or parallel projection. Y ou use this projection by specifying a square
or rectangular clipping volume. Anything outside this clipping area is not drawn.
Furthermore, all objects that have the same dimensions appear the same size, regardless of
whether they are far away or nearby. This type of projection (shown in Figure 2-13) is most
often used in architectural design or CAD (computer aided design).

Top
{ = har
Left—T T Right
"o
‘{ HMear
Bottom

Figure 2-13 The clipping volume for an orthographic projection

OpenGL Super Bible! Page 35

You specify the clipping volume in an orthographic projection by specifying the far, near,
left, right, top, and bottom clipping planes. Objects and figures that you place within this
viewing volume are then projected (taking into account their orientation) to a 2D image that
appears on your screen.

Per spective Projections

A second and more common projection is the perspective projection. This projection adds
the effect that distant objects appear smaller than nearby objects. The viewing volume
(Figure 2-14) is something like a pyramid with the top shaved off. This shaved off part is
called the frustum. Objects nearer to the front of the viewing volume appear close to their
original size, while objects near the back of the volume shrink as they are projected to the
front of the volume. This type of projection gives the most realism for smulation and 3D
animation.

Far

J

Bottom

Figure 2-14 The clipping volume for a perspective projection

Page 36 OpenGL Super Bible!

Summary

In this chapter we have introduced the very basics of 3D graphics. You've seen why you
actually need two images of an object from different angles in order to perceive true three-
dimensional space. You've also seen the illusion of depth created in a 2D drawing by means
of perspective, hidden line removal, and coloring, shading, and lighting techniques. The
Cartesian coordinate system was introduced for 2D and 3D drawing, and you learned about
two methods used by OpenGL to project three-dimensional drawings onto a two-
dimensional screen.

We purposely left out the details of how these effects are actually created by OpenGL. In the
chapters that follow, you will find out how to employ these techniques and take maximum
advantage of OpenGL’s power. On the Companion CD you'll find one program for Chapter
2 (CUBE) that demonstrates the concepts covered in the first section of this chapter. In
CUBE, pressing the spacebar will advance you from a wireframe cube to a fully lit cube
complete with shadow. Y ou won't understand the code at this point, but it makes a powerful
demonstration of what is to come. By the time you finish this book, you will be able to
revisit this example and even be able to write it from scratch yourself.

OpenGL Super Bible! Page 37

Chapter 3
L earning OpenGL With The AUX Library

What you'll learn in this chapter:

Which headers and libraries are used with OpenGL

How the AUX library provides basic windowing functions on just about any platform
How to use OpenGL to create awindow and draw in it

How to use the OpenGL default coordinate system

How to create composite colors using the RGB (red, green, blue) components

How viewports affect image dimensions

How to scale your drawing to fit any size window

How to perform ssimple animation using double buffering

How to draw predefined objects

Now that you've been introduced to OpenGL and the principles of 3D graphics, it’s time to
set our hands to writing some OpenGL code. This chapter starts with an overview of how
OpenGL works with your compiler, and you'll learn some conventions for naming variables
and functions. If you have aready written some OpenGL programs, you may have
“discovered” many of these details for yourself. If that is the case, you may just want to
skim through the first section and jump right into using the AUX library.

OpenGL: An API, Not a L anguage

OpenGL is not a programming language; it is an APl (Application Programming Interface).
Whenever we say that a program is OpenGL-based or an OpenGL application, we mean that
it was written in some programming language (such as C or C++) that makes calls to one or
more of the OpenGL libraries. We are not saying that the program uses OpenGL exclusively
to do drawing. It may combine the best features of two different graphics packages. Or it
may use OpenGL for only a few specific tasks, and environment-specific graphics (such as
the Windows GDI) for others.

As an API, the OpenGL library follows the C calling convention. This means programs in C
can easily call functions in the API either because the functions are themselves written in C
or because a set of intermediate C functions is provided that calls functions written in
assembler or some other language. In this book, our programs will be written in either C or
C++ and designed to run under Windows NT and Windows95. C++ programs can easly
access C functions and APIs in the same manner as C, with only some minor considerations.

Page 38 OpenGL Super Bible!

Other programming languages—such as so-called 4GLs (“fourth-generation languages’)
like Visua Basic—that can call functions in C libraries can adso make use of OpenGL.
Chapter 23 discusses thisin more detall.

Calling C Functionsfrom C++

Except for the chapters that deal specifically with C++ application frameworks or 4GLSs, all
of the chapter examples are written in C. On the accompanying CD, many of these samples
have also been provided in C++ using two popular application frameworks (MFC and
OWL). Y ou can examine these examples and see how we made use of preprocessor macros
to keep most of our OpenGL drawing codein C.

The OpenGL Division of Labor
The OpenGL API isdivided into three distinct libraries. See Table 3-1 for a breakdown.

» The first, covered in this chapter, is the Auxiliary or AUX library (sometimes
referred to as the “toolkit” library), glaux.lib. The declarations for this library are
contained in the file glaux.h. The functions contained in this library are not redly a
part of the OpenGL specification, but rather a toolkit that provides a platform-
independent framework for calling OpenGL functions. If your compiler vendor did
not supply these files, they can be obtained from the Microsoft Win32 SDK. All
functions from this library begin with the prefix aux.

* The functions that actualy define OpenGL as specified by the OpenGL
Architecture Review Board are contained in the library opengl32.dil, and its header
gl.h. Functions from this library are prefixed with gl.

» Finally, there is an OpenGL utility library glu32.dll and its header glu.h. This
library contains utility functions that make everyday tasks easier, such as drawing
spheres, disks, and cylinders. The utility library is actualy written usng OpenGL
commands, and thus is guaranteed to be available on all platforms that support the
OpenGL specification. These functions are al prefixed with glu.

All of the functions in the opengl32.dll and glu32.dll libraries are available for use when
using the AUX library for your program’'s framework, which is what most of this chapter
focuses on. Along the way, you'll learn the basics of OpenGL, and a few of the commands
fromthe gl library.

OpenGL Super Bible!

Page 39

Table 3-1 OpenGL libraries and headers

Library Filename Library Filename Header File Function Prefix
Auxiliary or Toolkit glaux.lib glaux.h aux

OpenGL or gl opengl32.dll gl.h al

Utility library or glu glu32.dll glu.h glu

A Note About theLibraries

Y ou may have noticed that the AUX library is actually alibrary that is linked into your
application. The other OpenGL libraries, however, are actually implemented asDLLs. The
import libraries that you will need to link to are opengl32.lib and glu32.lib. Typically they
are provided by your compiler vendor, or you may obtain them via the Win32 SDK from
Microsoft. If you are using Borland C++, you will need to build your own import libraries

with Borland' s implib.exe utility.

OpenGL Data Types

To make it easier to port OpenGL code from one platform to another, OpenGL defines its
own data types. These data types map to normal C data types that you can use instead, if
desired. The various compilers and environments, however, have their own rules for the size
and memory layout of various C variables. By using the OpenGL defined variable types,
you can insulate your code from these types of changes.

Table 3-2 lists the OpenGL data types, their corresponding C data types under the 32-bit
Windows environments (Win32), and the appropriate suffix for literals. In this book we will
use the suffixes for al literal values. You will see later that these suffixes are also used in

many OpenGL function names.

Page 40 OpenGL Super Bible!

Table 3-2 OpenGL variable types and corresponding C data types

Internal

OpenGL Data Type Repr esentation

Defined asC Type C Literal Suffix

GLbyte 8-hit integer Signed char b
GLshort 16-hit integer Short S
GLint, GLsizei 32-bit integer Long I
GLfloat, GL clampf 32-bit floating point Float f
GLdouble, GLclampd 64-bit floating point Double d
GLubyte, GLboolean 8-bit unsigned integer Unsigned char ub
GLushort 16-bit unsigned integer Unsigned short us
GLuint, GLenum, GLbitfield 32-bit unsigned integer Unsigned long ui

All data types start with a GL to denote OpenGL. Most are followed by their corresponding
C data types (byte, short, int, float, etc.). Some have a u first to denote an unsigned data
type, such as ubyte to denote an unsigned byte. For some uses a more descriptive name is
given, such as size to denote a value of length or depth. For example, GLsizei is an OpenGL
variable denoting a size parameter that is represented by an integer. The clamp is used for
color composition and stands for color amplitude. This data type is found with both f and d
suffixes to denote float and double data types. The GLboolean variables are used to indicate
True and False conditions, GLenum for enumerated variables, and GLbitfield for variables
that contain binary bit fields.

Pointers and arrays are not give any specia consideration. An array of ten GLshort variables
would simply be declared as

G.short shorts[10];

and an array of ten pointers to GLdouble variables would be declared with

G_.doubl e *doubl es[10];

Some other pointer object types are used for NURBS and Quadrics. They take more
explanation and will be covered in later chapters.

OpenGL Super Bible! Page 41

Function Naming Conventions

OpenGL functions all follow a naming convention that tells you which library the function
is from, and often how many and what type of arguments the function takes. All functions
have a root that represents the function’s corresponding OpenGL command. For example,
the glColor3f() function has the root Color. The gl prefix represents the gl library (see Table
3-1), and the 3f suffix means the function takes three floating point arguments. All OpenGL
functions take the following format:

<Library prefix><Root command><Optional argument count><Optional argument type>

Figure 3-1 illustrates the parts of an OpenGL function. This sample function with the suffix
3f takes three floating point arguments. Other variations take three integers (glColor3i()),
three doubles (glColor3d()), and so forth. This convention of adding the number and type of
arguments (see Table 3-1) to the end of OpenGL functions makes it very easy to remember
the argument list without having to look it up. Some versions of glColor take four arguments
to specify an alpha component, as well.

glColor3H{...
LY_JL W T
I I, T

gllibrary Root command Mumber of Type of
arquments arquments

Figure 3-1 Dissected OpenGL Function

In the reference sections of this book, these “families’ of functions are listed by their library
prefix and root. Thus all the variations of glColor (glColor3f, glColor4f, glColor3i, etc.) will
be listed under a single entry—glColor.

Page 42 OpenGL Super Bible!

Clean Code

Many C/C++ compilers for Windows assume that any floating-point literal value is of type
double unless explicitly told otherwise via the suffix mechanism. When using literals for
floating point arguments, if you don’t specify that these arguments are of type float instead of
double, the compiler will issue a warning while compiling because it detects that you are
passing a double to a function defined to accept only floats, resulting in a possible loss of
precision. As our OpenGL programs grow, these warnings will quickly number in the
hundreds and will make it difficult to find any real syntax errors. Y ou can turn these
warnings off using the appropriate compiler options—but we advise against this. It’ s better to
write clean, portable code the first time. So clean up those warning messages by cleaning up
the code (in this case, by explicitly using the float type)—not by disabling potentially useful
warnings.

Additionally, you may be tempted to use the functions that accept double-precision floating
point arguments, rather than go to all the bother of specifying your literals as floats.
However, OpenGL uses floats internally, and using anything other than the single-precision
floating point functions will add a performance bottleneck, as the values are converted to
floats anyway before being processed by OpenGL.

The AUX Library

For the remainder of this chapter, you will learn to use the Auxiliary (AUX) library as a way
to learn OpenGL. The AUX library was created to facilitate the learning and writing of
OpenGL programs without being distracted by the minutiae of your particular environment,
be it UNIX, Windows, or whatever. You don’'t write “fina” code when using AUX; it is
more of a preliminary staging ground for testing your ideas. A lack of basic GUI features
limits the library’ s use for building useful applications.

A set of core AUX functions is available on nearly every implementation of OpenGL. These
functions handle window creation and manipulation, as well as user input. Other functions
draw some complete 3D figures as wireframe or solid objects. By using the AUX library to
create and manage the window and user interaction, and OpenGL to do the drawing, it is
possible to write programs that create fairly complex renderings. You can move these
programs to different environments with arecompile.

In addition to the core functions, each environment that implements an AUX library aso
implements some other helper functions to enable system-specific operations such as buffer
swapping and image loading. The more your code relies on these additional AUX library
functions, the less portable your code will be. On the other hand, by making full use of these
functions you can create fantastic scenes that will amaze your friends and even the family
dog—without having to learn all the gritty details of Windows programming.

OpenGL Super Bible! Page 43

Unfortunately, it's unlikely that all of the functionality of a useful application will be
embodied entirely in the code used to draw in 3D, so you can’t rely entirely on the AUX
library for everything. Nevertheless, the AUX library excels in its role for learning and
demonstration exercises. And for some applications, you may be able to employ the AUX
library to iron out your 3D graphics code before integrating it into a complete application.

Platform Independence

OpenGL is a powerful and sophisticated API for creating 3D graphics, with over 300
commands that cover everything from setting material colors and reflective properties to
doing rotations and complex coordinate transformations. You may be surprised that
OpenGL has not a single function or command relating to window or screen management. In
addition, there are no functions for keyboard input or mouse interaction. Consider, however,
that one of the primary goals of the OpenGL designers was platform independence. Creating
and opening a window is done differently under the various platforms. Even if OpenGL did
have a command for opening a window, would you use it or would you use the operating
system’s own built-in API call?

Another platform issue is the handling of keyboard and mouse input events under the
different operating systems and environments. If every environment handled these the same,
we would have only one environment to worry about and thus no need for an “open” API.
This is not the case, however, and it probably won't be within our brief lifetimes! So
OpenGL’s platform independence comes at the cost of OS and GUI functions.

AUX = Platform 1/O, the Easy Way

The AUX library was initially created as a toolkit to enable learning OpenGL without
getting mired in the details of any particular operating system or user interface. To
accomplish this, AUX provides rudimentary functions for creating a window and for reading
mouse and keyboard activity. Internally, the AUX library makes use of the native
environment’s APIs for these functions. The functions exposed by the AUX library then
remain the same on all platforms.

The AUX library contains only a handful of functions for window management and the
handling of input events, but saves you the trouble of managing these in pure C or C++
through the Windows API. The library also contains functions for drawing some relatively
simple 3D objects such as a sphere, cube, torus (doughnut), and even a teapot. With very
little effort, you can use the AUX library to display a window and perform some OpenGL
commands. Though AUX is not really part of the OpenGL specification, it seems to follow
that spec around to every platform to which OpenGL is ported. Windows is no exception,
and the source code for the AUX library is even included free in the Win32 SDK from
Microsoft.

Page 44 OpenGL Super Bible!

