

Multiplayer
Game

Programming

Check the Web for Updates
To check for updates or corrections relevant to this book and/or CD-ROM, visit
our updates page on the Web at http://www.prima-tech.com/support.

Send Us Your Comments
To comment on this book or any other PRIMA TECH title, visit our reader response
page on the Web at http://www.prima-tech.com/comments.

How to Order
For information on quantity discounts, contact the publisher: Prima Publishing,
P.O. Box 1260BK, Rocklin, CA 95677-1260; (916) 787-7000. On your letterhead,
include information concerning the intended use of the books and the number of
books you want to purchase.

http://www.prima-tech.com/support
http://www.prima-tech.com/comments

Multiplayer
Game

Programming

A DIVISION OF PRIMA PUBLISHING

Todd Barron

©2001 by Prima Publishing. All rights reserved. No part of this book may be reproduced or transmit-
ted in any form or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage or retrieval system without written permission from Prima Publishing, except
for the inclusion of brief quotations in a review.

A Division of Prima Publishing

Prima Publishing and colophon are registered trademarks of Prima Communications, Inc.
PRIMA TECH is a registered trademark of Prima Communications, Inc., Roseville, California
95661.

Publisher: Stacy L. Hiquet Copy Editor: Kris Simmons
Associate Marketing Manager: Jennifer Breece Interior Layout: Marian Hartsough Associates
Managing Editor: Sandy Doell Cover Design: Prima Design Team
Acquisitions Editor: Emi Smith CD-ROM Producer: Arlie Hartman
Project Editor: Cathleen D. Snyder Indexer: Katherine Stimson
Technical Reviewer: Greg Perry Proofreader: Erin Hartshorn

Command & Conquer ©1999 Electronic Arts Inc. Command & Conquer is a trademark of Electronic
Arts Inc. in the U.S. and/or other countries. All rights reserved.

Ultima Online Renaissance ©2000 Electronic Arts Inc. ORIGIN, the ORIGIN logo, We create worlds,
Ultima, the UO logo, Ultima Online Renaissance, Are You With Us? and Britannia are trademarks or
registered trademarks of Electronic Arts Inc. in the U.S. and/or other countries. All rights reserved.
ORIGIN™ is an Electronic Arts™ brand. Translation software included under license from Systran
Software ©2000 Systran Software, Inc. All rights reserved. SYSTRAN is a registered trademark of
Systran Software, Inc. in the United States and in other countries.

Microsoft, Windows, DirectX, DirectAudio, DirectInput, Direct3D, Internet Explorer, Visual C++ and
the DirectX 8 SDK are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. 3D Studio Max is a registered trademark and Discreet is a
trademark of Autodesk/Discreet in the USA and/or other countries. WinZip is a registed trademark
of WinZip Computing, Inc. All other trademarks are the property of their respective owners.

Important: Prima Publishing cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Prima Publishing and the author have attempted throughout this book to distinguish proprietary
trademarks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Prima Publishing from sources believed to
be reliable. However, because of the possibility of human or mechanical error by our sources, Prima
Publishing, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of
any information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-chang-
ing entity. Some facts may have changed since this book went to press.

ISBN: 0-7615-3298-6
Library of Congress Catalog Card Number: 00-111679
Printed in the United States of America

00 01 02 03 04 DD 10 9 8 7 6 5 4 3 2 1

For the person who has always given me
support, guidance, and love:

My father

First and foremost, I would like to thank my wife Jennie for taking on most of
the household duties while I worked on this book. Without her support and

encouragement, I never would have been able to accomplish the project.

I would also like to give a big thanks to Prima Publishing for giving me the oppor-
tunity to put my thoughts on paper. Emi Smith and Cathleen Snyder have been a
joy to work with. I really appreciate the fact that they have always been prompt to
answer my many questions and provide valuable assistance. Tech Editor Greg Perry
and Copy Editor Kris Simmons also deserve many thanks for their help in editing
the book.

Next, I would like to thank Bob Miller for the in-book cartoons and the 3D robot
model in SpacePirates. Matt Darr receives my next kudos for helping me debug
video initialization routines and providing general testing. Of course, I cannot go
without thanking everyone on GameDev.net for their help with testing each revi-
sion of the in-book games.

Last, I would like to thank André LaMothe for writing so many books that have
contributed to my game programming skills.

Oh yes, I almost forgot. Thanks to my mother for buying me my first computer, a
Commodore Vic-20. My father also deserves a lot of credit for my love of comput-
ers. You see, when I was writing my first programs at age ten, he told me to quit
wasting my time with computers, because they were a passing fad. Thanks Dad—
my inherited rebellious nature paid off.

Acknowledgments

Todd Barron started writing computer games at the age of ten, using a friend’s
Timex Sinclair computer. In 1990, he deviated from the path of a programmer and
started what was to end up as Vector X Studios, a company specializing in commer-
cial 3D animation. In 1996, he sold his share of the company and pursued his
dream of being a video game programmer. During his time in Philadelphia as Game
Development Manager at Merit Industries, he wrote multiple video games and
worked on their custom networking solution. In 1999, Todd and his wife moved
back to Arkansas, where he accepted a job at Acxiom, a leading information com-
pany. Today, Todd works as a Lead Developer at Acxiom, architecting and imple-
menting network solutions for Acxiom’s online products. In order to satisfy his
game development needs, he operates Lost Logic Inc., a company specializing in
multiplayer game development. You can reach Todd at webmaster@lostlogic.com.

About the Author

Introduction . xxviii

Part One
Understanding the Technology 1
Chapter 1
Sup, Wait! It’s the History of Online Gaming! 3

Chapter 2
Understanding the Magic 39

Chapter 3
Introduction to Network Communication. 73

Part Two
Sockets-Based Network Programming. . . 103
Chapter 4
Writing Your First Network Programs 105

Chapter 5
Creating a Sockets Class Object 149

Chapter 6
Introduction to Windows Programming. 207

Chapter 7
Practical Windows Programming 249

Part Three
It’s All About DirectX, Baby! 285
Chapter 8
What the Heck Is DirectPlay Anyway? 287

Chapter 9
Chatting with DirectPlay 327

Contents at a Glance

ixContents at a Glance

Chapter 10
Lions and Clients and Servers, Oh My! 379

Chapter 11
DirectX Graphics . 423

Chapter 12
Inside Direct3D Rendering 463

Chapter 13
Now Showing, DirectInput and DirectAudio! 523

Chapter 14
SpacePirates: Your First Complete Game 565

Part Four
Developing Online Worlds 641
Chapter 15
MMORPG Design and Implementation 643

Chapter 16
Writing the RPGQuest Game Server 671

Chapter 17
Writing the RPGQuest Game Server 699

Part Five
Appendixes . 733
Appendix A
Game-Development Resources 735

Appendix B
Installing the Software 738

Appendix C
ASCII Chart. 745

Appendix D
What’s On the CD . 750

Index . 752

Foreword . xxv

Letter from the Series Editor. xxvi

ntroduction . xxviii

Part One
Understanding the Technology 1

Chapter 1
Sup, Wait! It’s the
History of Online Gaming! 3
Your Name Will Be MUD . 4

Persistent Worlds . 7

Let There Be Modems . 11

BBS Games. 12

Modem-to Modem Games . 14

Real-Time Strategy Games. 16

Command & Conquer . 17

The Appeal of RTS Games . 17

Massively Multiplayer Online Role-Playing Games 19

Meridian 59 . 19

Ultima Online . 20

EverQuest . 33

Starsiege Tribes . 35

Asheron’s Call . 37

Contents

xiContents

The Present and the Future . 38

Review . 38

Chapter 2
Understanding the Magic 39
Game Loops . 40

Initialization . 41

Inside the Game Loop . 50

Inside Online Games . 51

Client/Server Games . 52

Peer-to-Peer Games . 56

Graphics, Graphics,Where Are the Graphics? 58

Bitmaps. 58

Backgrounds and Layering. 61

Animation and Frames . 62

Blitting . 63

Collision Detection . 65

What about the Third Dimension? . 66

Review . 71

Chapter 3
Introduction to
Network Communication 73
Network Theory . 74

Standard Methods for Game Communication. 75

Game Communication Hardware. 87

Connecting to the Internet. 87

Local Area Networks . 91

Server Architecture . 93

Packet, Packet,Who’s Got the Packet? . 96

The Tic-Tac-Toe Example . 98

Ideal Packet Size . 100

Review . 101

Part Two
Sockets-Based Network
Programming 103

Chapter 4
Writing Your First
Network Programs 105
Overview of the SocketObject Class . 107

SocketObject Class Member Functions . 107

SocketObject Class Sample Code. 108

Writing the ConnectionTest Program . 110

Components Needed to Build the Program . 111

Getting Started with the Compiler . 111

Writing and Compiling the Code . 114

Running the Server and Client Programs . 116

Examining the Code . 118

Writing a Program to Send Data . 123

Components Needed to Build the Program . 123

Writing the SendDataTest Program . 124

Running the SendDataTest Program . 127

Walking through the SendDataTest Code . 128

Writing a Simple Chat Program. 133

Components Needed for the Chat Program . 134

Writing the SimpleChat Program . 135

Running the SimpleChat Program . 141

xii Contents

Walking through the SimpleChat Code. 142

Review . 148

Chapter 5
Creating a
Sockets Class Object 149
C++ Classes in All Their Glory. 150

An Overview of C++ Smaller than a Fly Burp . 150

Get to the Point Already! . 156

Designing the SocketObject Class . 158

The SOCKET Data Type . 159

The Bind Functionality . 160

The SOCKADDR Data Type. 161

The Socket() Function . 163

The C Version of Binding . 163

The C++ Version of Binding . 168

The Listen Functionality . 172

The Listen() Function . 174

The C++ Version of Listening . 175

The Accept Functionality . 177

The Accept() Function . 178

The C++ Version of Accepting a Client Connection 182

The Connection Functionality. 184

The Connect() Function . 185

The C++ Version of Establishing a Connection . 190

Sending Data . 193

The C Version of Sending Data . 193

The Send() Function . 196

The C++ Version of Sending Data. 197

xiiiContents

Receiving Data. 199

The Recv() Function . 199

The C Version of Receiving Data . 200

Receiving Data with C++ . 204

Review . 206

Chapter 6
Introduction to
Windows Programming 207
A Brief History of Time According to Gates. 208

DOS . 208

Windows 1.0–2.0 . 209

Windows 3.1–3.11 . 209

Windows 95 . 210

Windows 98 . 210

Windows 2000 and Others . 211

The Architecture of Windows Programs . 211

Multitasking . 211

What Is a Window Anyway? . 214

Events That Don’t Even Require a Ticket . 215

How to Make Sense of Windows Code . 220

MFC, Insert Favorite Acronym Here. 222

Why It’s a Good Thing . 222

Why It’s a Bad Thing . 223

A Little Compromise . 223

Creating a Window from Start to Finish . 224

The All Important WinMain() Function . 224

xiv Contents

Handing Window Messages and Events . 236

The Complete Code Listing . 239

Basic Theory of Multithreading . 241

Stack Space . 242

Communicating with Threads . 243

Thread Synchronization with Mutexes . 244

Creating a Thread Using CreateThread() . 246

Closing a Thread Properly. 247

Review . 248

Chapter 7
Practical Windows
Programming 249
Setting Up the Visual C++ Project . 250

Creating the Hello World Program. 253

The PeekMessage() Function. 256

Adding Static Text to a Window . 257

Resource Identification . 260

Creating a Child Window . 261

Having Fun with Buttons in Windows . 264

The Button Class . 267

The ListBox Child Class Object . 270

The CreateWindowEx() Function. 274

The SendMessage() Function . 276

Accepting Text Input with Edit Fields . 278

The GetWindowText() Function. 282

The WinUberClient Program . 283

Review . 284

xvContents

Part Three
It’s All About DirectX, Baby! 285

Chapter 8
What the Heck Is
DirectPlay Anyway? 287
DirectPlay, the Equalizer . 288

Service Providers . 289

Game Sessions . 290

DirectPlay Addresses . 296

The Address Object . 296

IDirectPlay8Address Functions . 300

Components of an Address . 300

The DirectPlay Message Handler . 303

Creating the Message Handler . 304

Processing Messages . 305

Peer-to-Peer Sessions . 308

Initializing a Peer-to-Peer Session . 309

Hosting a Peer-to-Peer Session. 314

Joining a Peer-to-Peer Session. 322

Review . 326

Chapter 9
Chatting with DirectPlay 327
Creating the Project Space . 328

The DPChat Header File . 330

The Main Project File . 335

Review . 377

xvi Contents

Chapter 10
Lions and Clients
and Servers, Oh My!. 379
The Wicked Server of the West . 380

Client/Server Architecture Overview . 381

The IDirectPlay8Server Interface . 384

The IDirectPlay8Address Interface . 388

Hosting the Session . 388

Managing Players . 393

Receiving Client Messages . 398

The hrSendServerMessage() Function. 402

The IDirectPlay8Client Interface . 406

Joining the Server’s Session. 409

Sending Messages to the Server . 417

Review . 421

Chapter 11
DirectX Graphics 423
What Is Direct3D?. 424

Device Independence . 425

Software Emulation. 426

Texture Mapping . 427

Mip-Mapping . 427

Gouraud and Flat Shading . 430

Multiple Hardware Lights . 431

Hardware Acceleration . 432

Page Flipping . 433

xviiContents

Z-Buffers . 433

Fog . 435

How to Use DirectGraphics . 436

The IDirect3D8 Interface . 436

Your First Direct3D Application . 444

Setting Up Visual C++ for 3D Applications . 448

The WinMain() Function . 448

The hrInit3D() Function . 449

The vRenderScene() Function. 452

The vCleanup() Function . 455

Your Second Direct3D Program . 456

The D3DXMATRIX Data Type . 456

The D3DXVECTOR3 Data Type. 456

The vSetupView() Function. 457

Review . 462

Chapter 12
Inside Direct3D Rendering 463
Polygons . 465

Cartesian Coordinate Systems . 465

Primitives. 466

Point Lists . 467

Line Lists . 467

Line Strips. 468

Triangle Lists. 469

Triangle Strips . 469

Triangle Fans . 470

xviii Contents

Drawing a Primitive. 470

The Header Information . 478

The Globals . 478

The WinMain() Function . 481

The hrInit3D() Function . 482

The vInitGeometry() Function . 482

The vSetupView() Function. 487

The vRenderScene() Function. 488

The vCleanup() Function . 492

Show Me the Textures!. 492

The Header Changes . 493

The vInitGeometry() Changes . 494

The vRenderScene() Changes . 498

The vCleanup() Changes. 500

Lights, Cameras, Action! . 501

The D3DFVF_NORMAL Vertex Format . 501

How to Create Hardware Lighting . 505

Loading X-Files . 511

The XFileLoader Project Space. 511

The XFileLoader Header . 511

Loading the X-File . 512

Rendering the X-File. 515

The Living World . 517

Radians or Die!. 518

The Dynamic Message Loop . 518

Reading the Arrow Keys . 519

The Rotation Matrix . 519

Review . 521

xixContents

Chapter 13
Now Showing, DirectInput
and DirectAudio! 523
Using a Keyboard with DirectInput. 524

The IDirectInput8 Interface . 524

The DirectInputKeyboard Project . 525

The DIK_Read Project . 538

Introduction to DirectAudio . 545

The IDirectMusicLoader8 Interface . 545

The IDirectMusicPerformance8 Interface . 546

The IDirectMusicSegment8 Interface . 546

How to Initialize DirectAudio . 547

The DirectAudioInit Header Information . 547

The hrInitDirectAudio() Function . 548

Cleaning Up DirectAudio . 554

Playing Sound with DirectAudio . 554

New Additions to the Project . 555

The hrLoadSound() Function . 557

The hrPlaySound() Function . 561

Cleaning Up the Segment . 563

Review . 564

Chapter 14
SpacePirates: Your First Complete
Game 565
SpacePirates:The Game Design . 566

The Game Objective . 566

The Game Objects . 567

xx Contents

Game Timing . 570

Time-Based Movement . 571

Network Synchronization . 573

Scheduled Updates . 574

Non-Synchronization . 574

The Game Classes . 575

The Sound Classes . 575

The 3D Object Class . 583

Space Pirates: The Game Architecture . 593

The WinMain() Function . 594

The vInitializeObjects() Function . 594

The hrInitializeDirectPlay() Function . 595

The hrInit3D() Function . 598

The hrBuildDeviceList() Function . 602

The hrInitDirectInput() Function . 610

The hrInitKeyboard() Function . 610

The vInitGeometry() Function . 612

The vSetupView() Function. 615

The vCreateLights() Function . 616

The vInitSoundEngine() Function . 617

Controlling the Game . 617

The Command Console . 617

Movement Keys . 619

The Game Loop . 620

Updating the Game. 621

The vUpdateObjects() Function . 622

Updating the Remote Players . 629

Rendering the Scene. 631

xxiContents

Player Management . 637

The DirectPlayMessageHandler() Function . 637

Review . 640

Part Four
Developing Online Worlds. 641

Chapter 15
MMORPG Design
and Implementation 643
Game Architecture . 644

Persistent Worlds . 644

Every Player Is a Hero . 656

Player Communities . 659

The Good, the Bad, and the PK . 660

Player Advancement . 661

Item Ownership . 662

Server Architecture . 663

Server Specifications . 663

Internet Connection . 664

Server Layout . 664

Server Security . 665

Player Validation . 667

Client Architecture . 667

Action Validation . 667

Dynamic Patching . 668

Client Portability. 669

The User Interface . 669

Review . 670

xxii Contents

Chapter 16
Writing the RPGQuest
Game Server 671
The Game Project Space . 672

RPGQuest Gameplay . 674

Program Structure . 677

The Game-Server Code . 678

The WinMain() Function . 679

Processing Player Messages. 687

Calculating the Time of Day . 696

Updating the Players . 697

Review . 698

Chapter 17
Writing the RPGQuest
Game Client 699
The Project Space . 700

The Object3DClass Files . 701

The SoundSystem Class Files . 702

The Graphics System . 703

Direct3D Initialization. 704

Loading the 3D Data . 707

Lighting the Scene. 709

Setting the Camera Position . 710

Setting the Client’s Time of Day . 711

Rendering the Scene. 713

Sound and Input Handling. 718

Handling DirectInput . 718

Handling DirectSound. 720

xxiiiContents

Network Handling . 720

Sending Messages to the Server . 721

Processing Incoming Messages . 725

Player Synchronization . 730

Review . 731

Part Five
Appendixes. 733

Appendix A
Game-Development Resources . . . 735
Gaming Sites . 736

Development Sites . 736

Product Sites . 737

Magazines . 737

Appendix B
Installing the Software. 738
Installing the DirectX 8 SDK. 739

Configuring the Microsoft Visual C++ Compiler 742

Appendix C
ASCII Chart 745

Appendix D
What’s On the CD. 750

Index 752

xxiv Contents

Foreword

Why should you read a book on making MMPs? Because MMPs have the
potential to become the method of interaction across all borders for this

decade. This technology represents an opportunity that has never existed before—
game developers can now enact social change in a positive way. I became a game
designer at Turbine Entertainment Software, the creators of Asheron’s Call, because
I fervidly want to influence that change.

MMPs provide a fascinating, addictive new way to play games. Some of us make
games because we dislike corporate culture, love games, or refuse to “grow up.”
Some of us make games because we want to change the world. MMPs provide game
developers with a way to give players a new forum in which to play, meet people
from afar, work together, become friends, and fall in love.

We’ve read Snow Crash; we know where technology, and therefore society, is
headed. Creating MMPs allows us to shape the future of human interaction. Who
wouldn’t want to be a part of that kind of movement?

As a Lead Designer at Turbine, I work with people who have vastly different back-
grounds. Anthropologists, architects, philosophers, writers, and a whole host of
other people get together at Turbine to make socially significant games. So, go on,
read Todd’s book. Then go out and make a great game. The world is waiting for us
to change it.

Patricia Pizer
Turbine Entertainment Software

xxvi Letter from the Series Editor

Letter from the
Series Editor

If there’s one thing that many game programmers have no idea how to do,
it’s networking! It’s not that writing network code is hard, or that creating
multiplayer games is impossible, it’s just not something that many people
can learn, simply due to hardware constraints. Let’s face it, how many of
us have four to eight computers on which to run little networks and game
simulations in our homes? Therefore, the people who have knowledge
about networking and multiplayer game programming usually come from
an industry where they have the hardware and opportunity to learn and
develop these types of games. Now, luckily for us, the man who wrote this
book, Todd Barron, is just such a person. He is a professional game pro-
grammer and an expert in networking and multiplayer game program-
ming. The hard part was getting him to write this book, but with the
proper motivation (how’s that arm, Todd?), he did it! I’m kidding—Todd
wanted to write this book and we are all glad. Multiplayer Game
Programming contains information that you will not find anywhere else—
period! There are no books, no journals, nothing, nada, zilch about this
kind of game programming. Sure, you might think that you have seen
books on the topic, but they are all extremely simple or they cover general
concepts in a broad scope. Multiplayer Game Programming is a pedal-to-the-
metal, real-world doctrine on one of the most complex areas of game pro-
gramming, about which very little has been published.

Now at Prima, one of our goals with the Game Development series is to
have all of the books cover game programming concepts and teach
the main theme of the book, and Multiplayer Game Programming is no
exception. Todd starts you off with basic and online gaming background,
and then covers introductory networking concepts and programming tech-
niques. Then, he moves on to explaining network sockets and creating a
networking class. Once you have that under your belt, it’s time for a crash
course in Windows programming—just enough so that if you’re a C/C++
programmer with a heartbeat, you should be able to write a minimal
Windows application to support your game’s infrastructure. At this point,
the book gets freaky. It covers simply everything you could ever want to
know about networking and game programming. Networking models such

xxviiLetter from the Series Editor

as peer-to-peer, client server, and massive online RPG systems are
explained. Synchronization techniques are discussed, compression issues
are brought up, and full client and server designs are built and imple-
mented. And did I mention that the book covers just enough Direct3D to
allow you to create a 3D game? But don’t take my word for it—look at the
Table of Contents. This book has it all! This is the book that everyone has
been waiting for on the subject of networked and multiplayer game pro-
gramming. And if that wasn’t enough, Todd Barron understands that a
picture is worth a thousand words, and he has beautifully annotated this
book with figures and other visual aids to help you understand the com-
plex interrelationships of many networking and multiplayer concepts. Put
simply, this book rocks!

In today’s fast-moving world of game programming technology, you don’t
have the time or the hardware resources to figure this stuff out from
scratch. You need a guide from an expert in the field, who will show
you the technology from square one, so you can jumpstart yourself in
the fastest growing segment of gaming in the world. And this book is the
key. . . .

Sincerely,

André LaMothe
Series Editor

Introduction

Hello and welcome to the first comprehensive book on writing games that play
across the Internet or networks. It has been a long time coming, but now you

finally have access to a book whose focus is on multiplayer game programming! I
remember back in the early ‘90s, I was feverishly searching for a book on network
programming for games. It didn’t take very long for me to realize that I would not
find such a book, considering the fact that multiplayer games were not popular at
the time. It was at that moment that I vowed to write a book about multiplayer
game programming once I learned how to do it myself. Well, here you go, my per-
sonal vow is now fulfilled, as promised!

What Lies Ahead
When I first started writing the outline for this book, I had a hard time deciding
what information I could pack into a single volume. As it turns out, I decided to
include information about everything from basic Windows programming to
Direct3D with DirectX 8. I think that you will be very pleased with the results. In
the pages to come, you will learn about:

◆ The background of online gaming
◆ How online games tick
◆ Basic networking
◆ Making programs communicate with sockets
◆ Basic C++ programming
◆ Windows programming
◆ DirectPlay without dialog boxes
◆ DirectPlay peer-to-peer programming
◆ DirectPlay client-server programming
◆ Direct3D programming
◆ DirectInput programming
◆ Massively multiplayer game design

xxixIntroduction

Hopefully, you will be as excited as I was when I ran my first program that sent a
message between two computers. I had written a small sockets program to send a
hello message to another PC. It was such a glorious moment of relief the first time
it ran, because I realized I had finally figured out network programming! Not that
it was a bad thing, but the usual sinking feeling followed, because I realized how
much I still had to learn.

Who Can Understand
This Stuff Anyway?
One question you might have is, how much do you need to know to use this book?
There is no clear answer on that one, but I will give you my two cents worth.
Although knowing how to write in C++ is a big benefit, if you know how to write
proficiently in at least one computer language, you should be okay. It all really
depends on how well you pick up new things. To make this book an easy read, I
recommend that you at least know C programming, and you have a basic under-
standing of how games work.

I also recommend that you have access to the Internet or to a network. Not to
worry, though, if you don’t have multiple computers lying around your house—
all of the programs will work on a single PC.

As far as software goes, you should at least have Windows 95, Windows 98, or
Windows 2000 as your operating system. For a compiler, I use Microsoft’s Visual
C++ 6.0 compiler for all of the source projects, but feel free to use whichever com-
patible C++ compiler you like.

Working with the CD-ROM
The CD that comes with this book contains some very important software. Be sure
to install all of the code to your local machine, as you will need it for the sample
applications. Another important piece is the
DirectX 8 Software Development Kit. It is required
for the programs to work properly. The SDK is
included on the CD, and you can refer to
Appendix B, “Installing the Software,” to learn
how to install it.

NOTE
All of the DirectX-related
code in this book is based
on version 8 of the
DirectX SDK.

The Style of the Book
One of the first things you might notice about my writing style is that I follow a
pretty loose form of prose. My code follows a basic style, because I like to keep
things as simple as possible. I do not use the most complicated code here, because
I prefer to keep it clean and easy to read for demonstration purposes.

One of the promises I do make is to help you if you have any problems with the
text or code. Please e-mail me at webmaster@lostlogic.com if you have any prob-
lems or questions. You can also visit my Web site at http://www.lostlogic.com for
updates and articles about game programming.

Enjoy!

xxx Introduction

http://www.lostlogic.com

Part One

Understanding
the Technology

1 Sup, Wait! It’s the History of Online
Gaming!

2 Understanding the Magic

3 Introduction to Network
Communication

CHAPTER 1

Sup, Wait!
It’s the
History

of Online
Gaming!

Imagine yourself traveling into another dimension. A dimension of not only sight
and sound, but also of the Internet. A journey into a wondrous land whose

boundaries are only limited by coders. There’s a prompt up ahead—get ready—
it’s your turn to click OK!

Doo-de-doo-doo, doo-de-doo-doo. All right, I must apologize to ol’ Serling for that little
abomination; let’s move on. First, I want to welcome you to Chapter 1 of this book.
As with any good beginning, I am going to start with the foundation of online
games—you know they always say history is the best teacher. So sit down for a bit
and I’ll tell you a little about the history of online gaming.

Before I can discuss the history of online gaming, I must first establish what an
online game really is. An online game is nothing more than a game played over
some means of communication. The most common form of communication
employed by games today is the Internet. I hope you have heard of the Internet by
now; if you haven’t, wake up! Okay, maybe that’s a little harsh; here you go: The
Internet is a series of computers connected to a central network.

In this chapter, you will learn the history of the following game types:

■ Multiuser dungeons
■ Modem games
■ Real-time strategy games
■ Massively multiplayer online role-playing games

Your Name Will Be MUD
The big question is, how did games evolve out of the confines of single-playerdom?
The answer is not all that easy to give because it is a little fuzzy, but I’ll take a stab
at it. In a land not too terribly far away, massively multiplayer games started appear-
ing on university computer systems. These games were text-based and simple in
nature, but massive numbers of students played them for hours on end. The com-
mon term used to describe these games is MUD (Multiuser Dungeon).

Multiuser dungeons are large-scale games that usually take place in a fantasy-type
setting. When you log on to play one of these games, you first create a character to
represent yourself in the game world. Usually, you are given a set of points to spend

4 1. Sup, Wait! It’s the History of Online Gaming!

on different attributes, which lets you customize your character. For example, take
a look at a set of fictitious character attributes in Table 1.1.

Using these four attributes, you could create a character to your liking. Imagine
that you want to create a rugged fighter to smash your enemies. To create a fighter,
you assign many points to strength and endurance. This gives your character the
ability to inflict massive damage while being able to sustain hits. If you want to cre-
ate a master of magic, assign most of your points to intelligence and wisdom. When
you do so, your character becomes a wise and powerful wielder of spells. My fighter
in Asheron’s Call is named Sakei, and he can be seen in Figure 1.1.

After you create a character, you then enter the game world.
In many scenarios, newbies start out in a tavern or meeting
place.

Once your newbie character is in the game world, you can
then begin adventuring around the game. Because most
MUD games are text-based, you have to navigate the game
with text commands. If you are old enough to remember
text adventure games such as the ones by Scott Adams (not
the Dilbert guy), you should be familiar with the command sets. Most of the com-
mands consist of two words, a verb and a noun. For a list of sample commands,
take a peek at Table 1.2.

5Your Name Will Be MUD

Table 1.1 Sample MUD Character Attributes

Attribute Effect

Strength How strong your character is. A higher strength results in more
damage dealt with melee attacks.

Intelligence How smart your character is. Characters with higher intelligence
do better with the schools of magic.

Endurance A character’s ability to sustain movement or activity. Characters
with a high endurance can withstand more physical damage.

Wisdom How wise and knowledgeable a character is. Having a higher wis-
dom allows a character to understand more complex magic.

The term newbie
commonly refers to
a new player to a
game. Most players
help out newbies,
but some predators
just wait to scam
them.

This should give you the idea of the commands used in MUDs. When you enter a
command, the game server processes it and sends you a response. For instance, if
you move north, you get a description of the new area into which you move. The
entire game is played out this way, and the majority of the action takes place in
your imagination. This is one of the reasons why people enjoy these types of
games—they spur their imaginations.

6 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.1

Sakei, my fighter in
Asheron’s Call

Table 1.2 Sample MUD Commands

Command Effect

Move North Causes your character to move north

Look Target Gives you a detailed description of the target person, place,
or thing

Attack Target Causes your character to engage the target in combat

Show Inventory Displays a list of items your character is carrying

Take Item Causes your character to pick up a certain item

The cool part about MUDs is that many players play them simultaneously. When
you wander around the game world, you run into other players in the game.
Everything that your character does can have an effect on other players. For exam-
ple, if you drop a pile of gold on the ground, another player can pick it up. This
type of interaction spawns all sorts of social situations. Once you are no longer play-
ing in a closed game, you have to weigh the consequences of your actions. This
brings you to the topic of persistence.

Persistent Worlds
Multiuser dungeons provide a persistent-world experience for players. When an
online game is persistent, the game world is always present, even when players are
offline. You can think of it as work or school. When you go on your lunch break,
other people are still busy with their work. The world does not come to a standstill
just because you are away; it persists. So unlike The Sims, a game you might know of,
persistent-world games don’t freeze when your computer is shut down.

Being persistent, these types of games result in dramatically different play styles.
The main difference for players is the amount of time invested. Persistent-world
games require vast amounts of personal time to master. Whereas you might be able
to beat the latest iteration of Resident Evil in 45 hours, persistent-world games are
never truly won.

Reel ‘Em In, They’re Hooked!
So what makes people play MUDs for hours on end? I like to think that the expla-
nation has three aspects: competition, ownership, and society. Sure, there is a lot
more to the reasoning than just three aspects, but they form the roots.

Character Advancement and Competition
The first thing that keeps players going in these worlds is competition. Most people
love to compete, and these worlds offer endless opportunities for it. In the previous
MUD game example, you looked at some possible character attributes. Not only do
characters gain possessions during their lifetimes, but they also get stronger and
better at what they do. Some games use skill systems to measure advancement,
while others use levels.

When a character starts out in a MUD for the first time, he normally starts at what
is called level one. A level-one character is fresh to the world and arrives with begin-
ning skills and attributes. As you play characters, they gain experience with their

7Your Name Will Be MUD

skills. Take, for instance, the example of a fighter character. When the fighter char-
acter kills creatures, he gets better at using his sword. To give players a sense of
accomplishment, most games use an experience point system. Figure 1.2 illustrates
the gap between veteran and newbie characters.

Experience points are generally awarded to characters when they do something that
requires use of their skills. So, the fighter gets experience points when he bashes
some evil creature. Or, the magic user might get experience points from casting
some difficult spell. Once characters have amassed a certain number of experience
points, they gain a level. Normally when a character gains a level, he gets to
increase his skills or attributes. For example, if a fighter goes from level one to level
two, he probably gains some strength and endurance. This process goes a long way
to setting higher-level characters apart from lower-level characters. Higher-level
characters have much higher attributes and statistics. To get an idea of how levels
correspond to experience points, look at Table 1.3.

8 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.2

Can you spot the
newbie in this
picture?

As you can see by looking at Table 1.3, it gets harder to advance in levels as your
character rises through the ranks. This keeps people from rocketing to the top of
the food chain in a short amount of time. With an advancement curve, you also
keep new players from feeling too far out of reach of the high players. Now, here is
the good part for you accountants out there: Because it gets difficult for players to
advance at later stages, they have to spend vast amounts of time playing the game.
Because they have to spend vast amounts of time playing the game, they also have
to spend money monthly to maintain their subscriptions. The natural drive of com-
petition is generally enough to keep most players coming back for more. Because
other players are constantly online, they are gaining experience points and levels.
And because they are gaining levels, they are either catching up to you or passing
you. We can’t let that happen, now can we?

Many people might argue with me about the significance of competition. Some
players out there couldn’t care less about competition, but believe me, they are the
minority.

Ownership
Ah, the concept of ownership is my personal favorite. Ownership is what I have
seen keep the majority of online gamers coming back for more. In many multi-
player online games, such as MUDs, players acquire possessions as they play. Take,
for instance, the magic-wielding character example; he probably gains all sorts
of arcane magic in his travels. The fighter character might find special weapons
and unique armor. All of these items are completely virtual, but to the player, they

9Your Name Will Be MUD

Table 1.3 Experience Points for Levels

Level Experience Points

1st 0–1,500

2nd 1,501–3,000

3rd 3,001–10,000

4th 10,001–25,000

5th 25,001–75,000

represent a time investment. And you know what they always say, time is money. So
as players get better at these games, they acquire better items. As the players
acquire better items, they normally hunger for even better goods.

Take, for instance, the following scenario involving the fighter-character example.
Suppose that at level one, he starts with a short sword. While adventuring around,
he gets to level five and comes across a long sword. The new long sword does a lot
more damage, so now he can fight some tougher creatures. Now that he can fight
tougher creatures, he gets experience points faster and moves up in levels. The
fighter is now level ten, but the creatures he encounters are very tough, so he
wishes for a better weapon. He finds then a magic long sword and can dispatch his
current foes with ease. This scenario continues to pan out until the player reaches
the limits of the game he is playing. Most online game developers continually add
content to keep players from ever reaching the top. One of life’s little lessons is
illustrated in Figure 1.3.

Okay, here is how this turns into long-term commitment for a game player. For
players to get very high-level characters in most of these games, they must invest

10 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.3

Greed, the root of all
evil

days of their time and effort. That’s right—days, weeks, and even months of time.
Believe it or not, many people play these games for years. Heck, I’ve had an Ultima
Online account for more than three years! Anyway, once players acquire tons of
items and power, they are usually reluctant to give it all up. This is how ownership
keeps them coming back for more. I also refer to it as the investment factor. Either
way, the bottom line is that people don’t like to give up something for which they
have worked hard, virtual or not.

Society
Society, the last hook I’ll discuss, is one of the most complicated. You probably
could write a short book on the subject. The easiest way I can explain it is that peo-
ple are social creatures, so they like to socialize even when gaming. Most people
who play MUDs, or any other persistent-world game, spend large amounts of time
meeting other gamers online. I know that when I first beta-tested EverQuest, I spent
way too much time socializing and never got a high enough level to test out many
areas. Of course, I didn’t know what the heck I was doing either, so that might have
kept my levels down, too!

If you’ve ever played a persistent online adventure game, you have probably heard
of online weddings. In fact, I was playing Asheron’s Call the other day, and our guild
monarch had a virtual wedding online. So you see, people can form strong friend-
ships and ties in online games. This is why I mention society as a hook. Many peo-
ple keep playing these games just to keep friendships going strong. As a prime
example of in-game friendships, Figure 1.4 shows a virtual wedding I attended in
Asheron’s Call.

That’s about it for MUDs and the like. As I said before, many of these old university
games are still around, and a few of them even have Java interfaces for the Internet!

Let There Be Modems!
This is the part where I reminisce about my very first 300 baud modem. Some time
back in the 1800s, modems became popular on personal computers. Okay, that
might not be entirely true, but it seems like a long time ago. Anyway, modems
started coming out for PCs, and people bought them up like hotcakes. The first
popular modems were insanely slow by today’s standards, but they were a blast to
play with. Besides chatting with other people and sharing files, you could also play
games with them. The games you could play weren’t like EverQuest, but they were
fun in their own right.

11Let There Be Modems!

BBS Games
The games you could play on these early modems took place on BBSs (Bulletin
Board Systems). Although the Internet has all but wiped them off the face of the
Earth, BBSs are still around today. The games you can play on them are similar to
those played on university networks. All of the games are text-based and usually
consist of simple commands and rule sets.

One of my all-time personal favorite BBS games was called Empire. In Empire, you
were allowed to play only so many turns per day. On most of the systems where I
played this game, you could only make one turn per day. The basic objective of the
game was to build your empire through a larger population base and then use that
population base to amass a huge army. Once you had a large army, you could
defeat your neighbors and one day be supreme leader of the game. Most of the
games lasted about a month, and several ran simultaneously. Playing the game
never had a long-term goal; you usually just got your name somewhere on the BBS
as the winner. I poked around the Internet and came across an example BBS game
called 7th Circle. Figure 1.5 shows the 7th Circle screen.

12 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.4

Dnasty Arashi’s
wedding in
Asheron’s Call

So what made BBS games so much fun to play? Well, for one thing, most of the games
had the same hooks I mentioned in MUDs. Your empire would expand and get better
with play, you had to invest time to beat it, and you were able to socialize with your
opponents. To better illustrate this, take a look at a common set of turns in Empire.

1. Join a new game and start with 200 gold, 200 citizens, and 500 food.

2. Buy 50 farms for 100 gold, leaving you with 100 gold.

3. Buy 50 houses for 50 gold, leaving you with 50 gold.

4. End turn.

5. Your farms generate 50 food, leaving you with 550 food.

6. 50 people move into the 50 new houses; you now have 250 citizens.

7. The new population of 250 eats 250 food, leaving you with 300 food.

8. Your population generates one gold piece for each citizen, which nets you
250 gold. You now have 300 gold in your coffers.

9. At this point, your farms cannot sustain your population, so you buy another
150 farms for 300 gold. This leaves you with 0 gold and 200 farms.

10. End turn.

11. Your 200 farms generate 200 food, leaving you with 500 food.

12. The population of 250 eats 250 food, leaving you with 250 food.

13. Your population generates one gold piece for each citizen, which nets you
250 gold. You now have 250 gold in your coffers.

14. Your farms still cannot sustain the population, so you buy another 100 farms
for 200 gold. This leaves you with 50 gold and 300 farms.

13Let There Be Modems!

Figure 1.5

Output from the 7th
Circle BBS game

15. End turn.

16. Your 300 farms generate 300 food, leaving you with 550 food.

17. The population of 250 eats 250 food, leaving you with 300 food.

18. Your population generates one gold piece for each citizen, which nets you
250 gold. You now have 300 gold in your coffers.

19. The farms now sustain your population and even leave you with some extra
at the end. Now it’s time to save for an army.

20. End turn.

Even from this little example, you might start to get the idea of why the games
were, and still are, a lot of fun. They have no spectacular graphics or sounds, but
the strategy involved in winning the games can be quite in-depth. The entire game
of Empire wasn’t completely based on numbers either; random events occurred for
good measure. I remember that in one instance, I started a turn and a random
event let rats eat most of my grain in storage. This caused many of my people to
starve. As a result, I had to rethink my strategy in midstream and do some serious
damage control. So you see, games can be fun without all of the hype and glamour.
This leads me to something I have always tried to reiterate, “Games are about
gameplay.” Guess it doesn’t take a genius to see that, eh?

Modem-to-Modem Games
Back in the late 1980s, a designer named Dani Bunten Berry created one of the
first multiplayer games for the Commodore 64. Modem Wars could be played by two
players connected via modems. A small publisher named Electronic Arts published
the game. Of course, Electronic Arts is now a huge publishing company that owns
many game-development houses. Anyway, I always think it’s kind of interesting to
see how quickly things evolve.

Modem Wars was similar in basic design to popular real-time strategy games of today.
In the game, you basically selected units and then clicked where you wanted them
to move. The units attacked enemies if they came within range along the way. I
once read somewhere that Berry used four-byte packets to transmit all game data.
The program used deltas to figure out each player’s game state. One of the coolest
aspects of the game was that everything happened in real time. You took no turns,
just all-out fun. This game was significant because no other game of its type had
been published up to this point. Everything was designed with solo play in mind.
One of the main reasons for this was that modems weren’t popular yet. However, by

14 1. Sup, Wait! It’s the History of Online Gaming!

the time modems became popular, Modem Wars had been discontinued. It was a fun
game that followed the KISS standard, otherwise known as “Keep it simple,
stupid.” Berry was a fierce believer in keeping games simple and fun. Most of her
games followed this belief and proved to be popular successes.

Not too many years after games such as Modem Wars were released, other games
started following suit. In most multiplayer games of the early 1990s, your only
option was to connect via a direct modem-to-modem connection. In a direct
modem-to-modem game, you basically either put your modem into accept mode or
dial into your friend’s modem, which is in accept mode. Because the modems had
to connect to each other directly, only two computers could connect at once. Most
of these games also gave you the ability to connect via a null-modem cable, which was
nothing more than a special serial cable. To see how these types of games connect,
refer to Figure 1.6.

You will find that DirectPlay and some other networking libraries still support serial
cables and modem-to-modem connections. I personally do not bother with them
because almost everyone uses TCP/IP via the Internet now. The main drawback to
modem-to-modem connections is that they support only two players at a time. This
setup is fine for certain types of games, but most games out today support more
than two players.

15Let There Be Modems!

Player 1
555-1212

Player 2
555-0001

Communication Traffic

Modem Modem

Figure 1.6

Modem-to-modem
connection
architecture

Real-Time Strategy Games
For a long time, relatively few multiplayer games on the scene worked with more
than two players at a time. The game I remember changing all of this was Command
& Conquer by Westwood. Now, C&C was not the first game out to offer four players
online at the same time, but it was one of the most popular. It also happens to be
one of my favorite games of all time. Games such as Command & Conquer used a
communication protocol called IPX, which was mainly intended for communica-
tion across closed networks, or LANs. Because C&C did not have any built-in sup-
port for connecting to the Internet, you had to use special software. You can see an
in-game scene of Command & Conquer in Figure 1.7.

Enter stage left, Kali Inc. Kali Inc. released a piece of software that allowed you to
create and join games that used IPX across the Internet. You connected to the
Internet with your modem and then launched the Kali software. Once the software
was loaded, you could then set a game to play with it. Kali handled all of the con-
necting of players and then launched the game when ready. The software was really
great to use at the time and allowed distant friends to play together. By today’s stan-
dards, though, it was a pain in the rear to use. The main problems stemmed from

16 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.7

Command &
Conquer
(©1999 Electronic

Arts.All rights

reserved.)

the fact that it was difficult to find others who used Kali. You could find other play-
ers, but you never knew with whom you were dealing. I can’t begin to count the
number of games I started only to have the opponent drop the connection within a
few minutes.

Command & Conquer
Anyway, enough about the difficulties of IPX; let’s move on. Command & Conquer is
a great game in which you build an infrastructure to support an army to destroy
your enemies. If you ever played Starcraft, Zeus, Warcraft, or Total Annihilation, you
should have a good idea of what I am trying to describe. The goal of C&C is to
destroy all other players who are not on your team.

To destroy other players, you must build an infrastructure. How do you do this?
Well, in C&C, you harvest a mineral called tiberium. Tiberium only appears
around special tiberium-generating columns. You start the game with an MCV
(Mobile Construction Vehicle). You must deploy the MCV to work, so the best idea is to
move it to a clearing and then deploy it. Once you deploy the MCV, it becomes
your base of operations and lets you build additional buildings. The first order of
business is to build a refinery that releases a harvester. The harvester proceeds to
seek out tiberium to harvest. Once the tiberium is harvested, you bring it back to
refine. You can think of tiberium as money. Everything you build in C&C costs
tiberium.

The game proceeds in this way, building more buildings and such, until you raise
an army. Once armies are in place, the players can fight it out and try to destroy
each other’s bases. The game is over for a player when his last MCV is destroyed.

The Appeal of RTS Games
As with any other game type, RTS (Real-Time Strategy) games do not appeal to every-
one. But they have been a dominant force in the game industry and deserve notice.
At the heart of any successful RTS game are three basic elements: an intuitive inter-
face, good AI, and good network support. Take a brief look at each of these
aspects.

The Interface: Man’s Last Great Hope
Okay, so maybe interfaces have nothing to do with mankind, but they do make or
break games. Almost every RTS game I have seen that failed in the sales category
did so due to a lousy interface. Players don’t want to have to read a manual to play

17Real-Time Strategy Games

your game. If a game can’t be figured
out without a manual, then it is no
longer a game; it’s a test. And I can’t
think of many people who like to pay to
play a test.

When designing an interface, let some
of your friends try it. Don’t give them
any hints on how to play the game; just
see how they do without guidance. If
your testers can’t figure it out, then you
need to do a redesign.

Artificial Intelligence
Some games can get away with bad AI (Artificial Intelligence). Others cannot, and
believe me; RTS games cannot get away with bad AI. Some RTS games use scripted
AI. When AI is scripted, the computer-controlled units follow a set script, regardless
of what the player does. This works as long as players do what you expect them to
do. But guess what? Players never do what you expect them to do.

Some bad RTS games use just plain stupid AI. Either the enemy units get bunched
up on obstacles, or they get lost. Poor path finding will doom a real-time strategy
game. Bad path finding makes the enemy units do stupid things, and the player-
controlled units follow the same behavior. If you have ever played a game where
your units couldn’t figure out how to get somewhere, then you know the frustra-
tion. Players will not put up with having to baby-sit their armies when they are walk-
ing around the obstacles.

Good Network Support, Duh!
Not many people like to play games that have bad multiplayer support. And I sure
hope you don’t like them much either! Maybe I don’t need to talk much about this
concept because you are reading this book, but some RTS games have poor net-
work support. In fact, one of the most anticipated games, Tiberian Sun, came out
with IPX. IPX was fine back when the first Command & Conquer game arrived, but
TCP/IP has since replaced it. Not only did TS utilize IPX, but you also had to regis-
ter and play through Westwood’s game service. You can’t just connect directly with
a friend and play the game; Westwood makes you connect through its service to
reduce game piracy. This is a fine concept if utilized properly, but the game
becomes extremely difficult to get up and running. The main problem is that some

18 1. Sup, Wait! It’s the History of Online Gaming!

TIP
A good strategy to use is to record
the number of mouse clicks gener-
ated during the course of your game.
After you have the number of clicks
generated, see what you can do to
reduce them. The less a player has to
click on the mouse, the better.

people lose the jewel cases in which the game comes. Without the code on the
jewel case, you cannot play on the servers. I can understand how this process is
required for something such as EverQuest, where your characters are stored online,
but not for an RTS.

Even though these three elements make up a good RTS game, they are also
important in most other games. So, keep them in mind for your next game
project. Okay, I’m parched; time for a Mountain Dew . . . the lifeblood of any
good programmer.

Massively Multiplayer
Online Role-Playing Games
Wow, that’s a mouthful, eh? MMORPGs (Massively Multiplayer Online Role-Playing
Games) came onto the game scene not too long ago. Basically, they are graphical
MUDs with much more functionality. Just like MUDs, MMORPGs are persistent.
Some of the more common games of this type out today are EverQuest, Asheron’s
Call, and Ultima Online. The main difference between MUDs and MMORPGs is that
MMORPGs utilize pay-for-play models. Take, for instance, Ultima Online, where you
must pay $10 a month to play. If you don’t pay, you can’t play. Take a peek at one
of the first games of this type.

Meridian 59
The first MMORPG I ever played was called Meridian 59. It was created and main-
tained by 3DO. It was based in a medieval setting, much like other games of its
type. I don’t know why so many games are based on this time period, but they are
definitely the most prevalent. Anyway, M59 cost $10 a month for unlimited usage.
You could operate up to five characters on a single account.

You could mold characters in M59 however you wanted because it utilized a skill
system. You didn’t have to pick a specific character class; you just chose your skills
and stats. The game used a decent magic system that contained about five schools
of magic. One of the magic schools taught offensive spells; another school taught
healing and defensive spells. With many schools of magic available, the game kept
players from getting good at all the spells.

As with most other persistent-world games, M59 had no particular goals. Most peo-
ple just played to raise their characters in level. The game had some quests, but not
much beyond killing the next big creature. Meridian 59 did have one cool feature I

19Massively Multiplayer Online Role-Playing Games

wish were present in other games like it, though. Once every so often in the game,
the world entered a sort of chaos mode. During this time, you could attack and fight
any other character you wanted with impunity. Once the chaos period ended, the
server reverted back to the state it had before the event. This gave players a chance
to try their skills on other characters. Because nothing could be lost or gained, it was
a fun time. One time during a chaos period, I actually attacked a game counselor.
Of course, he blasted me to the netherworld, but it was a lot of fun.

Even though Meridian 59 had a 3D user interface, its graphics were extremely
basic. The game did not look or even sound good, but it had the right elements of
a persistent-world game to keep you hooked. And that’s what really matters if you
are looking to make a game for profit. By the way, you might have noticed that I
keep talking about Meridian 59 in the past tense. Well, 3DO quit supporting the
game servers a while back. I have heard rumors that a German company is going
to reopen it, but I’m not holding my breath.

Ultima Online
Not long after I cancelled my Meridian 59 account, another MMORPG game called
Ultima Online went into beta. Ultima Online, or UO, as most people call it, is the
online version of Origin’s Ultima series. For those of you not familiar with Origin,
it was founded by Richard Garriot, also known as Lord British. Lord British
released Ultima I about a million years ago. It was a top-down tile-based game that
had no multiplayer support. Many more Ultimas were released with great success,
which put Origin on the map.

Great Expectations
Around 1997, Origin decided to release an online version of its successful Ultima
series. It was to be the greatest multiplayer experiment ever conducted. Not only
would it allow thousands of players to play at once, but it would also be a huge
evolving world.

Ultima Online does allow a few thousand players to be online in the world simulta-
neously. The other great feat UO pulled off is that the world is seamless. In other
games, such as Meridian 59 and EverQuest, the worlds consist of distinct zones. In
UO, most players never even realize when they cross server boundaries. When the
game first came out, the lag was horrible. You couldn’t move more than a few
squares without pausing. The good thing is that it didn’t take long for Origin to fix
most of the lag problems. UO now has what is probably the best network code

20 1. Sup, Wait! It’s the History of Online Gaming!

around. The game rarely crashes, and even when dozens of
people occupy the same area, the frame rate does not drop.

Before UO was actually released, Origin promised that the
world would have tons of interaction. For instance, it said
that if players killed off all of a dragon’s food supply, the
dragon might extend its range and attack a human village
for food. Now, this might not sound like much, but basically,
it discussed an entire ecosystem within the game. Just ask
the Biosphere people how hard it is to maintain an ecosys-
tem! Although Origin had good intentions, no such func-
tionality ever made it into the final game. In fact, nothing greater than random
creature spawns made it in.

Before I discuss the pros and cons of the game, take a look at how you play it.

Creating a UO Character
After you sign up for an account, the first thing you do in Ultima Online is select a
server on which to play. Because the game world can only support about 3,000 play-
ers simultaneously, a special arrangement had to be made to let the rest of the peo-
ple play. All Origin did was duplicate the world on multiple servers. That way, 3,000
people times n number of servers can play at once. The only downside is that a
character created and played on one server cannot transfer to another server. You
can think of the different servers as parallel worlds that never meet. Here is a brief
list of some of the servers available.

■ Lake Superior ■ Baja ■ Oceania
■ Great Lakes ■ Sonoma ■ Yamato
■ Atlantic ■ Europa ■ Izumo

You might have noticed that the last two servers have Japanese-sounding names.
Well, UO is so popular that Origin opened some servers just for Japan. In fact, UO
has servers available to players all over the world. Oh, yeah, I almost forgot; servers
are called shards in UO. Take a look at the select-a-shard screen for UO in Figure 1.8.

The number of shards should give you an idea of the scale of the game. After you
select which shard you want to play in, you get to create a new character or load
an existing one. The character creation screen lets you choose an adventurer, a
merchant, or an advanced character (see Figure 1.9). For the purposes of this
book, I chose the adventurer class of character.

21Massively Multiplayer Online Role-Playing Games

Lag refers to the
delay between your
computer and the
computer to which
you are connecting.
If you have ever
played an online
game and noticed
delays or pauses,
you have
experienced lag.

22 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.8

The shard selection
screen in Ultima
Online
(©2000 Electronic

Arts.All rights

reserved.)

Figure 1.9

The character
creation screen
(©2000 Electronic

Arts.All rights

reserved.)

After you choose your character’s main class, you then see a screen requesting a
subclass. For the adventurer class, the following subclasses are available.

■ Archer
■ Magician
■ Warrior

Because fighter types are usually the easiest to operate in these games, I’ll choose
the warrior class.

The next screen you see lets you pick your warrior’s specialization. The following
four specializations are available (see Figure 1.10).

■ Swashbuckler
■ Mace Fighter
■ Fencer
■ Swordsman

Swordsmen are great because they get to wear super-heavy armor and wield the
mightiest of weapons. So, I’ll choose swordsman as my specialty.

23Massively Multiplayer Online Role-Playing Games

Figure 1.10

The specialization
screen
(©2000 Electronic

Arts.All rights

reserved.)

All right, now that you have a character type, you’ll see a screen to pick your stat
and skill points. As in the MUD games, you have a certain number of points to allo-
cate for stats and skills. When you move a slider to advance a stat, the other stats
decrease. This functionality lets you fine-tune your character to your liking. Refer
to Figure 1.11 to see the point allotment screen.

Okay, now that the character is defined, it is time to choose what he looks like. I
know that this might sound a little strange, but when you are playing a game with
thousands of others, it helps to stand out. In the old days of single-player games,
your character could look like whatever the designers wanted and you never got
lost in a crowd. Why? Well, there was no crowd in which to get lost! UO lets you
choose your hairstyle, skin color, gender, and general appearance. A sample screen
appears in Figure 1.12.

Once you design your character’s look, you get to pick your starting town. Of the
many towns in Ultima Online, any of the available ones are fine for a newbie.
Because the town of Britannia is the default, I chose it. Once you select a starting
town, you enter into the game with your brand new character. I got a pleasant sur-
prise when I created the character for this chapter; a player wanting to help me
greeted me. She even asked whether I needed anything to get me started in the

24 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.11

The skill and stat
point adjustment
screen
(©2000 Electronic

Arts.All rights

reserved.)

world. (But alas, I declined.) If you want to see what the game looked like to the
new swordsman, take a look at Figure 1.13.

25Massively Multiplayer Online Role-Playing Games

Figure 1.12

Designing your
character’s
appearance
(©2000 Electronic

Arts.All rights

reserved.)

Figure 1.13

Entering the world for
the first time in UO
(©2000 Electronic Arts.

All rights reserved.)

Gameplay in Ultima Online
Well, now that I have walked through how you get started in the game, take a
minute to learn about gameplay. Because UO is a skill-based game, your character
only gets better at what he does by actually using his skills. So, the swordsman only
gets better at using his weapon if he goes out and fights enemies. In this particular
game, it is as easy as walking up to a creature, entering attack mode, and then
selecting the creature to attack. Your character continues to swing his sword until
the creature is dead, the character is dead, or you decide to exit combat mode. For
every successful hit on the creature, your skills have a chance to increase. Ultima
Online does use a difficulty scale, though. As you get better with your sword, you
have to fight more difficult creatures to get even better. This keeps a player from
becoming a grandmaster swordsman by just killing rabbits. Refer to Figure 1.14 to
see the curve concept. In the chart, skills cost a greater number of experience
points each time the skill level goes up.

Skills
To give players a sense of accomplishment, UO grants titles to characters based on
their best skills. For instance, a beginning swordsman might have the title of
apprentice, but an accomplished swordsman can have the title of master. The high-
est level possible is grandmaster, which represents a skill of 100 in something. To
keep players from becoming masters of everything, the game limits any one charac-
ter to 700 total skill points. This keeps any character from becoming grandmaster
in more than seven skills at once. Most characters in the game aren’t grandmasters

26 1. Sup, Wait! It’s the History of Online Gaming!

4,000

2,500

1,750

1,000

1,250

6,000

8,000

1 2 3 4 5 6 7

Exp. Cost

Skill Level

The experience point cost increases for each additional level of skill

Figure 1.14

Skill difficulty versus
gain

in seven skills; they usually are just really good in a couple of skills and mediocre in
many others. There really is not much else to character development than getting
better at whatever skills you see fit. Even though this might not sound like much,
many players spend months getting their characters built up.

Trade Skills
You might be asking, what makes UO so special that it has survived for more than
three years? Well, UO is unique in that it offers many more ways to play with a char-
acter than just killing creatures. The game engine has included what players com-
monly refer to as trade skills. An example of a trade skill is blacksmithing.
Blacksmithing allows players to create weapons and armor in the game.

The following scenario in UO demonstrates the complexity involved in this.
Imagine that you created a character with blacksmithing and mining skills, called
Miner49er. For Miner49er to create some armor, he needs some metal ore with
which to work. So you take Miner49er to a nearby mountain chain and begin using
your mining skill to pick away at the rocks. Every once in a while, you get lucky and
obtain some metal ore from the mountain. Once you have enough metal ore, you
head back to the forge in town. At the forge, Miner49er once again uses his mining
skill, this time to smelt the ore into ingots. Now that he has some workable ingots,
Miner49er uses his blacksmithing skill to hammer the ingots into some armor. If
the whole process works, you end up with some new armor. If something goes
wrong, you must start over. To review, take another look at the steps involved in
making some armor in the game.

1. Utilize your mining skill by using a pickax on a mountain chain.

2. Keep mining for ore until the ore is obtained from the mountain.

3. Once enough the ore has been mined, smelt it into ingots at a forge.

4. Utilize the blacksmithing skill by using a smith’s hammer on the ingots.

5. If the blacksmithing skill succeeds, you end up with brand new armor.

That’s a pretty in-depth process for making armor. Many factors are involved. If
your mining skill is too low, it might take a long time to get the ingots required to
make any armor. If your blacksmithing skill is too low, you probably won’t be able
to make the armor you want. These types of intricacies keep players in UO coming
back for more.

Housing
Another special aspect of Ultima Online is home ownership. Your characters can
actually own homes in the game world. Some homes are not very expensive,

27Massively Multiplayer Online Role-Playing Games

running about 40,000 gold, but some are very expensive, running around 500,000
gold. The main thing that keeps everyone in the game from owning a home is real
estate. Because the game world is only so large, it contains only so many places to
build a house. Most places that can have a home built on them are already taken.
This capacity has led to a huge sellers’ market in the game. Many players who own
homes in the game can even sell them for real money on auction sites such as eBay.
At this time, I have one account with a full-sized tower and another account with a
small house. I could easily sell the tower on eBay. I have always found it strange that
people actually pay for virtual items, but hey, stranger things have happened!

Houses are important to players in the game because not only can you decorate
them with cool items, but you can also store your belongings in them. The larger
the house, the more items you are allowed to store, which explains the appeal for
larger homes. In Figure 1.15, you can see my bard character standing on top of my
large tower.

Player Killing
So far, the game seems pretty harmless, with players fighting creatures, using their
trade skills, and vying for home ownership. Well, all of this comes to a crashing halt
when you witness player killing. Player killing, more commonly known as PKing, is
the best part of UO to some players and the worst part of UO to others.

28 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.15

A large tower house in
Ultima Online
(©2000 Electronic Arts.

All rights reserved.)

In the early days of Ultima Online, few rules concerned the killing of other players.
You could attack, kill, and then loot at will. Of course, when you die in the game,
you aren’t out of it for good. You merely run to a healer to get resurrected. This
might not seem like a big penalty, but more than likely, you lose all of the posses-
sions you were carrying, which is a big pain in the rear if you happen to be carrying
something prized.

The problem UO had with PKs, or player killers, was that they were everywhere. You
couldn’t walk 20 meters outside of a safe zone before being attacked by a PK. This
is fine and good for players who want to fight one another, but it is not good for
players wanting to adventure in safety. UO players have debated rampant PKing for
a long time. The PKs want to be able to fight other players, but the non-PKs want
to be left alone. Ultimately, no pun intended, Origin created a duplicate world for
all of the shards in which player killing is not allowed, so players who want to avoid
PKs can play in absolute safety. Most PKs affectionately refer to the new safe lands
as care-bear lands.

The unfortunate side effect to having such a violent world is that it tends to bring
out the worst in players. UO has more rude and annoying players than any other
online game I have ever played. I mostly attribute this to the competitive nature of
the game. So far, I have been able to narrow down my theory to one simple rule:

The more gain that players can get from others’ misfortunes, the more anti-
social behavior will be present.

This might not sound exactly right at first, but all you have to do is examine other
games and the amount of anti-social behavior in them. Take, for example, the game
Asheron’s Call. In the non-PK worlds of AC, people are generally very nice to one
another, and I have yet to witness any real jerks playing the game. I attribute this to
the fact that there is no way to gain from another’s detriment in the game. You can’t
kill another player, you can’t steal from another player, and you can’t really do much
of anything to affect another player in a negative way. So with no gain to be had
from hurting another player, why do it? People in AC can only gain from helping
out others. There is no incentive to be anti-social. Now, go and play AC on one of
the PK servers, and you will see immediate anti-social behavior. Not only will you
probably be attacked immediately, but you will also find that people lie to you and
try to trick you into all sorts of things. It is like night and day between the two types
of servers. Luckily, AC gives you the choice: You can play on the normal servers with
nice people, or you can play on the PK server with seemingly rude players.
Understand that the PKs are not really rude or jerks in real life; they are just playing
to compete with and beat you. That is fine if that is your cup of tea.

29Massively Multiplayer Online Role-Playing Games

Anyway, the approach I took to UO goes along with the old adage, “If you can’t beat
them, join them.” All my guild really ever did in Ultima Online was figure out how to
PK other players. We weren’t content with fighting characters in normal ways,
though; we always had to think up some new clever way of doing it. So go grab a cold
one, sit back, relax, and read about some of my guild’s little adventures in PKing.

Exploding Chests, Oh My!
One of the skills we enjoyed the most in the game was the tinkering skill. The tin-
kering skill mainly allowed you to create such boring things as clocks and keys, but
it also allowed you to set traps on treasure chests. The traps could either explode
or set off a poison dart. We preferred the exploding ones.

Anyway, our favorite thing was playing off other players’ greed. Hmm, maybe there
is a moral in here somewhere, but I doubt it. What we did was load a treasure chest
with all sorts of garbage items and then put a trap on it. We then set the chest on
the ground beside some busy road. Inevitably, some doofus would come along, see
the chest just sitting there, give into greed, and open it. BOOM! The chest would
explode, thereby killing the curious player. After he died, we would loot his body.
To avoid too much suspicion, we then moved our little chest down the road and
reset the trap on it. You would be amazed how many times we pulled this off in a
small area. I guess it is true about curiosity killing the cat. You can see the results
from one of our adventures in Figure 1.16.

30 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.16

The exploding-box trick
at work
(©2000 Electronic Arts.

All rights reserved.)

I will admit that this wasn’t the most ingenious or clever way to PK people, but it
really was funny to watch. In fact, it led us to another method that proved to be
even more entertaining.

Guards, Come Get This Scum!
Before you can fully understand this PK method, you must first understand how
safe zones work in Ultima Online. In UO, towns are guarded by computer-controlled
guards. When you do something illegal in a town, guards can be called on you. The
guards in UO are unforgiving, kind of like the ones at some southern prisons, and
they kill you for any illegal action. This deterrent keeps most sane players from
doing anything illegal in town. All that has to happen is for someone to yell the
word “Guards!” and you are as dead as unagi at a sushi bar. But once again, greed
often overrules common sense.

For us to do our trick, we had a few things in place, including

■ A newbie character wearing nice-looking armor
■ A bombed chest being carried by the newbie character
■ A hidden accomplice

As you can see, we didn’t need many components to pull off this particular trick. We
created the last item, a hidden accomplice, with the hiding skill. The hiding skill in
UO enables your character to literally disappear off the screen when standing still.
This is a great skill to have and a must for any serious PK. Okay, on with the trick.

The first thing we did was to scout out a location beside a busy road leading out of
town. We made sure the location was still within the guarded zone of the town, but
almost outside of it. The accomplice then hid beside the road. Our newbie charac-
ter, or bait, as we liked to call him, stood in the middle of the road, looking well off
with his bright shiny armor. As soon as a player walked by, our newbie character
said something like, “Oh, wow, I wonder what this is?” and opened the bombed
chest. When he opened it, the bombed chest exploded, thereby killing our newbie
character. This left the player all alone with the dead bait on the ground. Of
course, the passerby was overcome with desire to loot the body of all the shiny
armor. Because he was almost out of the guard zone, the passerby figured he could
loot the body and run for the border, so to speak. Well, the second he looted a sin-
gle item off the body, the accomplice came out of hiding and yelled, “Guards!”
Immediately, the computer-controlled town guards popped in and killed the
offender. Naturally, the accomplice just went over and looted the newly-dead
greedy player. Ta da!

31Massively Multiplayer Online Role-Playing Games

That’s it; we killed more than a hundred greedy players this way. Check out this
plan at work in Figure 1.17.

I guess in most states this could be called entrapment, but I have seen worse on
Cops. Anyway, most of this story might not seem that funny if you haven’t played
Ultima Online. But at the very least, it should give you an idea of the variety of
things possible in the game.

What Makes Ultima Online
a Great Game?
Even though UO has some flaws with player killers and such, it really has some shin-
ing attributes. First of all, you can customize your character’s appearance to your
heart’s content. This feature might not sound that exciting, but I have seen players
spend hours playing around with different colors and styles of clothing! It really
does give players a sense of personality within the game.

Second, Ultima Online has the greatest sense of ownership I have ever seen in a
game. The mere fact that you can own a house in the game keeps many players
active. No other game comes close to keeping players hooked to this degree.

And last, UO has some of the best network code around. Sure, sometimes lag is
bad, but the network code really is a technological marvel.

32 1. Sup, Wait! It’s the History of Online Gaming!

Figure 1.17

The dead-body trick
(©2000 Electronic

Arts.All rights

reserved.)

I can say other good things about the game, but if you want to find out, go play it
for yourself. It’s worth a short peek.

Ultima Online, the Ugly Side
All right, with all of these good things to say about UO, what are the bad things?
Well, Ultima Online suffers from the worst case of stagnation I have ever seen in an
online game. Heck, even the game Subspace was updated more often, and it was
never really sold! I guess that the inherent design of UO has made it difficult for the
designers to add new content. Only once in three years have they added completely
new creatures, and even then they made you pay for it. With other online games
updating monthly, UO just doesn’t cut it anymore. It does provide bug fix updates
and some functional updates, but it never adds new areas, items, or creatures. The
only thing it ever does to design new creatures is colorize an existing one and give it
a new name. I tend to get very bored with fighting the same creature in 20 different
colors. UO never evolves so it never feels anything like a living experience.

Another gripe is Origin’s love of nerfing. Nothing is more irri-
tating to players than to get very good at a skill only to have it
nerfed. In the beginning of UO, magic users could become
very powerful. Even third-level spells could inflict severe dam-
age on other players. Well, guess what? UO reduced the
amount of damage inflicted by third-level spells to almost
nothing. You can literally stand and cast the lightning bolt
spell on someone all day long and he will never die. This
really annoyed me because I had spent months getting my magery high in level.
Origin also did the same thing with weapons. It deemed some of the weapons in the
game as too powerful, so it made them ultra-weak. Most players have resorted to jok-
ing about what Origin will ruin for them next. This is not a good thing.

I don’t want to delve into the negative too much, so I’ll leave it alone for now. I
don’t want you to get the wrong idea, though. I really did like UO—but its time has
come and gone.

EverQuest
Well, wouldn’t you know it; there I was still playing Ultima Online, and another
online MMORPG came out. The new game that caught my attention was called
EverQuest. It was created by a bunch of guys at 989 Studios, who later formed
Verant. Sony publishes the game and maintains the game worlds. EverQuest kind of

33Massively Multiplayer Online Role-Playing Games

Nerfing refers to
making something
less powerful.When
Origin nerfed
magery, it made the
spells do less
damage.

resembles Meridian 59 in that it has a 3D game client. That’s about the only way it
resembles Meridian 59, though, because EverQuest is the best-looking MMORPG out
today. Almost every zone in the game has a different look and feel. You really have
to play the game to appreciate its beauty.

Unlike Ultima Online, the world of EverQuest consists of multiple zones or areas.
This helps keep network lag to a minimum. Because no more than 100 people or
so gather in a zone at a time, the servers don’t have to keep track of too much. I
talk about how zones work in the next chapter, so for now let’s move on.

Character Races in EverQuest
EverQuest was unique when it came out in that you could chose from multiple races.
You could be a troll, ogre, dwarf, elf, or human, for example. This selection allows
for a great range of possibilities. Not only can you pick your race, but you can also
pick what type of character you want to play, such as a monk, cleric, or fighter.
Each race has pros and cons. For instance, dwarfs have night vision but cannot be
monks. Humans can be any type of skilled character but have mediocre stats. There
are just too many combinations to list here. Another interesting thing about races
is that racism actually plays into the game. I don’t mean that racism is good by any
means, but it adds a dynamic to the game. For example, elves are not welcome in
troll villages. So if you are an elf and you wander into a troll village, the guards
might attack you. One way to make peace with the trolls is to kill their enemies.
The old “enemy of my enemy is my friend” saying applies here. This minor part of
the game does go a long ways toward adding depth to the game; keep that in mind
when developing your own MMORPGs.

The Difficulty Factor
I played EQ for about four months. Then, all of the sudden, I quit. Why? EQ is just
too darn hard and time-intensive for my lifestyle. I personally don’t have time to
invest four hours a day in a game and work full-time, write a book, and raise kids!
The problem I had with EQ was that when you die, you lose hard-gained experience
points. You can actually lose enough experience points to move down a level in the
game. There I was one day, having a fun time playing the game, and then whammo,
I got killed during a bout of network lag. Because the lag was so bad, I had been
disconnected from the game. When I logged back in, I found that I had indeed
died and that I had also lost a ton of experience points. I actually lost two weeks’
worth of experience points. At that time, I did a quick calculation of salary versus

34 1. Sup, Wait! It’s the History of Online Gaming!

time and decided it was costing me too much to keep up. I have better things to do
with my life than play catch-up in a game. There is a lesson to be learned here:
Make games somewhat difficult, but don’t punish players with real-life penalties.
You should make players want to avoid in-game death, but don’t inflict insane
penalties on them. Just remember, people play games to have fun, not to become so
frustrated that they want to throw their computers out of windows.

Starsiege Tribes
Because I am never one to live without at least one game addiction, after EverQuest I
immediately picked up a game by Dynamix called Starsiege Tribes. Tribes is the type of
game commonly called a shooter. These types of games earn the title of shooter
because the main objective is to shoot other players. Some other games that fit within
this category are Quake III Arena, Half-Life, Goldeneye 007, and Unreal Tournament.

Because the only single-player aspect of Tribes is a training mission, the game is only
played online. This aspect was considered a downfall when the game first came out
but was finally recognized for its forethought. The game supports up to 32 players
simultaneously, depending on the server connection speed and CPU. This capacity
is quite an accomplishment considering the fast-paced nature of the game.

After you set up your name and look, you see a list of game servers. Because any-
one with a decent connection can be a server, you have literally hundreds from
which to choose. Refer to Figure 1.18 to see the server selection screen.

Once all of the servers are listed, you can choose the one on which you want to
play. Some of the available game types appear in Table 1.4.

The key to most of the game types is teamwork. Tribes is unique as far as shooters
go because it builds in all sorts of teamwork. Lone wolves need not apply in Tribes.
Teams only do well when players work together. The number one reason I enjoy
playing this game so much is that team play is much more fun than playing solo.

Another cool aspect of Tribes is that you can play defensively if you want. You can
gear up in engineering armor and place defenses. One example is to place turrets
and force fields around your flag. This helps keep enemy players from capturing it.
The good part is that you get points for setting up defenses, so you have other
types of gameplay besides shooting everything that moves. I guess that should be
the lesson for this game: Give players optional play styles. Now that I am finished
with the Tribes speech, you can see what the game looks like in Figure 1.19.

35Massively Multiplayer Online Role-Playing Games

36 1. Sup, Wait! It’s the History of Online Gaming!

Table 1.4 Game Types in Starsiege Tribes

Game Type Summary

CTF A capture-the-flag game. In this type of game, each team has
a flag to defend.The objective of the game is to capture an
enemy’s flag and bring it back to your own. Once you have
done this, your team is awarded one point.

C&H A capture-and-hold game. In this type of game, you have
objectives to defend.The object of the game is to capture an
objective and then defend it from the enemy.The longer you
hold an objective, the more points your team gets.

DM The deathmatch game for Tribes. In deathmatch mode, it is
every man for himself. In this type of game, points are award-
ed for every kill you get.

Figure 1.18

The server selection
screen in Tribes

Asheron’s Call
Well, I still play Tribes, but I also have found another game that I enjoy quite a
bit. Asheron’s Call is published by Microsoft. The game company called Turbine
actually wrote the software; Microsoft just publishes the game and maintains the
servers.

Asheron’s is yet another example of an MMORPG-style game. It has a 3D client
interface and supports thousands of simultaneous players. I started playing it some-
time in the year 2000. It is not the best-looking game on the market—EverQuest
looks much better—but it is the most dynamic. The number-one reason I have
stuck with AC is that Turbine actually updates the game once per month. The good
part is that when Turbine updates the game, it does so in grand fashion. The game
updates are usually very significant and they progress the in-game stories. The
game world is truly dynamic because of this feature. New towns, creatures, and
weapons are just some of the possible items introduced with each patch.

37Massively Multiplayer Online Role-Playing Games

Figure 1.19

An in-game view from a
player in Starsiege
Tribes

The Present and the Future
I have covered just a small sampling of the many online games available. The great
part is that most games coming out today have online support. Even console sys-
tems such as Dreamcast and Xbox are getting into the online market.

The greatest hope that is becoming more available for online gaming is broadband
communications. Technologies such as cable modems, DSL, ISDN, and others are
giving home users super high-speed connections to the Internet. Not only are the
methods of communication getting faster, but they are also getting cheaper.

I hope in the not-too-distant future that almost everyone has broadband access at
an affordable rate. This will enable developers such as you to write games that are
not limited by communication bandwidth. Truly immersive worlds where thousands
of people participate in real time will be possible.

Review
Okay, here you are at the end of Chapter 1. I don’t want you to have to dig back
through the chapter for any tidbits of knowledge, so let’s recap.

I’m not trying to preach here or anything, but I do believe the following lessons
are key to good games. If you can think of any additional good ones, please e-mail
them to me at webmaster@lostlogic.com and I will share them on my Web site.

■ Lesson 1: Keep players challenged but not frustrated.
■ Lesson 2: Give players optional play styles. Not everyone likes to play a game

the same way.
■ Lesson 3: A good online game has the following elements: an intuitive inter-

face, good AI, and good network support.
■ Lesson 4: The more gain that players can get from others’ misfortunes, the

more anti-social behavior will
be present in a game.

My time is done for now. I hope you
enjoyed this little trip down memory
lane with me. Expect much more to
come, though, because in the next
chapter I actually tell you how these
games work!

38 1. Sup, Wait! It’s the History of Online Gaming!

TIP
In case you are wondering, this chapter
gets its title from a common phrase PKs
use in Ultima Online to get your atten-
tion. PKs say something like “Sup,Wait!”
to get you to stop, and then they kill you.

CHAPTER 2

Understanding
the Magic

Before you can start creating your own games, you need to understand how
games operate. I’m not talking about the rules of gameplay or anything like

that; I’m talking about how games actually work. If you are an experienced game
developer, then you probably know how most games work, but read on and you just
might find something useful.

Most of this chapter is written from what I like to call the 15,000-foot level. When I
talk about complex subjects, I commonly think about them as somewhere between
the 1,000-foot level and the 50,000-foot level. I use the lowest altitude when talking
to fellow engineers and I reserve the highest altitude for talking to my family. So
this puts us cruising just outside of Vegas. When we land, be sure to stay away from
the Keno games; they’re a rip-off.

I just called 1-900-Lie-ToMe, and the tarot card reader told me to tell you what top-
ics are covered in this chapter, so here they are.

■ Loops
■ Graphics
■ Sound
■ Artificial intelligence

Game Loops
I use the term game loop to refer to the architecture behind a game’s process. To
give an analogy, think of the loop a car engine uses.

1. Fuel is injected into the cylinders.

2. The spark plug ignites the fuel.

3. The resulting explosions move the pistons.

4. The pistons turn the gears.

5. Repeat.

There’s not too much to it really, just your basic combustion routine. Game loops
also work in a simple manner when you get right down to it. When you think about
how a game works, what is the first thing that comes to mind? Graphics, sound,
input? Most people generally think about the graphics involved in a game, but

40 2. Understanding the Magic

graphics are really just fluff for games. The real work happens behind the scenes in
the logic loop. Take a look at Figure 2.1 to see an illustration of a basic game loop.

Initialization
The first thing that happens in the game loop is initialization. This process refers
to setting up the environment in which the game will be played. You must handle
many things here, including graphics, sound, input, and network initialization.

Graphics Initialization
DirectX requires that you complete a series of steps before displaying graphics. For
instance, you must create a window in which to display the graphics. This is also the
case for full-screen applications. Even though the game is full-screen, that doesn’t

41Game Loops

Initialization

Game Over?

Get User Input

Process Artificial
Intelligence

Update Graphics

Clean up

Exit Game

NoYes

Sound Card

Video Card

Figure 2.1

Game loop architecture

mean there isn’t a window. In fact, there is a window—you just don’t see it most of
the time.

In addition to creating the display window, another step is initializing any video
hardware the user might have present. Usually, this means setting up a 3D video
card. Because most mainstream gamers have 3D video cards, you must activate
them. The same goes for sounds cards and input devices. If you want to play sound
effects in your game, you need to set up the audio environment.

Screen Resolution
Generally, starting up a game for the first time means a pause while it loads. Games
must preload most of the information players need. For example, the title screen
and background music are loaded when the game starts for the first time. Many
files must be in memory before the game can start. All of this processing and data
loading makes up the initialization phase.

Now drop down to a lower level, and take a look at what must happen to initialize a
graphics display. You must

1. Determine screen resolution.

2. Determine color depth.

3. Determine which adapter to use.

4. Activate the adapter.

5. Set the video mode.

The first item required is the screen resolution. Screen dis-
plays consist of tiny little dots called pixels. The number of
pixels displayed at once represents your screen resolution.
So if you have 800 vertical pixels and 600 horizontal pixels,
your display is said to be in 800 × 600 mode. The first num-
ber of a resolution reference is always the number of pixels
across the display. The second number always represents the
number of pixels down the screen.

Graphics and displays always look better when your resolution is set higher. This is
why HDTV, or high-definition television, looks so good—it has a higher resolution.
Here are some common video resolutions.

■ 640 × 480 ■ 1024 × 1280
■ 800 × 600 ■ 1600 × 1200
■ 1024 × 768

42 2. Understanding the Magic

Pixels are the dots
on computer
monitors that make
up images. Higher-
resolution images
have more pixels in
them.The word
pixel actually comes
from the words
picture element.

The first resolution, 640 × 480, used to be the standard size most games used.
Given today’s hardware, most games operate at much higher resolutions now. I find
that the 1024 × 768 mode gives me the most bang for my buck. Take a look at
Figure 2.2 to see an illustration of pixels.

Color Depth
Now that I have covered screen resolution, it’s time to talk a
little about color depth. Color depth is always referenced in
bits. Older computer video cards had only 8 bits of color to
utilize, but most cards out today can support 32 bits of color.

So what does this really mean? Well, the number of bits actually refers to the num-
ber of colors available—the more bits, the more colors. Refer to Table 2.1 to see
some common color depths.

All of the modes look pretty normal except for 32-bit mode. Basically, it is true-
color with an alpha channel. Don’t worry—I’ll explain alpha channels a little later.

Video Adapters
Even though most people have only one video card, many people out there have
multiple cards. This was especially true back when 3D accelerator cards were sold
separately. Some people like to have a good card for 2D and then a good card for
3D. This can result in a multicard system. Another case for this situation is when
you have a computer with built-in video and then decide to upgrade to a new card.
In this case, you have two video adapters, the built-in one and the new one.

43Game Loops

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

d

Figure 2.2

The letter d can be viewed as a
series of pixels if you zoom in
on it.

Color depth refers
to the number of
colors in bits that
an application uses.

Because you can have multiple cards, DirectX requires
that you specify the display adapter before proceeding. I
cover how to do this later, but for now just remember that
you must select the video card to be used. Most of the
time, you just select the primary display adapter.

Video adapters that are not primary are usually called sec-
ondary adapters. After you decide which adapter to use,
you must initialize it. You do this with DirectX, and the
process really isn’t a big deal.

Setting the Video Mode

When initializing the display adapter, you normally pick
the screen resolution and color depth. You choose them
once at the beginning of your application. Sometimes, it is
necessary to change the resolution in the middle of a
game, but not normally. Another choice you must make
when setting the video mode is whether your game will be
a full-screen application.

Once you choose the video mode and whether it is windowed or full-screen, then
the application switches the user’s desktop to that mode. Just be careful not to

44 2. Understanding the Magic

Table 2.1 Color Depth

Depth Meaning

8 bits 256 colors.This is referred to as low-color mode. Each pixel takes up
one byte of memory.

16 bits 65,536 colors.This is referred to as high-color mode. Each pixel takes
up 2 bytes of memory.

24 bits 16.8 million colors.This is referred to as true-color mode. Each pixel
takes up 4 bytes of memory.

32 bits 16.8 million colors + 256 grayscale alpha channel.This has the same
number of colors as true-color mode, but it also has an alpha channel.
Each pixel takes up 5 bytes of memory.

The primary display
adapter is the one
currently in use by
Windows. It com-
monly refers to the
most preferred
adapter in a system.
The video adapter
with the most features
and power is usually
the most preferred.

Full-screen applications
take up the entire
display and leave no
Windows controls
visible.When an
application does not
run in full-screen
mode, it is said to be
windowed.

switch the video display to something
invalid.

Another concern about the video mode is
the amount of memory required to achieve
it. You can calculate the amount of memory
required to use a specific display using the
following formula.

Memory required = Screen width × Screen height × Color depth

For example, an 800 × 600 screen in 24-bit mode takes up 800 × 600 × 4 bytes of
memory. That’s 1,920,000 bytes of video memory! Now just think about how some
video cards out there have only 1MB of video memory. They wouldn’t be able to
display such a screen. Keep this in mind when setting video displays.

Sound Initialization
Sound initialization is much more straightforward than video initialization. The
main reason for this is that you can play multiple-resolution sounds without having
to switch sound modes. When I mention sound resolution, I am talking about the
quality of the sound.

Sounds with a higher resolution have a higher sample rate. Sample rates determine
how often a sound has been sampled when recording it. The more samples taken
from a sound source, the more accurately the played-back sound represents the
source.

Imagine that you are copying a mural that is 100 feet wide by 20 feet tall. If you
copied only one brush stroke every two inches, then you would get a low-quality
sample of the original painting. You would have holes in your copy, and it would not
look as good as the original. But if you copied a brush stroke every two millimeters,
then you would get a high-quality sample, and it would look very good. Sound works
in much the same way; if you sample a sound at a low rating, then it does not sound
very good. To see an illustration of sampling, take a peek at Figure 2.3.

Some sound samples can handle low sample rates without much notice from
humans. You can usually sample music at lower ratings because it has so many
changes. The sound just changes too quickly for your ears to pick up on the prob-
lems. Sounds that have problems being sampled at low ratings are voices and such.
People tend to pick up on low-quality voices more quickly than low-quality sound
effects or music. Higher-quality sounds also take up much more memory. Voices
alone consume quite a bit of storage in a game.

45Game Loops

CAUTION
Some older 3D display adapters
require that you be in full-screen
mode to realize their accelera-
tion capabilities.

As with video adapters, you must choose the sound
adapter to use. Most people have only one sound card,
but there are exceptions. Once you choose the sound
card to use, you just choose whether you want to use 3D
sound or 2D sound. You make these choices with the
DirectX API.

Input Initialization
Luckily for us, setting up input devices doesn’t require much work. Most of the
commonly used devices are already set up by Windows. In fact, if your application
uses only a keyboard and a mouse, then you don’t have to do anything to get
started.

Most programmers initialize input devices when their program supports other
peripherals such as joysticks. Because not all joysticks operate in the same manner,
you must initialize the system to recognize the one the user has. You accomplish
this by querying the system for all available input devices and then picking the one
the user wants to use. Some possible input devices appear in Figure 2.4.

46 2. Understanding the Magic

Bird Singing
Analog

Analog

Bird Singing
1010100101010100011

1010101001001110101

Sound Card

Output

Input
Jack

10100010101010100100101010101001

Figure 2.3

When an analog sound
is converted to digital
data, the sampling rate
determines the quality
of the sound.

API stands for application
programming interface.
The term refers to a set
of grouped commands or
functions used in
programming.

Good ol’ Microsoft provides an API to use input
devices: DirectInput. DirectInput is a part of the DirectX
SDK and gives you the freedom to use most input
devices out there. It even supports force-feedback
devices, which are really cool.

Network Initialization
Oh, boy, my personal favorite! Nothing beats a good
network initialization. Because computers don’t just get
up and start talking to one another, you must work to
establish such communications.

Before the computer game can begin to communicate
with others, you must teach it how. Selecting which com-
munication protocol to use accomplishes this. You can
think of a communication protocol as a method in
which to speak.

47Game Loops

Mouse

Keyboard

Internet Camera

Figure 2.4

Possible input devices

SDK stands for software
development kit.An
SDK provides one or
more APIs for program-
mers to use. Microsoft’s
premier SDK for game
programming is the
DirectX SDK. It is also
used in developing
games for Microsoft’s
game console, the Xbox.

Communication protocols
are methods computers
use to speak to one
another.Without proto-
cols, computers do not
know how to talk to
each other.

Once you select how your computer will communicate, you can do such fun things
as getting it online and then connecting to another computer. If you just can’t wait
and you want to see what protocols are, you can jump ahead to the next chapter.
Just be sure to come back!

Content, Content, Content!
Do not be intimidated by all the initialization stuff; it’s not all that bad once you
have done it a few times. The great part about initialization routines is that they
change very little, so you can reuse them in other projects.

Now that the game hardware is initialized, you must get the content for the game.
What is content? Game content refers to the images, sounds, and data used by a
game. Without content, a game is nothing more than a logic loop. Just think about
how little fun Final Fantasy would be without graphics!

Most advanced games load content dynamically when needed. For our purposes,
I’m just going to talk about games that load most of the data at the beginning.
Because content is data, it takes up memory and must be monitored closely. Maybe
you have wondered why games don’t use more graphics and sounds; the reason is
that generally, there is not enough memory to handle it. Because memory capacity
is ever-increasing and the cost is decreasing, using graphics and sounds is becoming
less of an obstacle every day.

Graphic Files
The graphics used in games are stored in certain graphic for-
mats. A graphic format describes how an image is stored and
how to read it.

Information such as the graphic’s dimensions and color
depth are stored in the file’s header. The most important
information stored in a graphic file is the image data.
Without image data, the graphic doesn’t exist. Each and
every pixel of an image is stored in the file. Refer to Figure
2.5 to see a file header.

You can count on graphics taking up the most memory and
physical storage in your games. Once your game has loaded
all of the graphics, it can then proceed to load the sound
content.

48 2. Understanding the Magic

Graphic formats are
file formats that
describe a graphical
image. Common
graphic formats
include BMP, JPEG,
and TARGA.

A file header refers
to the bytes stored
at the beginning of
a file. Headers
usually describe the
contents of the file.

Sound Files
Sound files are just like graphic files except that sound files store sound informa-
tion. Sound files also have a header, but sound-file headers describe the sample
rate and other information. Take a peek at Table 2.2 to see some common sound
file types.

49Game Loops

File Size 4

Image Width 4

Image Height 4

Image Name

Pixel Data

32

x

Bytes

File Header

Figure 2.5

Example structure of an
imaginary file header

Table 2.2 Sound File Types

Type Meaning

Wave This is the most common type of sound file used in games and most
other applications.Almost every sound effect used in a game is stored
in this format.

MP3 This is a highly-compressed format used to store music. It can save a
lot of storage space.This format is also popular in replacing CDs.

MIDI MIDI files were once primarily used for game music. Because com-
puter systems nowadays have much more power, this format is anti-
quated. It doesn’t actually store recorded sound. It stores information
necessary to play the music via instruments.

I use wave files for all of my in-game sounds and music
because they allow for easy editing. Almost every sound-
editing package out there today supports wave file manip-
ulation. Music from CDs can also be streamed in. This
allows for super high-quality music that doesn’t take up
too many resources.

Data Content
Obviously, the graphics and sounds are data, but what
I refer to here is all of the data other than media. Games
need such interesting things as in-game text, maps, geom-
etry, and a myriad of other data.

Inside the Game Loop
Well, now that initialization is completely out of the way, the user can play the
game. The first thing your game can check for is user input. After all, it is helpful
to know what the player wants to do.

Checking User Input
This check is a fairly straightforward process because all you have to do is poll the
input hardware and see what has been altered. For example, you can check
whether the left mouse button was pressed. Whenever an input event transpires,
you should store the information for later retrieval, which lets other processes
check the state of the hardware without having to poll for it again.

Once input is checked, you then alter the game based on that input. For example,
if the player presses the left cursor key, you might want to move the spaceship to
the left. If the player presses the fire button, you probably create a missile or bullet.

You probably can relate to these types of causes and effects if you have ever played
a video game. In fact, most applications must do this checking of user input.
Without it, there is no interactivity.

Processing Artificial Intelligence
After you check for user input, it is time to move the computer-controlled players.
Artificial intelligence, or AI, is a complicated subject because there are countless
methods for implementing it.

50 2. Understanding the Magic

When data is
streamed, it is loaded
in pieces.When a
piece is used, it is then
unloaded to make
room for the next
piece.This process
lets you use large
pieces of data, such as
music files, without
storing them all in
memory at once.

The AI in your game might do all sorts of things, such as moving, attacking, or
dying. Because the player does not control these things, you have to. Even though I
use the term AI, don’t think that this applies to intelligent objects only. This part of
the game loop must also process all in-game objects such as bullets.

Updating the Display
Now is the fun part, where you get to update the display for the player. The only
way for players to notice something has changed in the game is to update their dis-
plays. You do this by drawing images on-screen with the video adapter.

Take, for instance, the game of Asteroids. In Asteroids, you draw the asteroids, the
player’s bullets, and the player’s ship. If the player moves his ship, you draw it in a
new location. If an asteroid blows up, you might display the image of an explosion.

Because every game is different, I cannot cover all possibilities. Luckily, graphic
output is the most obvious effect in video games. Just go look at one of your
favorite games, and pick out all of the graphical elements present. I’ll bet you find
hundreds of things.

Cleaning Up
Remember all of that content you loaded
into your game upon initialization? Well,
guess what? You must remove all those ele-
ments to free up memory. When your game
exits, you need to unload any graphics,
sound, or data that you loaded at the begin-
ning. If you do not do this, the system will
eventually run out of free memory.

Inside Online Games
Since this book mainly concerns multiplayer games, I guess I’d better start talking
about how they work. The main element of an online game is communication.
Without communication, the game wouldn’t even be online, so as you can see, it is
a very important element.

51Inside Online Games

TIP
Be sure to remove everything
that you allocate; there is noth-
ing more critical to game devel-
opment than cleaning up.

Client/Server Games
Let’s jump right into the thick of things, and talk about how Ultima Online works.
Ultima Online is a client/server game that supports thousands of players. Okay, so
what is a client/server game? In a client/server game, the players’ computers talk
only to a central computer and not to one another. The computer they talk to is
called the server, and the players’ computers are called clients. All communication
must go through the server. This requires that the server has a lot of bandwidth. If
the server runs out of communication bandwidth, then the players notice lag.

Clients and Servers
Clients in UO send requests to the central servers. The central servers process the
requests and send back responses. If a player wants to send a chat message to
another player, it is first sent to the server, and then the server sends it to the target
player. This kind of communication allows for increased security and also allows for
large numbers of players. Because servers must validate every move a client makes,
they can deny certain requests. To see the client/server architecture in action, refer
to Figure 2.6.

52 2. Understanding the Magic

No Data No Data

No Data

No Data

Client Client

ClientClient

Server

Figure 2.6

Client/server architecture

Requests and Responses
A command sent to the server by a client is called a request. It is called this because
the client is requesting a response. Responses range from simple acknowledgments
to complex commands. Examine a scenario in which a player wants to move his
character forward one square.

1. The player presses the up-arrow key to move his character forward one
square.

2. The client application sends a move request to the game server.

3. The game server receives the request.

4. The game server checks the location into which the player wants to move.
If the location is blocked, it sends an invalid move response. If the location is
not blocked, the server sends a valid move response.

5. The player happens to be moving into a non-blocked area, so he receives a
valid move response.

6. The player’s character is moved forward one square.

Notice how the server validates the player’s request. This step ensures that the
player is moving into a valid location, which helps keep cheating to a minimum.
How is this, you might ask. Well, imagine that the player had hacked his game to
remove all obstacles, such as walls. He could then move his player around the game
world without obstruction. This means he could walk through oceans, walls, or any-
thing else that gets in his way. He could wreak much havoc in such a situation.

I know that hacking a game client seems a little extreme, but believe me, many
people hack online games. In fact, I witnessed several hacks in Ultima Online.
(I’ll talk about those in a minute.) Anyway, take a look at the request and response
architecture in Figure 2.7.

In the request and response architecture diagram, you can see the method I dis-
cuss. An opportunity for hacking does still exist, though. Even though the opportu-
nity allows only limited cheating, it can still be effective. One example I witnessed
in Ultima Online used a little program called UOExtreme. This program was
released by some unknown player and allowed the user to do certain things not
normally allowed in UO. It accomplished the cheats by intercepting responses from
the server. It would intercept a response, examine the contents, and then modify
the response accordingly.

53Inside Online Games

Hacking Ultima Online
Let me give you some background about the game mechanics of Ultima Online so I
can better explain some of the hacks used. In UO, time passes at an accelerated
rate. The only way to visibly note the time is to see how dark it is. At night, the
entire game looks darker; during the day, it is lighter. No big surprises here. Oh,
yeah, in a dungeon, it is normally dark. Because it can get dark, players have to
either carry torches or cast light spells to see well.

To set the time of day, the servers send time commands to clients. The time com-
mands contain a light level. When it is nighttime, the servers send out a low-light
setting command. The clients receive the light settings and adjust their displays
accordingly. UOExtreme would intercept these light packets and always change the
light value to the highest setting possible. This allowed the users of UOExtreme to
see daylight no matter what time it was! This might not seem like a big hack, but it
sure did make life easier for users of the hack utility. Take a look at Figure 2.8 to
see command interception illustrated.

54 2. Understanding the Magic

Player sends a command
to fire at the building.

Player receives a command
that the building explodes.

Player receives a command
that the building is flattened.

1 2 3

Server receives fire request.
Server checks that the player

hits the building.

Server sends an explosion
command.

Server sends a building update
command.

1 2 3

Client

Server

Figure 2.7

Request and
response
architecture

Another more devious use of UOExtreme, or UOE, was to let players see hidden
people. Ultima Online offers a hiding skill that lets players become invisible. If a hid-
den player moves, he is revealed, but if he stays still, no one can see him. This skill
has always been useful for laying ambushes and such. Behind the scenes, the hiding
skill works by sending an invisible command to other players. Other players still
receive a command telling them you are on-screen, but it tells their client programs
to hide you from view. Well, this process gives UOE a great opportunity. UOE
merely intercepts the hidden packets and keeps the client program from receiving
them. This lets all users of UOE see hidden people! Not only can players with this
program see the hidden people, but they can also attack them. It basically renders
hiding useless. I would have to say that this particular hack is what gained the atten-
tion of Origin, the makers of Ultima Online.

Maybe you are asking how Ultima Online ever solved this little problem. The pro-
grammers at Origin originally created several updates to the game clients that would
help them detect when UOE was running. This idea was never very successful
because the developers of UOE just changed their code with every client update.

55Inside Online Games

The player requests to move
to the right.

The player receives the denial-of-
movement command but ignores it.

The player moves anyway.

1 2 3

The server receives the
movement request. The
server checks and finds
that the player will run

into an obstruction.

The server sends a denial-
of-movement command.

1 2

Client

Server

Figure 2.8

Intercepting
server
commands

Eventually, Origin came up with a neat way to detect cheaters. UO has monsters
that rarely ever get far into towns because the town guards kill them on sight. With
this system, you almost never see a creature in the middle of town. Game adminis-
trators used this to their advantage to catch UOE characters. First, the game
admins entered the game as a creature. Not only did they assume the forms of
creatures, but they also changed their colors to something like purple. So you had
game admins walking around in purple troll bodies. The admins even went one
step further and made themselves invisible. Do you remember how UOE let people
see invisible players? Well, people running UOE saw a purple troll walking through
town and said something like, “Hey, there’s a purple troll in town!” The game
admins then knew exactly who was a cheater. Non-cheaters couldn’t see the troll in
the first place because it was invisible. All the admins had to do was ban people
who mentioned the purple trolls. Everyone else had no idea what the cheaters were
talking about anyway because they couldn’t see the invisible administrators. It’s
kind of funny when you think about it; the cheaters got themselves caught.

Eventually, Origin changed the code stream enough that UOE stopped working. If
the authors of UOE had kept updating the program, it would probably still work
today. But the developers got bored with UOE and quit working on it. Even though
this one hacking utility quit working, it does not mean hackers quit messing with
the game.

Interfaces
One thing that normally separates most clients from servers is the interface. The
client application is responsible for graphical updates. All the servers do is handle
requests and responses. Because servers don’t have to worry about displaying
graphics, they can devote all of their power to processing requests.

If you try running a Quake server, you’ll notice that the actual server program runs
in a separate console window because it uses no graphics. A good side effect of
clients and servers not being tied to each other graphically is that you can update
clients without changing the servers. Because the servers don’t really care about the
client graphics, you can change the client graphics all day long without affecting
the server code.

Peer-to-Peer Games
The main difference between peer-to-peer games and client/server games is that
peer-to-peer games have no dedicated server. In the peer-to-peer world, each player
is responsible for sending requests and responses to all of the other players. This

56 2. Understanding the Magic

requirement alone limits the maximum number of players possible in this type of
game. Take a look at the traffic flow in Figure 2.9.

Figure 2.9 shows a lot of communication traffic in peer-to-peer games. Basically,
whenever a player wants to do something such as move forward, he must transmit
his action to every player present. One thing that sets this process apart from that
of a client/server game is that the player does not wait for permission to complete
the action. Take a look at the following steps to see this concept in action.

1. Player A presses the joystick up to move forward.

2. Player A sends the movement command to Player B.

3. Player A continues playing.

4. Player B receives the movement command and updates Player A’s position in
his game.

Notice how Player A continues playing after sending the command to move.
Because the game has no server, Player A couldn’t care less what the other players
think. No security or validity checks take place in this scenario. This process can

57Inside Online Games

Data Transmitted Data Transmitted

Data Transmitted

Data Transmitted

Client Client

Client Client

Client
(Host)

Figure 2.9

Communication
traffic in peer-to-
peer games

lead to a lot of hacking because players assume commands coming from other play-
ers are valid. In fact, a group of us used this weakness to hack Diablo and Diablo II.

In Diablo II, by Blizzard, character data is stored in simple-to-read data files on the
hard drive. All you have to do is open the character file with a hex editor and
change the values. Within a few minutes of owning the game, we edited our charac-
ters to have millions of hit points. Not only were our characters invincible, but they
also had the best offensive spells and capabilities possible. In no time, we were
roaming around Battle.net, killing people left and right in PK games. Every once in
a while, we ran across another hacker and things got interesting. It just goes to
show you that people will not play games the way you expect.

Graphics, Graphics,
Where Are the Graphics?
I did talk a little earlier about graphics, but I didn’t really cover in detail how they
work. Before you can write a video game, the one thing you must fully understand
is graphics. Without them, you wouldn’t have much of a game to play.

Here is a brief list of topics I have already covered relating to graphics.

■ Video adapter initialization
■ Screen resolution
■ Pixels
■ Color depth

So you now know that video adapters are responsible for manipulating the display.
You also should know that the screen consists of pixels. With this knowledge, you
are not far from understanding game graphics. The next thing to understand is
image composition. By image composition, I mean the process of arranging images
on the screen to create a complete picture. This topic might not sound like much,
but it is one of the most complicated aspects of game programming.

Bitmaps
The first element of a composition is an image. Images in
game development are called bitmaps. An example of a
bitmap is the spaceship in the game of Asteroids.

All bitmaps share common characteristics. Table 2.3
describes some common attributes of bitmaps.

58 2. Understanding the Magic

A bitmap is a
graphical image
primarily displayed
on-screen.

Bitmap Size
The width and height attributes are fairly straightforward because they represent in
pixels the size of the image. Most bitmaps follow sizes evenly divisible by four. For
example, a 32 × 32 image is common, whereas a 32 × 31 image is not. The reason is
that many systems can deal with four bytes at a time just as fast as one byte. So if
you keep the bytes divisible by four, you get the best performance. Other considera-
tions for size include hardware limitations. Some 3D accelerator cards on the mar-
ket can only support an image up to 256 × 256 pixels in size.

Bitmap Color Depth
The color depth of a bitmap works just like the screen display does. So a 24-bit
bitmap has 16.8 million colors, and an 8-bit bitmap has 256 possible colors. Color
depth also carries memory considerations along with it. An image that is 100 × 100
at 24 bits takes up 100 × 100 × 4 bytes of memory. Roughly 40KB might not sound
like much, but when you consider that games have thousands of images in them,
the numbers add up quickly. For a quick look at a bitmap, take a peek at Figure
2.10.

Bitmap Color Key
The color key for a bitmap represents the color in the image that does not
appear when the bitmap is displayed. This setting is useful when you want to see
through parts of an image. When you use a color key with a bitmap, you are using

59Graphics, Graphics, Where Are the Graphics?

Table 2.3 Common Bitmap Attributes

Attribute Meaning

Width The number of pixels in the image horizontally.

Height The number of pixels in the image vertically.

Color depth The number of colors available in the image.The depth
is represented in bits just as screen resolution is.

Color key The color to be treated as transparent.

transparency. If you did not use a color key, then every bitmap would be square and
block out any background. Take a look at Figure 2.11 to see the difference between
a bitmap that uses transparency and one that does not.

60 2. Understanding the Magic

Figure 2.10

A simple bitmap

Bitmap with Transparency

UFO blends with mountains

Bitmap without Transparency

Square around UFO is visible

Figure 2.11

A bitmap with
and without
transparency

500 Pixels Wide

500 x 500 x 32-bits = 1,000,000 Bytes

500 Pixels High

Backgrounds and Layering
The idea of color keying brings me to the next subject, backgrounds. Backgrounds
in video games are really just large bitmaps. Sometimes, backgrounds even consist
of several small bitmaps. Take, for instance, a side-scrolling shooter-type game like
the old R-Type series. The background for that game is a star field or an under-
ground cavern. Backgrounds get their name because they are in back of all the
other objects in the game. Anything else displayed in-game appears in front of the
background image.

When you display your spaceship bitmap on screen, it is pasted on top of a back-
ground image. This is the first rule of composition in game development. First, you
display your background, and then you display foreground objects such as the
player’s object.

Whenever you display something on screen in a video game, it layers the graphic
onto the display. Bitmaps that are drawn first appear below images that are drawn
last. This is an important fact to remember when designing your screen layouts.
Careful planning must ensure that everything turns out the way you want it to. Let
me show you a simple example of layering.

Imagine that you are designing a game like the old SNES version of Zelda. In that
game, you had background, middle-ground, and foreground images. Look at the
background image in Figure 2.12.

The background image doesn’t offer much to see, so it is time to add some middle-
ground pieces. For the middle, I added a player. Check out the resulting composite
image in Figure 2.13.

Well, so far this doesn’t look too exciting. One thing that would spice it up is a
graphic that partially covers the hero. Now I am going to paste down a box in front

61Graphics, Graphics, Where Are the Graphics?

Figure 2.12

A background image
in a simple RPG

An RPG is a role-
playing game. In
these types of
games, people play
the role of a
character by acting
out what they want
to do in the game.

Grass layer

of him, which gives the illusion of another dimension within the image. Look at
Figure 2.14 to see the composite this creates.

Notice how your character is partially covered by one of the boxes? This is not pos-
sible if the boxes are drawn in the background image. If they were, you would see
the character appear above the boxes. By creating a foreground layer, I add to the
depth of the game. Without the foreground layer, everything would look too flat.

Considering that this is such a simple example, you can probably get an idea of
how complicated graphics can get with advanced games. Don’t let this be a deter-
rent to you, though. Everyone has to start somewhere!

Animation and Frames
When you see the word animation, you might think of a cartoon or movie. However,
in the video-game world, an animation refers to a multi-image bitmap. To provide

62 2. Understanding the Magic

Figure 2.13

A background image
with a character
layered on top of it

Figure 2.14

A three-layer
composite image

Grass and man layers

Grass, man, and box layers

the illusion of animation in game programming, you use multi-image bitmaps. This
means that you have different images for the same game object. Take, for instance,
one of the units in Starcraft. When you move a unit, it might rotate. When it rotates,
you are actually seeing different bitmaps in succession to give the illusion of rota-
tion.

Each image in an animation is called a frame. Most fluff animations in video games
consist of eight or fewer frames. They use this small number because of memory
considerations. Remember the formula for bitmap memory usage? Well, for an ani-
mated bitmap, it gets even
worse. Take, for example,
a 24-bit 64 × 64 animated
bitmap of an explosion
with 8 frames. It takes up
64 × 64 × 4 × 8 bytes of mem-
ory. That’s more than 131,000
bytes! And that is just one
explosion.

In Figure 2.15, you can see
how several images can give
the illusion of movement or
animation.

Blitting
Wow, that’s a strange word, eh? Blitting is what occurs when you copy a bitmap to
the display or to another bitmap. Most of the time, this term only applies to 2D
graphics. So if you are working with 3D graphics, don’t expect to do any blitting.
Microsoft’s DirectX 8 has even gone so far as to remove 2D hardware blitting from
its SDK. This brings me to another point, hardware versus software.

63Graphics, Graphics, Where Are the Graphics?

TIP
Before you write a game, be sure to calculate
approximately how much memory the graphics
will require.A good way to figure out what is
acceptable is to look at some popular game
requirements. If your game will require more
memory than current titles in production, you
are limiting your audience. Many more players
have low-powered machines than monster com-
puters.The optimal situation is to work on a
closed system such as the Xbox.Then, you know
how much memory you have to work with.

Figure 2.15

Frames used to
create an animation

Hardware Versus Software Blitting
Most video cards today support hardware-level operations. What this means is that
the video card itself contains one or many processors. These processors can speed
up operations such as blitting. Newer cards have 3D accelerators in addition to 2D
accelerators. These cards can accelerate all sorts of operations such as lighting,
alpha blending, and transformation. Don’t worry if you don’t know what all of this
means yet; you soon will.

Some blitting functions take advantage of the hardware on the video adapter. If
you use video hardware, your blit operations run much faster. Whenever you have
to resort to software blitting, you’ll notice a huge decrease in speed. So, always use
hardware acceleration wherever possible.

Common Blitting Parameters
Most SDKs that support blitting give you some common options when doing so.
Here are some common parameters you might expect to see.

■ Target
■ Source X
■ Source Y
■ Destination X
■ Destination Y
■ Width
■ Height

The first parameter, the target, expects the object to which you are trying to blit.
This can be either the background or another bitmap. In many instances, you cre-
ate new bitmaps out of several other ones. This is why the target can change from
blit to blit. You are not always blitting to the background.

The second parameter, the source X, is asking for the starting horizontal point
within your bitmap from which to blit. This lets you blit portions of a bitmap to
another one. The third parameter, the source Y, is asking for the starting vertical
point within your bitmap from which to blit. The destination X and Y parameters
determine where within the destination you want to blit to. This allows you to paste
your bitmap anywhere within the target area. The width and height parameters let
you specify how much of the source bitmap you want to copy. Perhaps you want to
copy only a portion of it, or maybe you want to copy the entire thing—it is up
to you.

64 2. Understanding the Magic

These are just a few of the common parameters you can run across. To see some
options in action, take a look at Figure 2.16.

Collision Detection
Generally, when your airbag goes off, you know you have collided with something.
To detect collisions in video games, you use the iCheckAirBag() function. Okay, seri-
ously, you use collision detection in video games to determine when two objects
have hit one another. This information is useful when you’re trying to figure out
whether a projectile struck the player or the player blasted the bejeezus out of
something else.

A common question from most new game developers concerns how you detect col-
lisions between bitmaps. Well, it’s not all that difficult. All you have to do is think of
bitmaps as rectangles, which they really are. Once you realize that bitmaps are just
rectangles, all you have to do is process a rectangle intersection algorithm. Ooh,
big words, eh? To put it in layman’s terms, you check whether the rectangles over-
lap. Take a look at Figure 2.17 to see how the bitmaps overlap one another.

65Graphics, Graphics, Where Are the Graphics?

Figure 2.16

Different blitting
parameters and their
effects

Source 128,0: Destination 0,0 : Size 128 x 256

Source 0,0: Destination 0,0 : Size 128 x 128256 Wide x 256 High

Source Image Destination Image

Notice that the player’s bullet is overlapping the enemy. Because the bullet is just a
rectangle, you can check whether it overlaps by running the following formula:

If absolute_value(bullet_center – enemy_center)
<= enemy_size then COLLISION!

This formula checks whether the center of the bullet is within range of the enemy’s
center point. This type of collision detection is called the bounding-box method.
Basically, you are putting a box around every object in the game and checking
whether something enters the box. This isn’t the most accurate form of collision
detection, but it works for most situations.

What about the Third Dimension?
Hey, I can’t very well leave out 3D graphics now, can I? Most games on the market
today use 3D engines. The third dimension adds all sorts of facets to game develop-
ment. No longer can you get by with mediocre math skills; now you must under-
stand such things as linear algebra. Okay, maybe it’s not that bad—you really only
have to understand a few things to get by.

66 2. Understanding the Magic

Player

Enemy

Figure 2.17

Bounding-box collision
detection

The bullet’s rectangle
overlaps the enemy’s
rectangle. Because of
this, a collision occurs.

What Is 3D?
2D games have a two-coordinate system, the x-axis and the y-axis. 3D games have a
three-coordinate system, the x-axis, the y-axis, and the z-axis. Take a look at these
two systems compared in Figure 2.18.

As you can see in Figure 2.18, the 3D system appears to be going into the page.
The x-axis refers to left and right movement, the y-axis refers to up and down
movement, and the z-axis refers to in and out movement.

Projection
We all know that most computer displays really have only two dimensions. Because
this is the case, you are really just simulating the third dimension in 3D games. To
simulate 3D, you must project a 3D image onto a 2D surface. This allows you to cre-
ate a flat image that appears to have depth. You see this effect every day with what is
called perspective. Take a peek at Figure 2.19 to see an example of image projection.

Vertices
Objects in 3D consist of several points. Each point has a coordinate value for the
x-axis, y-axis, and z-axis. These points are collectively called vertices, with each point
being called a vertex. You can think of vertices as points in 3D space. When two
vertices connect to one another, they form an edge, or line. When three vertices
connect, they form a triangle or a polygon. Figure 2.20 shows three vertices connect-
ing to form a polygon.

67Graphics, Graphics, Where Are the Graphics?

X

Y

Z

X

Y

2 Dimensions 3 Dimensions

Figure 2.18

2D coordinates
versus 3D
coordinates

Polygons
The polygons that are formed when vertices connect allow you to view the object in
solid form. If the object had no polygons, you would see only a cloud of points.
Now you know why a game system or video card indicates how many polygons it

68 2. Understanding the Magic

A road as seen from above. The same road from a 3D
perspective. Notice how it
seems to disappear into

the distance.

Figure 2.19

A 3D scene projected
onto a 2D surface

Figure 2.20

Three vertices connecting
to form a polygon

can handle. The great thing about using triangles to make polygons is that you can
create anything with this method. Check out Figure 2.21 to see how triangles can
form several different objects.

Rendering
Displaying a 3D object on the user’s screen is called render-
ing. All this means is that you are converting the polygons
into pixels or texels. Rendering does involve a lot of steps
and operations, but you don’t need to worry about that
right now. Just remember that rendering means creating
images of your 3D objects.

Solid Objects
Now it’s time for some solid advice, pun intended. Okay, that was a bad joke, but
hey, it’s late and I’m tired! Excuses aside, solid objects can only be rendered when

69Graphics, Graphics, Where Are the Graphics?

Figure 2.21

Different objects
created with triangles

Texels are textured
pixels. Some video
cards refer to how
many texels they can
render at once,
which means how
many textured pixels
they can display.
Nvidia, the popular
video card maker,
coined this term.

they have normals. What is a normal? Well, a normal tells a face how to be shaded.
Faces are just three-sided polygons, or triangles.

To keep things simple, I am going to say that normals define rendering surfaces for
polygons. With normals, you can view your objects as solid entities. If you don’t ren-
der your objects in solid mode, they appear as wire-frame objects. The images in
Figure 2.22 demonstrate the difference between solid and wire-frame rendering.

Textures
3D objects would look pretty boring without textures. Textures are bitmaps that are
wrapped around 3D objects. For example, texture-mapped cubes could represent
the keys on your keyboard. Each cube’s texture map would be a bitmap of a differ-
ent key. Take a look at Figure 2.23 to see a texture-mapped object.

That’s it for the nickel tour of 3D graphics. Later, I’ll show you how to create an
entire 3D game. When the time comes, you will learn more about 3D graphics than
you ever wanted to know.

70 2. Understanding the Magic

Figure 2.22

Solid and wire-frame
rendering

Review
Well, here we are at the end of Chapter 2 already. I covered most of the important
aspects of video game architecture, so all that is left is actual implementation. But
before I take you to the next chapter, which covers networking, take a minute to
review some key points.

■ Game loops are logical loops in your program where reoccurring events
happen. Tasks such as input gathering and rendering are handled within
game loops.

■ When you initialize a game, you must set up the video, sound, input, and
networking interfaces for it.

■ When initializing the player’s video display, you must take into consideration
the screen resolution and color depth requirements for the game.

■ You can create your own game sounds by sampling real world recordings.
Always be sure to use an appropriate sample rate so that the digitized sounds
keep their clarity.

71Review

Figure 2.23

Texture mapping

■ There are two main types of multiplayer games, peer-to-peer and
client/server. The peer-to-peer method is good for a small number of play-
ers, while the client/server model is good for massively multiplayer games.

■ 3D games use polygons to create their graphics. The final renderings are
made up of pixels and texels.

72 2. Understanding the Magic

CHAPTER 3

Introduction
to Network

Communication

There is no better way to start learning network game programming than to
learn the basics of how computers communicate with one another. In this

chapter, I’ll give you a mid-level view of how networks are built and how the com-
puters within them communicate. I’ll cover the following topics.

■ Network theory
■ Game network protocols
■ Ports and firewalls
■ Types of game connections
■ Hardware setup
■ Data packets

Network Theory
Well, here you are, standing at the gate of multiplayer game development. Before
you can enter, you need to better understand what you are dealing with. You proba-
bly already know what a network is, but the information you need to know is how a
network affects game development. Following are some definitions of a network
(The American Heritage® Dictionary of the English Language, 3d ed., s.v. “network.”).

■ An openwork fabric or structure in which cords, threads, or wires cross at
regular intervals

■ A system of lines or channels that cross or interconnect: a network of railroads
■ A complex, interconnected group or system: an espionage network
■ An extended group of people with similar interests or concerns who interact

and remain in informal contact for mutual assistance or support
■ A chain of radio or television broadcasting stations linked by wire or

microwave relay
■ A group or system of electric components and connecting circuitry designed

to function in a specific manner
■ A system of computers interconnected by telephone wires or other means to

share information

74 3. Introduction to Network Communication

For our purposes, you get to use the last definition. So, there you have it; a network
is nothing more than computers connected by some means to share information.
Okay, what does that mean? Well, for network game development, you must figure
out how to make your games talk to one another across some connection. The
problem in the past was the lack of a standard way for computers to communicate.
Can you imagine having to write communication code for several varieties of net-
works? If you are a veteran to the industry, you might know that games had no stan-
dard way to communicate until recently.

Standard Methods for Game
Communication
The most widely used method for game communication is through the use of sock-
ets. Sockets have been around for a while and have been accepted by the game-
development community as a fitting method. A more recent addition to the
game-development community is DirectPlay. For now, I’ll talk about sockets first,
and then I’ll go into DirectPlay.

Sockets
Sockets are commonly referred to as connections through a network, be it a LAN
or the Internet. The most common sockets library you hear about when dealing
with Windows is Winsock. Winsock is nothing more than a library provided by
Microsoft to allow programmers to use sockets within their programs. All of the
sockets-based sample programs covered in this book use the Winsock library. When
using sockets, you follow a certain protocol depending on what you are trying to
achieve. For game-development purposes, I prefer to use TCP/IP (Transmission
Control Protocol/Internet Protocol). TCP/IP is a sockets protocol that guarantees
packet delivery. When computers have the TCP/IP protocol installed, they also
have an IP address.

Inside IP Addresses
IP addresses identify individual computers over a LAN or the Internet. An IP
address consists of four numbers separated by periods. The format looks like this:

100.100.100.100

Each of the four numbers ranges in value from 0 to 255, so there can be more than
2564 unique addresses in the world. That is more than four billion addresses—

75Network Theory

4,294,967,296 to be exact! The four billion or so
unique addresses only limit computers that have
an address exposed to the Internet. This does
not even include addresses of computers within
closed networks. Every private network is allowed
to have this many addresses as well. So, as you
can see, there will be no shortage of IP addresses
to go around for a long time. Refer to Figure 3.1
for a diagram of private and public IP addresses.

The interesting part is that a computer in a private network can have the same
address as a computer in another private network. Take a look at Figure 3.1,
and you’ll notice that the computers in the private network have the same
addresses as those in the Internet. You can think of them as apartment complexes.
An apartment complex has a main address for the main office, but the individual
apartments have addresses such as A-1 or C-2. Well, another apartment in a

76 3. Introduction to Network Communication

Figure 3.1

Diagram of public and
private IP addresses

NOTE
The range of possible IP
addresses is actually being
expanded to handle more
than the current limit of
2564 addresses.

Private Network

PC
100.100.100.100

PC
100.100.100.102

PC
100.100.100.101

Internet

PC
100.100.100.101

PC
100.100.100.102

PC
100.100.100.103

PC
100.100.100.104

Private Network Router/Firewall
Local IP 100.100.100.100

Internet IP 100.100.100.103

totally different complex can also have an address of A-1 or C-2. In this analogy,
you can refer to the apartments’ main offices as the routers connected to the
firewalls.

Firewall Primer
Firewalls provide a layer of protection for computers on private networks that want
Internet access. Most of the time when you operate a network of computers, you do
not want just anyone to have access to your systems. You can restrict access by using
firewall hardware or software. Most firewalls are hardware-based and resemble net-
work hubs. A firewall works by hiding the IP addresses of computers attached to it
in the private network. Computers in the private network can see out into the
Internet through the firewall, but computers on the Internet cannot see behind
the firewall. This provides a two-way mirror approach to security. One problem this
presents for developers is that servers might not work if you are writing a standard
peer-to-peer game. For example, take a look at Figure 3.2.

77Network Theory

Internet

Private Network

A

B

PC
166.102.55.21

PC
200.128.90.1

Private Network Firewall/Router
Local IP 200.128.90.0

Internet IP 208.102.58.5

Figure 3.2

Firewall access

In this example, Computer B can see Computer A, but Computer A cannot see
Computer B. The only thing Computer A can see is the firewall in front of B. For a
client to connect to a server, it must be able to see the server’s IP address. In the
example, Computer B’s IP address is masked, so that means Computer B cannot be
a server. On the other hand, Computer
A could be the server and Computer
B would be allowed to connect to it.
A server does not necessarily have to
know the client’s IP address.

There is light at the end of the tun-
nel, though. You can have a server
behind a firewall if you open some
holes in the wall. Holes in a firewall
allow traffic to come in through
them. These holes are commonly
referred to as ports.

Ports and More about Firewalls
Ports are just channels in which network traffic is delivered within an IP address.
The usual ranges of ports to use are from 1,000 to 10,000. You don’t use those
numbered 1 to 1,000 because they are used by standard protocols such as FTP and
HTTP. For example, HTTP requests come in on port 40. Most firewalls allow you to
open individual ports or ranges of ports. If you want to send a transmission to a
port within an IP address from your Web browser, you type in the IP address fol-
lowed by a colon and then the port number. For example, to send a request to IP
address 100.100.100.100 through port 40, you would use the following address:

100.100.100.100:40

By specifying a port number, you drill down into the IP address where you want to
send the packet. By doing this, you can go through the hole opened by the firewall.
Refer to Figure 3.3 for an example.

In this figure, you see Computer A connecting to Computer B through the firewall.
Specifying the open port number 6000 achieves this. When the firewall receives the
request from Computer A, it translates the request to an internal IP address, a
process commonly referred to as NAT (Name Address Translation). The firewall
maintains a list of ports and to what IP address the ports are translated. To open a
port in your firewall, you make an entry into the NAT table, specifying the port

78 3. Introduction to Network Communication

CAUTION
Some game services, such as Microsoft’s
Gaming Zone, require that you are not
entirely blocked behind a firewall. If you
are blocked behind a firewall, you might
find that you cannot play the games.To
alleviate this, you must have a range of
required ports opened.

number and IP address. When requests come into the firewall, it checks whether
the specified port is open. If the port is open, the traffic is routed to the internal IP
address in the table.

Regardless of whether you are behind a firewall, you have ports on your system.
When you are running a server, it must specify a port to accept connection
requests.

Some games allow you to specify the server’s port number, but others do not. For
an example of this, you can look at Red Storm Entertainment’s game, Rogue Spear.
The connection menu in Rogue Spear asks you which port number the server is lis-
tening on. When a game does not allow you to specify a port, normally the reason
is that the program hard-codes specific ports. The best practice when writing your
own games is to let the client and server programs specify port numbers. This prac-
tice keeps users from having to change their configurations to fit your programs.

79Network Theory

Private Network

A

B
Open Port

6000
Translates to
200.128.90.1

Connection
Established When

Calling
208.102.58.5:6000

Private Network Firewall/Router
Local IP 200.128.90.0

Internet IP 208.102.58.5

PC
166.102.55.21

PC
200.128.90.1

Internet

Figure 3.3

Firewall access through
open ports

The less amount of pain the customer has to endure, the better. Refer to Figure 3.4
to see how two computers not behind firewalls would connect.

The illustration in Figure 3.4 looks a bit simpler than firewall examples because
there is no hardware between the server and the client. This is most often the case
in games where both the client and server are using modem connections. If you
dial into the Internet via an ISP (Internet Service Provider), then you most likely have
no protection between you and the Internet. In this case, you can run a server with-
out having to open ports to incoming traffic because the ports are already open.
Okay, enough about ports; let’s move on to something else.

Overview of DirectPlay
DirectPlay, a part of DirectX, is produced by Microsoft and provides a layer of
abstraction away from connections. With DirectPlay, your program doesn’t have
to be aware of the connection present, whether it is modem to modem, Internet,
serial cable, or something completely new. DirectPlay is a good generic API in this
manner, but it does have some shortcomings because it abstracts too much in some
cases.

For instance, if you are developing an MMORPG, you might not use DirectPlay.
The reason is that such a large-scale project requires multiple servers, and the pro-
ject requires absolute low-level control of the communication streams. DirectPlay
hides a lot of the functionality and might not be suitable. Another point to men-
tion is that some MMORPG servers are UNIX-based, and DirectPlay works only in
Windows environments. Lucky for you, though, Microsoft just rewrote the core of
DirectPlay to better handle MMORPGs; time will tell whether it was fixed enough.
The sample programs you will work with expect DirectPlay to use the TCP/IP pro-
tocol. For information about TCP/IP and sockets, refer back to the “Sockets” sec-
tion earlier in this chapter.

80 3. Introduction to Network Communication

Internet
Port 6000

Client
166.102.55.21

Server
100.100.100.100

Figure 3.4

Connecting computers that
are not behind firewalls

Types of Game Connections
The two basic types of game connections used primarily in game development are
peer-to-peer and client/server, both of which are supported by DirectPlay. Both
types have good and bad aspects, so you should weigh which method is best for the
game you are writing.

Peer-to-Peer Game Connections
The earliest method used is peer-to-peer game connections. This type of connection
puts the burden of keeping game state on each client participating in the game
session. Game state refers to the complete status of a player’s game environment at
any given time. Game state changes are things that alter a player’s environment, such
as movement and special events. For example, if Player 1’s tank were moving for-
ward and then turned left, the game state would change. When a player’s game state
changes in peer-to-peer games, all other players must be informed of the change. So
from the previous example, when the player turned left, every player in the game
would have to be informed that it was turning.

Peer-to-peer games start up with all the players in the game knowledgeable about
all the other players. One advantage to this is that if a player gets disconnected, the
game continues. Because there is no reliance on a central server, the game is safe
unless everyone is disconnected. Refer to Figure 3.5 to see the architecture of a
peer-to-peer network.

81Network Theory

Client

Client Client

Client
Figure 3.5

Peer-to-peer network
architecture

One thing you might notice from Figure 3.5 is a lot of cross-traffic between clients.
This is due to every client sending state changes to every other client. Eventually,
this becomes cumbersome when you have many players in a game. In fact, games
such as EverQuest and Asheron’s Call do not work with this method. The process of
thousands of players communicating with each other is impossible given today’s
technology. Most games that require many players (more than four) do not use the
peer-to-peer method for game communication. One of the nice things about peer-
to-peer games, though, is that you do not need a server with a fast Internet connec-
tion to play the game.

Even though it is not called client/server communication, peer-to-peer games do
have a server. Instead of a traditional server, the server in the peer-to-peer method
transfers only player connection information. When a new player joins a peer game,
he requests information about all the players connected from the server. The game
server then responds with the IP addresses and other information about all players
in the game. Here is a sample sequence for requesting player information.

1. Player A starts a multiplayer game and takes an ID number of 0.

2. Player B joins A’s game and requests a new ID number and information
about players.

3. Player A sends B the new number of 1. Player A sends information about
himself and nothing else because no other players are present.

4. Player C joins A’s game and requests a new ID number.

5. Player A sends C the new number of 2. Player A sends information about
himself and Player B.

6. Player C loops through the list of players and sends information about him-
self. In doing so, Player B is informed that Player C is now in the game.

If the designated server in a peer-to-peer game is disconnected or leaves the game
session, then normally the next player in “line” becomes the new server. So from
the previous example, if Player A disconnects, then Player B becomes the new
server. Player B then functions as the repository of player information for new con-
nections. Even though some of this explanation might look complicated,
client/server games are usually much more difficult to design.

Take a look at the pros and cons of peer-to-peer games in Table 3.1. One item that
I mention is the security risk. In peer-to-peer games, players are dependent on
other players for accurate information. This presents a major game security, or
integrity, risk because clients have to trust other players with their information.
Many games have fallen prey to this risk, such as Blizzard’s Diablo game series.

82 3. Introduction to Network Communication

When I show you how to develop a peer-to-peer game later, I’ll show you some tips
on securing these types of games. The main thing to remember is that you need to
evaluate all methods of network design on a per-game basis.

Well, that’s about it for peer-to-peer theory; let’s move on to the client/server model.

Client/Server Game Connections
The client/server model of game development is becoming more prevalent as a
standard for game communication. Not only does the client/server model work
well for games, but it is also used by many commercial industries as a replacement
for mainframe architecture. One good thing about this is that the skills you learn
while developing client/server games can carry over to most industries. It never
hurts to have a good item on the ol’ resume!

The client/server model differs from the peer-to-peer model in that a single server
is responsible for keeping game state. The server maintains all communication
between clients and keeps clients informed about the entire game state. Clients in
this network model send data only to the server. Refer to Figure 3.6 to see the
architecture of a client/server environment.

Because servers maintain state for all clients, it is best if they are well powered and
have high-speed Internet connections such as ISDN, DSL, T-1, or better. Here is a
sample server setup for a first-person “shooter” style game, such as Dynamic’s Tribes 2.

■ Windows 2000 OS
■ Pentium III, 1 gigahertz (GHz) or faster
■ 256MB of RAM
■ T-1 Internet connection

83Network Theory

Table 3.1 Pros and Cons of
Peer-to-Peer Game Design

Pros Cons

Fault tolerant Limited maximum number of players

Easiest to implement Unnecessary network traffic

Fast server not needed High security risk

The default hard-drive storage required is usually plenty for games of this type.
Because hosted games such as Dynamic’s Tribes 2 are not persistent world servers,
they do not require a lot of storage space. For supporting MMORPG-style games,
the requirements for servers change drastically. MMORPG servers require immense
amounts of hardware and bandwidth. In fact, many games of this genre incorpo-
rate multiple servers. Origin’s Ultima Online game utilizes a cluster of servers that
divide the game world into boundaries. When players cross server boundaries, they
are handed off to a different server. This helps with load balancing. Here is a sam-
ple server setup for a generic MMORPG-style game.

■ Windows 2000 Server or UNIX OS
■ Quad Pentium IIIs, 1 GHz or faster
■ 2GB of RAM
■ T-3 Internet connection or faster

One item to note is the operating system. Many massive online games use UNIX
servers because they are generally better suited for the task. You will hear many dif-
ferent opinions about this. Some people say Windows is better; others say UNIX or

84 3. Introduction to Network Communication

Client Client

Client

Client

Server

Figure 3.6

Client/server network
architecture

Linux is better. It really depends on the task at hand, and the best thing to do is try
different OS solutions until you find the optimal one for your game. The corporate
solutions I design use a mix of UNIX and Windows. There are pros and cons to each.

Now I want to talk about how game state is handled in the client/server environ-
ment. Because servers are responsible for the game state, they process quite a bit of
data. Refer to Figure 3.7 for a sample communication between a client and a server
in a shooter-style game. In Figure 3.7, you can see a single client (Client A) and
some other unnamed clients. For this example, Client A is a tank moving north.
Client A then decides to turn right. Because this action changes the overall game
state, the server must be notified. Here are the events that transpire with this
action.

1. Client A sends an action packet to the server stating that the client’s tank is
turning right.

2. The server receives the action packet and acknowledges the reception to
Client A.

3. The server updates its game state with the new information.

4. The server sends a packet to all other connected clients, informing them that
Client A is turning right.

5. The clients other than A update their games with the information that Client
A’s tank is turning right.

85Network Theory

Other ClientsClient A

Server

Figure 3.7

Sample communication
between a client and a server

In this example, you see that the server must relay
game information to all players involved. This is why
the server requires a high-speed Internet connection.
This type of communication does make life a little
simpler for synchronization, though, because the
server is aware at all times what state each client is in.
If a client starts lagging behind, the server can slow
down the entire game until the slow player catches
up. If the slow player never catches up, the server
might disconnect it.

The main difference between MMORPG servers and
other game servers is that MMORPG servers do more
than just transmit data between clients. These servers also approve client actions
and store all data for the game. Because these types of servers have to approve
client actions, the games are generally much more secure than traditional servers
or peer-to-peer games. The MMORPG server checks the client requests and rejects
the requests if the actions are invalid. Now take a look at the pros and cons for uti-
lizing the client/server model in Table 3.2.

Personally, I prefer the client/server model, but that might be due to the fact that I
work with client/server applications daily. If you want to design MMORPG-style
games, then the client/server model is the way to go; otherwise, try out the meth-
ods and choose for yourself.

86 3. Introduction to Network Communication

When you are playing a
game over the Internet,
abnormal delays that cause
jerky movement or missed
actions are commonly
referred to as lagging.A lag
denotes the delay between
a client and a server. If you
are experiencing lag, you
are getting a slow response
from the server, or you are
transmitting slowly to the
server.

Table 3.2 Pros and Cons of
Client/Server Game Design

Pros Cons

Improved security Expensive hardware

Easier to synchronize game state High-speed Internet connection required

Lower network traffic Not fault tolerant

Can support many players

Game Communication
Hardware
Now that I have covered the methods of game communication, I want to talk about
what it means from the hardware level to get set up for network games. First I’m
going to cover how some network hardware works. Then, I’ll discuss how to set up
your environment to develop network-ready games. Last, I’ll talk a little about the
hardware design of game servers.

Connecting to the Internet
One method common to multiplayer gaming is playing through the Internet. The
majority of game players use modems to connect to the Internet. When you are
designing your network game, be sure to keep this in mind. If you design your
game to work well only under high-speed connections, then you’ll leave most
gamers out in the cold.

Modem Basics
Most modulators/demodulators, or modems, are internal and included with pack-
aged computers. A computer’s connection to the Internet through a modem is
commonly referred to as a dial-up connection. Because the modem must make a con-
nection before the user can go online, you must program your games to handle this
event. Some current games on the market crash if you try to play over the Internet
when you are not already connected. I have found that a good way to be prepared
for this is to perform a connection test before your game really starts. If the com-
puter is not connected to the Internet, then inform the user and ask whether he
still wants to continue. This keeps the player from having to switch back to the desk-
top to connect to the Internet while in the middle of your program.

The standard speed modem you should develop for is the 56.6k modem. Many new
technologies are faster, but they are not mainstream yet. The 56.6k modem has
been around for a while, and even Sega’s Dreamcast console gaming unit has one
built in. The 56.6k refers to the transfer speed in bits per second. A 56.6k modem
is capable of transferring 56,600 bits per seconds, or around 7,075 bytes per sec-
ond. This might sound like enough, but imagine that most games today play at
around 60 frames per second. If you take 7,075 bytes per second and divide that
by 60, you find that only around 118 bytes can be transmitted per frame. You need
a total bandwidth of 118 bytes per frame for both receiving and transmitting;

87Game Communication Hardware

therefore, you really only have 118 divided by 2, or 59 bytes, available to send and
receive per frame.

One common problem with modems is that the connection speed is never guaran-
teed. It is not uncommon for a modem user with a 56.6k modem to get a 28.8k
connection. It really depends on the service the player uses and the current load
on the Internet. Keep these restrictions in mind when you develop your network-
ready games.

High-Speed Bandwidth from Home
Many home users have faster options. One of the oldest is ISDN, which comes in
two flavors: 64k and 128k. Basically, ISDN connects just like a standard phone line.
The phone company installs the line in your house, and then you connect to it
with special hardware. ISDN lines are not compatible with standard phone equip-
ment, so do not expect to use your phone on the same line. However, you can
install a router for use with your ISDN line, which lets you connect a phone to it.
ISDN can support up to two channels, each with 64k of bandwidth. You can use the
two lines in tandem for a grand total of 128k. One nice advantage to an ISDN con-
nection is that the 64k or 128k connection is guaranteed to be the full bandwidth.
Unlike dial-up modems, the speed does not vary based on service providers or sys-
tem load. The reason for the constant speed is that ISDN lines are digital, not ana-
log. The main downfall of ISDN lines is the cost. They are typically much more
expensive than other solutions. Refer to Figure 3.8 to see a typical setup for ISDN.

88 3. Introduction to Network Communication

Internet

Computer A Computer B

Telephone

Figure 3.8

ISDN configured for two
computers with a router

Another high-bandwidth option for home users is DSL (Digital Subscriber Line). DSL
works on existing phone lines and only requires a special modem to utilize it. DSL
can be very fast at a reasonable cost. The main downfall to DSL is that it currently
works only for customers within limited range from phone switches or centers. This
problem has kept DSL from the homes of many users. If you have access to DSL, I
suggest you go with it if you are currently using something slower. DSL can handle
the throughput to operate a server for most games other than MMORPGs.

One of the most controversial connection methods around is cable. Some cable
companies now offer Internet services to their customers. Cable promises massive
bandwidth, rivaling T-1 connections, for a reasonable price. Sometimes these
promises are fulfilled, but other times they fall short. Cable connections use a spe-
cial cable modem and a standard digital cable line. One problem with cable con-
nections is that when you are connected to cable, your computer is visible to all
other cable modem subscribers within the service. When you check your Network
Neighborhood (or the equivalent), you actually see every computer that has a cable
modem installed from your cable provider. If you are concerned about network
security and do not feel comfortable battling hackers, then I suggest you stay away
from cable modems. On the other hand, if you are familiar with firewalls and
understand how to use them, cable modems are a good solution. Refer to Figure
3.9 for an illustrated view of a cable modem network.

Probably the most real problem with cable Internet is that the more users a system
has registered, the slower your connection. The entire cable modem network
shares a single resource pool. If many people take a lot of bandwidth, then others
have less to share. Most cable companies regulate bandwidth in one fashion or
another. If you can get cable modem access and are considering it, be sure to
check what bandwidth restrictions are in place.

One of the most extreme solutions, mainly for people who do not have any other
means of high-speed access, is satellite. A few companies offer satellite Internet
access from your home. Hughes Satellite offers it through a system named
DirecPC. To use this system, you must install a special satellite dish and a receiver
card in your computer. You must have a modem on your computer with access to
the Internet as well. Current satellite systems are only fast when receiving data, and
all the data you want to transmit is handled over your modem connection. Most
Internet users download the majority of their data, so this is not a problem.
However, this is a problem for game enthusiasts because whenever you want to
receive data, you have to transmit to a relay point before you ever get the data. This
process takes quite a bit of time as far as games are concerned, and makes most

89Game Communication Hardware

games unplayable. This reason alone
makes the satellite solution a poor
one for game players. I have used
the satellite solution before, and it
was great for downloading (approxi-
mately 1MB of data received every
10 seconds), but it did not work at
all for game playing. Bottom line:
It’s not for us gamers.

Internet Service
Providers
For all of these methods of connecting to the Internet, you need an ISP (Internet
Service Provider). ISPs handle your connection to the Internet through their
hardware. The majority of ISPs rent lines from the phone company to connect to
the Internet’s backbone. When you hear about the backbone of the Internet, the

90 3. Introduction to Network Communication

Shared Network

Another User's
Computer

Another User's
Computer

Another User's
Computer

Internet

Figure 3.9

A sample cable
modem network

NOTE
The Hughes DirecPC satellite provider
also limits the amount of bandwidth you
can use based on how much data you
have transmitted in a 24-hour period.
Satellite systems also suffer the same
fate as cable modems in that more
users translates into less bandwidth for
everyone.

reference is to the super-fast lines used by phone companies for Internet traffic.
Most people in the United States have access to an ISP, and the best place to find
one is through your local phone book. Unless you do not have a mailbox, you have
probably received a CD or disk from AOL (America Online). AOL provides Internet
access to most of the country and has reasonable rates. If you are very new to the
Internet, you might want to use it as an option. Personally, I always go through a
more direct ISP for speed reasons. AOL can be slow sometimes due to its vast num-
ber of subscribers, a problem encountered by ISPs when they get too many sub-
scribers. When an ISP has too many users, the equipment gets bogged down, and
all users experience slow connections and bad lag. You might have to try many ISPs
before you find one with consistently good connections. I would avoid any long-
term contracts with an ISP unless you have tried it out for several months. Even
then, I would question why a contract is necessary. Your savings might not be that
great in the long run if your connection goes bad.

Dynamic and Fixed IP
Addresses
When you establish a connection with your
ISP, you are either given a new IP address or
you are given the same one time and time
again. If you receive a new IP address every
time you connect, then your IP address is
considered dynamic. If you always have the
same IP address, then it is a fixed address.

Local Area
Networks
Let’s talk a bit about LANs. A LAN refers to a group of computers that are linked
together to form a network. If you use a computer at work, you probably are con-
nected to a LAN. Most medium-to-large companies have networks of computers to
share e-mail, files, video, and so on.

Each computer in a network has an NIC (Network Interface Card) installed. The
more common name for this interface card is an Ethernet card. Ethernet cards
allow computers to communicate across a LAN to other computers. The cards
communicate with one another through a protocol, or language. The language
used by networks varies from network to network. Microsoft and Novell are two of
the largest network-software makers. Microsoft is the most prevalent, considering

91Game Communication Hardware

CAUTION
To operate a proper persistent-
world game, you need a fixed IP
address; otherwise, players never
know where to connect. Fixed
addresses are generally much
more expensive than dynamic
ones, so keep this in mind when
designing an MMORPG.

that its networking software is built right into its Windows line of products. Novell
is the maker of NetWare, which is an alternative to Microsoft’s software. I use
Microsoft’s networking software in all of my network setups because it comes
free with Windows and also because it is the most commonly used. If I have
learned anything about technology, it is that the best does not always win; the most
popular does.

When your computer is connected to a network, you normally have an IP address
specific to your system. This IP address refers to your identity within the network.
If you have access to the Internet through your LAN, you have a separate IP
address to the outside world. This is because computers within a network
have local addresses that have nothing to do with the Internet. Refer to the
“Inside IP Addresses” section earlier in this chapter if you are unclear about this
concept.

Setting Up Your Own LAN
To build a network at home, you need multiple computers with Ethernet cards in
them and a router or hub. You can buy complete network kits from most electron-
ics stores. Most of these kits contain multiple Ethernet cards and a hub. Basically,
you end up installing a network card in each machine and then plugging the com-
puters into a central hub. The hub acts as a virtual traffic cop for all network traf-
fic. You’ll most likely install some network services to make the computers visible to
each other.

If you are planning to develop network games, and I hope you are, then the most
ideal setup is multiple computers on a LAN. With multiple systems connected, you
can test your software without having to distribute updates to friends over the
Internet. This greatly reduces your development time. If you do not have access to
multiple systems, don’t worry; most of the programs can run on the same com-
puter. Refer to Figure 3.10 to see a sample
home-network setup.

Something you might notice in Figure 3.10
is the network addresses. The hub in this
example does not have an IP address
because hubs do not require one. However,
if you use a router on your system to connect
to the Internet, the router does require its
own IP address.

92 3. Introduction to Network Communication

CAUTION
If you are going to develop on a
LAN, make sure you install
TCP/IP to use the programs in
this book.You can install TCP/IP
from your Network Settings
dialog box.

Server Architecture
If you plan to develop a service such as Blizzard’s Battle.net, or if you are going to
write an MMORPG, you have to design a dedicated game server. The design put
into these types of dedicated servers is very time-consuming and important to your
project. There is no perfect setup, so you should expect to experiment quite a bit
until you get it right.

One of the most popular game server design methods is a zone-based server sys-
tem. This system allows large numbers of simultaneous users.

Zone-Based Servers
When I talk about zone-based servers, I am not referring to Microsoft’s Gaming
Zone, but rather to server-based games that consist of zones. A couple of MMORPG
games out now, such as Ultima Online and EverQuest, use zones to handle the mas-
sive number of players. EverQuest is the most noticeable because whenever your
character ventures far within an area, you are transported into a new zone after
loading some data. By breaking the world into zones, the game can span multiple
hardware servers. This results in multiple servers sharing the load instead of a sin-
gle machine doing all the work.

93Game Communication Hardware

Internet

Personal Hub

Computer
A

IP 192.168.0.1

Computer
B

IP 192.168.0.2

NIC NIC

‚

Figure 3.10

A sample home-based network

To set up a zone-based server system, you configure multiple computers with like
settings. When all of the machines have similar setups, you avoid the situation
where any one zone is faster than another. In some cases, this is desirable, though,
if you designate a single large computer to handle popular zones.

Connection Servers
For players to connect to your game world, you set up a connection server. The
connection server is only responsible for handling requests from players to join
your game. With a designated connection server, you reduce traffic to your back-
end servers.

Figure 3.11 shows a connection server, which manages all incoming connection
requests. When a player starts his program, he connects to the connection server
and requests a list of available game worlds. Once the player chooses a game world,
he is routed to the appropriate pool of back-end game servers. A nice advantage to
a game connection server is that it can make maintenance easier. Instead of having
to shut down all of your servers to perform maintenance, you can just turn off traf-

94 3. Introduction to Network Communication

Player
Internet

Connection
Server

Game World A
Server 2

Game World A
Server 1

Game World B
Server 1

Game World B
Server 2

Figure 3.11

A zone-based
server setup with
a connection
server

fic to the connection server. You can also use this method to manage the number
of simultaneous users in a game world. If your game world gets too full, you just
deny access to the world until it has room.

Load Balancing and Fail-Over
Zone-based servers inherently utilize load balancing. The term load balancing
describes a network that accommodates excess traffic by balancing the communica-
tion load across servers. Because the zone-based server method distributes players
across servers, it is performing load balancing. Problems can still arise, though, when
too many players are present in a single zone. In these instances, you must take
action, or players can experience extreme lag, or even worse, the server might crash.
You must design a software solution to handle this important issue. One method
used in Microsoft’s Asheron’s Call game is portal storming. When too many players in
this game congregate in one area, people are teleported randomly away from the
high traffic zone. This system works on a FIFO, or first-in first-out, basis. This means
that the first people into the zone are the first people to get teleported out. In this
manner, people who just showed up to the party are not teleported out before oth-
ers who have been there for a while. Figure 3.12 shows an example of what the
player sees when he is about to be portal stormed while playing Asheron’s Call.

95Game Communication Hardware

Figure 3.12

An example of
portal storming in
Microsoft’s
Asheron’s Call

In Figure 3.12, the player is receiving an on-screen message stating that a portal
storm is brewing and that he must leave the area. If the situation gets worse, the
player might be teleported to another nearby location. Even though this can be
downright annoying to players, it’s better than having a game server crash!

A big issue with game servers is fail-over, which refers to the actions that take place
when a server goes down. If your game has a fail-over solution, your game world
does not go down when a server crashes. A fail-over solution is difficult at best to
implement because data synchronization is problematic. One way to create a fail-
safe system is to have duplicate game servers share a common file system. When a
server goes down in this system, its duplicate takes over. The servers all share data,
so there are no problems with synchronization. The only problem with this solu-
tion occurs when the shared file system crashes. If this happens, the entire world
goes offline. Even though there really is no way to keep your game world up all of
the time, it is better to put in place some fail-over than none at all. Take a look at a
sample fail-over system in Figure 3.13.

You are done with server architecture for now. I suggest that you play some games
such as Origin’s Ultima Online and Microsoft’s Asheron’s Call to see whether you can
tell how the servers work.

Packet, Packet,
Who’s Got the Packet?
Ahhhh, nothing beats a good packet. So what is a packet anyway? A packet is a
block of data sent or received. Basically, a packet defines a data block that you
either send to another computer or receive from another computer. When you
send data to another computer, it is best to have a set of defined data structures.
This lets the program know what data to look for when it processes a packet.
Suppose you want to send a speech packet to another player in a game. When the
other player receives the packet, how does he even know what to do with it if you
don’t have predefined structures? That’s where packets come in.

96 3. Introduction to Network Communication

97Packet, Packet, Who’s Got the Packet?

Player
Internet

Connection
Server

Game World A
Server 2

Game World A
Server 1

Game World B
Server 1

Game World B
Server 2

Game World A
Backup Server 2

Game World A
Backup Server 1

Shared Storage

Fail-Over Non Fail-Over

Figure 3.13 Fail-over server architecture

The Tic-Tac-Toe Example
Take a moment to examine a simple game and how it would structure its game
packets. Suppose the game is Tic-Tac-Toe, and the players can chat back and forth.
The game requires the following actions.

■ Move action. This action tells the other player that a move has been made.
After receiving the move action, the other player then takes his turn.

■ Talk action. This action talks to the other player. When you type something
into the chat window, you want to send it to the other player so he can read
it.

Okay, now that you have some actions to deal with, I am going to talk about how
you structure them in packets. The first action, Move, is fairly simple. All you have
to send is the desired location for the X or O. The packet definition might look
something like this:

#define PACKET_TYPE_MOVE 1

// Standard header packet
struct pacStandardHeader
{

int iPacketType;
int iPacketLength;

};
// Move packet
struct pacMove
{

pacStandardHeader pacHeader;
int iHorizontalPosition;
int iVerticalPosition;

};

The pacMove structure contains some header information and information regard-
ing the move taken. The header information is contained in a common structure
called pacHeader. This data structure gives the identity of the packet along with the
amount of data to be expected from the packet. The actual data stream for this
packet might look like the following.

1
16
2
2

98 3. Introduction to Network Communication

The first item listed is the number 1. When the program receives the packet, it first
looks at the header information. The identity of the packet is number 1, which is
defined as PACKET_TYPE_MOVE. This tells the program what to expect from the packet.
The next number, 16, tells the program the size of the packet. Because I am using
a 32-bit operating system, integers are four bytes each. Because the packet has four
integers in it, the total size is 16 bytes. When you include a packet length, the pro-
gram knows when the packet ends and the next one begins. The last two numbers
read are the horizontal and vertical positions for the move. The Tic-Tac-Toe grid
has three rows across and three rows down. This means the upper-left coordinate is
0,0 and the lower-right coordinate is 2,2. In the preceding example, the move is
made in the lower-right corner.

Wow, you just processed a Move packet. Now suppose you want to send a chat mes-
sage to your friend. To send the message, you transmit a Talk packet. The Talk
packet might look like the following:

#define PACKET_TYPE_TALK 2
struct pacTalk
{

pacStandardHeader pacHeader;
char szMessage[128];

};

The Talk packet contains the usual header structure along with a character array to
store the message. In this case, you allow up to 128 characters to be sent in the chat
message. Suppose that you want to send “Hello World” to your friend. The data
stream from the packet looks like the following:

2
136
Hello World\0

The first number read is the usual packet type identifier. Because this is packet type
2, the program knows it is a Talk packet. The next line read is the usual packet
length. In this case, the length is 136 because you have two integers, four bytes
each, and 128 bytes worth of character data. The last line read is the actual con-
tents of szMessage. The string terminator, \0, appears here. The string terminator
tells you where the message ends. If a terminator was not in place, you might see
garbage text after the actual message. There you have it—packet design for Tic-
Tac-Toe! I know it’s not very glamorous, but I want to keep it simple until you get
the hang of it.

99Packet, Packet, Who’s Got the Packet?

Ideal Packet Size
“Ideal packet size” is somewhat of a controversial topic name. There really is no
ideal packet size. It depends greatly on what you are trying to accomplish. When
designing the packet size for your game, think about what the players have to com-
municate. Your largest packet should fit perfectly the largest action a player can
send. There is no sense in wasting space. First, you have to make a choice on
whether to send many small packets or a few large packets. The advantage to
smaller packets is that you can send a lot of them in a short amount of time. The
advantage to larger packets is that you cut down on transmission overhead because
you are sending fewer packets. Every time you transmit data across the wire, an
amount of overhead goes with it. This is especially prevalent in guaranteed packet
delivery protocols such as TCP/IP.

Some action games, such as first-person shooters, use a packet size of 512 bytes.
This lets you send quite a bit of information at a time, but is small enough to be
quick over most connections. On the other hand, one of the first network game sys-
tems I worked on used 11-byte packets for delivery. I have to say that 11 bytes is a
very tiny packet size, and I do not recommend it. If you just can’t decide on the
perfect packet size, you can always use dynamic-length packets.

Dynamic-Length Packets
Dynamic-length packets are packets whose sizes vary. They allow games to handle mul-
tiple packets of different lengths. The Tic-Tac-Toe example shows you how to use
packets with dynamic lengths. The only real downside to packets of this type is that
your program never really knows how much data to pull from the receive buffer to
get the next complete packet. Refer to Figure 3.14 to see an example of fixed-
length and dynamic-length buffers.

100 3. Introduction to Network Communication

Fixed-Length Buffer Dynamic-Length Buffer
128 Bytes 128 Bytes

512 Bytes

256 Bytes

128 Bytes

} Size is not
constant.

Figure 3.14

Fixed-length and dynamic-
length packet buffers

For most of the games I develop, I use dynamic-length packets. I prefer the flexibil-
ity to send large or small packets depending on what I am trying to do.

Review
Here you are, at the end of another chapter already! Now that you have had a
crash course on everything from network protocols to server design, take a
moment to do a little review.

■ A network is a system of computers interconnected by telephone wires or
other means to share information.

■ Network games fall into one of the two types, peer-to-peer or client/server.
The peer-to-peer method is used mostly for games that have four or less play-
ers. The client/server method is used mostly for games that have more than
four players or MMORPG-type games.

■ When an IP address is static, it never changes. Static IP addresses are mostly
used by fixed servers rather than by game players. If your IP address changes
every time you log onto the Internet, then you have a dynamic IP address.
Dynamic IP addresses are common for dial-up connections.

■ A packet defines data used for sending and receiving.

101Review

This page intentionally left blank

Part Two

Sockets-
Based
Network
Programming

4 Writing Your First Network Programs

5 Creating a Sockets Class Object

6 Introduction to Windows
Programming

7 Practical Windows Programming

CHAPTER 4

Writing
Your First

Network
Programs

Hey, guess what? It’s time to write a sockets program! Confetti falls from
the ceiling, balloons rise into the air, and Bill Gates and Steve Jobs dance

until dawn. Okay, seriously though, it’s time to finally write some communication
code.

The programs in this chapter use a C++ class object for the socket interface. After
this chapter is over, you will know how to program for sockets. What you will not
know is how to do the low-level code for sockets. I address this issue in Chapter 5,
“Creating a Sockets Class Object,” by showing you how to write a socket object class
from the ground up. In this chapter, I’ll cover three complete sockets programs.

The first program, ConnectionTest, demonstrates a client connecting to a server.
This program shows the absolute minimal method for a client and server to con-
nect. It provides the foundation for all of the other programs.

The second program, SendDataTest, demonstrates a client sending data to a server.
In this sample program, you’ll learn how the server listens for data and how the
client sends it.

The third program, SimpleChat, demonstrates two-way communication between
both client and server. This fully functional program allows the server and client to
interactively talk to each other.

After you finish this chapter, you will have learned several things, including

■ How the SocketObject class is structured
■ How to establish a connection
■ How to send and receive data
■ How to write a chat program

I’ll finish up with some summary information and suggested exercises for skill
development. Let the games begin!

106 4. Writing Your First Network Programs

Overview of the
SocketObject Class
Now that all of the theory is out of the way, it’s time to start writing some code.
To make life easier for you, I have written a class that handles all of the socket
communication. The SocketObject class provides a layer of abstraction away from
the low-level Windows Sockets API. By using the class, the sample programs are eas-
ier to read and follow. Okay, now it’s time to take a look at the member functions
available in the class.

SocketObject Class
Member Functions
The SocketObject class has a handful of member functions at its disposal. Some of
the member functions are specific to the server, some are specific to the client, and
both servers and clients share a few.

The functions in Table 4.1 are specific to programs acting as servers. Server pro-
grams manage all connections and keep game state.

The Connect function is specific to programs act-
ing as clients. The client uses Connect to estab-
lish a connection with a server at the specified
IP address and port number. Clients connect to
servers to play in the game world.

Both servers and clients share the functions in
Table 4.2.

107Overview of the SocketObject Class

Table 4.1 Server-Specific Functions

Function Purpose

Bind Establishes a port on which to listen

Listen Checks for new client connections

Accept Accepts an attempted client connection

NOTE
Keep in mind that clients can
also be servers and vice versa.
This allows for a type of two-
way communication that
helps reduce packet collisions.

SocketObject Class
Sample Code
Now that you have seen an overview of the
member functions, here is some sample code
to go along with them.

Server Function
Sample Code
All right, now that you have had the nickel tour, it’s time to learn a little about the
server functions. The following code snippet shows some of the functionality avail-
able to server objects. The code demonstrates all of the steps necessary to establish
a connection with a client. To establish a connection, the server takes the following
steps.

1. Establish a port to accept connection requests.

2. Listen for a connection.

3. Accept the client connection.

4. Disconnect from the client connection.

Okay, here is the code that completes the steps.

// The following code snippet shows how a server listens for, accepts,
and then disconnects a client
SocketObject ServerSocketObject;

108 4. Writing Your First Network Programs

Table 4.2 Functions Shared by Both
Servers and Clients

Function Purpose

Recv Receives data from a specified connection

Send Sends data to a specified connection

Disconnect Closes an open connection

CAUTION
The code snippets shown are
not complete stand-alone pro-
grams, so don’t try to compile
them by themselves.

SocketObject ClientSocketObject;
// Server listens on port 6000
ServerSocketObject.Bind(6000);
// Server waits for a connection request
ServerSocketObject.Listen();
// Server has received a connection request; now it accepts it
ServerSocketObject.Accept(ClientSocketObject);
// Server disconnects the client
ClientSocketObject.Disconnect();

The first member function shown is the Bind() function. The ServerSocketObject
binds to port 6000. By binding, the server sets the port number from which clients
are allowed to request connections. The next member function shown is the
Listen() function. Nothing must be passed to this function, so read on.