Dissecting a Short OpenGL Program

In order to understand the AUX library better, let’s take a look at possibly the world's
shortest OpenGL program, which was written using the AUX library. Listing 3-1 presents
the shortest.c program. Its output is shown in Figure 3-2.

Figure 3-2 Output from shortest.c

Listing 3-1 Shortest OpenGL program in the world

/1 shortest.c
/1 The shortest OpenGL program possi bl e

#i ncl ude <wi ndows. h> // Standard Wndow header required
for all prograns

#i ncl ude <coni o. h> /] Console |/0O functions

#i ncl ude <gl\gl.h> /1 Open@& functions

#i ncl ude <gl \glaux.h> // AUX Library functions

voi d mai n(voi d)

/1 These are the AUX functions to set up the wi ndow
aux!| ni t D spl ayMde(AUX_SI NGLE | AUX_RGBA);

aux!| ni t Posi tion(100, 100, 250, 250) ;

aux! ni t Wndow("My first OpenG Progranti);

OpenGL Super Bible! Page 45

/1 These are the QpenG functions that do something in the w ndow
gl O earColor(0.0f, 0.0f, 1.0f, 1.0f);
gl O ear (GL_COLOR BUFFER BIT);

gl Fl ush();

/1 Stop and wait for a keypress

cprintf("Press any key to cl ose the Wndow\n");
getch();

}

Console M odes

A console-mode application is a Win32 program that runs in atext mode window. Thisis
very much like running a DOS program under Windows NT or Windows 95, except the
program is a true 32-bit application and has access to the entire Win32 API. Console-mode
programs are not limited to text mode. They can in fact create GUI windows for auxiliary
output (try calling MessageBox() with aNULL window handle from the above program),
and GUI-based applications can even create console windows if needed. The AUX library
allows you to easily write a console-based program with only a main() function that can
create an auxiliary GUI window for OpenGL output.

To build this program, you need to set your compiler and link options to build a Win32
console (or text-based) application. You will need to link to the AUX library glaux.lib and
the OpenGL import library opengl32.lib. See your compiler’s documentation for individual
instructions on building console applications.

The shortest.c program doesn’'t do very much. When run from the command line, it creates a
standard GUI window with the caption “My firs OpenGL Program” and a clear blue
background. It then prints the message “Press any key to close the window” in the console
window. The GUI window will not respond to any mouse or keyboard activity, and the
console window waits for you to press a key before terminating (you will have to switch
focus back to the console window first to do this). It doesn’'t even behave very well—you
can't move or resize the OpenGL window, and the window doesn't even repaint. If you
obscure the window with another window and then uncover it, the client area goes black.

This simple program contains three AUX library functions (prefixed with aux) and three
“real” OpenGL functions (prefixed with gl). Let’s examine the program line by line, after
which we'll introduce some more functions and substantially improve on our first example.

Page 46 OpenGL Super Bible!

The Includes

Here are the include files;

#i ncl ude <wi ndows. h>
#i ncl ude <coni o. h>

#i ncl ude <gl\gl.h>

#i ncl ude <gl \ gl aux. h>

These includes define the function prototypes used by the program. The windows.h header
file is required by al Windows GUI applications, even though this is a console-mode
program, the AUX library creates a GUI window to draw in. The file conio.h is for console
I/0. It’s included because we use cprintf() to print a message, and getch() to terminate the
program when a key is pressed. The file gl.h defines the OpenGL functions that are prefixed
with gl; and glaux.h contains all the functions necessary for the AUX library.

The Body

Next comes the main body of the program:

voi d mai n(voi d)

Console mode C and C++ programs always start execution with the function main(). If you
are an experienced Windows nerd, you may wonder where WinMain() is in this example.
It's not there because we start with a console-mode application, so we don’t have to start
with window creation and a message loop. It is possible with Win32 to create graphical
windows from console applications, just as it is possible to create console windows from
GUI applications. These details are buried within the AUX library (remember, the AUX
library is designed to hide these platform detalils).

Display Mode: Single-Buffered

The next line of code
auxl ni t Di spl ayMode(AUX_SI NGLE | AUX_RGBA) ;

tells the AUX library what type of display mode to use when creating the window. The flags
here tell it to use a single-buffered window (AUX_SINGLE) and to use RGBA color mode
(AUX_RGBA). A single-buffered window means that all drawing commands are performed
on the window displayed. An dternative is a double-buffered window, where the drawing
commands are actualy executed to create a scene off screen, then quickly swapped into
view on the window. This is often used to produce animation effects and will be
demonstrated later in this chapter. RGBA color mode means that you specify colors by
supplying separate intensities of red, green, and blue components (more on color modes in
Chapter 8).

OpenGL Super Bible! Page 47

Position the Window

After setting the display mode, you need to tell the AUX library where to put the window
and how big to make it. The next line of code doesthis:

auxl ni t Posi ti on(100, 100, 250, 250) ;

The parameters represent the upper-left corner of the window and its width and height.
Specifically, this line tells the program to place the upper-left corner at coordinates
(100,100), and to make the window 250 pixels wide and 250 pixels high. On a screen of
standard VGA resolution (640 x 480), this window will take up a large portion of the
display. At SuperVGA resolutions (800 x 600 and above), the window will take less space
even though the number of pixels remains the same (250 x 250).

Hereis the prototype for this function:
auxlnitPosition(Gint x, Gint y, Gsizei width, Gsizei height);

The GLint and GLsizel data types are defined as integers (as described in the earlier section
about data types). The x parameter is the number of screen pixels counted from the left side
of the screen, and y is the number of pixels counted down from the top of the screen. Thisis
how Windows converts desktop screen coordinates to a physical location by default.
OpenGL’s default method for counting the x coordinate is the same; however, it counts they
coordinate from bottom to top—just the opposite of Windows. See Figures 3-3 and 3-4.

Windows Screen Coordnates

L
Positive direction

@ (100,100)

¥ Positive direction

Figure 3-3 Default Windows screen coordinate mapping

Page 48 OpenGL Super Bible!

OpenGL Sireen Mapping
& Positive direction
(100,100)
S
Positive: direction
>

Figure 3-4 Default OpenGL window coordinate mapping

Porting Note

Although Windows maps desktop coordinates as shown in Figure 3-3, the X Window
System maps desktop coordinates the same way that OpenGL does in Figure 3-4. If you are
porting an AUX library program from another environment, you may need to change the call
to auxInitPosition() to account for this.

Create the OpenGL Window

The last call to the AUX library actually creates the window on the screen. The code

aux! ni t Wndow "My first QpenG. Program');

creates the window and sets the caption to “ My first OpenGL Program.” Obvioudy, the
single argument to auxInitWindow is the caption for the window title bar. If you stopped
here, the program would create an empty window (black background is the default) with the
caption specified, and then terminate, closing the OpenGL window immediately. The
addition of our last getch() prevents the window from disappearing, but still nothing of
interest happens in the window.

OpenGL Super Bible! Page 49

Clear aWindow (Erase with a Color)

The three lines of code we've looked at so far from the AUX library are sufficient to
initialize and create a window that OpenGL will draw in. From this point on, all OpenGL
commands and function calls will operate on this window.

The next line of code

gl C ear Col or (0.0f, 0.0f, 1.0f, 0.0f);

is your first real OpenGL function call. This function sets the color used when clearing the
window. The prototype for this function is

void gl O ear Col or (G.cl anpf red, G.clampf green, G.clanmpf blue, G.cl anpf
al pha) ;

GLclampf is defined as a float under most implementations of OpenGL. In OpenGL, a
single color is represented as a mixture of red, green, and blue components. The range for
each component can vary from 0.0 to 1.0. This is sSimilar to the Windows specification of
colors using the RGB macro to create a COLORREF value. (See the Windows95 API Bible
from Waite Group Press for details.) The difference is that in Windows each color
component in a COLORREF can range from 0 to 255, giving atotal of 256 x 256 x 256—or
over 16 million colors. With OpenGL, the values for each component can be any valid
floating-point value between O and 1, thus yielding a theoretically infinite number of
potential colors. Practically speaking, OpenGL represents colors internally as 32-bit values,
yielding a true maximum of 4,294,967,296 colors (called true color on some hardware).
Thus the effective range for each component is from 0.0 to 1.0, in steps of approximately
.00006.

Naturaly, both Windows and OpenGL take this color value and convert it internaly to the
nearest possible exact match with the available video hardware and palette. We'll explore
this more closely in Chapter 8.

Table 3-3 lists some common colors and their component values. These values can be used
with any of the OpenGL color-related functions.

Page 50 OpenGL Super Bible!

Table 3-3 Some common composite colors

Composite Color Red Component Green Component Blue Component
Black 0.0 0.0 0.0
Red 1.0 0.0 0.0
Green 0.0 1.0 0.0
Yellow 1.0 1.0 0.0
Blue 0.0 0.0 1.0
Magenta 1.0 0.0 1.0
Cyan 0.0 1.0 1.0
Dark gray 0.25 0.25 0.25
Light gray 0.75 0.75 0.75
Brown 0.60 0.40 0.12
Pumpkin orange 0.98 0.625 0.12
Pastel pink 0.98 .04 0.7
Barney purple 0.60 0.40 0.70
White 1.0 1.0 1.0

The last argument to glClearColor() is the alpha component. The apha component is used
for blending and specia effects such as tranducence. Tranducence refers to an object’s
ability to alow light to pass through it. Suppose you are representing a piece of red stained
glass, but a blue light is shining behind it. The blue light will affect the appearance of the red
in the glass (blue + red = purple). You can use the alpha component value to make a blue
color that is semitransparent; so it works like a sheet of water—an object behind it shows
through. There is more to this type of effect than the alpha value, and in Chapter 16 we will
write an example program that demonstrates it; until then you should leave this value as 1.

OpenGL Super Bible! Page 51

Actually Clear

Now that we have told OpenGL what color to use for clearing, we need an instruction to do
the actual clearing. This accomplished by the line

gl O ear (GL_COLOR BUFFER BIT);

The glClear() function clears a particular buffer or combination of buffers. A buffer is a
storage area for image information. The red, green, and blue components of a drawing
actually have separate buffers, but they are usually collectively referred to as the color
buffer.

Buffers are a powerful feature of OpenGL and will be covered in detall in Chapter 15. For
the next severa chapters, al you realy need to understand is that the color buffer is where
the displayed image is stored internaly, and that clearing the buffer with glClear removes
the drawing from the window.

Flush That Queue

Our final OpenGL function call comes next:

gl Flush();

This line causes any unexecuted OpenGL commands to be executed—we have two at this
point: glClearColor() and glClear().

Internally, OpenGL uses a rendering pipeline that processes commands sequentially.
OpenGL commands and statements often are queued up until the OpenGL server processes
severa “requests’ at once. This improves performance, especially when constructing
complex objects. Drawing is accelerated because the slower graphics hardware is accessed
less often for a given set of drawing instructions. (When Win32 was first introduced, this
same concept was added to the Windows GDI to improve graphics performance under
Windows NT.) In our short program, the glFlush() function simply tells OpenGL that it
should proceed with the drawing instructions supplied thus far before waiting for any more
drawing commands.

Thelast bit of code for this example

/1 Stop and wait for a keypress
cprintf("Press any key to cl ose the Wndow\n");
getch();

}

displays a message in the console window and stops the program until you press a key, at
which point the program is terminated and the window is destroyed.

Page 52 OpenGL Super Bible!

It may not be the most interesting OpenGL program in existence, but shortest.c demonstrates
the very basics of getting a window up using the AUX library and it shows you how to
specify a color and clear the window. Next we want to spruce up our program by adding
some more AUX library and OpenGL functions.

Drawing Shapeswith OpenGL

The shortest.c program made an empty window with a blue background. Let’s do some
drawing in the window. In addition, we want to be able to move and resize the window so
that it behaves more like a Windows window. We will also dispense with using getch() to
determine when to terminate the program. In Listing 3-2 you can see the modifications.

The first change you'll notice is in the headers. The conio.h file is no longer included
because we aren’t using getch() or cprintf() anymore.

Listing 3-2 A friendlier OpenGL program

/1 friendly.c
/1 Afriendlier OpenG program

#i ncl ude <w ndows. h> /'l Standard header for W ndows
#i ncl ude <gl\gl.h> /1 Open@& library
#i ncl ude <gl \ gl aux. h> [l AUX library

/] Called by AUX library to draw scene
voi d CALLBACK Render Scene(voi d)

|/ Set clear color to blue
gl O earColor(0.0f, 0.0f, 1.0f, 1.0f);

// dear the wi ndow
gl d ear (G._COLOR BUFFER BI T);

/1 Set current drawing color to red
/11 R G B
gl Col or 3f (1. 0f, 0.0f, 0.0f);

/[l Draw a filled rectangle with current col or
gl Rect f (100. Of, 150.0f, 150.0f, 100.0f);
gl Fl ush();

voi d mai n(voi d)

/1 AUX |ibrary wi ndow and node setup

aux! ni t Di spl ayMode(AUX_SI NGLE | AUX_RGBA) ;
auxl ni t Posi ti on(100, 100, 250, 250) ;

aux! ni t Wndow "My second Open@. Prograni);

/1 Set function to call when w ndow needs updati ng
auxMai nLoop(Render Scene) ;

}

OpenGL Super Bible! Page 53

The Rendering Function

Next, you'll see we have created the function Render Scene().

/1 Called by AUX library to draw scene
voi d CALLBACK Render Scene(voi d)

{
)

This is where we have moved all code that does the actua drawing in the window. The
process of drawing with OpenGL is often referred to as rendering, so we used that
descriptive name. In later examples we'll be putting most of our drawing code in this
function.

Make note of the CALLBACK statement in the function declaration. This is required
because we're going to tell the AUX library to call this function whenever the window needs
updating. Callback functions are simply functions that you write, which the AUX library
will be calling in your behalf. You'll see how this works later.

Drawing a Rectangle

Previoudly, all our program did was clear the screen. We' ve added the following two lines of
drawing code:

/1 Set current drawi ng color to red
/1 R G B
gl Col or 3f (1. 0f, 0.0f, 0.0f);

/!l Draw a filled rectangle with current col or
gl Rectf (100. Of, 150.0f, 150.0f, 100.0f);

These lines set the color used for future drawing operations (lines and filling) with the call to
glColor3f(). Then glRectf() draws a filled rectangle.