With the Accept() function, the server accepts the connection request and assigns
the ClientSocketObject to the connection. Notice that two SocketObjects are cre-
ated. By creating a new SocketObject for each connection, the server can manage
connections more easily.

To disconnect from the client, you use the Disconnect() member function of the
ClientSocketObject. Refer to Figure 4.1 to see the structure of this code sample.

109Overview of the SocketObject Class

Server Socket
Object

Server Socket
Object

Server Socket
Object

Client Socket
Object

Bind

Listen

Accept

Disconnect

Port 6000

Figure 4.1

Process flow for the
server code example

That’s really about all there is to establishing a connection with a client. It’s time to
jump to the other side of the fence and see what the client has to accomplish.

Client Function Sample Code
The first thing a client must do in a multiplayer game is connect with the game
server. Here is the code to do just that.

// Attempt to connect to a server with an IP address of 100.100.100.100
on port 6000
if(ClientSocketObject.Connect(“100.100.100.100”, 6000)
{

// Disconnect from the server
ClientSocketObject.Disconnect();

}

Because the client doesn’t have to worry about much, it only has to call one func-
tion to establish a connection. And that function is . . . drum roll please . . . the
Connect() function!

In the example, the Connect() member function establishes a connection to a
server with an IP address of 100.100.100.100. The connection is tried on the
server’s port number 6000. If the connection is successful, the ClientSocketObject
then calls the Disconnect() member function to end the communication.

Ta da! That is it for establishing a connection with a server. Okay, the basics are out
of the way now, so it’s time to look at some complete code samples.

Writing the
ConnectionTest Program
Now that you have a basic understanding of the functions available in the
SocketObject class, you finally get to write a full program. I’ve always thought that
starting with the basics is the best approach because it helps weed out any unneces-
sary information, so I am going to start you off with something simple to test. The
first program demonstrates a server listening for a client connection and a client
connecting to the server. Once the connection is established, both the client and
server disconnect. You need to run two instances of the program from the com-
mand prompt—one for the server and one for the client.

110 4. Writing Your First Network Programs

Components Needed
to Build the Program
Before you take a look at the code, I want to show you which files you need to com-
pile and link the program. Table 4.3 details the files used in the project. Refer to
Figure 4.2 for a hierarchical view of the file structure.

111Writing the ConnectionTest Program

Table 4.3 Components for the
ConnectionTest Program

Component Purpose

CONNECTIONTEST.CPP The main body of the program that handles both
the client and server code.This is the only code that
you will examine for this example.

SOCKETOBJECT.CPP The class file for the sockets functions, which holds
all of the member functions in the SocketObject
class.

SOCKETOBJECT.H The class file for the sockets functions, which holds
all of the header information for the SocketObject
class.

WS2_32.LIB The Windows library that holds all of the low-level
sockets functions.

WINSOCK.H The header to the Windows ws2_32.lib library.

Getting Started with the Compiler
I say it’s time to create a program, so here goes nothing. Because this is your first
program to write from this book, I want to walk you through the process of creat-
ing the project from scratch.

1. Open the Visual C++ program and select File, New.

2. Under the Projects tab, select Win32 Console Application.

3. Enter the project name, ConnectionTest, in the Project Name text box.

4. Select where you want to save the project in the Location box. Your screen
should resemble the image in Figure 4.3.

5. Select OK.

You are now prompted with two dialog boxes; first select Finish and then select OK.
Now that you have a project started, it is time to add the required files to make it
work. First, add the ws2_32.lib library to the project. To add the library, follow
these steps.

1. Choose Project, Settings in your Visual C++ compiler, and select the Link tab.

2. Under the Object/Library Modules text box, add ws2_32.lib to the list of
libraries already there. This library is the Windows socket library that you use
in all sockets-based programs, so be sure to repeat this step whenever creat-
ing a program that uses sockets.

3. Select OK.

112 4. Writing Your First Network Programs

Connection Test

ConnectionTest Output

FILE

ConnectionTest.cppFILE

SocketObject.cppFILE

SocketObject.h

FILE

Winsock.h

FILE

ws2_32.lib

Figure 4.2

A hierarchical view of the files
used in the program

When you have the project window open, it should look like the image in Figure 4.4.

It is time to add the SocketObject class files to the project. The SocketObject files
consist of a .cpp source file and an .h header file. Both of these files are used in all
of the upcoming sockets projects. Follow these steps to add the files.

1. Select Project, Add To Project, and then select Files from the Visual C++
menu. You are prompted with a browse window.

2. Browse to the folder named SocketObject wherever you installed the CD that
came with the book, and select SocketObject.cpp.

3. Select OK.

113Writing the ConnectionTest Program

Figure 4.3

Creating a console application
in Visual C++

Figure 4.4

Modifying your project
settings in Visual C++

Now you need an empty source file in which to enter the code for the project.
Follow these steps to create the file.

1. Select Project, Add To Project, New from the Visual C++ menu. You are
prompted with several file type options.

2. From the Files tab, select C++ Source File.

3. In the File Name text box, enter the name ConnectionTest.cpp.

4. Select OK.

Writing and Compiling the Code
A new empty source file window is just waiting for you to add some code to it, so
get to it! Type in the following source code or copy it from the CD that came with
the book.

//###
// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”
void vServerConnection(int iListenPort);
void vClientConnection(char *szServerIP, int iServerListenPort);

// ----> Main program function (REQUIRED)
int main(int argc, char *argv[])
{

if(argc < 3) {
cout << “--” << endl;
cout << “ ConnectionTest Help “ << endl;
cout << “--” << endl;
cout << “Usage: ConnectionTest [client/server]
[ip,port/port,port]” << endl;

cout << “” << endl;
cout << “Example: ConnectionTest client 198.168.0.1 6000” << endl;
cout << “” << endl;
cout << “Example: ConnectionTest server 6000” << endl;
cout << “” << endl;
return(0);

}
//
// If user selected server, listen on the given port
// and assign connection to the second port number

114 4. Writing Your First Network Programs

//
if(!stricmp(argv[1], “server”)) {

vServerConnection(atoi(argv[2])));
}
//
// User selected client; connect to given port and IP address
//
else {

vClientConnection(argv[2], atoi(argv[3]));
}
return(1);

}

// Function for server
void vServerConnection(int iListenPort)
{

SocketObject ServerSocketObject;
SocketObject ClientSocketObject;

cout << “<Server> Attempting to listen on Port “ << iListenPort << endl;
// Attempt to start the server on port 6000
if (ServerSocketObject.Bind(iListenPort)) {

cout << “<Server> Listening” << endl;
// Listen for connection on the listen port,
ServerSocketObject.Listen();
// Accept the connection
ServerSocketObject.Accept(ClientSocketObject);
cout << “<Server> Client Connected to Port “ << iListenPort << endl;
// Disconnect the client
ClientSocketObject.Disconnect();
cout << “<Server> Client Disconnected” << endl;

}
else {

cout << “<Server> Failed to Listen” << endl;
}

}

// Function for client
void vClientConnection(char *szServerIP, int iServerListenPort)
{

SocketObject ClientSocketObject;

115Writing the ConnectionTest Program

cout << “<Client> Connecting to “ << szServerIP << “, Port “ <<
iServerListenPort << endl;

// Connect to the IP and port
if(ClientSocketObject.Connect(szServerIP, iServerListenPort)) {

cout << “<Client> Connected” << endl;

// Disconnect from the server
ClientSocketObject.Disconnect();

cout << “<Client> Disconnected From Server” << endl;
}
else {

cout << “<Client> Failed to Connect” << endl;
}

}
//###

Now that you have the code in the ConnectionTest.cpp file, select File, Save
from the Visual C++ menu. To compile the program, select Build, Build
ConnectionTest.exe. You can also use F7 as a hotkey to perform this function.
If everything went well, you’ll see “ConnectionTest.exe - 0 error(s), 0 warning(s)”
in the output window. If you see an error, go back and double-check all of the
steps you completed.

Running the Server
and Client Programs
Even though it might look like a lot of code for a simple connection and discon-
nection, notice that most of it is the cout command. If you remove the remarks and
cout commands, not much is left. Now, test out your new program! Open a com-
mand prompt (DOS window), change to the directory where you saved your pro-
ject, and then go to the debug folder.

Run the program first with the following parameters.

ConnectionTest server 6000

Now, open another command prompt, go to the debug folder again, and run the
program with the following parameters. (Replace the 100.100.100.100 with your IP
address.)

ConnectionTest client 100.100.100.100 6000

116 4. Writing Your First Network Programs

If everything worked properly, you
should see two output screens, as shown
in Figure 4.5.

Pretty cool, huh? If you take a look at the
output, you’ll see that the following events
happened.

1. The server bound to port 6000 to lis-
ten for connections.

2. The client attempted to connect to port
6000 on the server.

3. The server accepted the request.

4. The client disconnected.

5. The server disconnected.

117Writing the ConnectionTest Program

Figure 4.5

Output from the server
and client programs

TIP
To find your computer’s IP
address in Windows 98, run the
winipcfg program.To find your
computer’s IP address in
Windows NT or Windows 2000,
run the ipconfig program.

Examining the Code
The first major hurdle is out of the way, so give yourself a pat on the back for all
that hard work. Now I’ll walk you through the code I just showed you.

Header Information
The first few lines of the code handle all of the header information needed for the
program. The header files let your program know how to use the functions you
want. Most header files have a matching library or source file to go along with
them.

#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

The iostream.h header file is included to
give your program basic IO functionality.
Without this header file, your program
would not be able to input or output any-
thing to the command prompt. The second
header file, SocketObject.h, is included so
the program can access the functionality of
the SocketObject class. This header file is
included in all of the sockets-based pro-
grams. The next few lines of code define
the prototypes for the client and server
functions.

void vServerConnection(int iServerListenPort);
void vClientConnection(char *szServerIP, int iServerListenPort);

The vServerConnection() function takes one parameter. The first and only parame-
ter, named iServerListenPort, is the port number where all incoming connection
requests are received. It is a good practice to pick a number between 1000 and
9999 to assign as the listening port.

The vClientConnection() function takes two parameters. The first parameter, named
szServerIP, is a character pointer to the IP address of the server where the connec-
tion request is sent. The second parameter, named iServerListenPort, is the port
number on the server that accepts the connection request.

118 4. Writing Your First Network Programs

CAUTION
You might need to alter the
path for the SocketObject.h
header file to resemble your file
system. If you have copied over
the CD structure verbatim then
you should not have any prob-
lems.This rule applies to all of
the source code in this book.

The main() Function
All console applications require a main() function. This function is the first one
called when the program executes. The sample main function has two parameters
with it, argc and argv.

int main(int argc, char *argv[])

These two parameters handle user input at the command line. A real-world exam-
ple concerns the copy command. To use the copy command, you must pass at least
two parameters along with it, the source file name and the destination file name.
The first parameter in your main() function is argc, which holds the number of
arguments the user passed into the program. The next parameter is argv, which
points to the array of parameters the user passed.

The first part of the main() function checks the number of parameters passed. If
the number of parameters passed is less than what is minimally required, then the
program displays some help text.

The ConnectionTest program requires at least two parameters, plus the name of
the program, which gives it three parameters total. So it checks for three parame-
ters minimally.

if(argc < 3) {
cout << “--” << endl;
cout << “ ConnectionTest Help “ << endl;
cout << “--” << endl;
cout << “Usage: ConnectionTest [client/server] [ip,port/port,port]” << endl;
cout << “” << endl;
cout << “Example: ConnectionTest client 198.168.0.1 6000” << endl;
cout << “” << endl;
cout << “Example: ConnectionTest server 6000” << endl;
cout << “” << endl;
return(0);

}

It is a good practice to output help text from console applications when the user
enters incorrect parameters. If the user passed at least two parameters, go on to check
whether he is running the server or client version of the ConnectionTest program.

if(!stricmp(argv[1], “server”)) {
vServerConnection(atoi(argv[2])));

119Writing the ConnectionTest Program

}
else {

vClientConnection(argv[2], atoi(argv[3]));
}

You make the check for server or client using the stricmp() function. This function
compares two strings and returns a 0 if they are identical regardless of case.
If you want to be case sensitive, you use the strcmp() function with the same
parameters.

If the user chose to launch the server version
of the program, then you call the
vServerConnection() function by passing the
listening port number to it. The listening
port is the one the program binds to and lis-
tens for connections on.

If the user chose not to run the server ver-
sion of the program, the program defaults to
the client version. Two parameters are
passed to the vClientConnection() function,
the server IP address and the server listening
port.

Inside the
vServerConnection() Function
Once the vServerConnection() function is invoked from the main() function, it cre-
ates two SocketObject objects, the ServerSocketObject and the ClientSocketObject.

SocketObject ServerSocketObject;
SocketObject ClientSocketObject;

After the two objects are created, the server then tries to open up a listening port
with the Bind() function. The function tries to bind to the port number passed to
it. In the examples, I use 6000 as the port number. If the bind fails, the program
displays an error message and exits out of the function. Bindings can fail if the port
is already open by another application.

if (ServerSocketObject.Bind(iListenPort)) {
...

}

120 4. Writing Your First Network Programs

CAUTION
If you are following along and
converting the programs to
UNIX, the stricmp() function
probably will not work for you. It
is not an ANSI standard func-
tion. I recommend that you
write your own version of the
function for use in the future.

Once the bind succeeds, the program starts listening for connections with the
Listen() function. When it is combined with the Accept() function, the program
waits for connections.

The Accept() function is called to accept attempted connections. It is passed a
client SocketObject to use for the connection. Refer to Figure 4.6 for a visual of the
server’s port usage.

ServerSocketObject.Listen();
ServerSocketObject.Accept(ClientSocketObject);

Normally, the server does something else, such as send data to the client or wait for
more connections. Because I want to keep it simple, the server just disconnects the
client with the Disconnect() function. No parameters are needed, but you should
note that it uses the ClientSocketObject’s member function to issue the disconnec-
tion. You use this function because you are not disconnecting the server from a
host; you are disconnecting the client from the server.

ClientSocketObject.Disconnect();

That’s it for the server function. It accomplishes what it set out to do as a server. To
recap what was covered, here are the steps the function followed.

1. Bind to port 6000 to listen for connections with the Bind() function.

2. Listen on the bound port, and assign the new connection to it with the
Listen() function.

3. Accept the new connection, and assign a SocketObject to it with the Accept()
function.

4. The client disconnected from the server using the Disconnect() function.

121Writing the ConnectionTest Program

Server
100.100.100.100

Client

Accepts on
port 6000

Listens on
port 6000

Figure 4.6

Server port usage

Inside the vClientConnection() Function
The vClientConnection() function must create only one local SocketObject object.
The first thing the function does is create this object upon execution:

SocketObject ClientSocketObject;

Once the object is created, all that is left to do is attempt a connection to the server
with the Connect() function. The Connect() function is passed the server’s IP address
and listening port number. If the connection attempt is successful, a 1 is returned.
Check against this return code to determine whether to proceed with disconnec-
tion.

if(ClientSocketObject.Connect(szServerIP, iServerListenPort)) {
cout << “<Client> Connected” << endl;
// Disconnect from the server
ClientSocketObject.Disconnect();
cout << “<Client> Disconnected From Server” << endl;

}
else {

cout << “<Client> Failed to Connect” << endl;
}

If the connection attempt returns a 0, output an error message and exit the func-
tion; otherwise, output a message and then disconnect from the server.

The client disconnects by calling the Disconnect() member function of the client’s
SocketObject. Because you are disconnecting yourself from the server, it differs
from when a server must disconnect a client, as shown in the “Inside the
vServerConnection() Function” section. Because I am keeping things simple for
now, this is it for the client function. To recap what was covered, here are the steps
the function followed.

1. Connect to server IP address and port number using the Connect()
function.

2. Disconnect from the server using the Disconnect() function.

You have now covered the entire first program. That wasn’t so bad, was it? Now
move on to something a bit more complicated.

122 4. Writing Your First Network Programs

Writing a Program
to Send Data
The first program was quite simple in its result, but you did accomplish quite a bit.
Now I want to show you something a little more exciting—a program that actually
sends data!

The SendDataTest program is identical to the ConnectionTest program except for
two functions, Send() and Recv().

The client in this example uses the Send() function to send some data to the server.
The data to send is stored in a standard character array, 128 bytes in length. The
amount you can send is not limited to 128 bytes; I just chose that amount for effi-
ciency. The return code for the Send() function tells you how many bytes were
transmitted. If nothing is transmitted, a 0 is returned.

The Recv() function waits for data to come in from a connection, and then it stores
that data in a character buffer. The Recv() function waits indefinitely for data to
come in. Once data is received, the function returns the number of bytes received.
Even though you tell the Recv() function how many bytes to retrieve, there is no
guarantee you will get all of the data at once. The network protocol can break
transmissions into many packets. This is why it is important to check how many
bytes are received. If you do not get all of the data expected, you should call Recv()
again until you get the number of bytes expected.

Components Needed
to Build the Program
This project is almost identical to the ConnectionTest program, so I will be brief
about the contents. A list of the files used in the project can be seen in Table 4.4.

Are you experiencing déjà vu yet? If you haven’t slept too much since the last sec-
tion, you’ll notice that all of the files are the same as those for the ConnectionTest
program, except the name of the main source file. ConnectionTest.cpp has been
replaced with SendDataTest.cpp. Follow the necessary steps outlined in “Getting
Started with the Compiler” and create a new project named SendDataTest.

123Writing a Program to Send Data

Writing the
SendDataTest Program
You can either type in the following code or copy it from the CD that came with
the book. I recommend that you type in most of the code samples, to help you
become more familiar with the functions.

//###

// Standard Includes
#include <iostream.h>
#include “..\\SocketObject\\SocketObject.h”

void vServerConnection(int iListenPort);
void vClientConnection(char *szServerIP, int iServerListenPort);

// ----> Main Program Function (REQUIRED)
int main(int argc, char *argv[])
{

124 4. Writing Your First Network Programs

Table 4.4 Components for the
SendDataTest Program

Component Purpose

SENDDATATEST.CPP The main body of the program that handles both the
client and server code.This is the only code that I
examine for this example.

SOCKETOBJECT.CPP The class file for the sockets functions, which holds all
of the member functions in the SocketObject class.

SOCKETOBJECT.H The class file for the sockets functions, which holds all
of the header information for the SocketObject class.

WS2_32.LIB The Windows library that holds all of the low-level
sockets functions.

WINSOCK.H The header to the Windows ws2_32.lib library.

if(argc < 3) {
cout << “--” << endl;
cout << “ SendDataTest Help “ << endl;
cout << “--” << endl;
cout << “Usage: SendDataTest [client/server]
[ip,port/port,port]” << endl;

cout << “” << endl;
cout << “Example: SendDataTest client 198.168.0.1 6000” << endl;
cout << “” << endl;
cout << “Example: SendDataTest server 6000” << endl;
cout << “” << endl;
return(0);

}
// If user selected server, listen on the given port
// and assign connection to the second port number
//
if(!stricmp(argv[1], “server”)) {

vServerConnection(atoi(argv[2])));
}
// User selected client; connect to given port and IP address
else {

vClientConnection(argv[2], atoi(argv[3]));
}
return(1);

}

// Function for server
void vServerConnection(int iListenPort)
{

SocketObject ServerSocketObject;
SocketObject ClientSocketObject;
char DataPacket[128]; // Data packet to receive
int iBytesReceived = 0; // # of bytes received

cout << “<Server> Attempting to listen on Port “
<< iListenPort << endl;

// Attempt to start the server
if (ServerSocketObject.Bind(iListenPort)) {

cout << “<Server> Listening” << endl;
// Listen for connection on the listen port

125Writing a Program to Send Data

ServerSocketObject.Listen();
// Accept the connection
ServerSocketObject.Accept(ClientSocketObject);

cout << “<Server> Client Connected to Port “
<< iListenPort << endl;

// Receive data
iBytesReceived = ClientSocketObject.Recv(&DataPacket, 128, 0);
cout << “<Server> Received “ << iBytesReceived <<

“ Bytes” << endl;
cout << “<Server> Data Received = “ << DataPacket << endl;
// Disconnect the client
ClientSocketObject.Disconnect();
cout << “<Server> Client Disconnected” << endl;

}
else {

cout << “<Server> Failed to Listen” << endl;
}

}

// Function for client
void vClientConnection(char *szServerIP, int iServerListenPort)
{

SocketObject ClientSocketObject;
char DataPacket[128]; // Data packet to transmit
int iBytesSent = 0; // # of bytes sent

cout << “<Client> Connecting to “ << szServerIP << “, Port “
<< iServerListenPort << endl;

// Connect to the IP and port
if(ClientSocketObject.Connect(szServerIP, iServerListenPort)) {

cout << “<Client> Connected” << endl;
// Populate the data packet
strcpy(DataPacket, “TestData from Client”);
// Send data
iBytesSent = ClientSocketObject.Send(DataPacket, 128, 0);
cout << “<Client> Transmitted “ << iBytesSent <<

“ Bytes” << endl;
// Disconnect from the server
ClientSocketObject.Disconnect();
cout << “<Client> Disconnected From Server” << endl;

126 4. Writing Your First Network Programs

}
else {

cout << “<Client> Failed to Connect” << endl;
}

}
//###

Save the code and press F7 to build it. If you have errors, review your code and try
it again. Okay, let’s run this puppy.

Running the SendDataTest
Program
I know the following is a repeat, but the process must be burned into your memory.
Open a command prompt (DOS window), change to the directory where you saved
your project, and then go to the debug folder.

Run the program first with the following parameters.

SendDataTest server 6000

Now, open another command prompt, go to the debug folder again, and run the
program with the following parameters. (Replace the 100.100.100.100 with your IP
address.)

SendDataTest client 100.100.100.100 6000

If everything worked properly, you should see two output screens, as shown in
Figure 4.7.

Check it out! Isn’t that the coolest thing you have ever seen? I don’t know about
you, but I was very excited the first time I wrote a network program that was able to
connect and send data over the Internet. You have just written a program that
involves the entire purpose of network programming—transmitting and receiving
data. Heck, I don’t see any reason for me to discuss network programming any
more now that you know how to send data. I’ve always wanted to write about the
migratory habits of African swallows, so here goes. . . . On second thought, I
haven’t covered about 600 pages worth of information. I’d better continue.

Put your train of thought back on track, and take a look at the output from the
programs. You should notice that the following events transpired.

1. The server bound to port 6000 to listen for connections.

127Writing a Program to Send Data

2. The server listened for a connection to use port 6000.

3. The client attempted to connect to port 6000 on the server.

4. The server accepted the request.

5. The client sent a packet of 128 bytes to the server.

6. The server received a data packet consisting of 128 bytes from the client.

7. The client disconnected.

8. The server disconnected.

Now that you have seen the program, it is time to walk through the code that made
this magic possible.

Walking through the
SendDataTest Code
This program operates in the same way as the ConnectionTest program, as far as
the main() function is concerned, so I’ll skip talking about it. Here is the skinny on
the vServerConnection() and vClientConnection() functions, which did change.

128 4. Writing Your First Network Programs

Figure 4.7

Output from the server
and client programs

Inside SendDataTest’s
vServerConnection() Function
When the vServerConnection() function is invoked from the main() function, it
starts off by creating two SocketObject objects, the ServerSocketObject and the
ClientSocketObject. This part has not changed from the ConnectionTest program.
Two new variables are introduced, though, DataPacket and iBytesReceived.

The variable DataPacket is nothing more than a character array to hold received
data. The second variable, iBytesReceived, stores how many bytes are pulled from
the receive command.

SocketObject ServerSocketObject;
SocketObject ClientSocketObject;
char DataPacket[128]; // Data packet to receive
int iBytesReceived = 0; // # of bytes received

The next chunk of code is identical to that of the ConnectionTest program. Basically,
the server binds to a listening port, listens for a connection, and then assigns the con-
nection to the port.

if (ServerSocketObject.Bind(iListenPort)) {
cout << “<Server> Listening” << endl;
// Listen for connection on the Listen port
ServerSocketObject.Listen();
// Accept the connection
ServerSocketObject.Accept(ClientSocketObject);
cout << “<Server> Client Connected to Port “ << iListenPort << endl;

...

You should be most interested in the member function Recv(), listed next. The
Recv() member function is invoked using the ClientSocketObject. The function pro-
totype follows.

int Recv(void* pBuf, int iBufLen, int iFlags);

The first parameter, void* pBuf, requires a pointer to a receive buffer. For the
receive buffer, you use the DataPacket variable. The second parameter asks for the
length of the buffer being used to receive data. Because you are allocating 128
bytes for the receive buffer, you pass a 128 to this parameter. The last parameter,
iFlags, is used for various socket flag options. You are not using any special flags
this time, so leave it at 0.

// Receive data
iBytesReceived = ClientSocketObject.Recv(&DataPacket, 128, 0);

129Writing a Program to Send Data

The Recv() function waits on data to be received. If the client does not transmit any
data, the server is hung on this call infinitely. This is commonly referred to as a
blocking call. I’ll cover how you avoid this scenario in the next program. Refer to
Figure 4.8 to see some blocking calls.

Once data is received, the function returns the number of bytes received. For this
instance, the program assumes that the full 128 bytes it is expecting comes in one
delivery. However, this is not the way to do it for real-world applications because
you may or may not get the total amount of data requested. Okay, now that you
have data, you should output it.

cout << “<Server> Received “ << iBytesReceived << “ Bytes” << endl;
cout << “<Server> Data Received = “ << DataPacket << endl;

Because the DataPacket variable is nothing more than a character array, you can
output it as any normal string. The number of bytes received is also displayed. After
displaying the packet contents, the program disconnects the client connection and
exits out of the program.

// Disconnect the client
ClientSocketObject.Disconnect();
cout << “<Server> Client Disconnected” << endl;

130 4. Writing Your First Network Programs

Server Socket
Object

Server Socket
Object

Server Socket
Object

Client Socket
Object

Bind

Listen

Accept

Disconnect

Port 6000

Client Socket
Object

Receive

Blocking

Figure 4.8

Blocking calls used so far

Basically, the only new function used is Recv(). Just remember that Recv() waits to
get data, so be careful when using it or your program might hang forever. To recap,
here is the list of functions used by the server program so far.

■ Bind()

■ Listen()

■ Accept()

■ Recv()

■ Disconnect()

Inside SendDataTest’s
vClientConnection() Function
The vClientConnection() function still must create only one local SocketObject
object, but now two new variables are defined. The two new variables are DataPacket
and iBytesSent.

If you just read the “Inside SendDataTest’s vServerConnection() Function” section,
you’ll notice that DataPacket is the same. It is a character buffer to hold data you
want to transmit. The second variable, iBytesSent, is the inverse of the
iBytesReceived used in the server function. iBytesSent stores how many bytes are
successfully transmitted.

char DataPacket[128]; // Data packet to transmit
int iBytesSent = 0 // # of bytes sent

Please note that the DataPacket is not limited to 128 bytes; I am only using that size
for efficient transmissions and consistency in the code examples. The next block of
code demonstrates the familiar Connect() function used to connect to the server. It
specifies the server’s IP address and listening port number.

cout << “<Client> Connecting to “ << szServerIP << “, Port “
<< iServerListenPort << endl;

// Connect to the IP and port
if(ClientSocketObject.Connect(szServerIP, iServerListenPort))
{

cout << “<Client> Connected” << endl;
...

The first thing you do after you are connected to the server is specify what data you
want to send with the standard strcpy() function. In this example, you are sending

131Writing a Program to Send Data

a small message to the server, “TestData from Client.” Feel free to play around with
changing this text to something more interesting; just don’t exceed the 128-byte
buffer size.

// Populate the data packet
strcpy(DataPacket, “TestData from Client”);

Now that you have this wonderful and exciting message to send to the server, it
is time to send it. You can accomplish this using the, take a guess here, Send()
function!

// Send data
iBytesSent = ClientSocketObject.Send(DataPacket, 128, 0);

The Send() member function takes three parameters, just as the Recv() function
does. The function prototype follows.

int Send(void* pBuf, int iBufLen, int iFlags);

The first parameter, void* pBuf, requires a pointer to a receive buffer. For the send
buffer, you use the DataPacket variable. The second parameter asks for the length of
the buffer being used to send the data. Because you are allocating 128 bytes for the
send buffer, you pass 128 to this parameter. The last parameter, iFlags, is used for
various socket flag options. You are not using any special flags this time, so leave it
at zero.

Geez, didn’t that function sound familiar? However, unlike the Recv() function, the
Send() function is not a blocking call. So, the program continues right after send-
ing the data. Refer to Figure 4.9 for a diagram of the SendDataTest server function.

cout << “<Client> Transmitted “ << iBytesSent << “ Bytes” << endl;
// Disconnect from the server
ClientSocketObject.Disconnect();
cout << “<Client> Disconnected From Server” << endl;

Last, you output how many bytes were sent and then disconnect from the server.
Here is a list of the functions used by the client program so far.

■ Connect

■ Send

■ Disconnect

Wahoo! That program is out of the way, and you can now work on something a lit-
tle more interactive. If you haven’t taken a break yet, you might want to do so now;
the next program gets more involved.

132 4. Writing Your First Network Programs

Writing a Simple Chat
Program
Now that we have covered those two basic programs, I think it is time to write
something more entertaining. I am going to show you how to write a chat program
that lets a client and server send data back and forth. This is commonly referred to
as two-way communication. Actually, the first two programs communicated back and
forth, just not in a manner you could see. The chat program is still a console appli-
cation, so it’s not very fancy. It follows the usual idea of the simpler, the better. This
program uses a new function from the SocketObject arsenal, vGetPacket(). This
member function retrieves any packet data in the receive buffer. It allows you to
receive data without waiting for it. So vGetPacket() is a non-blocking version of

133Writing a Simple Chat Program

Bind

Accept

Disconnect

Connection
Attempt?

Received
Data?

No Yes

No Yes

Server

Figure 4.9

The SendDataTest
server function

Recv(). Cool, eh? Another
new item you will see is the
_kbhit() function, which
checks the console for key-
board input. It does not wait
for input, so it comes in
handy when checking for
incoming data. If that sounds
a bit confusing, don’t worry;
you’ll see what I am talking
about in a little while.

Components
Needed for the Chat Program
This project is almost identical to the ConnectionTest and SendDataTest programs,
so I will be brief about the contents. The components needed for the chat program
can be seen in Table 4.5.

Follow the necessary steps outlined in the “Getting Started with the Compiler” sec-
tion and create a new project named SimpleChat.

134 4. Writing Your First Network Programs

NOTE
You might have noticed that the _kbhit() func-
tion has an underscore in front of its name.
With Microsoft’s Visual C++ compiler, all func-
tions with underscores in front of them are spe-
cific to the compiler.The repercussion is that
these functions might not work in other compil-
ers or operating systems. If you decide to use
other compilers or operating systems, you need
to research equivalent commands.

Table 4.5 Components for the Chat Program

Component Purpose

SIMPLECHAT.CPP The main body of the program that handles both the
client and server code.This is the only code that I exam-
ine for this example.

SOCKETOBJECT.CPP The class file for the sockets functions, which holds all of
the member functions in the SocketObject class.

SOCKETOBJECT.H The class file for the sockets functions, which holds all of
the header information for the SocketObject class.

WS2_32.LIB The Windows library that holds all of the low-level sock-
ets functions.

WINSOCK.H The header to the Windows ws2_32.lib library.

Writing the SimpleChat Program
You can either type in the following code or copy it from the CD that came with
the book. I still recommend that you type in most of the code samples; it will help
you become more familiar with the functions.

// Standard includes
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include “..\\SocketObject\\SocketObject.h”
// Packet for sending a chat message
struct stChatPacket
{

stPacketHeader stHeader;
char szChatMessage[128];

};
// Function prototypes
void vServerConnection(int iListenPort);
void vClientConnection(char *szServerIP, int iServerListenPort);
// ----> Main Program Function (REQUIRED)
int main(int argc, char *argv[])
{

if(argc < 3) {
cout << “--” << endl;
cout << “ SimpleChat Help “ << endl;
cout << “--” << endl;
cout << “Usage: SimpleChat Help [client/server] [ip,port/port,port]” << endl;
cout << “” << endl;
cout << “Example: SimpleChat Help client 198.168.0.1 6000” << endl;
cout << “” << endl;
cout << “Example: SimpleChat Help server 6000” << endl;
cout << “” << endl;
return(0);

}
// If user selected server, listen on the given port
if(!stricmp(argv[1], “server”)) {

vServerConnection(atoi(argv[2]));
}
// User selected client; connect to given port and IP address

135Writing a Simple Chat Program

else {
vClientConnection(argv[2], atoi(argv[3]));

}
return(1);

}

// Function for server
void vServerConnection(int iListenPort)
{

SocketObject ServerSocketObject; // Server socket object
SocketObject ClientSocketObject; // Client socket object
char DataPacket[128]; // Data packet to transmit
int iBytesReceived = 0; // # of bytes received
int iBytesSent = 0; // # of bytes sent
char szCommand[128]; // Chat buffer
char szTempChar;
int i;
stChatPacket ChatPacket;
char szPacketBuffer[32768];

cout << "<Server> Attempting to listen on Port “ << iListenPort << endl;
// Attempt to start the server
if (ServerSocketObject.Bind(iListenPort)) {
// Listen for connection on the Listen port

ServerSocketObject.Listen();
// Accept the connection
ServerSocketObject.Accept(ClientSocketObject);
cout << “<Server> Client Connected to Port “ << iListenPort << endl;
// Loop forever or until a break is issued
while(1) {

printf(“\n<Server> “);
// Loop through getting up to 127 characters to transmit,
// and leave room for \n code
for(i = 0; i < 127; i++) {

// Loop until a key is pressed
while(!_kbhit()) {

// Check for incoming data
iBytesReceived = ClientSocketObject.vGetPacket(szPacketBuffer);
if(iBytesReceived > 0) {

// Copy the received data into
// the chat packet

136 4. Writing Your First Network Programs

memcpy(&ChatPacket,szPacketBuffer,sizeof(ChatPacket));
strcpy(DataPacket,ChatPacket.szChatMessage);
if(!stricmp(DataPacket, “/exit”)) {

break;
}
else {

cout << endl << “<Client> “<< DataPacket << endl;
printf(“<Server> “);

}
}

}
// Quit chatting if /exit command given
if(!stricmp(DataPacket, “/exit”)) {

break;
}
// Get next key from keyboard input buffer
szTempChar = getche();
// Add the keypress to our command string
szCommand[i] = szTempChar;
// Check for Enter key
if(szTempChar == 13) {

break;
}

}
// Check for user-initiated exit code
if(!stricmp(DataPacket, “/exit”)) {

break;
}
// Null terminate the command
szCommand[i] = ‘\0’;
// Populate the packet
strcpy(DataPacket,szCommand);
// Quit chatting if /exit command given
if(!stricmp(szCommand, “/exit”)) {

break;
}
else {

// Load the packet data
ChatPacket.stHeader.iID = 0;
ChatPacket.stHeader.iType = 0;
ChatPacket.stHeader.iLength = 128;

137Writing a Simple Chat Program

ChatPacket.stHeader.iSender = 0;
strcpy(ChatPacket.szChatMessage,DataPacket);
ChatPacket.stHeader.iCheckSum = 128;
// Load the packet buffer
memcpy(szPacketBuffer,&ChatPacket,sizeof(stChatPacket));
// Send the data
iBytesSent = ClientSocketObject.Send(szPacketBuffer,sizeof

(stPacketHeader)+128,0);
// Check if client has disconnected
if(iBytesSent == -1) {

cout << “<Server> Client No Longer Online”<< endl;
break;

}
}

}
// Disconnect the client
ClientSocketObject.Disconnect();
cout << “<Server> Client Disconnected” << endl;

}
else {

cout << “<Server> Failed to Listen” << endl;
}

}

// Function for client
void vClientConnection(char *szServerIP, int iServerListenPort)
{

SocketObject ClientSocketObject; // Client socket object
char DataPacket[128]; // Data packet to transmit
int iBytesReceived = 0; // # of bytes received
int iBytesSent = 0; // # of bytes sent
char szCommand[128]; // Chat buffer
char szTempChar;
int i;
char szPacketBuffer[32768];
stChatPacket ChatPacket;

cout << “<Client> Connecting to “ << szServerIP << “, Port “
<< iServerListenPort << endl;

// Connect to the IP and port
if(ClientSocketObject.Connect(szServerIP, iServerListenPort)) {

138 4. Writing Your First Network Programs

cout << “<Client> Connected” << endl;
// Keep chatting until a /exit is given
while(1) {

printf(“\n<Client> “);
// Loop through getting up to 127 characters to transmit,
// and leave room for \n code
for(i = 0; i < 127; i++) {

// Loop until a key is pressed
while(!_kbhit()) {

// Check for incoming data
iBytesReceived =

ClientSocketObject.vGetPacket(szPacketBuffer);
if(iBytesReceived) {

// Copy the received data
// into the chat packet
memcpy(&ChatPacket,szPacketBuffer,
sizeof(ChatPacket));

strcpy(DataPacket,ChatPacket.szChatMessage);
cout << endl << “<Server> “
<< DataPacket << endl;

printf(“<Client> “);
}

}
// Get next key from keyboard input buffer
szTempChar = getche();
// Add the keypress to our command string
szCommand[i] = szTempChar;
// Check for Enter key
if(szTempChar == 13)

break;
}
// Null terminate the command
szCommand[i] = ‘\0’;
// Populate the packet
strcpy(DataPacket,szCommand);
// Quit chatting if /exit command given
if(!stricmp(szCommand, “/exit”)) {

break;
}
else {

// Load the packet data

139Writing a Simple Chat Program

ChatPacket.stHeader.iID = 0;
ChatPacket.stHeader.iType = 0;
ChatPacket.stHeader.iLength = 128;
ChatPacket.stHeader.iSender = 0;
strcpy(ChatPacket.szChatMessage,DataPacket);
ChatPacket.stHeader.iCheckSum = 128;
// Load the packet buffer
memcpy(szPacketBuffer,&ChatPacket,sizeof(stChatPacket));
// Send the data
iBytesSent = ClientSocketObject.Send(szPacketBuffer,sizeof

(stPacketHeader)+128,0);
// Check if client has disconnected
if(iBytesSent == -1) {

cout << “<Server> Client No Longer Online” << endl;
break;

}
// Check for server disconnection
if(iBytesSent == -1) {

cout << “<Client> Server No Longer Online” << endl;
break;

}
// Quit chatting if /exit command given
if(!stricmp(szCommand, “/exit”)) {

break;
}

}
}
// Disconnect from the server
ClientSocketObject.Disconnect();
cout << “<Client> Disconnected From Server” << endl;

}
else {

cout << “<Client> Failed to Connect” << endl;
}

}

Save the code and press F7 to build it. If you have errors, review your code and
try again. Now that everything has been compiled, take the program out for
a spin.

140 4. Writing Your First Network Programs

Running the SimpleChat Program
Is this all starting to sound familiar yet? What’s that? You forgot the steps? Here, I’ll
show you again. Open a command prompt (DOS window), change to the directory
where you saved your project, and then go to the debug folder. Run the program
first with the following parameters.

SimpleChat server 6000

Now, open another command prompt, go to the debug folder again, and run the
program with the following parameters. (Replace the 100.100.100.100 with your IP
address.)

SimpleChat client 100.100.100.100 6000

If everything went well, you should see two output screens, as shown in Figure 4.10.

One thing you might notice is a blinking cursor in the client program’s window.
You see it because you can type into that window and send the text to the server.
Go ahead—type Hello Server! and press Enter. If everything went according to
plan, you should see your message pop onto the server program’s output. Wasn’t

141Writing a Simple Chat Program

Figure 4.10

Output from the
SimpleChat program

that cool? You just interactively sent a message to the server! Okay, now switch to
the server program’s window, and you’ll see the familiar blinking cursor. Go ahead
and type Hello Client! into the window and press Enter. Even more impressive, eh?
Now you have communicated back to the client. Play around with typing back and
forth from the client to the server.

The program is lacking in the area of looks, and you might notice that messages
being typed can get interrupted. Also, the Backspace key does not move the cursor.
These are minor issues, but by not accounting for them, you have been able to
keep the code clear. If you are feeling adventurous, alter the program to account
for the Backspace key and other minor issues.

This is a fun program to try with friends online. Send the program to a buddy and
play around with chatting back and forth over the Internet. I found it very exciting
the first time I sent this program to a friend and established successful two-way
communication. You actually have the beginnings of an IRC (Internet Relay Chat)
program. But before you go off editing the program to do all sorts of strange
things, I’d better show you how it works.

Walking through
the SimpleChat Code
The SimpleChat program is similar to the first two programs as far as structure
goes. But I added some new functions, so with that comes new header information.

Header Information
For the program to use the new functions, you have to include a couple additional
header files. The conio.h file contains console input/output functions. You need
this file for the _kbhit() and getche() functions. The second new header file you use
is stdio.h, which is necessary for you to use the printf() function in the program.

// Standard includes
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include “..\\SocketObject\\SocketObject.h”
struct stChatPacket
{

stPacketHeader stHeader;
char szChatMessage[128];

};

142 4. Writing Your First Network Programs

SimpleChat works the same way as the first two programs in this chapter as far as
the main() function is concerned, so I’ll skip talking about it. But there is one thing
new here—the data structure called stChatPacket.

The Chat Packet Structure
The stChatPacket data structure is used by the chat program to send a chat message
across the wire. If you look closely at the structure, you’ll see that the first data
member is an stPacketHeader. This is defined in the SocketObject.h file that I pro-
vided as part of the project. The stPacketHeader object has the following layout.

struct stPacketHeader
{

int iType;
int iLength;
int iID;
int iCheckSum;
int iSender;

};

The first member is an integer that can hold the type of the packet being sent. The
second member specifies the length of the packet, which allows for variable-length
packets. The third parameter is the ID of the packet. This is optional, and you can
set it to zero if you want. The fourth parameter is the checksum. The
SocketObject.cpp file expects the checksum to equal the length plus the type plus
the ID. If the checksum does not equal this, then the packet is discarded. The last
parameter holds the ID of the sender.

This data structure both sends and receives data in the chat program. Without fur-
ther ado, I present the vServerConnection() and vClientConnection() functions.

Inside SimpleChat’s
vServerConnection() Function
The vServerConnection() function now has a few new variables declared upon its exe-
cution. The first thing you might notice is that the server now has variables for both
sent and received bytes, iBytesSent and iBytesReceived. In the SendDataTest pro-
gram, the server only had to track iBytesReceived because it was only listening for
data. Now that you have two-way communication, the server must keep track of both.

SocketObject ServerSocketObject; // Server socket object
SocketObject ClientSocketObject; // Client socket object
char DataPacket[128]; // Data packet to transmit

143Writing a Simple Chat Program

int iBytesReceived = 0; // # of bytes received
int iBytesSent = 0; // # of bytes sent
char szCommand[128]; // Chat buffer
char szTempChar;
int i;
stChatPacket ChatPacket;
char szPacketBuffer[32768];

The next new variable is szCommand. This character buffer keeps track of what the
user on the server program is typing. Every character typed is stored in szCommand
until it is ready for transmission. szTempChar is a temporary placeholder for informa-
tion returned from the keyboard. The ChatPacket variable converts data saved into
or read from the szPacketBuffer. The i variable is used for looping.

The next portion of code should look familiar to you. Nothing has changed in the
way you connect to or disconnect from the client. The server binds to a port, listens
for a new connection on it, and then assigns the connection to the port.

if (ServerSocketObject.Bind(iListenPort)) {
// Listen for connection on the listen port
ServerSocketObject.Listen();
// Accept the connection
ServerSocketObject.Accept(ClientSocketObject);
...

}

What happens next should be new to you. The next lines of code put the program
into a possible never-ending loop using a while loop.

// Loop forever or until a break is issued
while(1) {

...
}

Next, you start off a loop that runs for 127 iter-
ations. This loop lets the user enter up to 127
characters to send to the client. You use 127
because the data packet is only 128 bytes, and
you need to leave room for a null terminator.
The user does not have to enter all 127 charac-
ters, though; this can be interrupted with a
break command.

144 4. Writing Your First Network Programs

CAUTION
Be very careful when using a
never-ending loop command
such as while(1). It can cause
your program to hang indefi-
nitely if you do not make sure
to include a break within it.

// Loop through getting up to 127 characters to transmit,
// and leave room for \n code
for(i = 0; i < 127; i++) {
...
}

During the stay in the for loop, you should do something useful, such as wait for a
keypress. Normally, you might think you could simply ask for input from the key-
board, wait for a string to come in, and then send it across the wire. This proce-
dure does not work in this case because you need to check whether the client sent
data while you were typing. The result wouldn’t be pretty if you only saw text from
the client after you sent something. So you have to use a non-blocking keyboard
function that does not stop the program while waiting for a keypress. You use the
_kbhit() function I mentioned earlier. Refer to Figure 4.11 to see the flow of the
server function and then look at the next piece of code.

// Loop until a key is pressed
while(!_kbhit()) {

// Check for incoming data
iBytesReceived = ClientSocketObject.vGetPacket(szPacketBuffer);
if(iBytesReceived > 0) {

// Copy the received data into the chat packet
memcpy(&ChatPacket,szPacketBuffer,sizeof(ChatPacket));
strcpy(DataPacket,ChatPacket.szChatMessage);
if(!stricmp(DataPacket, “/exit”)) {

break;
}
else {

cout << endl << “<Client> “ << DataPacket << endl;
printf(“<Server> “);

}
}

}

The program hangs out in a while loop until a key is pressed. Within the loop, it
checks for a received packet.

If the return code from vGetPacket() is greater than zero, the program knows some-
thing was transmitted, so it outputs the data by first copying the raw message into the
stChatPacket format. If the program used more than one type of packet, you might
have checked the type first. But because the program uses only the stChatPacket type,

145Writing a Simple Chat Program

146 4. Writing Your First Network Programs

Bind

Accept

Disconnect

Connection
attempt?

Received data?

No Yes

While(1)

Loop < 127

Keypress?

Output from client

Add to output
buffer

User pressed
enter?

Send data from
the server

User type /exit?

Server

Figure 4.11

The flow of the
vServerConnection()

function

you can just go ahead and load it in. To output the chat message, the code goes on to
copy the szChatMessage member of the packet to the DataPacket array.

There you have it: Your program just allowed the server’s user to enter data while
accepting incoming information. If the user presses Enter, the program exits out of
the for loop and sends the message to the client, using the Send() member function
of the ClientSocketObject. If the returned code from the send command is -1, you
know that the client is no longer connected. Because the client is no longer con-
nected, you end the communication using the Disconnect() function.

...
// Load the packet data
ChatPacket.stHeader.iID = 0;
ChatPacket.stHeader.iType = 0;
ChatPacket.stHeader.iLength = 128;
ChatPacket.stHeader.iSender = 0;
strcpy(ChatPacket.szChatMessage,DataPacket);
ChatPacket.stHeader.iCheckSum = 128;
// Load the packet buffer
memcpy(szPacketBuffer,&ChatPacket,sizeof(stChatPacket));
// Send the data
iBytesSent = ClientSocketObject.Send(szPacketBuffer,
sizeof(stPacketHeader)+128,0);

// Check if client has disconnected
if(iBytesSent == -1) {

cout << “<Server> Client No Longer Online” << endl;
break;

}
}
// Disconnect the client
ClientSocketObject.Disconnect();

Take note that sending is just the opposite of receiving as far as packet initialization
goes. To send a packet, you first set up the header information. Then you load the
meat of the packet—the chat message, in this case. After those two steps, you copy
the packet into a sending buffer and send it on its way.

There you have it! That’s all there is to the server’s function call. Now I’ll review
the steps the function follows.

1. Bind to a port.

2. Listen on that port for new connection.

147Writing a Simple Chat Program

3. Accept the new connection.

4. Loop until the server or client exits.

5. Check for messages from the client.

6. Send messages to the client.

7. Disconnect from the client.

Inside SimpleChat’s
vClientConnection() Function
Now I want talk about the client function. The client function is almost identical to
the server function; the main difference is that the client must only make a call to
the Connect() function to establish the connection.

// Connect to the IP and port
if(ClientSocketObject.Connect(szServerIP, iServerListenPort)) {

...
}

Everything else that happens in the function works as it does for the server, so you
are done here. I bet you didn’t expect it to be that quick, did you?

Review
In this chapter, I covered the basics for using the SocketObject class. Even though
you now know how to connect, send, receive, and disconnect, you still have much
to learn. The SocketObject class is designed to give you a good foundation for sock-
ets programming, and I think you have gained that from this chapter. I suggest that
you now try writing server and client programs from the ground up. If you can
recreate all that was covered here, then you are off to a great start. Add some of
these features to the sample programs:

■ Support for more than two persons chatting
■ An enhanced user interface
■ Enhanced error checking

I’m off to turn my house key in Ultima Online for now, so see you in the next
chapter!

148 4. Writing Your First Network Programs

CHAPTER 5

Creating a
Sockets

Class
Object

Inever have liked game development books that wrapped all of the functionality
into classes without showing you how to do the actual work. To save this book

from that failure, I am going to show you how to create an entire sockets class from
start to finish. No stone will be left unturned. In the preceding chapter, I covered
how to use the class you are about to write. I know this might seem a little strange
or backward, but I wanted you to understand the class before you wrote it.

To begin with, I’ll cover how to create functionality using standard C without
classes. Then, after the functionality has been created, I’ll cover how to add it to
your class object. Think of it as getting the best of both worlds. All in all, you will
learn about:

■ Constructors
■ Advantages to C++
■ Accepting client connections
■ Connecting to a server
■ Disconnecting from a session
■ Sending data
■ Receiving data

C++ Classes in All Their Glory
Maybe you never have used classes or you just don’t use them often in your code. I
hope I can persuade you to use them in the future. C++ is a great improvement
over straight C in many ways. The only thing that kept me from using C++ several
years ago was that I could never find out what it really meant. I bought all sorts of
books on object-oriented theory and programming, but all of them completely con-
fused me. After all, what the heck are objects, and why do you need to use them?

An Overview of C++
Smaller than a Fly Burp
The most basic definition I have ever used for C++ is that C++ is nothing more than
C style structures with functions. That’s it: C++ is just data structures with functions! I

150 5. Creating a Sockets Class Object

realize this does not jibe with several object prophets, but hey, it gets the point
across. I could spend countless pages describing to you the theory and methods
behind classes, but this is not a book about C++; it is a book about game program-
ming! So what do I mean by my definition of C++? Well, I’ve always said the best
way to teach something is with an example, so here goes.

Imagine a game where you have to keep track of several monsters. In this game,
you have to store their positions, hit points, statuses, and types. In old-school C, you
create a data structure to hold this information, like this example.

struct MonsterData
{

int x,y; // Position
int hitpoints;
int type;
int status; // 0 = dead, 1 = alive

};

After you create the structure, you then create an array to hold all of the monsters
in the game.

MonsterData Monsters[100]; // 100 monsters in game

Now, just imagine a situation in the game where you have to deduct from the mon-
ster’s hit points. Suppose that this situation occurs when a player strikes the mon-
ster. Not only do you have to deduct the hit points, but you also have to check
whether the creature dies as a result of the injury. To accomplish this in C, you
might create a function to do something like this:

int iHurtMonster(int monster, int damage)
{

Monsters[monster].hitpoints -= damage;
// Check whether monster died
if(Monsters[monster].hitpoints <= 0) {

Monsters[monster].status = 0;
return(1);

}
return(0);

}

Oops, I almost forgot to initialize the monsters. To initialize the monsters, you cre-
ate some sort of initialization routine like this:

void vInitMonsters(void)

151C++ Classes in All Their Glory

{
int iLoop;
for(iLoop = 0; iLoop < 100; iLoop++) {

Monsters[iLoop].status = 1;
Monsters[iLoop].x = Monsters[iLoop].y = 0;
Monsters[iLoop].type = 0;
Monsters[iLoop].hitpoints = 250;

}
}

Alrighty, now you have what you need to handle your game logic with a structure
and two functions. Look at Figure 5.1 to see the structure of the program so far.

152 5. Creating a Sockets Class Object

iHurtMonster()

vInitMonsters()

struct MonsterData
{

int x,y;
int hitpoints;
int type;
int status;

};

Monster Program

Figure 5.1

The Monster Program layout

The code so far looks something like this:

#include <stdio.h>
struct MonsterData
{

int x,y; // Position
int hitpoints;
int type;
int status; // 0 = dead, 1 = alive

};
// Global data
MonsterData Monsters[100]; // 100 monsters in game
// Prototypes
int iHurtMonster(int monster, int damage);
void vInitMonsters(void);

// Main function
void main(void)
{

vInitMonsters();
// Do some player logic here; detect a monster getting hit
iHurtMonster(monsterid,damageinflicted);

}
int iHurtMonster(int monster, int damage)
{

Monsters[monster].hitpoints -= damage;
// Check whether monster died
if(Monsters[monster].hitpoints <= 0) {

Monsters[monster].status = 0;
return(1);

}
return(0);

}
void vInitMonsters(void)
{

int iLoop;
for(iLoop = 0; iLoop < 100; iLoop++) {

Monsters[iLoop].status = 1;
Monsters[iLoop].x = Monsters[iLoop].y = 0;
Monsters[iLoop].type = 0;

153C++ Classes in All Their Glory

Monsters[iLoop].hitpoints = 250;
}

}

Okay, now that the C code is out of the way, take a look at how it is done in C++.
First, you create a class object to handle monster functionality. Once again, you
need to store the position, hit points, status, and monster type. You also need func-
tions to handle when monsters are damaged and when you initialize them. Here is
what the class looks like before adding the functions.

class MonsterObject
{

public:
int iXPos,iYPos;
int iHitPoints;
int iStatus;
int iType;
MonsterObject(); // Constructor
// Function for monster to take damage
int iInflictDamage(int damage);

};

You might notice that the only differences between the preceding class and the C
data structure are the functions. As I said before, the main thing about C++ is that
it allows you to have functions within structures. So no big deal so far, right? Just as
you did in the C version of the code, you also declare an array of 100 monsters.

MonsterObject Monsters[100];

Now you have to create the function for when monsters take damage. Instead of
creating a global function for use by everyone, just create a function local to the
class object. Here is what the function looks like.

int MonsterObject :: iInflictDamage(int damage)
{

iHitPoints -= damage;
// Check whether monster died
if(iHitPoints <= 0) {

iStatus = 0;
return(1);

}
return(0);

}

154 5. Creating a Sockets Class Object

The main thing to note is that the variables are local to the class object. This is why
you do not need to pass the monster’s ID to the function. Here is how you call the
function.

Monsters[monsterid].iInflictDamage(damageinflicted);

You are actually calling the function that is owned by the monster object instead of
calling a global function owned by everyone. Now that you have created the dam-
age function, it is time to create the initialization function for your class object.

MonsterObject::MonsterObject(void)
{

iStatus = 1;
iXPos = IYPos = 0;
iHitPoints = 250;
iType = 0;

}

Where’s the function name, right? This is not a function
per se, but rather a class constructor. Because it is a con-
structor, it has no name to call it. A class constructor is
called when a class object is declared and a destructor
is called when a class object leaves scope. So in the example,
the MonsterObject::MonsterObject() function is called as
soon as you declare the global Monsters array. Using the
class method, you don’t have to write a loop to initialize the objects; they get initial-
ized as soon as they are constructed!

Take a peek at how the code looks using C++.

#include <stdio.h>
class MonsterObject
{

public:
int iXPos,iYPos;
int iHitPoints;
int iStatus;
int iType;
MonsterObject(); // Constructor
// Function for monster to take damage
int iInflictDamage(int damage);

};
MonsterObject::MonsterObject(void)

155C++ Classes in All Their Glory

A class constructor
is called when a
class object is
created.A class
destructor is called
when a class is
destroyed.

{
iStatus = 1;
iXPos = IYPos = 0;
iHitPoints = 250;
iType = 0;

}
int MonsterObject :: iInflictDamage(int damage)
{

iHitPoints -= damage;
// Check whether monster died
if(iHitPoints <= 0) {

iStatus = 0;
return(1);

}
return(0);

}
MonsterObject Monsters[100];
// Main function
void main(void)
{

// Do some player logic here; detect a monster getting hit
Monsters[monsterid].iHurtMonster(damageinflicted);

}

Get to the Point Already!
I hear ya: Get to the point already, right? Hey, that reminds me of the chat code in
Age of Empires II that says something like “Start the game already!” Well, I like to
program using classes because it can result in much cleaner code. Not only does
the code normally look cleaner, but you also gain advantages from a smaller code
base, code reusability, and code isolation.

Because classes allow you to write less redundant code, your programs usually end
up smaller in size. Unless you work for one of the companies that pay programmers
by the number of lines, you’ll like your code to be as small as possible. Now don’t
get me wrong here: Any goof can write millions of lines of code, no matter what
style he uses.

Ah, the holy hand-grenade of programmers—reusable code. C++ reeks of reusabil-
ity. Not only can you layer classes upon classes, but you can also create virtual
classes that apply to all sorts of data types. I can’t stress enough how well C++ gets
reused. Because classes are nice tight little packages, you can move them around

156 5. Creating a Sockets Class Object

from code base to code base without fear of losing pieces—just like in the
MonsterObject example. It is much easier to figure out what to reuse in the C++
version of the code than it is in the C version.

Because functions for classes are local to the classes themselves, you don’t have tons
of dangling functions in your program. This also points to cleaner code. It is much
easier to tell what a class function belongs to because you can just look at its scope.
The MonsterObject function was easy to pick out; all you had to notice was the
MonsterObject:: in front of it. Figure 5.2 shows the architectural differences
between C and C++.

Oh, yes, code cleanliness. I’m not trying to win a sanitation award here, but I like
clean and concise code. Clean and concise code is easy to read and easy to under-
stand when you return to it a year later. Table 5.1 outlines some of the advantages I
see with C++.

157C++ Classes in All Their Glory

Global Function 1

Global Function 2

Global Function 3

C-Style Method

Class Header

Local Function 1

Local Function 2

Local Function 3

C++ Method

Global Or
Local Data

Title

Application

Local Data

Figure 5.2

C-style structure
versus C++
structure

Wow, what a quick trip down the yellow-brick road of C++. I know that I only briefly
covered the topic, and believe me; I left out tons of information about C++. If you
are hungry for more information, I suggest you find a highly rated book about C++
on the Internet or at a good bookstore. I do remember a very good book I once read
called Moving from C to C++ (Sams, 1992). It’s a few years old, but buy it if you can
find it. Another good resource is 1001 Visual C++ Programming Tips (Prima, 2001).

Designing the
SocketObject Class
Now that the virtues of C++ are out of the way, it’s time to talk about the class I am
going to show you how to create. The purpose of the class is to wrap all of the func-
tionality for sockets into a nice, neat package. For all of the Dilbert fans out there,
here is our vision statement.

To create a C++ class that will provide all of the functionality used in sockets
for both clients and servers.

All right, now that I have dispensed with the corporate mumbo-jumbo, take a look
at what this actually means. Because you use sockets to facilitate communication
between computers, the class needs to accomplish this, at the very least. The class
also needs to provide the following functions, at a minimum, to be useful.

158 5. Creating a Sockets Class Object

Table 5.1 Results and Advantages of Using C++

Result Advantage

Cleaner code Easy for others to read and understand. Can be
understood more easily when revisited.

Smaller code base Less compile time, easier to follow, and with smaller
executables.

Code reusability Saves time on future projects because you can reuse
previous code efforts.

Code isolation Code is easy to remove or edit. Can more easily be
transported to other projects.

■ Accept connections (server)
■ Connect to a server (client)
■ Disconnect (server and client)
■ Send data (server and client)
■ Receive data (server and client)

You will want to add other functions
and features, but none of them are
absolutely necessary to facilitate com-
munication. Refer to Figure 5.3 to see
the layout of the proposed socket class.

The SOCKET Data Type
The first thing you have to do when creating a class object is design the class
header information. First, all of the class functions deal with sockets; therefore, you
need a SOCKET data type in the class for all of the socket operations.

159Designing the SocketObject Class

TIP
You can find all of the working source
code listed in this chapter on the CD
that comes with the book. Look in
the Chapter5 Zip file on the CD. Each
project consists of the source files
along with the ws2_32.lib library file.
You need the library file for socket
functionality; always include this
library in your socket projects.

SocketObject
Class

Bind ConnectSend Data

ReceiveListen

Disconnect

Server Only Client Only

Accept

Common

Figure 5.3

Layout of the C++
socket class

The SOCKET data type is really just like the Windows HWND data type. It is nothing
more than a handle to a socket. Because it is a handle, it is really just an integer
used as a reference number. You will only ever deal with two types of sockets,
stream-based and datagram-based.

■ Stream sockets provide data in a constant stream without breakpoints. Stream
data is always guaranteed to be delivered in order. When you want guaran-
teed packet delivery, this is generally the method to use.

■ Datagram sockets send data in blocks and do not guarantee the order or the
delivery. Unless you plan to create your own guaranteed delivery mechanism,
this is not the way to go. Datagrams are useful, though, for sending non-
critical game data. Because the packets are not guaranteed, they take less
transmission time.

Now that you know what the SOCKET data type is, here is how you implement it into
the class.

class SocketObject
{

private:
public:

SOCKET skSocket;
}

From now on, my examples will use the custom Hungarian notation of sk for all
SOCKET data types. Not too complicated yet, right? Okay, now that you have a handle
for the socket, you need a function to use it. I say it’s time to start with the bind
functionality.

The Bind Functionality
I know I demonstrated using the bind() function in the last chapter, but let me talk
about it a bit more here. Basically, the bind() function associates a socket with an
address. When you first create a socket, it is not associated with anything. That is
why you must use the bind() function; otherwise, the system would never know
what you are trying to communicate with. For you to use the connect() or listen()
function later, you must first call the bind() function. Here is what the prototype
for bind() looks like.

int bind (SOCKET s, const struct sockaddr FAR* name, int namelen);

160 5. Creating a Sockets Class Object

You should be familiar with the first parameter data type by now because it only
requires an unbound socket handle. Unbound means that the socket has not already
been bound with the bind() function.

The SOCKADDR Data Type
The second parameter looks a bit strange but really isn’t all that bad. It just wants
an address to store the information about the bind. All you do here is pass a tem-
porary sockaddr_in data structure. Sockaddr_in is just a derivative of the sockaddr
data structure used in specifying Internet addresses. Here is what the sockaddr_in
data structure looks like.

struct sockaddr_in {
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

This data structure holds all the information that is necessary for defining the
address of an Internet connection. To do this, it must store important information
such as the IP address and port. Table 5.2 shows a breakdown of the member
variables.

161The Bind Functionality

Table 5.2 Member Variables

Variable Purpose

sin_family This is always set to AF_INET. Don’t you love stuff like this? I think
the men in black like to make us type a lot.

sin_port This is the IP port to which you will be binding. Normal ranges are
from 0 to 10000.

sin_addr This is the IP address to which you will be binding or connecting.
Actually, this uses a data structure of type in_addr. I’ll cover this
after I have finished with the sockaddr_in type.

sin_zero This is nothing more than padding used to make sockaddr_in the
same size as sockaddr for type-casting purposes.

As promised, I’ll now talk about the in_addr data structure. It is defined in
winsock.h and looks like this.

struct in_addr {
union {

struct {
unsigned char s_b1,

s_b2,
s_b3,
s_b4;

} S_un_b;
struct {

unsigned short s_w1,
s_w2;

} S_un_w;
unsigned long S_addr;

} S_un;
};

My first impression of this data type was. . . . Well, I don’t think I can say that here.
I don’t want to muddy the waters, so I’m only going to discuss the part of this you
will use, the S_un_b structure. This structure holds four character values. Each of
these values represents a part of the IP address. Because IP addresses consist of
four numbers between 0 and 255, this fits perfectly. If your IP address were
192.168.0.2, then the values in the structure would look like this:

s_b1 = 192;
s_b2 = 168;
s_b3 = 0;
s_b4 = 2;

Now it makes sense, right? Well, even if it doesn’t, I’ll cover this more later. Where
was I, anyway? Oh, yes, I was talking about the parameters used in the bind() func-
tion. I covered the first two parameters, so that leaves me with the last parameter,
which is the length of the sockaddr data structure. This is a very easy one to do; you
pass sizeof(sockaddr) to make it work.

The last thing you need to worry about is what the bind() function returns. It
returns a simple integer to be checked. The function returns a 0 if successful or a
SOCKET_ERROR on failure. Just check for this value when calling to determine whether
it failed.

162 5. Creating a Sockets Class Object

Now that the bind() function is out of the way, I need to talk about the all-impor-
tant socket() function.

The Socket() Function
Before you can even call the old bind() function, you must create the socket you
want to use with the ambiguously named socket() function. (Just kidding about the
ambiguous part!) Here is the prototype for this function.

SOCKET socket (int af, int type, int protocol)

Ah, that looks easy enough—only three integers for parameters. The first parame-
ter of type integer specifies the address family. What does this mean to you? Not
much; just use the AF_INET definition for this.

The second parameter, also of type integer, specifies the type of socket you want to
create. For our purposes, there are two types of sockets, stream sockets and data-
gram sockets. Déjà vu yet? This is where that lesson about streams and datagrams
comes in handy. To specify a stream socket, use the SOCK_STREAM define. To specify a
datagram socket, use the SOCK_DGRAM define.

The last parameter specifies the protocol to be used with the socket. Just pass a 0 to
this for our purposes.

If the function succeeds as planned, then it returns the handle to a brand new
socket. If it fails, it returns an INVALID_SOCKET code. Be sure to check for this return
code when calling the socket() function.

The C Version of Binding
Are we there yet? Are we there yet? If this is starting to feel like a road trip with
kids, then just hang in there. I am finally going to cover writing the bind() func-
tionality. Using what you have learned already, you need to create the socket with
the socket() function and then bind to an address using the bind() function. To
help you better follow what is required of a server, take a look at Figure 5.4.

163The Bind Functionality

Initialize Winsock Bind to Server
Listen for

Connection
Accept Client
ConnectionCreate Socket

Figure 5.4

Steps required by a
server to accept a
client connection

Here is how you do it without using a class.

// Standard includes
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>

// ----> Main Program Function (REQUIRED)
void main(void)
{

SOCKET skSocket;
sockaddr_in saServerAddress;
int iPort = 6000,iStatus;
WSADATA wsaData;
WORD wVersionRequested;

// Initialize the socket handle
skSocket = INVALID_SOCKET;
// Tell WinSock we want version 2
wVersionRequested = MAKEWORD(2, 0);
// Start up WinSock
iStatus = WSAStartup(wVersionRequested, &wsaData);
// Create the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
// Check whether there was an error
if(skSocket == INVALID_SOCKET) {

cout << “**ERROR** Could Not Create Socket” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET CREATED -->” << endl;
// Clear out the socket address structure
memset(&saServerAddress, 0, sizeof(sockaddr_in));
// Initialize the socket address structure
saServerAddress.sin_family = AF_INET;
saServerAddress.sin_addr.s_addr = htonl(INADDR_ANY);
saServerAddress.sin_port = htons(iPort);
// Attempt to bind
if(bind(skSocket, (sockaddr*) &saServerAddress,
sizeof(sockaddr)) == SOCKET_ERROR) {

cout << “**ERROR** Could Not Bind” << endl;

164 5. Creating a Sockets Class Object

// Clean up WinSock
WSACleanup();
exit(1);

}
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();
cout << “<-- SOCKET BOUND -->” << endl;

}

The first thing I did was include some
standard libraries such as iostream.h and
stdio.h. The most important include,
though, is winsock.h. Winsock.h is
required for all sockets programming you
do. I then went on to create the main()
function, which is standard to all console
applications.

The variables you use for main() allow you to do all of the operations required, and
are listed in Table 5.3.

165The Bind Functionality

NOTE
All of the programs in this book
that you’ll write using sockets have
the ws2_32.lib Winsock library
linked in with them. Be sure to
include this in your projects.

Table 5.3 Variable Usage in the Main() Function

Variable Purpose

skSocket The SOCKET handle that points to the socket you are going
to create.

saServerAddress The SOCKADDR_IN to hold the socket address information.

iPort An integer to hold the port number to which you are going
to bind.

iStatus An integer to hold the status of the call to WSAStartup().

wsaData A WSAData structure to hold information about the
Winsock implementation.

wVersionRequested A WORD to hold the version number of Winsock you want
to use.

The next piece of code is quite simple; you merely set skSocket to equal
INVALID_SOCKET. This sets up the socket handle to be used in the future. What hap-
pens next has not been covered so far.

Initializing Winsock with WSAStartup()
Before you can call any Winsock functions, you must first initialize Winsock by load-
ing the ws2_32.dll. To load this dynamic link library, Windows provides you with
the WSAStartup() function. Here is the prototype for the function.

int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData)

This function is really quite basic in that it only requires the version number of
Winsock you want to use and a pointer to hold information about the Winsock
implementation. So for the first parameter, pass in a WORD variable set with the
MAKEWORD() function. For the second parameter, pass in the address of a WSAData
structure. You don’t ever really use the data structure, but here are the member
variables for it anyway.

typedef struct WSAData {
WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+1];
char szSystemStatus[WSASYS_STATUS_LEN+1];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR *lpVendorInfo;

} WSADATA, FAR *LPWSADATA;

After Winsock is initialized, the program
goes on to create the socket with the ever
familiar socket() function I discussed in the
section, “The Socket() Function.” After you
call the socket() function, you can go on to
make sure it succeeded. Checking whether
the socket equals INVALID_SOCKET tells you
whether the socket call resulted in an error.
If an error occurs, you need to clean up
Winsock with the WSACleanup() function and
then exit the program.

166 5. Creating a Sockets Class Object

TIP
You can ignore the iMaxSockets,
iMaxUdpDg, and *lpVendorInfo
members of the WSAData struc-
ture.They exist only for back-
ward compatibility with versions
of Winsock prior to 2.0.

TIP
Always be sure to call the
WSACleanup() function before
exiting any Winsock-based
programs.

Initializing the SOCKADDR_IN
Data Structure
The next block of code initializes the saSocketAddress data structure. The call to
memset() just sets all of the data in the structure to 0 to clean the slate.

// Clear out the socket address structure
memset(&saServerAddress, 0, sizeof(sockaddr_in));
// Initialize the socket address structure
saServerAddress.sin_family = AF_INET;
saServerAddress.sin_addr.s_addr = htonl(INADDR_ANY);
saServerAddress.sin_port = htons(iPort);

The htons() Function
The next three calls set up the data structure members. As I discussed before, the
sin_family data member is always set to AF_INET. You then set up sin_addr for an IP
address using the htonl() function. Here is the prototype for that function.

u_long htonl (u_long hostlong);

Basically, this function takes a 32-bit integer and converts it to the proper byte
order used by TCP/IP. This order is also referred to as big-endian. For your pur-
poses, just pass INADDR_ANY to this function.

The last member you need initialize is sin_port. You can do this with a call to the
htons() function. Here is the prototype for it.

u_short htons (u_short hostshort)

This function is just like htonl() except it converts shorts to TCP/IP byte order. All
you have to pass to this function is the port to which the server wants to bind.
Figure 5.5 illustrates the TCP/IP dot order.

167The Bind Functionality

TCP/IP Dot Order

255.255.255.255:9999}

Specific PORT
Main IP Address

Figure 5.5

The TCP/IP dot order layout

I don’t know about you, but I feel like playing a little Rogue Spear right about now.
Nothing brings a little stress relief better than a friendly game of Rogue Spear. Of
course, my compadres and I affectionately refer to the game as “Shot in the Head.”
We call it this because we really stink at the game and spend most of our time reload-
ing the missions. Or, I could stay up into the a.m. and play some Starsiege Tribes. Now
there’s an addictive game. Well, I’d better keep writing; deadlines to meet.

Binding, Finally
Now that all of the initialization is out of the way, you can finally bind the socket to
a port. You do this with the bind() function I discussed in the section, “The Bind
Functionality.” All you pass to it is your socket handle, the address of your socket
address information, and the byte size of the address information. Here is the call
that is made.

if(bind(skSocket, (sockaddr*) &saServerAddress,
sizeof(sockaddr)) == SOCKET_ERROR) {

cout << “**ERROR** Could Not Bind” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}

Because the bind() function returns a value, just check to see whether it equals
SOCKET_ERROR. If it does, clean up Winsock with the WSACleanup() function and then
exit the program.

Cleaning Up Sockets
The last thing to do in your program is clean up your socket with the closesocket()
and WSACleanup() functions. The closesocket() function closes an existing socket
and returns the resource to the system. The closesocket() function takes only one
parameter, the socket handle to close. Call the function like this:

closesocket(skSocket);

Once everything is cleaned up, the program exits. That’s all there is to binding a
socket with C!

The C++ Version of Binding
As promised, I’ll now show you how to create the bind functionality for the C++
SocketObject class. Do you remember the start of the class header in the section,

168 5. Creating a Sockets Class Object

“The SOCKET Data Type?” Don’t worry; I’ll show it to you now, but with the addition
of the constructor, the destructor, and the bind function prototype.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);

}

Because the only unique things you need to know to call the bind() function are a
socket handle and a port number, you have just one parameter for the function.
Here is the prototype.

int Bind(int iPort);

Nothing too complicated here, just the port number to which you want to bind the
socket. You get the socket handle from the skSocket variable already defined in the
class. Now that I’ve covered the header information for bind, take a look at the
actual member function.

int SocketObject::Bind(int iPort)
{

sockaddr_in saServerAddress;

skSocket = socket(AF_INET, SOCK_STREAM, 0);
if(skSocket == INVALID_SOCKET) {

return false;
}
memset(&saServerAddress, 0, sizeof(sockaddr_in));
saServerAddress.sin_family = AF_INET;
saServerAddress.sin_addr.s_addr = htonl(INADDR_ANY);
saServerAddress.sin_port = htons(iPort);
if(bind(skSocket, (sockaddr*) &saServerAddress,

sizeof(sockaddr)) == SOCKET_ERROR) {
Disconnect();
return false;

}
else

return true;
}

169The Bind Functionality

All of this should look strikingly familiar to you by now. All of the functionality of
the C code is in the class function here. One notable difference, though, is the
exclusion of the Winsock initialization and cleanup routines. These are actually
called from functions in the constructor and destructor members. Here are those
member functions.

// Constructor
SocketObject::SocketObject()
{

WSADATA wsaData;
WORD wVersionRequested;

wVersionRequested = MAKEWORD(2, 0);
skSocket = INVALID_SOCKET;
iStatus = WSAStartup(wVersionRequested,&wsaData);

}
// Destructor
SocketObject::~SocketObject()
{

Disconnect();
}

Because you call the constructor when you create a SocketObject class object, you
just put the initialization routines into the constructor. It includes all of the func-
tionality done in the C program for initializing Winsock.

The destructor is called when the class object is released or leaves program scope.
All the destructor does is call another function called Disconnect(). Here is what
the Disconnect() member function looks like.

void SocketObject::Disconnect()
{

if(skSocket != INVALID_SOCKET) {
closesocket(skSocket);
skSocket = INVALID_SOCKET;

}
}

There is not much different here from the C program except that now you check
to make sure the socket handle is valid before attempting to close it. Most C++
classes include all sorts of error handling to help out the programmer. You perform
the check by making sure the socket handle does not equal INVALID_SOCKET. One

170 5. Creating a Sockets Class Object

thing you might notice missing is the WSACleanup() function. I intentionally didn’t
include this function because you do not want to unload the ws2_32.dll every time
you delete a SocketObject. The class leaves this up to the programmer to clean up.

Because I threw in the Disconnect() member function without showing it in the
class header, here is the class header you have created so far.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);
void Disconnect();

}

Now that the class infrastructure is out of the way, it is time to see the class in
action! Here is the code to use the class functions so far.

// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

// ----> Main Program Function (REQUIRED)
void main(void)
{

SocketObject ServerSocketObject;
int iPort = 6000;

// Attempt to bind
if (ServerSocketObject.Bind(iPort)) {

cout << “<-- SOCKET BOUND -->” << endl;
ServerSocketObject.Disconnect();

}
else {

cout << “**ERROR** Could Not Bind” << endl;
}
WSACleanup();

}

Now, I don’t know what you think, but the preceding code looks much simpler

171The Bind Functionality

than the C version. Granted, you had to create some infrastructure, but once that
infrastructure is in place, the actual implementation goes smoothly.

All of the initialization code takes place as soon as you declare the
ServerSocketObject object. You handle all of the cleanup code by calling the
Disconnect() member function and then the WSACleanup() function. Figure 5.6
shows the output from the Bind program.

The Listen Functionality
With bind out of the way, it is time to cover the listen functionality. Don’t forget
that you only call the listen function when you are using a server socket to listen
for new client connections.

The only thing the listen() function does is wait for connections. Luckily for you,
this function is simple to implement now that the basics are out of the way. Here is
the updated C code that includes the new listen functionality.

// Standard includes
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>

// ----> Main Program Function (REQUIRED)
void main(void)
{

172 5. Creating a Sockets Class Object

Figure 5.6

The output from the
Bind program

SOCKET skSocket;
sockaddr_in saServerAddress;
int iPort = 6000;
int iStatus;
WSADATA wsaData;
WORD wVersionRequested;

// Tell WinSock we want version 2
wVersionRequested = MAKEWORD(2, 0);
// Initialize the socket handle
skSocket = INVALID_SOCKET;
// Start up WinSock
iStatus = WSAStartup(wVersionRequested, &wsaData);
// Create the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
// Check whether there was an error
if(skSocket == INVALID_SOCKET) {

cout << “**ERROR** Could Not Create Socket” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET CREATED -->” << endl;
// Clear out the socket address structure
memset(&saServerAddress, 0, sizeof(sockaddr_in));
// Initialize the socket address structure
saServerAddress.sin_family = AF_INET;
saServerAddress.sin_addr.s_addr = htonl(INADDR_ANY);
saServerAddress.sin_port = htons(iPort);
// Attempt to bind
if(bind(skSocket, (sockaddr*) &saServerAddress,

sizeof(sockaddr)) == SOCKET_ERROR) {
cout << “**ERROR** Could Not Bind” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET BOUND -->” << endl;
// Listen for a connection on the bound port
iStatus = listen(skSocket, 32);

173The Listen Functionality

if(iStatus == SOCKET_ERROR) {
cout << “**ERROR** Error Listening” << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET LISTENING -->” << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();

}

I put the relevant code changes in bold text to make them easier to pick out.

The Listen() Function
Because the first notable thing I added is a call to the listen() function, I’d better
show you the prototype for it.

int listen (SOCKET s, int backlog);

The first parameter just wants the handle to the socket with which you want to lis-
ten. For this, you should pass in the tried and true skSocket variable. The second
parameter, int backlog, really threw me for a loop the first time I ever saw it. I
mean, what the heck is a backlog? I have never claimed to give the most technical
explanations for things, so the backlog is just how many pending connections you
will allow to queue up. Normally, I just use the number 32 here.

The listen() function does return an integer, so you need to check what you get
back from it. If everything goes okay, the function returns a 0. If something goes
wrong, then the function returns a SOCKET_ERROR code. In the example, I close the
socket, clean up Winsock, and exit the program if something goes wrong.

Because the listen() function is non-blocking, the program calls it and then imme-
diately continues on to clean up things and shut down. Refer to Figure 5.7 to see
the listen() function illustrated.

The C++ Version of Listening

174 5. Creating a Sockets Class Object

Because the C version of listening was so short and simple, the C++ version is going
to be even shorter! To begin, you must add the listen() function to the class
header for the SocketObject class. The class already has the socket handle present,
so all you need to pass to the function is the port to which you want to assign the
next connection. Here is the updated class header.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);
void Disconnect();
int Listen(void);

}

Once again, the relevant change appears in bold-faced text. All you had to add was

175The Listen Functionality

Winsock

Socket
Handle

Bind to Port

SERVER

Listen

Client

Port 6000

Figure 5.7

The listen()
function

the Listen() function. Now that the header is out of the way, peek at the member
function implementation.

int SocketObject::Listen(void)
{

return listen(skSocket, 32);
}

Wow, isn’t that a ton of code! Not. This one is pretty easy because all you have to do
is call the listen() function provided by Winsock. You pass it the socket handle and
the number of queued connections to allow.

The program returns the results from the listen() function, which is 0 for success
or SOCKET_ERROR for failure. The infrastructure for listening is in place; take a look
and see how it is implemented in C++ style.

// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

// ----> Main Program Function (REQUIRED)
void main(void)
{

SocketObject ServerSocketObject;
int iPort = 6000;

// Attempt to bind
if (ServerSocketObject.Bind(iPort)) {

cout << “<-- SOCKET BOUND -->” << endl;
if(ServerSocketObject.Listen() != SOCKET_ERROR) {

cout << “<-- SOCKET LISTENING -->” << endl;
}
else {

cout << “**ERROR** Could Not Listen” << endl;
}
ServerSocketObject.Disconnect();

}
else {

cout << “**ERROR** Could Not Bind” << endl;
}
WSACleanup();

176 5. Creating a Sockets Class Object

}

Take a look at the code in bold text;
it shows the differences between this
program and the bind C++ program.

You can then check the call to the
listen() function and see whether it
returns the SOCKET_ERROR code. If so,
display an error message and proceed
to disconnect.

The Accept Functionality
Man, this information can be dryer than Rocky Mountain air. Tell you what; here is
a tidbit of knowledge to spice things up. Once upon a time, there was a program
called WinNuke. This program was very simple in appearance because all it dis-
played was a small window asking for an IP address. After you entered an IP
address, you could then press the Nuke button, which sent a packet to the target
machine. The packet caused a network stack overflow on the target machine and
crashed it. The only thing the victim saw on his computer was the big nasty blue
screen. Of course, I in no way condone using such a nasty piece of programming,
but it might have been a great way to get rid of rude gamers. The reason I refer to
this program in the past tense is because after Windows 95, Microsoft fixed this
bug. If you still own Windows 95, you can download a patch to prevent this pro-
gram from successfully attacking your machine. Now, back to our regularly sched-
uled program.

As you learned in the last chapter, accept is used by servers to accept new client

177The Accept Functionality

TIP
When you set up your server to listen
for connections, use a listen port num-
ber that is greater than 1000.You avoid
bumping into reserved port numbers
such as port 80, which is reserved for
HTTP traffic.

TIP
The backlog number limits itself to the service provider
used if you pass a number that is too high for it.There is
no provision for finding the limitation, but don’t worry
because the system changes it to the closest valid num-
ber if you exceed the maximum setting.

connections. To get to the point of accepting connections, the server must first
complete the following steps.

1. Initialize Winsock.

2. Create a socket.

3. Bind the socket to a port.

4. Listen on the bound port to
accept the client connection.

The Accept()
Function
Once all the criteria are met for accepting a connection, you can call the accept()
function. The most important part of this function is that it returns a socket handle
to the new client socket connection. Here is the prototype.

SOCKET accept (SOCKET s, struct sockaddr FAR* addr, int FAR* addrlen);

For the first parameter, you pass the handle to the server socket. This tells the
accept function on which server socket to accept. The socket passed to this parame-
ter must be in the listening state by being called with the listen() function.

The second parameter expects the address of a SOCKADDR_IN data structure to hold
all of the connection information. From this data structure, you will be able to pull
the connecting client’s IP address. The third and final parameter is a pointer to an
integer containing the size of the SOCKADDR_IN data structure.

When the accept() function returns, it returns a socket handle. If the call was not
successful, a value of INVALID_SOCKET is
returned.

Okay, now that you understand the accept
function, here it is in plain old C.

// Standard includes
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>

// ----> Main Program Function (REQUIRED)
void main(void)
{

SOCKET skSocket;

178 5. Creating a Sockets Class Object

NOTE
The accept() function applies only to
sockets of type SOCK_STREAM. Datagram
sockets do not use this function.

CAUTION
The bind() function is a blocking
call.The program sits and waits
until a client connects. Keep this
in mind when calling the bind()
function.

sockaddr_in saServerAddress;
SOCKET skClientSocket;
sockaddr_in saClientAddress;
int iClientSize = sizeof(sockaddr_in);
int iPort = 6000;
int iStatus;
WSADATA wsaData;
WORD wVersionRequested;

// Tell WinSock we want version 2
wVersionRequested = MAKEWORD(2, 0);
// Initialize the socket handle
skSocket = INVALID_SOCKET;
// Start up WinSock
iStatus = WSAStartup(wVersionRequested, &wsaData);
// Create the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
// Check whether there was an error
if(skSocket == INVALID_SOCKET) {

cout << “**ERROR** Could Not Create Socket” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET CREATED -->” << endl;
// Clear out the socket address structure
memset(&saServerAddress, 0, sizeof(sockaddr_in));
// Initialize the socket address structure
saServerAddress.sin_family = AF_INET;
saServerAddress.sin_addr.s_addr = htonl(INADDR_ANY);
saServerAddress.sin_port = htons(iPort);
// Attempt to bind
if(bind(skSocket, (sockaddr*) &saServerAddress, sizeof(sockaddr))
== SOCKET_ERROR) {

cout << “**ERROR** Could Not Bind” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET BOUND -->” << endl;
// Listen for a connection

179The Accept Functionality

iStatus = listen(skSocket);
if(iStatus == SOCKET_ERROR) {

cout << “**ERROR** Error Listening” << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET LISTENING -->” << endl;
skClientSocket = accept(skSocket,
(struct sockaddr*)&saClientAddress, &iClientSize);

if(skClientSocket == INVALID_SOCKET) {
cout << “**ERROR** Error Accepting” << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- CLIENT ACCEPTED -->” << endl;
// Close the sockets
closesocket(skSocket);
closesocket(skClientSocket);
// Clean up WinSock
WSACleanup();

}

Hey, would you look at that; the relevant changes are shown in bold text!
Sometimes, I amaze myself. Anyway, take a look-see at the code changes in bold
and see if you can follow them.

One of the more notable things I had to do was add a new socket handle for the
client connection. Because the accept() function returns a socket handle, I had to
create a holder for it. I also had to add a client address and an integer holding the
client address size.

After the new variables are out of the way and the server socket is in listening
mode, the program makes a call to the accept() function. The usual parameters are
passed to this function, and the skClientSocket variable receives the results. To
make sure the accept() function succeeded, you should compare the client socket
handle to INVALID_SOCKET. If the client socket handle equals this value, you then

180 5. Creating a Sockets Class Object

close the server socket and clean up Winsock before exiting the program.

The last thing I had to add was a call to close the client socket. Because the new
client socket exists, you must make this call to free the resource. You don’t want to
hold it hostage now, do you? Take a look at Figure 5.8 to see the accept() function
illustrated.

That’s all for the C version of the server accepting a client connection. See, no hid-
den wrappers or classes, just straight C code. Now, for all of the object-oriented

181The Accept Functionality

Winsock

Socket
Handle

Bind to Port

SERVER

Listen

Accept

Port 6000

Port 6000

Client

Figure 5.8

The accept()
function

folks out there, take a look at the C++ version of the code.

The C++ Version of Accepting
a Client Connection
Because examining the past is the best way to predict the future, use your past prac-
tices as a guide. First of all, you must add a new function prototype to the class
header. Here is the class header with the new accept functionality.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);
void Disconnect();
int Listen(void);
bool Accept(SocketObject& skAcceptSocket);

}

The only thing you had to add to the class was a single Accept() function. The
Accept() function expects one parameter of type SocketObject address. Basically, all
you have to do is pass the address of the client’s SocketObject to the server’s
Accept() function. To better illustrate, take a look at the latest our C++ client has to
offer.

// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

// ----> Main Program Function (REQUIRED)
void main(void)
{

SocketObject ServerSocketObject;
SocketObject ClientSocketObject;
int iPort = 6000;

// Attempt to bind
if (ServerSocketObject.Bind(iPort)) {

182 5. Creating a Sockets Class Object

cout << “<-- SOCKET BOUND -->” << endl;
if(ServerSocketObject.Listen() != SOCKET_ERROR) {

cout << “<-- SOCKET LISTENING -->” << endl;
if(ServerSocketObject.Accept(ClientSocketObject)) {

cout << “<-- CLIENT ACCEPTED -->” << endl;
}
else {

cout << “**ERROR** Could Not Accept” << endl;
}

}
else {

cout << “**ERROR** Could Not Listen” << endl;
}
ServerSocketObject.Disconnect();

}
else {

cout << “**ERROR** Could Not Bind” << endl;
}
WSACleanup();

}

Luckily for you, there isn’t a whole lot of difference between this client and the last
version you worked on. First, you add a client SocketObject to hold the new socket
connection. Next, you call the Accept() member function and pass the address of
the client socket object. If the Accept() member function is successful, a 1 is
returned. If a problem occurs, a 0 is returned. So all you have to do is check
whether the function returned a 1, and if it didn’t, output an error message.

Now that you have seen the prototype and the implementation, take a look at the
Accept() member function.

bool SocketObject::Accept(SocketObject &skAcceptSocket)
{

sockaddr_in saClientAddress;
int iClientSize = sizeof(sockaddr_in);

skAcceptSocket.skSocket = accept(skSocket,
(struct sockaddr*)&saClientAddress, &iClientSize);

if(skAcceptSocket.skSocket == INVALID_SOCKET) {
return false;

}
else {

183The Accept Functionality

return true;
}

}

As I briefly mentioned before, the Accept() member function expects the address
of the SocketObject to accept the new connection. If everything goes okay, the func-
tion returns a 1. If something fails, the function returns a 0.

The first bits of code create the necessary local variables to call the accept() socket
function. After the required variables are out of the way, you get down to business
with the accept() function. When calling the accept() function, you pass in the
local SocketObject’s socket handle for the server socket parameter. You then hold
the return value in the skAcceptSocket socket handle. Next, you check the value of
the accepting socket handle to see whether it equals INVALID_SOCKET. If it does, then
the call failed and you return a 0. If everything went okay, you return a 1, as
expected.

Because all you are doing is wrapping functionality, most of this code should look
very similar to the C counterpart. That’s the beauty of C++! One problem you will
have when running the accept programs is that they just sit there waiting for a
client connection. And guess what: You don’t have a client program example in this
chapter yet! I’ll help you fix this problem by teaching you how to use the client-side
connect functionality.

The Connection Functionality
Now, you finally get to play with clients. One thing to remember is that the connec-
tion functionality is used strictly by clients to connect to servers. Before the client
application can make a connection to a server, it must complete the following
steps.

1. Initialize Winsock.

2. Create a socket.

Consider this small number of steps my holiday gift to you. No, I don’t know which
holiday; just pick one. Or make one up, for that matter. Do you recall the Seinfeld
episode where George’s father created his own holiday? During the holiday he cre-
ated, named Festivus, the family would get together for a meal and then proceed to
air all the grievances they had against one another. I think most of us call this
Thanksgiving.

Anyway, all jokes aside, you should already be familiar with the two prerequisite

184 5. Creating a Sockets Class Object

steps I mentioned. To establish connections with servers, you use the connect()
function provided in Winsock. Refer to Figure 5.9 to see the connect() function
illustrated.

The Connect() Function
The connect() function, provided by Winsock and most other socket APIs, is fairly
straightforward. Here is the prototype for the function.

int connect (SOCKET s, const struct sockaddr FAR* name, int namelen);

The function returns an integer when it is done. The return value is 0 if everything
went all right. If something fails, then a value of SOCKET_ERROR is returned.

The first parameter passed to the connect() function is a socket handle. This SOCKET
variable ends up holding the handle to the newly connected socket. The second
parameter expects a SOCKADDR structure address holding the name of the server to
which you want to connect. The third and last parameter is nothing more than the
size of the server address. This one is fairly simple because all you have to pass to it
is sizeof(sockaddr).

The connect() function does just what its name implies; it establishes a connection
to a server. Once a connection is established, you can send and receive data from
the server. Here is the C version of the connect code.

// Standard includes
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>

// ----> Main Program Function (REQUIRED)
void main(void)
{

SOCKET skSocket;

185The Connection Functionality

Initialize Winsock Create Socket Connect to Server

Figure 5.9

Client steps to connect
to a server

sockaddr_in saServerAddress;
int iPort = 6000,iStatus;
WSADATA wsaData;
WORD wVersionRequested;
LPHOSTENT lpHost;
char szHost[128];

// Init the host value; change this IP to whatever valid IP you wish
sprintf(szHost,”192.168.0.2”);
// Tell WinSock we want version 2
wVersionRequested = MAKEWORD(2, 0);
// Initialize the socket handle
skSocket = INVALID_SOCKET;
// Start up WinSock
iStatus = WSAStartup(wVersionRequested, &wsaData);
// Create the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
// Check whether there was an error
if(skSocket == INVALID_SOCKET) {

cout << “**ERROR** Could Not Create Socket” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET CREATED -->” << endl;
// Initialize the server address data structure
memset(&saServerAddress,0,sizeof(sockaddr_in));
// Set this by default
saServerAddress.sin_family = AF_INET;
// Load the IP address
saServerAddress.sin_addr.s_addr = inet_addr(szHost);
// If the host specified is not an IP address,
// we must look up the value
if(saServerAddress.sin_addr.s_addr == INADDR_NONE)
{

cout << “<-- LOOKING UP HOST IP -->” << endl;
// Get the hostname
lpHost = gethostbyname(szHost);
// Check whether we got something back
if (lpHost != NULL) {

186 5. Creating a Sockets Class Object

// Load the server address with the host information
saServerAddress.sin_addr.s_addr =
((LPIN_ADDR)lpHost->h_addr)->s_addr;

}
else {

cout << “**ERROR** Could Not Locate Host” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
}
// Set the server port
saServerAddress.sin_port = htons(iPort);
// Attempt to connect to the server
iStatus = connect(skSocket,
(struct sockaddr*)&saServerAddress,sizeof(sockaddr));

// Check whether there was an error
if(iStatus == SOCKET_ERROR) {

cout << “**ERROR** Could Not Connect To Server” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- CONNECTED TO SERVER -->” << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();

}

I added a couple of interesting variables at the beginning of the program. The
lpHost variable is type HOSTENT and holds the host’s official name. The szHost vari-
able is a character buffer you use to hold the name of the server to which you want to
connect.

Oops, I don’t want to leave you guessing what a HOSTENT structure is, so here you go.

struct hostent {
char FAR *h_name;
char FAR *FAR *h_aliases;
short h_addrtype;

187The Connection Functionality

short h_length;
char FAR *FAR *h_addr_list;

};

You only use this data structure when you have to look up a host IP address. For
instance, if you want to connect to lostlogic.com, you have to look up the IP
address before connecting.

In the beginning of the program, you complete the usual steps you have followed
so far, such as initializing Winsock and creating the socket. The first notable thing
you do in this program is set up the server’s location with the following call.

saServerAddress.sin_addr.s_addr = inet_addr(szHost);

The inet_addr() Function
With the last piece of code discussed in the previous section, you call the
inet_addr() function. You pass the hostname that you have loaded in szHost. Here
is the prototype for the inet_addr() function.

unsigned long inet_addr (const char FAR *cp);

The first and only parameter to this function is a string containing the Internet
address in dot format. For example, a dot-formatted IP address is 192.168.0.2. You
can also pass the IP address in octal, hexadecimal, or a mixture. All of my examples
use the decimal system.

If the call is successful, then an integer containing the binary equivalent of the
address is returned. If the call fails, then a value of INADDR_NONE is returned.

This brings you to the next piece of code that checks the return value. If the
address equals INADDR_NONE, then the program goes on to do a host lookup. This
situation happens if you pass an Internet name such as yahoo.com or lostlogic.com
to the inet_addr() function. Here is the code you use to do a host lookup.

lpHost = gethostbyname(szHost);

The gethostbyname() Function
Notice that you perform a host lookup using the gethostbyname() function. You pass
the function the same Internet address that you passed to the inet_addr() function.
Here is the prototype.

struct hostent FAR *gethostbyname (const char FAR *name)

As I just mentioned, the only parameter you pass to this is an Internet address,

188 5. Creating a Sockets Class Object

such as lostlogic.com. In this example, you need to pass the szHost string to it. On a
successful call to this function, a structure of type HOSTENT is returned. If Winsock is
unable to locate the host, then a NULL is returned.

If the gethostbyname() function returns a non-NULL value, you go on to set your
saServerAddress variable with the located Internet address.

if (lpHost != NULL) {
// Load the server address with the host information
saServerAddress.sin_addr.s_addr =((LPIN_ADDR)lpHost->h_addr)->s_addr;

}

Now that the host lookup is out of the way, you can go on to set the server port
using the familiar htons() function. After the port is set, you finally get to call the
connect() function.

saServerAddress.sin_port = htons(iPort);
// Attempt to connect to the server
iStatus = connect(skSocket,
(struct sockaddr*)&saServerAddress,sizeof(sockaddr));

You pass to the connect() function your socket, server address, and the size of the
server address. The iStatus variable holds the return value. You might remember
that if the call to connect fails, a value of SOCKET_ERROR is returned. To check for
this, all you do is compare iStatus to SOCKET_ERROR and see whether they are equal.
If the call did indeed fail, then close down sockets and exit.

Darn those games of Age of Empires II. A friend of mine called, and we decided to
play a “quick” game of AOEII. Well, guess what: There are no quick games of AOEII.
Anyway, at least I got to blow off some steam with my elite janissaries. We normally
play against the computer, and this time we beat three computer opponents on the

189The Connection Functionality

CAUTION
Never try to modify the member variables in the HOSTENT data
structure.Windows handles all of the memory allocation for this
data structure. Also, each thread is limited to one of the struc-
tures at a time.The best practice is to copy the contents of the
structure to local variables before using the data.

hardest level. Maybe we’re good enough to play on The Zone? Naaaahhh. For
some reason, I always seem to run into people who advance to the castle age within
five minutes. Something seems fishy about that. Here’s an idea: Why don’t I talk
about how to prevent cheating in a later chapter? I think it’s a good idea, so count
on seeing it. Okay, back to business. Before I move on, take a look at the output
from the connection program in Figure 5.10.

Now that the C version is out of the way, it’s time for the good old C++ version.

The C++ Version of
Establishing a Connection
History is going to repeat itself here because you first add the connect() function
prototype to your class header. Here is what the latest header needs to look like.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);
void Disconnect();
int Listen(void);
bool Connect(char* szServerAddress, int iPort);

190 5. Creating a Sockets Class Object

Figure 5.10

Output from the
connection program

}

The only part you have to add is in bold text. The new Connect() function accepts
two parameters. The first parameter expects the server’s address to which you are
trying to connect. The address can be either dot format or a hostname.

The second parameter expects the port number on the server to which you want to
connect. The port number uses the usual range of numbers between 1 and 10000
that you have been using so far. If the connection is a success, then a True or 1 is
returned. If something goes wrong, then a 0 is returned.

Now that the prototype is out of the way, take a look at the actual member func-
tion. Without further ado, here it is.

bool SocketObject::Connect(char* szServerAddress, int iPort)
{

struct sockaddr_in serv_addr;
LPHOSTENT lpHost;
int err;

// Open the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
if(skSocket == INVALID_SOCKET) {

return false;
}
memset(&serv_addr,0,sizeof(sockaddr_in));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(szServerAddress);
if (serv_addr.sin_addr.s_addr == INADDR_NONE) {

lpHost = gethostbyname(szServerAddress);
if (lpHost != NULL) {

serv_addr.sin_addr.s_addr =
((LPIN_ADDR)lpHost->h_addr)->s_addr;

}
else {

return FALSE;
}

}
// Assign the port
serv_addr.sin_port = htons(iPort);
// Establish the connection
err = connect(skSocket,

191The Connection Functionality

(struct sockaddr*)&serv_addr,sizeof(sockaddr));
if(err == SOCKET_ERROR) {

Disconnect();
return false;

}
return true;

}

There really isn’t much here that you didn’t already do in the C version of the
code. But, go over the steps that take place as a refresher.

1. Create the socket using the socket() function.

2. Initialize the server address structure using the inet_addr(), gethostbyname(),
and htons() functions.

3. Establish the connection using the connect() function.

Now, I want you to take a look back at the C version of the client application
quickly. Why do I want you to do this? I think you will be pleasantly surprised
at how small the C++ version is! So, here it is, the C++ version of the client
application.

// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

// ----> Main Program Function (REQUIRED)
void main(void)
{

SocketObject ClientSocketObject;
int iPort = 80; // HTTP port

cout << “<-- ATTEMPTING CONNECTION -->” << endl;
// Attempt to connect
if (ClientSocketObject.Connect(“www.lostlogic.com”, iPort)) {

cout << “<-- SOCKET CONNECTED -->” << endl;
}
else {

cout << “**ERROR** Could Not Connect” << endl;
}
WSACleanup();

}

192 5. Creating a Sockets Class Object

www.lostlogic.com

I hope the first words out of your mouth are something like “Wow, look how short
it is!” Yeah, yeah, I know; you already saw this in Chapter 4, “Writing Your First
Network Programs.” But hey, now maybe you understand it better. The first thing I
do is create a SocketObject object and a variable to hold the port number to which I
want to connect. I then call the Connect() function and pass to it the Internet
address and port with which I want to connect. All I do then is check whether the
call was successful; if it wasn’t, I throw an error message.

Maybe you noticed that I changed the usual port from 6000 to 80. I did this to
demonstrate how browsers connect to Web sites. They just establish a connection
with the standard HTTP port number, which is port number 80. So to establish a
connection with lostlogic.com, all you have to do is set lostlogic.com as the host-
name and port 80 as the port number. Voilà! You now have the beginnings of an
Internet browser program.

Sending Data
The previous programs have given you a good foundation to work with, but they
are lacking in some areas. Like, how about sending data? You might be thinking
that this is going to be the hard part, but actually, the send() command is one of
the easiest to master. Uh oh, I let the cat out of the bag. So now that you know, you
are going to be using the send() function.

When you send data using sockets, you send a stream of bytes across the communi-
cation channel. You don’t really have complete control over when and how the
data is transmitted; you just tell Winsock to send it. Even though there are no real
limits to the amount of data you can send, you should keep it to a minimum. If you
need to send a large stream of data, such as a file, break it up into multiple sends.

The C Version of Sending Data
You might remember the C++ version of sending data from when you wrote the
SendDataTest program in Chapter 4, “Writing Your First Network Programs.” You
are going to cover the same type of thing here, and as a bonus; you are going to
learn how to do it in C. Here is the code for a client application that wants to send
data to a server.

// Standard includes
#include <iostream.h>

193Sending Data

#include <winsock.h>
#include <stdio.h>

// ----> Main Program Function (REQUIRED)
void main(void)
{

SOCKET skSocket;
sockaddr_in saServerAddress;
int iPort = 80,iStatus;
WSADATA wsaData;
WORD wVersionRequested;
LPHOSTENT lpHost;
char szHost[128];
char szSendBuffer[256];
int iBytesSent;

// Init the host value; change this IP to whatever valid IP you wish
sprintf(szHost,”www.lostlogic.com”);
// Tell WinSock we want version 2
wVersionRequested = MAKEWORD(2, 0);
// Initialize the socket handle
skSocket = INVALID_SOCKET;
// Start up WinSock
iStatus = WSAStartup(wVersionRequested, &wsaData);
// Create the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
// Check whether there was an error
if(skSocket == INVALID_SOCKET) {

cout << “**ERROR** Could Not Create Socket” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET CREATED -->” << endl;
// Initialize the server address data structure
memset(&saServerAddress,0,sizeof(sockaddr_in));
// Set this by default
saServerAddress.sin_family = AF_INET;
// Load the IP address
saServerAddress.sin_addr.s_addr = inet_addr(szHost);

194 5. Creating a Sockets Class Object

www.lostlogic.com

// If the host specified is not an IP address,
// we must look up the value
if(saServerAddress.sin_addr.s_addr == INADDR_NONE) {

cout << “<-- LOOKING UP HOST IP -->” << endl;
// Get the hostname
lpHost = gethostbyname(szHost);
// Check whether we got something back
if (lpHost != NULL) {

// Load the server address with the host information
saServerAddress.sin_addr.s_addr =
((LPIN_ADDR)lpHost->h_addr)->s_addr;

}
else {

cout << “**ERROR** Could Not Locate Host” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
}
// Set the server port
saServerAddress.sin_port = htons(iPort);
// Attempt to connect to the server
iStatus = connect(skSocket,
(struct sockaddr*)&saServerAddress,sizeof(sockaddr));

// Check whether there was an error
if(iStatus == SOCKET_ERROR) {

cout << “**ERROR** Could Not Connect To Server” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- CONNECTED TO SERVER -->” << endl;
sprintf(szSendBuffer,”Test Data”);
iBytesSent = send(skSocket,szSendBuffer,256,0);
cout << “<-- SENT “ << iBytesSent << “ BYTES -->” << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock
WSACleanup();

}

195Sending Data

The more notable events are once again bolded for you. The beginning of the pro-
gram has a couple of new variables to handle the data you are about to send. First,
you create a character buffer to hold the data you want to send. Then, you create
an integer to hold how many bytes you successfully sent. After all of that is out of
the way, you can perform the usual steps to establish a connection—and then you
get to the good part. Refer to Figure 5.11 to see the output from the send data
program.

The Send() Function
The send() function is the heart and soul of sending data with sockets. Even
though it provides a great function, it really is easy to use. Here is the prototype.

int send (SOCKET s, const char FAR *buf, int len, int flags);

When you call the send() function, it returns the number of bytes successfully trans-
mitted. If for some reason the transmission has errors, then the value of
SOCKET_ERROR is returned.

The first parameter passed to the function is the socket handle through which you
send the data. In the example, you pass the socket variable, skSocket, for this para-
meter. The second parameter expects a character buffer containing the data to
transmit. As long as the data is in a character buffer, it really doesn’t matter what
you send. The send() function does ignore null terminators and line feeds.

The third parameter tells the send() function how much data you want to transmit.
In the current example, you can just go ahead and transmit the full character

196 5. Creating a Sockets Class Object

Figure 5.11

Output from the send
data program

buffer. You can also use the string length of the buffer for this parameter to save
transmission bytes.

The last parameter of the send() function holds flags for altering the way the
message is transmitted. Just pass a 0 or NULL to this parameter because it is
not of much use to you. If you really want to pass something to it, you can pass it
MSG_DONTROUTE. This flag specifies that the transmission should not get routed.
Chances are that Winsock will ignore this, though.

In the client application, you call the send function like this:

sprintf(szSendBuffer,”Test Data”);
iBytesSent = send(skSocket,szSendBuffer,256,0);

First you load the send buffer with “Test Data” and then you call the send function.
You pass it the socket handle, the send buffer, the size of the send buffer, and 0 for
flags. The iBytesSent variable catches how many bytes you sent, and that’s all there
is to it!

The C++ Version of Sending Data
Ahh, the sweet scent of C++. You know the drill; it’s time to modify the class header.
Here is the new function prototype you are going to add.

int Send(char *szBuffer, int iBufLen, int iFlags);

The function returns the number of bytes sent. The first parameter expects a char-
acter array containing the data to transmit. The second parameter expects the
number of bytes to transmit. The last parameter allows you to pass flags determin-
ing how the data is transmitted. All of these parameters are identical to the C ver-
sion except that you do not have to pass the socket handle. Here is what the
function looks like in the header.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);
void Disconnect();

197Sending Data

int Listen(void);
bool Connect(char* szServerAddress, int iPort);
int Send(char *szBuffer, int iBufLen, int iFlags);

}

All right, now that the header is out of the way, take a look at the member function.

int SocketObject::Send(char *szBuffer, int iBufLen, int iFlags)
{

return send(skSocket,szBuffer,iBufLen,iFlags);
}

Wow, isn’t that the most complicated thing you have ever seen? All you are actually
doing is calling the Winsock send() function with the given parameters. Because
you have a SOCKET handle in the class object, you pass it as the first parameter. The
rest of the parameters are passed to the function. That’s really about it as far as the
member function is concerned. Take a look at the C++ client application code now.

// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

// ----> Main Program Function (REQUIRED)
void main(void)
{

SocketObject ClientSocketObject;
int iPort = 80; // HTTP port
char szSendBuffer[256];
int iBytesSent;

cout << “<-- ATTEMPTING CONNECTION -->” << endl;
// Attempt to connect
if (ClientSocketObject.Connect(“www.lostlogic.com”, iPort)) {

cout << “<-- SOCKET CONNECTED -->” << endl;
sprintf(szSendBuffer,”TestData”);
iBytesSent = ClientSocketObject.Send(szSendBuffer,256,0);
cout << “<-- SENT “ << iBytesSent << “ BYTES -->” << endl;

}
else {

cout << “**ERROR** Could Not Connect” << endl;

198 5. Creating a Sockets Class Object

www.lostlogic.com

}
WSACleanup();

}

This program is not much different from the connect() function example. Two
new variables handle the data transmission. The szSendBuffer character array
holds the data to send. The iBytesSent tells you how many bytes were successfully
transmitted.

You might want to run the Accept_SocketObject program and then connect and
send data to it with this program. Just change the connection target in the
Send_SocketObject program from lostlogic.com to the IP address of the server.

Receiving Data
Now that you can send data, you need to receive some. Luckily, receiving is just as
easy as sending. You accomplish receiving data using Winsock’s recv() function.
When you make a call to the recv() function, your program waits until data is
obtained. If no data is received, then the program just sits and waits. Because this
call is a blocking call, you must be careful when calling it. You don’t want your pro-
grams to sit and wait forever, do you? When you develop your first socket-based
game, I’ll go into more detail on how to deal with blocking calls. For now, let’s just
see how it works.

The Recv() function
The recv() function bears a striking resemblance to the send() function. Here is
the prototype.

int recv (SOCKET s, char FAR *buf, int len, int flags);

The first parameter requests a handle to the socket connection from which you
want to receive data. You must have established the connection with either the
accept() function for servers or the connect() function for clients.

The second parameter passes the pointer to the buffer to receive the data. All data
is received and sent using character buffers. Once you receive the data, you can

199Receiving Data

then copy it into whatever data structure you want.

The third parameter tells the function how large the receive buffer is. You can pass
a smaller number here than the actual size of your receive buffer, but do not pass a
larger number.

The fourth and final parameter accepts flag settings to determine the method the
call uses. Some of the flags can be seen in Table 5.4.

The C Version of Receiving Data
Okay, now that you have seen the prototype, take a look at it in action with C.

// Standard includes
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>

// ----> Main Program Function (REQUIRED)
void main(void)
{

SOCKET skSocket;
sockaddr_in saServerAddress;
int iPort = 80,iStatus;
WSADATA wsaData;

200 5. Creating a Sockets Class Object

Table 5.4 Flags for the Recv() Function

Flag Purpose

MSG_PEEK Allows you to peek at data in the receive buffer. Data is copied to
the receive character buffer, but it is not removed from the socket
buffer.This flag is useful if you want to make sure data is ready to
be received. It can keep you from blocking your program to wait
for data.

MSG_OOB Allows you to process out-of-band data. None of the code exam-
ples I write use this option.

WORD wVersionRequested;
LPHOSTENT lpHost;
char szHost[128];
char szSendBuffer[256];
char szRecvBuffer[32768];
int iBytesSent;
int iBytesReceived;

// Init the host value; change this IP to whatever valid IP you wish
sprintf(szHost,”www.lostlogic.com”);
// Tell WinSock we want version 2
wVersionRequested = MAKEWORD(2, 0);
// Initialize the socket handle
skSocket = INVALID_SOCKET;
// Start up WinSock
iStatus = WSAStartup(wVersionRequested, &wsaData);
// Create the socket
skSocket = socket(AF_INET, SOCK_STREAM, 0);
// Check whether there was an error
if(skSocket == INVALID_SOCKET) {

cout << “**ERROR** Could Not Create Socket” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- SOCKET CREATED -->” << endl;
// Initialize the server address data structure
memset(&saServerAddress,0,sizeof(sockaddr_in));
// Set this by default
saServerAddress.sin_family = AF_INET;
// Load the IP address
saServerAddress.sin_addr.s_addr = inet_addr(szHost);
// If the host specified is not an IP address,
// we must look up the value
if(saServerAddress.sin_addr.s_addr == INADDR_NONE) {

cout << “<-- LOOKING UP HOST IP -->” << endl;
// Get the hostname
lpHost = gethostbyname(szHost);

201Receiving Data

www.lostlogic.com

// Check whether we got something back
if (lpHost != NULL) {

// Load the server address with the host information
saServerAddress.sin_addr.s_addr =
((LPIN_ADDR)lpHost->h_addr)->s_addr;

}
else {

cout << “**ERROR** Could Not Locate Host” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
}
// Set the server port
saServerAddress.sin_port = htons(iPort);
// Attempt to connect to the server
iStatus = connect(skSocket,
(struct sockaddr*)&saServerAddress,sizeof(sockaddr));

// Check whether there was an error
if(iStatus == SOCKET_ERROR) {

cout << “**ERROR** Could Not Connect To Server” << endl;
// Clean up WinSock
WSACleanup();
exit(1);

}
cout << “<-- CONNECTED TO SERVER -->” << endl;
// Load the data to send
sprintf(szSendBuffer,”GET / HTTP/1.0\n\n”);
// Send the HTTP request
iBytesSent = send(skSocket,szSendBuffer,256,0);
cout << “<-- SENT “ << iBytesSent << “ BYTES -->” << endl;
// Wait for incoming data
iBytesReceived = recv(skSocket,szRecvBuffer,32768,0);
cout << “<-- RECEIVED “ << iBytesReceived << “ BYTES -->” << endl;
// Output the data received
cout << szRecvBuffer << endl;
// Close the socket
closesocket(skSocket);
// Clean up WinSock

202 5. Creating a Sockets Class Object

WSACleanup();
}

At the start of the program, I added a character buffer to
hold the received data and an integer to tell me how
many bytes I have received. The next noticeably different
code, though, has resulted in a change from the last pro-
gram. Instead of sending the sample string of “Test Data,”
this time I am sending an HTTP request message.

To request the information stored on the main page of a
Web site, I first connect to the HTTP port number, which
is 80. After I connect, I send a message containing the request for the Web page
contents. The message I send contains the text “GET /HTTP/1.0\n\n”. This mes-
sage tells the Web server to send back the source code that makes up the Web
page. After I submit the request message, the program goes into a receive loop and
waits for the response. I then output the response. If everything goes well, you see
HTML codes on your screen. Pretty cool, eh?

203Receiving Data

HTTP (Hypertext
Transfer Protocol) is just
a method of handling
communication over
the Internet.When a
browser program goes
to a Web site and
downloads the Web
page, all it is doing is
passing commands via
a socket connection.

Figure 5.12

Output from
lostlogic.com’s Web server
using the receive program

You call the recv() function by passing to it your socket handle, receive buffer,
length of bytes to receive, and 0 for flags. Once you are done receiving, you output
the contents of the receive buffer to the screen. That’s it in a nutshell. Before look-
ing at the C++ version of the code, take a look at the output from the receive pro-
gram so far, as shown in Figure 5.12.

Receiving Data with C++
The C version of receiving data was really the hardest part. Adding it to the
SocketObject is a walk in the park. Here is what the new class header looks like with
the new Recv() function.

class SocketObject
{

private:
public:

SOCKET skSocket;
SocketObject(); // Constructor
~SocketObject(); // Destructor
int Bind(int iPort);
void Disconnect();
int Listen(void);
bool Connect(char* szServerAddress, int iPort);
int Send(char *szBuffer, int iBufLen, int iFlags);
int Recv(char *szBuffer, int iBufLen, int iFlags);

}

As you can see, the Recv() function is just like the Send() function. They both take
the same parameters, but they do have different valid values for the iFlags parame-
ter. Let’s move straight into the member function implementation.

int SocketObject::Recv(char *szBuffer, int iBufLen, int iFlags)
{

return recv(skSocket, szBuffer, iBufLen, iFlags);
}

Not much new here to report. The function returns the number of bytes received.
The first parameter of type character pointer holds the receive buffer. The second
parameter, an integer, holds the size of the receive buffer. The third and last para-
meter, also type integer, sets how the receive function is called.

Okay, now that is out of the way, so take a look at the client implementation of the

204 5. Creating a Sockets Class Object

new C++ member function.

// Standard includes
#include <iostream.h>
#include “..\\socketobject\\SocketObject.h”

// ----> Main Program Function (REQUIRED)
void main(void)
{

SocketObject ClientSocketObject;
int iPort = 80; // HTTP Port
char szSendBuffer[256];
int iBytesSent;
char szRecvBuffer[32768];
int iBytesReceived;

cout << “<-- ATTEMPTING CONNECTION -->” << endl;
// Attempt to connect
if (ClientSocketObject.Connect(“www.lostlogic.com”, iPort)) {

cout << “<-- SOCKET CONNECTED -->” << endl;
// Load the request buffer
sprintf(szSendBuffer,”GET / HTTP/1.0\n\n”);
// Send the request
iBytesSent = ClientSocketObject.Send(szSendBuffer,256,0);
cout << “<-- SENT “ << iBytesSent << “ BYTES -->” << endl;
// Receive the response
iBytesReceived = ClientSocketObject.Recv(szRecvBuffer,32768,0);
cout << “<-- RECEIVED “ << iBytesReceived
<< “ BYTES-->” << endl;

// Output what was received
cout << szRecvBuffer << endl;

}
else {

cout << “**ERROR** Could Not Connect” << endl;
}
WSACleanup();

}

Here, you are using the HTTP request sample format again. You first send an
HTTP request message and then retrieve the data from the response. The last step
you follow is to output the data received.

205Receiving Data

www.lostlogic.com

One item of interest is that the data received is not a complete Web page. This is
because TCP/IP does not guarantee how much data is transmitted in a single
“burst.” TCP/IP does guarantee delivery, though . . . just not when. Play around
with looping through the Recv() function until the entire Web page is retrieved.
Here’s a hint: You have to use the MSG_PEEK flag to do it properly.

Review
It’s that time again—time for a quick review of some key ideas learned in the
chapter.

■ C++ class objects automatically call their constructors when they are allocated
memory. They also call their destructors when they are deleted or when they
go out of program scope.

■ You must make at least one call to WSAStartup() before using sockets. The
function is used to load the socket dll.

■ You should unload the sockets dll at program exit. This is accomplished by
using the WSACleanup() function.

■ The server must bind to a port number before it can listen for client connec-
tions.

■ Always accept connections on port numbers greater than 1000. Many port
numbers in the lower ranges are reserved for system ports.

■ Try to limit the amount of data you send at a time. Many systems will end up
breaking your packets into smaller pieces if they are too large. This can cause
inefficiency in your communications.

■ When you receive data, it is not always in one complete piece. You must
make multiple calls to the receive function in these cases.

I hope you now have a good understanding of how to create a C++ socket class
because you are finished with it for the time being. Look back over the source code
and see whether there are items you didn’t quite understand. Everything covered
here is important to understand for the upcoming chapters, so re-read anything
you need to. But as far as this chapter is concerned, it’s time to use Private
Hudson’s saying in Aliens, “Game over, man. Game over!”

206 5. Creating a Sockets Class Object

CHAPTER 6

Introduction
to Windows

Programming

When you think about learning Windows programming, the first phrase that
comes to your mind might be, “You will be assimilated.” Even though many

refer to Microsoft as the Borg, its programming environment actually makes sense
once you get the hang of it. If you are new to developing in Windows, then this
chapter should be quite helpful to you. I’ll cover everything from the message han-
dler to multithreading. By the time this chapter is over, you will know how to write
complete Windows programs with ease. Now, don’t get me wrong; you won’t be a
Windows master or anything, but you will know enough to write games. And
because games are all you care about knowing how to develop, this should be very
fitting. Here are some of the topics I will cover.

■ The history of Windows
■ Windows architecture
■ MFC
■ Creating a window
■ The message handler
■ Multithreading

A Brief History of Time
According to Gates
I am sure there is nothing you want to know more than how Windows evolved,
right? Okay, you Linux folks can stop choking now. Really, it will be okay; just
read on.

DOS
Unless you have been hiding in a bomb shelter since the Cuban Missile Crisis, you
know that Bill Gates is the head founder of Microsoft. Bill Gates created Microsoft
with some partners and released DOS (Disk Operating System), which was the origi-
nal operating system for Microsoft PCs and still has ties to recent incarnations of
Windows such as Windows 95 and Windows 98.

208 6. Introduction to Windows Programming

Most of us veteran game developers have used DOS for quite some time, and some
still use it. It’s not a great operating system, but it is extremely easy to develop for.
With the use of interrupts and other tricks, you can even fake multitasking! But,
alas, DOS is not a true multithreaded environment, nor is it a true 32-bit environ-
ment. Seemingly forever, DOS was limited to 640KB of program space. After all,
who would ever need more than 640KB, right? It really makes you wonder some-
times how we got this far. Well, along came DOS extenders that allowed developers
to access a lot more than 640KB. One of the most popular extenders used by devel-
opers was DOS/4GW. I personally used this extender because it came free with my
Watcom C++ compiler. It’s hard to beat free; ask Netscape if you have any doubts. If
you have some old DOS games lying around, try loading some of them and I bet
you will see DOS/4GW show up on the screen right before the game loads.

As they say, “All good things must come to an end.” I bet a pessimist wrote that
phrase; what do you think? DOS now looks to be on its way out permanently.
Windows 2000 and Windows NT do not support it, and the next version of
Windows might not either. Luckily, most of us game developers gave up on DOS a
while back, but there are still a few hangers-on. If you haven’t made the switch yet
yourself, now you have the perfect opportunity.

Windows 1.0–2.0
Ack! I didn’t even like Windows 3.1, much less 1.0. There is not much to say about
Windows 1.0 other than it was horribly slow, it had a laughable interface, and it had
no real-world use. Windows 1.0 was based on DOS and really didn’t get a lot of
market penetration. Windows 2.0 came out next but was still plagued with many of
the original problems. I am not knocking the development teams here; I’m sure
they did their best. The main problem was the architecture of the PC. Basically,
multimedia hardware did not exist yet for the PC. Processors and video cards were
just too slow to handle the load. As I said, not much to say here. I didn’t even
develop for this operating system; I stuck with DOS.

Windows 3.1–3.11
Oh, yes, here it is: Microsoft’s answer to Apple’s Macintosh operating system.
Microsoft released Windows 3.1, which finally broke some of the ties to DOS.
Although the operating system endured some major changes, it still lacked in usabil-
ity. Windows 3.1 had a long way to go to reach the functionality of Apple Macintoshes

209A Brief History of Time According to Gates

or Commodore Amigas. I was still using Amiga computers at this time. The Amiga
computer made by Commodore was seriously ahead of its time and even supported
multitasking from the beginning. The Amiga died a horrible death some time later
mainly due to bad management at Commodore. If nothing else, I learned never to
put all of your eggs in one basket when it comes to technology. At least this school of
thought has kept me from evangelizing one operating system over another. When it
comes down to it, it really doesn’t matter: Just use what is best for a given task. Okay,
enough ranting already! I almost forgot Windows 3.11. Windows 3.11 added network-
ing and some other features to Windows 3.1. Windows 3.11 was able to get a foothold
on the market and finally forced Apple off its perch.

Windows 95
Windows 95 came onto the scene and gave new life to Windows. It featured a slick
new interface that I am sure you know by now. Most of the features were similar to
those used by Apple, but others were new. For instance, the taskbar is located at the
bottom instead of the top. And the trashcan is now called the recycle bin. Amazing
differences, no? Jokes aside, Windows 95 really was a great improvement over
Windows 3.11. When Windows 95 came out, I finally came to the conclusion that
DOS’s days were numbered. After this epiphany, I bought a book on Windows pro-
gramming and learned how to display a window. But there was something missing
from my game programs—speed! Regardless of the countless promises, Windows
95 was slower running games than DOS.

A year later or so, Microsoft released the GDK (Game Development Kit). The GDK
was a new development kit meant purely for games. It was kind of awkward and
slow, but it worked. By version 5.0, the GDK was called DirectX and started showing
great promise. This is where I picked up the ball and started learning how to do
DirectX game programming in Windows. For DOS, it was time to leave; the tribe
had spoken.

Windows 98
Windows 98 wasn’t a huge change from Windows 95. It smoothed some rough
edges Windows 95 had and added some nice touches. I’ve always thought of
Windows 98 as a great big bug fix patch for Windows 95. I switched to it, and many
hardware and software problems went away. All in all, I would say Windows 98 pro-
vided a stable platform for game development and entertainment. The only disap-
pointment I had was that it added too few new features. Oh, well, you can’t please
everyone.

210 6. Introduction to Windows Programming

Windows 2000 and Others
I failed to mention that Windows NT came out back there somewhere. It is not
really important to you in the context of this book because Windows NT does not
support the latest versions of DirectX. I use Windows NT for corporate work but
not game development. I suggest that you do the same and keep games on plat-
forms intended for them. So what do I use? I use the glorious Windows 2000!
Windows 2000, which was released fairly recently, uses a very tight system kernel
and has the security features of Windows NT
and the user interface of Windows 98. Also,
Windows 2000 supports multiple processors.
This is a great thing for those of us with dual-
processor systems. If you can afford it and
have not done so already, I suggest you build
or buy a dual-processor machine. Computers
run so much better with multiple CPUs.

Windows 2000 supports the latest versions of
DirectX and handles most games without any
trouble. The only games I have seen that do
not work with it are very old and are based
on DOS.

The Architecture of
Windows Programs
If your background is in developing DOS applications, then you are in for a bit of a
shock. In fact, if you have been developing for anything other than Windows, a lot
of the following information is going to seem strange at first. But it won’t be that
bad, I promise.

The first thing I need to cover about developing for Windows is sharing. In the
good old DOS days, you didn’t have to share anything. When your program exe-
cuted, no other programs required attention. Your program was king of the world
while it ran. This is not so in Windows.

Multitasking
Windows is a multitasking environment—multiple tasks can happen simultane-
ously. Now, the term simultaneously can be misleading here. In reality, nothing

211The Architecture of Windows Programs

TIP
If you want to build or buy a
multiple CPU computer, be sure
to purchase a copy of Windows
2000 or Windows NT for it.
These are currently the only two
operating systems from
Microsoft that support multiple
processors. If you have a choice,
I recommend Windows 2000.

happens simultaneously in software. There is always an order of events. But multi-
tasking gives the perception of simultaneous action with something I like to call
time-slicing. Time-slicing means just what it says. Each process, or program, running
gets a little slice of time from the operating system. Because each process gets a lit-
tle slice, everything seems to run simultaneously over time. Think of it as a relay
race where the baton is handed over infinitely. Each runner runs a few steps and
then hands the baton to the next runner. Eventually, all of the runners get to run a
few steps before the process starts all over again. Multitasking works in this way.
Each program runs for a bit and then the next program gets to go. Because all of
this happens so quickly, the user cannot perceive it. Refer to Figure 6.1 to see how
time-slicing works on a single-processor system.

Figure 6.1 shows four programs running on a single-processor system. The item of
interest here is the execution order list. In this list, you can see that each program

212 6. Introduction to Windows Programming

Program 1

Program 1

Program 2

Program 3

Program 4

Execution Order

Program 1

Program 2

Program 3

Program 4

Program 1

Program 2

Program 3

Program 4

Program 1

Program 2

Program 3

Program 4

Program 2

Program 3

Program 4

CPU

Figure 6.1

Time-slicing for a single-
processor system

gets a slice of time in which to run. Program 1 goes first, followed by 2, 3, and 4.
Once all of the programs have a chance to run for a brief amount of time, the
whole order starts over again. As you might have noticed, each program must wait
for three others to go before it can run again. This is why your system slows down
when running many applications; each one of them must wait its turn. The bright
side of this is that Windows NT and Windows 2000 support multiple processors, as I
mentioned before. Take a look at how two processors helps, shown in Figure 6.2.

In Figure 6.2, you see the same scenario as in Figure 6.1, but with two processors.
Once again, the item of interest here is the execution order. Notice that now there
are two execution order lists because there are two processors. The cool thing
about having two lists is that the programs can be distributed. In this example, pro-
grams 1 and 2 run on the first processor, and programs 3 and 4 run on the second
processor. This results in each program only having to wait on one other program

213The Architecture of Windows Programs

CPU 1

CPU 2

Program 1

Program 2

Execution Order

Program 1

Program 2

Program 3

Program 4

Program 3

Program 4

Program 3

Program 4

Program 1

Program 2

Execution Order

Program 1

Program 2

Program 3

Program 4

Figure 6.2

Time-slicing for a dual-
processor system

before it gets another slice of time! We have just moved
from waiting on three programs to waiting on one. This is
the beauty of using nth-way computers. Now imagine how
much faster things would run on a four-processor machine
or even an eight-processor machine. Most advanced servers
on the market use at least four processors. Keep this in mind
if you plan to develop an MMORPG.

Maybe you are asking, how does the system manage the
processors? Actually, the operating system is responsible for
all of it. If multiple processors were handled at the hardware
level, then operating systems such as DOS would take advan-
tage of them. But this is not the case. Windows handles the entire overhead for
using multiple processors. This is a great thing considering what a pain it would be
for the programmer to do it! This management does come at a price. Because
Windows must keep track of what is going on for all of the processors, it does incur
some overhead. For this reason, a dual-processor machine is not truly two times as
fast as a single-processor computer. If you upgrade to a dual-processor machine,
don’t expect to see a 100 percent improvement. If fact, to see a huge speed
increase, you have to run software that takes advantage of multiple processors.
Software that takes advantage of multiple processors is multithreaded. Because I
don’t want to get too far off track here, I’ll cover multithreading at the end of this
chapter.

What Is a Window Anyway?
Now that you have been inundated with multitasking concepts, it’s time to move
on. So what is a window anyway? It is normally a transparent surface with support-
ing brackets. (I bet you saw that one coming.) Actually, a window is really an oper-
ating-system object provided as a front end for an application. For programmers,
this means that a window provides standard methods for applications to send and
receive data from users. Because the Windows operating system handles all of the
generic functions, you can concentrate on writing actual functionality instead of
having to worry about other things.

Take a gander at Figure 6.3. In this figure, you see a standard Windows program.
It does nothing more than output the words “Hello World!” No big deal, right?
Wrong. Break out the microscope and examine this program. First of all, you see
a window on the screen. If you had to write this from scratch, you would have to

214 6. Introduction to Windows Programming

Most server-
oriented people
refer to multiple
processor machines
as nth-way systems.
For example, a two-
processor machine
is referred to as a
two-way system.An
eight-processor
machine is an eight-
way system.

display a background image that looks like a window. The next item of note is a
button in the upper-right corner. When it is clicked, the program exits. If you had
to program this by hand, you would have to add a hotspot to click, detect the
mouse click, and then exit the program. Not to mention that you would have to
show a little button-depressing animation, too. Ah, and what else do I see here?
Scrollbars! If you drag the scrollbars around, the text moves in relation to them.
Wow, what a pain that would be to program by hand. Not only would you have to
update the scrollbars, but you would also have to implement scrolling of the text
area.

Okay, I bet you have seen the light by now and can appreciate how helpful the win-
dows layer is. The windows layer does countless other things for you, and I’ll cover
some of those things later. For now, it is enough to understand that the actual dis-
play, input, and output for a window are handled by the operating system.

Events That Don’t
Even Require a Ticket
Something a little different about Windows programming is the notion of events.
Most programs you write for other operating systems are structured in a linear

215The Architecture of Windows Programs

Simple Program

Hello World!

Figure 6.3

Output from a simple
“Hello World”
Windows program

fashion. Normally, you do some processing, check for user input, and repeat. For
example, take a peek at the following DOS program pseudo-code.

Begin Program
Begin Main Loop

Check for User Input
User Hit “Fire”; Fire Laser

Check If Player Died
Player Died; Take Away One Life

Process Game Objects
Update Game Screen
End Main Loop

End Program

That’s a pretty standard game loop. You check for user input, check whether the
player died, and then update the game screen. All of this happens in a tightly
closed loop. In this example, the program is totally oblivious to anything else hap-
pening except for what is in the main loop. This, of course, is fine for a DOS pro-
gram, but not so for a Windows program.

In Windows programs, everything happens via events. There are no closed loops
where you wait for user input. Programs are structured with one loop where you
check for events. When events happen, they are sent to an event-processing func-
tion that does whatever is needed.

To handle events, all Windows programs you write will use a callback function.
Callback functions are triggered when specified criteria are met. For example, you
could set up a callback function to be triggered when a certain amount of time has
passed. For our use, I have a callback function that processes the Windows events
or messages. So when the operating system sends an event to the Windows pro-
gram, it is received and then dispatched to the callback function. Now that you
have the absolute basics down, take a look at the Windows equivalent for the DOS
pseudo-code.

Begin Program
Create Window
Begin Windows Loop

Check for Events
Got an Event; Send It to the Callback Function

Process Game Objects
Update Game Screen

216 6. Introduction to Windows Programming

End Windows Loop

Begin Callback Function
Check Events

Is This a “Fire” Event?
Fire Laser
Return to Windows Loop

Is This a “Player Killed” Event?
Take Away One Life
Return to Windows Loop

End Callback Function
End Program

In this example, you still process game objects and update the screen in the main
loop. The only notable difference with this pseudo-code over the DOS version is
the inclusion of a secondary function to process events. This might seem very simi-
lar; in fact, you could just create a secondary function in DOS to process game
events. But with Windows, you must process messages and events from the main
loop only. You cannot go off into a secondary function and wait for messages there.
To better illustrate this, take a look at the following DOS pseudo-code.

Begin Program
Begin Main Loop

Check for User Input
User Hit “Help”; Call Help Screen Function

Process Game Objects
Update Game Screen

End Main Loop

Begin Help Screen Function
Display Help Graphic
Begin Wait for Keypress Loop

Wait for Keypress
End Wait for Keypress Loop
Erase Help Graphic

End Help Screen Function
End Program

In this example, a help function is called when the user presses the help button.
Once inside this function, the program displays the help screen and then waits for
the user to press any key. When the user presses a key, the help screen is erased

217The Architecture of Windows Programs

and the program’s control returns to the main game loop. This is pretty standard
game programming so far. Now, take a look at the difference with Windows.

Begin Program
Create Window
Set Current Menu to MENU_MAINGAMELOOP
Begin Windows Loop

Check for Events
Got an Event; Send It to the Callback Function

Which Menu Is the User Currently in?
Is User in Help Menu (MENU_HELPSCREEN)?

Call Help Screen Function
Is User in the Main Game Loop (MENU_MAINGAMELOOP)?

Process Game Objects
Update Game Screen

End Windows Loop

Begin Callback Function
Check Events

Is This a “Help” Event?
Set Menu to MENU_HELPSCREEN
Return to Windows Loop

Is This a “Keypress” Event?
Set Keypress Equals to True

End Callback Function

Begin Help Screen Function
Have We Displayed Help Graphic Yet?

No, Then Display Help Graphic
Does Keypress Equal True?

Yes; Erase Help Graphic; Set Current Menu to MENU_MAINGAMELOOP
End Help Screen Function

End Program

The Windows version might be a little difficult to follow at first. For one thing, you
always come back to the Windows loop no matter what you might be doing. So
when the user decided to see the help screen, you had to leave the main loop for a
second and display the help screen with the help screen function. The program
then returned to the main loop and checked for a keypress along with its usual
chores. Once a key was pressed, a flag was set. The program then checked which
menu to display. Because the current menu was set to MENU_HELPSCREEN, the program
called the help screen function again. Once the keypress flag was set, the help

218 6. Introduction to Windows Programming

screen function knew it was time to exit. The help screen function then cleared the
help screen and set the current menu to MENU_MAINGAMELOOP so that the main loop
would know not to come back.

Refer to Figure 6.4 to see a flowchart of the pseudo-code I just discussed. Nothing
to really talk about figure-wise, so I’ll just leave it alone. Okay, enough about events
already!

219The Architecture of Windows Programs

Main Game Loop

Event?

Callback Function

"Help" Event?

Key Press
Event?

Set Current Menu to
MENU_HELPSCREEN

Menu =
MENU_HELPSCREEN

?

Menu =
MENU_MAINGAMELOOP?

Process Game
Objects

Update Screen

Help Screen
Function

Displayed
Graphic Yet?

Display Graphic

Key Press =
TRUE?

YesNo

Set Key Press
Flag = TRUE

Erase Graphic

Set Current Menu to
MENU_MAINGAMEMENU

Figure 6.4

Flowchart for the
Windows pseudo-
code example

How to Make Sense
of Windows Code
I know that the first time I ever looked at Windows code, I was completely con-
fused. For one thing, all of the variables had strange prefixes such as sz, lptr, and
dw. The prefixes were used all over the place and only seemed to clutter up the
code. Much to my delight, I later figured out that unlike Microsoft Foundation
Classes (MFC), there is a method to the madness. You see, at that time I was just a
lone-wolf programmer and didn’t have to share or look at anyone else’s code.
There was no real need, or so I thought, to have code standards just for myself.
Well, this method doesn’t work for large corporations or programming groups
where multitudes of programmers work on the same code-set.

Hungarian Notation
Bear with me here while I expound upon the virtues of standardized coding prac-
tices. If you currently work or have ever worked at a large corporation with a group
of programmers, you probably know why standardized coding practices help a
great deal. When you have to read someone else’s code, it can be a real pain in the
rear to follow without standards. Imagine how hard it would be to read a book if
there were no rules for writing English.

Enter stage left, standardized coding guy, Charles Simonyi. Charles Simonyi, of
Hungarian origin, came up with a set of naming standards for variables, functions,
and a few other things. Originally, these standards were part of his doctoral thesis.
Simonyi’s coding standards eventually became known as Hungarian notation.
Hungarian notation has become standard at Microsoft—hence, the presence
of it in all of Microsoft’s code. Because the standards help developers read other
developers’ code, they are a great time- and frustration-saver. The main benefit
is that everyone who understands the standards can look at most variables and
functions and know the data types. Table 6.1 lets you peek at some of the notation.

Note that all of the prefixes shown here are not necessarily official Hungarian nota-
tion. Many of them are used due to popularity.

Maybe you want to see some of this in action, eh? Here is a sample of code I’ll show
you later in the book.

int iBytesReceived = 0; // # of bytes received
int iBytesSent = 0; // # of bytes sent
char szCommand[128]; // Chat buffer

220 6. Introduction to Windows Programming

The first two variables declared are integers, so they have i as a prefix. The next
variable declared is a character buffer, so it has a prefix of sz. You might be won-
dering why this is such a big deal because you can just read the declaration to see
the variable type anyway. Well, imagine you were using a library with no knowledge
of how it was written. Maybe you want to use a function but are unsure of the
return type. Look at how the following code handles this sort of situation.

vServerConnection(6000, 6001);

Well, the first thing you can tell right away from the function name is that it has a v
for its prefix. Because the v stands for void, you can tell that it does not even return
data. If the function name had no prefix, you would have to either guess or look at
the prototype in the header file. I strongly suggest you adopt this style of coding if
you have not already done so. It can be a huge time-saver, and it makes for read-
able code.

221The Architecture of Windows Programs

Table 6.1 Some Popular Hungarian Notation Prefixes

Prefix Translation

sz String with a null terminator. Basically a character array.

s String without a null terminator.

c Character, char.

b Boolean. Used when the value is either 1 or 0.

i Integer. Usually 32 bits.

l Long. ‘Nuff said.

ul Unsigned long.

dw A double word or DWORD.

lp, lptr Long pointer.

g Global variable. Sometimes used with an underscore as in g_iMyGlobal.

fn Function pointer. Used when referencing a function’s address.

h Handle. Used for many Windows calls and multithreading.

v Void.

MFC, Insert Favorite
Acronym Here
When you purchase most flavors of Microsoft’s Visual C++ compiler, you also get
the Microsoft Foundation Classes. MFC is just what the name implies, a set of foun-
dation classes used when programming for Microsoft Windows. They are called
foundation classes because most of the classes are built upon other classes and so
forth. If you aren’t up to speed on C++, I suggest you buy a book on it if you really
want to understand Windows programming. Kris Jamsa’s Starting with Microsoft
Visual C++ (Prima, 2001) is a good reference.

Why It’s a Good Thing
First of all, MFC has many, many, many functions. Did I mention it has a lot of
functions? The MFC libraries include a huge wealth of information and functions.
With MFC, you can do everything from Internet programming to file management.
In fact, there really isn’t much you can’t do with MFC. To use it, all you have to do
is include some library files, and you are off and running. Because MFC builds
upon layers of code, you can use some or all of the functions provided.

To facilitate the use of MFC, Microsoft offers a wizard to build applications in
Visual C++. You simply create a new project and select MFC AppWizard, and you
can create a new application. Figure 6.5 shows a step from the process.

222 6. Introduction to Windows Programming

Figure 6.5

Creating an MFC
application using the
AppWizard

I’m not going to cover how to use the application wizard, and you’ll find out why in
the “Why It’s a Bad Thing” section that’s coming up next. Basically, the wizard is
great for quick prototyping or creating small GUI applications. Most serious pro-
grammers create their Windows code from scratch and skip using MFC altogether.
Read on to find out why.

Why It’s a Bad Thing
So what does MFC mean to us game programmers? Well, it means that Microsoft
has written tons of nifty classes to make life easier for us. The problem is that they
have good intentions with this method, but the execution of the plan is flawed in
multiple ways. My main gripe about MFC is that if you ever try to link with libraries
not written by Microsoft, you usually get hundreds of errors. Their libraries are
great until you try to do something with them other than call MFC classes.

Another big problem is that programs written with MFC are generally huge in size
compared to non-MFC solutions. Take, for instance, a program a friend of mine
was recently writing. When he originally used MFC, the program was more than
1MB in size. When he switched to coding everything by hand, the program had the
same functionality but was around 38KB in size! Now, this isn’t the case if you link
the MFC DLLs dynamically, but that is another area of trouble.

When you create an MFC application, you can link the libraries statically or dynam-
ically. When you link using the static method, your program includes all of the
MFC information, which results in a large file size. When you link dynamically, your
program looks for the MFC DLLs in the Windows directory to read the information
from there. This is the problem, though: Because there are many different versions
of MFC out there, you have no idea which DLLs your program might end up call-
ing. Even worse, sometimes when you install a program that uses MFC, it overwrites
your DLLs and hoses some of your software!

A Little Compromise
I don’t want this information to come across the wrong way. MFC is a great tool
and it is useful for many applications. It is just not well suited for game develop-
ment. Because game programmers are always looking to eke out the most speed
from their applications as possible, MFC is just not suitable. But if you are prototyp-
ing a simple GUI program, or you aren’t writing a game, then MFC could very well
suit your task.

223MFC, Insert Favorite Acronym Here

Creating a Window
from Start to Finish
Hey, wow, we are finally to the good stuff! I think it’s a fine time to show you how to
open a window. The simplest Windows programming skeleton I use consists of two
functions. The first function is responsible for defining and creating the window.
The second function processes all events and messages. Oh, yeah, the first function
also loops through getting messages and accepting user input until the user exits
the program.

The All Important
WinMain() Function
As I briefly mentioned a second ago, the first function defines and creates the win-
dow. The function is named WinMain(). You can think of it as the Windows version
of main().

Because you’ll use the WinMain() function in all of
your programs in this book, you can rely on the pro-
totype to be consistent. Here is the prototype for
WinMain().

int WINAPI WinMain (HINSTANCE, HINSTANCE, PSTR, int)

The first parameter is of type HINSTANCE. This refers
to the handle for the instance of the current applica-
tion. Each time you run your program, an instance is created. If you run multiple
copies of your program, then multiple instances are created.

The second parameter is also of type HINSTANCE and refers to the previous instance
of the program. This is NULL for 32-bit operations, and you really don’t need to
worry about it as far as game programming is concerned.

The third parameter is of type PSTR, which is a pointer to the command-line string
passed to your program. You can use this string to accept command-line-level direc-
tives from users. It is much like argc and argv in DOS. You don’t use any directives
from the command line, so I wouldn’t worry about it too much either.

The last parameter is of type int and tells the window how it will first appear. Table
6.2 contains a few of the values available for this parameter.

224 6. Introduction to Windows Programming

TIP
Every Windows program
you’ll write requires the
WinMain() function to be
present.

Coding the WinMain() Function
Okay, now that you have seen the prototype for WinMain(), take a look at a complete
code listing for it.

//###
// Standard windows include
#include <windows.h>

// Message loop callback function prototype
// (REQUIRED FOR ALL WINDOWS PROGRAMS)
LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);

//
// Function to create the window and display it
// (REQUIRED FOR ALL WINDOWS PROGRAMS)
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{
HWND hWnd;
MSG msg;
WNDCLASSEX wndclass;

// Set up window attributes

225Creating a Window from Start to Finish

Table 6.2 Parameter List for
How a Window Will Be Shown

Value Purpose

SW_SHOWMAXIMIZED Displays the window maximized.

SW_SHOWMINIMIZED Displays the window minimized.

SW_SHOWNORMAL Displays the window in its default created state.

wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = “Hello World”; // Application name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if((RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}

// Create the window
hWnd = CreateWindow(“Hello World”, // Application name

“Hello World Program”, // Name displayed on title bar
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

// Display the window
ShowWindow(hWnd, iCmdShow);
UpdateWindow(hWnd);

// Process messages until the program is terminated
while(GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

226 6. Introduction to Windows Programming

return (msg.wParam);
}

See, that wasn’t so bad. The code listing here shows the complete WinMain() func-
tion. Don’t try to create a new Windows32 application space in Visual C++ just yet
because you are still missing a major portion of the code. Take a peek at what
the output would look like from this program if it were complete, as shown in
Figure 6.6.

As you can see, the program does not do very much except sit there and look bor-
ing. But hey, it really does do quite a bit compared to what it would take to create it
without Windows! The first item of interest is the content of the WinMain() function.
We talked plenty about the prototype but never discussed what actually goes into
the function. The most important variable declared is wndclass.

227Creating a Window from Start to Finish

Figure 6.6

Output from your first
Windows program

Setting Up the Window’s Attributes
wndclass is of type WNDCLASSEX. WNDCLASSEX is really just the definition of a data struc-
ture containing information about a window. So wndclass is the data structure con-
taining information about your future window. The first code you see besides the
variable declarations is attribute initialization code. You specify how the window will
look by setting various parameters in the wndclass data structure.

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;

wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = “Hello World”; // Class name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

You must set several members in the wndclass
data structure. Table 6.3 provides a breakdown
of what each member means for you.

Registering the Class
Now that you have set up all of the parameters
for your class, you must tell Windows that it
exists. You do this by registering the class with
the RegisterClassEx() function.

The RegisterClassEx() function tells Windows about your class so that you can use
it later when displaying a window with it. When a class is registered, you are allowed
to use it by its name. In our working example, the class is named “Hello World.”
Take a quick look at the function prototype.

ATOM RegisterClassEx (CONST WNDCLASSEX *lpWndClass)

The first and only parameter you pass to the function is a pointer to your class
object. In your case, this is the wndclass object. The only other item of note is the
return type of ATOM. Personally, I never have bothered with the return type when it
succeeds; I only check whether it fails. If the function fails, a 0 is returned. So all
you have to do is make sure the function doesn’t return a 0! Here is the code you
used from the previous example.

If((RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}

All you do is check whether the class returns a 0. If it does, you call the exit() func-
tion, which causes your program to abruptly end. This is not a recommended way to

228 6. Introduction to Windows Programming

TIP
A very good source of informa-
tion is Microsoft’s MSDN Library
for Visual C++. It contains a
great wealth of information
about C++’s functions and
Windows programming.

leave your program, but it demonstrates the point. So what does registering do for
you anyway? Well, it lets you use the CreateWindow() function to actually create your
window. All this work wouldn’t be very useful if you couldn’t create a window!

229Creating a Window from Start to Finish

Table 6.3 Member Variables for WNDCLASSEX

Value Purpose

cbSize Size of the WNDCLASSEX data structure.

style Specifies the style of the window class.A sample value is CS_NOCLOSE,
which disables the close window button.These values can be combined
using the OR (|) operator.

lpfnWndProc This one is very important—it is a pointer to the message-processing
function.You must populate this with a function name if you want to
process Windows messages and events.The pointer goes to a callback
function that processes all the messages that come to this window.

cbClsExtra Number of bytes allocated following the class structure.You will always
use 0 for this.

cbWndExtra Number of bytes allocated following the Windows instance.You will
always use 0 for this.

hInstance Handle to the instance of the window where the class will be running.
This normally is populated with the hInstance variable passed to
WinMain().

hIcon Handle to the icon the application will use. If it is set to NULL, then the
application is responsible for drawing its own icon.

hCursor Handle to the cursor the application will use. If it is set to NULL, then the
application is responsible for setting the shape of the mouse when it is
present within the window.

hbrBackground Handle to the background brush used in the window. In my example, I
set it to white.

lpszMenuName Pointer to a string containing the name of the menu resource to be used
by the program. Because most of your games are full-screen, keep this at
NULL.

lpszClassName A string pointer that contains the name of the class or application.

hIconSm Handle to an icon used when the program is represented by a small icon.

Creating the Window
Ah, now you have created a window class and registered it, so it’s time for the good
stuff. Creating your window is probably one of the easiest parts because it requires
only a single function, CreateWindow(). Here is the prototype for the CreateWindow()
function.

HWND CreateWindow (
LPCTSTR lpClassName, // Pointer to registered class name
LPCTSTR lpWindowName, // Text displayed on the title bar
DWORD dwStyle, // Window style
int x, // Horizontal position of window
int y, // Vertical position of window
int nWidth, // Window width
int nHeight, // Window height
HWND hWndParent, // Handle to parent or owner window
HMENU hMenu, // Handle to menu or child-window identifier
HANDLE hInstance, // Handle to the instance of this program
LPVOID lpParam // Pointer to window-creation data

)

The first parameter, lpClassName, is a pointer to the name of your class. Because you
named the class “Hello World,” you use “Hello World” for the parameter here. As
long as you keep your class names unique, it really doesn’t matter what you call them.

The next parameter, lpWindowName, is a pointer to the text that will be displayed on
the title bar. In your example, you are using “Hello World Program” as your title
bar text. Please note that not every wndclass you create for Windows is used to dis-
play a window. If you had created a button class, then the text specified here would
appear on the button.

dwStyle, which comes next, denotes the style of the window you are creating. The
styles available can be combined with standard OR (|) logic. In Table 6.4, you can
see a condensed list of available styles.

The next four parameters, x, y, nWidth, and nHeight, are pretty straightforward.
They set the size and position of the window. Because you just rely on Windows to
display the default size and position, you set these parameters to CW_USEDEFAULT. Of
course, you can alter the size and position if you want to; you just don’t need to for
this example. Oh, yeah, I almost forgot: The values represent pixel coordinates. So
if your screen is set to 1024 × 768 resolution, then you have 1,024 pixels on the
x-coordinate and 768 pixels on the y-coordinate.

230 6. Introduction to Windows Programming

You are almost done with the function; hang in there! The next parameter,
hWndParent, is of type HWND and takes a handle to the parent window. Because you
have no parent window, this is set to NULL. The next parameter, hMenu, is also a han-
dle, but of type HMENU. This parameter points to a menu or a child-window ID,
depending on the class type. If it points to a menu object, then the menu is used
with the window.

The next to last parameter, hInstance, which is type HINSTANCE, is a handle to the
instance of your application. You just use the HINSTANCE that was passed to
WinMain(). The final parameter, lpParam, of type LPVOID, points to some Windows-
specific creation data. You don’t use this value, so just set it to NULL. Feel free to
find a Windows programming book and read more on this subject if you are inter-
ested in this parameter. Personally, I have never had to use it for my games.

Now that you have gone over the CreateWindow() function, take a look at the code
for it one last time.

hWnd = CreateWindow(“Hello World”, // Application name
“Hello World Program”, // Name displayed on title bar
WS_OVERLAPPEDWINDOW,

231Creating a Window from Start to Finish

Table 6.4 Window Styles

Value Purpose

WS_BORDER The window is created with a thin border.

WS_CHILD The window is a child window.

WS_DISABLED The window is displayed inactive. No input can be received
from the user.

WS_DLGFRAME The window is dialog style, which means it has no title bar.

WS_HSCROLL The window has a horizontal scrollbar.

WS_VSCROLL The window has a vertical scrollbar.

WS_THICKFRAME The window has a sizing bar.

WS_MINIMIZE The window starts out minimized.

WS_MAXIMIZE The window starts out maximized.

CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

Figure 6.7 shows a diagram of what you have done so far. You have created a
Windows class object, registered it, and then created a window. Now, it’s time
to display it.

232 6. Introduction to Windows Programming

Windows.h

WinMain()

RegisterClassEx()

CreateWindow()

WNDCLASSEX

Figure 6.7

WinMain() before
ShowWindow()

Class object used to
describe your window

Tells Windows about
your class so you can
reference it by name
later

Creates the window
based on the class
object

Displaying the Window Using
ShowWindow()
You display the window using the ShowWindow() function. This function does more
than just show a window, though. It actually sets the display state of the current win-
dow. Table 6.5 contains some of the display states you can specify.

Oops, I almost forgot to show you the function prototype, so here it is.

BOOL ShowWindow(HWND hWnd, int nCmdShow)

The first parameter the function expects is hWnd. hWnd is nothing more than a han-
dle to the window you want to show. The second and final parameter is an integer
named nCmdShow. The nCmdShow parameter expects display state values like the ones
shown in Table 6.5. You just use the value passed to WinMain(). Here is the code
used to call this function.

ShowWindow(hWnd, iCmdShow);

See, that wasn’t very complicated!

233Creating a Window from Start to Finish

Table 6.5 Window Display States with ShowWindow()

Value Purpose

SW_SHOW Activates and displays the window in its current state.

SW_HIDE Hides the window and activates another window.

SW_SHOWNORMAL Activates and displays the window at its default state.You should
use this when calling the function for the first time.

SW_SHOWNA Displays the window in its current state but leaves the currently
active window active.

SW_RESTORE Restores and displays the window.You can use this to restore the
window to its original state if it was minimized or maximized.

SW_MINIMIZE Displays the window in a minimized state and activates the next
window in line.

SW_MAXIMIZE Displays the window in a maximized state.

SW_SHOWMAXIMIZED Activates the window and displays it maximized.

SW_SHOWMINIMIZED Activates the window and displays it minimized.

Updating the Window
Using UpdateWindow()
Now that you have set the display state for the window, it is time to update it.
Here’s the prototype to do so.

BOOL UpdateWindow(HWND hWnd)

Once again you see the hWnd parameter here. It expects a handle to the window you
want to update, just as ShowWindow() does. The update function actually sends a
WM_PAINT message to the event function. This message tells the window to update its
client area. Whenever you have changed the display in a window, you can force it to
update by calling this function.

The Message-Processing Loop
Now that you have created and displayed a window with WinMain(), it is time to
accept messages from the application. You accomplish message processing for your
sample application using three functions: GetMessage(), TranslateMessage(), and
DispatchMessage(). Here is a refresher of the code you are using.

// Process messages until the program is terminated
while(GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

Inside the GetMessage() Function
The GetMessage() function retrieves all messages from a calling thread’s message
queue for the specified window. I know this sounds complicated, but all it really
means is that the function retrieves the next message waiting for the window. Here
is the prototype.

BOOL GetMessage(LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin,
UINT wMsgFilterMax)

The first parameter expects a pointer to an MSG structure. The MSG structure con-
tains all of the information about the retrieved message. Here are the inner work-
ings of the MSG structure.

MSG {
HWND hwnd;

234 6. Introduction to Windows Programming

UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

}

hwnd points to the window that receives the message. The message field specifies the
message number. wParam holds additional information about the data depending on
the value of the message number. lParam is just like wParam; it holds additional data
about the message. The time variable does just what it implies—it stores the time
the message was generated. The last field, pt, stores the screen coordinates of the
cursor when the message was generated.

The next parameter, hWnd, should look familiar by now. All it expects is a handle to
the window from which to get messages. The last two parameters, wMsgFilterMin
and wMsgFilterMax, specify the lowest and highest
value messages to retrieve. Because you don’t want
to limit the message range, just set these both to 0.

The function returns a non-zero if successful. The
function returns a 0 if a WM_QUIT message is pre-
sent. This is why you have the while loop around
the call; you just stay in the loop until the user
exits the program.

Inside the TranslateMessage()
Function
The TranslateMessage() function is much simpler than the GetMessage() function.
Here is the prototype.

BOOL TranslateMessage(CONST MSG *lpMsg)

The only parameter you have to worry about for this function is lpMsg. lpMsg is just
a pointer to an MSG structure that you previously got from GetMessage(). If you want
to, you can populate an MSG structure manually and pass it to this function.

This function takes the MSG data sent to it and translates any virtual-key messages it
finds into character messages. When it finds these messages, it adds them to the
queue to be read by the next GetMessage() function call. So really, all this function
does is check for keyboard events and then post them to the queue. Oh, yeah, I
almost forgot: This function does not alter the MSG data passed to it.

235Creating a Window from Start to Finish

CAUTION
The GetMessage() func-
tion can return a -1 if the
call fails.You should code
for this accordingly.

Inside the DispatchMessage() Function
The last of the three functions you use for handling messages is DispatchMessage().
This function works just like TranslateMessage() in that it expects a pointer to an
MSG structure. Here is the prototype.

LONG DispatchMessage(CONST MSG *lpMsg)

The MSG passed to this function is sent to the event procedure specified for the
current window. In this case, it goes to the fnMessageProcessor() function. The
DispatchMessage() function is what allows your program to process the messages it
receives. If you never call this function, messages are never processed.