The glColor3f() function selects a color in the same manner as glClearColor(), but no apha
transducency component needs to be specified:

void gl Col or3f (GL.fl oat red, G.float green, G.float blue);

The glRectf () function takes floating point arguments, as denoted by the trailing f. The
number of arguments is not used in the function name because all glRect variations take four
arguments. The four arguments of glRectf(),

void gl Rectf(G.float x1, Gfloat yl, Gfloat x2, Gfloat y2);

Page 54 OpenGL Super Bible!

represent two coordinate pairs—(x1, y1) and (x2, y2). The first pair represents the upper-left
corner of the rectangle, and the second pair represents the lower-right corner. See Figure 3-4
if you need areview of OpenGL coordinate mapping.

Initialization

The main body of friendly.c starts the same way as our first example:
voi d mai n(voi d)

/1 AUX |ibrary wi ndow and node setup

auxl ni t Di spl ayMode(AUX_SI NGLE | AUX_RGBA) ;
auxl ni t Posi ti on(100, 100, 250, 250) ;

aux! ni t Wndow "My second Open@&. Prograni);

/1 Set function to call when wi ndow needs updati ng
auxMai nLoop(Render Scene) ;

}

As before, the three auxinitxxx calls set up and display the window in which we'll be
drawing. In the fina line, auxMainLoop() takes the name of the function that does the
drawing, RenderScene(). The AUX library’s auxMainLoop() function smply keeps the
program going until it’s terminated by closing the window. This function’s single argument
is a pointer to another function it should call whenever the window needs updating. This
callback function will be called when the window is first displayed, when the window is
moved or resized, and when the window is uncovered by some other window.

/] Called by AUX library to draw scene
voi d CALLBACK Render Scene(voi d)

{

/|l Set clear color to Blue
gl G earColor(0.0f, 0.0f, 1.0f, 1.0f);

// d ear the wi ndow
gl d ear (G._COLOR BUFFER BI T);

/1 Set current drawing color to red
/11 R G B
gl Col or 3f (1. 0f, 0.0f, 0.0f);

/1 Draw a filled rectangle with current col or
gl Rect f (100. Of , 150.0f, 150.0f, 100.0f);

gl Fl ush();
}

At this point, the program will display a red square in the middle of a blue window, because
we used fixed locations for the square. If you make the window larger, the square will
remain in the lower-left corner of the window. When you make the window smaller, the
square may no longer fit in the client area. This is because as you resize the window, the

OpenGL Super Bible! Page 55

screen extents of the window change; however, the drawing code continues to place the
rectangle at (100, 150, 150, 100). In the original window this was directly in the center; in a
larger window these coordinates are located in the lower-left corner. See Figure 3-5.

TTEETTETEETY

Figure 3-5 Effects of changing window size

Scaling to the Window

In nearly all windowing environments, the user may at any time change the size and
dimensions of the window. When this happens, the window usually responds by redrawing
its contents, taking into consideration the window’s new dimensions. Sometimes you may
wish to simply clip the drawing for smaller windows, or display the entire drawing at its
original size in alarger window. For our purposes, we usually will want to scale the drawing
to fit within the window, regardless of the size of the drawing or window. Thus a very small
window would have a complete but very small drawing, and a larger window would have a
similar but larger drawing. You see this in most drawing programs when you stretch a
window as opposed to enlarging the drawing. Stretching a window usually doesn’t change
the drawing size, but magnifying the image will make it grow.

Setting the Viewport and Clipping Volume

In Chapter 2 we discussed how viewports and clipping volumes affect the coordinate range
and scaling of 2D and 3D drawings in a 2D window on the computer screen. Now we will
examine the setting of viewport and clipping volume coordinates in OpenGL. When we
created our window with the function call

auxl| ni t Posi tion(100, 100, 250, 250) ;

Page 56 OpenGL Super Bible!

the AUX library by default created a viewport that matched the window size exactly (0, O,
250, 250). The clipping volume by default was set to be the first quadrant of Cartesian
space, with the x- and y-axis extending the length and height of the window. The z-axis
extends perpendicular to the viewer, giving a flat 2D appearance to objects drawn in the xy
plane. Figure 3-6 illustrates this graphically.

a7

(250,250,-1)

(250,.250,1)

(100,150,0)

qIRest...)

(150,100,)

0,00

L
Figure 3-6 The viewport and clipping volume for friendly.c

Although our drawing is a 2D flat rectangle, we are actually drawing in a 3D coordinate
gpace. The glRectf() function draws the rectangle in the xy plane at z = 0. Your perspective
is down along the positive z-axis to see the square rectangle at z = 0.

Whenever the window size changes, the viewport and clipping volume must be redefined for
the new window dimensions. Otherwise, you'll see the effect shown in Figure 3-5, where the
mapping of the coordinate system to screen coordinates stays the same regardless of window
Sze.

Because window size changes are detected and handled differently under various
environments, the AUX library provides the function auxReshapeFunc(), which registers a
callback that the AUX library will call whenever the window dimensions change. The
function you pass to auxReshapeFunc() is prototyped like this:

voi d CALLBACK ChangeSi ze(G.si zei w, G.sizei h);

OpenGL Super Bible!

Page 57

We have chosen ChangeSize as a descriptive name for this function and will use that name
for our future examples.

The ChangeSize() function will receive the new width and height whenever the window size
changes. We can use this information to modify the mapping of our desired coordinate
system to real screen coordinates, with the help of two OpenGL functions. glViewport() and
glOrtho(). Listing 3-3 shows our previous example modified to account for various window
sizes and dimensions. Only the changed main() function and our new ChangeSize() function
are shown.

Listing 3-3 Scaling in OpenGL

!/l Scale.c

!/l Scali

ng an QpenG W ndow.

/1 Called by AUX Li brary when the w ndow has changed size
voi d CALLBACK ChangeSi ze(@.si zei w, G.sizei h)

voi d nai

{

/1 Prevent a divide by zero
if(h == 0)
h = 1;

/1 Set Viewport to wi ndow di nensi ons
gl Viewport (0, 0, w, h);

/1 Reset coordi nate system
gl Loadl dentity();

/1 Establish clipping volume (left, right, bottom top, near,
if (w<=h)

glOtho (0.0f, 250.0f, 0.0f, 250.0f*h/w, 1.0, -1.0);
el se

}

n(voi d)

glOrtho (0.0f, 250.0f*wh, 0.0f, 250.0f, 1.0, -1.0);

/1 Set up and initialize AUX wi ndow

aux! ni t Di spl ayMode(AUX_SI NGLE | AUX_RGBA) ;
auxl ni t Posi ti on(100, 100, 250, 250) ;

aux! ni t Wndow " Scal i ng W ndow") ;

/1 Set function to call when wi ndow changes size
auxReshapeFunc(ChangeSi ze) ;

/1 Set function to call when w ndow needs updati ng
auxMai nLoop(Render Scene) ;

}

far)

Now, when you change the size or dimensions of the window, the square will change size as
well. A much larger window will have a much larger square and a much smaller window
will have a much smaller square. If you make the window long horizontally, the square will

Page 58 OpenGL Super Bible!

be centered verticaly, far left of center. If you make the window tall vertically, the square
will be centered horizontally, closer to the bottom of the window. Note that the rectangle
always remains square. To see a square scaled as the window resizes, see Figure 3-7a and
Figure 3-7h.

Figure 3-7a Image scaled to match window size

Figure 3-7b Square scaled as the window resizes
Defining the Viewport

To understand how the viewport definition is achieved, let’s look more carefully at the
ChangeSize() function. It first calls glViewport() with the new width and height of the
window. The glViewport function is defined as

void gl Viewport (Gint x, Gint y, Gsizei width, Gsizei height);

The x and y parameters specify the lower-right corner of the viewport within the window,
and the width and height parameters specify these dimensions in pixels. Usually x and y will
both be zero, but you can use viewports to render more than one drawing in different areas
of a window. The viewport defines the area within the window in actual screen coordinates
that OpenGL can use to draw in (see Figure 3-8). The current clipping volume is then
mapped to the new viewport. If you specify a viewport that is smaller than the window
coordinates, the rendering will be scaled smaller, as you see in Figure 3-8.

OpenGL Super Bible! Page 59

HEH - HEHE
qNiewporti0,0,125,125)
gViewpart (0, 0,250, 2450)
o = p— 15—+
23 SR s e S =
|
il
o
I EA
|
|
: l
|
X it]
L P50 | = 280 o
Window and viewport are same Viewport 172 size of windoe

Figure 3-8 Viewport-to-window mapping
Defining the Clipping Volume

The last requirement of our ChangeSize() function is to redefine the clipping volume so that
the aspect ratio remains square. The aspect ratio is the ratio of the number of pixels along a
unit of length in the vertical direction to the number of pixels along the same unit of length
in the horizontal direction. An aspect ratio of 1.0 would define a square aspect ratio. An
aspect ratio of 0.5 would specify that for every two pixels in the horizontal direction for a
unit of length, there is one pixel in the vertical direction for the same unit of length.

If aviewport is specified that is not square and it is mapped to a square clipping volume, that
will cause images to be distorted. For example, a viewport matching the window size and
dimensions but mapped to a square clipping volume would cause images to appear tall and
thin in tall and thin windows, and wide and short in wide and short windows. In this case,
our square would only appear square when the window was sized to be a square.

In our example, an orthographic projection is used for the clipping volume (see Chapter 2).
The OpenGL command to create this projection is glOrtho():

void gl Otho(G.double I eft, G.double right, G.double bottom G.double top,
G.doubl e near, G.double far);

In 3D Cartesan space, the left and right values specify the minimum and maximum
coordinate value displayed along the x-axis; bottom and top are for the y-axis. The near and
far parameters are for the z-axis, generally with negative values extending away from the
viewer (see Figure 3-9).

Page 60 OpenGL Super Bible!

y

+i

Y
i

Figure 3-9 Cartesian space

Just before the code using glOrtho(), you'll notice a single call to glLoadldentity(). This is
needed because glOrtho() doesn't really establish the clipping volume, but rather modifies
the existing clipping volume. It multiplies the matrix that describes the current clipping
volume by the matrix that describes the clipping volume described in its arguments. The
discussion of matrix manipulations and coordinate transformations is in Chapter 7. For now,
you just need to know that glLoadldentity() serves to “reset” the coordinate system to unity
before any matrix manipulations are performed. Without this “reset” every time glOrtho() is
called, each successive call to glOrtho() could result in a further corruption of our intended
clipping volume, which may not even display our rectangle.

Keeping a Square Square
The following code does the actual work of keeping our “sgquare” square.

if (w<=h)

glOtho (0, 250, 0, 250*h/w, 1.0, -1.0);
el se

glOtho (0, 250*w h, 0, 250, 1.0, -1.0);

Our clipping volume (visible coordinate space) is modified so that the left-hand side is
aways at x = 0. The right-hand side extends to 250 unless the window is wider than it is tall.
In that case, the right-hand side is extended by the aspect ratio of the window. The bottom is

OpenGL Super Bible! Page 61

aways a y = 0, and extends upward to 250 unless the window is taller than it is wide. In
that case the upper coordinate is extended by the aspect ratio. This serves to keep a square
coordinate region 250 x 250 available regardless of the shape of the window. Figure 3-10
shows how this works.

p—— 250 ———»

]
o

fl—— 75—

00

=
I
:
I
I
I
I
I
I
I
I

e—— 250 ———]

[
b]

e s e g |

Figure 3-10 Clipping region for three different windows

Animation with AUX

Thus far, we've discussed the basics of using the AUX library for creating a window and
using OpenGL commands for the actual drawing. You will often want to move or rotate
your images and scenes, creating an animated effect. Let’s take the previous example, which
draws a square, and make the square bounce off the sides of the window. Y ou could create a
loop that continually changes your object’s coordinates before calling the RenderScene()
function. This would cause the square to appear to move around within the window.

The AUX library provides a function that makes it much easier to set up a smple animated
sequence. This function, auxldleFunc(), takes the name of a function to call continually
while your program sits idle. The function to perform your idle processing is prototyped like
this.

voi d CALLBACK I dl eFunction(void);

This function is then called repeatedly by the AUX library unless the window is being
moved or resized.

If we change the hard-coded values for the location of our rectangle to variables, and then
constantly modify those variables in the IdieFunction(), the rectangle will appear to move
across the window. Let’s look at an example of this kind of animation. In Listing 3-4, we'll
modify Listing 3-3 to bounce the square around off the inside borders of the window. We'll
need to keep track of the position and size of the rectangle as we go along, and account for
any changes in window size.

Page 62 OpenGL Super Bible!

Listing 3-4 Animated bouncing square

/1 bounce.c
/1 Bounci ng square

#i ncl ude <wi ndows. h> // Standard w ndows i ncl ude
#i ncl ude <gl\gl.h> /1l Open@& library
#include <gl\glaux.h> // AUX library

/1 Initial square position and size
G.float x1 = 100. Of;
G.float yl = 150. Of;
G.si zei rsize = 50;

/] Step size in x and y directions

/1 (nunber of pixels to nove each tine)
G.fl oat xstep 1. Of;

G.fl oat ystep 1. Of;

/1 Keep track of window s changing wi dth and hei ght
G.fl oat wi ndoww dt h;
G.fl oat wi ndowHei ght ;

/1 Called by AUX |ibrary when the w ndow has changed size
voi d CALLBACK ChangeSi ze(A.si zei w, G.sizei h)
{
/1 Prevent a divide by zero, when wi ndow is too short
/1 (you can’t nmake a wi ndow of zero wi dth)
if(h == 0)
h =1;

/1 Set the viewport to be the entire w ndow
gl Viewport (0, 0, w, h);

/'l Reset the coordinate system before nodifying
gl Loadl dentity();

/'l Keep the square square, this time, save cal cul ated
/1 width and height for |ater use
if (w<=h)

{

wi ndowHei ght = 250. Of *h/ w;

w ndoww dt h = 250. Of ;

}

{
wi ndowW dt h = 250. Of *w/ h;

wi ndowHei ght = 250. 0f ;
}

/1 Set the clipping vol une
gl O tho(0.0f, wi ndowwNdth, O0.0f, w ndowHeight, 1.0f, -1.0f);

}
/1 Called by AUX library to update w ndow

el se

OpenGL Super Bible!