All right, time for review. To handle messages for your program, do the following.

1. Get the next message.

2. Translate the message for virtual-key events.

3. Dispatch the message to the message processor.

4. Repeat the process.

That’s it for WinMain()!

Handling Window Messages
and Events
I promised you that there would be only two functions involved in our sample
application, and I am here to deliver. The second function, fnMessageProcessor(),
handles all of the messages generated for your window.

As you learned just a minute ago, all messages passed to the DispatchMessage() func-
tion are sent to the window’s message-processing function. This processing func-
tion is declared in the class object describing the window. Recall that the code
looked something like this:

wndclass.lpfnWndProc = fnMessageProcessor;

The value of fnMessageProcessor tells you that all messages dispatched should be
sent to the fnMessageProcessor() function. Okay, take a look at the code for this
function.

//
// Message loop callback function
// (REQUIRED FOR ALL WINDOWS PROGRAMS)
//

236 6. Introduction to Windows Programming

LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)

{
switch(iMsg)
{

// Called when window is first created
case WM_CREATE:

return(0);
// Called when the window is refreshed
case WM_PAINT:

return(0);
// Called when the user closes the window
// or terminates the application
case WM_DESTROY:

PostQuitMessage(0);
return(0);

}

return DefWindowProc(hWnd, iMsg, wParam, lParam);
}

The Message Processor Function
Well, the first thing you can examine is the function prototype used for your mes-
sage processor.

LRESULT CALLBACK fnMessageProcessor (
HWND hWnd,
UINT iMsg,
WPARAM wParam,
LPARAM lParam
)

The first parameter, hWnd, contains the handle to the window for which you are pro-
cessing messages. The next parameter, iMsg, contains the message identifier. The
identifier can be one of many different Windows message types. Some of the more
valuable IDs are shown in Table 6.6.

The last two parameters passed to the function, wParam and lParam, contain extra
information about the message. For example, when you receive a WM_KEYDOWN mes-
sage, the virtual-key code is stored in the wParam. I’ll talk about more uses for these
values later. Now that you have the prototype down, it’s time to see what the func-
tion actually does.

237Creating a Window from Start to Finish

Once the program is inside the message processor function, all it has to do is check
for each type of message and act accordingly. In the example I am using, I only
check for WM_CREATE, WM_PAINT, and WM_DESTROY. By checking these messages, you can
handle it when the window is created, updated, or closed.

The Default Message Processor
The last thing you do before leaving the function is return the results of the
DefWindowProc() function. This function is the default message processor provided
by Windows. It processes any messages you left behind. Because it is never a good
idea to let messages pile up, this function is handy for cleaning up. This function
takes the same parameters as the other message processor, so I think it’s safe to
move on.

238 6. Introduction to Windows Programming

Table 6.6 Valuable Windows Message IDs

Value Purpose

WM_CREATE The window is created using CreateWindow().

WM_PAINT The window needs to be redrawn.

WM_QUIT The user has closed the window.

WM_TIMER A timer expires—you can use this for special events.

WM_KEYDOWN The user has pressed a key.

WM_KEYUP The user has released a key.

WM_MOUSEMOVE The user has moved the mouse.

WM_ACTIVATE The window is activated or deactivated.

WM_SIZE The window has been sized.

WM_LBUTTONDOWN The user has the left mouse button pressed.

WM_LBUTTONUP The user has the left mouse button released.

WM_RBUTTONDOWN The user has the right mouse button pressed.

WM_RBUTTONUP The user has the right mouse button released.

WM_SETFOCUS The window has keyboard focus.

WM_DESTROY It is time to close the window.

The Complete Code Listing
I never like leaving people with incomplete code examples, so here is the complete
listing for the Windows program.

//###
// Standard Windows include
#include <windows.h>

// Message loop callback function prototype
// (REQUIRED FOR ALL WINDOWS PROGRAMS)
LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);

//
// Function to create the window and display it
// (REQUIRED FOR ALL WINDOWS PROGRAMS)
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{
HWND hWnd;
MSG msg;
WNDCLASSEX wndclass;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = “Hello World”; // Application name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if((RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

239Creating a Window from Start to Finish

}

// Create the window
hWnd = CreateWindow(“Hello World”, // Application name

“Hello World Program”, // Name displayed on title bar
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

// Display the window
ShowWindow(hWnd, iCmdShow);
UpdateWindow(hWnd);

// Process messages until the program is terminated
while(GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return (msg.wParam);
}
//
// Message loop callback function (REQUIRED FOR ALL WINDOWS PROGRAMS)
//
LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)

{
switch(iMsg)
{

// Called when window is first created
case WM_CREATE:

return(0);
// Called when the window is refreshed

240 6. Introduction to Windows Programming

case WM_PAINT:
return(0);

// Called when the user closes the window
// or terminates the application
case WM_DESTROY:

PostQuitMessage(0);
return(0);

}

return DefWindowProc(hWnd, iMsg, wParam, lParam);
}
//###

Oh, sheesh, I forgot to talk about something—the include file! The first lines of
code include the most important header file you use for Windows programming. It
is aptly named windows.h. So be sure to include it whenever you write a Windows
program.

Basic Theory of
Multithreading
Now do an about-face and switch back to theory mode. The last topic I want to
cover is multithreading. Multithreading is one of those things that if you don’t bite
the bullet and start using it, you probably will never understand it fully.

The only thing multithreading does is take advantage of time-slicing. If you skipped
the beginning of this chapter, I suggest you go back and read the “Multitasking”
section. If you recall, time-slicing just gives different programs slices of time to use
the CPU.

Programs that do not take advantage of multitasking run serially. When a program
runs serially, it executes a command, waits on the command to finish, and then exe-
cutes the next command. This is fine for most programs, but it is not the best
method for some games. Take, for instance, an arcade game. What would happen if
someone put a quarter in the machine while you were in some huge logic loop?
You would probably miss the quarter-drop signal. If your program had a process lis-
tening for the quarter drop while you were doing your logic loop, you would be
fine. You would accomplish this by launching a thread to listen for the quarter
drop.

241Basic Theory of Multithreading

Stack Space
Threads are nothing more than small pieces of executing code. They are func-
tions that operate on their own once launched. Because threads act like little self-
contained programs, they take up stack space. Stack space is required to hold static
memory within the thread function. If you plan to hold a lot of static memory
within your threads, be sure to create them with plenty of stack space, or your pro-
gram might crash. Take a look at how the quarter-drop scenario is handled with a
thread in Figure 6.8.

From the diagram, you can see that the main program launches a thread to handle
quarter processing. Because the thread is operating on its own, no quarters are
missed while the main program is running its logic loop. In this example, you would
have to make sure to tell the thread to shut down when the main program exits.

242 6. Introduction to Windows Programming

Main Program

Thread Function

Exit Program?

Process

End

Quarter
Inserted?

Add Credit

Figure 6.8

Detecting an
inserted quarter

The main program
launches the thread

function upon startup.

Communicating with Threads
The simplest way to communicate with a thread is to change a variable that is
shared with it. When you create a thread, you can specify the address of a memory
block you want to share with it. Commonly, you send the address of a data struc-
ture. By passing the address of a data structure, you can share all sorts of variables
within the structure.

Because the memory is shared, you can change a variable in the main program and
the thread will see it. This is how you can communicate to the thread. Imagine
passing a quit variable to the thread in the quarter-drop function. The thread
checks the quit variable until it equals 1. If the quit variable equals 1, then the
thread exits. All the main program has to do is set quit to 1 before closing down.
The thread can communicate to the main program in a very similar way. You just
allocate a variable in the shared data structure for it. Figure 6.9 illustrates how the
quarter-drop program can communicate with its thread.

243Basic Theory of Multithreading

Main Program

Thread Function

Exit Program?

Set QUIT = 1

End

Quarter
Inserted?

Add Credit

QUIT = 1?

Exit Thread

Data
Structure

int QUIT = 0;

Figure 6.9

One-way thread
communication

The main program launches the
thread function upon startup. It
passes the address of the data

structure containing the QUIT variable.

By setting QUIT to
equal 1, this will be

picked up by the
thread function and

cause it to exit.

The QUIT variable
is shared with the

main program.

The main thing to remember about sharing memory with threads is that you do
not try to write to the same memory from both the thread and the main program.
This can cause serious problems.

Thread Synchronization
with Mutexes
If you just had to have memory that both the main program and threads could
write to, then you could arrange it—with a little item called a mutex. Mutex stands
for mutual exclusion. Basically, a mutex allows you to lock and unlock shared mem-
ory between threads. Because your main program is really just one big thread, you
can use a mutex with it, too.

To try a mutex, add some new functionality to the arcade game. Now that you have
a thread listening for and adding up credits, you also want the main program to be
able to deduct credits. How else do you make any money, right? So you need to
add a variable to your shared memory to hold the number of credits the player has
left. The thread function needs to add credits, and the main program needs to
deduct credits. To do this, you create a credit-lock mutex and put it around the
calls that affect the credits (see Figure 6.10).

Okay, this might look a little complicated, but it’s really not too bad. All you had to
do out of the ordinary was put mutex calls before and after any operations writing
to the credits variable. Before you write to the credits variable, you call a function
to wait for the mutex to become available. If no other processes are using the
mutex, you are returned ownership of it. If another process is using the mutex, you
just wait for it to become available. After you have ownership, you can then write to
the credits variable. As soon as you are done with the credits variable, release the
mutex so the next process can use it. If you never release the mutex, then no other
process is ever able to use it.

Just remember that you are not locking the credits variable; you are locking what-
ever happens within the code between the wait and release functions of the mutex.
Be careful not to lock a mutex, and never release it by accident. This can be the
cause of much frustration when trying to debug the problem.

244 6. Introduction to Windows Programming

245Basic Theory of Multithreading

Main Program

Creates CreditMutex at startup

Thread Function

Game Over?

Set QUIT = 1

End

Quarter
Inserted?

Add Credit

QUIT = 1?

Exit Thread

Player hit
 Start Game?

Play Game

Deduct Credit

Wait for
CreditMutex

Global
CreditMutex

handle

Release
CreditMutex

Wait for
CreditMutex

Release
CreditMutex

Data Structure

int QUIT = 0;
int CREDITS = 0;

Figure 6.10

Mutexes

The main program launches the
thread function upon startup. It
passes the address of the data

structure containing QUIT
and credits variables.

All other
threads will
have to wait to
use the
CreditMutex
until it is
released.

Creating a Thread Using
CreateThread()
I bet you wouldn’t be very happy if all I did was talk about the theory of threads
and never showed you any actual code. Okay, so here it is: Some actual code for
creating a simple thread like the one used in the arcade simulator.

// Memory shared with thread
struct SharedMemory
{

int iQuit;
int iCredits;

};
SharedMemory g_SharedMem;

// Thread variables
DWORD dwCreditsID;
HANDLE hCreditsThreadHandle;

// Create the CreditThread here
hCreditsThreadHandle = CreateThread(

NULL, // Security, default is okay
NULL, // Initial stack size, default okay
(LPTHREAD_START_ROUTINE) &thrCreditsThread,
// The thread function
&g_SharedMem, // Data to pass to the function
NULL, // Creation flags, keep NULL
&dwCreditsID // Identifier (we don’t use this)
);

Even though this listing shows only some of the code for creating the thread, the
main part that interests us is the CreateThread() function. The CreateThread() func-
tion takes six parameters.

The first parameter sets the security attributes for the thread. Because you don’t
need to mess with the defaults provided, just set this to NULL. The second parameter
is the stack size you are going to allocate for the thread. The default size varies
depending on your environment but normally is set to around 1MB. If you need
more than 1MB of static memory for your thread, go ahead and specify, in number
of bytes, the requested stack size.

246 6. Introduction to Windows Programming

The third parameter is a pointer to the thread function. Because your thread must
have a function, you need to create one for it to call. Just pass the address of your
function here for this to work. The fourth parameter is a pointer to data you want
to share or pass to the thread. In your case, you want to send a data structure, so
you pass the address of it here. The fifth parameter tells the thread how to act
when it is created. You only need the defaults here, so set it to NULL. The sixth and
last parameter is a pointer to a DWORD, which will hold the thread’s identifier. You
just create a DWORD variable to hold this value and pass the address of it.

Wow, that’s it! That’s really all there is to creating a thread.

Closing a Thread Properly
Once you create a thread, you can close it using the CloseHandle() function. This
function takes only one parameter, which is the handle to close. Here is the imple-
mentation of this call:

// Free the credits thread
CloseHandle(hCreditsThreadHandle);

Once you call this function, the handle to the thread is terminated. The only prob-
lem is that you must make sure the thread is finished before you close it. You wait
for the thread to finish by using the WaitForSingleObject() function.

The WaitForSingleObject() function takes only two parameters. The first parameter
expects the thread handle on which you want to wait. The second parameter is the
amount of time you want to wait for it in milliseconds. Here is how you use it.

// Wait on the thread to finish (wait forever if necessary)
WaitForSingleObject(hCreditsThreadHandle, INFINITE);

You pass your thread handle for the first parame-
ter and INFINITE for the second parameter. The
INFINITE word, defined by Windows, means that
you will wait forever for the thread to terminate.

A complete program named CreateThread
appears on this book’s CD. This program demon-
strates the thread concepts I have been discussing.
Try it and see whether you can follow the use of
threads and mutexes.

247Basic Theory of Multithreading

TIP
If you do not wait for
threads to terminate
before closing them, your
program might crash.

Review
Hey, guess what; we are finished with this chapter. Take a moment now to review
some of the key concepts covered in this chapter, and then it’s on to the next
chapter!

■ The Windows operating system supports multitasking. This allows your pro-
grams to perform multiple operations simultaneously.

■ Including events in your programs can be useful for triggering code sections
based on timed logic.

■ Hungarian notation is used to help differentiate variable types.
■ All Windows programs need a WinMain() function. This is the equivalent of

the main() function seen in other operating systems.
■ The CreateWindow() function is used to create the window for your Windows

application. You can also use the CreateWindowEx() function for extended style
windows.

■ The window’s message loop is used to process and translate all messages sent
by the window or operating system.

■ Multithreading can be used to increase your program’s performance on
computers with multiple processors.

Now that the theory is out of the way, it’s time for some complete Windows pro-
gramming. See you in the next chapter!

248 6. Introduction to Windows Programming

CHAPTER 7

Practical
Windows

Programming

Now that you know all about Windows and how the programs operate, it is time
to actually write some useful code. I know you just got done reading a whole

chapter on mostly theory, so I am going to keep things straight and to the point for
this one. After reading this chapter, you should have a thorough understanding of
how to implement the following items in Windows.

■ Static text
■ Buttons
■ Sound
■ List boxes
■ Edit fields

By the end of this chapter, you will have laid the groundwork to create complete
Windows programs. Prepare to be assimilated.

Setting Up the
Visual C++ Project
Before I dive into the code, I think it is best to cover how to create a Windows pro-
ject in Visual C++. Okay, first things first: Launch the Visual C++ main program. It’s
the one with the multicolored Möbius strip for an icon. Well, maybe it’s not a
Möbius strip, but doesn’t it look cool? All right, now that you have the program
launched, choose File, New. You should see a dialog box that looks like the one in
Figure 7.1.

Under the Projects tab, select Win32 Application. In the Project Name text box,
type HelloWorld. You might want to change the default location at this time, but it
is up to you. When you are finished, click OK. The next dialog box you’ll see looks
like the one in Figure 7.2.

At this prompt, you are asked whether you want an empty project, a simple Win32
application, or a typical “Hello World!” application. Even though you could make
things easier on yourself and cheat using the Hello World option, pick the default
empty project setting. Go ahead and click Finish. You’ll see a dialog box that looks
like the one in Figure 7.3.

250 7. Practical Windows Programming

This window tells you what files and such are created with your project. Because
you chose to add nothing special, you have no new files included with the project.
Go ahead and click OK. Yeah, yeah, yeah, I know this sounds like the steps in
Chapter 4, “Writing Your First Network Programs,” but you created a console appli-
cation there, not a Win32 application. Once you have gone down the path of no
return and clicked the OK button, you should see something like the display in
Figure 7.4. Your display might vary based on your settings. For one thing, I have
clicked on the FileView tab in Figure 7.4.

251Setting Up the Visual C++ Project

Figure 7.1

Visual C++’s New
dialog box

Figure 7.2

Creating a Windows
application, Step 1 of 1

Hey, that’s a lot of figures for just the beginning, isn’t it? Well, I’m trying to make up
for Chapter 5, “Creating a Sockets Class Object.” The rest of the steps you follow are
just about the same as those in previous chapters. First, you need a main C++ file
into which you can write code. Go up to the menu and select Project, Add to

252 7. Practical Windows Programming

Figure 7.3

The New Project
Information dialog box

Figure 7.4

An empty Visual C++
Win32 project

Project, New. On the menu that appears, select C++ Source File and then type what-
ever you want to call it. For this first program, use the working name of HelloWorld.

Creating
the Hello
World
Program
Now that you have that pretty blank
window to enter code into, type the
following code.

// Standard window defines
#include <windows.h>
#include <stdio.h>

LPCTSTR lpszApplicationName = “HelloWorld”;
LPCTSTR lpszTitle = “Hello World Program”;

// Message Loop CallBack Function prototype (REQUIRED FOR ALL WINDOWS PROGRAMS)
LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);

// Function to create the window and display it (REQUIRED FOR ALL WINDOWS PROGRAMS)
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,
int nCmdShow)

{
MSG msg;
HWND hWnd;
WNDCLASSEX wndclass;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);

253Creating the Hello World Program

NOTE
On the CD that comes with this book,
you will find source code for almost
every example shown in the book.You
will also find already-created projects for
many of the programs. In this case, the
Hello World program can be found
under the HelloWorld project. If you are
not using Visual C++, you should be able
to create the projects yourself by includ-
ing the appropriate source files.

wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = lpszApplicationName;
// Registered class name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}
// Create the window
hWnd = CreateWindow(lpszApplicationName, lpszTitle,

WS_OVERLAPPEDWINDOW,
100, 100, 400,
340, NULL,
NULL,
hInstance,
NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
// Process messages until the program is terminated
while(TRUE) {

// Check for windows events & messages
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if (!GetMessage(&msg, NULL, 0, 0))
break;

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return(msg.wParam);

}
// Callback function to handle window messages
LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg, WPARAM wParam,
LPARAM lParam)

{
switch (iMsg) {

case WM_COMMAND:
break;

case WM_CREATE:
break;

254 7. Practical Windows Programming

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return(DefWindowProc(hWnd, iMsg, wParam, lParam));

}
return(0L);

}

If you don’t want to type this in, you can always copy it off the CD, but where’s the
fun in that? Go ahead and press the F7 key to build the executable. Once you have
done that, press Ctrl+F5 to execute it. If everything went okay, you should see the
window in Figure 7.5 appear on your desktop. Don’t be alarmed if your window col-
ors appear a bit different; they can vary from system to system.

If the program doesn’t run, check to make sure you had no compile errors and try
again. If it still doesn’t execute, compare your code to the working code on the CD.
If the code on the CD doesn’t work, buy a new computer. No, seriously, if it doesn’t
work from the CD, send me an e-mail at webmaster@lostlogic.com. Okay, now let’s
briefly walk through your new creation. Here are the steps you followed to get the
window on the screen.

1. Create and define a window class of type WNDCLASSEX.

2. Register the class using the RegisterClassEx() function.

3. Create the window using the CreateWindow() function.

4. Display the window using the ShowWindow() function.

5. Update the window using the UpdateWindow() function.

255Creating the Hello World Program

Figure 7.5

Output from the Hello
World program

If any of these steps or functions look strange, you can go back and read over
Chapter 6, “Introduction to Windows Programming,” for a quick review. The next
piece of code you run into, after creating and displaying the window, is the message
loop.

while(TRUE) {
// Check for windows events & messages
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if (!GetMessage(&msg, NULL, 0, 0))
break;

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

The question is, do you want to take the blue pill and stay forever in this dream, or
do you want to take the red pill and awake to a whole new reality? Tell you what,
stress is a bad thing, so I think I will just take the blue pill and hang out where I
am. Okay, now that we have satiated Morpheus, look a little more closely at the
message loop.

The PeekMessage() Function
You use a new feature for this message loop, and the feature comes from the
PeekMessage() function. This function lets you check for pending messages before
trying to process them. If you don’t use PeekMessage(), the program just sits there
until the next Windows message comes along. This isn’t very helpful if you want to
do game updates on a consistent basis. Here is the prototype for the PeekMessage()
function.

BOOL PeekMessage(LPMSG lpMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax,
UINT wRemoveMsg);

I don’t normally like to spread out prototypes like this one, but it’s just too darn
long to fit on one line. Anyway, the first parameter is the pointer to a MSG data struc-
ture to receive the message information. The second parameter expects the handle
to the window you want to check. Because you can have multiple windows operat-
ing within a single program, you have to specify which one you want to check.

256 7. Practical Windows Programming

The third parameter lets you set the starting range of message numbers to look at.
You always set this to 0 for game programs. The fourth parameter lets you set the
ending range of message numbers to look at. This is also set to 0 for our purposes.

The fifth parameter specifies what to do with the messages once they are peeked at.
If you pass a PM_NOREMOVE to it, then the message stays in the queue. If you pass a
PM_REMOVE, the message is removed. Because you just want to peek at the message
and not actually process it yet, you use the PM_NOREMOVE flag.

The PeekMessage() function returns a 0 if no messages are present. If messages are
present, then the function returns a non-zero number. So you check whether the
return is true, and if so, you go ahead and call the GetMessage() function. Here are
the usual steps you follow after you have found a message in the queue.

1. Call GetMessage() to load the MSG structure with the message information.

2. Call TranslateMessage() to translate virtual key messages into usable character
messages.

3. Call DispatchMessage() to send the retrieved message to the message handler
function.

That about covers it for the message loop. Now that you have the all-exciting Hello
World program out of the way, add some text to the window.

Adding Static Text
to a Window
If you look at almost any Windows
program out there, you see some sta-
tic text. You can place static text any-
where in a window that is not
occupied by another object. You nor-
mally see static text used as headers
for edit boxes and the like. Go
ahead and load up the StaticText
project from the CD-ROM to see the
following code.

#include <windows.h>

#include <stdio.h>
// ID defines for resources

257Adding Static Text to a Window

NOTE
If you are not using Visual C++, you can
create the project yourself by creating a
new Windows project and including the
StaticText.cpp file in it.There should be
no other dependencies. Consult your
compiler’s documentation for how to
create an empty Windows project.

#define IDC_hBU_StaticText 40001

// Create some global handles for our child window components
HWND hBU_StaticText = NULL;
LPCTSTR lpszApplicationName = “StaticText”;
LPCTSTR lpszTitle = “Static Text Example”;

// Message Loop CallBack Function prototype (REQUIRED FOR ALL
WINDOWS PROGRAMS)

LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);

// Function to create the window and display it (REQUIRED FOR ALL
WINDOWS PROGRAMS)

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
MSG msg;
HWND hWnd;
WNDCLASSEX wndclass;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = lpszApplicationName;
// Registered class name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}
// Create the window
hWnd = CreateWindow(lpszApplicationName, lpszTitle,

258 7. Practical Windows Programming

WS_OVERLAPPEDWINDOW,
100,
100,
400,
340,
NULL,
NULL,
hInstance,
NULL);

// Create the static text
hBU_StaticText = CreateWindow(

“static”,”Static Text”,
WS_CHILD | SS_CENTER | WS_VISIBLE,
120,
130,
135,
28,
hWnd,(HMENU)IDC_hBU_StaticText,hInstance,NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
// Process messages until the program is terminated
while(TRUE) {

// Check for windows events & messages
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if (!GetMessage(&msg, NULL, 0, 0))
break;
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return(msg.wParam);

}

// Callback function to handle window messages
LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg, WPARAM wParam,
LPARAM lParam)

{
switch (iMsg) {

case WM_COMMAND:
break;

259Adding Static Text to a Window

case WM_KEYDOWN:
break;

case WM_CREATE:
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return(DefWindowProc(hWnd, iMsg, wParam, lParam));

}
return(0L);

}

The code that has changed from the Hello World program to this one is in bold
text. The rest of the code is identical to that in the Hello World program. Execute
the program, and you should see some output similar to that shown in Figure 7.6.

Resource Identification
The first noticeably different code is the define at the beginning.

#define IDC_hBU_StaticText 40001

This define is setting up an ID number for the static text resource object. What do
I mean by a static text resource object? Well, every item in a window’s area is really its
own object. Each and every object in a window takes up a resource. So the objects in
a window are called resources. Because the text you want to display operates on its

260 7. Practical Windows Programming

Figure 7.6

Output from the
Static Text program

own, you must give Windows an identity number to associate with it. That way, when
you want to move, remove, or alter the text, you have a reference to go by. I just
chose an arbitrary number of 40001 for the static text object. You can choose any-
thing you want here as long as it does not conflict with any other resource.

Creating a Child Window
The next piece of code that stands out is the creation of a variable to hold the han-
dle to that static text object.

HWND hBU_StaticText = NULL;

Because window objects such as static text are really child windows, you create a
handle of type HWND. Now that you have an ID for the object and a handle, it is time
to create the child window. You do this using the all-too-familiar CreateWindow()
function.

hBU_StaticText = CreateWindow(
“static”,
“Static Text”,
WS_CHILD | SS_CENTER | WS_VISIBLE,
120,
130,
135,
28,
hWnd,
(HMENU)IDC_hBU_StaticText,
hInstance,
NULL);

Now take a moment to recap what the CreateWindow() function takes as parameters.
The parameters can be seen in Table 7.1.

You tell Windows what type of child object
to create by using a predefined registered
class name. Because you want a static text
object, you tell Windows to create this
object by passing the value of “static” for
the first parameter. Table 7.2 contains a
list of class types predefined by Windows.

261Adding Static Text to a Window

CAUTION
When you create a child window
using the CreateWindow() function,
be sure to include WS_CHILD as one
of the style flags.This lets Windows
know that it is a child object.

For the static text example, all you had to do was create a new child window of type
STATIC and specify the main window as the parent. The X and Y positions deter-
mine where the text is displayed. The width and height parameters set up how
much of the text can be displayed. Try moving the X and Y coordinates around to
see the effects. Remember that two-dimensional screen coordinates are laid out like
those shown in Figure 7.7.

When an object moves to the right of the screen, its X coordinate increases; when
it moves to the left, the X coordinate decreases. When an object moves down the
screen, its Y coordinate increases; when it moves up, the Y coordinate decreases.
The position values you give to your static object are local to the parent window.
Local coordinates base their origins on their parents. So if you set your static text at
position 120,130, it really is offset 120 pixels to the right and 130 pixels down from
where the parent window starts.

262 7. Practical Windows Programming

Table 7.1 Parameters for the
CreateWindow() Function

Parameter Description

LPCTSTR Registered class name for the window.

LPCTSTR The name of the window; for child windows it can
denote text associated with the object.

DWORD Style flags that determine how the window looks.

int Starting X, or horizontal, position.

int Starting Y, or vertical, position.

int Starting width of the window or child object.

int Starting height of the window or child object.

HWND Handle to the parent window.

HMENU Handle to the menu or child window identifier.

HANDLE Handle to the instance of the application.

LPVOID Window creation data.

Would you believe that I just now bought Quake III Arena? I purchased Unreal
Tournament first because I liked its graphic style better. You know, I can only crawl
around in the sewer-like hell that id Software creates for so long. Anyway, I have to
say that Quake III Arena is one superb piece
of work. Not only is the engine beautiful, but
also the network code is phenomenal. Too
bad they stuck with the sewer levels again,
but that is my only complaint about it.
Anyway, you’d better watch out; I’m getting
better at playing it! Oh, yeah, if you are won-
dering how I wrote about Quake III in earlier
chapters, it is because people normally write

263Adding Static Text to a Window

Table 7.2 Preregistered Windows Class Types

Class Function

STATIC A text field or box. Used mainly for labeling other objects.
This class type accepts no input or output.

BUTTON Used to display a rectangular depressible button.The button
can optionally have text. Pressing the button can trigger a
Windows message event.

SCROLLBAR Creates a scrollbar with arrows at either end. Normally used
in conjunction with a text box to scroll text. Clicking on the
scrollbar creates a Windows message event.

COMBOBOX Creates a list box and a selection area. Used mainly when
creating a drop-down box containing a list of items. If the
contents of the box are highlighted and the user types any text,
the next item that starts with the letter typed is selected.

EDIT Used to create text entry boxes.

LISTBOX Creates a box containing rows of text.The text can be selected.

RICHEDIT_CLASS Used to create a rich edit text window for the user.

TIP
When firing the rocket launcher
at someone in Quake III, point at
his feet.You miss much less
often and still do a great deal of
residual damage.

chapters for books out of order. So this chapter was written before the introduction
chapter. How’s that for insider information? Oh well, back to the grind.

Having Fun with
Buttons in Windows
Now that you have created static text in a win-
dow, let’s do something more interactive,
like create a button. On the CD, there is a
project named Button. Load it up now to fol-
low along. The following files are needed to
compile the program.

■ Button.cpp, the main source file
■ Winmm.lib, the Windows multimedia

file for the PlaySound() function

264 7. Practical Windows Programming

X = 0, Y = 0

X = 639, Y = 479

X increases

Y
 increases

Figure 7.7

A two-dimensional coordinate
system

CAUTION
The PlaySound() function used
in the Button project requires
the inclusion of the winmm.lib
library file in your project.You
will get linking errors if you
don’t include it.

The following code is a complete Windows program to create a depressible button
on the screen.

#include <windows.h>
#include <stdio.h>
#define IDC_hBU_Join 40001

// Create some global handles for our child window components
HWND hBU_Join = NULL;

LPCTSTR lpszApplicationName = “ButtonProg”;
LPCTSTR lpszTitle = “Button Example”;

// Message Loop CallBack Function prototype (REQUIRED FOR ALL
WINDOWS PROGRAMS)

LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);
// Function to create the window and display it (REQUIRED FOR ALL
WINDOWS PROGRAMS)

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
MSG msg;
HWND hWnd;
WNDCLASSEX wndclass;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;

265Having Fun with Buttons in Windows

NOTE
If you are not using Visual C++, you can create the project yourself
by creating a new Windows project and including the Button.cpp
file and the winmm.lib library file. If you get linking errors about
the PlaySound() function or if you do not have the winmm.lib
library file, remove the reference to the PlaySound() function in the
fnMessageProcessor() function in the code below.

wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = lpszApplicationName;
// Registered CLASS NAME
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
if(RegisterClassEx(&wndclass) == 0) {

// Do error logic here
exit(1);

}
// Create the window
hWnd = CreateWindow(lpszApplicationName, lpszTitle,

WS_OVERLAPPEDWINDOW,
100, 100, 400, 340, NULL, NULL, hInstance, NULL);

// Create the JOIN button
hBU_Join = CreateWindow(

“BUTTON”,
“Join”,
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
285,
280,
100,
28,
hWnd,(HMENU)IDC_hBU_Join,hInstance,NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
// Process messages until the program is terminated
while(TRUE) {

// Check for windows events & messages
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if (!GetMessage(&msg, NULL, 0, 0))
break;

TranslateMessage(&msg);
DispatchMessage(&msg);

266 7. Practical Windows Programming

}
}
return(msg.wParam);

}

// Callback function to handle window messages
LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)

{
switch (iMsg)
{

case WM_COMMAND:
// Check for child window messages
switch(LOWORD(wParam)) {

// Check whether the user clicked the button
case IDC_hBU_Join:

PlaySound(“join.wav”,NULL,SND_FILENAME);
break;

}
break;

case WM_CREATE:
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return(DefWindowProc(hWnd, iMsg, wParam, lParam));

}
return(0L);

}

The Button Class
For this program example, you changed the name of your object identifier and the
name of your window handle. There’s not much to that really; it was just changed
to better reflect the functionality of the new object. The next thing you do is call
the CreateWindow() function with the parameters needed for a button object. Instead
of using “static” for the value of the first parameter, you now pass in “button”. This

267Having Fun with Buttons in Windows

tells Windows to use the preregistered class type for a button control. Oh, yeah, the
output of the program should look like that in Figure 7.8.

The next parameter, with a value of “Join”, tells your program what to display on
the button. The rest of the parameters tell you how large the button is and where
to put it.

Now comes the interesting part. You have added a new logic branch to your mes-
sage handler function.

case WM_COMMAND:
// Check for child window messages
switch(LOWORD(wParam)) {

// Check whether the user clicked the button
case IDC_hBU_Join:
PlaySound(“join.wav”,NULL,SND_FILENAME);
break;

}
break;

In the previous Windows programs, you did nothing under the WM_COMMAND switch
statement. Now, you are checking the low-order bytes in the wParam field. By doing
this, you can check for messages set off by the child window objects. The identifiers
you have been using for the child objects represent the messages that get passed
here. So when the Join button is pressed, a message with the parameter of
IDC_hBU_Join is sent to the message handler. This is why you include a unique iden-
tifier in the call to CreateWindow(). The message parameter sent is the number used

268 7. Practical Windows Programming

Figure 7.8

Output from the
Button program

in your definition of the identifier. For instance, the code you used to identify
IDC_hBU_Join is the following:

#define IDC_hBU_Join 40001

When a message is passed to the message handler for the Join button, the number
40001 is actually used as the low-order value of the wParam. Given this logic, the
switch statement could have looked like this:

case WM_COMMAND:
// Check for child window messages
switch(LOWORD(wParam)) {

// Check whether the user clicked the button
case 40001: // Our identifier
PlaySound(“join.wav”,NULL,SND_FILENAME);
break;

}
break;

Notice the 40001 in place of the defined word. Not that you would want to code
this way, but at least you now know why we do it.

The PlaySound() Function
I bet you thought I was going to skip over how to use the PlaySound() function.
Right? Well, I don’t want to leave you out in the cold, so here is the prototype.

BOOL PlaySound(LPCSTR pszSound, HMODULE hmod, DWORD fdwSound)

The function returns a value of TRUE if it succeeds or a value of FALSE if it fails. The
first parameter expects the name of the sound to play. The flags you set in the third
parameter determine from where the sound is loaded.

The second parameter tells the function the executable that contains the resource
from which to load the file. Because you just load your sounds, leave this parameter
at NULL.

The third and final parameter sets flags for playing the sound. Table 7.3 contains a
list of some of the more useful flags.

You use the PlaySound() function to tell you that Windows has received your button
press message. So when you press the Join button, you should hear a sound play.
Try playing other wave files for when the button is pressed.

Well, that’s about it for creating buttons within a Windows program. Now it’s time
to work on a list box.

269Having Fun with Buttons in Windows

The ListBox Child
Class Object
The ListBox class type lets you create a box within a Windows application to hold
text. Each line of text is considered an additional entry into the list. For a change
of pace, take a look at the output of the program before you see the source code
(see Figure 7.9).

270 7. Practical Windows Programming

Table 7.3 Flags Used in the PlaySound() Function

Flag Purpose

SND_FILENAME The sound is loaded from a file.

SND_RESOURCE The sound is already loaded as a resource.

SND_LOOP The sound is played continuously until a NULL is passed as
the sound name in the PlaySound() function.

SND_ASYNC The PlaySound() function does not wait for the sound to
finish playing before continuing.Without this flag, the function
waits until the sound is done.

SND_NOSTOP If another sound is playing, it is not interrupted with the
new sound call.

Figure 7.9

Output from the ListBox
program

Now that you have seen the output, take a look at the source code for this
little gem.

#include <windows.h>
#include <stdio.h>
#define IDC_hBU_Join 40001
#define IDC_hLB_Output 40002
// Create some global handles for our child window components
HWND hBU_Join = NULL;
HWND hLB_Output = NULL;
LPCTSTR lpszApplicationName = “ListBoxProg”;
LPCTSTR lpszTitle = “ListBox Example”;
// Message Loop CallBack Function prototype (REQUIRED FOR ALL
WINDOWS PROGRAMS)

LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);
// Function to display text into a listbox
void vShowText(HWND hChildHandle, char *szText);
// Function to create the window and display it (REQUIRED FOR ALL
WINDOWS PROGRAMS)

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
MSG msg;
HWND hWnd;
WNDCLASSEX wndclass;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;

271The ListBox Child Class Object

TIP
The project for this pro-
gram can be found on the
CD in the Chapter7 Zip file.
Load it up now if you want
to follow along.

CAUTION
The ListBox project uses the
ListBox.cpp file and the winmm.lib
library file to work.You will need to
include both of these into your project
if you decide to create it from scratch.

wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = lpszApplicationName;
// Registered class name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}
// Create the window
hWnd = CreateWindow(lpszApplicationName, lpszTitle, WS_OVERLAPPEDWINDOW,

100, 100, 400, 340, NULL, NULL, hInstance, NULL);
// hBU_Join
hBU_Join = CreateWindow(

“BUTTON”,”Join”, WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
285, 280, 100, 28,
hWnd,(HMENU)IDC_hBU_Join,hInstance,NULL);

// hLB_Output
hLB_Output = CreateWindowEx(

WS_EX_CLIENTEDGE,
“LISTBOX”,
NULL,
WS_CHILD | WS_VISIBLE | LBS_NOTIFY | WS_VSCROLL | WS_BORDER,
5,
47,
380,
230,
hWnd,(HMENU)IDC_hLB_Output,hInstance,NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
// Process messages until the program is terminated
while(TRUE) {

272 7. Practical Windows Programming

// Check for windows events & messages
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if (!GetMessage(&msg, NULL, 0, 0))
break;

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return(msg.wParam);

}

// Callback function to handle window messages
LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)

{
char szText[256];
static count = 0;

switch (iMsg) {
case WM_COMMAND:

// Check for child window messages
switch(LOWORD(wParam)) {

// Check whether the user clicked the button
case IDC_hBU_Join:

sprintf(szText,”Join Number %d”,count++);
PlaySound(“join.wav”,NULL,SND_FILENAME);
vShowText(hLB_Output,szText);
break;

}
break;

case WM_CREATE:
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return(DefWindowProc(hWnd, iMsg, wParam, lParam));

}
return(0L);

273The ListBox Child Class Object

}

// Function to display text into the edit window
void vShowText(HWND hChildHandle, char *szText)
{

int Line;

// Add string to the listbox
SendMessage(hChildHandle,LB_ADDSTRING,0,(LPARAM) szText);

// Determine number of items in listbox
Line = SendMessage(hChildHandle,LB_GETCOUNT,0,0);

// Flag last item as the selected item to scroll listbox down
SendMessage(hChildHandle,LB_SETCURSEL,Line-1,0);

// Unflag all items to eliminate negative highlight
SendMessage(hChildHandle,LB_SETCURSEL,-1,0);

}

This program builds upon the button program you wrote earlier. To have a new
child object, you had to create a unique identifier for it. First, you added a new
define and then you added a new handle.

#define IDC_hLB_Output 40002
HWND hLB_Output = NULL;

The notation of hLB denotes a ListBox handle. Previously, you used hBU to denote
buttons. Anyway, now that you have the handles and such out of the way, you can
add the creation routine to your main program. Here you should notice a differ-
ence from the previous child objects. To create the list box, make a call to the
CreateWindowEx() function.

The CreateWindowEx() Function
The CreateWindowEx() function allows you to create windows with extended styles.
Other than that, it is no different than the CreateWindow() function. The
CreateWindowEx() function has an additional parameter at the beginning of the
function call. This parameter expects flags denoting the extended style of the win-
dow. Here is the prototype for the function.

274 7. Practical Windows Programming

HWND CreateWindowEx(
DWORD dwExStyle,
LPCTSTR lpClassName,
LPCTSTR lpWindowName,
DWORD dwStyle,
int x,
int y,
int nWidth,
int nHeight,
HWND hWndParent,
HMENU hMenu,
HINSTANCE hInstance,
LPVOID lpParam);

If you compare the parameters to those in CreateWindow(), you’ll see that this func-
tion does indeed have only one additional parameter. Table 7.4 shows some of the
values for the dwExStyle parameter.

For your list box, you chose to use the WS_EX_CLIENTEDGE extended style. You use this
so that your output window has a sunken 3D look to it. That’s about it as far as
extended windows are concerned.

275The ListBox Child Class Object

Table 7.4 Extended Window Styles

Flag Meaning

WS_EX_CLIENTEDGE The window has a sunken edge.This gives it a 3D look.

WS_EX_TRANSPARENT Child windows underneath the window are visible.

WS_EX_TOPMOST The window always stays on top, even when it is not
active.

WS_EX_CONTROLPARENT The user can use the Tab key to switch to other child
windows.

WS_EX_DLGMODALFRAME The window has a double border; it can also have a
name if you use WS_CAPTION.

When running the program, you might notice that when you press the Join button,
text appears in the list box. If you haven’t noticed this, go ahead and run the pro-
gram to see it in action. Okay, so how did you output text to the listbox? Well,
here’s your answer: By using the SendMessage() function.

The SendMessage() Function
The SendMessage() function sends a message directly to a window. When you call
this function, it then calls the target window’s message procedure. The
SendMessage() function does not return until the sent message is processed. Here is
the prototype for the function.

LRESULT SendMessage(
HWND hWnd, // Destination window handle
UINT Msg, // Message to send
WPARAM wParam, // Parameter one
LPARAM lParam // Parameter two

);

The first parameter expects a handle to the window to which you want to send the
message. The handle can also point to a child window; it does not have to be the
main window. The second parameter holds the message to send to the target win-
dow. The third and fourth parameters allow you to specify additional information
about the message.

In the vShowText() function, you use quite a few different variations of the
SendMessage() function. Here is the first call you make to it.

SendMessage(hChildHandle,LB_ADDSTRING,0,(LPARAM) szText);

The first thing you pass to the function is the handle to the list box. You do this
because you want to send text to it. The second parameter you pass, LB_ADDSTRING, is
a message type that tells the list box you want to add some text to it.

List Box Messages
The LB_ADDSTRING message is associated with list boxes. You can generally tell what a
message is associated with by its prefix. In this case, the prefix is LB—hence, a list
box message.

This type of message expects two additional parameters. The first parameter must
be set to 0. The second parameter expects the text you want to send to the list box.
For your purposes, pass a 0 and then the text for the extended parameters.

276 7. Practical Windows Programming

Now that you have added text to your list box, you need to do some other opera-
tions to ensure it appears the way you want. By default, when you add text to a list
box using the LB_ADDSTRING message, it puts the text at the bottom of the list box
but does not scroll the window. This causes problems because you want to see the
last item of text added to the list box without having to manually scroll the control.
If you want to see the effects of the default behavior, comment out the rest of the
code in the vShowText() function after the first call to SendMessage(). You can also
see an illustration of this effect in Figure 7.10.

Okay, now that you see what can happen if you don’t take care of this little scrolling
problem, take a look at how to fix it. To display the last item, you have to do a little
trickery. The first thing you have to do is figure out how many lines of text are in
the list box. This is accomplished with another call to the SendMessage() function.

Line = SendMessage(hChildHandle, LB_GETCOUNT, 0, 0);

Well, would you look at that? You can use messages to retrieve information as well
as send it. In this case, you use the LB_GETCOUNT message to get the number of text
lines in the list box. You need no special parameters, just a call to SendMessage()
with the message type of LB_GETCOUNT. Now that you know the number of lines in
the list box, you want to select the last line. By selecting the last line, you force the
list box to scroll down to the bottom. Here is the call you make to select the last
item in the list box.

SendMessage(hChildHandle, LB_SETCURSEL, Line-1, 0);

Basically, all you do is use the LB_SETCURSEL message to set the currently selected
line item in the list box. The first parameter you pass to the message tells it which

277The ListBox Child Class Object

List Box
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9

Line 10
Line 11
Line 12
Line 13
Line 14

Figure 7.10

Effects of the
LB_ADDSTRING

message

The window
doesn’t scroll
automatically
when text is

added. In this
situation, Line 9
is the last text

update seen.

User would
have to
manually use
the scrollbar
to see the
hidden text.

Text continues
to be added to
the non-visible
window.

item to select. By activating an item in the list box, you force the control to scroll to
it. Now that the item is visible, you want to deselect it; otherwise, the item has a big
nasty highlight on it. To deselect the text, you send another LB_SETCURSEL message,
but with a -1 as the first parameter. By sending a -1 to the message, you are telling
it to deselect all items. Play around with the parameters of the calls I’ve just cov-
ered to get a feel for them.

Accepting Text Input
with Edit Fields
So far you have an application that lets you display some text by pressing a button.
Don’t you think it would be nice if you could enter some information into it? I do,
so take a look at edit fields. Edit fields let you accept text from the user and then use
it in your application. Because Windows handles all of the functionality within the
edit field, all you have to do is create an edit field in your window and then pull
information from it. I have updated our little application with edit field functional-
ity. Here is the source code for the updated program.

#include <windows.h>
#include <stdio.h>

#define IDC_hBU_Join 40001
#define IDC_hLB_Output 40002
#define IDC_hEB_Name 40003

// Create some global handles for our child window components
HWND hBU_Join = NULL;
HWND hLB_Output = NULL;
HWND hEB_Name = NULL;

LPCTSTR lpszApplicationName = “EditFieldProg”;
LPCTSTR lpszTitle = “EditField Example”;

// Message Loop CallBack Function prototype (REQUIRED FOR ALL
WINDOWS PROGRAMS)

LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);
void vShowText(HWND hChildHandle, char *szText);

278 7. Practical Windows Programming

// Function to create the window and display it (REQUIRED FOR ALL
WINDOWS PROGRAMS)

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int
nCmdShow)

{
MSG msg;
HWND hWnd;
WNDCLASSEX wndclass;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = lpszApplicationName;
// Registered class name
wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}
// Create the window
hWnd = CreateWindow(lpszApplicationName, lpszTitle, WS_OVERLAPPEDWINDOW,

100, 100, 400, 340, NULL, NULL, hInstance, NULL);
// hBU_Join
hBU_Join = CreateWindow(

“BUTTON”,”Join”, WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
285, 280, 100, 28,
hWnd,(HMENU)IDC_hBU_Join,hInstance,NULL);

// hLB_Output
hLB_Output = CreateWindowEx(

279Accepting Text Input with Edit Fields

WS_EX_CLIENTEDGE,”LISTBOX”, NULL,
WS_CHILD | WS_VISIBLE | LBS_NOTIFY | WS_VSCROLL | WS_BORDER,
5,47,380,230,hWnd,(HMENU)IDC_hLB_Output,hInstance,NULL);

// Name
hEB_Name = CreateWindowEx(

WS_EX_CLIENTEDGE,
“EDIT”,”Your Name”,
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT,
250,
20,
135,
28,
hWnd,(HMENU)IDC_hEB_Name,hInstance,NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

// Process messages until the program is terminated
while(TRUE) {

// Check for windows events & messages
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if (!GetMessage(&msg, NULL, 0, 0))
break;

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return(msg.wParam);

}

// Callback function to handle window messages
LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)

{
char szText[256];
static count = 0;
char szName[256];

280 7. Practical Windows Programming

switch (iMsg) {
case WM_COMMAND:

// Check for child window messages
switch(LOWORD(wParam)) {
// Check if the user clicked the button

case IDC_hBU_Join:
// Get the name from the name edit window
GetWindowText(hEB_Name,szName,256);
sprintf(szText,”<%s> Join Number %d”,szName,count++);
PlaySound(“join.wav”,NULL,SND_FILENAME|SND_ASYNC);
vShowText(hLB_Output,szText);
break;

}
break;

case WM_CREATE:
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return(DefWindowProc(hWnd, iMsg, wParam, lParam));

}
return(0L);

}

// Function to display text into the listbox
void vShowText(HWND hChildHandle, char *szText)
{

int Line;

// Add string to the listbox
SendMessage(hChildHandle,LB_ADDSTRING,0,(LPARAM)szText);
// Determine number of items in listbox
Line = SendMessage(hChildHandle,LB_GETCOUNT,0,0);
// Flag last item as the selected item to scroll listbox down
SendMessage(hChildHandle,LB_SETCURSEL,Line-1,0);
// Unflag all items to eliminate negative highlight
SendMessage(hChildHandle,LB_SETCURSEL,-1,0);

}

281Accepting Text Input with Edit Fields

Please note the changes that appear in bold text. They are the only relevant code
changes you need to notice. I hope most of the changes look familiar to you by now.
First, you assign a new unique identifier with a define statement. Then, you create a
new window handle for your edit field. After that is out of the way, you make a call
to CreateWindowEx() to create the edit field. If you haven’t already, go ahead and
launch the program. The output should look like that shown in Figure 7.11.

Okay, now for the good stuff. Change the name in the edit field, and then click the
Join button. What you have done is pull the information entered into the edit field
and then put it into the list box. The question should be, how do you get data from
an edit field into your application? The answer is the GetWindowText() function.

The GetWindowText() Function
The GetWindowText() function copies the text from a window control into a speci-
fied buffer. You can also use the function to copy the text from a window’s title bar,
but I don’t use that method here. Here is the prototype for the function.

int GetWindowText(HWND hWnd, LPTSTR lpString, int nMaxCount)

The function returns the number of characters retrieved if it was successful. If
something went wrong, or there was no text to retrieve, then a 0 is returned.

The first parameter expects the handle of the window or child window from which
you want to retrieve text. In this application, pass the handle to the edit field here.

282 7. Practical Windows Programming

Figure 7.11

Output from the
EditField program

The second parameter expects a character buffer to hold the text to retrieve. The
final parameter tells the function the maximum number of characters to retrieve.
Make sure that you have enough space in your buffer to match this number.

As a recap, here is how you called the GetWindowText() function.

GetWindowText(hEB_Name,szName,256);

Not much to it really—just a few easy parameters. Remember that you must call
this function each time you want to use text from a window control object. The
contents of the character buffer are not automatically updated whenever the user
changes the edit field.

The WinUberClient Program
As a little bonus, I went ahead and converted the client program for
UberAdventure to a Windows application. The new program operates in the same
way as the console client, but with a graphical interface. The source code is too
long to list here, but I want you to load the project and take a look at the source
code. Figure 7.12 shows the output of the program.

You need to launch the UberServer program from Chapter 4 to have something to
which to connect. Once you’ve done that, launch the new client application and try
it out.

283The WinUberClient Program

Figure 7.12

Output from the
WinUberClient
program

Review
In this chapter, you learned how to create more interesting windows, complete with
various gizmos. Here are some key points to remember.

■ All objects within the main window are called child windows.
■ Static text child windows are useful for displaying text that cannot be edited

in a window.
■ Child windows require a HWND handle and a unique identifier to properly

use them.
■ List boxes are useful for displaying lists of text in an output window.
■ Button child windows are useful for providing an interactive interface for

the user.
■ Edit fields are great for retrieving input from the user.

Guess what? It’s that time again—time to close another chapter. Even though I
didn’t cover some Windows programming issues, such as GDI programming, you
now have the knowledge you need to write the complete games covered in this
book. Well, I’m off to frag some people in Quake III; see you on the flip side!

284 7. Practical Windows Programming

Part Three

It’s All
About
DirectX,
Baby!

8 What the Heck Is DirectPlay
Anyway?

9 Chatting with DirectPlay

10 Lions and Clients and Servers,
Oh My!

11 DirectX Graphics

12 Inside Direct3D Rendering

13 Now Showing, DirectInput and
DirectAudio!

14 SpacePirates: Your First
Complete Game

CHAPTER 8

What the
Heck Is

DirectPlay
Anyway?

Welcome to Part Three of this little adventure. I’m glad you’ve made it this
far because some of the best stuff is right around the corner. Oh, and by

the way, that shadowy figure around the corner happens to be Microsoft’s
DirectPlay API. Because I have covered everything from network theory to Windows
programming, I figure it’s time to jump headfirst into the world of DirectX pro-
gramming. I’ll discuss the following topics in this chapter.

■ DirectPlay
■ DirectPlay addresses
■ The DirectPlay message handler
■ Peer-to-peer sessions

For the first assault, I am going to cover DirectPlay, the networking aspect of
DirectX. That’s what you’re really here for anyway, right? As you would to build any
good foundation, I am going to start with the theory and structure behind DPlay.
Once I build a good foundation of knowledge, I’ll put it to use. But that’s for the
next chapter. Kirk here; two to beam up.

DirectPlay, the Equalizer
If you are old enough, you might remember the campy TV series, The Equalizer. If
you do, don’t worry; DirectPlay has nothing to do with it! Anyway, here goes; it’s
time for the dry information part.

DirectPlay is the multiplayer component of Microsoft’s DirectX SDK. Although
other DirectX components, such as DirectDraw and Direct3D, get most of the
attention, DirectPlay is the most important for your purposes. The main problem,
before now, has been that there is little or no documentation for the API. In fact,
the CD containing the DirectX SDK doesn’t even have a Word file for DirectPlay!

The main idea behind DirectPlay is to hide all of the low-level communication
worries from the developer. DirectPlay does this by abstracting the communica-
tion methods. Ooh, abstracting—big word, eh? When a program utilizes
DirectPlay for its networking infrastructure, the application does not have to
worry about the method used. For instance, your program can run using TCP/IP,

288 8. What the Heck Is DirectPlay Anyway?

modem-to-modem, or serial cable, and you have to write only one code-set. To
see this architecture in action, refer to Figure 8.1.

From the diagram, you can see that the application layer is removed from the com-
munication layer. The theory behind DPlay is that you can add future communica-
tion methods without making many code changes.

Service Providers
The communication methods available in DPlay, such as TCP/IP, are commonly
referred to as service providers. Even though you do not have to write entirely new
code-sets to take advantage of different service providers, you do have to check for
their capabilities. What this means is that different providers use different function-
alities. For instance, TCP/IP can use guaranteed packets at this time, but IPX can-
not. You have to keep these rules in mind when developing your application.

Enumeration of Service Providers
How do you know which service providers are available? You find out what is avail-
able by enumerating them. When you enumerate service providers with DPlay, you
cycle through all of the available ones and create a list. The application can then
check this list for whichever provider the user, developer, or player wants to use. If
you want to keep things simple, you can attempt to select a certain service provider

289DirectPlay, the Equalizer

Application

DirectPlay

Serial Cable IPX

Service Providers

Communication Layer

Service Providers

TCP/IP Modem-To-Modem

Figure 8.1

DirectPlay
architecture

The Service Provider
implementation is
hidden from the
application.

and check the return code. If the call returns without error, then you can use the
service provider.

For most of the examples I provide, I try to set TCP/IP as service provider. If it
fails, then I exit out of the program. I do this because TCP/IP is by far the most
popular protocol for developing games, and it is also well suited for the Internet.
Anyway, on with the show.

Game Sessions
Before I get too ahead of myself, I want to stop and talk about game sessions. A
game session is an instance of a multiplayer game running simultaneously on two or
more computers. A real-world example of this is
when two people get together and play Quake III
against one another. Each of the players in this sce-
nario is playing in the same game session. You can
also have two or more other players playing the
same game but in different sessions.

To keep from being confused, take a look at
Figure 8.2. It illustrates the session theory. You can
see multiple sessions with multiple players in each one. Even though some of the
sessions are running the same software, they are not running the same session.

290 8. What the Heck Is DirectPlay Anyway?

APP GUID = 1234 APP GUID = 1234

Session A Session B

Player 1 Player 2 Player 1 Player 2

Quake Arena Quake Arena

Figure 8.2

DirectPlay
game sessions

NOTE
Only when people are
playing together are they
in the same game session.

Types of Game Sessions
The two basic types of game sessions available are peer-to-peer and client/server. I
have already covered these two types of sessions, but I think they warrant a re-cap
in relation to DPlay. One difference with DPlay is that you work with entirely differ-
ent objects depending on which type of game session you utilize. This requirement
makes it very important to plan which type of game session your game will use.

Peer-to-Peer Game Sessions
Peer-to-peer games in DirectPlay operate just like most other peer-to-peer systems.
Basically, players in a peer-to-peer session are responsible for communicating their
actions to all other players. Check out Figure 8.3 to see the architecture of six play-
ers participating in this type of session.

One thing obvious in the diagram is the high amount of network traffic. With each
new player added to the session, the amount of traffic increases dramatically. This
is the main reason why most games don’t use the peer-to-peer method anymore.

291DirectPlay, the Equalizer

Client Client

Client

Client Client

Client
(Host)

Figure 8.3

Peer-to-peer game architecture

The Peer Communication Object

Before you can start using peer-to-peer sessions, you must first create a peer com-
munication object of type CLSID_DirectPlay8Peer. This is a COM object that is ini-
tialized with the CoCreateInstance() function call. The following code snippet shows
you how to create just such an object.

// Create an IDirectPlay8Peer Object
IDirectPlay8Peer *g_pDP;
CoCreateInstance(CLSID_DirectPlay8Peer,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Peer,
(LPVOID*) &g_pDP);

You can see that the code uses an IDirectPlay8Peer interface. This is just one inter-
face of many supported by DirectPlay, but it is the main interface for peer-to-peer
communication.

Peer Hosting

Even though peer-to-peer games are
responsible for communicating with
one another, they still use a server of
sorts. The server, called a host, is respon-
sible for accepting new players to the
game. Hosts are required because they
provide the central place to which to
connect.

The host can also manage some other aspects of game play, but the main point of
hosting is to have a central location of connection. For a real-world example, you
can look to Microsoft’s Age of Empires series. In those games, you can pick a host
to which to connect. Once everyone has joined the host’s game and the game is
started, everyone is responsible for communication.

Host Migration Unlike birds, most multiplayer games go south when things get
bad and don’t come back. In many games if the host leaves, the game is over.
However, some games allow for host migration. What this means is that if the host
quits the game, another player is automatically chosen to take over hosting. This
process is called host migration. The cool part is that DirectPlay can take care of it for
you automatically. All your programs have to do is check for a migrate-host message
and continue accordingly. To see this concept illustrated, take a look at Figure 8.4.

292 8. What the Heck Is DirectPlay Anyway?

TIP
Make sure you call the CoInitialize()
function before using COM objects. It
initializes the COM system, and it is a
prerequisite to using all COM
libraries.

You don’t have to use host migration if you don’t want to. But if you do want to use
it, all you have to do is set a flag when creating the application description.

Host Responsibilities In addition to accepting new players to the game, the host
is also responsible for a few other things, including

■ Keeping track of who is in the game
■ Informing everyone when a new player joins the game
■ Informing everyone when a player leaves the game
■ Accepting or denying a new player to the game

Luckily, all you have to deal with here are a few management items.

Connecting to a Peer Game

Unless you are the host, you have to establish a connection to participate in a peer-
to-peer game. Not much is required other than specifying the host to which you
want to connect. If you’re using TCP/IP, then you specify an IP address and a port
number to which to connect.

Client/Server Sessions
Like peer games, client/server games work just like any other architecture.
Basically, a server is responsible for all game communication. Take a look at Figure
8.5 to see the architecture of four players participating in this type of session.

293DirectPlay, the Equalizer

Peer B Peer C Peer B (Host) Peer C

Peer A starts out as the game host. Peer A loses connection, so Peer B takes over as
the host.

Peer A (Host) Peer A
(Disconnected)

Figure 8.4

Host migration

As you can see in the image, the clients talk to the server but not to the other
clients. This is because the server manages everything. The best advantage to this
model is scalability. With client/server applications, you can have literally thou-
sands of players online at the same time. This requires a very powerful server, but
at least it is possible.

These types of games are actually simpler to operate in many regards. Because the
server is responsible for everything, all the clients have to worry about are themselves.

The Server Communication Object

Because there isn’t much of a game without a server, you must have a server game
object somewhere, so you create a COM object of type CLSID_DirectPlay8Server.
The interface that accompanies it is the IID_IDirectPlay8Server interface. You don’t
really need to worry about these objects now; just keep them in mind for when I
show you how to use them later.

Server Hosting

In client/server games, the server is the game host. In many games, the server runs
as a stand-alone console application. An example of this is a Tribes or Quake server.

294 8. What the Heck Is DirectPlay Anyway?

Client Client

Client Client

Server

Figure 8.5

Client/server game
architecture

Because the server program has no graphics to deal with, it can concentrate on net-
work code. This keeps complexity down and speed up. Another benefit is that you
can run the server on a graphically-challenged machine without problems. Many
people don’t have multiple computers lying around, so they just launch the server
application and then launch a client application on the same machine to connect
to it. This lets people who are hosting the game play it at the same time. Take a
look at Figure 8.6 to see this concept illus-
trated.

When you host a game, you set up a port
to which players can connect. If you are
behind a firewall, you need to open up
some ports for these player connections.
Once you have decided which port to host

295DirectPlay, the Equalizer

Client A's computer is
hosting both the server

and a client.

Client B Client C Client D Client E Client F

Server Program

Client A

Figure 8.6

Separate server
and client
programs on the
same machine

TIP
One thing to note in the client/
server world is that no host
migration is available.When the
host goes away, the game is over.

on, all you have to do is use the host function provided by DPlay. After that is done,
the server program can sit back with a cold one and wait for clients to connect.

The Clients

Now that you have a server out there, you need clients to connect to it. Clients in a
client/server environment work mainly as peers do in a peer-to-peer environment.
Basically, you locate a server to connect to and
then establish the connection. The main dif-
ference is that clients in the client/server
world only have to worry about sending pack-
ets to the server. Because clients can’t send or
receive packets from other players, they only
have to listen for packets from the server.

DirectPlay Addresses
The first main concept that is unique to DirectPlay is addresses. To establish a con-
nection with another computer, you must have an address to which to connect.
With socket connections, you use the URL and port number. With DPlay, you must
create a special address that can hold all sorts of information. Because DPlay can
do more than TCP/IP, the address can hold such things as baud rate for modem
connections or the IP address for Internet connections.

The Address Object
To create an address, you must use the IDirectPlay8Address interface. You do this
by creating a COM object of type CLSID_DirectPlayAddress. Here is a brief example
of creating a DPlay address object.

hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL, CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address,
(LPVOID*) &g_pHostAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Host Address()”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

296 8. What the Heck Is DirectPlay Anyway?

TIP
Every DirectPlay address must
be unique for multiplayer
games to work properly.

You will be creating two types of address objects: one for the computer you are run-
ning the application from and one for the computer to which you are connecting.
The address object that represents your machine is called the device address. The
address object that represents the machine you are connecting to is called the host
address.

Setting the Address
Object’s Service Provider
Although you have created the address object using the CoCreateInstance() func-
tion, the object is still useless. So far all you have done is create an empty address.
To prepare the address for the type of data it needs to hold, you must set which ser-
vice provider to use.

// Set the host address to TCP/IP
if(FAILED(hReturn = g_pHostAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP for Host Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

The code here sets up the host address to be of type
CLSID_DP8SP_TCPIP. This type sets up the address to use
TCP/IP. By specifying the service provider, you are setting
the service provider GUID for the address object.

TCP/IP is not the only service provider available; take a look
at Table 8.1 to see some more available providers.

297DirectPlay Addresses

A GUID is a unique
identifier. Many
things can have a
GUID, such as the
application, a
connection type, or
anything else that
you want to have a
unique number.
GUIDs are so large
they virtually
ensure uniqueness.

Table 8.1 Service Provider Definitions

#Define Use

CLSID_DP8SP_IPX IPX-based address objects

CLSID_DP8SP_MODEM Modem-to-modem connections

CLSID_DP8SP_SERIAL Null-modem cable connections

CLSID_DP8SP_TCPIP TCP/IP communication

The Contents of a DirectPlay Address
So far, all I have shown you is how to create a DPlay address and then how to set
the service provider. But what does that really mean? Well, here I’ll show you what
a DPlay address really looks like.

The address is just a string that contains value pairs. The first part of the address
always contains the following text.

x-directplay:/

When you create a DPlay address, it starts out containing this text, which does
nothing more than let DirectPlay know it is a real address string. As you learned
earlier, the address must specify a service provider to work properly. Once you call
the SetSP() function, it fills in the address string with the provider’s GUID. Here is
what the address looks like once you have set the service provider.

x-directplay:/provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;
device=%7BIP ADAPTER GUID%7D;

Wow, that looks messy, doesn’t it? If you look closely, you can pick out a few compo-
nents that have been added to the address. The first component is the provider, where
the service provider’s GUID is stored. The second parameter is the device, which
stores the GUID for the device on your computer the connection will use. If you pick
out these components separately, you can visualize them in the following list.

x-directplay:/
provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;
device=%7BIP ADAPTER GUID%7D;

Every string in the address must have a matching value. Table 8.2 contains a list of
available address strings. From the table, you can piece together any type of con-
nection address information you need. For example, to use TCP/IP and connect to
IP 192.168.0.2 on port 6000, you would use the following elements.

x-directplay:/
provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;
device=%7BIP ADAPTER GUID%7D;
hostname=192.168.0.2;
port=6000;

All of these elements put together into one string represent a network address.
Take a look at Figure 8.7 to see this concept illustrated.

298 8. What the Heck Is DirectPlay Anyway?

299DirectPlay Addresses

Table 8.2 Address Strings

Name Description

Provider The GUID for the service provider to use

Device The device to use for connecting

HostName The name of the host computer; used mainly for TCP/IP

Port The port on the host computer; used in TCP/IP or IPX

ApplicationInstance The GUID of the game to which you want to connect

Baud The baud rate for modem or serial connections

StopBits The stop bits for modem or serial communications

Parity The parity of modem or serial connections

PhoneNumber The phone number to call for modem connections

FlowControl The flow control for modem or serial connections

Program An optional program GUID

x-directplay:/

provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;

device=%7BIP ADAPTER GUID%7D;

hostname=192.168.0.2;

port=6000;

Common Header

Service Provider

Device to connect with

Host to connect to

Host's port number to connect to

Figure 8.7

String elements combined
to create a DirectPlay
address

You can also specify user data
by putting a # at the end. After
the #, you can put whatever
application-specific strings you
want.

IDirectPlay8Address Functions
The IDirectPlay8Address interface lets you work with it in two different ways. First,
you can access the address string information directly and handle it yourself. Second,
you can use many of the functions provided by the interface to modify the string.
Here I am going to show you some of the various functions provided by this interface.

Because all of the available functions use the address string in some fashion, you
will notice that most of them are rather simplistic. Take a look at Table 8.3 to see
the functions and brief descriptions of them.

The only strange one in the group is the BuildFromDPADDRESS() function. You use this
member function to make DirectX 8 games compatible with DirectPlay 4 interfaces.

One nice part about DPlay addresses is that you don’t have to use any of the func-
tions if you don’t want to. You can just create the entire string by hand and then use
the BuildFromURLA() function to load it. The main drawback to this method is that
your code might be difficult to update when new releases of DirectPlay come out.

Components of an Address
Each of the elements in an address, such as a hostname, is called a component.
When you create an address, you specify different components to add to it. For
most situations, you use functions to modify addresses, and the most common one
is AddComponent(). The AddComponent() member function’s prototype looks like the
following code.

HRESULT AddComponent(
const WCHAR *const pwszName,
const void *const lpvData,
const DWORD dwDataSize,
const DWORD dwDataType

);

300 8. What the Heck Is DirectPlay Anyway?

TIP
DirectPlay addresses use the :/ separator with
only one slash to avoid confusion with standard
Internet addresses. Be sure to never use // as
the separator with DPlay, or it will not work.

This function lets you add a different component to the address without accessing
the string directly. The first parameter expects the name of the component to
add. This parameter has several defines set up for you to use, which you can see in
Table 8.4.

Each component definition in Table 8.4 corresponds to a string definition. Some
people find it easier to remember the definitions, while others find it easier to
remember the string names. You can use either.

301DirectPlay Addresses

Table 8.3 IDirectPlay8Address Functions

Name Description

BuildFromURLW Builds a DPlay address from a wide string

BuildFromURLA Builds a DPlay address from a string

Duplicate Duplicates the DPlay address

SetEqual Sets the address to be equal to another address

IsEqual Checks whether two addresses are equal

Clear Clears out the address string

GetURLW Retrieves the address in wide string format

GetURLA Retrieves the address in string format

GetSP Retrieves the service provider GUID from the address

GetUserData Retrieves any user-specified data

SetSP Sets the service provider GUID in the address

SetUserData Sets user data in the address

GetNumComponents Retrieves the number of components in the address

GetComponentByName Retrieves the contents of a component by name

GetComponentByIndex Retrieves the contents of a component by position

AddComponent Adds a component to the address

GetDevice Retrieves the device in the address

SetDevice Sets the device in the address

BuildFromDPADDRESS Sets the address to be equal to a specified DPlay4 address

The second parameter in the AddComponent() function expects the data to be used,
and the third parameter specifies the size of the data in the second parameter. The
three possible sizes you can use follow:

sizeof(DWORD)
(wcslen(wszYourStringHere)+1)*sizeof(WCHAR)
sizeof(GUID)

You use the wcslen() function you see in the example to get the length of a wide
character string. You add 1 to the size to account for the NULL terminator. Finally,
the size is multiplied by sizeof(WCHAR) to get the total string size. Just be sure to
keep this in mind when adding wide character components.

The final parameter expects the type of data of which your component consists. The
following types are allowed.

■ DPNA_DATATYPE_STRING

■ DPNA_DATATYPE_DWORD

302 8. What the Heck Is DirectPlay Anyway?

Table 8.4 IDirectPlay8Address Component
Definitions

Name Description

DPNA_KEY_APPLICATION_INSTANCE The application instance

DPNA_KEY_BAUD Modem baud rate

DPNA_KEY_DEVICE Connection device

DPNA_KEY_FLOWCONTROL Modem flow control

DPNA_KEY_HOSTNAME IP or hostname

DPNA_KEY_PARITY Modem parity

DPNA_KEY_PHONENUMBER Modem phone number

DPNA_KEY_PORT IP port

DPNA_KEY_PROGRAM Program GUID

DPNA_KEY_PROVIDER Service provider

DPNA_KEY_STOPBITS Modem stop bits

■ DPNA_DATATYPE_GUID

■ DPNA_DATATYPE_BINARY

Okay, now that I have shown you all of this nifty theory about components, I think
it’s time to see it in action, so here you go.

hReturn = g_pHostAddress->AddComponent(
DPNA_KEY_HOSTNAME,
wszHostName,
(wcslen(wszHostName)+1)*sizeof(WCHAR),
DPNA_DATATYPE_STRING);

if(hReturn != S_OK) {
MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”,
MB_ICONERROR);

return -1;
}

Well, there it is in all its glory—the AddComponent() function. In the example, I am
adding the hostname to the address. If the function returns anything but an S_OK,
then something bad happened. Always be sure to check the return code when
using this function. That’s about it for addresses; they’re really not all that hard to
use once you get the hang of the definitions.

The DirectPlay
Message Handler
Now announcing the greatest thing since sliced bread—message handlers! Yes, you
can own one too for just $19.95, shipping extra. It slices, it dices, it pumps more
messages through than Linux on steroids! Okay, get to the point already, right?

While reading the past several chapters, I hope you have learned that multiplayer
games operate by sending and receiving messages. DirectPlay uses what is called a
message handler to process all communication. The message handler in DirectPlay
works a lot like the main message pump used in every Windows program. When
messages are received, they are sent to the message handler. The handler then
looks at the message and determines what to do with it.

It’s been a little while since I showed you an illustration, so take a gander at Figure
8.8 to see the architecture of the message handler. As you can see in the illustra-
tion, all messages received are sent into the message handler for processing.

303The DirectPlay Message Handler

Creating the Message Handler
Before you can start using a message handler, you must create it. This process is
fairly straightforward no matter which game session type you are using. Whether
you have created an IDirectPlay8Peer, an IDirectPlay8Server, or an
IDirectPlay8Client interface, you use the same method to set up the handler.

The Initialize() Member Function
All of the interfaces you deal with use the Initialize() member function to set up
the message handler. For simplicity’s sake, I’ll show you how to set up the handler
in a peer-to-peer game session.

// Init IDirectPlay8Peer Message Handler
if(FAILED(hReturn = g_pDP->Initialize(NULL,
DirectPlayMessageHandler, 0))) {

MessageBox(hWindow, “Failed to Message Handler”, “DirectPlay Error”,
MB_ICONERROR);

return -1;
}

304 8. What the Heck Is DirectPlay Anyway?

Message

Player BPlayer A (Host)

IDirectPlay8Peer

Message

Message Handler

Message

Processed

Figure 8.8

The DirectPlay
message handler
in a peer-to-peer
session

In this example, I use an IDirectPlay8Peer interface variable called g_pDP. I use its
member function, called Initialize(), to set up the handler. Here is the prototype
for the Initialize() member function.

HRESULT Initialize(
PVOID const pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
const DWORD dwFlags

);

The first parameter points to what is called user-provided context. What this means
is that it contains information about the person who sent the message. Important
things such as the sender’s ID are stored here.

The second parameter expects the name of the message handler function to
receive DirectPlay messages. The last parameter is normally set to NULL. At this time,
you use no flags for this parameter.

The Message Handler Function
To set a function to be the message handler, you must first create one. The func-
tion prototype for a DirectPlay message handler looks like this:

HRESULT WINAPI MessageHandler(PVOID pvUserContext,
DWORD dwMessageId, PVOID pMsgBuffer);

The first parameter contains the user’s context that sent the message. The second
parameter contains an identifier to the type of message passed. Different interfaces
receive different message types. You can find the total list of message types available
in Table 8.5. Just keep in mind that not all the message types shown in Table 8.5
are available to every interface.

The final parameter points to void data that contains the actual message contents.

Processing Messages
Once you create the message-handler skeleton, you need to add logic to process
the messages. Here is a brief excerpt from a handler.

switch(dwMessageId)
{

case DPN_MSGID_HOST_MIGRATE:
{

305The DirectPlay Message Handler

306 8. What the Heck Is DirectPlay Anyway?

Table 8.5 DirectPlay Message Definitions

#define

DPN_MSGID_ADD_PLAYER_TO_GROUP

DPN_MSGID_ASYNC_OP_COMPLETE

DPN_MSGID_CLIENT_INFO

DPN_MSGID_CONNECT_COMPLETE

DPN_MSGID_CREATE_GROUP

DPN_MSGID_CREATE_PLAYER

DPN_MSGID_DESTROY_GROUP

DPN_MSGID_DESTROY_PLAYER

DPN_MSGID_ENUM_HOSTS_QUERY

DPN_MSGID_ENUM_HOSTS_RESPONSE

DPN_MSGID_GROUP_INFO

DPN_MSGID_HOST_MIGRATE

DPN_MSGID_INDICATE_CONNECT

DPN_MSGID_INDICATED_CONNECT_ABORTED

DPN_MSGID_PEER_INFO

DPN_MSGID_RECEIVE

DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

DPN_MSGID_RETURN_BUFFER

DPN_MSGID_SEND_COMPLETE

DPN_MSGID_SERVER_INFO

DPN_MSGID_TERMINATE_SESSION

DPL_MSGID_CONNECT

DPL_MSGID_CONNECTION_SETTINGS

DPL_MSGID_DISCONNECT

DPL_MSGID_RECEIVE

DPL_MSGID_SESSION_STATUS

vShowText(hLB_Output,”Migrate Host”);
PDPNMSG_HOST_MIGRATE pHostMigrateMsg;
pHostMigrateMsg = (PDPNMSG_HOST_MIGRATE)pMsgBuffer;
// Check to see if we are the new host
if(pHostMigrateMsg->dpnidNewHost == g_dpnidLocalPlayer) {

vShowText(hLB_Output,”(HOSTING)”);
}
break;

}
}

Basically, all I am doing here is using switch to check the message ID. Once a
match is found, I then create a message structure pointer of the type found. In this
case, I create a PDPNMSG_HOST_MIGRATE message structure pointer. All message struc-
tures begin with PDPNMSG and end with their corresponding message IDs.

PDPNMSG_HOST_MIGRATE pHostMigrateMsg;

Once I have the message structure pointer, I then set it equal to the message buffer
passed by the function. To set the pointer, I have to cast the message contents to
the pointer type.

pHostMigrateMsg = (PDPNMSG_HOST_MIGRATE)pMsgBuffer;

Once the message pointer is set, the code can then properly utilize the contents of
the message. Here is another case statement example of processing a chat packet.

case DPN_MSGID_RECEIVE:
{

PDPNMSG_RECEIVE pReceiveMsg;
pReceiveMsg = (PDPNMSG_RECEIVE)pMsgBuffer;
vShowText(hLB_Output,(char*)pReceiveMsg->pReceiveData);
break;

}

In this example, I am processing a custom
game packet that defaults to type
DPN_MSGID_RECEIVE. Because I know that the
packet contains a chat message, I just cast a
pointer of its type and then pass the data to
the display.

307The DirectPlay Message Handler

CAUTION
The message handler must be
thread-safe because it can be
called from multiple locations.
Be sure to implement critical
sections around areas of shared
memory.

Because messages get queued up for the message handler, you need to process
messages quickly. Other messages are not processed until you have returned from
the message handler. To see this queuing in action, take a look at Figure 8.9.

All right, now it’s time for a little Asheron’s Call action. I’ll see you back here in
30 minutes.

Peer-to-Peer Sessions
Wow, that 30-minute break turned into a two-day ordeal. The state I live in was hit
by a major ice storm. More than 200,000 homes, including mine, were without
power! Well, power is back where I live, so it’s time to continue. I did talk a little
theory earlier about peer-to-peer games, but I didn’t really show you the underlying
functionality available. What I am going to do now is walk you through creating a
peer-to-peer game session. I’ll cover both hosting and joining.

308 8. What the Heck Is DirectPlay Anyway?

Messages

Player BPlayer A (Host)

IDirectPlay8Peer

Messages

Message Handler

Once the
message is

processed, the
message handler

will return.

Messages will wait outside
of the message handler

until the message handler
is done with its current

message.

Figure 8.9

DirectPlay
message traffic

Initializing a Peer-to-Peer Session
Regardless of whether you are joining or hosting a peer-to-peer game, you follow a
few common steps. Here are the common steps, in order.

1. Initialize COM.

2. Create an IDirectPlay8Peer interface.

3. Initialize the message handler.

4. Create a device address.

5. Set the service provider.

6. Create a host address.

Initializing COM
That doesn’t seem so bad, right? The first step is to initialize COM, which must be
done within threads that use the DPlay objects. Because the main application is
nothing more than one giant thread, you must initialize COM. Here is the code for
doing so.

// Initialize COM
hReturn = CoInitialize(NULL);
if(FAILED(hReturn)) {

MessageBox(hWindow, “Error Initializing COM”, “DirectPlay Error”,
MB_ICONERROR);

return hReturn;
}

The function you should notice here is CoInitialize(). This function initializes the
COM system, which has to happen only once per thread. Remember to follow up
each call to this function with CoUninitialize() before you exit your game. It cleans
things up for you. That’s it for COM; just remember to do it, or nothing else in
DirectPlay will work.