Page 63

voi d CALLBACK Render Scene(voi d)

{

/1 Set background clearing color to blue
gl G earColor(0.0f, 0.0f, 1.0f, 1.0f);

/1 Cdear the window with current clearing color
gl O ear (GL_COLOR BUFFER BIT);

/1 Set drawing color to red, and draw rectangl e at

/1 current position.
gl Col or 3f (1. 0f, 0.0f, 0.0f);
gl Rectf(x1, yl, xl1l+rsize, yl+rsize);

gl Flush();
}

/1 Called by AUX |ibrary when idle (w ndow not being
/1 resized or noved)
voi d CALLBACK | dl eFuncti on(voi d)

/!l Main
voi d nai

{

/'l Reverse direction when you reach left or right edge

if(x1 > windowNdth-rsize || x1 < 0)
xstep = -xstep;

/'l Reverse direction when you reach top or bottom edge

if(yl > wi ndowHei ght -rsize || yl < 0)
ystep = -ystep;

/1 Check bounds. This is in case the window is nade
/1 smaller and the rectangle is outside the new

/1 clipping vol une
i f(x1 > wi ndowNdth-rsize)
x1 = wi ndowWN dth-rsize-1,

i f(yl > wi ndowHei ght -rsi ze)
y1l = w ndowHei ght -rsi ze-1;

/1 Actually nove the square
x1 += Xxstep;
yl += ystep;

/! Redraw the scene with new coordi nat es
Render Scene() ;

}

body of program

n(voi d)

{

/1 AUX wi ndow setup and initialization
aux! ni t Di spl ayMode(AUX_SI NGLE | AUX_RGBA) ;
auxl ni t Posi ti on(100, 100, 250, 250) ;

aux! ni t Wndow("Si npl e 2D Ani mation");

// Set function to call when window is resized
auxReshapeFunc(ChangeSi ze) ;

Page 64 OpenGL Super Bible!

/1 Set function to call when programis idle
auxl! dl eFunc(1 dl eFunction);

/1 Start main | oop
auxMai nLoop(Render Scene) ;

}

The animation produced by this example is very poor, even on very fast hardware. Because
the window is being cleared each time before drawing the square, it flickers the entire time
it’s moving about, and you can easily see the square actually being drawn as two triangles.
To produce smoother animation, you need to employ a feature known as doubl e buffering.

Double Buffering

One of the most important features of any graphics packages is support for double buffering.
This feature allows you to execute your drawing code while rendering to an off-screen
buffer. Then a swap command places your drawing on screen instantly.

Double buffering can serve two purposes. The first is that some complex drawings may take
along time to draw and you may not want each step of the image composition to be visible.
Using double buffering, you can compose an image and display it only after it is complete.
The user never sees a partia image; only after the entire image is ready is it blasted to the
screen.

A second use for double buffering is for animation. Each frame is drawn in the off-screen
buffer and then swapped quickly to the screen when ready. The AUX library supports
double-buffered windows. We need to make only two changes to the bounce.c program to
produce a much smoother animation. First, change the line in main() that initializes the
display mode to indicate that it should use double buffering:

auxl ni t Di spl ayMode(AUX_DOUBLE | AUX_RGBA);
Thiswill cause al the drawing code to render in an off-screen buffer.
Next, add a single line to the end of the Render() function:
auxSwapBuf fers();

The auxSwapBuffers() function causes the off-screen buffer used for drawing to be swapped
to the screen. (The complete code for this is in the BOUNCEZ2 example on the CD.) This
produces a very smooth animation of the red square bouncing around inside the window.
See Figure 3-11.

OpenGL Super Bible! Page 65

= Simple 2D Animation - [O] x|

Figure 3-11 Bouncing square

Finally, Some 3D!

Thus far, all our samples have been simple rectangles in the middle of the window; they
either scaled to the new window size or bounced around off the walls. By now you may be
bouncing off some walls of your own, waiting anxioudly to see something in 3D. Wait no
morel

As mentioned earlier, we have been drawing in 3D all along, but our view of the rectangle
has been perpendicular to the clipping volume. If we could just rotate the clipping volume
with respect to the viewer, we might actually see something with a little depth. However, we
aren’t going to get into coordinate transformations and rotations until Chapter 7. And even if
we started that work now, a flat rectangle isn't very interesting, even when viewed from an
angle.

To see some depth, we need to draw an object that is not flat. The AUX library contains
nearly a dozen 3D objects—from a sphere to a teapot—that can be created with a single
function call. These called functions are of the form auxSolidxxxx() or auxWirexxxx(), where
xxxXx names the solid or wireframe object that is created. For example, the following
command draws a wireframe teapot of approximately 50.0 units in diameter:

auxW r eTeapot (50. 0f) ;

If we define a clipping volume that extends from -100 to 100 along all three axes, we'll get
the wireframe teapot shown in Figure 3-12. The teapot is probably the best example at this
point because the other objects till look two-dimensional when viewed from a parallel

Page 66 OpenGL Super Bible!

projection. The program that produced this image is found in this chapter’s subdirectory on
the CD in teapot.c.

B 3D Wire-Frame Teapot - [O]

Figure 3-12 A wireframe teapot

If you change the wire teapot to a solid teapot with the command

auxSol i dTeapot (50. 0f) ;

you'll see only ared outline of the teapot. In order to see relief in a solid-colored object, you
will need to incorporate shading and lighting with other OpenGL commands that you'll
learn about in Chapter 9 and later.

For further study of the AUX library objects, see the samples AUXWIRE and AUXSOLID
on the CD in this chapter’s subdirectory. These samples make use of the glRotatef() function
(explained in Chapter 7), which spins the objects around all three axes of the viewing
volume. Some of these objects make use of the utility library, so be sure that you link with
glu32.lib when using these objects yourself.

OpenGL Super Bible! Page 67

Summary

In this chapter we have introduced the AUX library toolkit and presented the fundamentals
of writing a program that uses OpenGL. We have used this library to show the easiest
possible way to create a window and draw in it using OpenGL commands. Y ou have learned
to use the AUX library to create windows that can be resized, as well as to create smple
animation. Y ou have also been introduced to the process of using OpenGL to do drawing—
composing and selecting colors, clearing the screen, drawing a rectangle, and setting the
viewport and clipping volume to scale images to match the window size. We've also
discussed the various OpenGL data types, and the headers and libraries required to build
programs that use OpenGL.

The Auxiliary library contains many other functions to handle keyboard and mouse input as
well. Microsoft’s implementation of the Aux library contains Windows-specific functions
that enable access to window handles and device contexts. You are encouraged to explore
the upcoming reference section of this chapter to discover other uses and features of the
AUX library. You'll also want to examine and run the other Chapter 3 samples on the CD.

Page 68 OpenGL Super Bible!

Reference Section

auxldleFunc

Purpose
Establishes a callback function for idle processing.

Include File
<glaux.h>

Syntax
void auxldleFunc(AUXIDLEPROC func);

Description
Specifies the idle function func() to be called when no other activity is pending.
Typically used for animation. When not busy rendering the current scene, the idle
function changes some parameters used by the rendering function to produce the

next scene.
Parameters
func
This function is prototyped as
void CALLBACK IdleFunc(void);
Thisis the user-defined function used for idle processing. Passing NULL asthis
function name will disable idle processing.
Returns
None.
Example
See BOUNCE and BOUNCE2 examples from this chapter.
See Also

auxSwapBuffers, auxMainLoop, auxReshapeFunc

OpenGL Super Bible! Page 69

auxInitDisplayM ode

Purpose
Initializes the display mode of the AUX library OpenGL window.

Include File
<glaux.h>

Syntax
void auxlInitDisplayM ode(GL bitfield mask);

Description
Thisisthe first function that must be called by an AUX library-based program to set
up the OpenGL window. This function sets the characteristics of the window that
OpenGL will use for drawing operations.

Parameters

mask
GLbitfield: A mask or bitwise combination of masks from Table 3-4. These mask
values may be combined with a bitwise OR. For example, to create a window that

uses double buffering and color index mode, call
auxl ni t Di spl ayMbde(AUX_DOUBLE | AUX_| NDEX)

Returns

None.
Example

See any example program from this chapter.
See Also

auxlInitPosition, auxInitWindow

Table 3-4 Mask values for window characteristics

Mask Value M eaning

AUX_SINGLE Specifies a single-buffered window
AUX_DOUBLE Specifies a double-buffered window
AUX_RGBA Specifies an RGBA-mode window
AUX_INDEX Specifies a color-index mode window
AUX_DEPTH Specifies a 32-bit depth buffer
AUX_DEPTH16 Specifies a 16-bit depth buffer
AUX_STENCIL Specifies a stencil buffer

AUX_ACCUM Specifies an accumulation buffer

Page 70 OpenGL Super Bible!

AUX_ALPHA Specifies an ALPHA buffer
AUX_FIXED_332 PAL Specifiesafixed 3-3-2 paette for the window

aux| nitPosition

Purpose
Sets the window position used by auxInitWindow().
Include File
<glaux.h>
Syntax
void auxInitPosition(GLint x, GLint y, GLsizel width, GLsizei height);
Description
This function tells the AUX library where to place the main graphics window when

it is created.

Parameters

X
GLint: The position measured in pixels of the top left corner of the window from the
left side of the screen.

y
GLint: The position measured in pixels of the top left corner of the window from the
top of the screen.

width
GLsizei: Theinitia width of the client area of the window in screen pixels.

height

GLsizei: Theinitial height of the client area of the window in screen pixels.
Returns

None.
Example

See any example from this chapter.
See Also

auxInitDisplayM ode, auxInitWindow

OpenGL Super Bible! Page 71

auxinitWindow

Purpose
Initializes and displays the OpenGL rendering window.
Include File
<glaux.h>
Syntax
void auxInitWindow(GLBY TE *titleString);
Description
This function opens the window that will be used by OpenGL for drawing
operations.
The window characteristics must first be set by auxInitDisplayMode() and
auxInitPosition().

Parameters

titleString
GLBYTE: A pointer to a character string that will be used for the window caption.
Returns
None.
Example
See any example from this chapter.
See Also
auxInitDisplayM ode, auxInitPosition

Page 72 OpenGL Super Bible!

auxK eyFunc

Purpose
Associates a callback function with a particular keystroke.
Include File
<glaux.h>
Syntax
void auxKeyFunc(GLint key, void(* function(void));
Description
Sets a callback function function that the AUX library calls when the key indicated
by key is pressed. The window is aso redrawn after the processing of this keystroke.

Parameters

key
GLint: Specifies the key with which to associate the given function. This can be one
of the valuesin Table 3-5.
function
This callback function is prototyped as
void CALLBACK KeyFunc(void);
Thisfunction is called by the AUX library when the specified key is pressed. Passing
NULL asthis parameter disables a previous key function setting.
Returns
None.
Example
See the KEY MOV E supplementary example from this chapter’ s subdirectory on the
CD.
See Also
auxMouseFunc

Table 3-5 Auxiliary Library Key Definitions.

Key Value Description
AUX_ESCAPE The Escape key
AUX_SPACE The Spacebar key
AUX_RETURN The Return or Enter key
AUX_LEFT The Left Arrow key
AUX_RIGHT The Right Arrow key

AUX_UP The Up Arrow key

OpenGL Super Bible! Page 73

AUX_DOWN The Down Arrow key

AUX_A through AUX_Z Thekeys A through Z (uppercase)
AUX_athroughAUX_z The keysathrough z (lowercase)
AUX_0Othrough AUX_9 The number keys O through 9

auxM ainL oop

Purpose
Specifies the function that should be used to update the OpenGL window.
Include File
<glaux.h>
Syntax
void auxMainLoop(AUXMAINPROC func);
Description
This function is used to specify the function to be called whenever the OpenGL
window needs to be refreshed. This function does not return until the OpenGL
window is closed.

Parameters

func
This function is prototyped as
void CALLBACK MainFunc(void);
Thisisthe function to be used for updating the window by actually performing the
drawing commands.
Returns
None.
Example
See any example from this chapter.
See Also
auxldleFunc, auxReshapeFunc

Page 74 OpenGL Super Bible!

auxM ouseFunc

Purpose
Associates callback functions with mouse button activity.

Include File
<glaux.h>

Syntax
void auxMouseFunc(int button, int mode, AUXMOUSEPROC func);

Description
Sets the function func to be called when a mouse button is pressed or released. The
specified mouse button is set to one of the values listed below. The button action can
denote whether the button is pressed or released.

Parameters

button
int: The button with which to associate the callback function; may be one of the
following values: AUX_LEFTBUTTON, AUX_MIDDLEBUTTON, or
AUX_RIGHTBUTTON.

mode
int: The action of the button specified above to associate with the callback function.
May be either AUX_MOUSEDOWN or AUX_MOUSEUP.

func
The callback function is prototyped as
void CALLBACK MouseFunc(AUX_EVENTREC *event);

The event structure contains the mouse position at the time of the event.
typedef struct _AUX EVENTREC {
Gli nt event;
GLint data[4];
} AUX_EVENTREC;

event GLint: Specifiesthe event that took place (AUX_MOUSEUP,
or AUX_MOUSEDOWN)
data[4] GLint: contains specific data about this event.

datal AUX_MOUSEX] = mouse position in x direction.
datal AUX_MOUSEY] = mouse position in y direction.
datal MOUSE_STATUS] = mouse button (from button).
Returns
None.
Example
See the MBOUNCE supplementary example on the CD subdirectory for this chapter.

See Also
auxKeyFunc

OpenGL Super Bible! Page 75

auxReshapeFunc

Pur pose
Establishes a callback function to handle window dimension and size changes.
Include File
<glaux.h>
Syntax
void auxReshapeFunc(AUXRESHAPEPROC func)
Description
Thisfunction is called to establish a callback function that the AUX library will call
whenever the window size or shape changes. Typically this function modifies the
viewport and clipping volume to perform image scaling.

Parameters

func
This callback function is prototyped as
void CALLBACK Reshape(GLsizel width, GLsizei height)
This function receives the new width and height of the window.
Returns
None.
Example
See the SCALE example from this chapter.
See Also
auxldleFunc, auxMainLoop

Page 76 OpenGL Super Bible!

auxSetOneColor

Purpose
Sets a single color in the color-index mode color palette.

Include File
<glaux.h>

Syntax
void auxSetOneColor(int index, float red, float green, float blue);

Description
This function is used in color index mode. In this mode, rather than specifying colors
with RGB values, a palette of colorsis created. Object colors are designated by
specifying an index into this palette. This functions sets the RGB values for the color
that is represented by a particular palette index.

Parameters

index
int: The index into the color palette.
red
float: The red component of the desired color.
green
float: The green component of the desired color.
blue
float: The blue component of the desired color.
Returns
None.
Example
See the COLORDX supplementary sample on the CD subdirectory for this chapter.
Note that this sample requires operation on a paletized device (most 256-color cards,
but not more than 8 hits of color).
See Also
getColorMapSize, auxSetRGBMap

OpenGL Super Bible! Page 7/

auxSolidBox

Purpose
Draws a solid box.
Include File
<glaux.h>
Syntax
void auxSolidBox(GL double width, GLdouble height, GLdouble depth);
Description
Draws a solid box centered at (0,0,0). An alternative form of auxSolidCube.
Generally used for demonstration purposes.

Parameters

width
The width of the box.
height
The height of the box.
depth
The depth of the box.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireBox, auxSolidCube

Page 78 OpenGL Super Bible!

auxSolidCone

Purpose
Draws a solid cone.
Include File
<glaux.h>
Syntax
void auxSolidCone(GLdouble radius, GLdouble height);
Description
Draws a solid cone centered at (0,0,0). Generally used for demonstration purposes.

Parameters

radius
The radius of the bottom of the cone.
height
The height of the cone.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireCone

OpenGL Super Bible! Page 79

auxSolidCube

Purpose
Draws a solid cube.
Include File
<glaux.h>
Syntax
void auxSolidCube(GL double width);
Description
Draws a solid cube centered at (0,0,0). An alternative form of AuxSolidBox.
Generally used for demonstration purposes.

Parameters

width
The width of the cube.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireCube, auxSolidBox

Page 80 OpenGL Super Bible!

auxSolidCylinder

Purpose
Draws a solid cylinder.
Include File
<glaux.h>
Syntax
void auxSolidCylinder(GLdouble radius, GLdouble height);
Description
Draws a solid cylinder centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

radius
The radius of the cylinder.
height
The height of the cylinder.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireCylinder

OpenGL Super Bible! Page 81

auxSolidDodecahedron

Purpose
Draws a solid dodecahedron.
Include File
<glaux.h>
Syntax
void auxSolidDodecahedron(GL double radius);
Description
Draws a solid dodecahedron centered at (0,0,0). A dodecahedron is a 12-sided object
with pentagon sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the dodecahedron.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireDodecahedron.

Page 82 OpenGL Super Bible!

auxSolidl cosahedron

Purpose
Draws a solid icosahedron.
Include File
<glaux.h>
Syntax
void auxSolidl cosahedron(GLdouble radius);
Description
Draws a solid icosahedron centered at (0,0,0). An icosahedron is a 20-sided object
with each side a triangle. Generally used for demonstration purposes.

Parameters

radius
The radius of the icosahedron.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWirel cosahedron

OpenGL Super Bible! Page 83

auxSolidOctahedron

Purpose
Draws a solid octahedron.
Include File
<glaux.h>
Syntax
void auxSolidOctahedron(GL double radius);
Description
Draws a solid octahedron centered at (0,0,0). An octahedron is an 8-sided object with
triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the octahedron.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireOctahedron

Page 84 OpenGL Super Bible!

auxSolidSphere

Purpose
Draws a solid sphere.
Include File
<glaux.h>
Syntax
void auxSolidSphere(GL double radius);
Description
Draws a solid sphere centered at (0,0,0). Generally used for demonstration purposes.

Parameters

radius
The radius of the sphere.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireSphere

OpenGL Super Bible! Page 85

auxSolidT eapot

Purpose
Draws a solid teapot.
Include File
<glaux.h>
Syntax
void auxSolidTeapot(GLdouble size);
Description
Draws a solid teapot centered at (0,0,0). Generally used for demonstration purposes.

Parameters

Size
The size of the teapot (approximate diameter).
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireT eapot

Page 86 OpenGL Super Bible!

auxSolidTetr ahedron

Purpose
Draws a solid tetrahedron.
Include File
<glaux.h>
Syntax
void auxSolidTetrahedron(GLdouble radius);
Description
Draws a solid tetrahedron centered at (0,0,0). A tetrahedron is a 4-sided object with
triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the tetrahedron.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxWireT etrahedron

OpenGL Super Bible! Page 87

auxSolidTorus

Purpose
Draws a solid torus (doughnut shape).

Include File
<glaux.h>

Syntax
void auxSolidTorus(GLdouble innerRadius, GL double outerRadius);

Description
Draws a solid torus centered at (0,0,0). A torus is a doughnut-shaped object. The
inner radius is the radius of the tube and the outer radius is the radius of the center
hole. Generally used for demonstration purposes.

Parameters

innerRadius
The radius of the inside of the torus.
outerRadius
The inner radius of the ring.
Returns
None.
Example
See the AUXSOLID supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’s solid objects.
See Also
auxSolidTorus

Page 88 OpenGL Super Bible!

auxSwapBuffers

Purpose
Switches drawing buffer to screen during double-buffered drawing.
Include File
<glaux.h>
Syntax
void auxSwapBuffers(void);
Description
This function is used with doubled-buffered drawing and animation. Calling this
function causes the hidden scene to be quickly swapped to screen.
Returns
None.
Example
See the BOUNCE2 example from this chapter.
See Also
auxInitDisplayM ode, auxIdleFunc

OpenGL Super Bible! Page 89

auxWireBox

Purpose
Draws a wireframe box.
Include File
<glaux.h>
Syntax
void auxWireBox(GLdouble width, GLdouble height, GLdouble depth);
Description
Draws a wireframe box centered at (0,0,0). An alternative form of
auxWireCube.Generally used for demonstration purposes.

Parameters

width
The width of the box.
height
The height of the box.
depth
The depth of the box.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidBox, auxWireCube

Page 90 OpenGL Super Bible!

auxWireCone

Purpose
Draws a wireframe cone.
Include File
<glaux.h>
Syntax
void auxWireCone(GLdouble radius, GLdouble height);
Description
Draws awireframe cone centered at (0,0,0). Generaly used for demonstration
purposes.

Parameters

radius
The radius of the bottom of the cone.
height
The height of the cone.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidCone

OpenGL Super Bible! Page 91

auxWireCube

Purpose
Draws a wireframe cube.
Include File
<glaux.h>
Syntax
void auxWireCube(GLdouble width);
Description
Draws awireframe cube centered at (0,0,0). An aternative form of
AuxWireCube.Generally used for demonstration purposes.

Parameters

width
The width of the cube.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidCube, auxWireBox

Page 92 OpenGL Super Bible!

auxWireCylinder

Purpose
Draws awireframe cylinder.
Include File
<glaux.h>
Syntax
void auxWireCylinder(GLdouble radius, GLdouble height);
Description
Draws awireframe cylinder centered at (0,0,0). Generaly used for demonstration
purposes.

Parameters

radius
The radius of the cylinder.
height
The height of the cylinder.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises al of the AUX library’ s wireframe objects.
See Also
auxSolidCylinder

OpenGL Super Bible! Page 93

auxWir eDodecahedr on

Purpose
Draws a wireframe dodecahedron.
Include File
<glaux.h>
Syntax
void auxWireDodecahedron(GL double radius);
Description
Draws a wireframe dodecahedron centered at (0,0,0). A dodecahedron is a 12-sided
object with pentagon sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the dodecahedron.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidDodecahedron.

Page 94 OpenGL Super Bible!

auxWir el cosahedr on

Purpose
Draws a wireframe icosahedron.
Include File
<glaux.h>
Syntax
void auxWirel cosahedron(GLdouble radius);
Description
Draws a wireframe icosahedron centered at (0,0,0). Anicosahedron is a 20-sided
object with each side atriangle. Generally used for demonstration purposes.

Parameters

radius
The radius of the icosahedron.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidlcosahedron

OpenGL Super Bible! Page 95

auxWir eOctahedron

Purpose
Draws a wireframe octahedron.
Include File
<glaux.h>
Syntax
void auxWireOctahedron(GLdouble radius);
Description
Draws a wireframe octahedron centered at (0,0,0). An octahedron is an 8-sided
object with triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the octahedron.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidOctahedron

Page 96 OpenGL Super Bible!

auxWireSphere

Purpose
Draws awireframe sphere.
Include File
<glaux.h>
Syntax
void auxWireSphere(GLdouble radius);
Description
Draws awireframe sphere centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

radius
The radius of the sphere.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises al of the AUX library’ s wireframe objects.
See Also
auxSolidSphere

OpenGL Super Bible! Page 97

auxWir eT eapot

Purpose
Draws a wireframe teapot.
Include File
<glaux.h>
Syntax
void auxWireT eapot(GLdouble size);
Description
Draws awireframe teapot centered at (0,0,0). Generally used for demonstration
purposes.

Parameters

Size
The size of the teapot (approximate diameter).
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidTeapot

Page 98 OpenGL Super Bible!

auxWireTetrahedron

Purpose
Draws a wireframe tetrahedron.
Include File
<glaux.h>
Syntax
void auxWireT etrahedron(GLdouble radius);
Description
Draws awireframe tetrahedron centered at (0,0,0). A tetrahedron is a 4-sided object
with triangular sides. Generally used for demonstration purposes.

Parameters

radius
The radius of the tetrahedron.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidTetrahedron

OpenGL Super Bible! Page 99

auxWireTorus

Purpose
Draws a wireframe torus (doughnut shape).

Include File
<glaux.h>

Syntax
void auxWireT orus(GLdouble innerRadius, GLdouble outerRadius);

Description
Draws awireframe torus centered at (0,0,0). A torusis a doughnut-shaped object.
The inner radius is the radius of the tube and the outer radius is the radius of the
center hole. Generally used for demonstration purposes.

Parameters

innerRadius
The radius of the inside of the torus.
outerRadius
The inner radius of the ring.
Returns
None.
Example
See the AUXWIRE supplementary sample on the CD subdirectory for this chapter.
This program exercises all of the AUX library’ s wireframe objects.
See Also
auxSolidTorus

Page 100 OpenGL Super Bible!

glClear Color

Purpose
Sets the color and alpha values to use for clearing the color buffers.

Include File
<gl.h>

Syntax
void glClearColor(GL clampf red, GL clampf green, GL clampf blue, GL clampf
apha);

Description
Sets the fill values to be used when clearing the red, green, blue, and apha buffers
(jointly called the color buffer). The values specified are clamped to the range [0.0f,
1.0f].

Parameters

red

GLclampf: The red component of the fill value.
green

GLclampf: The green component of the fill value.
blue

GL clampf: The blue component of the fill value.
alpha

GL clampf: The alpha component of the fill value.
Returns

None.
Example

See the SHORTEST example from this chapter.

OpenGL Super Bible! Page 101

glFlush

Purpose
Flushes OpenGL command queues and buffers.
Include File
<gl.h>
Syntax
void glFlush(void);
Description
OpenGL commands are often queued and executed in batches to optimize
performance. This can vary among hardware, drivers, and OpenGL implementations.
The glFlush command causes any waiting commands to be executed.
Returns
None.
Example
See any example from this chapter.

Page 102 OpenGL Super Bible!

glOrtho

Purpose
Sets or modifies the clipping volume extents.

Include File
<gl.h>

Syntax
void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Description
This function describes a parallel clipping volume. This projection means that
objects far from the viewer do not appear smaller (in contrast to a perspective
projection). Think of the clipping volume in terms of 3D Cartesian coordinates, in
which case left and right would be the minimum and maximum x values, top and
bottom the minimum and maximum y values, and near and far the minimum and
maximum z values.

Parameters

left

GLdouble: The leftmost coordinate of the clipping volume.
right

GLdouble: The rightmost coordinate of the clipping volume.
bottom

GLdouble: The bottommost coordinate of the clipping volume.

top

GLdouble: The topmost coordinate of the clipping volume.
near

GLdouble: The maximum distance from the origin to the viewer.
far

GLdouble: The maximum distance from the origin away from the viewer.
Returns

None.
Example

See the SCALE example from this chapter.
See Also

glViewport

OpenGL Super Bible! Page 103

glViewport

Purpose
Sets the portion of awindow that can be drawn in by OpenGL.
Include File
<gl.h>
Syntax
void glViewport(GLint x, GLint y, GLSizei width, GLsizel height);
Description
Sets the region within awindow that is used for mapping the clipping volume
coordinates to physical window coordinates.

Parameters

X
GLint: The number of pixels from the left-hand side of the window to start the
viewport.
y
GLint: The number of pixels from the bottom of the window to start the viewport.
width
GLsizei: The width in pixels of the viewport.
height
GLsizei: The height in pixels of the viewport.
Returns
None.
Example
See the SCALE example from this chapter.
See Also
glOrtho

Page 104 OpenGL Super Bible!

glRect

Purpose
Draws aflat rectangle.
Include File
<gl.h>
Variations
void glRectd(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2);
void glRectf(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2);
void glRecti(GLint x1, GLint y1, GLint x2, GLint y2);
void glRects(GLshort x1, GLshort y1, GLshort x1, GLshort y2);
void glRectdv(const GLdouble *v1, const GLdouble *v2);
void glRectfv(const GLfloat *v1, const GLfloat *v2);
void glRectiv(const GLint *v1, const GLint *v2);
void glRectsv(const GLshort *v1, const GLshort *v2);
Description
This function is an efficient method of specifying arectangle as two corner points.
Therectangle isdrawn in the xy plane at z = 0.

Parameters

x1,yl
Specifies the upper-left corner of the rectangle.
X2, y2
Specifies the lower-right corner of the rectangle.
*vl
An array of two values specifying the upper-left corner of the rectangle. Could also
be described as v1[2].
*Vv2
An array of two values specifying the lower-right corner of the rectangle. Could also
be described as v2[2].
Returns
None.
Example
See the FRIENDLY sample from this chapter.

OpenGL Super Bible! Page 105

Chapter 4
OpenGL for Windows: OpenGL + Win32 = Wiggle

What you’ll learn in this chapter:

OpenGL Tasksin a Window Without the

AUX Library FunctionsYou'll Use

Create and use rendering contexts wglCreateContext, wglDeleteContext,
wglMakeCurrent

Request and select a pixel format ChoosePixelFormat, SetPixelFormat

Respond to window messages WM_PAINT, WM_CREATE,
WM_DESTROY, WM_SIZE

Use double buffering in Windows SwapBuffers

OpenGL is purely a graphics API, with user interaction and the screen/window handled by
the host environment. To facilitate this partnership, each environment usually has some
extensions that “glue” OpenGL to its own window management and user interface functions.
This glue is code that associates OpenGL drawing commands to a particular window. It is
also necessary to provide functions for setting buffer modes, color depths, and other drawing
characterigtics.