Creating an IDirectPlay8Peer Interface
Before you can start using peer-to-peer game functions, you must first create an
interface to a peer-to-peer game object. You only have to create one of these inter-
faces for each connection your game will manage. Most games only manage one
connection, their own. Here is the code to initialize the peer-to-peer interface.

// Our global peer Interface
IDirectPlay8Peer g_pDP;

309Peer-to-Peer Sessions

// Create IDirectPlay8Peer Object
if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Peer,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Peer,
(LPVOID*) &g_pDP))) {

MessageBox(hWindow, “Can’t Create DPlayPeer”, “DirectPlay Error”,
MB_ICONERROR);

}

No big surprises here either; you are using one function only to create the inter-
face, and the function is called CoCreateInstance(). Here is the prototype for
CoCreateInstance().

STDAPI CoCreateInstance(REFCLSID rclsid,
LPUNKNOWN pUnkOuter,
DWORD dwClsContext,
REFIID riid,
LPVOID * ppv

);

If that doesn’t look a little confusing to you, then you belong with the CHUDs.
(Just kidding.) This function can still be a little daunting to non-veterans. Because
COM is a strange beast to begin with, it results in strange-looking functions. You
use the CoCreateInstance() function when you want to create a local copy of a COM
object. DirectX is a COM-based system, so whenever you want to use one of its
objects, you have to get a local copy of it.

The first parameter in this function expects the CLSID that
matches the object you are trying to retrieve. For this para-
meter, I am passing CLSID_DirectPlay8Peer, which is a define
for the GUID that corresponds to a peer interface.

The second parameter for CoCreateInstance() tells whether
the object is part of an aggregate. For our use, just leave this
at NULL.

The third parameter tells how the object’s code
will be processed. By passing a
CLSCTX_INPROC_SERVER to it, I am telling the system
that the object will run in the same process from
which it is called. For all of the examples in this
book, this setting remains the same.

310 8. What the Heck Is DirectPlay Anyway?

A CLSID is a
globally unique
identifier, or GUID,
associated with a
class object.To have
a CLSID, a class
must be registered
in the system.

TIP
You can find all of the
CLSIDs for DirectPlay in
the dplay8.h header file
that comes with DirectX.

The fourth parameter contains the refer-
ence to the interface of the object. For this
parameter, I am passing an
IID_IDirectPlay8Peer, which tells the object
to use the peer interface. These types of ref-
erences are commonly referred to as IIDs.

The last parameter holds the address of the
variable to receive the interface pointer. In this example, I am passing in a variable
of type IDirectPlay8Peer.

If everything goes well, by this time you have created a peer-to-peer interface. If
CoCreateInstance() returns anything other than S_OK, then something went wrong.
Well, that’s it for creating the COM interface; now it’s time to show you how to ini-
tialize the message handler.

Initializing the Message Handler
I have already talked about this quite a bit in the “Creating the Message Handler”
section earlier in this chapter, but here I’ll show you step-by-step how to initialize
one. Here is the code to initialize the handler.

// Init IDirectPlay8Peer Message Handler
if(FAILED(hReturn = g_pDP->Initialize(NULL, DirectPlayMessageHandler, 0))) {

MessageBox(hWindow, “Failed to Message Handler”, “DirectPlay Error”,
MB_ICONERROR);

return -1;
}

What I have done here is call the Initialize() member function of the
IDirectPlay8Peer interface. If you missed it earlier, you can read about this function
in the “The Initialize() Member Function” section earlier in this chapter.

To pass in DirectPlayMessageHandler for my message handler, I had to have first cre-
ated such a function. Here is the code for the message handler.

HRESULT WINAPI DirectPlayMessageHandler(
PVOID pvUserContext,
DWORD dwMessageId,
PVOID pMsgBuffer)

{
HRESULT hReturn = S_OK;

311Peer-to-Peer Sessions

TIP
You can find all of the IIDs for
DirectPlay in the dplay8.h header
file that comes with DirectX.

switch(dwMessageId) {
// Process messages here

}
return hReturn;

}

Trust me; there is more to this function than I demonstrate here, but it is enough
to get a peer program up and running. The message handler has been initialized
by this time, so now it’s off to create the device address.

Creating the Device Address
Because you need a device address to represent your machine’s method for com-
munication, one must be created. For a quick refresher on why this is necessary,
read the “DirectPlay Addresses” section earlier in this chapter. Here is the code for
creating the device address.

// Create a device address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address,
(LPVOID*) &g_pDeviceAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Device”,
“CoCreateInstance()”, MB_ICONERROR);

return -1;
}

It’s the ol’ CoCreateInstance() function again. This time, I use the class ID of
CLSID_DirectPlay8Address to get an interface to IID_IDirectPlay8Address that is
loaded into my IDirectPlay8Address variable called g_pDeviceAddress. Cool, I got to
use a lot of neat buzzwords in one sentence! Okay, now you have a device address;
it’s time to set the service provider.

Setting the Service Provider
Now that you have an address shell, it is time to set its service provider. To do this, I
use the SetSP() member function available to objects of type IDirectPlay8Address.
Here is the code.

// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

312 8. What the Heck Is DirectPlay Anyway?

MessageBox(hWindow, “Failed to SetSP() for Device Addr”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

For this instance, I passed the GUID for a
TCP/IP connection. You can use whichever
service provider GUID you want here, but I
like TCP/IP.

You are done with the device address, so it’s
time to create the host address.

Creating the Host Address
You follow the same steps for creating the host address as you did for creating the
device address. The only difference is that I use g_pHostAddress as the
IDirectPlay8Address variable to hold the interface pointer. I don’t want to leave you
hanging, so here is the code.

// Create a host address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL,CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address,
(LPVOID*) &g_pHostAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Host Address()”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Set the host address to TCP/IP
if(FAILED(hReturn = g_pHostAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Host Addr”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

Take a peek at Figure 8.10 to see a graphical outlook of what has been accom-
plished so far.

Guess what? That’s it for the common code for peer-to-peer sessions! Now that you
have that out of the way, I can show you how to join and host peer games.

313Peer-to-Peer Sessions

TIP
You can find all the service
provider GUIDs for DirectPlay
in the dplay8.h header file that
comes with DirectX.

Hosting a Peer-to-Peer Session
After all of this reading, it is finally time to see how to host a peer-to-peer session—
drum roll, please. Tada! That’s it. You are now hosting. What’s that? The mind-
meld didn’t work? Fine, then; here is the code for hosting.

// Host the game
hReturn = g_pDP->Host(&dnAppDesc,

&g_pDeviceAddress,
1,
NULL,

314 8. What the Heck Is DirectPlay Anyway?

Initialize COM

Create an IDirectPlay8Peer interface

Initialize the message handler

Create a device address

Create a host address

Set the service provider

TCP/IP Modem-To-Modem Serial Cable IPX

IDirectPlay8Peer

Message Handler

IDirectPlay8Peer

Game Server

Ethernet Card

Figure 8.10

Common operations
among peer-to-peer
sessions

NULL,
NULL,
NULL);

For this call, I use the Host() member function available to the IDirectPlay8Peer
interface. The first parameter expects the description of the application you are
hosting. I’ll talk about that in a minute.

The second parameter expects an IDirectPlay8Address that corresponds to your
device address. I use the g_pDeviceAddress variable that was created earlier. The
device address now becomes the host device. The third parameter tells the function
how many addresses are contained within the second parameter’s object. I set this
to 1 because only one address is stored in the device address.

The fourth and fifth parameters are reserved for future functionality and should be
set to NULL. The sixth parameter can hold optional player context information. For
our purposes here, I chose not to use this information and I set it to NULL.

The last parameter lets you specify different flags. One flag of interest is
DPNHOST_OKTOQUERYFORADDRESSING. If you set this flag, then you are allowing DirectPlay
to display a pop-up window asking for additional connection information if it needs
it. This step usually is not a desirable one to use because most games run in full-
screen mode. But if you want DPlay to handle this sort of thing, feel free to use it.
Just make sure you have a valid window for use.

If everything goes okay and hReturn does not fail, then you will be up and hosting a
session! Oh, yeah; I almost forgot about application descriptions from the first
parameter.

Application Descriptions
An application description in DirectPlay is a structure of type DPN_APPLICATION_DESC
and does just what it says—it describes the application. To better understand what
this means, check out the definition of the structure.

typedef struct _DPN_APPLICATION_DESC {
DWORD dwSize;
DWORD dwFlags;
GUID guidInstance;
GUID guidApplication;
DWORD dwMaxPlayers;
DWORD dwCurrentPlayers;
WCHAR* pwszSessionName;

315Peer-to-Peer Sessions

WCHAR* pwszPassword;
PVOID pvReservedData;
DWORD dwReservedDataSize;
PVOID pvApplicationReservedData;
DWORD dwApplicationReservedDataSize;

} DPN_APPLICATION_DESC, *PDPN_APPLICATION_DESC;

Luckily, most of the members are more or less self-descriptive. Before you can
begin using an application description, you should clear it. Here is the code to
clear the structure you use in hosting.

// The application description
DPN_APPLICATION_DESC dnAppDesc;
// Clear out the application description
ZeroMemory(&dnAppDesc, sizeof(DPN_APPLICATION_DESC));

As you can see, I used the ZeroMemory() function to clear the structure. Not much to
this, just your standard memory-clearing stuff.

The first member, dwSize, holds the size of the DPN_APPLICATION_DESC structure. For
this—you use the following code.

dnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);

You need to make this call every time you create a description, so get used to using
it a lot.

You use the second member to store flags that determine the application’s behav-
ior. Here are the flags available to you.

■ DPNSESSION_CLIENT_SERVER

■ DPNSESSION_MIGRATE_HOST

■ DPNSESSION_NODPNSVR

■ DPNSESSION_REQUIREPASSWORD

Unless you want the session to allow migration, you can leave flags set to NULL for
peer sessions. Otherwise, you use the following code.

dnAppDesc.dwFlags = DPNSESSION_MIGRATE_HOST;

If you use the DPNSESSION_REQUIREPASSWORD flag, then the pwszPassword member vari-
able must be populated with the session’s password. You can also mix flags with
the OR (|) operator.

The third member stores the GUID that DPlay creates for the instance of the appli-
cation. There is no need to do anything with this member for hosting. The fourth

316 8. What the Heck Is DirectPlay Anyway?

member stores the GUID of the game. Be sure to populate it with the GUID for the
application. Normally, this is set in a define somewhere. The fifth member is a
DWORD that sets the maximum number of players that can join the game session. If
you set this to 0, then infinite players can join.

The sixth member is only filled when you use the GetApplicationDescription() func-
tion to retrieve an application’s description. It contains the number of players
currently in a session. The seventh member holds a Unicode string representing
the session name. It has no bearing on the actual game and cannot be used by
clients for connecting. The eighth member holds a Unicode password for the ses-
sion. This optional member requires that the DPNSESSION_REQUIREPASSWORD flag be
present in the dwFlags member.

The ninth and tenth members are reserved and should always be left NULL. The
eleventh member allows you to point to reserved data specific to the application.
This is optional, and I do not use it for my examples. The last member is a DWORD
that tells the size of the reserved data in the eleventh member.

Setting Peer Information
One task that you must handle before calling the Host() member function for the
IDirectPlay8Peer interface is setting your player information. You do this so that
other players can have access to your attributes. To set your player or peer informa-
tion, you use the DPN_PLAYER_INFO data structure. You’d better buckle-up; I hear
another structure storm brewing.

typedef struct _DPN_PLAYER_INFO{
DWORD dwSize;
DWORD dwInfoFlags;
PWSTR pwszName;
PVOID pvData;
DWORD dwDataSize;
DWORD dwPlayerFlags;

} DPN_PLAYER_INFO, *PDPN_PLAYER_INFO;

This structure holds everything about players in the game. Keep in mind that this
information is static; therefore, it does not change. The first member might look
familiar because it is the size of the DPN_PLAYER_INFO structure.

The second member stores flags that tell what type of information is stored in the
structure. When you are setting player information, the only flag needed is
DPNINFO_NAME. If you were using the GetPlayerInfo() function, then the flags would
be set to both DPNINFO_NAME and DPNINFO_DATA because data would be returned.

317Peer-to-Peer Sessions

The third member points to a Unicode string that holds the player’s name. The
fourth member points to data that describes the player. The fifth member tells the
size of the data from the fourth member.

The last member can contain either the DPNPLAYER_LOCAL flag, with data for the local
player, or the DPNPLAYER_HOST flag, with data for the host machine.

That’s it for the structure definition; here is the code I use for the host example.

// Create local player Information
DPN_PLAYER_INFO dpPlayerInfo;
// Clear out the structure
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
// Set the size
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
// This structure contains the player name
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
// Set the name
dpPlayerInfo.pwszName = wszPeerName;

Notice that I used the ZeroMemory() function again. You will see this used for just
about every data structure I cover. It is always good practice to clear out memory
before you use it.

The SetPeerInfo() Member Function
Now that the player information structure is created, you must set the peer infor-
mation in the g_pDP variable. You can do this using the SetPeerInfo() member func-
tion. Here is the code.

// Set us up to be non-asynchronous
if(FAILED(hReturn = g_pDP->SetPeerInfo(&dpPlayerInfo, NULL, NULL,
DPNSETPEERINFO_SYNC))) {

MessageBox(hWindow, “Failed to SetPeerInfo()”, “DirectPlay Error”,
MB_ICONERROR);

return -1;
}

Here is the prototype for SetPeerInfo().

HRESULT SetPeerInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

318 8. What the Heck Is DirectPlay Anyway?

From the previous code, you can see that the first parameter expects the local
player information in the form of a DPN_PLAYER_INFO structure. For this, I pass in the
address of the dpPlayerInfo variable.

The second parameter contains user-specified context. I don’t use this, so I keep it
set to NULL. The third parameter passes back an asynchronous handle. It can’t be
used, though, so I don’t bother passing a DPNHANDLE to it. The fourth parameter lets
you specify which flags you want to use with the call. The only flag you can use is
DPNSETPEERINFO_SYNC. This flag tells the operation to perform synchronously.

Before continuing, make sure you always check the return code of this function. As
long as it returns an S_OK, you are fine.

Hosting Review
I have now shown you all there is to hosting, but I want to review the steps. Here is
the complete hosting code, taken from my chat example in the next chapter.

HRESULT hrHostGame(HWND hWindow)
{

HRESULT hReturn;
char szPeerName[256];
char szSessionName[256];
WCHAR wszPeerName[256];
WCHAR wszSessionName[256];
DPN_APPLICATION_DESC dnAppDesc;
char szPort[6];
DWORD dwLength = 256;
DPN_PLAYER_INFO dpPlayerInfo;
DWORD dwPort = 9000;

// Set up our player information
GetWindowText(hEB_InputName,szPeerName,36);
// Get name from Window Edit Box
DXUtil_ConvertGenericStringToWide(wszPeerName, szPeerName);
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
dpPlayerInfo.pwszName = wszPeerName;

// Set us up to be non-asynchronous

319Peer-to-Peer Sessions

if(FAILED(hReturn = g_pDP->SetPeerInfo(&dpPlayerInfo, NULL, NULL,
DPNSETPEERINFO_SYNC))) {

MessageBox(hWindow, “Failed to SetPeerInfo()”,
“DirectPlay Error”, MB_ICONERROR);

return -1;
}

// Set up the application description
sprintf(szSessionName,”%s’s Game”,szPeerName);
DXUtil_ConvertGenericStringToWide(wszSessionName, szSessionName);
ZeroMemory(&dnAppDesc, sizeof(DPN_APPLICATION_DESC));
dnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dnAppDesc.guidApplication = DP_CHAT;
dnAppDesc.pwszSessionName = wszSessionName;
dnAppDesc.dwMaxPlayers = 4;
dnAppDesc.dwFlags = 0;

// Get port from edit box
GetWindowText(hEB_InputServerPort,szPort,6);
// Convert the port string to a DWORD
dwPort = atol(szPort);
// Add port number to address
hReturn = g_pDeviceAddress->AddComponent(
DPNA_KEY_PORT,&dwPort,sizeof(DWORD),DPNA_DATATYPE_DWORD);

if(hReturn != S_OK) {
MessageBox(hWindow, “Failed to AddComponent()”, “hrHost()”,
MB_ICONERROR);

return -1;
}
// Host the game
hReturn = g_pDP->Host(&dnAppDesc, &g_pDeviceAddress, 1, NULL,
NULL, NULL, NULL);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Host()”, “DirectPlay Error”,
MB_ICONERROR);

return -1;
}
// Let us know we are the host
bHost = 1;

320 8. What the Heck Is DirectPlay Anyway?

vShowText(hLB_Output,”<- Hosting ->”);
return hReturn;

}

From this code, you can see that I completed the following steps to host the session.

1. Set up peer information using the SetPeerInfo() function and the
DPN_PLAYER_INFO data structure.

2. Set up the application description with the DPN_APPLICATION_DESC data struc-
ture.

3. Optionally, add the port number to the device address.

4. Host the game with IDirectPlay8Peer interface’s Host() member function.

Take a breather. You are done with hosting for now. An illustration of the steps I
just discussed appears in Figure 8.11. Just wait until the next chapter, where I show
you how to use it in a full application. Until then, here is how you join a session.

321Peer-to-Peer Sessions

Set up peer information with the SetPeerInfo()
function and the DPN_PLAYER_INFO data

structure

Set up the DPN_APPLICATION_DESC
data structure

Add port number to the
device address

Call the Host() function

Optional

Host

Figure 8.11

Hosting a peer session

Joining a Peer-to-Peer
Session
I’ve discussed most of the hard work already. To join a peer-to-peer session, you fol-
low mostly the same steps as when hosting. The main difference is that you have to
specify the host’s name and use the Connect() function instead of the Host() func-
tion. Here are the steps you follow to join a session.

1. Set up the peer information.

2. Set up the application description.

3. Set the host’s name and optional port number.

4. Connect to the host using the Connect() function.

Setting the Peer
Information When Joining
Well, what can I say? This part is identical to setting the peer information when
hosting. Just use a DPN_PLAYER_INFO data structure and call the SetPeerInfo() mem-
ber function. Wasn’t that painless?

Setting the Application
Description When Joining
Setting the application description when joining is a little shorter than setting the
application description when hosting. All you have to do is create the description
and load it with the size and GUID for the application. Here is the code to accom-
plish this.

// Prepare the application description
ZeroMemory(&dpnAppDesc, sizeof(DPN_APPLICATION_DESC));
dpnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dpnAppDesc.guidApplication = DP_CHAT;

Because the host is responsible for setting the maximum number of players and all
of that other data, all the joiners have to worry about is setting the application
GUID.

322 8. What the Heck Is DirectPlay Anyway?

Setting the Host’s Name
and Optional Port Number
To set up the host’s name and optional port number, I use the AddComponent() func-
tion mentioned earlier in this chapter in the “Components of an Address” section.
Here is the code for doing so.

// Add host name to address
hReturn = g_pHostAddress->AddComponent(DPNA_KEY_HOSTNAME,wszHostName,(
wcslen(wszHostName)+1)*sizeof(WCHAR),DPNA_DATATYPE_STRING);
if(hReturn != S_OK) {

MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”,
MB_ICONERROR);

return -1;
}
// Add port number to address
hReturn = g_pHostAddress->AddComponent(
DPNA_KEY_PORT,&dwPort,sizeof(DWORD),DPNA_DATATYPE_DWORD);
if(hReturn != S_OK) {

MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”,
MB_ICONERROR);

return -1;
}

What I did here was call AddComponent() twice. I called it the first time to add the
host’s IP address. The second time, I called it to add the port number.

Connecting with the
Connect() Function
Ah, here we are, the meat of connecting. Once all of the previous steps are out of
the way, you are ready to establish the actual connection. Here is the prototype for
the IDirectPlay8Peer::Connect() function.

HRESULT Connect(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address *const pHostAddr,
IDirectPlay8Address *const pDeviceInfo,
const DPN_SECURITY_DESC *const pdnSecurity,

323Peer-to-Peer Sessions

const DPN_SECURITY_CREDENTIALS *const pdnCredentials,
const void *const pvUserConnectData,
const DWORD dwUserConnectDataSize,
void *const pvPlayerContext,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

Don’t fret too much; it’s really not too bad. The first parameter expects the applica-
tion description for your game. The second parameter expects the address of the
host. The third parameter expects the address of the connection device. The
fourth and fifth parameters are always set to NULL. The sixth parameter points to
application-specific data. This is optional, and I normally leave it at NULL.

The seventh parameter sets the size of the data in the previous parameter. Because
I don’t use any application data, I set this to 0. The eighth parameter points to user
context data and can optionally be set to NULL. The ninth parameter points to
user-supplied context data that is returned when a DPN_MSGID_CONNECT_COMPLETE
system message is received. The tenth parameter points to a DPNHANDLE handle,
which allows you to cancel the asynchronous nature of connecting with the
IDirectPlay8Peer::CancelAsyncOperation() function. This must be set to NULL if you
specify synchronous connecting.

The last parameter lets you set certain flags for the connection. The first flag,
DPNCONNECT_OKTOQUERYFORADDRESSING, tells DirectPlay that it is okay to query for any
additional connection information. Normally, you would not do this because most
games operate in full-screen mode. The second flag possible is DPNCONNECT_SYNC, and
it tells the connection to operate synchronously.

Once you call the Connect() function, the application continues running. When the
host accepts the connection, you receive a DPN_MSGID_CONNECT_COMPLETE message.
Once the message is received, the connection is complete.

Here is the code showing the connection function.

// Connect to the session
hReturn = g_pDP->Connect(&dpnAppDesc,

g_pHostAddress,
g_pDeviceAddress,
NULL,
NULL,

324 8. What the Heck Is DirectPlay Anyway?

NULL,
0,
NULL,
NULL,
&g_hConnectAsyncOp,
NULL); // flags

First, I pass in the application description. It is followed by the host address and
then the device address. Several NULLs follow before the asynchronous handle, and
then for flags, I use NULL again. That’s really about it for connecting. In the next
chapter, I’ll give you the full skinny on setting up a chat program. Before you leave,
be sure to check out Figure 8.12 to see the steps for joining a peer session.

325Peer-to-Peer Sessions

Set up peer information with the SetPeerInfo()
function and the DPN_PLAYER_INFO data

structure

Set up the DPN_APPLICATION_DESC data
structure

Add port number to the
HostAddress

Call the Connect() function

Optional

Add the host name to the
HostAddress

Client

Figure 8.12

Joining a peer game

Review
In this chapter you have learned all about DirectPlay and what its place is in the
DirectX SDK. Here is a quick review of some of the key points discussed.

■ DirectPlay is the networking portion of DirectX. It handles all communica-
tion methods, ranging from modem-to-modem to LAN connections.

■ The different types of connections available in DirectPlay are referred to as
service providers. This book only deals with TCP/IP.

■ Sessions define individual games.
■ The DirectPlay address is used to store connection information such as a

player’s URL.
■ The DirectPlay message handler is used to receive all game communication.
■ DirectPlay is based on COM; therefore, you must initialize COM before

using it.

326 8. What the Heck Is DirectPlay Anyway?

CHAPTER 9

Chatting
with

DirectPlay

Howdy, partner! What a lame introduction, eh? Yeah, I thought so, too. Well,
here you are at the gates to paradise, just waiting to get in to see how to write

a complete DirectPlay application. Here you go, a season pass for one; the show
starts in 10 seconds.

In this chapter, I’ll show you how to write a complete chat program using DirectPlay.
The program uses standard Windows dialogs for graphics to keep things as simple as
possible. Currently, the application allows up to four people to chat at once, but you
can increase this number if you so desire. I’ll cover the following topics in this chapter.

■ How to set up the project space for DPChat
■ The components of the header file
■ How to initialize DirectPlay
■ How to join the game
■ How to host the game
■ How to send chat messages

Quiet, please; it’s curtain time!

Creating the Project Space
Before you can start looking at code, you need to have a project space in which
to work. If you want to, you can just load the project I created for you. But that
wouldn’t be as much fun, would it? Setting up Visual C++ for DirectPlay isn’t too
painful; just follow along with me here.

1. Make sure you have the DirectX SDK installed. It’s on the CD that came with
the book. You should also make sure that your compiler has paths to the
directx8/include, directx8/lib, directx8/samples/multimedia/common/src,
and directx8/samples/multimedia/common/include folders. If you
installed the DirectX SDK folder into a folder other than directx8, replace
instances of directx8 with your base folder name.

2. Create a new Win32 application project in Visual C++.

3. Under the Project Settings menu, select the Link tab.

4. In the Object/Libraries edit box, enter the winmm.lib and dplay.lib libraries.

328 9. Chatting with DirectPlay

5. Select the C/C++ tab.

6. From the Category drop-down menu, select Code Generation.

7. In the Use Run-Time Library drop-down menu, select Multithreaded.

8. Select OK.

9. Under the Project menu, select Add To Project, and then select Files. Browse
to where you installed DirectX 8. Under directx8/samples/multimedia/
common/src/ you will find the dxutil.cpp file. Select this file, and then select
OK. Repeat this step again, but this time add the dxutil.h file from the
directx8/samples/multimedia/common/include directory to the project.

If you followed the steps properly, you should now have an empty project in which
to create DirectPlay applications. To hold the main program, you need to create a
.cpp file called DPChat.cpp. Go ahead and do this now.

To keep things clean, go ahead and add a new header file to the project and call it
DPChat.h.

Okay, your project architecture should look like that shown in Figure 9.1.

329Creating the Project Space

dplay.lib

winmm.lib

dxutil.cpp dxutil.h

dplay.h

DPChat.cpp DPChat.h

Library Files

Direct X Helper Files

DPChat Code

Figure 9.1

DirectPlay project
architecture

The DPChat Header File
The DPChat header file will contain all of your global variable declarations, func-
tion prototypes, and preprocessor definitions. By separating the project into two
files, you can keep the clutter down. Here is the code that you need to copy into
the DPChat header file. Or, you can just look at the one I wrote.

#define INITGUID
#include <windows.h>
#include <dplay8.h>
#include <stdio.h>
#include “DXUtil.h”
#define IDI_ICON1 101 // Icon Resource
// IDs for child windows
#define IDC_hBU_Join 40001
#define IDC_hLB_Output 40002
#define IDC_hBU_Host 40004
#define IDC_hEB_InputServerIP 40005
#define IDC_hEB_InputServerPort 40006
#define IDC_hEB_InputName 40007
#define IDC_hST_TextServerIP 40008
#define IDC_hST_TextServerPort 40009
#define IDC_hST_TextName 40010
#define IDC_hEB_InputField 40011
// Handles to child windows
HWND hBU_Join = NULL;
HWND hBU_Host = NULL;
HWND hLB_Output = NULL;

330 9. Chatting with DirectPlay

TIP
The dxutil.cpp file requires a dxutil.h to work properly.You might find
that it is easier to copy these two files to your project’s folder than it is
to keep track of where they are. If you decide not to copy the files, you
should make sure your paths in Visual C++ point to the samples/multi-
media/common/src and samples/multimedia/common/include folders.
This will allow the compiler to find them in the future.

HWND hEB_InputServerIP = NULL;
HWND hEB_InputServerPort = NULL;
HWND hEB_InputName = NULL;
HWND hEB_InputField = NULL;
HWND hST_TextServerIP = NULL;
HWND hST_TextServerPort = NULL;
HWND hST_TextName = NULL;
#define TIMERID_CONNECT_COMPLETE 1 // Timer ID
// GUID, needed to identify application
GUID DP_CHAT = { 0x2ae835d, 0x9179, 0x485f, { 0x83, 0x43, 0x90, 0x1d,
0x32, 0x7c, 0xe7, 0x94 } };

// Class name and app name
LPCTSTR lpszApplicationName = “DPChat”;
LPCTSTR lpszTitle = “DPChat”;
IDirectPlay8Peer* g_pDP;
IDirectPlay8Address* g_pDeviceAddress;
IDirectPlay8Address* g_pHostAddress;
DPNHANDLE g_hConnectAsyncOp;
DPNID g_dpnidLocalPlayer = 0;
#define MAX_PLAYERS 4
struct PLAYER_INFORMATION
{

bool bActive;
DPNID dpnidPlayer;
char szPlayerName[32];

};
PLAYER_INFORMATION PlayerInfo[MAX_PLAYERS];
HANDLE g_hConnectCompleteEvent;
HRESULT g_hrConnectComplete;
CRITICAL_SECTION g_csModifyPlayer;
LONG g_lNumberOfActivePlayers = 0;
BOOL bHost = 0;
struct PACKET_CHAT {

char szText[256];
};
// Message Loop CallBack Function prototype (REQUIRED FOR ALL WINDOWS PROGRAMS)
LRESULT CALLBACK fnMessageProcessor (HWND, UINT, WPARAM, LPARAM);
// Function to display text in the output box
void vShowText(HWND hChildHandle, char *szText);

331Creating the Project Space

// Function to set up display of GUI
void vCreateInterface(HWND hWnd,HINSTANCE hInstance);
// Function called when program exits, cleans up allocated objects
void vCleanup(void);
// Function to initialize DirectPlay system
HRESULT hrInitializeDirectPlay(HWND hWindow);
// Function to send chat message
HRESULT hrSendChatMessage(int player, char *szmessage);
// Function to handle all incoming DPlay messages
HRESULT WINAPI DirectPlayMessageHandler(PVOID pvUserContext,
DWORD dwMessageId, PVOID pMsgBuffer);

HRESULT hrHostGame(HWND hwnd); // Function to host a game
HRESULT hrJoinGame(HWND hwnd); // Function to join a game
// Function called when a player joins the game
HRESULT hrCreatePlayer(PVOID pvUserContext, PVOID pMsgBuffer);
// Function called when a player leaves the game
HRESULT hrDestroyPlayer(PVOID pvUserContext, PVOID pMsgBuffer);

Wow! Doesn’t that look like a lot of information to digest? If you cut out all of the
comments, then it shrink a bit, and if you remove all of the Windows GUI data, it
shrinks another 20 lines or so. You will notice that I did cut out quite a few of the
comments from the version on the book’s CD, but that is to keep paper usage
down. Be sure to save the header file once you have typed in everything.

INITGUID
The first thing accomplished in the header file is the definition of INITGUID. This
definition sets up the environment to utilize GUIDs that are needed later. Be sure
to specify this definition at the beginning of all DirectX applications.

DirectPlay Include Files
Once INITGUID is defined, I then go on to add the necessary header files to the
application. Here they are as listed.

#include <windows.h>
#include <dplay8.h>
#include “DXUtil.h”
#include <stdio.h>

332 9. Chatting with DirectPlay

The first one, windows.h, sets up the application to use Windows macros and such.
This is standard for all Windows applications I demonstrate. The second include
file, dplay8.h, is required to use DirectPlay. None of the API’s functions work with-
out it. The third include file, dxutil.h, is the header file for the dxutil.cpp file I
added in the project space. The dxutil files provide several helper functions to aid
in common or mundane tasks. Why reinvent the wheel, right? The last include file
is for standard I/O functions, which you should already recognize.

Child Windows
The next block of code in the header file defines the child window identifiers.
Table 9.1 shows you the IDs for the controls required by the GUI.

The next block of code in the header file allocates variables for the child window
handles.

333Creating the Project Space

Table 9.1 Child Window IDs Used in DPChat

Control Description

IDC_hBU_Join Button used to join the session

IDC_hLB_Output List box to output text

IDC_hBU_Host Button used to host the session

IDC_hEB_InputServerIP Edit box to input host’s name

IDC_hEB_InputServerPort Edit box to input host’s port

IDC_hEB_InputName Edit box to input player name

IDC_hST_TextServerIP Static text

IDC_hST_TextServerPort Static text

IDC_hST_TextName Static text

IDC_hEB_InputField Edit box to accept chat text

The Timer ID
The next piece of code sets the value for a Windows timer you need when establish-
ing a connection.

#define TIMERID_CONNECT_COMPLETE 1

You need a unique number for every timer you create in your application. Later,
I’ll show you how to use the SetTimer() function that uses this value. For now, just
keep it in the back of your noggin.

The Ominous GUID
The next piece of code you see is probably one of the most important pieces to
DirectPlay architecture. Without it, you are not able to communicate with other
peers.

// GUID, needed to identify application
GUID DP_CHAT = { 0x2ae835d, 0x9179, 0x485f, { 0x83, 0x43, 0x90,
0x1d, 0x32, 0x7c, 0xe7, 0x94 } };

What this little baby does is give the
application its own unique identi-
fier. For the program to find other
instances of it, it must know which
GUID to look for. This keeps games
from cross talking.

The Class and Application Names
The next couple of lines of code create two global strings that hold the application
name and the class name. If you put them here, you can change the name and title
of the program without having to search all over the place.

The DirectPlay Interface Globals
Here come the important things—the interface globals. The code, please, maestro.

IDirectPlay8Peer* g_pDP;
IDirectPlay8Address* g_pDeviceAddress;
IDirectPlay8Address* g_pHostAddress;

334 9. Chatting with DirectPlay

NOTE
The guidgen program in Windows is used
to create the unique GUIDs. You can run
it from the command prompt.

The first global listed here, g_pDP, is of type IDirectPlay8Peer and provides you with
your connection to the DirectPlay world. This interface is used in both joining and
hosting.

The second and third global interfaces allocated are of type IDirectPlay8Address
and are your placeholders for the host and device address interfaces. These are
used to establish connections.

The Player Structure and Other
Miscellaneous Information
The rest of the header file contains function prototype and other information that
you will find out about in the main .cpp file. The only noteworthy information at
this time is the player data structure.

struct PLAYER_INFORMATION
{

bool bActive;
DPNID dpnidPlayer;
char szPlayerName[32];

};

This structure defines the player information for each person who connects to the
chat session. The first member sets whether the slot is being used. The second
member holds the player’s unique DirectPlay identifier. The third member holds
the player’s name. Right after the structure definition, I create holders for the data
like so:

PLAYER_INFORMATION PlayerInfo[MAX_PLAYERS];

That’s it for the header file; on with the show!

The Main Project File
The main file you deal with is the DPChat.cpp file. This file contains the majority
of the code used in the application. If you are creating your own project from
scratch, then you need to copy the contents of my DPChat.cpp file to your own.
There is just way too much code to list here. What I do is list it piece-by-piece and
explain the functions in the order they appear. Before I get ahead of myself, take a
look at Figure 9.2 to see the output of the program.

335Creating the Project Space

Window Initialization
The first line of code you run across is used to include the DPChat.h header file.
This gives you access to everything defined in it. Once that is out of the way, then
the WinMain() function follows. Here it is in its entirety.

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,
int nCmdShow)

{
MSG msg;
WNDCLASSEX wndclass;
HWND hWnd;
HRESULT hReturn;

// Set up window attributes
wndclass.cbSize = sizeof(wndclass);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = fnMessageProcessor;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(hInstance,

MAKEINTRESOURCE(IDI_ICON1));
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = lpszApplicationName;

// Registered Class Name
wndclass.hIconSm = LoadIcon(hInstance,

336 9. Chatting with DirectPlay

Figure 9.2

Output from
DPChat.exe

MAKEINTRESOURCE(IDI_ICON1));

if(RegisterClassEx(&wndclass) == 0) {
// Do error logic here
exit(1);

}

// Create the main window
hWnd = CreateWindow(

lpszApplicationName, // Application name
lpszTitle, // Name displayed on title bar
WS_OVERLAPPEDWINDOW,
100,100,400,340,NULL,NULL,hInstance,NULL);

// Create child objects
vCreateInterface(hWnd,hInstance);
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
// Initialize DirectPlay
hReturn = hrInitializeDirectPlay(hWnd);
if(FAILED(hReturn)) {

vCleanup();
exit(1);

}
// Process messages until the program is terminated
while(GetMessage (&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return(msg.wParam);

}

There should be no real surprises here. Just about everything in the function
resembles the code written in Chapter 7, “Practical Windows Programming.” The
first thing I do is create the window class object and its attributes. The class is then
registered. After that is done, I create the main window using the CreateWindow()
function.

One item of note is that I am not using PeekMessage() here to loop through mes-
sages. Instead, the program is sitting in the while loop until a Windows message
happens along. This keeps the program from taking up too much processing
power during idle times. Refer to Figure 9.3 to see this concept illustrated.

337Creating the Project Space

Initializing Child Windows
The next function called is vCreateInterface(). Its sole purpose is to create the
child window objects in the main window. Things such as the edit boxes and static
text objects are created there. Here is the code listing for it.

void vCreateInterface(HWND hWnd,HINSTANCE hInstance)
{

// Server IP text
hST_TextServerIP = CreateWindow(

“static”,”Server IP”,WS_CHILD | SS_CENTER |
WS_VISIBLE,5,5,120,28,

hWnd,(HMENU)IDC_hST_TextServerIP,hInstance,NULL);
// Port Text
hST_TextServerPort = CreateWindow(

“static”,”Port”,WS_CHILD | SS_CENTER |
WS_VISIBLE,125,5,50,28,

hWnd,(HMENU)IDC_hST_TextServerPort,hInstance,NULL);
// Name text
hST_TextName = CreateWindow(

338 9. Chatting with DirectPlay

Main Program

Message HandlerGet Message?
Yes

No

Figure 9.3

The message loop

The Get Message
routine takes very
little processing time.

“static”,”Player Name”,WS_CHILD | SS_CENTER |
WS_VISIBLE,250,5,135,28,

hWnd,(HMENU)IDC_hST_TextName,hInstance,NULL);
// Join button
hBU_Join = CreateWindow(

“BUTTON”,”Join”,WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
325,280,60,28,
hWnd,(HMENU)IDC_hBU_Join,hInstance,NULL);

// Host button
hBU_Join = CreateWindow(

“BUTTON”,”Host”,WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
325,240,60,28,hWnd,(HMENU)IDC_hBU_Host,hInstance,NULL);

// Output window
hLB_Output = CreateWindowEx(

WS_EX_CLIENTEDGE,”LISTBOX”,NULL,
WS_CHILD | WS_VISIBLE | LBS_NOTIFY | WS_VSCROLL | WS_BORDER,
5,50,315,230,hWnd,(HMENU)IDC_hLB_Output,hInstance,NULL);

// Name
hEB_InputName = CreateWindowEx(

WS_EX_CLIENTEDGE,”EDIT”,”Unnamed”,
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT,
250,20,135,28,hWnd,(HMENU)IDC_hEB_InputName,hInstance,NULL);

// Server IP
hEB_InputServerIP = CreateWindowEx(

WS_EX_CLIENTEDGE,”EDIT”,”192.168.0.2”,
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT,
5,20,120,28,hWnd,(
HMENU)IDC_hEB_InputServerIP,hInstance,NULL);

// Server port
hEB_InputServerPort = CreateWindowEx(

WS_EX_CLIENTEDGE,”EDIT”,”6000”,
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT,
125,20,50,28,hWnd,(
HMENU)IDC_hEB_InputServerPort,hInstance,NULL);

// Edit field to enter chat messages into
hEB_InputField = CreateWindowEx(

WS_EX_CLIENTEDGE,”EDIT”,NULL,
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT |
ES_AUTOVSCROLL | ES_MULTILINE,

5,280,315,28,hWnd,(HMENU)IDC_hEB_InputField,hInstance,NULL);
}

339Creating the Project Space

Each of the child objects shown creates the GUI for the chat application. The one
you will see mentioned many times is hLB_Output. This handle is used quite often
when outputting text to the main window. Take a look at Figure 9.4 to see where
each of the child objects belong.

Outputting Text to the Window
The function used to output text to the hLB_Output list box is called vShowText().
This function accepts two parameters. The first parameter accepts the child handle
to output the text to, and the second parameter accepts the text to output. Because
the application has only one list box, vShowText() is always passed hLB_Output for the
child handle. Here is the code for this function.

void vShowText(HWND hChildHandle, char *szText)
{

int Line;
// Add string to the listbox
SendMessage(hChildHandle,LB_ADDSTRING,0,(LPARAM)szText);
// Determine number of items in listbox
Line = SendMessage(hChildHandle,LB_GETCOUNT,0,0);
// Flag last item as the selected item, to scroll listbox down
SendMessage(hChildHandle,LB_SETCURSEL,Line-1,0);
// Unflag all items to eliminate negative highlight
SendMessage(hChildHandle,LB_SETCURSEL,-1,0);

}

340 9. Chatting with DirectPlay

Figure 9.4

Child object positions
in DPChat.exe

hEB_InputField

hBU_Host

hEB_InputName

hEB_InputServerIP

hEB_InputServerPort

hBU_Join

hLB_Output

hST_TextServerIP hST_TextServerPort hST_TextName

The Window Message Handler
Back in WinMain(), I set the function named fnMessageProcessor() to be the window
class’s message handler. This handler is needed to process all messages to the win-
dow, such as key presses. Here is the code to the message handler.

LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg, WPARAM wParam,
LPARAM lParam)

{
char szMessage[256];
char szCompMessage[256];
HRESULT hReturn;
switch (iMsg) {

case WM_COMMAND:
{

// Check for child window messages
switch(LOWORD(wParam))

// Check whether the user clicked the button
case IDC_hBU_Join:

hrJoinGame(hWnd);
break;

case IDC_hBU_Host:
hrHostGame(hWnd);
break;

}
switch(HIWORD(wParam)) {

case EN_UPDATE:
// Get the text from the edit box
GetWindowText(hEB_InputField,szMessage,256);
// Check whether she pressed Enter
if(szMessage[strlen(szMessage)-1] == 10) {

// Get rid of trailing garbage
szMessage[strlen(szMessage)-2] = ‘\0’;
sprintf(szCompMessage,”<%s> %s”,
PlayerInfo[0].szPlayerName, szMessage);
hReturn = hrSendChatMessage(-1,szCompMessage);
// Clear input field
SetWindowText(hEB_InputField,””);

}

341Creating the Project Space

}
break;

}
case WM_DESTROY:

// Clean up system
vCleanup();
// Exit out of Windows
PostQuitMessage(0);
break;

case WM_TIMER:
if(wParam == TIMERID_CONNECT_COMPLETE) {

// Check whether the message is telling us
our connection is complete

if(WAIT_OBJECT_0 == WaitForSingleObject(
g_hConnectCompleteEvent, 0)) {

if(FAILED(g_hrConnectComplete)) {
vShowText(hLB_Output,“<<----CONNECTION IN-COMPLETE---->>”);

}
else {

vShowText(hLB_Output,“<<----CONNECTION COMPLETE---->>”);
}
KillTimer(hWnd, TIMERID_CONNECT_COMPLETE);

}
}
break;

default:
return(DefWindowProc(hWnd, iMsg, wParam, lParam));

}
return(0L);

}

The main functions of interest here are hrJoinGame(), hrHostGame(), and
hrSendChatMessage(). These three functions get called when their corresponding
child controls are activated. The join and host functions are activated by their cor-
responding buttons. The chat function is activated when the user presses Enter
after typing text into the edit box.

Another important item in this function is the WM_TIMER check. That is used later to
determine when a connection has been made. Check out Figure 9.5 to see the
architecture of what has been completed so far.

342 9. Chatting with DirectPlay

The hrInitializeDirectPlay() Function
Up to now, all I have done is create Windows GUI code. Now comes the good part,
DirectPlay goodies. In the WinMain() function, I make a call to
hrInitializeDirectPlay(). If the call fails, then the program exits. Here is the code
for the function.

HRESULT hrInitializeDirectPlay(HWND hWindow)
{

HRESULT hReturn;
int i;

// Initialize COM
hReturn = CoInitialize(NULL);
if(FAILED(hReturn)) {

MessageBox(hWindow, “Error Initializing COM”,
“DirectPlay Error”, MB_ICONERROR);

return hReturn;
}

343Creating the Project Space

RegisterClassEx

CreateWindow

vCreateInterface

Message
Handler

hrJoinGame()

hrHostGame()

hrSendChatMessage()

WM_TIMER

Main Program

Figure 9.5

The program
architecture so far

// Initialize critical sections for multithreading
InitializeCriticalSection(&g_csCreatePlayer);
InitializeCriticalSection(&g_csDestroyPlayer);

// Create IDirectPlay8Peer object
if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Peer,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Peer,
(LPVOID*) &g_pDP)))
MessageBox(hWindow, “Can’t Create DPlayPeer”,
“DirectPlay Error”, MB_ICONERROR);

// Init IDirectPlay8Peer message handler
if(FAILED(hReturn = g_pDP->Initialize(NULL,
DirectPlayMessageHandler, 0))) {

MessageBox(hWindow, “Failed to Message Handler”,
“DirectPlay Error”, MB_ICONERROR);

return -1;
}

// Create a device address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address, NULL,CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address, (LPVOID*) &g_pDeviceAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Device”,
“CoCreateInstance()”, MB_ICONERROR);

return -1;
}

// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(

&CLSID_DP8SP_TCPIP))) {
MessageBox(hWindow, “Failed to SetSP() for Device Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

// Create a host address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL,CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address,

344 9. Chatting with DirectPlay

(LPVOID*) &g_pHostAddress);
if(FAILED(hReturn)) {

MessageBox(hWindow, “Failed to Create Host Address()”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Set the host address to TCP/IP
if(FAILED(hReturn = g_pHostAddress->SetSP(
&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Host Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

// Create connection complete event for later use
g_hConnectCompleteEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

vShowText(hLB_Output,”<<--TCP INITED-->>”);

// Init miscellaneous variables
for(i = 0 ; i < MAX_PLAYERS ; i++) {

PlayerInfo[i].bActive = 0;
}

return S_OK;
}

That’s a bit of a doozy, eh? I hope some of it looks familiar from Chapter 8, “What
the Heck Is DirectPlay Anyway?” This function is responsible for initializing all of
the common code used in the chat application. Regardless of whether the instance
of the program you are running is the host, it calls this code.

Thou Shalt Initialize COM
It’s not a commandment, but it is required for DirectPlay to work. The first thing I
do is initialize COM so that I can use the COM interfaces provided by DirectX.
This is accomplished using the infamous CoInitialize() function.

hReturn = CoInitialize(NULL);

As long as it returns okay, the program can proceed.

345Creating the Project Space

Critical Sections
The next two lines of code should look a little foreign to you if you are not a multi-
threading junkie like me.

// Initialize critical sections for multithreading
InitializeCriticalSection(&g_csModifyPlayer);

Do you remember mutexes back at the end of Chapter 6, “Introduction to
Windows Programming?” If not, please return to that chapter and review them.
Basically, a critical section is just like a mutex.

A critical section is a synchronization object that allows only one thread at a time to
access a block of data. It is used to keep two or more threads from corrupting
shared memory. There are many examples of where this is useful, one of which is
the coin counter scenario.

Imagine that your application ran a worker thread that did nothing other than
check the coin slot for coin drops. Every time a coin dropped through, the worker
thread would add one credit to the global counter, called g_credits. The main pro-
gram that accepts user input would wait for the user to select the Player One but-
ton. When this happened, the main program would deduct a credit from the
g_credits counter.

The problem here is, what happens if a credit is deposited at the same time the
user is selecting the Player One button? You could have a possible conflict of opera-
tions because both threads would hit the same global variable. Well, if you intro-
duce a critical section around adding and subtracting the credit variable, you solve
the problem. The critical section would restrict access to modifying g_credits to
only one thread at a time. If the critical section were in use by the worker thread
when the user selected the Player One button, then the main thread would have to
wait to deduct a coin until the worker thread released the critical section. No mat-
ter how many times I read this, it still sounds confusing to me, so here’s an illustra-
tion to help. Take a look at Figure 9.6 to see critical sections illustrated.

Now that you understand critical sections, I can go ahead and explain the critical
section I am initializing. The chat program keeps track of a list of active partici-
pants. When a player joins the chat room, all players, including the joiner, receive
a message. When a new player message is received, the chat program calls the
hrCreatePlayer() function. Within this function, a global list is modified to add the
player. Because different threads can call this function at the same time, you must
lock the globally shared data when modifying it, using the g_csModifyPlayer critical
section.

346 9. Chatting with DirectPlay

The same logic applies when players leave the game. When this happens, the
hrDestroyPlayer() function is called, and it also uses the g_csModifyPlayer critical
section to lock the global data when removing a player from the list. This keeps
hrCreatePlayer() from interfering with hrDestroyPlayer(). You will see how to use
the critical section later.

The IDirectPlay8Peer Object
The next block of code that comes along gets an interface to the DirectPlay peer-
to-peer functionality.

// Create IDirectPlay8Peer Object
if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Peer,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Peer,
(LPVOID*) &g_pDP)))

MessageBox(hWindow, “Can’t Create DPlayPeer”, “DirectPlay Error”, MB_ICONERROR);

Here I make a call to CoCreateInstance() with the class CLSID_DirectPlay8Peer. This
loads my pointer called g_pDP with the IDirectPlay8Peer interface desired. Once this
is accomplished, I can go on to make peer interface calls.

347Creating the Project Space

Coin Listener Main Program

Critical Section

Cannot alter credits

Enter Critical Section

Leave Critical Section

Add Credit

Cannot alter credits

Enter Critical Section

Leave Critical Section

Remove Credit

CPU

Figure 9.6

A critical section
used in coin
counting

The DirectPlay Message Handler
Now that the interface is created, it is time to assign a message handler to hold all
of the DirectPlay messages the application will receive. Here is the code to initialize
the message handler.

// Init IDirectPlay8Peer Message Handler
if(FAILED(hReturn = g_pDP->Initialize(NULL, DirectPlayMessageHandler, 0))) {

MessageBox(hWindow, “Failed to Message Handler”, “DirectPlay Error”,
MB_ICONERROR);

return -1;
}

For the initialization, I use the IDirectPlay8Peer::Initialize() function. In the sec-
ond parameter, I pass it the address for the message handler function to use. In
this case, it will use the function named DirectPlayMessageHandler(). Keep in mind
that all messages received from now on with the g_pDP interface are routed to this
function. Here is the code for the message handler function.

HRESULT WINAPI DirectPlayMessageHandler(PVOID pvUserContext,
DWORD dwMessageId, PVOID pMsgBuffer)

{
HRESULT hReturn = S_OK;
switch(dwMessageId) {

case DPN_MSGID_CREATE_PLAYER:
{

hrCreatePlayer(pvUserContext,pMsgBuffer);
break;

}

case DPN_MSGID_DESTROY_PLAYER:
{

hrDestroyPlayer(pvUserContext,pMsgBuffer);
break;

}

case DPN_MSGID_HOST_MIGRATE:
{

vShowText(hLB_Output,”Migrate Host”);
PDPNMSG_HOST_MIGRATE pHostMigrateMsg;
pHostMigrateMsg = (PDPNMSG_HOST_MIGRATE)pMsgBuffer;

// Check to see whether we are the new host

348 9. Chatting with DirectPlay

if(pHostMigrateMsg->dpnidNewHost == g_dpnidLocalPlayer) {
vShowText(hLB_Output,”(HOSTING)”);

}
break;

}

case DPN_MSGID_TERMINATE_SESSION:
{

vShowText(hLB_Output,”<-Terminating Session->”);
PDPNMSG_TERMINATE_SESSION pTerminateSessionMsg;
pTerminateSessionMsg =
(PDPNMSG_TERMINATE_SESSION)pMsgBuffer;
break;

}

case DPN_MSGID_RECEIVE:
{

PDPNMSG_RECEIVE pReceiveMsg;
pReceiveMsg = (PDPNMSG_RECEIVE)pMsgBuffer;

vShowText(hLB_Output,(char*)pReceiveMsg->pReceiveData);

break;
}

case DPN_MSGID_CONNECT_COMPLETE:
{

PDPNMSG_CONNECT_COMPLETE pConnectCompleteMsg;
pConnectCompleteMsg = (PDPNMSG_CONNECT_COMPLETE)pMsgBuffer;

g_hrConnectComplete = pConnectCompleteMsg->hResultCode;
SetEvent(g_hConnectCompleteEvent);
break;

}
}
return hReturn;

}

All of the messages the application handles appear in this function. I already briefly
mentioned DPN_MSGID_CREATE_PLAYER and DPN_MSGID_DESTROY_PLAYER when I talked
about critical sections.

349Creating the Project Space

The DPN_MSGID_HOST_MIGRATE message is received by whichever peer is picked to take
over when a host ends the session. This is only valid if the session has migration
turned on. The DPN_MSGID_TERMINATE_SESSION message is received if migration is not
active and the host terminates the session. In this case, everyone is disconnected.
The DPN_MSGID_RECEIVE message is received whenever a chat message is sent. This
message type is the one used by all games to send custom messages. The
DPN_MSGID_CONNECT_COMPLETE message signals that a connection has been completed.
Any player who joins a session successfully receives this message.

Take a look at Figure 9.7 to see which messages trigger which functions in
DPChat.exe.

350 9. Chatting with DirectPlay

DPN_MSGID_CREATE_PLAYER
DirectPlay
Message
Handler

hrCreatePlayer()

DPN_MSGID_DESTROY_PLAYER

hrDestroyPlayer()

DPN_MSGID_CONNECT_COMPLETE

SetEvent()

Internet

Figure 9.7

Messages and their
corresponding
functions

The Host and Device Addresses
Because every peer game requires both a host and a device address, I create those
next, using the CLSID_DirectPlay8Address COM object, as shown here.

// Create a device address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL,CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address,
(LPVOID*) &g_pDeviceAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Device”, “CoCreateInstance()”,
MB_ICONERROR);

return -1;
}
// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Create a host address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL,CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address,
(LPVOID*) &g_pHostAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Host Address()”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Set the host address to TCP/IP
if(FAILED(hReturn = g_pHostAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

The CoCreateInstance() function creates both of the addresses, and then the
IDirectPlay8Address::SetSP() function sets their service providers to use TCP/IP.
This operation does not involve a whole lot of fanfare; it’s just another gear in the
machine, so to speak.

351Creating the Project Space

The Completion Event
Yippee! Here is something new for you, a Windows event. Check out this piece of
code.

// Create connection complete event for later use
g_hConnectCompleteEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

Here I am triggering a Windows event to use later with the CreateEvent()
function. Here is the prototype.

HANDLE CreateEvent(
LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset,
BOOL bInitialState,
LPCTSTR lpName
);

The first parameter can contain security attributes if the event can be inherited by
child processes. Because this application doesn’t need this functionality, I set this to
NULL. The second parameter accepts a TRUE or FALSE, which tells the event whether it
must be reset using the ResetEvent() function. I want an
auto-resetting event, so I set this to FALSE. The third para-
meter also accepts a TRUE or FALSE and tells the event
whether to start out being signaled or nonsignaled. I set it
to FALSE so that it starts out turned off.

The fourth parameter lets you name the event with a
string name. I don’t need to name it, so I set this to NULL.

The g_hConnectCompleteEvent handle is used later to signal
the application that it has successfully established a connection to the host. Because
the program is multithreaded, I have to use a thread-safe method for signaling.
This is where the event comes into play. You will see shortly how it is used for
joining.

The rest of the code left in hrInitializeDirectPlay() initializes the player informa-
tion data. All I am doing here is setting each player slot to be inactive. As the appli-
cation receives create player messages, the slots will be activated.

vShowText(hLB_Output,”<<--TCP INITED-->>”);
// Init miscellaneous variables
for(i = 0 ; i < MAX_PLAYERS ; i++) {

352 9. Chatting with DirectPlay

TIP
Signaled can be
considered on, and
nonsignaled can be
considered off.

PlayerInfo[i].bActive = 0;
}
return S_OK;

Last, the function returns an S_OK. Once this occurs, the WinMain() function goes on
to enter its message loop to wait for messages. Look at Figure 9.8 to see the pro-
gram’s flow so far.

353Creating the Project Space

RegisterClassEx

CreateWindow

vCreateInterface

Message
Handler

hrJoinGame()

hrHostGame()

hrSendChatMessage()

WM_TIMER

hrInitializeDirectPlay

CoInitialize
COM

IDirectPlay8Peer

Device Address
IID_IDirectPlay8Address

CreateEvent

Host Address
IID_IDirectPlay8Address

InitializeCriticalSection

DirectPlay
Message
Handler

Initialize

hrCreatePlayer

hrDestroyPlayer

SetSP

SetSP

Main Program

Window

Figure 9.8

Program flow,
including the
initialization of
DirectPlay

Now that the window is displayed and DirectPlay is active, it is time to do some-
thing. Because you need a host before anyone can join, go ahead and take a look at
the host logic.

The hrHostGame() Function
When the user clicks the Host button, a WM_COMMAND message is sent to the Windows
message handler. When the application checks the LOWORD of the parameter, it finds
an IDC_hBU_Host value. This triggers a call to the hrHostGame() function. This logic
appears in the already mentioned fnMessageProcessor() function. Check out Figure
9.9 to see this process in action.

354 9. Chatting with DirectPlay

Message
Handler

hrHostGame()

SetPeerInfo

AddComponent
PORT#

Initialize
Application
Description

Host

Main Program

Figure 9.9

Program flow when the
user clicks the Host button

Now that the hrHost() function is called, here is what the code looks like.

HRESULT hrHostGame(HWND hWindow)
{

HRESULT hReturn;
char szPeerName[256];
char szSessionName[256];
WCHAR wszPeerName[256];
WCHAR wszSessionName[256];
DPN_APPLICATION_DESC dnAppDesc;
char szPort[6];
DWORD dwLength = 256;
DPN_PLAYER_INFO dpPlayerInfo;
DWORD dwPort = 9000;

// Set up our player information
GetWindowText(hEB_InputName,szPeerName,36);
// Get name from window edit box
DXUtil_ConvertGenericStringToWide(wszPeerName, szPeerName);
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
dpPlayerInfo.pwszName = wszPeerName;
// Set us up to be non-asynchronous
if(FAILED(hReturn = g_pDP->SetPeerInfo(&dpPlayerInfo, NULL, NULL,
DPNSETPEERINFO_SYNC))) {

MessageBox(hWindow, “Failed to SetPeerInfo()”,
“DirectPlay Error”, MB_ICONERROR);

return -1;
}
// Set up the application description
sprintf(szSessionName,”%s’s Game”,szPeerName);
DXUtil_ConvertGenericStringToWide(wszSessionName, szSessionName);
ZeroMemory(&dnAppDesc, sizeof(DPN_APPLICATION_DESC));
dnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dnAppDesc.guidApplication = DP_CHAT;
dnAppDesc.pwszSessionName = wszSessionName;
dnAppDesc.dwMaxPlayers = MAX_PLAYERS;
dnAppDesc.dwFlags = DPNSESSION_MIGRATE_HOST;
// Get port from edit box
GetWindowText(hEB_InputServerPort,szPort,6);
// Convert the port string to a DWORD

355Creating the Project Space

dwPort = atol(szPort);
// Add port number to address
hReturn = g_pDeviceAddress-
>AddComponent(DPNA_KEY_PORT,&dwPort,sizeof(
DWORD),DPNA_DATATYPE_DWORD);
if(hReturn != S_OK) {

MessageBox(hWindow, “Failed to AddComponent()”, “hrHostGame()”,
MB_ICONERROR);

return -1;
}
// Host the game
hReturn = g_pDP->Host(&dnAppDesc,

&g_pDeviceAddress,
1,
NULL,
NULL,
NULL,
NULL);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Host()”, “DirectPlay Error”,
MB_ICONERROR);
return -1;

}
// Let us know we are the host
bHost = 1;
vShowText(hLB_Output,”<- Hosting ->”);
return hReturn;

}

Setting Up the Player Information
The first thing you have to do when you enter the host function is set up the player
information for the host. Even though this player is hosting the game, it is still a
player and must have information about itself. You do this by setting up the
DPN_PLAYER_INFO data structure. If you are a bit fuzzy about this data structure, you
can read about it in Chapter 8, “What the Heck Is DirectPlay Anyway?,” in the
“Setting Peer Information” section.

The main thing to note here is that when setting up player information in a peer-
to-peer game, all you have to do is set the name of the player. Specifying
DPNINFO_NAME as the value for the dwInfoFlags member variable does this. This tells
DirectPlay to look for the player’s name in the pwszName field.

356 9. Chatting with DirectPlay

Once the data structure is loaded,
you set the peer information
using the SetPeerInfo() member
function. By passing the
DPNSETPEERINFO_SYNC flag to this
function, you specify that it
operates synchronously. That’s it
for setting up the player informa-
tion; now it’s time to define the
application.

Setting Up the Application Description
By setting up the application description, you are telling the program all about the
application and what it does. For a refresher of this concept, refer to the section
titled “Application Descriptions” in Chapter 8. The main thing to remember is that
to set up the description, you use the DPN_APPLICATION_DESC data structure.

One item of note in the code I have shown you is the DPNSESSION_MIGRATE_HOST flag
set under the dwFlags member variable. This tells the program that the host can be
migrated when shut down. If you want to test out the application and not support
migration, you can just set dwFlags to NULL.

Setting Up the Device Address
Because the host should specify a port number to accept connections, you must
add the port number to the device address. You do this using my personal favorite,
the AddComponent() member function. To add the port component, I passed the
DPNA_KEY_PORT define to the function. This tells AddComponent() which component to
add.

Calling the Host()
Function
Once the address is defined, you can
finally call the Host() member function
of the IDirectPlay8Peer interface. For
this wonderful function, I have passed
the parameters listed in Table 9.2.

That’s about all you have to do to start
hosting. The program then sits and
waits for connections once the Host()

357Creating the Project Space

TIP
Whenever you see the pwsz Hungarian
notation, it is referring to a wide-character
string.You can use the DirectX helper func-
tion DXUtil_ConvertGenericStringToWide()
to assist in conversions.

TIP
The defines for which components
you can add to an address appear in
the dpaddr.h include file that comes
with the DirectX SDK. Make sure
you have the directx8/include and
directx8/lib paths set up in your com-
piler. If you do not, you might get File
Not Found errors when compiling.

function executes. Oh, yeah; the program sets the bHost variable to True so that it
can remember it is hosting.

Okay, cool, the application now knows how to host. If you run the program and
click the Host button, you should see a successful message. If it fails for some rea-
son, be sure to check your network settings and try again. The output from the
DPChat program in Figure 9.10 shows what the screen looks like when someone
has hosted a game.

358 9. Chatting with DirectPlay

Table 9.2 Parameters Passed to the
Host() Member Function

Parameter Description

&dnAppDesc The address of the application description structure

&g_pDeviceAddress The host address that defines where other peers
can connect

1 The number of host addresses contained in
&g_pDeviceAddress

NULL Reserved for later versions of DirectPlay

NULL Reserved for later versions of DirectPlay

NULL Optional player context information

NULL Optional flags

Figure 9.10

Output from DPChat once the
player has clicked the Host
button

The hrCreatePlayer() Function
As soon as the Host() function completes, you’ll notice that the program receives a
create player message. This message tells the program to create the host player in
the game. Even though the player is the host, he is still a player. The message type
received is DPN_MSGID_CREATE_PLAYER.

Take a look at the DirectPlayMessageHandler() function, and take note of where the
switch statement looks for this message type. This is where the hrCreatePlayer()
function is called from. Here is the code for the function.

HRESULT hrCreatePlayer(PVOID pvUserContext, PVOID pMsgBuffer)
{

HRESULT hReturn = S_OK;
PDPNMSG_CREATE_PLAYER pCreatePlayerMsg;
char strName[256];
char szOutput[256];
DWORD dwSize = 0;
DPN_PLAYER_INFO *pdpPlayerInfo = NULL;
int i;

// Get a Create Message pointer to the buffer
pCreatePlayerMsg = (PDPNMSG_CREATE_PLAYER)pMsgBuffer;

// Get the peer info and extract its name
hReturn = g_pDP->GetPeerInfo(pCreatePlayerMsg->dpnidPlayer,
pdpPlayerInfo, &dwSize, 0);

if(FAILED(hReturn) && hReturn != DPNERR_BUFFERTOOSMALL) {
hReturn = -1;

}
else {

pdpPlayerInfo = (DPN_PLAYER_INFO*) new BYTE[dwSize];
ZeroMemory(pdpPlayerInfo, dwSize);
pdpPlayerInfo->dwSize = sizeof(DPN_PLAYER_INFO);
hReturn = g_pDP->GetPeerInfo(pCreatePlayerMsg->dpnidPlayer,
pdpPlayerInfo, &dwSize, 0);

if(FAILED(hReturn)) {
hReturn = -1;

}
else {

EnterCriticalSection(&g_csModifyPlayer);
// Convert player name to ANSI

359Creating the Project Space

DXUtil_ConvertWideStringToGeneric(strName,
pdpPlayerInfo->pwszName);

// Add player to list
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(!PlayerInfo[i].bActive) {
PlayerInfo[i].bActive = 1;
PlayerInfo[i].dpnidPlayer =
pCreatePlayerMsg->dpnidPlayer;

strcpy(PlayerInfo[i].szPlayerName,strName);
break;

}
}
// Check whether no free slot found
if(i == MAX_PLAYERS) {

vShowText(hLB_Output,”No free slots in game!”);
}
// Check whether we are adding ourselves
else if(pdpPlayerInfo->dwPlayerFlags & DPNPLAYER_LOCAL) {

g_dpnidLocalPlayer = pCreatePlayerMsg->dpnidPlayer;
sprintf(szOutput,”<Slot%d> Added Ourselves”,i);
vShowText(hLB_Output,szOutput);

}
else {

sprintf(szOutput,”<Slot%d><%s> Is In The Game”,i,strName);
vShowText(hLB_Output,szOutput);
// Send a welcoming message if we are the host
sprintf(szOutput,”Welcome to the game, %s!”,strName);
if(bHost) {

hrSendChatMessage(i,szOutput);
}

}
SAFE_DELETE_ARRAY(pdpPlayerInfo);
// Update the number of active players in a thread-safe way
InterlockedIncrement(&g_lNumberOfActivePlayers);
LeaveCriticalSection(&g_csModifyPlayer);

}
}
return hReturn;

}

The hrCreatePlayer() function takes two parameters. The first one passes the
optional player context. I don’t do anything with it for this example, so you can

360 9. Chatting with DirectPlay

ignore it for now. The second parameter holds the message that was received in the
message handler.

To do much of anything with a DirectPlay message,
you must first cast it to the
data type with which you want to work. Because you
know that you want to work with a create player mes-
sage in this function, it is safe to cast the message to
type PDPNMSG_CREATE_PLAYER. This converts the raw mes-
sage data into a usable structure for your needs.

Because the message type begins with the letter P, you
can tell it is a pointer to the requested data type. It is
useful to keep this in mind when searching the DirectX help file. The index won’t
pick up on PDPNMSG_CREATE_PLAYER, but it will pick up on DPNMSG_CREATE_PLAYER.

Okay, so what is in the DPNMSG_CREATE_PLAYER message? Well, here you go.

typedef struct _DPNMSG_CREATE_PLAYER
{

DWORD dwSize; // Size of this structure
DPNID dpnidPlayer; // DPNID of new player
PVOID pvPlayerContext; // Player context value

} DPNMSG_CREATE_PLAYER, *PDPNMSG_CREATE_PLAYER;

The only member variable in it that you should care about for now is the
dpnidPlayer variable. It is of type DPNID and it holds the identification number for
the player who sent the message. This fact is very important because you need to
know who the player is that you are creating.

Now that the pCreatePlayerMsg variable points to proper data, it is time to use the
GetPeerInfo() member function to get the information about the peer who is being
created.

The IDirectPlay8Peer::GetPeerInfo() Function
You use the GetPeerInfo() function primarily to get information about a peer in the
game session. Here is the prototype.

HRESULT GetPeerInfo(
const DPNID dpnid,
DPN_PLAYER_INFO *const pdpnPlayerInfo,
DWORD *const pdwSize,
const DWORD dwFlags

);

361Creating the Project Space

TIP
The definitions for the
different data types
appear in the dplay8.h
header file that comes
with the DirectX SDK.

The first parameter expects the DPNID, or identification number, of the peer about
which you want to get information. For this example, the program passes the DPNID
contained in the pCreatePlayerMsg pointer for the first parameter.

The second parameter is used to pass the DPN_PLAYER_INFO data structure that will
hold the peer information once it is retrieved. For this parameter, you pass a
pointer of type DPN_PLAYER_INFO called pdpPlayerInfo.

The third parameter holds the size of the returned data. This one is easy because
all you have to do is pass in the DWORD variable called dwSize. The fourth parameter
is reserved data and should always be set to zero. ‘Nuff said.

Because you have not allocated any memory for pdpPlayerInfo yet, you’ll probably
get a DPNERR_BUFFERTOOSMALL message back from the GetPeerInfo() function. Not to
worry, though, because this is expected. Player information can vary in size, so it is
necessary to go through these steps. The first call told you the size of the player
data. Now that you know the size, you can allocate memory for it with the following
line of code.

pdpPlayerInfo = (DPN_PLAYER_INFO*) new BYTE[dwSize];

All this does is allocate as many bytes as the previous GetPeerInfo() function said
was necessary to hold the data. Now that the data is allocated, you can call
GetPeerInfo() again and not get the DPNERR_BUFFERTOOSMALL error. This process might
seem a little confusing, so take a look at Figure 9.11 to see it in an illustration.

Storing the Player Information

The program didn’t get an error on the second GetPeerInfo() call, so now it should
be in the block of code that actually adds the new player data to the global
PlayerInfo data structure. Before anything else happens, the game enters into the
critical section for modifying player data. This section keeps multiple threads from
attempting to modify the data at once.

The next piece of code loops through the maximum number of players and looks
for ones who are not active. It is looking for an empty player slot. Once an empty
slot is found, the program then sets the slot as active to keep it from being written
over by another thread. The next thing that happens is that the application stores
the DPNID of the player being created. Last, the application stores the name of the
player found in the pdpPlayerInfo data structure.

The DPNPLAYER_LOCAL Flag

One of the most important things to check is whether the player you are adding is
yourself. This is important to know because you don’t yet have your own DPNID

362 9. Chatting with DirectPlay

stored. To check whether this player is yourself, you can check the dwPlayerFlags in
the pdpPlayerInfo data structure. If the DPNPLAYER_LOCAL bit is set, then you know you
are adding yourself.

If the code runs and it is not adding itself, it then checks whether it is the host. If it
is the host, it sends a welcome message to the joining player by using the
hrSendChatMessage() function, which I’ll talk about in a minute.

Now that all the hoopla is out of the way, it is time to clean up allocated memory.
Do you remember allocating memory for the pdpPlayerInfo structure? Well, guess
what: You need to delete it now that you are done with it. To do so, you use the
SAFE_DELETE_ARRAY macro provided by the DXUtil toolset.

The InterlockedIncrement() Function

Wow, doesn’t the next piece of code look weird? What the heck is an interlocked
increment anyway? Well, it is a means to increment a global variable in a thread-safe

363Creating the Project Space

IDirectPlay8Peer

DirectPlay
Message
Handler

hrCreatePlayer

Convert message buffer
to PDPNMSG_CREATE_PLAYER

data

GetPeerInfo()
to

get size

Allocate enough memory for
DPN_PLAYER_INFO

GetPeerInfo()
to

populate newly
allocated data

Raw Message

DPNMSG_CREATE_PLAYER

Main Program

Figure 9.11

Retrieving peer
information

way. Basically, it keeps two threads from trying to use the same variable simultane-
ously. The function returns a LONG that is the resulting value of the variable you pass
into it.

Okay, memory is cleaned up, and you have incremented the number of active play-
ers in the game. Now you have to leave the critical section you entered earlier. If
you don’t leave the section, the program will never be able to enter it again. This
results in a lockup of the code.

Before I discuss joining a game, I want to leave you with a visual diagram of creat-
ing a player, so take a look at Figure 9.12.

364 9. Chatting with DirectPlay

IDirectPlay8Peer

DirectPlay
Message
Handler

hrCreatePlayer

Convert message buffer
to PDPNMSG_CREATE_PLAYER

data

GetPeerInfo()
to

get size

Allocate enough memory for
DPN_PLAYER_INFO

GetPeerInfo()
to

populate newly
allocated data

Enter
Critical Section

Player Slot
Active ?

Activate player slot

Yes No

Clean up Memory

NumberPlayers++

Leave
Critical Section

Return

Raw Message

DPNMSG_CREATE_PLAYER

Main Program
Figure 9.12

Creating a player

The hrJoinGame() Function
If you haven’t taken a break in a while, now might be a good time to do so. Joining
a session isn’t all that problematic, and you might even notice some familiar func-
tions along the way. Here is the code for the hrJoinGame() function.

HRESULT hrJoinGame(HWND hWnd)
{

HRESULT hReturn = S_OK;
WCHAR wszHostName[256];
WCHAR wszPeerName[256];
char szPeerName[256];
char szIP[256];
char szPort[256];
DWORD dwPort;
DWORD dwLength = 256;
DPN_APPLICATION_DESC dpnAppDesc;
DPN_PLAYER_INFO dpPlayerInfo;

vShowText(hLB_Output,”Attempting Connection...”);
// Set the peer info
GetWindowText(hEB_InputName,szPeerName,36);
// Get name from window edit box
DXUtil_ConvertGenericStringToWide(wszPeerName, szPeerName);
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
dpPlayerInfo.pwszName = wszPeerName;
// Make this a synchronous call
if(FAILED(hReturn = g_pDP->SetPeerInfo(&dpPlayerInfo, NULL, NULL,
DPNSETPEERINFO_SYNC))) {

vShowText(hLB_Output,”Failed to set peer info”);
return -1;

}
// Prepare the application description
ZeroMemory(&dpnAppDesc, sizeof(DPN_APPLICATION_DESC));
dpnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dpnAppDesc.guidApplication = DP_CHAT;
// Get IP from edit box
GetWindowText(hEB_InputServerIP,szIP,32);
// Get port from edit box
GetWindowText(hEB_InputServerPort,szPort,6);

365Creating the Project Space

// Convert the IP to a wide string
DXUtil_ConvertGenericStringToWide(wszHostName, szIP);
// Convert the port string to a DWORD
dwPort = atol(szPort);
// Add hostname to address
hReturn = g_pHostAddress-
>AddComponent(DPNA_KEY_HOSTNAME,wszHostName,(
wcslen(wszHostName)+1)*sizeof(WCHAR),DPNA_DATATYPE_STRING);
if(hReturn != S_OK) {

MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”,
MB_ICONERROR);

return -1;
}
// Add port number to address
hReturn = g_pHostAddress-
>AddComponent(DPNA_KEY_PORT,&dwPort,sizeof(
DWORD),DPNA_DATATYPE_DWORD);
if(hReturn != S_OK) {

MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”,
MB_ICONERROR);

return -1;
}
// Connect to the session
hReturn = g_pDP->Connect(&dpnAppDesc,

g_pHostAddress,
g_pDeviceAddress,
NULL,
NULL,
NULL,
0,
NULL,
NULL,
&g_hConnectAsyncOp,
NULL); // flags

if(hReturn != E_PENDING && FAILED(hReturn)) {
vShowText(hLB_Output,”Failed to Connect”);
return -1;

}
SetTimer(hWnd, TIMERID_CONNECT_COMPLETE, 100, NULL);
return(hReturn);

}

366 9. Chatting with DirectPlay

This function is activated whenever the player clicks the Join button. There really
isn’t much to pass to the function except the current window handle.

Setting the Joiner’s Peer Information
The first piece of code that sets up the DPN_PLAYER_INFO data structure is just like the
code used in the hrHostGame() function I covered earlier. What this accomplishes is
setting up the joiner’s player information, such as the name. The name is grabbed
from the window’s edit box using the good ol’ GetWindowText() function. All this
does is pull the text from the window and load it into a variable you can use. Don’t
forget that most DirectPlay strings use wide characters, so you must convert most
strings with the DXUtil_ConvertGenericStringToWide() helper function.

Hey, cool; I just put together a quest item in Asheron’s Call. It has a special sword
hilt in the game that, when combined with a rapier, allows it to swing twice per
attack. I tried it out on Drudge Stalker and wailed on it. The rapier I converted
turned into a Bandit Rapier once I applied the new hilt. It sure is nice to have
quests such as this in MMORPGs. Thanks go out to Thrillseeker for helping me get
the required items for the quest.

Setting the Joiner’s Application Description
After you have set up the peer information, you can set up the application descrip-
tion. This works just as it did when you were hosting, but this time you don’t have
to tell it to migrate the host.

Setting Up the Host Address
Now that the application description is out of the way, you get to set up the host
address. You do this with the AddComponent() function, which you should recognize
by now. The first component to add is the port number, with the DPNA_KEY_PORT
component type. The second thing to add to the address is the host’s name, with
the DPNA_KEY_HOSTNAME component type.

The Connect() Function
Ah, the glorious Connect() function. Don’t forget that this function belongs to the
IDirectPlay8Peer interface. To call this function, you use the parameters listed in
Table 9.3.

If all goes well, then the code proceeds to set up a timer that goes off every 100 mil-
liseconds. This timer is set up to signal the program to check for a connection com-
plete indicator. Because it can take a little while to connect, you don’t want to sit in

367Creating the Project Space

an infinite loop waiting to do so. Using a timer, the program can continue on its
merry way and wait for the connection to complete.

The DPN_MSGID_CONNECT_COMPLETE Message
The big question you might have is, how do you detect when the connection is
complete? Well, when you get a DPN_MSGID_CONNECT_COMPLETE message, you know the
connection is complete. If you take a look at the message handler, you’ll notice the
following chunk of code.

case DPN_MSGID_CONNECT_COMPLETE:
{

PDPNMSG_CONNECT_COMPLETE pConnectCompleteMsg;
pConnectCompleteMsg = (PDPNMSG_CONNECT_COMPLETE)pMsgBuffer;
g_hrConnectComplete = pConnectCompleteMsg->hResultCode;
SetEvent(g_hConnectCompleteEvent);
break;

}

368 9. Chatting with DirectPlay

Table 9.3 Connection Parameters

Parameter Description

&dpnAppDesc The application description for the game

g_pHostAddress The address of the host with which to join up

g_pDeviceAddress Your address

NULL Reserved

NULL Reserved

NULL Optional user connect data, which is not used here

0 Optional user connect data size

NULL Optional player context

NULL Optional user-supplied context

&g_hConnectAsyncOp Asynchronous handle

NULL Flags

When the connection finishes, this message is received. The first thing you do with
it is cast the raw message data into the PDPNMSG_CONNECT_COMPLETE message type. This
lets you pull the pertinent data out of the message.

Once the data is cast, you then set the g_hrConnectComplete variable to equal the
result of the connection. Now that the variable is set, it’s time to set up the comple-
tion event. You do this by setting the g_hConnectCompleteEvent event with the
SetEvent() function. By calling this function, you put the event into a signaled state.