For Microsoft Windows, the glue code is embodied in six new wiggle functions added to
OpenGL (called wiggle because they are prefixed with wgl rather than gl), and five new
Win32 functions added to the Windows NT and 95 GDI. These gluing functions are
explained in this chapter, where we will dispense with using the AUX library for our
OpenGL framework.

In Chapter 3 we used the AUX library as a learning tool to introduce the fundamentals of
OpenGL programming in C. You have learned how to draw some 2D and 3D objects and
how to specify a coordinate system and viewing perspective, without having to consider
Windows programming details. Now it is time to break from our * Windowless’ examination
of OpenGL and see how it works in the Windows environment. Unless you are content with
a single window, no menus, no printing ability, no dialogs, and few of the other features of a
modern user interface, you need to learn how to use OpenGL in your Win32 applications.

Starting with this chapter, we will build full-fledged Windows applications that can take
advantage of all the operating system's features. You will see what characteristics a
Windows window must have in order to support OpenGL graphics. You will learn which
messages a well-behaved OpenGL window should handle, and how. The concepts of this

Page 106 OpenGL Super Bible!

chapter are introduced gradually, as we use C to build a model OpenGL program that will
provide the initial framework for all future examples.

Thus far in this book, you've needed no prior knowledge of 3D graphics and only a
rudimentary knowledge of C programming. From this point on, however, we assume you
have at least an entry-level knowledge of Windows programming. (Otherwise, we'd have
wound up writing a book twice the size of this one, and we'd have had to spend more time
on the details of Windows programming and less on OpenGL programming.) If you are new
to Windows, or if you cut your teeth on one of the Application Frameworks and aren't all
that familiar with Windows procedures, message routing, and so forth, you'll want to check
out some of the recommended reading in Appendix B, Further Reading, before going too
much further in this text.

Drawing in Windows Windows

With the AUX library we had only one window, and OpenGL aways knew that we wanted
to draw in that window (where else would we go?). Your own Windows applications,
however, will often have more than one window. In fact, dialog boxes, controls, and even
menus are actually windows at a fundamental level; it’s nearly impossible to have a useful
program that contains only one window. So how does OpenGL know where to draw when
you execute your rendering code? Before we try to answer this question, let’s first review
how we normally draw in a window without using OpenGL.

GDI Device Contexts

To draw in awindow without using OpenGL, you use the Windows GDI (Graphical Device
Interface) functions. Each window has a device context that actually receives the graphics
output, and each GDI function takes a device context as an argument to indicate which
window you want the function to affect. You can have multiple device contexts, but only
one for each window.

The example program WINRECT on the Companion CD draws an ordinary window with a
blue background and a red square in the center. The output from this program, shown in
Figure 4-1, will look familiar to you. This is the same image produced by our second
OpenGL program in Chapter 3, friendly.c. Unlike that earlier example, however, the
WINRECT program is done entirely with the Windows API. WINRECT's code is pretty
generic as far as Windows programming goes. There is a WinMain that gets things started
and keeps the message pump going, and a WndProc to handle messages for the main
window.

OpenGL Super Bible! Page 107

Figure 4-1 Windows version of friendly.c, the OpenGL sample from Chapter 3

Your familiarity with Windows programming should extend to the details of creating and
displaying a window, so we'll cover only the code from this example that is responsible for
the drawing of the background and square.

First we must create a blue and a red brush for filling and painting. The handles for these
brushes are declared globally.

// Handles to GDI brushes we will use for drawi ng
HBRUSH hBl ueBr ush, hRedBr ush;

Then the brushes are created in the WinMain function, using the RGB macro to create solid
red and blue brushes.

/] Create a blue and red brush for drawing and filling
/] operations. /'l Red, green, blue

hBI ueBrush = CreateSol i dBr ush(RGB(0, 0, 255));
hRedBr ush = Creat eSol i dBrush(R&(255, 0, 0));

When the window style is being specified, the background is set to use the blue brush in the
window class structure.

we. hbr Backgr ound = hBl ueBrush; // Use blue brush for background

Window size and position (previously set with auxinitPosition) are set when the window is
created.

Page 108 OpenGL Super Bible!

/1l Create the main application wi ndow
hwid = Creat eW ndow
| pszAppNane,
| pszAppNane,
WE_OVERLAPPEDW NDOW
100, 100, /1 Size and di nensi ons of
wi ndow
250, 250,
NULL,
NULL,
hl nst ance,
NULL) ;

Finally, the actua painting of the window interior is handled by the WM_PAINT message
handler in the WndProc function.

case WM PAI NT:

{
PAI NTSTRUCT ps;
HBRUSH hd dBr ush;

/[l Start painting
Begi nPai nt (hWhd, &ps) ;

/1 Select and use the red brush
hA dBrush = Sel ect Qbj ect (ps. hdc, hRedBr ush) ;

/! Draw a rectangle filled with the currently
/'l selected brush
Rect angl e(ps. hdc, 100, 100, 150, 150) ;

/1 Desel ect the brush
Sel ect hj ect (ps. hdc, hA dBrush);

/1 End painting
EndPai nt (hWhd, &ps) ;
}

br eak;

The call to BeginPaint prepares the window for painting, and sets the hdc member of the
PAINTSTRUCT structure to the device context to be used for drawing in this window. This
handle to the device context is used as the first parameter to all GDI functions, identifying
which window they should operate on. This code then selects the red brush for painting
operations and draws a filled rectangle at the coordinates (100,100,150,150). Then the brush
is deselected, and EndPaint cleans up the painting operation for you.

Before you jump to the conclusion that OpenGL should work in a similar way, remember
that the GDI is Windows-specific. Other environments do not have device contexts, window
handles, and the like. OpenGL, on the other hand, was designed to be completely portable
among environments and hardware platforms. Adding a device context parameter to the

OpenGL Super Bible! Page 109

OpenGL functions would render your OpenGL code useless in any environment other than
Windows.

OpenGL Rendering Contexts

In order to accomplish the portability of the core OpenGL functions, each environment must
implement some means of specifying a current rendering window before executing any
OpenGL commands. In Windows, the OpenGL environment is embodied in what is known
as the rendering context. Just as a device context remembers settings about drawing modes
and commands for the GDI, the rendering context remembers OpenGL settings and
commands.

You may have more than one rendering context in your application—for instance, two
windows that are using different drawing modes, perspectives, and so on. However, in order
for OpenGL commands to know which window they are operating on, only one rendering
context may be current at any one time per thread. When a rendering context is made
current, it is also associated with a device context and thus with a particular window. Now
OpenGL knows which window into which to render. Figure 4-2 illustrates this concept, as
OpenGL commands are routed to the window indirectly associated with the current
rendering context.

OpenGL Commands
t.urent OpenGL Hencumrent
Rendering Context Rendering Context
b 3
Windows GDI Windows GDI
Device Cantext Device Context
Y Y
e | | s o] =
OpenGL Ho Output
Output Window

Figure 4-2 How OpenGL commands find their window

Page 110 OpenGL Super Bible!

Performance Tip:

The OpenGL library is thread-safe, meaning you can have multiple threads rendering their
own windows or bitmaps simultaneously. This has obvious performance benefits for
multiprocessor systems. Threads can also be beneficial on single-processor systems, asin
having one thread render while another thread handles the user interface. Y ou can also have
multiple threads rendering objects within the same rendering context. In this chapter’s
subdirectory on the CD, the supplementary example program GLTHREAD is an example of
using threads with OpenGL.

Using the Wiggle Functions

The rendering context is not a strictly OpenGL concept, but rather an addition to the
Windows API to support OpenGL. In fact, the new wiggle functions were added to the
Win32 APl gpecifically to add windowing support for OpenGL. The three most used
functions with regard to the rendering context are

HGELRC wgl Cr eat eCont ext (HDC hDC) ;
BOOL wgl Del et eCont ext (HGLRC hrc);
BOOL wgl MakeCurrent (HDC hDC, HG.RC hrc);

Creating and Selecting a Rendering Context

Notice first the new data type HGLRC, which represents a handle to a rendering context.
The wglCreateContext function takes a handle to a windows GDI device context and returns
a handle to an OpenGL rendering context. Like a GDI device context, a rendering context
must be deleted when you are through with it. The wglDeleteContext function does this for
you, taking asits only parameter the handle of the rendering context to be deleted.

When a rendering context is created for a given device context, it is said to be suitable for
drawing on that device context. When the rendering context is made current with
wglMakeCurrent, it is not strictly necessary that the device context specified be the one used
to create the rendering context in the first place. However, the device context used when a
rendering context is made current must have the same characteristics as the device context
used to create the rendering context. These characteristics include color depth, buffer
definitions, and so forth, and are embodied in what is known as the pixel format.

To make arendering context current for a device context different from that used to create it,
they must both have the same pixel format. You may deselect the current rendering context
either by making another rendering context current, or by calling wglMakeCurrent with
NULL for the rendering context. (Selecting and setting the pixel format for the device
context will be covered shortly.)

OpenGL Super Bible! Page 111

Painting with OpenGL

If you haven't done much GDI programming, keeping track of both the device context and
the rendering context may seem bewildering, but it’s actualy very simple to do after you've
seen it done once. In the old days of 16-hit Windows programming, you needed to retrieve a
device context, process it quickly, and release it as soon as you were done with it—because
Windows could only remember five device contexts at a time. In the new era of 32-hit
Windows, these internal resource limitations are all but gone. This does not give us
permission to be careless, but it does mean that there are fewer implications to creating a
window with its own private device context (window style WS OWNDC), getting the
window, and hanging on until we are done with it. Furthermore, since most of our examples
will be animated, we can avoid repeated (and expensive) calls to GetDC every time we need
to make the rendering context current. Another time-saver for us is to make the rendering
context current once it is created, and keep it current. If only one window per thread uses
OpenGL, this will never be a problem, and it will save the time of repeated cals to
wglMakeCurrent.

Only two window messages require any code that handles the creating and deleting of a
rendering context: WM_CREATE and WM_DESTROY . Naturally, the rendering context is
created in the WM_CREATE message, and it is deleted in the WM_DESTROY message.
The following skeleton section from a window procedure of a window that uses OpenGL
graphics shows the creation and deleting of arendering context:

LRESULT CALLBACK WidProc(HVWAND hwd,

stati ¢ HE.RC hRC; /1 Save the rendering context between calls
static HDC hDC, /1 Save the device context between calls

swi tch(nsg)

case WM CREATE:
hDevi ceCont ext = Get DC(hWhd)

hRender Cont ext = wgl Cr eat eCont ext (hDC) ;
wgl MakeCur r ent (hDC, hRC) ;
br eak;

case WM DESTROY:
wgl MakeCur rent (hDC, NULL) ;
wgl Del et eCont ext (hRC) ;

Post Qui t Message(0);
br eak;

}
}

The painting and drawing of the window is still handled by the WM_PAINT message, only
now it will contain your OpenGL drawing commands. In this message, you can dispense

Page 112 OpenGL Super Bible!

with the BeginPaint/EndPaint sequence. (These functions cleared the window, hid the caret
for drawing operations, and validated the window region after painting.) With OpenGL, you
only need to validate the window client area in order to keep a constant stream of
WM_PAINT messages from being posted to the window. Here is a skeletal WM_PAINT
handler:

case WM PAI NT:
{

/1 Open@ drawi ng code or your Render function called here.
Render Scene() ;

Val i dat eRect (hwid, NULL) ;
}

br eak;

Programming Trick:

Y ou can still use the device context with GDI commands to draw in the window after the
OpenGL scene is drawn. The Microsoft documentation states that thisis fully supported
except in double-buffered windows. Y ou can, however, use GDI calls in double-buffered
windows—as long as you make your calls after the buffer swap. What's actually not
supported are GDI calls to the back buffer of a double-buffered window. It’s best to avoid
such calls, anyway, since one of the primary reasons for using double buffering isto provide
flicker-free and instantaneous screen updates.

Preparing the Window for OpenGL

At this point you may be chomping at the bit to write a quick-and-dirty windows program
using the foregoing code and a render function from a previous chapter in the WM_PAINT
handler. But don't start cobbling together code just yet. There are still two important
preparatory steps we need to take before creating the rendering context.

Window Styles

In order for OpenGL to draw in a window, the window must be created with the
WS CLIPCHILDREN and WS _CLIPSIBLINGS styles set, and it must not contain the
CS_PARENTDC gtyle. This is because the rendering context is only suitable for drawing in
the window for which it was created (as specified by the device context in the
wglCreateContext function), or in a window with exactly the same pixel format. The
WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles keep the paint function from trying
to update any child windows. CS PARENTDC (which causes a window to inherit its
parent’s device context) is forbidden because a rendering context can be associated with
only one device context and window. If these styles are not specified you will not be able to
set a pixel format for the window—the last detail before we begin our first Windows
OpenGL program.

OpenGL Super Bible! Page 113

Pixel Formats

Drawing in a window with OpenGL aso requires that you select a pixel format. Like the
rendering context, the pixel format is not really a part of OpenGL per se. It is an extension to
the Win32 API (specifically, to the GDI) to support OpenGL functionality. The pixel format
sets a device context’s OpenGL properties, such as color and buffer depth, and whether the
window is double-buffered. Y ou must set the pixel format for a device context before it can
be used to create a rendering context. Here are the two functions you will need to use:

i nt ChoosePi xel For mat (HDC hDC, Pl XELFORMATDESCRI PTOR * ppf d)
BOOL Set Pi xel For mat (HDC hDC, i nt
i Pi xel Format, | XELFORMATDESCRI PTOR *ppf d)

Setting the pixel format is a threestep process. First, you fill out the
PIXELFORMATDESCRIPTOR structure according to the characteristics and behavior you
want the window to possess (we'll examine these fields shortly). Y ou then pass this structure
to the ChoosePixelFormat function. The ChoosePixelFormat function returns an integer
index to an available pixel format for the specified device context. This index is then passed
to the SetPixelFormat function. The sequence looks something like this:

Pl XELFORVATDESCRI PTOR pi xel For mat ;
i nt nFormat | ndex;
HDC hDC;

/] initialize pixel Format structure

nFor mat | ndex = ChoosePi xel For mat (hDC, &pi xel For mat) ;
Set Pi xel For mat (hDC, nPi xel For mat, &pi xel Format);

ChoosePixelFormat attempts to match a supported pixel format to the information requested
in the PIXELFORMATDESCRIPTOR structure. The returned index is the identifier for this
pixel format. For instance, you may request a pixel format that has 16 million colors on
screen, but the hardware may only support 256 simultaneous colors. In this case, the
returned pixel format will be as close an approximation as possible—for this example, a
256-color pixel format. Thisindex is passed to SetPixelFormat.

You'll find a detailled explanation of the PIXELFORMATDESCRIPTOR structure in the
Reference Section under the function DescribePixelFormat. Listing 4-1 shows a function
from the GLRECT sample program that establishes the PIXELFORMATDESCRIPTOR
structure and sets the pixel format for a device context.

Listing 4-1 A high-level function that sets up the pixel format for a device context

/| Select the pixel format for a given device context
voi d Set DCPi xel For mat (HDC hDC)

{

Page 114 OpenGL Super Bible!

i nt nPi xel For mat ;

stati c Pl XELFORMATDESCRI PTOR pfd = {
si zeof (PI XELFORVATDESCRI PTOR), // Size of this structure

1, /'l Version of this
structure
PFD_DRAW TO_ W NDOW | /! Draw to w ndow
(not bit map)
PFD_SUPPORT_OPENG | /1 Support Qpen@ calls
PFD_ DOUBLEBUFFER, /1 Doubl e - buf fered node
PFD TYPE RGBA, /1 RGBA Col or node
24, /| Want 24bit col or
0,0,0,0,0,0, // Not used to sel ect nobde
0,0, // Not used to sel ect nbde
0,0,0,0,0, // Not used to sel ect nbde
32, /1 Size of depth buffer
0, // Not used to sel ect nbde
0, // Not used to sel ect nbde
PFD_MAI N_PLANE, [/ Draw in main plane
0, // Not used to sel ect node
0,0,0 }; /1 Not used to select node

/1 Choose a pixel format that best matches that described in pfd
nPi xel Format = ChoosePi xel For mat (hDC, &pfd);

/1 Set the pixel format for the device context
Set Pi xel For mat (hDC, nPi xel Format, &pfd);

}

As you can see in this example, not all the members of the PIXELFORMATDESCRIPTOR
structure are used when requesting a pixel format. Table 4-1 lists the members that are set in
Listing 4-1. The rest of the data elements can be set to zero for now.

Table 4-1 Members of PIXELFORMATDESCRIPTOR used when requesting a pixel
format

Member Description

The size of the structure, set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion The version of this data structure, set to 1.

Flags that specify the properties of the pixel buffer, set to

(PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
dwFlags PFD_DOUBLEBUFFER). These indicate the device context is

not a bitmap context, that OpenGL will be used for drawing,

nSize

OpenGL Super Bible! Page 115

and that the window should be double buffered.
The type of pixel data. Actualy, tells OpenGL to use RGBA

iPixelType mode or color index mode. Set to PFD_TY PE_RGBA for
RGBA mode.
The number of color bitplanes, in this case 24-hit color. If
cColorBits hardware does not support 24-bit color, the maximum number

of color bitplanes supported by the hardware will be selected.

The depth of the depth (z-axis) buffer. Set to 32 for maximum
accuracy, but 16 is often sufficient (see Reference Section).

The type of layer. Only PFD_MAIN_PLANE is valid for the
Windows implementation of OpenGL.

cDepthBits

iLayerType

Return of the Bouncing Square

At last we have enough information to create a Windows window that uses OpenGL,
without using the AUX library. The program shown in Listing 4-2 contains the necessary
Windows code along with the rendering function from Chapter 3's BOUNCE2 example
program. You can see by the length of this code that the AUX library saves you a lot of
effort.

The RenderScene, ChangeSize, and IdleFunction functions are virtualy unchanged from the
Chapter 3 example and are thus omitted here. These functions, along with the function in
Listing 4-1, make up the sample program GLRECT. Figure 4-3 shows the familiar bouncing
rectangle. Listing 4-2 shows the WinMain function that creates the window and services
messages for the program and the WndProc function for the window that handles the
individual messages.

=% GLRect (O] x|

Figure 4-3 Windows version of the bouncing square

Page 116 OpenGL Super Bible!

Listing 4-2 Animated square program, without the AUX library

/1 Entry point of all Wndows prograns

i nt API ENTRY W nMai n(H NSTANCE hl nst ance,

HI NSTANCE hPr evl nst ance,

LPSTR | pCndLi ne,

i nt nCndShow)
{
MBG neg; /1 Wndows nmessage structure
VWADCLASS WC; /1 Wndows class structure
HAAD hwhd; /1 Storage for w ndow handl e
/1l Register Wndow style

we. styl e = CS_HREDRAW | CS_VREDRAW
we. | pf nWhdPr oc = (VWADPROC) WhdPr oc;

we. cbd sExtra = 0;

wc. chWhdExtr a = 0;

we. hl nst ance = hl nst ance;

we. hl con = NULL;

we. hCur sor = LoadCursor (NULL, |DC_ARROW ;
/1 No need for background brush for CpenG@ w ndow
we. hbr Backgr ound = NULL;

we. | pszMenuNarme = NULL;

we. | pszd assNane = | pszAppNane;

/1 Register the w ndow cl ass
i f(Regi sterd ass(&w) == 0)
return FALSE;

/1 Create the main application w ndow
hwid = Creat eW ndow(

| pszAppNane,

| pszAppNane,

/1 Open@& requires W5 _CLI PCH LDREN and
WE_CLI PSI BLI NGS

WS5_OVERLAPPEDW NDOW | W5_CLI PCHI LDREN
| W5_CLI PSI BLI NGS,

/1 Wndow position and size
100, 100,
250, 250,

NULL,
NULL,
hl nst ance,
NULL) ;
/1 If window was not created, quit
i f (hwhd == NULL)
return FALSE;

/1 Display the w ndow

OpenGL Super Bible! Page 117

ShowwW ndow(hwad, SW SHOW ;
Updat eW ndow(hwad) ;

/1 Process application messages until the application closes
whi | e(Get Message(&rsg, NULL, 0, 0))

{

Trans| at eMessage(&sg) ;

D spat chMessage(&1sg) ;

}
return nsg. wPar am
}
/1 W ndow procedure, handles all nessages for this program
LRESULT CALLBACK WhdPr oc(HAND hwhd,
Ul NT nmessage,
WPARAM wPar am
LPARAM | Par am
stati ¢ HG_.RC hRC; /1 Permanent Rendering context
static HDC hDC, /1 Private GDI Device context

switch (message)
{
/1 Wndow creation, setup for OpenG
case WM CREATE:
/'l Store the device context
hDC = Get DC(hwhd) ;

/1 Select the pixel format
Set DCPi xel For mat (hDC) ;

/1 Create the rendering context
and make it current

hRC = wgl Cr eat eCont ext (hDC) ;
wgl MakeCurrent (hDC, hRC);

/]l Create a timer that fir es every mllisecond
Set Ti mer (hWhd, 101, 1, NULL) ;
br eak;

/1 Wndow is being destroyed, cleanup
case WM DESTROY:
/1 Kill the timer that we created
Ki Il Ti mer (hwhd, 101);

/] Deselect the current rendering
context and delete it

wgl MakeCurrent (hDC, NULL) ;
wgl Del et eCont ext (hRC) ;

/1 Tell the application to termnate
after the w ndow

Page 118 OpenGL Super Bible!

/1 is gone.
Post Qui t Message(0) ;
br eak;

I/ Wndow is resized.

case WM SI ZE:
[l Call our function which nodifies the clipping
/1 volume and vi ewport

ChangeSi ze(LOMORD(| Par an), H WORD(| Paran)) ;

br eak;

/1 Timer, noves and bounces the rectangle, sinply calls
/1 our previous Onldle function, then invalidates the
// window so it will be redrawn.

case VWM Tl VER

I dl eFunction();

I nval i dat eRect (hWhd, NULL, FALSE) ;
}

br eak;

/1 The painting function. This nessage sent by W ndows
/1 whenever the screen needs updating.
case WM PAI NT:

{
/1 Call QpenG. draw ng code
Render Scene() ;

/1 Call function to swap the buffers
SwapBuf f er s(hDC) ;

/1 Validate the newy painted client area
Val i dat eRect (hWhd, NULL) ;

}
br eak;
defaul t: /1 Passes it on if unproccessed
return (Def WndowProc(hWhd, message, wParam | Param);
}
return (OL);

}

The code for the Windows version of the bouncing square will be quite understandable to
you if you've been following our discussion. Let’s look at a few points that may be of
special interest.

Scaling to the Window

In our AUX library-based example in Chapter 3, the AUX library called the registered
function ChangeSize whenever the window dimension changed. For our new example, we

OpenGL Super Bible! Page 119

need to trap the WM_SIZE message sent by Windows when the call to ChangeSize occurs.
Now we call ChangeSize ourselves, passing the LOWORD of IParam, which represents the
new width of the window, and the HIWORD of |Param, which contains the new height of
the window.

/1 Wndow is resized.

case WM SI ZE:
/1 Call our function which nodifies the clipping
/1 volume and vi ewport

ChangeSi ze(LOMORD(| Paran), H WORD(| Paran));

br eak;
Ticktock, the Idle Clock

Also handled gracioudly for us by the AUX library was a call to our function IdleFunction.
This function was called whenever the program didn’t have anything better to do (such as
draw the scene). We can easily simulate this activity by setting up a Windows timer for our
window. The following code:

/]l Create a tinmer that fires every mllisecond
Set Ti mer (hwhd, 101, 1, NULL) ;

which is called when the window is created, sets up a Windows timer for the window. A
WM_TIMER message is sent every millisecond by Windows to the OpenGL window.
Actualy, this happens as often as Windows can send the messages—no less than a
millisecond apart—and only when there are no other messages in the applications message
queue. (See the Windows API Bible, by James L. Conger, published by Waite Group Press
for more information on Windows timers) When the WndProc function receives a
WM_TIMER message, this code is executed:

case WM TI MER
I dl eFunction();

I nval i dat eRect (hWhd, NULL, FALSE) ;
}

br eak;

The IdleFunction is identical to the version in BOUNCEZ2 except that now it doesn’'t contain
a call to RenderScene(). Instead, the window is repainted by calling InvalidateRect, which
causes Windowsto post aWM_PAINT message.

Lights, Camera, Action!

Everything else is in place, and now it’s time for action. The OpenGL code to render the
scene is placed within the WM_PAINT message handler. This code calls RenderScene
(again, stolen from the BOUNCE2 example), swaps the buffers, and validates the window
(to keep further WM_PAINT messages from coming).

Page 120 OpenGL Super Bible!

case WM PAI NT:

{
/1 Call QpenGL draw ng code
Render Scene() ;

/1 Call function to swap the buf fers
SwapBuf f er s(hDC) ;

/1 Validate the newy painted client area
Val i dat eRect (hWad, NULL) ;

}

br eak;

Here we aso find a new function for the Windows GDI, SwapBuffers. This function serves
the same purpose the auxSwapBuffers—to move the back buffer of a double-buffered
window to the front. The only parameter is the device context. Note that this device context
must have a pixel format with the PFD_DOUBLEBUFFER flag set; otherwise, the function
fails.

That's it! You now have a code skeleton into which you can drop any OpenGL rendering
procedure you want. It will be neatly maintained in a window that has al the usual Windows
properties (moving, resizing, and so on). Furthermore, you can of course use this code to
create an OpenGL window as part of a full-fledged application that includes other windows,
menus, and so on.

Missing Palette Code

If you compare the code from the GLRECT program listing here with the one on the CD, you
will notice two other windows messages that are handled by that code but not by the code
listed here. These two messages, WM_QUERYNEWPALETTE and
WM_PALETTECHANGED, handle Windows palette mapping. Another function,
GetOpenGL Palette, creates the palette for us. Palettes are a necessary evil when using a
graphics card that supports only 256 or fewer colors. Without this code, we could not get the
colors we asked for with glColor, nor even a close approximation when using these particular
cards. Palettes and color under Windows constitute a significant topic that is covered in
Chapter 8, where we give it the attention it deserves. Thisis yet another dirty detail that the
AUX library hid from ug!

OpenGL Super Bible! Page 121

Summary

In this chapter you should have gained an appreciation for al the work that goes on behind
the scenes when you use the AUX library for your program and window framework. Y ou've
seen how the concept of rendering contexts was introduced to the Windows GDI so that
OpenGL would know which window into which it was allowed to render. You have also
learned how selecting and setting a pixel format prepares the device context before a
rendering context can be created for it. In addition, you have seen which Windows messages
should be processed to provide the functionality of the AUX library helper functions for
window resizing and idle-time animation.

The following Reference Section contains some additional functions not covered in this
chapter’s discussion because their use requires some concepts and functionality not yet
introduced. You'll find examples of these functions on the CD, demonstrating all the
functionsin our References. Y ou are encouraged to explore and modify these examples.

Page 122 OpenGL Super Bible!

Reference Section

ChoosePixel For mat

Purpose
Selects the pixel format closest to that specified by the
PIXELFORMATDESCRIPTOR, and that can be supported by the given device
context.
Include File
<wingdi.h>
Syntax
int ChoosePixelFormat(HDC hDC, CONST PIXELFORMATDESCRIPTOR * ppfd);
Description
Thisfunction is used to determine the best available pixel format for a given device
context based on the desired characteristics described in the
PIXELFORMATDESCRIPTOR structure. This returned format index is then used in

the SetPixelFormat function.
Parameters
hDC
HDC: The device context for which this function seeks a best-match pixel format.
ppfd
PIXELFORMATDESCRIPTOR: Pointer to a structure that describes the ideal pixel
format that is being sought. The entire contents of this structure are not pertinent to
its future use. For a complete description of the PIXELFORMATDESCRIPTOR
structure, see the DescribePixelFormat function. Here are the relevant members for
this function:
nSze WORD: The size of the structure, usually set to
sizeof(PIXELFORMATDESCRIPTOR).
nVersion WORD: The version number of this structure, set to 1.
dwrlag DWORD: A set of flags that specify properties of the
pixel buffer.
iPixel Type BYTE: The color mode (RGBA or color index) type.
cColorBits BY TE: The depth of the color buffer.
cAlphaBits BY TE: The depth of the apha buffer.
cAccumBits BY TE: The depth of the accumulation buffer.
cDepthBits BY TE: The depth of the depth buffer.
cSencilBits BY TE: The depth of the stencil buffer.
cAuxBuffers BY TE: The number of auxiliary buffers (not supported

by Microsoft).