Reading the Connection Timer
Do you remember the timer that was just set up? Well, every time the timer goes
off, it sends a WM_TIMER message to the main Windows message loop. Here is the
code that gets called when the timer goes off.

case WM_TIMER:
if(wParam == TIMERID_CONNECT_COMPLETE) {

// Check whether the message is telling us
our connection is complete

if(WAIT_OBJECT_0 == WaitForSingleObject(
g_hConnectCompleteEvent, 0)) {

if(FAILED(g_hrConnectComplete)) {
vShowText(hLB_Output,”<<----CONNECTION
IN-COMPLETE---->>”);

}
else {

vShowText(hLB_Output,”<<----CONNECTION
COMPLETE---->>”);

}
KillTimer(hWnd, TIMERID_CONNECT_COMPLETE);

}
}
break;

The wParam of the timer message contains the timer ID that triggered the message.
What you do is check for the TIMERID_CONNECT_COMPLETE timer ID that you set up ear-
lier. After that check passes, you then check to see whether the completion event
has been signaled by using the WaitForSingleObject() function. If it equals
WAIT_OBJECT_0, then it has been signaled. Now that is out of the way, so you can
check the return code from the connection attempt by looking at the
g_hrConnectComplete variable. If it failed, then the host denied the connection or
wasn’t available. If it passed, then the connection is finally complete. The last thing
to do is kill the timer so that it doesn’t keep messaging the program.

369Creating the Project Space

Creating the Players from the Joiner’s View
Guess what happens right after the connection occurs? If you guessed that players
are created, then you are right. The first message you probably get is the
DPN_MSGID_CREATE_PLAYER message, telling you to create the players in the game.
Unlike the host, the joiner gets at least two create messages, one for the host and
one for the joiner. If any other players are present, then you also get creation mes-
sages for them. All of this is handled with the hrCreatePlayer() function I discussed
earlier. Oh, yeah; the host also gets a create player message when you join.

Before you move on, take a gander at Figure 9.13, which shows an illustration of
the whole connection process.

The hrSendChatMessage() Function
Up until now, I have only shown you the boring connection stuff. Now I want to
show you how to send chat messages back and forth. Lucky for you, this part is
pretty short. Lucky for my carpal tunnel syndrome, too! Stand back; here comes a
tsunami of code.

HRESULT hrSendChatMessage(int player, char *szmessage)
{

PACKET_CHAT msgChat;
DPNHANDLE hAsync;
DWORD dwLength = strlen(szmessage);
DPN_BUFFER_DESC bufferDesc;

// If no message to send, then just return
if(dwLength == 0)

return S_OK;
// Copy the message to send into our packet
strcpy(msgChat.szText,szmessage);
// Set the size of the packet to send
bufferDesc.dwBufferSize = sizeof(PACKET_CHAT) + dwLength;
// Copy our packet into the send buffer
bufferDesc.pBufferData = (BYTE*) &msgChat;
// Send message to everyone, including ourselves if -1 passed
if(player == -1)
g_pDP->SendTo(DPNID_ALL_PLAYERS_GROUP, &bufferDesc, 1, 0,
NULL, &hAsync, 0);

// Send to specific player otherwise

370 9. Chatting with DirectPlay

else
g_pDP->SendTo(PlayerInfo[player].dpnidPlayer, &bufferDesc, 1, 0,
NULL, &hAsync, 0);

return S_OK;
}

371Creating the Project Space

Message
Handler

hrJoinGame()

SetPeerInfo

AddComponent
PORT#

Initialize
Application
Description

Connect

AddComponent
Host Name

SetTimer
TIMERID_CONNECT_COMPLETE

WM_TIMER

DirectPlay
Message
Handler

DPN_MSGID_CONNECT_COMPLETE

Set Completion
EventCheck Completion

Event

KillTimer

Connection
Complete!

Step 1

Step 2
Step 3

Main Program

Figure 9.13

The entire
connection
process

Steps 2 and 3 don’t
necessarily happen in
order.This is why the
completion event is
used to check whether
or not the connection
complete message has
been received.

Okay, maybe it was more of a ripple than a tsunami. Speaking of ripples, have you
ever tried the iced fudge ripples from the Coffee Beanery? Man, they taste good.
They also have about double the caffeine of any other drink the Beanery sells.

This function takes two parameters. The first parameter is
used to flag to which player to send the message. If it is set
to –1, then the program is supposed to broadcast the message
to every player present.

The second parameter contains the message to send. Oops,
I almost forgot to mention where the chat message comes from. A chat message is
fired off when the player types a message into the window and presses the Enter
key. The Enter key is captured with the EN_UPDATE message. Check out the main
Windows message handler to see this code in action.

The first thing that happens when the function takes place is a check for the length
of the message to be sent. If the message is empty, then the function returns. The
last thing you want to do is send empty messages across the wire.

Once that is out of the way, the program copies the contents of the message into
the PACKET_CHAT data structure. The PACKET_CHAT data structure that was defined in
DPChat.h contains nothing more than a character buffer of 256 elements.

The DPN_BUFFER_DESC Data Structure
Next, the program loads the DPN_BUFFER_DESC data structure with the message infor-
mation, such as the size of the message. This variable type sends all DirectPlay mes-
sages. To set the size of the message, you set the dwBufferSize member variable. The
pBufferData member variable points to the actual data to be sent. These are the
only two members available to this data structure.

The SendTo() Function
Now that the DPN_BUFFER_DESC structure is loaded, you can go ahead and send the
message using the SendTo() member function. Here is the prototype for the function.

HRESULT SendTo(
const DPNID dpnid,
const DPN_BUFFER_DESC *const pBufferDesc,
const DWORD cBufferDesc,
const DWORD dwTimeOut,
void *const pvAsyncContext,

372 9. Chatting with DirectPlay

A message sent to
every player in a
game is called a
broadcast message.

DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

The first parameter sets which player to send the message to. If you want to broad-
cast the message, then you can use the DPNID_ALL_PLAYERS_GROUP keyword here; oth-
erwise, you need to pass the DPNID of the player to whom you want to send.

The second parameter expects the buffer description you loaded earlier with the
message information. The third parameter expects the number of buffers you are
sending. In this case, you are only sending one, so a 1 is passed here. The fourth
parameter is a timeout setting and lets you time out after so many milliseconds
have passed. Because you don’t want to time out, you set it to 0 to wait forever.

The fifth parameter is the asynchronous context and is optional. Because it is
optional and you are not using it, set it to 0 or NULL. The sixth parameter holds an
asynchronous handle. You can later use this handle to cancel the operation with
the CancelAsyncOperation() member function if you so desire. The last parameter
lets you set up different flags. Refer to Table 9.4 to see a list of available flags.

That’s it for the SendTo() function. Now that you are a veteran of transmitting data,
why don’t you peek at Figure 9.14 and see what the output looks like so far?

The hrDestroyPlayer() Function
There isn’t too much left to the chat program, but I still have some important
issues to discuss. The next function I want to cover is hrDestroyPlayer(). This gets
called whenever a DPN_MSGID_DESTROY_PLAYER message is received. You can expect to
receive this type of message whenever a player quits the chat program.

373Creating the Project Space

Figure 9.14

Output from DPChat
when sending a
message

The purpose of this function is the opposite of that for hrCreatePlayer(). Basically,
if someone quits, you need to remove his player information from the PlayerInfo
structure. Here is the destruction code.

HRESULT hrDestroyPlayer(PVOID pvUserContext, PVOID pMsgBuffer)
{

PDPNMSG_DESTROY_PLAYER pDestroyPlayerMsg;
HRESULT hReturn = S_OK;

374 9. Chatting with DirectPlay

Table 9.4 SendTo() Flags

Flag Description

DPNSEND_SYNC Tells the program to process the send
synchronously.

DPNSEND_NOCOPY Keeps from making an internal copy, which can
cause problems.

DPNSEND_NOCOMPLETE Prevents the DPN_MSGID_SEND_COMPLETE
message from being received when a message
is complete.

DPNSEND_COMPLETEONPROCESS Sends a DPN_MSGID_SEND_COMPLETE message
to the message handler when the message is
received and processed by the target.This can
greatly slow down transmissions.You must use
DPN_GUARANTEED with this flag.

DPNSEND_GUARANTEED Guarantees delivery of the message. Can slow
down transmissions considerably.

DPNSEND_PRIORITY_HIGH Sets the priority to high.

DPNSEND_PRIORITY_LOW Sets the priority to low.

DPNSEND_NONSEQUENTIAL If this is set, then the target receives the
messages in the order they arrive and not in
the order they were sent.

DPNSEND_NOLOOPBACK Keeps you from sending a broadcast message
back to yourself.

int i;
char szOutput[256];
// Get a destroy message pointer to the buffer
pDestroyPlayerMsg = (PDPNMSG_DESTROY_PLAYER)pMsgBuffer;
if(pDestroyPlayerMsg->dwReason == DPNDESTROYPLAYERREASON_NORMAL) {

vShowText(hLB_Output,”Player Left Normally”);
}
else if(pDestroyPlayerMsg->dwReason ==
DPNDESTROYPLAYERREASON_CONNECTIONLOST) {

vShowText(hLB_Output,”Connection Lost w/Player”);
}
else if(pDestroyPlayerMsg->dwReason ==
DPNDESTROYPLAYERREASON_SESSIONTERMINATED) {

vShowText(hLB_Output,”Player Terminated Session”);
}
else if(pDestroyPlayerMsg->dwReason ==
DPNDESTROYPLAYERREASON_HOSTDESTROYEDPLAYER) {

vShowText(hLB_Output,”Player Kicked By Host”);
}
// Update the number of active players in a thread-safe way
InterlockedDecrement(&g_lNumberOfActivePlayers);
EnterCriticalSection(&g_csModifyPlayer);
// Remove player from list
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(PlayerInfo[i].bActive) {
if(PlayerInfo[i].dpnidPlayer ==
pDestroyPlayerMsg->dpnidPlayer) {

PlayerInfo[i].bActive = 0;
sprintf(szOutput,”<Slot%d><%s>
Left The Game”,i,PlayerInfo[i].szPlayerName);

vShowText(hLB_Output,szOutput);
break;

}
}

}
LeaveCriticalSection(&g_csModifyPlayer);
return(hReturn);

}

375Creating the Project Space

Casting the Message
The first part, as you should know, casts the raw message data into the message with
which you need to work. The message type you use for this function is
PDPNMSG_DESTROY_PLAYER. One member of this message type is dwReason. This member
variable tells you the reason why the player is being destroyed. The next few lines
of code output different text depending on how the player left.

The InterlockedDecrement() Function
The InterlockedDecrement() function is the nemesis of InterlockedIncrement().
Instead of adding to the number of players in a thread-safe way, this function sub-
tracts from the total number of players. You use this function to keep track of how
many people are playing. Because someone has left, you need to reduce the global
setting for the number of active players.

Critical Player Information Handling
Once again, you need to use the EnterCriticalSection() function to lock out any
other threads from accessing the PlayerInfo data in the hrDestroyPlayer() function.
Now that the program is in a critical section, it can loop through the connected
players and find the one to disable.

The only cleanup you have to do is leave the critical section you entered earlier
and—bam!—you are done with destroying players. (I hope the Emeril fans out
there enjoyed that.)

The DPN_MSGID_HOST_MIGRATE
Message
Wow, the engines must be running at warp factor 9; you are tearing through this
chapter. There isn’t much left now. If you look at the DirectPlayMessageHandler()
function, you might notice a couple of messages I haven’t covered yet. The first
one is DPN_MSGID_HOST_MIGRATE. This message is received if the host who quits the
game has migration turned on.

To find out whether you were the one chosen to take up the slack, you can cast the
raw message to a PDPNMSG_HOST_MIGRATE data structure and check the dpnidNewHost
member variable versus your own DPNID. If the two match, then you are the new
host. You don’t have to do anything special here; DirectPlay handles it all for you.
Isn’t that cool?

376 9. Chatting with DirectPlay

The DPN_MSGID_TERMINATE_SESSION
Message
The last message in the message handler’s arsenal for this program is
DPN_MSGID_TERMINATE_SESSION. It is sent to all connecting peers when a host has
ended the session and migration is not turned on. So if the host exits and the pro-
gram is not migrated, then the whole session is terminated and no one can chat
anymore.

Before you go, I want to leave you with this question to ponder: If FedEx and UPS
merged, would the resulting company be called FedUp?

Review
The main thing you should take with you from this chapter is the knowledge of
how to create a complete end-to-end DirectPlay program. Besides adding some nice
graphics and flair to the code, you have the foundation for any future peer-to-peer
game you write. Here are some of the key points to remember.

■ DirectPlay requires COM to operate. You initialize COM using the
CoInitialize() function.

■ The CoCreateInstance() function is used to create the DirectPlay interfaces.
The key interfaces for peer-to-peer communication are IDirectPlay8Peer and
IDirectPlay8Address.

■ The DirectPlay message handler receives and processes all communication
messages received.

■ The SetSP() function is used to set the service provider for your connection.
The DPChat program utilizes TCP/IP as its method for communicating.

■ The SendTo() function is used to send data to other players. You can option-
ally use the DPNID_ALL_PLAYERS_GROUP flag to send data to every player who is
connected.

■ Global data, such as the player data, must be locked within critical sections to
avoid memory collisions.

■ You have to call the Close() function before releasing the IDirectPlay8Peer
interface. This closes the active connection.

377Review

This page intentionally left blank

CHAPTER 10

Lions
and

Clients
and

Servers,
Oh My!

Now that you have made the long journey to the Emerald City, I guess you will
want to see the wizard. Step right over here, and be sure not to look behind

the curtain. Okay, the tin-man needs a server, and the scarecrow wants a client.
What’s that, Dorothy? You want to go back to playing Diablo II in Kansas?

Hey, now; you didn’t think I would go off and forget to tell you about the
client/server model, did you? Not only am I going to show you how to write a
DirectPlay client, but I am also going to show you how to write a full server. Pack
your bags now because it’s time to follow the yellow brick road. (Faint singing.)
Follow, follow, follow, follow, follow the yellow brick road. Down the brick road you
will run across information about:

■ Client/server architecture
■ The IDirectPlay8Server interface
■ Hosting a client/server game
■ Managing players
■ Processing client messages
■ Sending messages to clients
■ The IDirectPlay8Client interface
■ Connecting to the server
■ Sending messages to the server

The Wicked Server
of the West
Now, my pretty, it’s your turn to. . . . Okay, enough of the Oz theme. In the last
chapter, I told you all about how to create a peer-to-peer chat program. The good
part is that most of what you learned in that chapter translates into the
client/server model as well. What is the bad part? Well, there really is no bad
part to it.

380 10. Lions and Clients and Servers, Oh My!

Client/Server
Architecture Overview
Because I have pounded this one into your noggin many times already, I will only
briefly discuss the architecture behind the client/server model. Basically, the server
is responsible for maintaining all game connections and communication. Clients
are only responsible for talking to the server, not to each other. Refer to Figure
10.1 to see the client/server architecture again.

This method of multiplayer game design happens to be my favorite because of its
scalability, firewalls, and simplicity.

381The Wicked Server of the West

Server

DSL Modem 56k Modem

Client A Client B

Firewall/Router
(Listen Port 6000)

Figure 10.1

Client/server
architecture

Server Scalability
First and foremost, by having a dedicated server, your game can handle more play-
ers at a time. Most peer-to-peer systems can reliably handle only four to six players
at once over standard Internet connections. Client/server applications are limited
only by the power of the server, not the clients. Games such as EverQuest and
Asheron’s Call handle thousands of players at once because they use the
client/server model.

When peer-to-peer games get too many players, you can do nothing but maybe
switch to a LAN or play only with people who have T-3 connections at home. Both
of these options are not really valid. When servers get bogged down, you only have
to upgrade the one machine, not the peers. For example, you could even run your
own persistent-world game on a standard DSL connection. If you started to get too
many customers, you could upgrade it to a fractional T-1. If it really started taking
off, then you could probably afford to lease a T-1 or better. The great part is that a
client/server setup really has no reasonable limit, given enough hardware.

Firewalls
If you have ever played a game of Age of Empires, then you might have experienced
its problem with firewalls. AOE is a peer-to-peer game that requires all players to
have connections with each other. This arrangement works fine until someone is
behind a firewall. These players flat out can’t play the game.

Firewalls didn’t used to be a large problem because most Internet users connected
with modems straight from their computers. With today’s availability of high band-
width in the home, many users have home networks complete with firewalls. For
these users, peer-to-peer games just won’t work unless they start poking holes in
their firewalls. Many times, this is not an easy task because the hardware usually lim-
its firewalls to a few open ports at once. Lobbies such as the Microsoft Gaming
Zone require many more than eight ports to be open. Check out Figure 10.2 to see
an illustration of peers being blocked behind a firewall.

When games use the client/server architecture, they usually require only one port
to be open to accept connections. Someone behind a firewall can normally get
away with opening one port if he wants to be the host. Better yet, as long as the
players behind firewalls don’t host the games, they can join anyone else’s game. To
see this system in action, refer to Figure 10.3.

382 10. Lions and Clients and Servers, Oh My!

383The Wicked Server of the West

Client A cannot talk to
Client B directly.

Firewall Firewall

Client A Client B

DSL Router DSL Router

Firewall/Router
(Listen Port 6000)

Server

Figure 10.2

Peers blocked
behind a firewall

Client A opens up Port 6000 to
accept connections.

Port 6000

Firewall Firewall

Client A Client B

DSL Router DSL Router

�

Figure 10.3

A client joining
from behind a
firewall

I guess one of the reasons I harp on
this topic so much is that I am
behind a firewall, and nothing hacks
me off more than booting up a new
game and finding out I can’t connect
to other players. Sometimes I disable
the firewall, but I consider that a
huge pain in the rear just to play a
game.

Simplicity
Ah, sweet, blissful simplicity. My number-one favorite thing about the client/server
model is the cleanliness of the code. The client/server system is simpler to look at
for two main reasons.

■ Clients have to worry only about themselves. Because they only know about
the server, they don’t have to worry about creating players or sending mes-
sages to everyone. Clients get to sit back and relax.

■ You can create servers that are stand-alone programs. By doing this, you
don’t have to include the interface with the server program. This choice
keeps things such as sound, graphics, and input out of the picture. It clears
up your communication code for the important stuff—communicating!

A few more things make this model simpler, such as not having to worry about host
migration, but I let my case rest with the preceding reasons. Okay, one more rea-
son: Because the server program doesn’t have to have an interface, you can write
one that will run on multiple operating systems. Imagine having a Windows game
client talking to UNIX-based servers. This scenario is more than just a fantasy
because some persistent-world game companies do this already.

The IDirectPlay8Server Interface
There is nothing better than jumping into the thick of things, so here it is—the
server interface. Most of the functions you will use for your server appear within
the IDirectPlay8Server interface. This interface works just like all of the other
DirectX interfaces in that it is a COM object and must be created with the
CoCreateInstance() function. Oh, yeah; the code I reference is in the DPChatServer
workspace located in the Chapter10 Zip file on the CD-ROM. Go ahead and load it
up so you can follow along.

384 10. Lions and Clients and Servers, Oh My!

TIP
There are some software alternatives to
hardware firewalls that can be very use-
ful. One such product, ZD Alarm, does
most of the port management for you.
When a game needs ports open, the
software asks you if it is okay to open
them.This way, you don’t have to worry
about setting up the firewall in advance.

Creating the Server Interface
Before I go on, why don’t you take a peek at the code used to create one of these
interfaces? Please note that you cannot create the necessary DirectPlay objects with-
out calling CoInitialize() to initialize COM first. You have to call it before you cre-
ate any of the COM-based objects.

IDirectPlay8Server* g_pDPServer;
// Create IDirectPlay8Server Object
if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Server,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Server,
(LPVOID*) &g_pDPServer)))

MessageBox(hWindow, “Can’t Create DPlayServer”, “DirectPlay Error”, MB_ICONERROR);

Most of this should look fairly familiar; it works the same way as when you created
the peer interfaces.

The server interface handles all communication and processing between the
server and its clients. Most of the functions available to this interface appear in
Table 10.1.

To see the functions in visual groupings, take a look at Figure 10.4.

Initializing the Server Interface
Before you can start listening for connections and such, you must first initialize
the newly created interface using the Initialize() member function. Here is the
prototype.

HRESULT Initialize(
PVOID const pvUserContext,
const PFNDPNMESSAGEHANDLER pfn,
const DWORD dwFlags

);

The first parameter, pvUserContext, accepts a pointer to the user-specified context.
One benefit this has is the ability to identify messages from multiple interfaces.
Currently, I do not use this value.

The second parameter is the pointer to the message handler. This works just as it
did for the peer interfaces. Every message that comes to the server object is routed
to the message function specified here.

385The Wicked Server of the West

386 10. Lions and Clients and Servers, Oh My!

Table 10.1 IDirectPlay8Server Functions

Function Purpose

Initialize Sets up the interface to receive messages for
connections

Close Disconnects and closes the server from the current
session

Host Creates the session in which clients can connect

SendTo Transmits data to one or many players within the
session

EnumServiceProviders Enumerates the service providers available to the server

SetApplicationDesc Changes particular application settings for an existing
session

CreateGroup Creates a new group to which players can be added

DestroyGroup Destroys a created group

AddPlayerToGroup Adds a player to an existing group

RemovePlayerFromGroup Removes a player from an existing group

GetGroupInfo Retrieves the information about a group

GetClientInfo Finds out the information about a particular client

DestroyClient Removes a client from the session

GetClientAddress Retrieves the DPlay address string for a client

GetLocalHostAddresses Retrieves the DPlay address used to host the local
server

GetSendQueueInfo Monitors the send message queue for a particular client

GetConnectionInfo Gets information about the connection with a particular
client

GetApplicationDesc Gets the application description for the connected
application

The last parameter lets you set a flag. The only flag currently supported is
DPNINITIALIZE_DISABLEPARAMVAL, which lets you disable parameter validation. Why
you would want to do this is beyond me at this point. For most purposes, use the
value of NULL here.

Now that initialization is out of the way, you can go on to create the famed address
interface.

387The Wicked Server of the West

Initialize
Close
Host

SendTo
EnumServiceProviders

SetApplicationDescription
GetSendQueueInfo
GetApplicationDesc

CreateGroup
DestroyGroup

AddPlayerToGroup
RemovePlayerFromGroup

GetGroupInfo

GetClientInfo
DestroyClient

GetClientAddress

GetLocalHostAddress
GetConnectionInfo

Session Management

Client Management

Miscellaneous

Group Management

Server
Functions

Figure 10.4

IDirectPlay8Server

interface functions

The IDirectPlay8Address Interface
Hey, guess what: This interface is the same one you have been using for the past
few chapters. There is nothing different about it. Even though I have already
shown you this interface, I’ll go ahead and show you the code I use to set up the
server’s address.

// Create a device address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address, NULL,CLSCTX_ALL,
IID_IDirectPlay8Address, (LPVOID*) &g_pDeviceAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Device”, “CoCreateInstance()”,
MB_ICONERROR);

return -1;
}
// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Device Addr”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

Most of that should look familiar. The CoCreateInstance() function gets access to the
interface, and then the SetSP() member function sets up TCP/IP. I bet you didn’t
expect it to go that quickly, did you?

Hosting the Session
Because you now know how to create a server interface, initialize it, and create its
address, you can move on to actually hosting a game session. Hosting a
client/server application works in much the same way as hosting a peer-to-peer
application. You must follow a few basic steps to host a client/server game.

1. Set up the server information with the SetServerInfo() member function.

2. Set up the application description with the DPN_APPLICATION_DESC data
structure.

3. Set up the address interface to handle any required information with the
AddComponent() function.

4. Call the Host() member function to host the game.

These steps are illustrated in Figure 10.5.

388 10. Lions and Clients and Servers, Oh My!

The SetServerInfo() Function
The SetServerInfo() function is a member of the IDirectPlay8Server interface. This
function sets up the static information about a server. Clients who connect to the
server can later obtain this information at their leisure. Here is the prototype for
the function.

HRESULT SetServerInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

The first parameter points to a DPN_PLAYER_INFO data structure that holds informa-
tion about the server, such as its name. The second parameter can point to user-
provided context. (This is optional.) The third parameter cannot be used at this
time, so NULL is valid. The last parameter sets certain server flags. The
DPNSETSERVERINFO_SYNC flag tells this method to process synchronously.

389The Wicked Server of the West

Server

SetServerInfo()

DPN_APPLICATION_DESC

AddComponent()

Host()

Application Description

Add to Port #

Figure 10.5

Server hosting

I don’t want to leave you hanging, so here is the code snippet for setting the server
information.

// Set up our player information
DXUtil_ConvertGenericStringToWide(wszServerName, “DPChat Server”);
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
dpPlayerInfo.pwszName = wszServerName;

// Set us up to be non-asynchronous
if(FAILED(hReturn = g_pDPServer->SetServerInfo(&dpPlayerInfo, NULL,
NULL, DPNSETSERVERINFO_SYNC))) {

MessageBox(hWindow, “Failed to SetServerInfo()”, “Unknown Error”,
MB_ICONERROR);

return -1;
}

The first six or so lines you see here are for setting up the DPN_PLAYER_INFO data
structure. Once that is done, you make the call to SetServerInfo() by passing a
pointer to the player info, and then set the synchronous flag. If all goes well, the
function does not return a failure notice.

Setting Up the
DPN_APPLICATION_DESC Structure
Once you set up the server information, you can go on to describe the application
by setting up the DPN_APPLICATION_DESC data structure. You use this structure here just
as you did when you hosted an application using the IDirectPlay8Peer interface. The
main difference is that the dwFlags member now holds the DPNSESSION_CLIENT_SERVER
flag to tell it that the program is a client/server application. Here is the code to set
up the application description for a client/server environment.

// Set up the application description
DXUtil_ConvertGenericStringToWide(wszSessionName, “DPChat Session”);
ZeroMemory(&dnAppDesc, sizeof(DPN_APPLICATION_DESC));
dnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dnAppDesc.guidApplication = GUID_CHATSERVER;
dnAppDesc.pwszSessionName = wszSessionName;
dnAppDesc.dwMaxPlayers = MAX_PLAYERS;
dnAppDesc.dwFlags = DPNSESSION_CLIENT_SERVER;

390 10. Lions and Clients and Servers, Oh My!

If you compare this to the IDirectPlay8Peer examples from the last chapter, you
notice that the only real difference is the dwFlags setting I mentioned. That’s it for
the server application description; now it’s time to add some components to the
address.

Setting Up the
IDirectPlay8Address Interface
Hey, do you remember how you had to create an address interface earlier? Well,
now you need to update that address by adding the server’s host port number. This
port number is just like the listening port when using sockets. The port number is
where all incoming client connections are made. To add the port number, you
need to use the familiar AddComponent() member function. It works just as it did in
the last couple of chapters, so I don’t really need to cover it again. Here is the code
I use for this particular application.

hReturn = g_pDeviceAddress->AddComponent(DPNA_KEY_PORT,&dwPort,sizeof(
DWORD),DPNA_DATATYPE_DWORD);
if(hReturn != S_OK) {

MessageBox(hWindow, “Failed to AddComponent()”, “hrHostGame()”,
MB_ICONERROR);

return -1;
}

Not much to it; the most notable item is the DPNA_KEY_PORT definition that tells the
function you are adding a port number to the address.

The Server’s Host() Function
It’s time to celebrate; you have made it to the Host() function! All the prerequisites
have been covered, so now you get to set up the host connection using the Host()
member function. Before you look at the prototype, take a peek at Figure 10.6. It
shows you the steps up to and including hosting.

Now that you have seen the figure, here is the prototype.

HRESULT Host(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address **const prgpDeviceInfo,
const DWORD cDeviceInfo,
const DPN_SECURITY_DESC *const pdpSecurity,
const DPN_SECURITY_CREDENTIALS *const pdpCredentials,

391The Wicked Server of the West

VOID *const pvPlayerContext,
const DWORD dwFlags

);

This might look like a complicated function, but it really isn’t all that bad once you
factor in all of the NULL values. The first parameter holds the application descrip-
tion data structure you created earlier. The second parameter holds the device
address where you just added a port number. The third parameter tells the func-
tion how many devices are present in the second parameter. This example has only
one device, so pass a 1.

The fourth and fifth parameters are not used in DirectX 8, so you can leave them
NULL. The sixth parameter holds the optional user context. The last parameter sets

392 10. Lions and Clients and Servers, Oh My!

Initialize COM

Server
Create an

IDirectPlay8Server
interface

Create an
IDirectPlay8Address

interface

Set TCP/IP as
service provider

SetServerInfo()

Initialize
DPN_APPLICATION_DESC

AddComponent()

Host()

Figure 10.6

Server process flow up to
hosting

certain hosting flags. You use the one flag named DPNHOST_OKTOQUERYFORADDRESSING if
you want to allow DirectPlay to query the user for any additional connection infor-
mation needed. You usually do not want to use this flag for games because it will
interfere with your GUI.

That’s it for the overview of the function; here is the code I used to call it.

hReturn = g_pDPServer->Host(&dnAppDesc,
&g_pDeviceAddress,
1,
NULL,
NULL,
NULL,
NULL);

It’s the wonderful world of NULLs. The only complicated values I passed to this func-
tion are the device description and the device address. There you have it, the
Host() function in all its glory.

Managing Players
Now that your server is up and running, it has to do something with connections
that are made to it. The message that you receive when players join is the
DPN_MSGID_CREATE_PLAYER message. This works just as it did in the IDirectPlay8Peer
examples. Basically, when a player connects to your game, he passes you a creation
message. Once you receive this message, you need to add him to your table of
active players. Here is the code I use for adding players to a client/server session.

// Function called when a player needs to be added to
the game (including ourselves)

HRESULT hrCreatePlayer(PVOID pvUserContext, PVOID pMsgBuffer)
{

HRESULT hReturn = S_OK;
PDPNMSG_CREATE_PLAYER pCreatePlayerMsg;
char strName[256];
char szOutput[256];
DWORD dwSize = 0;
DPN_PLAYER_INFO *pdpPlayerInfo = NULL;
int i;

// Get a create message pointer to the buffer
pCreatePlayerMsg = (PDPNMSG_CREATE_PLAYER)pMsgBuffer;

393The Wicked Server of the West

// Get the peer info and extract its name
hReturn = g_pDPServer->GetClientInfo(
pCreatePlayerMsg->dpnidPlayer, pdpPlayerInfo, &dwSize, 0);

if(FAILED(hReturn) && hReturn != DPNERR_BUFFERTOOSMALL) {
if(hReturn == DPNERR_INVALIDPLAYER) {

vShowText(hLB_Output,”Adding Ourselves”);
}
hReturn = -1;

}
else {

pdpPlayerInfo = (DPN_PLAYER_INFO*) new BYTE[dwSize];
ZeroMemory(pdpPlayerInfo, dwSize);
pdpPlayerInfo->dwSize = sizeof(DPN_PLAYER_INFO);
hReturn = g_pDPServer->GetClientInfo(
pCreatePlayerMsg->dpnidPlayer, pdpPlayerInfo, &dwSize, 0);

if(FAILED(hReturn)) {
vShowText(hLB_Output,”Error Getting Client Info”);
hReturn = -1;

}
else {

EnterCriticalSection(&g_csModifyPlayer);
// Convert player name to ANSI
DXUtil_ConvertWideStringToGeneric(strName,
pdpPlayerInfo->pwszName);

// Add player to list
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(!PlayerInfo[i].bActive) {
PlayerInfo[i].bActive = 1;
PlayerInfo[i].dpnidPlayer =
pCreatePlayerMsg->dpnidPlayer;

strcpy(PlayerInfo[i].szPlayerName,strName);
break;

}
}
// Check whether no free slot found
if(i == MAX_PLAYERS) {

vShowText(hLB_Output,”No free slots in game!”);
}
// Check whether we are adding ourselves
else if(pdpPlayerInfo->dwPlayerFlags & DPNPLAYER_LOCAL) {

g_dpnidLocalPlayer = pCreatePlayerMsg->dpnidPlayer;

394 10. Lions and Clients and Servers, Oh My!

sprintf(szOutput,”<Slot%d> Added Ourselves”,i);
vShowText(hLB_Output,szOutput);

}
else {

sprintf(szOutput,”<Slot%d><%s> Is In The Game”,i,strName);
vShowText(hLB_Output,szOutput);

}
SAFE_DELETE_ARRAY(pdpPlayerInfo);
// Update the number of active players in a thread-safe way
if(i != MAX_PLAYERS)

InterlockedIncrement(&g_lNumberOfActivePlayers);
LeaveCriticalSection(&g_csModifyPlayer);

}
}
return hReturn;

}

The DPNMSG_CREATE_PLAYER Message
The first thing you have to do with this function is turn the raw message data into
something usable. Casting the raw message into a DPNMSG_CREATE_PLAYER message
does this. By doing this, you can access the DPNID of the player who is being created.
Once you have the DPNID, you can call the GetClientInfo() member function of the
IDirectPlay8Server interface.

The GetClientInfo() Member Function
Do you remember the GetPeerInfo() member function of the IDirectPlay8Peer
interface? The GetClientInfo() function is just like that one, except this one is for
servers. Here is the prototype.

HRESULT GetClientInfo(
const DPNID dpnid,
DPN_PLAYER_INFO *const pdpnPlayerInfo,
DWORD *const pdwSize,
const DWORD dwFlags

);

The first parameter passes in the DPNID of the client about whom you want to
retrieve information. This is where you pass in the DPNID you just got from the cre-
ate player message. The second parameter expects the address of a DPN_PLAYER_INFO
data structure to hold the soon-to-be-retrieved player information.

395The Wicked Server of the West

The third parameter receives the size of the information retrieved. If the receive
buffer is too small, then a DPNERR_BUFFERTOOSMALL message is returned. When you
receive this message, you can then allocate memory equal to the size returned and
make the GetClientInfo() call again. This is the normal process.

The last parameter describes the infor-
mation returned for the client.
DPNINFO_NAME and DPNINFO_DATA are the
only available flags. Normally, you can
leave these set to NULL.

If you review the code, you’ll see that I
called GetClientInfo() to receive the size
of data to retrieve. Once I received the
size of the data, I allocated enough mem-
ory for the client information. I made a second call to GetClientInfo() with the
newly allocated receive buffer. If no errors occur, the application proceeds to enter
the player data critical section.

Adding the Player
Once inside the critical section, I then loop through the list of character informa-
tion and look for a non-active player slot. If an empty slot is found, the program
activates that slot and loads it with the connecting player’s information. If all slots
are full, then no players are added.

Freeing the DPN_PLAYER_INFO data structure happens next, and then the application
exits the modify player critical section before leaving the function. One step that
happens is incrementing active players, but it is not a necessary step.

Destroying Players
Not only do you receive create player messages, but you also receive destroy player
messages. These are received whenever a player leaves the session for whatever rea-
son. The message type you need to look for is DPN_MSGID_DESTROY_PLAYER. In the cur-
rent example, I look for this message and then call my hrDestroyPlayer() function
to process it.

This function is a little easier to deal with because you already know the player’s
information from the creating stage. Here is the code I use to destroy players.

HRESULT hrDestroyPlayer(PVOID pvUserContext, PVOID pMsgBuffer)
{

396 10. Lions and Clients and Servers, Oh My!

TIP
Don’t forget to use critical sections
when modifying global data that can
be utilized by multiple threads.You
don’t want other threads to use the
data at the same time.

PDPNMSG_DESTROY_PLAYER pDestroyPlayerMsg;
HRESULT hReturn = S_OK;
int i;
char szOutput[256];

// Get a destroy message pointer to the buffer
pDestroyPlayerMsg = (PDPNMSG_DESTROY_PLAYER)pMsgBuffer;
// Update the number of active players in a thread-safe way
InterlockedDecrement(&g_lNumberOfActivePlayers);
EnterCriticalSection(&g_csModifyPlayer);
// Remove player from list
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(PlayerInfo[i].bActive) {
if(PlayerInfo[i].dpnidPlayer ==
pDestroyPlayerMsg->dpnidPlayer) {

PlayerInfo[i].bActive = 0;
sprintf(szOutput,”<Slot%d><%s> Left
The Game”,i,PlayerInfo[i].szPlayerName);

vShowText(hLB_Output,szOutput);
break;

}
}

}
LeaveCriticalSection(&g_csModifyPlayer);
return(hReturn);

}

The DPNMSG_DESTROY_PLAYER Message
To access the appropriate data, I first cast the raw message data into a
DPNMSG_DESTROY_PLAYER message. This allows the application to find the DPNID of the
player to destroy. After this is handled, I then enter the modify player critical sec-
tion to keep anyone else from messing with the player data while this thread needs
to modify it.

The code loops through all active player slots and looks for a matching DPNID. Once
one is found, the slot is set to inactive so that the next player who comes along can
use it.

Before exiting this function, I leave the critical section and decrement the number
of active players. Take a look at Figure 10.7 to see the flow of the server program
during this process.

397The Wicked Server of the West

Receiving Client Messages
You are almost done with the server! The only necessary question left is how you
receive messages from clients. Processing the DPN_MSGID_RECEIVE messages allows you
to receive messages from clients, and here is the code I use to do this.

case DPN_MSGID_RECEIVE:
{

PDPNMSG_RECEIVE pReceiveMsg;
PacketGeneric *PGen;

pReceiveMsg = (PDPNMSG_RECEIVE)pMsgBuffer;

398 10. Lions and Clients and Servers, Oh My!

DPNMSG_DESTROY_PLAYER

DirectPlay Message Handler

hrDestroyPlayer()

InterlockedDecrement()

EnterCriticalSection()

Done looping
through players?

Player
active?

DPNID match
message?

Deactivate player

Break

End loop

LeaveCriticalSection()

Yes

Yes

Yes

Server

No

No

No

Figure 10.7

The DPChat
server program
deleting a player

PGen = (PacketGeneric*)pReceiveMsg->pReceiveData;
// Ignore the packet if we sent it originally
if(pReceiveMsg->dpnidSender == g_dpnidLocalPlayer)

break;
// If it is a chat packet, send it out to all of the players
if(PGen->dwType == PACKET_TYPE_CHAT) {

void *packet;
PacketChat *ChatMsg;
// Convert the packet to a void stream
ChatMsg = (PacketChat*)pReceiveMsg->pReceiveData;
packet = (VOID*)ChatMsg;
// Send the chat packet to all clients
hrSendServerMessage(DPNID_ALL_PLAYERS_GROUP, PACKET_TYPE_CHAT,packet);
// Output it on our screen
vShowText(hLB_Output,ChatMsg->szText);

}
break;

}

The DPN_MSGID_RECEIVE message is received whenever any client sends a non-system
message to the server. Once you have the message, you usually want to check it to
see what type it is. DirectPlay has no built-in mechanism to differentiate client mes-
sage types, so you have to create your own. What I did is create a PacketGeneric class
object to identify different message types.

The PacketGeneric Class
This class really is nothing more than a glorified data structure. In fact, I don’t
even have functions for it. But in C++, structures are really stored as classes. So it
doesn’t matter which one you use as long as there are no members and all of the
data is public. Anyway, here is the class structure I use for my messages.

class PacketGeneric
{

public:
DWORD dwType;
DWORD dwSize;

};

Ooh, big deal, right? The first member variable, dwType, stores the message type
identifier. The second member stores the size of the packet. Because this class is
generic in nature, it is easy to create new derived message types from it. Take, for

399The Wicked Server of the West

example, the chat packet I created in the program. It is just a class that has been
derived from the generic packet class.

The DPNMSG_RECEIVE Message Type
Before you can use the receive message, you must turn it into something readable.
You do this by casting the raw message data into a DPNMSG_RECEIVE message, like so:

pReceiveMsg = (PDPNMSG_RECEIVE)pMsgBuffer;

Once that is accomplished, you can cast that message into a custom generic packet.
Pointing a PacketGeneric pointer to the pReceiveData member of the DPNMSG_RECEIVE
buffer does this.

PGen = (PacketGeneric*)pReceiveMsg->pReceiveData;

One thing I do before moving on to check the generic packet is check whether the
server is the one who sent the message. Because you don’t want to process your
own messages, it is usually best to break out of the process and just ignore the mes-
sage. You perform this check by comparing the DPNID of the message sender to the
server’s DPNID.

Now that you have a PacketGeneric object to look at, you can check its message type
to determine what to do with it. This step is as easy as checking the dwType member
versus known message types. Here is the code I use to check for a chat packet.

if(PGen->dwType == PACKET_TYPE_CHAT) {
…
}

The Chat Packet
The PACKET_TYPE_CHAT definition is one I created and coded in the DPChatServer.h
file. You want to assign a number to every packet type you create. You can also enu-
merate the types if you want to, but I like to keep it simple with straight define
calls.

Here is the prototype for my chat packet class.

class PacketChat : public PacketGeneric
{

public:
char szText[128];

};

400 10. Lions and Clients and Servers, Oh My!

The chat packet class is derived from the PacketGeneric class. This allows you to use
the members in the generic class. For a visual of this, take a look at Figure 10.8.

The only member unique to the packet class is the szText character buffer, which
stores the actual chat message. If the packet type received is a chat packet, then you
need to cast the packet into the chat packet class format so that you can read the
text enclosed within it.

PacketChat *ChatMsg;
ChatMsg = (PacketChat*)pReceiveMsg->pReceiveData;

What I have done here is create a pointer to a PacketChat class object. I then set it
equal to the data received from the client. Once this is done, you can look at the
chat text by referencing the ChatMsg->szText member.

Broadcasting the Chat Message
Because the server is responsible for all communication, it now needs to send the
chat message out to every client so that they can see it. If the server didn’t broad-
cast the message, then only the server would see it. Most chat programs are used
for chatting between clients, so I’d better show you how!

To facilitate sending messages from the server, I created a function called
hrSendServerMessage().

401The Wicked Server of the West

PacketGeneric

dwSize

dwType

PacketChat

dwSize

dwType

szText

Figure 10.8

Layout of the
PacketChat class

The hrSendServerMessage()
Function
The hrSendServerMessage() function sends any type of packet to a single client or
multiple clients. Here is the prototype.

HRESULT hrSendServerMessage(
int player,
DWORD dwMessageType,
PVOID pMsgBuffer);

The first parameter points to the slot number to which you want to send the mes-
sage. You might recall that when you create a player, you assign him to a slot num-
ber within your list of available players. This is the number used here. As an
alternative, you can pass DPNID_ALL_PLAYERS_GROUP to this parameter, and it sends the
message to all clients.

The second parameter passes the message type you want to send. This message type
references the list of defined types in DPChatServer.h. The third parameter is a
void pointer to the contents of the message. Using a void pointer, you can pass any
type of data to this parameter.

The Function Body
Now that you have seen the prototype, it is time to look at the code for the function.

HRESULT hrSendServerMessage(int player, DWORD dwMessageType,
PVOID pMsgBuffer)

{
DPNHANDLE hAsync;
DWORD dwLength;
DPN_BUFFER_DESC bufferDesc;
PacketGeneric *PGen;

// Cast to a generic packet to get the size
PGen = (PacketGeneric*)pMsgBuffer;
dwLength = PGen->dwSize;
if(dwLength == 0)

return(0);
bufferDesc.dwBufferSize = dwLength;
bufferDesc.pBufferData = (BYTE*)pMsgBuffer;

402 10. Lions and Clients and Servers, Oh My!

// Broadcast it if player set to zero
if(player == DPNID_ALL_PLAYERS_GROUP)

g_pDPServer->SendTo(DPNID_ALL_PLAYERS_GROUP, &bufferDesc, 1, 0,
NULL, &hAsync, DPNSEND_NOLOOPBACK);

else
g_pDPServer->SendTo(PlayerInfo[player].dpnidPlayer,
&bufferDesc, 1, 0, NULL, &hAsync, 0);

return S_OK;
}

The first order of business is to cast the message buffer into a generic packet to
read the size of the packet. DirectPlay needs to know the size of the message to
send, so this is a necessary evil. If the packet length is zero, then you need to exit
out of the function. You do this because you don’t want to send empty messages.

The DPN_BUFFER_DESC Data Structure
The next thing you do is start loading a DPN_BUFFER_DESC data structure with the
packet information. This is a DirectPlay structure used to store generic buffer infor-
mation. For the current situation, you use this buffer to send a message. To set up
the buffer, you first set the length with the dwBufferSize member. You then point
the message data to the pBufferData member variable.

Now that the buffer is set up, you can go ahead and send the message using the
SendTo() function.

The SendTo() Member Function
The SendTo() function belongs to the IDirectPlay8Server interface and sends any
type of message to one or more clients. Here is the prototype for the function.

HRESULT SendTo(
const DPNID dpnid,
const DPN_BUFFER_DESC *const pBufferDesc,
const DWORD cBufferDesc,
const DWORD dwTimeOut,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

403The Wicked Server of the West

The first parameter expects the DPNID of the client to whom you want to send the
message. Alternatively, you can pass the DPNID_ALL_PLAYERS_GROUP definition here to
send the message to all clients.

The second parameter passes a pointer to the DPN_BUFFER_DESC data structure with
which you set up the buffer information. This is what contains the actual message
data. The third parameter specifies how
many message buffers you are sending with
this call.

The fourth parameter specifies a timeout in
milliseconds for the message to be transmit-
ted. If you don’t want the message to ever
give up, then you can set this to 0. The fifth
parameter points to user-supplied context. I
don’t use it at this time, so you can leave this
set to NULL. The sixth parameter is used to get access to an async handle that the
function will return. You can use this handle to cancel the send operation. If you
use the DPNSEND_SYNC flag in this function call, you must set this parameter to NULL.
The last parameter is used for various flags. Table 10.2 contains a list of available
flags.

Well, you have seen the function, so here is a quick look at how I used it in the
server sending function.

g_pDPServer->SendTo(PlayerInfo[player].dpnidPlayer, &bufferDesc,
1, 0, NULL, &hAsync, 0);

I pass the DPNID of the client to receive the message. I then pass in the buffer
description, the number of buffers, an infinite timeout setting, no context, the
async handle, and no flags. The only thing I do differently when broadcasting to
everyone is that I send DPNID_ALL_PLAYERS_GROUP as the DPNID. I also set the
DPNSEND_NOLOOPBACK flag so that I don’t receive my own message.

Before I move on to programming the client, I think it’s time to see the
DPChatServer program in action, so take a look at Figure 10.9.

404 10. Lions and Clients and Servers, Oh My!

TIP
DirectX 8 only supports sending
one buffer at a time.Always set
the third parameter in the
SendTo() function to 1 if you are
using this version of DirectX.

405The Wicked Server of the West

Table 10.2 IDirectPlay8Server::SendTo() Flags

Flag Purpose

DPNSEND_GUARANTEED Guarantees message delivery.This can slow down
message sending quite a bit.

DPNSEND_NOLOOPBACK Keeps the server from receiving its own messages.

DPNSEND_PRIORITY_LOW Queues the message with low priority.

DPNSEND_PRIORITY_HIGH Queues the message with high priority.

DPNSEND_NOCOPY Keeps DirectPlay from making a copy of the
DPN_BUFFER_DESC before sending the message.You
cannot use DPNSEND_NOCOMPLETE in conjunction
with this flag.

DPNSEND_SYNC Processes the send synchronously.

DPNSEND_NOCOMPLETE Keeps a DPN_MSGID_SEND_COMPLETE message
from being generated.You cannot use the
DPNSEND_NOCOPY or DPNSEND_GUARANTEED flags
with this flag.The async context must be set to
NULL also.

DPNSEND_NONSEQUENTIAL Lets messages arrive at the client’s computer in
any possible order. If you set this flag, then mes-
sages are not guaranteed to show up in order. If
you do not set this flag, then DirectPlay automati-
cally puts messages in order. Only use this flag for
non-critical packets.

DPNSEND_COMPLETEONPROCESS Causes DirectPlay to send a
DPN_MSGID_SEND_COMPLETE message upon com-
pletion of a message being received by the client.
You have to set the DPNSEND_GUARANTEED flag in
conjunction with this flag.This process can slow
down message sending immensely. Only use it for
absolutely critical messages.

The IDirectPlay8Client
Interface
The IDirectPlay8Client interface is a bit simpler than the server interface because
the client doesn’t have to mess with hosting or managing players. Go ahead and
load up the DPChatClient workspace located in the Chapter10 Zip file on the
CD-ROM. It contains the source code that I’ll discuss.

The IDirectPlay8Client interface works just like all of the other DirectPlay interfaces
in that it is a COM object. The first thing you need to do is call the CoInitialize()
function to initialize COM. If you look under the hrInitializeDirectPlay() function
in my program, you’ll see that this is the first call made. Better yet, why don’t I go
ahead and list the code here?

HRESULT hrInitializeDirectPlay(HWND hWindow)
{

HRESULT hReturn;

// Initialize COM
hReturn = CoInitialize(NULL);
if(FAILED(hReturn)) {

MessageBox(hWindow, “Error Initializing COM”,
“DirectPlay Error”, MB_ICONERROR);

return hReturn;
}
// Create IDirectPlay8Client Object

406 10. Lions and Clients and Servers, Oh My!

Figure 10.9

Output from the
DPChatServer program

if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Client,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Client,
(LPVOID*) &g_pDP)))
MessageBox(hWindow, “Can’t Create DPlayClient”,
“DirectPlay Error”, MB_ICONERROR);

// Init IDirectPlay8Client Message Handler
if(FAILED(hReturn = g_pDP->Initialize(NULL,
DirectPlayMessageHandler, 0))) {

MessageBox(hWindow, “Failed to Message Handler”,
“DirectPlay Error”, MB_ICONERROR);

return -1;
}
// Create a device address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL,CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address, (LPVOID*)
&g_pDeviceAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Device”,
“CoCreateInstance()”, MB_ICONERROR);

return -1;
}
// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(
&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Device Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Create a host address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,
NULL,CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address,
(LPVOID*) &g_pHostAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Host Address()”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Set the host address to TCP/IP
if(FAILED(hReturn = g_pHostAddress->SetSP(
&CLSID_DP8SP_TCPIP))) {

407The IDirectPlay8Client Interface

MessageBox(hWindow, “Failed to SetSP() for Host Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Create connection complete event for later use
g_hConnectCompleteEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
vShowText(hLB_Output,”<<—TCP INITED—>>”);
return S_OK;

}

Creating the
IDirectPlay8Client Function
As I mentioned a minute ago, the first thing to accomplish is initializing COM.
Once that is out of the way, you then create an IDirectPlay8Client interface by call-
ing the CoCreateInstance() function. This works just as it did when you created the
server interface earlier in the chapter.

Initializing the Client Interface
The next function called is the IDirectPlay8Client::Initialize() function, which
sets where all of the messages from the server will go. For this function, I pass in
the address of the DirectPlayMessageHandler() function.

Setting Up the Client Addresses
Clients require two IDirectPlay8Address interfaces. The first one identifies the
client’s connection device. The second address identifies the host computer. Both
of these addresses get set to use the TCP/IP service provider with the SetSP() mem-
ber function.

The Connection Complete Event
You might remember the code from the last chapter where you created a peer
application that connects to a host. To detect that the connection was done, you
used an event. Well, the same thing happens here. To tell when the client is done
connecting to the server, you use a connection event. The creation of this event is
the last notable thing the hrInitializeDirectPlay() function accomplishes before
exiting. Refer to Figure 10.10 to see the list of steps the client follows in the initial-
ization routine.

408 10. Lions and Clients and Servers, Oh My!

I know that I kind of just flew right through the initialization routine, but I hope
you understand what it is doing by now. All of the steps taken have appeared in
past chapters. Anyway, go ahead and look over the code to make sure you under-
stand fully what is going on.

Joining the Server’s Session
Hey, cool; you are already to the part about joining the server’s game session! So
far, you have initialized the client’s system, and now the program is just sitting
there, waiting for someone to click on the Join button. The program in all of its
non-glory looks like Figure 10.11.

409The IDirectPlay8Client Interface

Initialize COM.
Create the

IDirectPlay8Client
interface.

Create an
IDirectPlay8Address

device interface.

Set TCP/IP as the
service provider for
the device address.

Create an
IDirectPlay8Address

device interface.

Set TCP/IP as the
service provider for
the device address.

Create the
completion event.

Client Initialization

Figure 10.10

Client steps used
for initialization

Figure 10.11

The client program
before joining a session

Once the user clicks on the Join button, a message is sent to the program’s message
pump, telling it that someone clicked a button. The message handler loop receives
this message and calls the hrJoinGame() function. This set of events appears in the
following code.

LRESULT CALLBACK fnMessageProcessor (HWND hWnd, UINT iMsg,
WPARAM wParam, LPARAM lParam)

{
char szMessage[256];
char szCompMessage[256];
char szMyName[32];
HRESULT hReturn;
void *packet;
PacketChat ChatMsg;

switch (iMsg) {
case WM_COMMAND: {

// Check for child window messages
switch(LOWORD(wParam)) {

// Check whether the user clicked the button
case IDC_hBU_Join:

hrJoinGame(hWnd);
break;

}
…

}
}

}

The hrJoinGame() Function
The hrJoinGame() function is one I wrote to establish a connection with the server.
Here is the code for this function.

HRESULT hrJoinGame(HWND hWnd)
{

HRESULT hReturn = S_OK;
WCHAR wszHostName[256];
WCHAR wszClientName[256];
char szClientName[256];
char szIP[256];
char szPort[256];

410 10. Lions and Clients and Servers, Oh My!

DWORD dwPort;
DWORD dwLength = 256;
DPN_APPLICATION_DESC dpnAppDesc;
DPN_PLAYER_INFO dpPlayerInfo;

vShowText(hLB_Output,”Attempting Connection...”);
// Set the client info
GetWindowText(hEB_InputName,szClientName,36);
// Get name from window edit box
DXUtil_ConvertGenericStringToWide(wszClientName, szClientName);
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
dpPlayerInfo.pwszName = wszClientName;
// Make this a synchronous call
if(FAILED(hReturn = g_pDP->SetClientInfo(&dpPlayerInfo, NULL,
NULL, DPNSETCLIENTINFO_SYNC))) {

vShowText(hLB_Output,”Failed to set client info”);
return -1;

}
// Prepare the application description
ZeroMemory(&dpnAppDesc, sizeof(DPN_APPLICATION_DESC));
dpnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dpnAppDesc.guidApplication = GUID_CHATSERVER;
// Get IP from edit box
GetWindowText(hEB_InputServerIP,szIP,32);
// Get port from edit box
GetWindowText(hEB_InputServerPort,szPort,6);
// Convert the IP to a wide string
DXUtil_ConvertGenericStringToWide(wszHostName, szIP);
// Convert the port string to a DWORD
dwPort = atol(szPort);
// Add hostname to address
hReturn = g_pHostAddress->AddComponent(DPNA_KEY_HOSTNAME,wszHostName,
(wcslen(wszHostName)+1)*sizeof(WCHAR),DPNA_DATATYPE_STRING);

if(hReturn != S_OK) {
MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”, MB_ICONERROR);
return -1;

}
// Add port number to address
hReturn = g_pHostAddress->AddComponent(DPNA_KEY_PORT,&dwPort,

411The IDirectPlay8Client Interface

sizeof(DWORD),DPNA_DATATYPE_DWORD);
if(hReturn != S_OK) {

MessageBox(hWnd, “Failed to AddComponent()”, “hrJoinGame()”,
MB_ICONERROR);

return -1;
}
// Connect to the session
hReturn = g_pDP->Connect(&dpnAppDesc,

g_pHostAddress,
g_pDeviceAddress,
NULL,
NULL,
NULL,
NULL,
NULL,
&g_hConnectAsyncOp,
NULL); // flags

if(hReturn != E_PENDING && FAILED(hReturn)) {
vShowText(hLB_Output,”Failed to Connect”);
return -1;

}
SetTimer(hWnd, TIMERID_CONNECT_COMPLETE, 100, NULL);
return(hReturn);

}

The majority of this function works just like the hrJoinGame() function I covered in
the last chapter. The first thing you have to do is set up the information about the
player who is joining. With the client/server model, you do this using the
SetClientInfo() member function.

The SetClientInfo() Function
The SetClientInfo() function belongs to the IDirectPlay8Client interface and sets
the general information about the client. The peer counterpart is the SetPeerInfo()
function. Here is the prototype for the function.

HRESULT SetClientInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo,
PVOID const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

412 10. Lions and Clients and Servers, Oh My!

The first parameter expects an initialized DPN_PLAYER_INFO data structure. This data
structure stores the player name and other information about the client. If you
look at the hrJoinGame() function, you see that I set the dwInfoFlags to equal
DPNINFO_NAME. This tells DirectPlay that the structure contains a client name.

The second parameter allows you to specify an async context to use for the player. I
leave this at NULL because I am not using a context.

The third parameter is set up to receive a handle that lets you cancel this opera-
tion. DirectX 8 does not let you cancel this operation at this time, though, so you
should always set this to NULL.

The fourth parameter lets you set up various flags for the structure. DirectX 8 only
has one flag at this time, DPNSETCLIENTINFO_SYNC, which tells the function to process
synchronously. I use this flag here because I don’t want the program to continue
until it has finished.

The Client’s Application Description
The next item of business is setting up the client’s application description. The
most important part of setting up the DPN_APPLICATION_DESC data structure is assign-
ing the GUID. You do this by setting up the guidApplication member variable of the
application description data structure. This is how you differentiate between the
servers to which you are trying to connect. If your client’s application GUID does
not match the server’s, then a connection cannot be made.

Setting Up the Host’s Address
Onward ho! Okay, the next piece of work is setting up the host’s address interface.
You already created the interface back in the hrInitializeDirectPlay() function, so
now it is time to add the host’s IP address and port number. You do so with the
AddComponent() member function of the IDirectPlay8Address interface.

If you take a look back at the code, you’ll
notice that I am adding two components, the
address and the port number. The defines I
use for this are the DPNA_KEY_HOSTNAME and
DPNA_KEY_PORT presets.

413The IDirectPlay8Client Interface

TIP
You can find all of the definitions
for the AddComponent() member
function in the dpaddr.h header
file that comes with the DirectX
8 SDK.

The Connect() Function
The light flickers at the end of the tunnel now; you are at the actual connection
process. Client interfaces use the Connect() function to establish a connection with
a server. Here is the prototype.

HRESULT Connect(
const DPN_APPLICATION_DESC *const pdnAppDesc,
IDirectPlay8Address *const pHostAddr,
IDirectPlay8Address *const pDeviceInfo,
const DPN_SECURITY_DESC *const pdnSecurity,
const DPN_SECURITY_CREDENTIALS *const pdnCredentials,
const void *const pvUserConnectData,
const DWORD dwUserConnectDataSize,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

It might look like quite a few parameters, but don’t worry because many of them
are set to NULL for your current purposes. The first parameter expects the
DPN_APPLICATION_DESC structure that you set up earlier to describe the application.
The second parameter expects the host address interface where you added the IP
and port number earlier. The third parameter expects the device address for the
client’s connection that you defined back in the hrInitializeDirectPlay() function.
The fourth and fifth parameters apply to future security functionality. The keyword
here is “future,” so leave these set to NULL.

The sixth parameter lets you send additional connect information to the server. If
you specify this data, then the server receives a DPN_MSGID_INDICATE_CONNECT message.
Because this is optional, you can leave it as NULL. The seventh parameter specifies
the size of the data you passed in the sixth parameter. Because I am not passing any
data, I leave this NULL. The eighth parameter lets you specify user-created context to
be passed when the DPN_MSGID_CONNECT_COMPLETE message is processed. The ninth
parameter receives an asynchronous handle, which must be set to NULL if you use
the DPNCONNECT_SYNC flag.

The last parameter lets you specify certain flags, such as the
DPNCONNECT_OKTOQUERYFORADDRESSING flag that tells DirectPlay it is okay to query for
additional connection information. The other flag, DPNCONNECT_SYNC, tells DirectPlay
to process the connection synchronously. Refer to Figure 10.12 to see the client
steps used so far.

414 10. Lions and Clients and Servers, Oh My!

Setting the Connection Timer
The Connect() function is out of the way, so now you get to set up the connection
timer to go off every 1/10th of a second. By doing this, you tell the system to
send a WM_TIMER message to the main message loop every 1/10th of a second. This
keeps the program from having to sit in a processing-intensive loop waiting for a
connection. Now take a look at the fnMessageProcessor() function and locate the
WM_TIMER case.

415The IDirectPlay8Client Interface

Message
Handler

hrJoinGame()

SetClientInfo

AddComponent
PORT#

Initialize
Application
Description

Connect

AddComponent
Host Name

SetTimer
TIMERID_CONNECT_COMPLETE

DPChat Client

Figure 10.12

The client program
flow up to connecting

Checking the
g_hConnectCompleteEvent Event
The following piece of code shows how you can wait for the completion event to
take place.

case WM_TIMER:
if(wParam == TIMERID_CONNECT_COMPLETE) {

// Check whether the message is telling us our connection is complete
if(WAIT_OBJECT_0 == WaitForSingleObject(g_hConnectCompleteEvent, 0)) {

if(FAILED(g_hrConnectComplete)) {
vShowText(hLB_Output,”FAILED”);

}
else

vShowText(hLB_Output,”CONNECTED”);
KillTimer(hWnd, TIMERID_CONNECT_COMPLETE);

}
}
break;

Basically, this chunk of code is processed every time the message loop gets a
WM_TIMER function. Because you set a timer earlier to go off every 1/10th of a sec-
ond, this piece of code is executed that often. The first thing you do here is check
whether the timer is equal to the TIMERID_CONNECT_COMPLETE timer you created ear-
lier. After that, you check whether the completion event has occurred by using the
WaitForSingleObject() function.

The WaitForSingleObject() function returns a WAIT_OBJECT_0 if the event passed in
has completed. After that is done, all you have to do is check whether the
g_hrConnectComplete flag is set to success or failure.

One question you might have is, how does the completion event take place? Well, it
happens in the DirectPlay message loop located in the DirectPlayMessageHandler()
function you created earlier.

Setting the
g_hConnectCompleteEvent Event
Move on over to the DirectPlayMessageHandler() function, and you’ll find the
DPN_MSGID_CONNECT_COMPLETE message. The client receives this message once the
server has accepted the connection. When you get this message, you should signal
the g_hConnectCompleteEvent event with the SetEvent() function. But before you do

416 10. Lions and Clients and Servers, Oh My!

this, it is best to set the return state of the connection to find out whether the server
accepted or rejected the connection. Here is the code I used to do all of this.

case DPN_MSGID_CONNECT_COMPLETE:
{

PDPNMSG_CONNECT_COMPLETE pConnectCompleteMsg;
pConnectCompleteMsg = (PDPNMSG_CONNECT_COMPLETE)pMsgBuffer;
g_hrConnectComplete = pConnectCompleteMsg->hResultCode;
SetEvent(g_hConnectCompleteEvent);
break;

}

As you can see here, I first point the raw message data received to a
DPNMSG_CONNECT_COMPLETE message type. This allows me to look at the return code
from the server.

Once this is out of the way, the next WM_TIMER message that gets processed finds out
that the completion event has transpired. This results in a connection complete
message. That’s it; you are done with connecting a client to a server!

Sending Messages to the Server
Now that you are connected to the server, I think it is probably a good idea to fig-
ure out how to send chat messages to everyone. You use the hrSendClientMessage()
function I provide in the DPChatClient.cpp code. Oh, yeah; the client looks like
Figure 10.13 once a connection is established.

The main message loop looks for an EN_UPDATE message. Once one is received, the
code checks whether the user pressed the Enter key. This kicks off the code to send
a message to the server. Here is the code in the message loop.

// Get the text from the edit box
GetWindowText(hEB_InputField,szMessage,256);
// Check whether he pressed Enter
if(szMessage[strlen(szMessage)-1] == 10) {

// Get rid of trailing garbage
szMessage[strlen(szMessage)-2] = ‘\0’;
GetWindowText(hEB_InputName,szMyName,32);
sprintf(szCompMessage,”<%s> %s”, szMyName, szMessage);
// Clear input field
SetWindowText(hEB_InputField,””);
// Send a chat packet to the server
ChatMsg.dwSize = sizeof(PacketChat);

417The IDirectPlay8Client Interface

ChatMsg.dwType = PACKET_TYPE_CHAT;
strcpy(ChatMsg.szText,szCompMessage);
// Convert the packet to a void stream
packet = (VOID*)&ChatMsg;
// Send the chat packet
hReturn = hrSendClientMessage(PACKET_TYPE_CHAT,packet);

}

418 10. Lions and Clients and Servers, Oh My!

Message
Handler

hrJoinGame()

SetClientInfo

AddComponent
PORT#

Initialize
Application
Description

Connect

AddComponent
Host Name

SetTimer
TIMERID_CONNECT_COMPLETE

WM_TIMER

DirectPlay
Message
Handler

DPN_MSGID_CONNECT_COMPLETE

Set Completion
EventCheck Completion

Event

KillTimer

Connection
Complete!

Step 1

Step 2
Step 3

DPChat Client

Client Window

Figure 10.13

The client program
flow once a
connection is
completed

The first thing I do here is retrieve the text from the client’s edit box. I then com-
bine it with the player’s name to create a composite chat message to send.

The next item of interest is setting the chat packet’s parameters. I do this by setting
up a PacketChat class object. If you recall from the server section of this chapter, the
PacketChat class has three member variables: dwSize, dwType, and szText. I set the
size to equal the sizeof() the packet. I then set the type to equal PACKET_TYPE_CHAT.
Last, I copy the message to send into the szText variable. Once all of this is out of
the way, I point to the packet with a void pointer. This lets me send the raw form of
the packet to the hrSendClientMessage() function.

The hrSendClientMessage() Function
Speaking of the hrSendClientMessage() function, here it is.

HRESULT hrSendClientMessage(DWORD dwMessageType, PVOID pMsgBuffer)
{

DPNHANDLE hAsync;
DWORD dwLength;
DPN_BUFFER_DESC bufferDesc;
PacketGeneric *PGen;
// Cast to a generic packet to get the size
PGen = (PacketGeneric*)pMsgBuffer;
dwLength = PGen->dwSize;
if(dwLength == 0)

return(0);
bufferDesc.dwBufferSize = dwLength;
bufferDesc.pBufferData = (BYTE*)pMsgBuffer;
g_pDP->Send(&bufferDesc, 1, 0, NULL, &hAsync, 0);
return S_OK;

}

I’m not going to cover this entire function because it is virtually identical to the
hrSendServerMessage() function I covered earlier in this chapter. The only real dif-
ference is that this call uses the Send() function instead of the SendTo() function.
The reason the client interface doesn’t have a SendTo() function is that clients can
send only to the server, so there is no need to specify to whom it sends.

The IDirectPlay8Client::Send() Function
The IDirectPlay8Client::Send() function’s sole purpose is to send messages to the
server. Here is the prototype.

419The IDirectPlay8Client Interface

HRESULT Send(
const DPN_BUFFER_DESC *const pBufferDesc,
const DWORD cBufferDesc,
const DWORD dwTimeOut,
void *const pvAsyncContext,
DPNHANDLE *const phAsyncHandle,
const DWORD dwFlags

);

The first parameter expects the DPN_BUFFER_DESC data structure that contains the
message to send. The second parameter expects the number of buffers passed in
the first parameter. Currently, you can only send one buffer at a time, so always
leave this at 1. The third parameter lets you specify a timeout in milliseconds. If you
set this to 0, it keeps trying to send the packet forever.

The fourth parameter lets you specify an optional context. I just use NULL here most
of the time. The fifth parameter receives a handle to the asynchronous call. If you
use the DPNSEND_SYNC flag, you must set this to NULL. The last parameter lets you
specify various flags for the operation. The same flags that you saw for the server’s
SendTo() function apply here.

Go ahead and run the server and client applications, establish a connection, and
then send a few chat packets across the wire. The client application now should
resemble something like Figure 10.14.

420 10. Lions and Clients and Servers, Oh My!

Figure 10.14

Output from the
client application

Review
Okay, so now you have finished yet another wonderful chapter. Well, maybe not
wonderful; how about amazing? Before you move on, I want to leave you with a list
of the steps necessary to be a server or client.

Here is a brief rundown of the steps necessary to be a server.

1. Initialize COM.

2. Create an IDirectPlay8Server interface.

3. Create a device address.

4. Set TCP/IP as the service provider.

5. Set the server information using IDirectPlay8Server::SetServerInfo().

6. Initialize the application description.

7. Add the port number to the device address.

8. Call the IDirectPlay8Server::Host() function.

Here is a brief rundown of the steps necessary to be a client.

1. Initialize COM.

2. Create an IDirectPlay8Client interface.

3. Create a device address.

4. Set TCP/IP as the service provider.

5. Create a host address.

6. Set TCP/IP as the service provider.

7. Create a completion event.

8. Set the client information using the IDirectPlay8Client::SetClientInfo()
function.

9. Initialize the application description.

10. Add the host’s port number and IP address to the host’s address interface.

11. Call the IDirectPlay8Client::Connect() function.

12. Set the connection timer to go off every 1/10th of a second.

421Review

13. Accept the DPN_MSGID_CONNECT_COMPLETE message and signal the completion
event.

14. Check for the completion event and signal that connection is complete.

15. Kill the connection timer.

I will see you at the next tribal council, er, chapter.

422 10. Lions and Clients and Servers, Oh My!

CHAPTER 11

DirectX
Graphics

Up to this point, I have yet to show you any programs that look nice. I mean,
Windows dialog-based examples are great for teaching the basics of network

code, but they sure don’t look very nice. In this chapter, I’ll show you everything
you need to know to get started with DirectX graphics. Originally, I had planned to
show you how to use DirectDraw, but guess what: Microsoft decided that in DirectX
8, it would remove DirectDraw and use Direct3D 100 percent. It has combined
both DirectDraw and Direct3D into one system called DirectGraphics. It is actually
easier now to set up and get started, but it does mean learning some new tricks if
you don’t already know how to do 3D. Don’t worry, though; I make it as painless as
possible and just concentrate on how to get started with it. I’ll cover the following
topics in this chapter.

■ Device independence
■ Software emulation
■ Texture mapping
■ Mip-mapping
■ Gouraud and flat shading
■ Multiple hardware lights
■ Hardware acceleration
■ Page flipping
■ Z-buffers
■ Fog
■ Writing your first 3D program
■ Writing your second 3D program

What Is Direct3D?
Even though the system is called DirectGraphics, you will still find that the 3D por-
tion is referred to as Direct3D. This component of DirectGraphics communicates
with 3D hardware on a device-independent level. What this means is that with
Direct3D, you can write your code to work on any video card without having to
worry about the manufacturer. For those of you accustomed to DOS, this is a wel-
come change. No longer do you have to write drivers just to access hardware.

424 11. DirectX Graphics

Direct3D provides several interfaces and operations to allow you to create very
impressive visual experiences.

Device Independence
I already mentioned device independence, but this really is a powerful portion of
DirectGraphics. Everything isn’t completely rosy, though, because not every 3D
card is created equal. One of the headaches you might experience when develop-
ing 3D applications is trying to write your application to work with all possible
video cards. This is where developing for a closed system, such as Microsoft’s Xbox,
is nice. If you develop for the Xbox, then you have a fixed set of hardware features
to worry about. You don’t have to keep in mind the other hundreds of cards. To
get a visual of how device independence works, take a look at Figure 11.1.

In Figure 11.1, you can see how the same graphics call maps to multiple hardware
types. You have to keep in mind the following features when developing your game.

■ Maximum texture size
■ Color depth
■ Texture memory

425What Is Direct3D?

Direct3D API

Hardware Abstraction
Layer

Graphic Function Call
3DFX 5500

Nvidia GeForce

ATI Radeon

Figure 11.1

Device-independent
architecture

Maximum Texture Size
Some 3D cards, such as the Voodoo 3500, have a limit on the size of textures they
handle. The Voodoo 3500 can only handle textures that are 256 pixels wide by 256
pixels high. This means that if you want to display a texture that is larger than
256 × 256, you have to piece together multiple textures. This can be a real pain in
the rear, as you will find out later when I show you how to do it. Unfortunately,
there is not much you can do about such limitations, unless you want to disenfran-
chise many possible users.

Color Depth
Color depth has always been a concern when creating games because you have to
plan ahead for all possible resolutions and colors available to a user. Some graphics
cards let you have 16-bit color, and other cards let you have 32-bit color. You should
always plan to support 16-, 24-, and 32-bit color in your applications to be compati-
ble with the largest possible audience. Also, be sure to keep in mind that the
higher the color depth, the slower the application. If you design your application’s
speed for 32-bit support, then you won’t have a problem switching down to 16-bit.

Texture Memory
Not all 3D cards have the same amount of texture memory. Some cards have 8MB
of memory, but others have 64MB of memory. In some cases, the cards might have
much less memory than this. Whenever you load up a graphic image to map onto a
3D object, that image takes up texture memory. If you run out of texture memory,
then the system has to copy it from slow system memory. You should always plan
your texture usage very carefully to avoid wasting it. A good rule of thumb is to
expect no more than 16MB of texture memory. Even this amount is more than
many cards have, but you can’t hold yourself back too much!

Software Emulation
Here it is, the holy grail of 3D graphics. Okay, not really, but it sounds cool.
Anyway, software emulation lets your application do things in software whenever
hardware is not present to accelerate it for you. This allows you to write a 3D game
that takes advantage of 3D hardware but doesn’t necessarily require it. Imagine
adding fog to your game. If the hardware does not support fog, then the software
emulator takes over and renders it for you. Take a look at Figure 11.2 to see this
principle illustrated.

426 11. DirectX Graphics

In Figure 11.2, you can see how the system
routes commands to either hardware or soft-
ware depending on the features of the
graphics card.

Texture Mapping
Whenever you draw a 3D object that has a
graphic image on it, it is texture-mapped. Take a peek at Figure 11.3 to see the differ-
ence between a texture-mapped cube and a non-texture-mapped cube.

The cube on the left is a standard 3D primitive with no texture mapping. The cube
on the right has an image mapped onto all six sides—this is what texture mapping
is all about. 3D graphics cards are very good about accelerating this CPU-intensive
process. Without 3D acceleration, texture mapping is much slower. Direct3D lets
you do all sorts of neat texture-mapping effects such as scaling textures, moving
textures, and even altering textures in real time.

Mip-Mapping
Mip-mapping is kind of an advanced topic to be bringing up so early in the chap-
ter, but here goes anyway. Normally in 3D rendering, an object on the screen uses

427What Is Direct3D?

Direct3D API

Hardware Abstraction
Layer

Graphic Function Call

Software Layer

3DFX 5500

Nvidia GeForce

ATI Radeon

Figure 11.2

Software
emulation
architecture

CAUTION
Software rendering slows down
your game quite a bit. Be sure
to only use software emulation
where speed is not critical.

one texture. This isn’t much of a problem, but think about objects that are very far
away from the camera. You wouldn’t want to use a full-blown detailed texture on
these objects because you can barely even see them. Take a look at Figure 11.4 to
see an example of this concept.

428 11. DirectX Graphics

Figure 11.3

Texture mapping

Figure 11.4

The same texture
rendered at
multiple distances

In Figure 11.4, you can see that the cube close to the camera deserves to use the
detailed texture. But the cube way off in the distance can barely be seen. The prob-
lem here is that it takes just as much CPU power to draw the texture on the cube in
the distance as it does to draw the texture on the cube in the foreground. This is a
big waste of processing power.

Enter the white knight, mip-mapping. Mip-mapping lets you specify multiple tex-
tures to be used at various distances. When you turn on this feature, Direct3D auto-
matically uses the appropriately-sized texture at the appropriate distance. It does
consume more memory because you are keeping many copies of the same texture,
but it also results in faster rendering times.

Take a look at Figure 11.5 to see an example of mip-mapping. In it, you can see five
versions of the original texture. The cube that is closest to the camera gets the most
detailed texture. As the other cubes get farther away from the camera, they use
smaller versions of the texture.

429What Is Direct3D?

Figure 11.5

Mip-mapping in
action

Gouraud and Flat Shading
Gouraud—that’s a strange sounding name isn’t it? When you render a 3D object, it
can have one of two shading methods, gouraud or flat. The shading method deter-
mines how the surface of the object appears to the viewer.

Gouraud shading gives objects a smooth appear-
ance. Most present-day games use smooth shad-
ing to represent everything. In Direct3D, it is
easy to select this method of shading because
you can accomplish it with only one function
call. You can see a gouraud-shaded sphere in
Figure 11.6.

Back in the old days, everything was flat shaded because flat shading takes up much
less processing power than gouraud shading does. When something is flat shaded,
you can see the facets that make up the object. The best way I can explain this is by
having you take a look Figure 11.7.

As you can see in Figure 11.7, the sphere is flat shaded. You can see the facets that
make up the object. Sometimes you will want to use flat shading, but most of the
time you will use gouraud shading.

430 11. DirectX Graphics

Figure 11.6

Gouraud shading

NOTE
In case you were wondering,
gouraud is pronounced
“goorow” or “garrow.”

Multiple Hardware Lights
If you didn’t have any lighting in your room, then you wouldn’t be able to see very
much. This rule also applies in the wonderful world of 3D programming. There are
exceptions to every rule, though.

Simulated Lighting
It is possible to simulate lighting in 3D by giving every object 100 percent ambient
light. What this does is make everything appear completely lit. The downside to this
is that when something is completely bright, then the geometry of the object gets
washed out. To fix this problem, game programmers light the textures that are
mapped onto the object to simulate lighting.

In Figure 11.8, you can see the simulated lighting effect. The wall really doesn’t
have a light shining on it from above; the texture just has the shading built into it.
This is also referred to as light mapping.

Hardware Lighting
The flip side of the coin is using hardware lights. Hardware lights have an actual
position in the 3D scene and light up objects accordingly. The downside to hard-
ware lights is that they take up a lot of processing power. The upsides are that you

431What Is Direct3D?

Figure 11.7

Flat shading

don’t have to create pre-lit textures and things usually turn out looking more
realistic.

Direct3D lets you specify a finite number of hardware lights in your scene. These
lights have many settings, and the two most common are intensity and color. By
specifying the color, you can create all sorts of neat effects for a cool atmosphere in
your game.

Hardware Acceleration
Hardware acceleration is the opposite of the software rendering, which I men-
tioned earlier. By supporting hardware acceleration, Direct3D lets you tap into the
power of 3D video cards. These cards have special hardware that takes the load off
the processor during key operations. The really cool cards even have transform and
lighting chips that take the load of processing geometry off the main CPU.

When processing gets turned over to the hardware, it goes through the HAL
(Hardware Abstraction Layer). This layer keeps you from having to know what hard-
ware to address; you just send commands to the HAL, and it knows how to operate
the hardware. The architecture appears in Figure 11.9.

432 11. DirectX Graphics

Figure 11.8

Simulated lighting

Texture Map

Simulated Lighting

Page Flipping
Whenever you finish rendering a 3D scene, you have to present it to the user in
one way or another. A common way to present the finished scene to the user is to
utilize page flipping. With this method, you draw everything in your scene to a back-
ground page that is not visible to the user. When you are done drawing, you flip
the background page with the foreground page so that the user can see the new
rendering. By doing this, you are able to skip the computational-intensive process
of copying data from one buffer to another. Take a look at Figure 11.10 to see the
concept of page flipping illustrated.