OpenGL Super Bible! Page 123

iLayer Type BYTE: The layer type (not supported by Microsoft).

Returns
The index of the nearest matching pixel format for the logical format specified, or
zero if no suitable pixel format can be found.

Example

This code from the GLRECT example code in this chapter demonstrates a pixel format
being selected:

i nt nPi xel For mat ;

stati c Pl XELFORMATDESCRI PTOR pfd = {
si zeof (PI XELFORVATDESCRI PTOR), // Size of this structure
15

¥

/1 Choose a pixel formt that best matches that described in pfd
nPi xel For mat = ChoosePi xel For mat (hDC, &pfd);

/1 Set the pixel format for the device context
Set Pi xel For mat (hDC, nPi xel Format, &pfd);

See Also
DescribePixelFormat, GetPixelFormat, SetPixelFormat

Page 124 OpenGL Super Bible!

Descr ibePixel For mat

Purpose
Obtains detailed information about a pixel format.

Include File
<wingdi.h>

Syntax
int DescribePixelFormat(HDC hDC, int iPixelFormat, UINT nBytes,
LPPIXELFORMATDESCRIPTOR ppfd);

Description
This function fills the PIXELFORMATDESCRIPTOR structure with information
about the pixel format specified for the given device context. It aso returnsthe
maximum available pixel format for the device context. If ppfd isNULL, the
function still returns the maximum valid pixel format for the device context. Some
fields of the PIXELFORMATDESCRIPTOR are not supported by the Microsoft
generic implementation of OpenGL, but these values may be supported by individual
hardware manufacturers.

Parameters

hDC
HDC: The device context containing the pixel format of interest.

iPixelFormat
int: The pixel format of interest for the specified device context.

nBytes
UINT: The size of the structure pointed to by ppfd. If this value is zero, no data will
be copied to the buffer. This should be set to
sizeof(PIXELFORMATDESCRIPTOR).

ppfd
LPPIXELFORMATDESCRIPTOR: A pointer to the

PIXELFORMATDESCRIPTOR that on return will contain the detailed information
about the pixel format of interest. The PIXELFORMATDESCRIPTOR structure is

defined as follows:
typedef struct tagPl XELFORVATDESCRI PTOR {

WORD nSi ze;
WORD nVer si on;
DWORD dwHl ags;
BYTE i Pi xel Type;
BYTE cCol orBi ts;
BYTE cRedBits;
BYTE cRedShi ft;
BYTE cG eenBits;
BYTE cG eenShift;
BYTE cBl ueBits;
BYTE cBl ueShi ft;
BYTE cAl phaBits;

OpenGL Super Bible! Page 125

BYTE cAl phaShift;
BYTE cAccunBits;

BYTE cAccunRedBits;
BYTE cAccunreenBits;
BYTE cAccunBl ueBits;
BYTE cAccumAl phaBits;

BYTE cDept hBi ts;

BYTE cStencil Bits;

BYTE cAuxBuffers;
BYTE i Layer Type;
BYTE bReserved;

DWORD dwiayer Mask;
DWORD dwMi si bl eMvask;
DWORD dwbamageMask;

} Pl XELFORVATDESCRI PTOR;

nS ze contains the size of the structure. It should always be set to

sizeof(PIXELFORMATDESCRIPTOR).

nVersion holds the version number of this structure. It should always be set to 1.

dwilags contains a set of bit flags (Table 4-2) that describe properties of the pixel format.
Except as noted, these flags are not mutually exclusive.

Table 4-2 Fags for the dwHFags member of PIXELFORMATDESCRIPTOR

Flag

Description

PFD_DRAW_TO_WINDOW

PFD_DRAW_TO_BITMAP
PFD_SUPPORT_GDI

PFD_SUPPORT_OPENGL

PFD_GENERIC_FORMAT

PFD_NEED_PALETTE

The buffer is used to draw to awindow or
device surface such as a printer.

The buffer is used to draw to a memory bitmap.

The buffer supporting GDI drawing. Thisflag is
mutually exclusive with
PFD_DOUBLEBUFFER.

The buffer supporting OpenGL drawing.

The pixel format is a generic implementation
(supported by GDI emulation). If thisflag is not
set, the pixel format is supported by hardware or
adevice driver.

The pixel format requires the use of logical
palettes.

Used for nongeneric implementations that

Page 126 OpenGL Super Bible!

support only one hardware palette. This function
forces the hardware palette to a one-to-one
mapping to the logical palette.

The pixel format is double buffered. Thisflag is
mutually exclusive with PFD_SUPPORT_GDI.

The buffer is stereoscopic. Thisis analogous to
front and back buffersin double buffering, only
there are left and right buffers. Not supported by
Microsoft’s generic implementation of OpenGL.

When choosing a pixel format, the format may
PFD_DOUBLE BUFFER_DONTCARE be either single- or double-buffered, without
preference.

When choosing a pixel format, the view may be
PFD_STEREO_DONTCARE either stereoscopic or monoscopic, without
preference.

PFD_DOUBLEBUFFER

PFD_STEREO

iPixel Type specifies the type of pixel data. More specifically, it specifies the color selection
mode. It may be one of the valuesin Table 4-3.

Table 4-3 Flag values for iPixel Type

Flag Description

RGBA color mode. Each pixel color is selected by
specifiying the red, blue, green, and alpha components.

Color index mode. Each pixel color is selected by an index
into a palette (color table).

PFD_TYPE_RGBA

PFD_TYPE_COLORINDEX

cColorBits specifies the number of color bitplanes used by the color buffer, excluding the
alpha bitplanes in RGBA color mode. In color index mode, it specifies the size of the color
buffer.

cRedBits specifies the number of red bitplanes in each RGBA color buffer.

OpenGL Super Bible! Page 127

cRedShift specifies the shift count for red bitplanesin each RGBA color buffer. *
cGreenBits specifies the number of green bitplanes in each RGBA colorbuffer.
cGreenShift specifies the shift count for green bitplanesin each RGBA color buffer. *
cBlueBits specifies the number of blue bitplanes in each RGBA color buffer.
cBlueshift specifies the shift count for blue bitplanesin each RGBA color buffer. *

cAlphaBits specifies the number of apha bitplanes in each RGBA color buffer. Thisis not
supported by the Microsoft implementation.

cAlphashift specifies the shift count for alpha bitplanesin each RGBA color buffer. Thisis
not supported by the Microsoft implementation.

cAccumBits isthe total number of bitplanes in the accumulation buffer. See Chapter 15.
cAccumRedBits is the total number of red bitplanes in the accumulation buffer.
cAccumGreenBitsis the total number of green bitplanes in the accumulation buffer.
cAccumBlueBitsis the total number of blue bitplanes in the accumulation buffer.
cAccumAlphaBitsis the total number of alpha bitplanes in the accumulation buffer.
cDepthBits specifies the depth of the depth buffer. See Chapter 15.

cSencil Bits specifies the depth of the stencil buffer. See Chapter 15.

cAuxBuffers specifies the number of auxiliary buffers. Thisis not supported by the
Microsoft implementation.

iLayer Type specifies the type of layer. Table 4-4 lists the values defined for this member,
but only the PFD_MAIN_PLANE value is supported by the Microsoft implementation.

Page 128 OpenGL Super Bible!

Table 4-4 Fag values for iLayerType

Flag Description

PFD_MAIN_PLANE Layer isthe main plane.
PFD_OVERLAY_PLANE Layer isthe overlay plane.
PFD_UNDERLAY_PLANE Layer isthe underlay plane.

bReserved is reserved and should not be modified.

dwlLayerMask is used in conjunction with dwVisibleMask to determine if one layer overlays
another. Layers are not supported by the current Microsoft implementation.

dwVisibleMask is used in conjunction with the dwLayerMask to determine if one layer
overlays another. Layers are not supported by the current Microsoft implementation.

dwDamageMask indicates when more than one pixel format shares the same frame buffer. If
the bitwise AND of the dwDamageMask members of two pixel formats is non-zero, then
they share the same frame buffer.

* Chapter 8 explains how this applies to devices with palettes.

Returns
The maximum pixel format supported by the specified device context, or zero on
fallure.

Example

This example is from the GLRECT sample program on the CD. It queries the pixel format to
see if the device context needs a color palette defined.

Pl XELFORVMATDESCRI PTOR pf d; /1 Pixel Format Descri ptor
i nt nPi xel For mat ; !/ Pixel format index

/1l Get the pixel format index and retrieve
t he pi xel format description

nPi xel For mat = Get Pi xel For mat (hDC) ;

Descri bePi xel For mat (hDC, nPi xel For mat ,

OpenGL Super Bible! Page 129

si zeof (Pl XELFORVATDESCRI PTOR), &pf d) ;

/1 Does this pixel format require a palette?
If not, do not create a
/1 palette and just return NULL
i f(!(pfd.dwFl ags & PFD_NEED PALETTE))
return NULL;

/!l Go on to create the palette

See Also
ChoosePixelFormat, GetPixelFormat, SetPixelFormat

Page 130 OpenGL Super Bible!

GetPixelFor mat

Purpose
Retrieves the index of the pixel format currently selected for the given device
context.

Include File
<wingdi.h>

Syntax
int GetPixelFormat(HDC hDC);

Description
This function retrieves the selected pixel format for the device context specified. The
pixel format index is a 1-based positive value.

Parameters

hDC
HDC: The device context of interest.
Returns
The index of the currently selected pixel format for the given device, or zero on
fallure.
Example
See the example given for DescribePixelFormat.
See Also
DescribePixelFormat, ChoosePixelFormat, SetPixelFormat

OpenGL Super Bible! Page 131

SetPixel For mat

Purpose
Sets a device context’s pixel format.

Include File
<wingdi.h>

Syntax
BOOL SetPixelFormat(HDC hDC, int nPixelFormat, CONST
PIXELFORMATDESCRIPTOR * ppfd);

Description
This function actually sets the pixel format for a device context. Once the pixel
format has been selected for a given device, it cannot be changed. This function must
be called before creating an OpenGL rendering context for the device,

Parameters

hDC
HDC: The device context whose pixel format isto be set.

nPixel Format
int: Index of the pixel format to be set.

ppfd
LPPIXELFORMATDESCRIPTOR: A pointer to a PIXELFORMATDESCRIPTOR
that contains the logical pixel format descriptor. This structure is used internaly to
record the logical pixel format specification. Its value does not influence the
operation of this function.

Returns
True if the specified pixel format was set for the given device context. False if an
error occurs.

Example
See the example given for ChoosePixelFormat.

See Also
DescribePixelFormat, GetPixelFormat, ChoosePixelFormat

Page 132 OpenGL Super Bible!

SwapBuffers

Purpose
Quickly copies the contents of the back buffer of awindow to the front buffer
(foreground).

Include File
<wingdi.h>

Syntax
BOOL SwapBuffers(HDC hDC);

Description
When a double-buffered pixel format is chosen, a window has a front (displayed)
and back (hidden) image buffer. Drawing commands are sent to the back buffer. This
function is used to copy the contents of the hidden back buffer to the displayed front
buffer, to support smooth drawing or animation. Note that the buffers are not really
swapped. After this command is executed, the contents of the back buffer are
undefined.

Parameters

hDC
HDC: Specifies the device context of the window containing the off-screen and on-
screen buffers.

Returns
True if the buffers were swapped.

Example

The following sample shows the typical code for aWM_PAINT message. Thisis where the
rendering code is caled, and if in double buffered mode, the back buffer is brought forward.
Y ou can see this code in the GLRECT example program from this chapter.

/1 The painting function. This nmessage sent by W ndows
/1 whenever the screen needs updati ng.
case WM PAI NT:

{
/1 Call Open@ draw ng code
Render Scene();

/1 Call function to swap the buffer s
SwapBuf f er s(hDC) ;

/1 Validate the newly painted client area
Val i dat eRect (hWad, NULL) ;

}

br eak;

See Also
glDrawBuffer

OpenGL Super Bible! Page 133

wgl Cr eateContext

Purpose
Creates arendering context suitable for drawing on the specified device context.
Include File
<wingdi.h>
Syntax
HGLRC wglCreateContext(HDC hDC);
Description
Creates an OpenGL rendering context suitable for the given Windows device
context. The pixel format for the device context should be set before the creation of
the rendering context. When an application is finished with the rendering context, it
should call wglDeleteContext.

Parameters

hDC

HDC: The device context that will be drawn on by the new rendering context.
Returns

The handle to the new rendering context, or NULL if an error occurs.

Example

The code below shows the beginning of aWM_CREATE message handler. Here, the device
context isretrieved for the current window, a pixel format is selected, then the rendering
context is created and made current.

case WM CREATE:
// Store the device context
hDC = Get DC(hwid) ;

/1 Select the pixel format
Set DCPi xel For mat (hDC) ;

/1l Create the rendering context and make it current
hRC = wgl Cr eat eCont ext (hDC) ;
wgl MakeCurrent (hDC, hRC);

See Also
wglDeleteContext, wglGetCurrentContext, wglMakeCurrent

Page 134 OpenGL Super Bible!

wglDeleteContext

Purpose
Deletes arendering context after it is no longer needed by the application.
Include File
<wingdi.h>
Syntax
BOOL wglDeleteContext(HGLRC hglrc);
Description
Deletes an OpenGL rendering context. This frees any memory and resources held by
the context.

Parameters

hglrc
HGLRC: The handle of the rendering context to be deleted.

Returns
True if the rendering context is deleted; false if an error occurs. It is an error for one
thread to delete arendering context that is the current context of another thread.

Example

Example shows the message handler for the destruction of awindow. Assuming the
rendering context was created when the window was created, thisis where you would delete
the rendering context. Before you can delete the context, it must be made noncurrent.

/1 Wndow is being destroyed, clean up
case WM DESTROY:

/] Deselect the current rendering context and delete it
wgl MakeCurrent (hDC, NULL) ;
wgl Del et eCont ext (hRC) ;

/1 Tell the application to termnate after the w ndow
/1 is gone.
Post Qui t Message(0) ;
br eak;
See Also

wglCreateContext, wglGetCurrentContext, wglMakeCurrent

OpenGL Super Bible! Page 135

wglGetCurrentContext

Purpose
Retrieves a handle to the current thread’ s OpenGL rendering context.

Include File
<wingdi.h>

Syntax
HGLRC wglGetCurrentContext(void);

Description
Each thread of an application can have its own current OpenGL rendering context.
This function can be used to determine which rendering context is currently active
for the calling thread.

Returns
If the calling thread has a current rendering context