Z-Buffers
If you put objects into a 3D scene in no particular order, then you can end up with
objects that do not appear correctly. Imagine rendering a cube very close to the
camera and then rendering a sphere that is far away. If you didn’t perform any
depth processing, then the sphere could overlap the cube. Take a look at Figure
11.11 to see an example of this idea.

433What Is Direct3D?

Win32 Application

DirectX Graphics

HAL

Device Driver Interface

Graphics Hardware

GDI

Figure 11.9

The hardware
abstraction layer

434 11. DirectX Graphics

Figure 11.10

Page flipping

Figure 11.11

Lack of depth buffering

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Page 1 Page 2 Page 2Page 1

Page 1 Page 2

TIMELINE

Page 1

In Figure 11.11, the sphere is actually behind the cube in 3D space, but because it
was rendered last, it appears on top of the cube. One way to fix this is to incorporate
a z-buffer. The buffer gets its name because the z-coordinate determines the depth of
an object. When you render objects with z-buffering turned on, they appear in the
proper order no matter what order you render them. Each object rendered stores
information into the z-buffer about its position. If you render another object on top
of an existing one, it actually draws pixels where it should. Look at Figure 11.12 to
see the sphere and cube example with z-buffering turned on.

DirectX allows you to use hardware-accelerated z-buffers on cards that support it.
This greatly enhances the speed at which you can calculate depth buffering. With
DX8, it is as simple as turning on an option.

Fog
In the not-so-old days, programmers used fog to hide the fact that geometry in the
distance couldn’t be drawn. They did this because the video cards and processors
of the time could not handle drawing an entire scene; only the objects that were
close to the camera could afford to be presented. Games such as Turok: Dinosaur
Hunter were notorious for the fog effect.

435What Is Direct3D?

Figure 11.12

Proper z-buffering

With DirectX, you can implement fog into your games to have objects at a given
distance disappear into the fog. Even though you shouldn’t have to code in fog to
hide geometry problems, you can still use it for all sorts of special effects.
Underwater games, for example, could benefit from fog. In that particular case,
you might want everything to disappear into a deep blue background. DirectX
gives you the ability to use fog in your games, and it is very simple to implement.

How to Use DirectGraphics
Well, I have told you about some of the great features of Direct3D, but I really
haven’t showed you how to do anything yet. Now I want to show you how to get
started with this great API. The first thing I’ll cover is the IDirect3D8 interface.
The IDirect3D8 interface connects you with the Direct3D system.

The IDirect3D8 Interface
You use the IDirect3D8 interface to set up the device that controls your 3D environ-
ment. In other words, this interface sets up the screen resolution and indicates the
video card to use. The first order of business is how to actually create the
IDirect3D8 interface—with the Direct3DCreate8() function.

The Direct3DCreate8() Function
This function’s sole purpose is to create an IDirect3D8 interface. Here is the
prototype.

IDirect3D8* Direct3DCreate8(
UINT SDKVersion

);

The first and only parameter passes in a define named D3D_SDK_VERSION. The reason
this formality exists is to make sure that you are using the correct header files. If
the header files you are using do not match the version, then an error occurs.

If there are no errors, then the function returns a handle to an IDirect3D8 inter-
face. If something goes wrong, a NULL is returned. I bet you didn’t think it was
going to be that simple, did you?

Before I get too much further into this, I want to show you all of the functions
available to the IDirect3D8 interface, so take a peek at Table 11.1.

436 11. DirectX Graphics

437How to Use DirectGraphics

Table 11.1 IDirect3D8 Interface Functions

Function Purpose

CheckDepthStencilMatch Checks whether a stencil buffer is compatible with
a render target

CheckDeviceFormat Checks whether a surface can be used for a variety
of operations with the current display adapter

CheckDeviceMultiSampleType Checks whether a particular multisampling method
is available on the display adapter

CheckDeviceType Checks whether a device can handle the setting
desired completely in hardware

CreateDevice Starts the video mode

EnumAdapterModes Enumerates available display modes for an adapter

GetAdapterCount Tells you how many video adapters are plugged into
the computer

GetAdapterDisplayMode Retrieves information about the current display
mode of an adapter

GetAdapterIdentifier Fills a D3DADAPTER_IDENTIFIER8 data structure
with information about the adapters in the system
when Direct3D was initialized

GetAdapterModeCount Retrieves the number of display modes available to
the video adapter

GetAdapterMonitor Gets the handle of the monitor attached to the
display adapter

GetDeviceCaps Obtains information about a display adapter’s
capabilities

RegisterSoftwareDevice Sets a certain capability to be rendered in software
for when hardware is not available

The IDirect3D8::GetAdapterDisplayMode()
Function
The first function you want to call after getting an IDirect3D8 interface is the
GetAdapterDisplayMode() function. This function retrieves information about the
current video mode. Here is the prototype.

HRESULT GetAdapterDisplayMode(
UINT Adapter,
D3DDISPLAYMODE* pMode

);

The first parameter is rather easy because it expects the number of the adapter you
want to query. I use the D3DADAPTER_DEFAULT definition here because it always returns
the primary display adapter. The second parameter passes back a D3DDISPLAYMODE
data structure describing the video mode. The function returns a D3D_OK result if
everything works. If the function fails, then it returns a D3DERR_INVALIDCALL return
value.

Okay, now that you have seen the prototype, here is the code I use to make the call.

if(FAILED(pD3D->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &d3ddm)))
return E_FAIL;

The d3ddm variable in this call is type D3DDISPLAYMODE. You might be asking what is in
the D3DDISPLAYMODE variable. Well, read on!

The D3DDISPLAYMODE Data Structure
The D3DDISPLAYMODE data structure does nothing more and nothing less than
describe the display mode of an adapter. Here is what the data structure looks like.

typedef struct _D3DDISPLAYMODE {
UINT Width;
UINT Height;
UINT RefreshRate;
D3DFORMAT Format;

} D3DDISPLAYMODE;

Most of the data structure should speak for itself; the only difficult one is the
D3DFORMAT variable. The width tells you the width of the current display mode. The

438 11. DirectX Graphics

height tells you the height of the current display mode. Both the width and height
are measured in pixels.

The refresh rate tells you the refresh rate of the video card. A 0 here indicates that
it is set at the adapter’s default setting. As I mentioned a second ago, the Format
data member is type D3DFORMAT.

The D3DFORMAT Data Structure
The D3DFORMAT data structure defines the different types of surfaces available in
Direct3D. The two that you see in the demo code are the D3DFMT_D16 and D3DFMT_D32
formats. These two are used when the z-buffer is either 16 bits or 32 bits in depth.
For a complete list of formats, I recommend that you look at the DirectX 8 help
file.

Now that you have retrieved the adapter display information, you can go on to set
up the display mode you want to use. You do this by first setting up a
D3DPRESENT_PARAMETERS data structure.

The D3DPRESENT_PARAMETERS
Data Structure
Before I show you the prototype, I want you to see how I set up a
D3DPRESENT_PARAMETERS data structure. Here is the code I use.

D3DPRESENT_PARAMETERS d3dpp;
// Clear out device parameters
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.hDeviceWindow = hWnd;
d3dpp.BackBufferWidth = 640;
d3dpp.BackBufferHeight = 480;
d3dpp.BackBufferFormat = d3ddm.Format;
d3dpp.BackBufferCount = 1;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
d3dpp.Windowed = TRUE;

439How to Use DirectGraphics

In this code, I set up a 640 × 480 screen in the display adapter’s current color
depth. The code will run in windowed mode and will use page flipping. Here is the
prototype for the data structure.

typedef struct _D3DPRESENT_PARAMETERS_ {
UINT BackBufferWidth;
UINT BackBufferHeight;
D3DFORMAT BackBufferFormat;
UINT BackBufferCount;
D3DMULTISAMPLE_TYPE MultiSampleType;
D3DSWAPEFFECT SwapEffect;
HWND hDeviceWindow;
BOOL Windowed;
BOOL EnableAutoDepthStencil;
D3DFORMAT AutoDepthStencilFormat;
DWORD Flags;
UINT FullScreen_RefreshRateInHz;
UINT FullScreen_PresentationInterval;

} D3DPRESENT_PARAMETERS;

Hey, you know what? I think you are due for another illustration. Look at Figure
11.13 to see the list of steps necessary to set up the 3D environment.

440 11. DirectX Graphics

Create
IDirect3D8
Interface

Get Adapter
Display Mode

Create
IDirect3D8
Interface

Create
Device

Set up Device
Parameters

Figure 11.13

Initializing Direct3D

If you look at the steps, you’ll see that you are only one step away from initializing
a display! Before I move on, though, let me finish talking about the
D3DPRESENT_PARAMETERS.

The first four parameters deal with how the back buffer is set up. When you use
buffer swapping for displaying graphics, you first copy everything to a back buffer.
Once you are ready to display the graphics, you copy the back buffer to the front
buffer and then display the front buffer all at once. This method lets you maintain
a steady display and prevent tearing.

The BufferHeight and BufferWidth parameters specify the size of the back buffer. If
you set these to 0 in windowed mode, then the buffer is the same size as the device
window. The BufferFormat describes the buffer’s format in a D3DFORMAT structure. I
usually pass the Format member from the D3DDISPLAYMODE data structure here.

The BufferCount tells the graphics system how many buffers are in the swapping
chain. Normally, you set this to 1, but it is possible to do double and triple buffer-
ing if you want. The MultiSampleType member variable tells how multisampling is
handled. Just remember to set this to D3DMULTISAMPLE_NONE for now. The SwapEffect
member tells the system how to perform swapping, be it page flipping or buffer
swapping. The hDeviceWindow just expects the handle to the window your applica-
tion is using.

The Windowed member should be set to 1 for windowed mode or 0 for full-screen
mode. The EnableAutoDepthStencil member sets whether Direct3D will manage
depth buffers. If you set this to TRUE, then you need to set up the next member as
well. The AutoDepthStencilFormat, which must be set if EnableAutoDepthStencil is
TRUE, specifies the format of depth buffers to use.

Normally, you set the Flags variable to 0. If you want to be able to modify the back
buffer in the future, you need to set the flags to D3DPRESENTFLAG_LOCKABLE_BACKBUFFER.

You use the FullScreen_RefreshRateInHz member only in full-screen modes. If you
want the display to update at its current level, then you pass a
D3DPRESENT_RATE_DEFAULT here. If you want the application to update the display as
fast as it can, then you use the D3DPRESENT_RATE_UNLIMITED setting.

The FullScreen_PresentationInterval sets how often the back buffer is presented.
For windowed mode, you must set this to D3DPRESENT_INTERVAL_DEFAULT. If you are in
full-screen mode, you can set it to one of values listed in Table 11.2.

441How to Use DirectGraphics

The IDirect3D8::CreateDevice()
Function
Don’t worry; you’re almost to the point of initializing a 3D environment. The last
function in your way is the CreateDevice() function. This function creates a device
that represents the video display you desire. Here is the prototype for the function.

HRESULT CreateDevice(
UINT Adapter,
DDEVTYPE DeviceType,
HWND hFocusWindow,
DWORD BehaviorFlags,
D3DPRESENT_PARAMETERS* pPresentationParameters,
IDirect3DDevice8** ppReturnedDeviceInterface

);

The first parameter specifies which adapter in the system you want to set up.
Normally, you can just pass the D3DADAPTER_DEFAULT value here to specify the primary
display adapter. The second parameter sets the type of device you want to create.
For hardware acceleration, you should use the D3DDEVTYPE_HAL type. For software
rendering, you can set this to D3DDEVTYPE_SW.

442 11. DirectX Graphics

Table 11.2 FullScreen_PresentationInterval Values

Value Description

D3DPRESENT_INTERVAL_IMMEDIATE Presents the buffer immediately. No vertical
retrace is waited upon.

D3DPRESENT_INTERVAL_ONE Waits for exactly one vertical retrace to pass
before displaying the buffer.

D3DPRESENT_INTERVAL_TWO Waits for exactly two vertical retraces to pass
before displaying the buffer.

D3DPRESENT_INTERVAL_THREE Waits for exactly three vertical retraces to
pass before displaying the buffer.

D3DPRESENT_INTERVAL_FOUR Waits for exactly four vertical retraces to pass
before displaying the buffer.

The third parameter lets you specify which window will receive the device. Make
sure that you pass in the top-level window here if you are using full-screen mode.
The fourth parameter lets you use flags that determine the behavior of the device.
Table 11.3 lists the values available for this parameter.

The fifth parameter expects the presentation parameters to be used. In this para-
meter, you pass the D3DPRESENT_PARAMETERS data structure that you created earlier.
The last parameter receives the IDirect3DDevice8 device returned. Here is the code
used to call the CreateDevice() function.

if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&pd3dDevice))) {

return E_FAIL;
}

443How to Use DirectGraphics

Table 11.3 hFocusWindow Values

Value Description

D3DCREATE_HARDWARE_VERTEXPROCESSING Uses hardware transform and lighting
such as that available in Nvidia graphics
cards.

D3DCREATE_SOFTWARE_VERTEXPROCESSING Uses software transform and lighting.

D3DCREATE_MIXED_VERTEXPROCESSING Uses a mixture of hardware and soft-
ware.

D3DCREATE_FPU_PRESERVE Specifies that the application requires
double-precision floating-point-unit
(FPU) exceptions.This is usually never
used.

D3DCREATE_PUREDEVICE Disallows the use of get function calls.

D3DCREATE_MULTITHREADED Tells Direct3D to run in thread-safe
mode, which can degrade performance.

In this code, I am getting a device for the primary display. The device will use
hardware acceleration, but will use software for vertex processing. If I want to ini-
tialize a video card that has hardware T&L (transform and lighting), then I use the
D3DCREATE_HARDWARE_VERTEXPROCESSING flag.

Once you create a device, you can go on to do all sorts of cool 3D rendering.

Your First Direct3D
Application
All theory and no play makes Jack a dull boy, or so the saying goes. Now that you
have read through a lot of theory, I think it is time to write a 3D application. This
application won’t do anything besides fill a window with color, but it does actually
initialize the 3D environment. Figure 11.14 shows the output from the application I
am about to show you.

I haven’t done this in a while, so here is the complete listing of the Init3D
application.

#define INITGUID
#define WIN32_LEAN_AND_MEAN // No MFC
#include <d3d8.h>
#include <stdio.h>

444 11. DirectX Graphics

Figure 11.14

Output from the Init3D
application

// Direct3D globals
LPDIRECT3D8 pD3D;
LPDIRECT3DDEVICE8 pd3dDevice;
// Class name & app name
const char *szWndClass = “Init3D”;
const char *szProgramName = “Init3D Example”;
// Windows globals
HINSTANCE g_hInstance;
// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

HRESULT hrInit3D(HWND hWnd);
void vCleanup(void);
void vRenderScene(void);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASS wc;
HWND hWnd;
MSG msg;

// Set up and register window class
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = MsgProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = szWndClass;
RegisterClass(&wc);
// Create a window
hWnd = CreateWindowEx(WS_EX_TOPMOST, szWndClass, szProgramName,

WS_OVERLAPPEDWINDOW, 0, 0, 640, 480,
NULL, NULL, hInstance, NULL);

// Set up global window handles

445Your First Direct3D Application

g_hInstance = hInstance;
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
if(hrInit3D(hWnd) == E_FAIL) {

exit(1);
}
// Display the 3D environment
vRenderScene();
// Process messages until the program is terminated
while(GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
// Clean up the environment
vCleanup();
return(msg.wParam);

};
LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
switch(msg) {

case WM_DESTROY:
PostQuitMessage(0);

return 0;
}
return DefWindowProc(hWnd, msg, wParam, lParam);

}
HRESULT hrInit3D(HWND hWnd)
{

D3DPRESENT_PARAMETERS d3dpp;
D3DDISPLAYMODE d3ddm;
RECT rcWindowBounds;
RECT rcWindowClient;
// Create the D3D object
if(NULL == (pD3D = Direct3DCreate8(D3D_SDK_VERSION)))

return E_FAIL;
// Get adapter settings
if(FAILED(pD3D->GetAdapterDisplayMode(
D3DADAPTER_DEFAULT, &d3ddm)))

return E_FAIL;
// Get the size of the window

446 11. DirectX Graphics

GetWindowRect(hWnd, &rcWindowBounds);
GetClientRect(hWnd, &rcWindowClient);
// Clear out device parameters
ZeroMemory(&d3dpp, sizeof(d3dpp));
// Set up device parameters
d3dpp.hDeviceWindow = hWnd;
d3dpp.BackBufferWidth = (rcWindowClient.right

- rcWindowClient.left);
d3dpp.BackBufferHeight = (rcWindowClient.bottom

- rcWindowClient.top);
d3dpp.BackBufferFormat = d3ddm.Format;
d3dpp.BackBufferCount = 1;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
d3dpp.Windowed = TRUE;
// Create the D3DDevice
if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL,
hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&pd3dDevice)))

{
// Try 32-bits
d3dpp.AutoDepthStencilFormat = D3DFMT_D32;
if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL,
hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&pd3dDevice)))

{
return E_FAIL;

}
}
return S_OK;

}
void vCleanup(void)
{

447Your First Direct3D Application

if(pd3dDevice != NULL)
pd3dDevice->Release();

if(pD3D != NULL)
pD3D->Release();

UnregisterClass(szWndClass, g_hInstance);
}
void vRenderScene(void)
{

// Clear the scene
pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET,
D3DCOLOR_XRGB(150,150,255), 1.0f, 0);

pd3dDevice->BeginScene();
pd3dDevice->EndScene();
// Output the scene
pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

If you don’t feel like typing in all of the code, you can find it on this book’s CD, in
the Chapter11 Zip file.

Setting Up Visual C++ for 3D
Applications
To set up Visual C++ for a Direct3D application, you first create a Win32
Application project using the empty project template. Once that is done, you need
to add the d3d8.lib library to the project. I generally use the Release mode for my
final projects because it doesn’t have the debugging overhead. Look at Figure 11.15
to see the project layout for the Init3D application.

The WinMain() Function
There isn’t very much special about the WinMain() function for this program. It
resembles most of the code I have shown you so far in the book. Here are the steps
that are accomplished in this function.

1. Create a window class with the CreateWindowEx() function.

2. Display the created window with the ShowWindow() function.

3. Update the window with the UpdateWindow() function.

4. Initialize the 3D system with the hrInit3D() function.

448 11. DirectX Graphics

5. Render the 3D scene with the vRenderScene() function.

6. Process messages with the GetMessage() function.

7. Close down the application with the vCleanup() function.

The three functions that should look new to you are hrInit3D(), vRenderScene(),
and vCleanup().

The hrInit3D() Function
The hrInit3D() function sets up the 3D system for use. This function contains the
code that I referred to back in the “How to Use DirectGraphics” section. This func-
tion must

1. Create an IDirect3D8 interface with the Direct3DCreate8() function.

2. Retrieve the adapter settings with the GetAdapterDisplayMode() function.

3. Set up the display parameters with the D3DPRESENT_PARAMETERS structure.

4. Create an IDirect3DDevice8 device with the CreateDevice() function.

The settings I show you in this function set up a 640 × 480, 16-bit window to display
graphics, if the function is successful. If the CreateDevice() function fails, I then try
to set up the window in 32-bit mode.

449Your First Direct30 Application

WIN32
Application

hrInit3D vCleanup vRenderScene

FILE

d3d8.lib

FILE

d3d8.h

Figure 11.15

Project layout for the Init3D
application

Creating the Interface
The first few lines of code create the IDirect3D8 interface using the
Direct3DCreate8() function. I pass the D3D_SDK_VERSION definition to the function to
make sure that all of the header files are proper.

if(NULL == (pD3D = Direct3DCreate8(D3D_SDK_VERSION)))
return E_FAIL;

The pD3D variable is a global variable of type LPDIRECT3D8. The LPDIRECT3D8 type is
just a pointer to an IDirect3D8 interface.

Retrieving the Adapter Settings
The next step to initialization is to poll the primary display adapter for its current
settings. This allows you to set up your video system in a compatible way. To poll
the adapter, you should use the GetAdapterDisplayMode() function.

if(FAILED(pD3D->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &d3ddm)))
return E_FAIL;

The D3DADAPTER_DEFAULT value I am using for the first parameter tells it to grab
information about the primary display adapter. If you want to use a secondary
adapter, you pass something else. The d3ddm variable is type D3DDISPLAYMODE and
holds the retrieved information. I just create a local variable in this function
because it is only needed during initialization.

Once you retrieve the adapter information, you can go ahead and set up the video
display of your dreams. Well, maybe not the display of your dreams, but you can set
it up however you like.

Setting the Device Parameters
To set up the video mode, you must populate a D3DPRESENT_PARAMETERS data struc-
ture. This data structure holds wonderful information such as the width and height
of the display. Here are the settings I am using.

d3dpp.hDeviceWindow = hWnd;
d3dpp.BackBufferWidth = (rcWindowClient.right

- rcWindowClient.left);
d3dpp.BackBufferHeight = (rcWindowClient.bottom

- rcWindowClient.top);
d3dpp.BackBufferFormat = d3ddm.Format;

450 11. DirectX Graphics

d3dpp.BackBufferCount = 1;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
d3dpp.Windowed = TRUE;

The main item of interest here is the d3ddm.Format setting. What I am doing here is
using the format from the adapter to set up the back buffer. This makes sure that
the video setting is compatible. Because
the adapter is already in this mode, it is
a safe bet.

The buffer width and height are set by
retrieving the size of the client window
and figuring out how much room is
available for display. This is why I used
the GetWindowRect() and GetClientRect()
functions earlier.

Creating the Device
The last step is to create the actual device used with the aforementioned
CreateDevice() function.

if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&pd3dDevice)))

In the first parameter, I tell the system to create a device for the primary display
adapter. In the second parameter, I set up the program to be hardware accelerated.
If you want to use software acceleration, you can use the D3DDEVTYPE_SOFTWARE set-
ting. The third parameter holds the global window handle.

In the fourth parameter, I set up the system to use software vertex processing.
If you have a T&L card, then you might want to set up hardware processing. In
the fifth parameter, I pass in the parameter settings. The last parameter holds
the returned device. For this parameter, I use a global variable of type
LPDIRECT3DDEVICE8. This is a pointer to an IDirect3DDevice8 interface.

451Your First Direct3D Application

CAUTION
Not all graphics cards can initialize in
a window. If this is the case, then the
initialization of the program might
still fail.Adjust the width and height
of the buffer along with the stencil
format until your application works.

Well, now that you have initialized the 3D environment, it’s time to do something
with it. Follow the WinMain() function, and you’ll see that the vRenderScene() func-
tion is called next.

The vRenderScene() Function
Well, this is where things get interesting. The vRenderScene() function is short, but
it actually accomplishes a lot. Here is the function again.

void vRenderScene(void)
{

// Clear the scene
pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET,
D3DCOLOR_XRGB(150,150,255), 1.0f, 0);

pd3dDevice->BeginScene();
pd3dDevice->EndScene();
// Output the scene
pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

All of the functions in this function are members of the IDirect3DDevice8 interface
you created in hrInit().

The Clear() Function
The first thing that you do when rendering a 3D scene is clear out the video
buffers with the Clear() function. Here is the prototype.

HRESULT Clear(
DWORD Count,
CONST D3DRECT* pRects,
DWORD Flags,
D3DCOLOR Color,
float Z,
DWORD Stencil

);

Most of the time, you clear the entire buffer area, but the Clear() function gives
you the power to clear only portions if you so desire. The first parameter lets you
specify how many rectangular areas you are going to clear. If you set this to 0, then
the entire viewport is cleared.

452 11. DirectX Graphics

The second parameter expects pointers to the rectangles you are going to clear.
The rectangles are the D3DRECT data type. This data type has four member variables:
x1, y1, x2, and y2. They represent the upper-left and lower-right extents of a rectan-
gle. Be sure to set this parameter to NULL if you used 0 in the first parameter.

The third parameter lets you specify certain flags to use with the function call. The
optional values appear in Table 11.4.

The fourth parameter stores the color that the video display will be filled with if the
D3DCLEAR_TARGET flag is set. The color is a 32-bit ARGB value. The fifth parameter
stores the Z value to clear the z-buffer with if the D3DCLEAR_ZBUFFER flag is set. This
value can be set from 0.0 to 1.0. The value 0.0 is closest to the camera, and 1.0 is
farthest from the camera. The last parameter sets the integer value that will be used
each time a stencil buffer entry is made. This value can be up to 2n –1 in size.
That’s quite a large number there, eh?

Be sure to check for a D3D_OK return value when making this call. Anyway, now that
I have showed you what the function does, here is how I call it.

pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET,
D3DCOLOR_XRGB(150,150,255), 1.0f, 0);

Because I usually like to clear the entire display, I set the first two parameters to 0
or NULL. This ensures that the entire viewport is cleared. I am only clearing the view-
port so I set the next parameter to D3DCLEAR_TARGET.

453Your First Direct3D Application

Table 11.4 IDirect3DDevice8::Clear() Flags

Flag Purpose

D3DCLEAR_STENCIL Sets the stencil buffer to be cleared

D3DCLEAR_TARGET Sets the render buffer to be cleared using the Color
parameter

D3DCLEAR_ZBUFFER Sets the z-buffer to be cleared with the value set in
the Z parameter

To set the color, I pass in a D3DCOLOR_XRGB macro. This macro lets you pass in three
values ranging from 0 to 255. The three values represent the red, green, and blue
components of the color you want to use.

The last two parameters are irrelevant because I am not clearing the z-buffer or the
stencil buffer. There you have it; that’s how you clear the display!

The IDirect3DDevice8::BeginScene()
Function
Before you can actually display any polygons within a 3D scene, you must first tell
the 3D system to get into rendering mode using the BeginScene() function.

Hey, guess what: There is nothing to the BeginScene() function! That’s right; you
just call BeginScene(), and you are ready to rock and roll. Because the Init3D pro-
gram only demonstrates how to clear a window with blue, there is no geometry to
render. Therefore, you can go ahead and end the scene.

The IDirect3DDevice8::EndScene()
Function
For every BeginScene() function, you must have a matching EndScene() function. All
this does is tell the 3D system to shut down its rendering mode. Once a scene ends,
the resulting graphic that is ready to be displayed is stored within the device.

Just like its brother BeginScene(), EndScene() has no parameters either; just call it
as is.

The IDirect3DDevice8::Present()
Function
Once the scene is loaded into the 3D device, it is primed to be displayed. The
method you call to display renderings from the device is the Present() function.
Here are the parameters for it.

HRESULT Present(
CONST RECT* pSourceRect,
CONST RECT* pDestRect,
HWND hDestWindowOverride,
CONST RGNDATA* pDirtyRegion

);

454 11. DirectX Graphics

The first parameter passes a RECT-type data structure that represents the source rec-
tangle from which to copy. You do not need to set this parameter unless you speci-
fied the D3DSWAPEFFECT_COPY or D3DSWAPEFFECT_COPY_VSYNC flags in the creation of the
swap chain. If you make a rectangle that exceeds the limit of the source buffer, the
rectangle is clipped to the size of the source.

The second parameter sets the destination rectangle. The same rules apply here as
did in the first parameter.

The third parameter sets which window gets the output. If you set this to NULL, the
program uses the window that was specified when the device was created.

The last parameter is not used in DirectX 8.0, so set it to NULL.

If you look at the way I called the Present() function, you’ll see that I set every
parameter to NULL.

pd3dDevice->Present(NULL, NULL, NULL, NULL);

The vCleanup() Function
Before the program exits out completely, you should clean up all of the devices and
objects you created. If you take a peek at the vCleanup() function, you’ll see how to
clean up the necessary objects.

void vCleanup(void)
{

if(pd3dDevice != NULL)
pd3dDevice->Release();

if(pD3D != NULL)
pD3D->Release();

UnregisterClass(szWndClass, g_hInstance);
}

The first item I clean up is the IDirect3DDevice interface that was created. I do this
by using the Release() member function. There are no parameters to it; just call it
as is.

The next object I release is the IDirect3D8 inter-
face. The last thing to take care of is using the
UnregisterClass() function to un-register the win-
dow that was created. You pass in the window class
and window instance to this function.

455Your First Direct3D Application

TIP
Always be sure to check
whether pointers are NULL
before trying to run oper-
ations on them.

Your Second Direct3D
Program
How’s that for a title? Well, your second Direct3D program might not sound that
exciting, but it will teach you some key elements. In this program, I’ll show you
how to set up the camera in your 3D scene. By setting up the camera, you get the
scene ready to render some actual geometry. Without a camera view, you won’t be
able to look at anything.

Go ahead and load up the Init3DView project that is located in the Chapter11 Zip
file on the CD. You might notice that the Init3DView program is similar to the pro-
gram I just covered. The main difference is the inclusion of some camera variables
and a few new function calls. There is no need to waste paper, so I’ll only list the
differences here.

The D3DXMATRIX Data Type
The beginning of the code contains the following new variables.

D3DXMATRIX matProj; // Projection data
D3DXMATRIX matCameraView; // Camera data
D3DXVECTOR3 vecCameraSource;
D3DXVECTOR3 vecCameraTarget;

The first two variables, matProj and matCameraView, are matrixes. You use a matrix to
store 3D rotation, scale, and position information. This is not really the time or
place to show you everything about matrices, but I’ll show you how to use them for
various tasks later.

The D3DXVECTOR3 Data Type
The second two variables, vecCameraSource and vecCameraTarget, are 3D vectors. A
vector stores three numbers: x, y, and z. You can use these three numbers to
generate a path, or as the name implies, a vector. For an example, take a look at
Figure 11.16, which shows a 2D vector. The x of the vector equals 1, and the y of
the vector equals 1. What this means is that the vector or path is traveling equally
in both the x and y directions. So when a 2D vector equals (1,1), the vector is
pointing northeast in compass terms. Vectors are good for calculating trajectories
and other things; I just use vectors here to store x, y, and z information.

456 11. DirectX Graphics

The vSetupView() Function
If you follow along the WinMain() function, you’ll see that everything looks familiar
until you get to the vSetupView() function. This function’s purpose is to set up the
camera in the 3D scene. To get a better understanding of how cameras work in 3D
space, look at Figure 11.17.

In Figure 11.17, you can see that the sphere is in the middle of the scene. A camera
in the scene is offset from the sphere. The camera is pointing at the sphere in the

457Your Second Direct3D Program

Y

X

(1,1)

Figure 11.16

A 2D vector

Figure 11.17

A camera in your
3D scene

Camera

center. If you look at it from the top view, you can see the layout of the entire
scene. However, when you look at it from the camera’s view, you can see what
the 3D scene will look like when rendered. If the camera moves closer to the
sphere, then the sphere appears to get bigger. If the camera moves away from the
sphere, then the sphere appears to get smaller.

All of this might sound rather simple, and it really is. We all live in 3D space, so it
shouldn’t be a big stretch to visualize how 3D programming works. Just remember
that to display 3D objects, you must have lights, cameras, and objects to display.

Setting the Camera Source
The first piece of code in vSetupView() sets up where the camera sits in 3D space.

vecCameraSource.x = 0.0f;
vecCameraSource.y = 0.0f;
vecCameraSource.z = 10.0f;

From these settings, the camera is sitting 10 units straight
back from the origin of the scene.

The f at the end of each number means that the values are
in floating-point units. Everything in 3D space uses floating-
point numbers. If you try to use fixed-point values, you’ll get
tons of warnings.

Setting the Camera Destination
The next little piece of code sets up where the camera is looking. Because the cam-
era’s source sets where it is looking from, the camera’s destination sets where it is
looking at.

vecCameraTarget.x = 0.0f;
vecCameraTarget.y = 0.0f;
vecCameraTarget.z = 0.0f;

This one is pretty straightforward because the camera is looking at the origin. In
the next program, you’ll see how to put geometry at the origin.

Initializing the Camera’s Matrix
You might recall the global variable, matCameraView. Well, this matrix is used to store
the camera’s rotation, scale, and position. Now that the camera’s look from and

458 11. DirectX Graphics

The origin of a 3D
scene is always
(0,0,0).This means
that the origin is
the center of the
universe.The three
numbers refer to
the x, y, and z
positions.

look at settings are in place, it is time to create the matrix for the camera. To do
this I use the D3DXMatrixLookAtLH() helper function.

The D3DXMatrixLookAtLH() Function
The D3DXMatrixLookAtLH() function has one purpose and one purpose only—to
setup a camera view matrix. Here is the prototype.

D3DXMATRIX* D3DXMatrixLookAtLH(
D3DXMATRIX* pOut,
CONST D3DXVECTOR3* pEye,
CONST D3DXVECTOR3* pAt,
CONST D3DXVECTOR3* pUp

);

The first parameter returns a completed matrix. For this, I pass in the
matCameraView variable’s address. The second parameter sets the camera’s origin, or
eye. The third parameter sets the camera’s target position. The fourth parameter
sets up how the world is oriented. Normally, you set this to (0,1,0).

Here is the code I used to call this function for the Init3DView program.

// Set up camera view
D3DXMatrixLookAtLH(&matCameraView,

&vecCameraSource,
&vecCameraTarget,
&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

There shouldn’t be too many surprises here except for maybe the D3DXVECTOR inclu-
sion in the call. I just used it there to keep from having to declare a new variable.

The IDirect3DDevice8::SetTransform()
Function
To activate the camera matrix, you must call the SetTransform() function. You use
this function to set device states such as the camera view or the projection matrix.
Here is the prototype.

HRESULT SetTransform(
D3DTRANSFORMSTATETYPE State,
CONST D3DMATRIX* pMatrix

);

459Your Second Direct30 Program

The first parameter tells the 3D device interface which device-state variable is being
set. The value you use to set up the camera view is the D3DTS_VIEW value. The second
parameter expects the matrix with which you want to define the device-state. For
this parameter, I just pass in the camera’s matrix. Here is the code I used to call
this function for the camera.

// Tell the device to use the camera view for the viewport
pd3dDevice->SetTransform(D3DTS_VIEW, &matCameraView);

Notice that I am using the IDirect3DDevice8 interface that was created in the
hrInit3D() function earlier. The D3DTS_VIEW definition tells the system that this func-
tion call is to set up the camera view. Once the SetTransform() function is called,
the camera view is active. Look at Figure 11.18 to see where the camera is in the 3D
scene now.

Setting Up the Projection Matrix
The next few lines of code set up the projection matrix for the 3D scene. You use a
projection matrix to set how the scene looks through the lens of the camera. Most
programs in this book use the same projection matrix, so I’ll be brief about it. Here
is the code I use to set up the matrix.

460 11. DirectX Graphics

Figure 11.18

A camera at (0,0,10)

Camera

// Set up projection
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, 1.0f, 1.0f, 100.0f);
// Tell the device to use the above matrix for projection
pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);

The D3DXMatrixPerpectiveFovLH()
Function
The D3DXMatrixPerpectiveFovLH() function might look complicated, but it’s really
not that bad. Gee, how many times have you heard me say that? But hey, if I can do
it, then surely you can! Here is the prototype.

D3DXMATRIX* D3DXMatrixPerspectiveFovLH(
D3DXMATRIX* pOut,
FLOAT fovy,
FLOAT Aspect,
FLOAT zn,
FLOAT zf

);

The first parameter receives the results of the func-
tion call. When the function call completes, it loads
whichever matrix you put in here with the resulting
values. The second parameter sets up the field of
view in radians. For this, I almost always use
D3DX_PI/4.

The third parameter sets up the aspect ratio. I nor-
mally use an aspect ratio of 1.0f; this sets up the
viewport to be square. The fourth parameter sets up the new viewplane. Any
objects before this viewplane are not visible. Keep this at 1, and you will be safe.
The last parameter sets up the far viewplane. Any objects past this plane are not
visible.

The last thing to do once you set up the projection matrix is call SetTransform(). By
passing a D3DTS_PROJECTION value to this function, you are telling it to set up the
device-state for the projection matrix.

Go ahead and run the program, and you’ll see something like what is shown in
Figure 11.19.

All right, that might not look too thrilling yet. Don’t despair, though; in the next
chapter, I’ll show you how to display all sorts of stuff in the scene.

461Your Second Direct30 Program

A radian is smaller than a
degree.There are
57.29577951308232286465
radians for every degree of
movement. For example, to
find the number of radians in
a 45-degree angle, calculate
45/57.29577951308232286465.

Review
In this chapter, you have learned many things about the nature of 3D graphics. You
really need to commit this chapter to memory, because the concepts are put to use
in all 3D games. Here are some key points to remember.

■ Always take into consideration your target audience’s hardware limitations. If
you are targeting high-end users, then you can get away with more graphical
detail. If you are targeting low-end users, then you should tone down your
game engine to match. The best practice is to check the player’s hardware
for compatibility with your game features.

■ Try to use as few polygons as possible. It is best to simulate model detail with
good textures instead of additional geometry.

■ The z-buffer is used to sort objects in your rendering display according to
their depths.

■ The IDirect3DDevice8 interface is the heart of your 3D rendering engine when
using DirectX. The IDirect3D8 interface is used to create the device interface.

■ Always begin your scenes with the BeginScene() function and end them with
the EndScene() function. 3D calls made outside of these two functions will
cause program instability or crashing. The Present() function is used to dis-
play your rendered scene.

■ Include support for hardware vertex processing. This can greatly improve the
speed of your game when the user’s hardware supports it.

462 11. DirectX Graphics

Figure 11.19

Output from the
Init3DView program

CHAPTER 12

Inside
Direct3D

Rendering

In the last chapter, you learned the basics of DirectX’s 3D system. In this chapter,
I’ll show you how to.

■ Create and display polygons
■ Add textures to your polygons
■ Add real-time lighting to your scenes
■ Load and render x-files
■ Move objects around in a scene

You might be wondering where all of this 3D instruction is leading. Well, in a short
time, I’ll show you how to write a complete networked game, and it uses all 3D
graphics!

464 12. Inside Direct3D Rendering

Figure 12.1

The perils of dial-up
connections

Polygons
Polygons, polygons, polygons—it’s all about the polygons. No matter where you
turn nowadays, you hear about how many polygons per second this system or that
system can push. Loyalists claim the PlayStation 2 is better than Microsoft’s Xbox.
Blah, blah, blah, it’s all a load of you know what. Disregard what you hear in the
press releases of graphics companies; they all give numbers based on unrealistic
settings.

Take, for example, Nvidia’s TNT2-Ultra card. Sure, it’s an old card, but I have
heard claims of millions of polygons per second with it. Well, I can barely get
15,000 polygons per second with one. Why is this, you might ask? When companies
publish how many polygons their products can push, they give the number based
on polygons that are no larger than one pixel on the screen. That’s right, one
pixel. As you probably know if you have played any 3D games, most objects are
much larger than one pixel. So the next time you see someone expounding the
virtues of a system, take it with a grain of salt. When developing a 3D game, I sug-
gest you try it on multiple systems. You can never rely on published specifications.

Cartesian Coordinate Systems
You’ll recall that a little while back I explained that a polygon is nothing more than
a triangle in 3D space. In 3D space, it has x, y, and z coordinates. Figure 12.2 shows
a single polygon.

465Polygons

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

Figure 12.2

A polygon in
3D space

Each of the points on the polygon is called a vertex and has its own x, y, and z coor-
dinates. The 3D coordinate system in DirectX works on what is called the left-
handed system. Take a peek at Figure 12.3 to see the left-handed system illustrated.

You will hear about the left-handed versus the right-handed coordinate system
quite a bit. To see how this works in real life, hold your left hand out flat. Your fin-
gers are pointing in the positive x direction. If you curl your hand, your fingers
point in the positive y direction. Your thumb points in the positive z direction. The
x and y positives always point in the same direction regardless of which system you
use; it is the z that changes depending on which hand you use. If you switch to your
right hand and perform the same routine, your thumb points the positive z-axis in
the other direction. See, wasn’t that easy? The bottom line is that with the left-
handed system, the positive z-axis normally goes into the screen.

Primitives
Even though I have been talking about polygons exclusively, DirectX Graphics actu-
ally supports multiple types of geometry. When referring to the entire family of sup-
ported geometry, you use the term primitives. The six basic types of primitives
supported by DirectX are point lists, line lists, line strips, triangle lists, triangle strips,
and triangle fans.

466 12. Inside Direct3D Rendering

+Y

+Z

+X
Z

Y

X

Figure 12.3

The left-handed
coordinate system

Point Lists
You can use point lists to render such exciting effects as rain, snow, or stars.
Basically, point lists are lists of points in 3D space. Figure 12.4 demonstrates a few
points in 3D space.

You can even assign textures to points. The texture affects only the color of the
points, though, and not anything in between the points.

Line Lists
If you guessed that a line list is nothing more than a list of lines in 3D space, then
you win the prize. To create a line list, you have to fill an array of vertices with at
least two sets of points. You can specify more than one line per list; just make sure
that the number of points in your list is divisible by two. Here is a code snippet that
demonstrates initializing two lines in a line list.

struct MYVERTEX {
float x,y,z;

};
MYVERTEX Vertices[] = {

{ 0.0, 0.0, 0.0},
{ 0.0, 5.0, 0.0},
{ 5.0, 0.0, 0.0},
{ 5.0, 5.0, 0.0}

};

467Primitives

+Y

+Z

+X
+Y

+Z

+X

+Y

+Z

+X
+Y

+Z

+X

(0,5,0)

(6,4.5,0)

(0.3,2,0)

(5,0,0)

Figure 12.4

A point list

The code here results in a list of lines like those shown in Figure 12.5.

As with points, lines can have materials and textures. Only the color of the lines is
affected by materials and textures, though.

Line Strips
Line strips create connected lists of lines. The space between connected lines is not
filled in. One use for line strips is creating unfilled polygons. When you create a list
of lines in a line strip, the vertices are continuous. In other words, there is never a
break in the line. For this reason, you do not need two vertices per line. Take a
look at Figure 12.6 to see a line strip.

468 12. Inside Direct3D Rendering

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

(0,5,0)

(0,0,0)

(5,5,0)

(5,0,0)

Figure 12.5

A line list

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

1

2

3

Figure 12.6

A line strip

Notice how there are only three vertices? The 3D system keeps track of the last ver-
tex in the list and connects it to the next one entered.

Triangle Lists
Triangle lists store and display a list of filled triangles. That’s right, filled triangles!
This means that you can assign textures to the triangles and actually see the filled-
in product. The one limitation to triangle lists is that the triangles are not con-
nected. Snow and rain are two effects you can create with triangle lists. Because
there is an entire triangle to view, the snow or rain looks much thicker than if you
use lines or points. Figure 12.7 demonstrates a triangle list.

Triangle Strips
As with point strips and line strips, triangle strips consist of continuous primitives.
The main advantage to triangle strips is that they use less memory than triangle
lists. Because you don’t have to maintain three vertices for each triangle, you can
conserve more memory and transformation time. The downside to triangle strips is
that all of the triangles in the list must be connected. It is also difficult to calculate
strips from existing 3D objects. Figure 12.8 shows a triangle strip.

Notice how the two triangles require only four vertices. The 3D system fills in the
blanks. Triangle strips can have materials and textures. In fact, I’ll show you how to
create both textured and non-textured triangle strips shortly.

469Primitives

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

1

2

3
4 5

6

Figure 12.7

A triangle list

Triangle Fans
Triangle fans work like triangle strips, but fans all share a common vertex. There
are few uses for this type of primitive, but it does conserve a lot of memory. To
see a triangle fan, take a look at Figure 12.9. Notice how the triangles all share a
common vertex. This is the basis for a triangle fan. I haven’t encountered a use for
triangle fans yet, but you never know.

Drawing a Primitive
Now that you know all the types of primitives available in Direct3D, I think it is
time to show you how to create some. If you load up the Draw3DPrimitive project,
you can follow along with me. The Draw3DPrimitive program demonstrates how to
create and display two triangles within a triangle list. The output from the applica-
tion appears in Figure 12.10. If you skip ahead and look at Figure 12.12, you can
see how the square is comprised of two triangles.

470 12. Inside Direct3D Rendering

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

1

2

3

4

Figure 12.8

A triangle strip

471Drawing a Primitive

1

2

3

4 5
6

7

8

9

Figure 12.9

A triangle fan

Figure 12.10

Output from the
Draw3DPrimitive
application

Without further ado, I present to you the source code.

#define INITGUID
#define WIN32_LEAN_AND_MEAN // No MFC
#include <d3d8.h>
#include <d3dx8.h>
#include <stdio.h>

// Direct3D globals
LPDIRECT3D8 pD3D;
LPDIRECT3DDEVICE8 pd3dDevice;
D3DXMATRIX matProj; // Projection data
D3DXMATRIX matCameraView; // Camera data
D3DXVECTOR3 vecCameraSource;
D3DXVECTOR3 vecCameraTarget;
LPDIRECT3DVERTEXBUFFER8 lpVertexBuffer = NULL;
// Definition for our vertex shader
#define D3DFVF_MYVERTEX (D3DFVF_XYZ)
// Vertex structure
typedef struct MYVERTEX
{

float x;
float y;
float z;

} MYVERTEX, *LPMYVERTEX;
// Global vertices
MYVERTEX g_Vertices[4];

// Windows globals
const char *szWndClass = “Draw3DPrimitive”;
const char *szProgramName = “Draw3DPrimitive Example”;
HINSTANCE g_hInstance;
HWND g_hWnd;

// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

HRESULT hrInit3D(HWND hWnd);
void vCleanup(void);

472 12. Inside Direct3D Rendering

void vRenderScene(void);
void vSetupView(void);
void vInitGeometry(void);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASS wc;
HWND hWnd;
MSG msg;

// Set up and register window class
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = MsgProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = szWndClass;
RegisterClass(&wc);

// Create a window
hWnd = CreateWindowEx(WS_EX_TOPMOST,

szWndClass, szProgramName, WS_OVERLAPPEDWINDOW,
0, 0, 640,
480, NULL, NULL, hInstance, NULL);

// Set up global window handles
g_hInstance = hInstance;
g_hWnd = hWnd;
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
if(hrInit3D(hWnd) == E_FAIL) {

exit(1);
}
// Set up the quad to be rendered
vInitGeometry();
// Set up the view
vSetupView();

473Drawing a Primitive

// Display the 3D environment
vRenderScene();
// Process messages until the program is terminated
while(GetMessage (&msg, NULL, 0, 0)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}

// Clean up the environment
vCleanup();

return(msg.wParam);
};

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
switch(msg) {

case WM_DESTROY:
PostQuitMessage(0);

return 0;
}

return DefWindowProc(hWnd, msg, wParam, lParam);
}

HRESULT hrInit3D(HWND hWnd)
{

D3DPRESENT_PARAMETERS d3dpp;
D3DDISPLAYMODE d3ddm;
RECT rcWindowBounds;
RECT rcWindowClient;

// Create the D3D object
if(NULL == (pD3D = Direct3DCreate8(D3D_SDK_VERSION)))

return E_FAIL;
// Get adapter settings
if(FAILED(pD3D->GetAdapterDisplayMode(
D3DADAPTER_DEFAULT, &d3ddm)))

return E_FAIL;

474 12. Inside Direct3D Rendering

// Get the size of the window
GetWindowRect(hWnd, &rcWindowBounds);
GetClientRect(hWnd, &rcWindowClient);
// Clear out device parameters
ZeroMemory(&d3dpp, sizeof(d3dpp));
// Set up device parameters
d3dpp.hDeviceWindow = hWnd;
d3dpp.BackBufferWidth
= (rcWindowClient.right - rcWindowClient.left);

d3dpp.BackBufferHeight
= (rcWindowClient.bottom - rcWindowClient.top);

d3dpp.BackBufferFormat = d3ddm.Format;
d3dpp.BackBufferCount = 1;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
d3dpp.Windowed = TRUE;

// Create the D3DDevice
if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL,
hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&pd3dDevice)))

{
return E_FAIL;

}
// Turn on the zbuffer
pd3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
// Turn on ambient lighting
pd3dDevice->SetRenderState(D3DRS_AMBIENT, 0xffffffff);
// Turn off D3D lighting
pd3dDevice->SetRenderState(D3DRS_LIGHTING, FALSE);

return S_OK;
}

void vSetupView(void)

475Drawing a Primitive

{
// Set where camera is viewing from
vecCameraSource.x = 0.0f;
vecCameraSource.y = 0.0f;
vecCameraSource.z = 10.0f;
// Set what camera is looking at
vecCameraTarget.x = 0.0f;
vecCameraTarget.y = 0.0f;
vecCameraTarget.z = 0.0f;
// Set up camera view
D3DXMatrixLookAtLH(&matCameraView,

&vecCameraSource,
&vecCameraTarget,
&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

// Tell the device to use the camera view for the viewport
pd3dDevice->SetTransform(D3DTS_VIEW, &matCameraView);
// Set up projection
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, 1.0f, 1.0f, 100.0f);
// Tell the device to use the above matrix for projection
pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);

}

void vCleanup(void)
{

if(lpVertexBuffer != NULL)
lpVertexBuffer->Release();

if(pd3dDevice != NULL)
pd3dDevice->Release();

if(pD3D != NULL)
pD3D->Release();

UnregisterClass(szWndClass, g_hInstance);
}

void vRenderScene(void)
{

D3DXMATRIX matTranslation;

// Clear the backbuffer and the zbuffer
pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

D3DCOLOR_XRGB(0,0,255), 1.0f, 0);

476 12. Inside Direct3D Rendering

// Begin rendering
pd3dDevice->BeginScene();
// Set default position, scale, and rotation
D3DXMatrixIdentity(&matTranslation);
pd3dDevice->SetTransform(D3DTS_WORLD, &matTranslation);
// Set the vertex buffer to render
pd3dDevice->SetStreamSource(0, lpVertexBuffer, sizeof(MYVERTEX));
// Set the vertex format
pd3dDevice->SetVertexShader(D3DFVF_MYVERTEX);
// Draw the primitive
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
// Stop rendering
pd3dDevice->EndScene();
// Output the scene
pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

void vInitGeometry(void)
{

void *lpVertices;
float fSizeX = 5.0f;
float fSizeY = 5.0f;

// Create the geometry
g_Vertices[0].x = -fSizeX/2;
g_Vertices[0].y = fSizeY/2;
g_Vertices[0].z = 0.0f;
g_Vertices[1].x = -fSizeX/2;
g_Vertices[1].y = -fSizeY/2;
g_Vertices[1].z = 0.0f;
g_Vertices[2].x = fSizeX/2;
g_Vertices[2].y = fSizeY/2;
g_Vertices[2].z = 0.0f;
g_Vertices[3].x = fSizeX/2;
g_Vertices[3].y = -fSizeY/2;
g_Vertices[3].z = 0.0f;
// Create the vertex buffer
if(FAILED(pd3dDevice->CreateVertexBuffer(4*sizeof(MYVERTEX),

0, D3DFVF_MYVERTEX, D3DPOOL_DEFAULT, &lpVertexBuffer))) {
return;

477Drawing a Primitive

}
// Lock the buffer
if(FAILED(lpVertexBuffer->Lock(0, sizeof(g_Vertices),
(BYTE**)&lpVertices, 0))) {

return;
}
// Copy the g_Vertices information into the buffer
memcpy(lpVertices, g_Vertices, sizeof(g_Vertices));
// Unlock the buffer
lpVertexBuffer->Unlock();

}

The Header Information
To use Direct3D, you must include a few header files.

#define INITGUID
#define WIN32_LEAN_AND_MEAN
#include <d3d8.h>
#include <d3dx8.h>
#include <stdio.h>

Not only did I include the d3d8.h and d3dx8.h files, but I also set up a couple of
definitions. The INITGUID definition sets up some helper defines. The
WIN_32_LEAN_AND_MEAN definition ensures that MFC is not used.

The d3d8.h and d3dx8.h header files are required to use Direct3D. Remember to
always include them. Lastly, you need to include the stdio.h file for standard
functionality.

The Globals
The next block of code you come across declares all of the global variables used by
the program. Normally, I don’t like to use globals, but they make for easier-to-read
code examples.

LPDIRECT3D8 pD3D;
LPDIRECT3DDEVICE8 pd3dDevice;
D3DXMATRIX matProj;
D3DXMATRIX matCameraView;
D3DXVECTOR3 vecCameraSource;
D3DXVECTOR3 vecCameraTarget;
LPDIRECT3DVERTEXBUFFER8 lpVertexBuffer = NULL;

478 12. Inside Direct3D Rendering

The pD3D variable of type IDirect3D8 is your interface into the 3D system. It creates
your device. The pd3dDevice variable of type IDirect3DDevice8 is the holder of the
created 3D device. This device processes most 3D functions.

The matProj variable, which is a 3D matrix, is used for the projection matrix of the
scene. The matCameraView matrix sets up the camera’s position and orientation in
the scene.

You use two vectors in this program, vecCameraSource and vecCameraTarget. Keep
these global so that you can alter the camera’s position during the application if
you so desire.

The last and perhaps the most interesting variable declared is lpVertexBuffer,
which is a pointer to an IDirect3DVertexBuffer8 interface.

Introduction to the
IDirect3DVertexBuffer8 Interface
When displaying geometry in DirectX 8, you must use what are called vertex buffers.
Basically, these buffers contain the information for all of your objects. Because a 3D
object consists of vertices, this is appropriate. Take a look at Figure 12.11 for a
refresher of how vertices make up a 3D object.

479Drawing a Primitive

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

Vertex 1

Vertex 2

Vertex 3

Figure 12.11

Three vertices
form a triangle

Before you can use a buffer, you must first create it with the IDirect3DDevice8 inter-
face object’s CreateVertexBuffer() function.

Once you create the vertex buffer, you then go on to lock it in place using the
IDirect3DvertexBuffer::Lock() function. The reason why you have to lock vertex
buffers is that they are maintained in dynamic memory space. The lock is per-
formed to reserve and hold the memory for modification.

During the lock phase, you copy the vertex data into the buffer. You can accom-
plish this fairly straightforward process using a standard memcpy() function call.

The last thing you have to do as far as initialization is concerned is unlock the
buffer using the IDirect3DvertexBuffer::Lock() function call. Once you follow
the previous steps, you can go on to use the buffer with the
IDirect3DDevice8::SetStreamSource() function call. I’ll go into this topic more when
the code comes up.

Introduction to Vertex Formats
The next block of code you encounter defines the vertex data that goes into the
vertex buffer. You do this by creating a custom vertex data structure.

#define D3DFVF_MYVERTEX (D3DFVF_XYZ)
typedef struct MYVERTEX {

float x;
float y;
float z;

} MYVERTEX, *LPMYVERTEX;
MYVERTEX g_Vertices[4];

The define tells the 3D system how to render the vertices. The D3DFVF_XYZ value
specified here tells the system that the vertex consists of three coordinates: x, y, and
z. At a bare minimum, you should specify this value for flexible vertex formats.
Because this program doesn’t do any texture mapping or lighting, you don’t need
to worry about any additional vertex information.

The MYVERTEX data structure defined next holds vertex information before being
loaded in the vertex buffer. In this instance, you need to store only three variables:
the x, y, and z coordinates for each vertex.

The last thing to do here is create a global array of vertices. Because this program
creates a square and a square can be created with only four vertices, that is all you
need to put in the array.

480 12. Inside Direct3D Rendering

Windows Globals and Prototypes
The next few globals are standard variables you should set for most Windows pro-
grams. These should be familiar to you by now.

const char *szWndClass = “Draw3DPrimitive”;
const char *szProgramName = “Draw3DPrimitive Example”;
HINSTANCE g_hInstance;
HWND g_hWnd;
// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

HRESULT hrInit3D(HWND hWnd);
void vCleanup(void);
void vRenderScene(void);
void vSetupView(void);
void vInitGeometry(void);

The WinMain() function is required for Windows programming and is used as the
main loop of the program. The MsgProc() function is required to process any mes-
sages that get sent to the application. The vCleanup() function is called whenever
the program exits. You should make sure you always clean up any memory or
objects allocated during the application.

The vRenderScene() function displays the polygon that this program creates. The
vSetupView() function sets up the viewport, camera, and projection for the scene.
This affects the location from which the polygons are viewed. The vInitGeometry()
function creates and stores the polygon information in the vertex buffer.

The WinMain() Function
By now, you have been through the WinMain() function several times. There is noth-
ing really significant here except the calls to hrInit3D(), vInitGeometry(),
vSetupView(), vRenderScene(), and vCleanup().

Because the functions are called in successive order, there really isn’t much to dis-
cuss about them. You might want to note that the scene is only rendered once, and
nothing gets updated in the message loop. You could put the vRenderScene() func-
tion into the message loop, but all that does is eat CPU cycles. Later, I’ll show you
programs that require the render function to be present in the message loop.

481Drawing a Primitive

The hrInit3D() Function
If you recall the hrInit3D function from Chapter 11, “DirectX Graphics,” you’ll find
that this one isn’t much different. The steps for initializing a 3D environment are
as follows.

1. Create the IDirect3D8 interface.

2. Retrieve information about video cards in the system.

3. Create an IDirect3DDevice8 interface.

Even though I covered these steps before, you can learn some new information
from this particular initialization function.

// Turn on the zbuffer
pd3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
// Turn on ambient lighting
pd3dDevice->SetRenderState(D3DRS_AMBIENT, 0xffffffff);
// Turn off D3D lighting
pd3dDevice->SetRenderState(D3DRS_LIGHTING, FALSE);

The three rendering states that you need to set for this application are for the
z-buffer, ambient lighting, and hardware lighting.

Technically, you do not have to have a z-buffer present to render 3D geometry.
However, you need to use it later, so you might as well get used to it now. Luckily,
DirectX makes turning on z-buffers very easy because all you have to do is set the
D3DRS_ZENABLE render state to TRUE.

The D3DRS_AMBIENT setting sets how much default light will be in a 3D scene. This
program does not use any hardware lights, so you need to brighten up the entire
scene with ambient lighting. When you have ambient lighting, nothing in the scene
is lit darker than the ambient setting. Once you start using hardware lighting, you
will want to turn ambient lighting down to a minimum because it tends to wash out
the scene.

The D3DRS_LIGHTING state sets whether the scene uses hardware lighting. This is not
a lighting demo, so just keep it at FALSE for now.

The vInitGeometry() Function
Ah, here it is, the fun part! This function is where all the magic happens as far as
geometry is concerned. In this function, you’ll accomplish the following tasks.

1. Create a vertex buffer.

482 12. Inside Direct3D Rendering

2. Lock the vertex buffer.

3. Copy data into the vertex buffer.

4. Unlock the vertex buffer.

Before you create a vertex buffer, you probably should go ahead and set up the ver-
tex information to put into it. You do this by either loading in vertices or creating
them from scratch. In this program, you create them from scratch, so watch closely.

g_Vertices[0].x = -fSizeX/2;
g_Vertices[0].y = fSizeY/2;
g_Vertices[0].z = 0.0f;
g_Vertices[1].x = -fSizeX/2;
g_Vertices[1].y = -fSizeY/2;
g_Vertices[1].z = 0.0f;
g_Vertices[2].x = fSizeX/2;
g_Vertices[2].y = fSizeY/2;
g_Vertices[2].z = 0.0f;
g_Vertices[3].x = fSizeX/2;
g_Vertices[3].y = -fSizeY/2;
g_Vertices[3].z = 0.0f;

Each vertex consists of an x, y, and z coordinate. To prepare the geometry informa-
tion, you need to set up these coordinates. If you recall the information about tri-
angle strips, this doesn’t seem too strange. The fSize variables set the size of the
square you are creating. Putting the value into variables makes things easier to
adjust. Take a peek at Figure 12.12 to see how the square is made up.

The IDirect3DDevice8::CreateVertexBuffer()
Function
The next chunk of code is where you create the vertex buffer to hold your vertex
information.

if(FAILED(pd3dDevice->CreateVertexBuffer(
4*sizeof(MYVERTEX),
0,
D3DFVF_MYVERTEX,
D3DPOOL_DEFAULT,
&lpVertexBuffer))) {

return;
}

483Drawing a Primitive

The CreateVertexBuffer() function belongs to the IDirect3DDevice8 interface and is
pretty important as far as geometry is concerned. To display vertices, you must put
them in a buffer.

One thing to keep in mind with vertex buffers is that you should try to limit the
number of vertex buffers you create. If you were going to display a grid of 3D
squares, then you would want to put them all in one vertex buffer. The only reason
you should have to create a new buffer is if you want to change the material or tex-
ture of your object. The reason you want to keep the number of buffers to a mini-
mum is that each buffer in the system takes up valuable memory. It is also taxing
on the 3D hardware to switch between multiple buffers. The less switching you
have to do, the better.

The prototype of the function looks like the following code.

HRESULT CreateVertexBuffer(
UINT Length,
DWORD Usage,
DWORD FVF,
D3DPOOL Pool,
IDirect3DVertexBuffer8** ppVertexBuffer

);

484 12. Inside Direct3D Rendering

(0,5,0)
Vertex 1

(0,-5,0)
Vertex 2

(5,-5,0)
Vertex 4

(5,5,0)
Vertex 3

Figure 12.12

The vertex information
for a square

The first parameter expects the length of the buffer. If you are not using a flexible
vertex format, then this parameter is ignored. You need at least one vertex present
if you are specifying a size here. I normally use the number of vertices multiplied
by the size of my vertex format.

The second flag specifies how the buffer is to be used. Table 12.1 describes the
available flags for this parameter.

The third parameter expects the flexible vertex format you want to use with the
vertices. If you are not using a flexible vertex format, then you should set this para-
meter to 0. The fourth parameter specifies which memory pool the buffer will
occupy. I just pass D3DPOOL_DEFAULT here to use the default memory pool. The last
parameter retrieves a pointer to the IDirect3DVertexBuffer8 object that is created
upon success.

Well, there you have it, the creation of a vertex buffer. Once the call succeeds, the
lpVertexBuffer pointer points to the newly created buffer interface. Once you set
up this pointer, it is time to load the vertex information. But before you can do the
loading, you must first lock the buffer.

485Drawing a Primitive

Table 12.1 CreateVertexBuffer() Usage Flags

Function Purpose

D3DUSAGE_DONOTCLIP Only use this flag if you know that the vertices you
are loading will never require clipping.This flag tells
the buffer to not perform clipping.

D3DUSAGE_DYNAMIC This flag sets up the buffer to use dynamic memory.

D3DUSAGE_RTPATCHES This flag sets up the buffer to draw high-order
primitives.

D3DUSAGE_NPATCHES This flag sets up the buffer to draw N patches.

D3DUSAGE_POINTS This flag tells the buffer that it will be drawing points
or point sprites.

D3DUSAGE_SOFTWAREPROCESSING This flag tells the buffer to be used with software
processing and not hardware.

D3DUSAGE_WRITEONLY This flag tells the system that the buffer can only be
written to.

The IDirect3DVertexBuffer8::Lock()
Function
Before you can modify the data within a vertex buffer, you must first lock it down.
You can think of the buffer as a book in a library. When you lock a buffer, you are
checking it out and no one else can use it. When you are done, you unlock it. This
lets others read it or modify it. The Lock() function has the following prototype.

HRESULT Lock(
UINT OffsetToLock,
UINT SizeToLock,
BYTE** ppbData,
DWORD Flags

);

The first parameter specifies an optional offset into the buffer to be locked down.
Normally, you just set this to zero. The second parameter sets how many bytes of
data need to be locked. If you want to specify the entire buffer, just set this to zero.
The third parameter receives a BYTE pointer that points to the locked data.

The last parameter lets you specify certain flags for the operation. Table 12.2 lists
the flags for this parameter.

486 12. Inside Direct3D Rendering

Table 12.2 Lock() Flags

Function Purpose

D3DLOCK_DISCARD Causes the system to write to a new memory location.

D3DLOCK_NOOVERWRITE Tells the system that the vertices have not been rendered
lately.This can be used for certain optimizations.

D3DLOCK_NOSYSLOCK Causes the system to not wait for the unlock to occur.
This can help free up the system for other tasks.

D3DLOCK_READONLY Tells the system that the buffer will not be written to.
This cannot be set if the D3DUSAGE_WRITEONLY flag was
used in the creation of the buffer.

Once you have the buffer locked, you can go on to put the data into it using a sim-
ple memcpy() function.

memcpy(lpVertices, g_Vertices, sizeof(g_Vertices));

For the memcpy() function, you use the pointer to the buffer that was retrieved in
the Lock() function call. You just load it up with the vertex information created ear-
lier. Once the memory copy is completed, you can finish the operation by unlock-
ing the buffer.

The IDirect3DVertexBuffer8::Unlock()
Function
You must call the IDirect3DVertexBuffer8::Unlock() function once for every Lock()
that is performed. Once a vertex buffer is unlocked, it is ready for use in rendering.

Luckily for you, this function has no parameters to worry about. Just call it like this:

lpVertexBuffer->Unlock();

That’s all there is to it! You just completed all of the required steps for creating a
3D object. Now it is time to set up the view and then render the square.

The vSetupView() Function
The vSetupView() function for this application is just like the one you used for the
last program in Chapter 11, “DirectX Graphics.” If you are feeling rusty about this,
please go back and read up on it again.

vecCameraSource.x = 0.0f;
vecCameraSource.y = 0.0f;
vecCameraSource.z = 10.0f;
vecCameraTarget.x = 0.0f;
vecCameraTarget.y = 0.0f;
vecCameraTarget.z = 0.0f;
D3DXMatrixLookAtLH(&matCameraView,

&vecCameraSource,
&vecCameraTarget,
&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

pd3dDevice->SetTransform(D3DTS_VIEW, &matCameraView);
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, 1.0f, 1.0f, 100.0f);
pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);

487Drawing a Primitive

This function completes the following steps.

1. Set the camera back 10 units from the origin of the world.

2. Set up the camera’s viewport.

3. Set up the projection matrix.

That’s about it for setting up the view. Now it’s time to display the square into
which you have put so much work. Before you go, though, take a look at Figure
12.13 to visualize how the camera is set up in the scene.

The vRenderScene() Function
Welcome to the wide world of scene rendering. In this incarnation of the
vRenderScene() function, you display the wonderful geometry created earlier. The
first item of note is a matrix variable.

D3DXMATRIX matTranslation;

488 12. Inside Direct3D Rendering

Top Front

Left

Polygon

P
o
l
y
g
o
n

Polygon

Camera

Camera

Camera

Figure 12.13

The camera’s position in
the scene

The Translation Matrix
The matTranslation matrix is going to position your 3D geometry in the scene. You
actually can do without this if you only want to place your geometry in the center
of the world. But, as they say, there is no better time than the present, so why not
learn it now? I call this particular matrix matTranslation because it is only going to
set up the position, or translation, of your object. The bottom line here is that
translation means position in 3D-speak.

Clearing the Scene
The next item up for bid is the Clear() function. This one should look familiar to
you by now.

pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB(0,0,255), 1.0f, 0);

By specifying both the D3DCLEAR_TARGET and D3DCLEAR_ZBUFFER flags, you are telling
the system to clear the display and the z-buffer.

Beginning the
Rendering
Behind door number three, you have the
Begin() function. If you recall from earlier in
the book, this function tells the 3D hardware
to start rendering a new scene.

pd3dDevice->BeginScene();

Setting the
Geometry’s
Translation
The following piece of code sets up the
default position for the geometry to be
rendered.

D3DXMatrixIdentity(&matTranslation);
pd3dDevice->SetTransform(D3DTS_WORLD, &matTranslation);

489Drawing a Primitive

TIP
When you are using a z-buffer,
you need to be sure to clear it
every frame or you might get
unexpected results.

CAUTION
Always have a matching
EndScene() function call for
every BeginScene() call.

Well, now it is time to use that translation matrix you defined earlier. The
D3DXMatrixIdentity() function sets up a matrix to its default values. You should call
this function whenever you create a matrix to initialize it. Because you want to
display your geometry at the center of the world, the default matrix is perfect for
this operation.

The next item of business is calling the SetTransform() function to set up the trans-
formation matrix for the world. This sets where the next geometry to be displayed
will appear in the scene.

Drawing the Geometry
Before you can draw your geometry, you must first tell the 3D system from where to
pull the vertex information. This is as easy as calling the SetStreamSource() function.

The IDirect3DDevice8::SetStreamSource()
Function
Whenever you want to use a vertex buffer, you must first tell the system to use its
data. This is where the SetStreamSource() function comes into play. The prototype
for this function looks like this:

HRESULT SetStreamSource(
UINT StreamNumber,
IDirect3DVertexBuffer8* pStreamData,
UINT Stride

);

The first parameter specifies which stream you are using. I pass a 0 for this parame-
ter. The second parameter sets from where the stream data is coming. You should
pass the pointer to your vertex buffer here. The last parameter sets the size of each
vertex. For this application, you should pass the sizeof() your vertex structure here.

Here is how the current application sets the stream.

// Set the vertex buffer to render
pd3dDevice->SetStreamSource(0, lpVertexBuffer, sizeof(MYVERTEX));

Once you’ve set up the stream, it is time to tell the system which vertex shader is
being used.

490 12. Inside Direct3D Rendering

The IDirect3DDevice8::SetVertexShader()
Function
The SetVertexShader() function is rather straightforward because all you have to
pass to it is a defined flexible vertex format. Here is the prototype.

HRESULT SetVertexShader(
DWORD Handle

);

In this case, you should pass in the D3DFVF_MYVERTEX definition created at the begin-
ning of the program. This definition tells the 3D system that the vertices contain x,
y, and z information only. In future programs, you will see how to add other infor-
mation to each vertex.

The IDirect3DDevice8::DrawPrimitive() Function
You next use the DrawPrimitive() function to actually draw the geometry that you
have worked so hard to set up. Here is the prototype.

HRESULT DrawPrimitive(
D3DPRIMITIVETYPE PrimitiveType,
UINT StartVertex,
UINT PrimitiveCount

);

The first parameter expects the type of primitive you are trying to draw. The follow-
ing types are supported.

■ D3DPT_POINTLIST

■ D3DPT_LINELIST

■ D3DPT_LINESTRIP

■ D3DPT_TRIANGLELIST

■ D3DPT_TRIANGLESTRIP

■ D3DPT_TRIANGLEFAN

The second parameter expects the index into the vertex buffer where geometry
should start. Normally, you set this to 0, but you could set it to any point within the
vertex buffer if you so desire. For this program, set this parameter to D3DPT_TRIAN-
GLESTRIP.

The last parameter expects the number of primitives to render. The vertex buffer
you are creating for this application has two polygons in it, so you should specify a
2 here.

491Drawing a Primitive

Ending the Rendering
Well, all good things must come to an end, so you’d better call the EndScene() func-
tion before leaving.

pd3dDevice->EndScene();

Right after this is done, you can present the rendering to the window. That’s all
there is to it! Yeah, I know it isn’t very simple, but once you get the hang of it, it’s
not that bad.

The vCleanup() Function
Before the program completely disappears into the wild blue yonder, you should
clean up all allocated interfaces and memory.

if(lpVertexBuffer != NULL)
lpVertexBuffer->Release();

if(pd3dDevice != NULL)
pd3dDevice->Release();

if(pD3D != NULL)
pD3D->Release();

UnregisterClass(szWndClass, g_hInstance);

The first thing to clean up is the vertex buffer you created. The next item to go is
the 3D device, and the last item to release is the IDirect3D8 interface. Lastly, you
should unregister the window class you created in the WinMain() function.

Show Me the Textures!
Although you now know how to display
polygons, they sure don’t look very exciting.
The key to good-looking 3D applications is
the textures. Without good textures, your
game is going to look very bland. Go ahead
and load up the Draw3DTexturedPrimitive
workspace from the book’s CD.

In this program, you are going to learn how
to add textures to your polygons. Most of
the code from the last application is repli-
cated here with a few additions.

492 12. Inside Direct3D Rendering

CAUTION
On some systems, the sample
programs can take a minute to
initialize. If you do not see graph-
ics immediately, give the program
a few seconds to render before
closing the window. If you still
have problems, e-mail me at
webmaster@lostlogic.com.

Before I get going with the code, take a look at Table 12.3 to see the libraries
required to compile the code.

The Header Changes
If you compare the global variables in this program to the ones in the last program,
you’ll notice a new global present.

LPDIRECT3DTEXTURE8 g_pTexture = NULL;

This global variable is a pointer to an IDirect3DTexture8 interface. The
IDirect3DTexture8 interface manages all textures you use in a 3D scene.

The D3DFVF_TEX1 Vertex Format
The next difference you might notice is that the MYVERTEX flexible vertex format
now has some new members.

#define D3DFVF_MYVERTEX (D3DFVF_XYZ|D3DFVF_TEX1)
typedef struct MYVERTEX {

float x;
float y;
float z;
float u;
float v;

} MYVERTEX, *LPMYVERTEX;
MYVERTEX g_Vertices[4];

493Show Me the Textures!

Table 12.3 Draw3DTexturedPrimitive
Project Libraries

Library Description

d3d8.lib Direct3D main library

d3dx8.lib Direct3D helper library

The texture coordinates for the vertex format are the most important things added
here. You do this by adding the D3DFVF_TEX1 flag to the format. When you have this
flag present, you must include two floating-point variables in the format’s structure.
These are represented here as u and v.

The vInitGeometry() Changes
If you follow the code, you’ll see that hrInit3D() and vSetupView() are the same as
they were in the last program. Zoom on over to vInitGeometry(), and I’ll show you
the differences there and what they mean. Okay, here is the code for the new and
improved version of vInitGeometry().

void *lpVertices;
float fSizeX = 5.0f;
float fSizeY = 5.0f;
// Create the geometry
g_Vertices[0].x = -fSizeX/2;
g_Vertices[0].y = fSizeY/2;
g_Vertices[0].z = 0.0f;
g_Vertices[0].u = 0.0f;
g_Vertices[0].v = 0.0f;
g_Vertices[1].x = -fSizeX/2;
g_Vertices[1].y = -fSizeY/2;
g_Vertices[1].z = 0.0f;
g_Vertices[1].u = 0.0f;
g_Vertices[1].v = 1.0f; // Y
g_Vertices[2].x = fSizeX/2;
g_Vertices[2].y = fSizeY/2;
g_Vertices[2].z = 0.0f;
g_Vertices[2].u = -1.0f; // X
g_Vertices[2].v = 0.0f;
g_Vertices[3].x = fSizeX/2;
g_Vertices[3].y = -fSizeY/2;
g_Vertices[3].z = 0.0f;
g_Vertices[3].u = -1.0f; // X
g_Vertices[3].v = 1.0f; // Y
// Create the vertex buffer
if(FAILED(pd3dDevice->CreateVertexBuffer(4*sizeof(MYVERTEX), 0,
D3DFVF_MYVERTEX, D3DPOOL_DEFAULT, &lpVertexBuffer))) {

return;
}

494 12. Inside Direct3D Rendering

// Lock the buffer
if(FAILED(lpVertexBuffer->Lock(0, sizeof(g_Vertices),
(BYTE**)&lpVertices, 0))) {

return;
}
// Copy the g_Vertices information into the buffer
memcpy(lpVertices, g_Vertices, sizeof(g_Vertices));
// Unlock the buffer
lpVertexBuffer->Unlock();
If(FAILED(D3DXCreateTextureFromFile(pd3dDevice,
“texture.jpg”, &g_pTexture))) {

return;
}

Setting the Texture Coordinates
Did you notice the initialization of the u and v values for each vertex? If you
didn’t, go check it out now. The u and v coordinates work kind of like x and y
coordinates. Take a peek at Figure 12.14 to visualize how the square you are initial-
izing is set up.

495Show Me the Textures!

(0,5,0)
Vertex 1

(0,-5,0)
Vertex 2

(5,-5,0)
Vertex 4

(5,5,0)
Vertex 3

Figure 12.14

The vertices of the textured
square

U and V Texture Coordinates
For each vertex, you have to set the u and v values. These two values tell the 3D sys-
tem how the texture will appear on the geometry. The first set of uv coordinates
specifies where the texture will start drawing from the upper-left side of the square.
The second set of uv coordinates specifies where the texture will be drawn from the
lower-left side of the square. The third set of uv coordinates specifies where the tex-
ture will be drawn from the upper-right side of the square. The fourth set of uv
coordinates specifies where the texture will be drawn from the lower-right side of
the square.

If you look at Figure 12.15, you can see how the u and v values correspond to the
square. You might also notice that the coordinates are inverted. This keeps the tex-
ture map facing the correct direction.

With texture coordinates, values of (0.0,0.0) indicate the upper-left portion of the
texture; (0.0,1.0) equates to the lower-left; (1.0,0.0) equates to the upper-right; and
(1.0,1.0) equates to the lower-right. Look at Figure 12.16 to see this in action.

496 12. Inside Direct3D Rendering

(0,5,0)
Vertex 1

(0,-5,0)
Vertex 2

(5,-5,0)
Vertex 4

(5,5,0)
Vertex 3

v=1

u=-1
(Texture Is Flipped)

Figure 12.15

Texture values and their
positions on the square

How to Load a Texture
The next block of code deals with creating the vertex buffer and loading it with the
vertex information. This part has not changed since last time, so I’ll skip ahead to
loading a texture. Here is the code to do so.

if(FAILED(D3DXCreateTextureFromFile(pd3dDevice, “texture.jpg”,
&g_pTexture))) {

return;
}

The D3DXCreateTextureFromFile() Function
The D3DXCreateTextureFromFile() function is provided within the Direct3D helper
library. It is very useful because it can load from many different file formats. Some
formats include .png, .jpg, .tga, and .bmp. This function ends up loading the tex-
ture into an IDirect3DTexture8 interface. That is why you pass the g_pTexture vari-
able to it. Once the function completes, it sets the pointer equal to the texture
resource.

497Show Me the Textures!

(0,5,0)
Vertex 1

(0,-5,0)
Vertex 2

(5,-5,0)
Vertex 4

(5,5,0)
Vertex 3

v=1

u=-1
(Texture Is Flipped)

(0,0) Tex1

(0,1) Tex2 (-1,1) Tex4

(-1,0) Tex3

Figure 12.16

Texture coordinates within a
texture

Here is the prototype for the function.

HRESULT D3DXCreateTextureFromFileA(
LPDIRECT3DDEVICE8 pDevice,
LPCSTR pSrcFile,
LPDIRECT3DTEXTURE8* ppTexture

);

The first parameter here expects a pointer to the IDirect3DDevice8 interface. This
one is easy because all you have to pass is the global pd3dDevice variable. The sec-
ond parameter expects the filename to load. The extension on the filename deter-
mines how the function will load the particular file. The last parameter expects a
pointer to hold the returned IDirect3DTexture8 interface. For this, you should just
pass in the g_pTexture variable that was declared at the beginning of the program.

If everything works out okay with the function, then it returns a D3D_OK. As long as
that happens, you are free to move on. See, that wasn’t so bad, was it?

The vRenderScene() Changes
Now that you have the geometry ready to go and the texture loaded, you can go on
to display the scene. Here is the latest vRenderScene() function.

void vRenderScene(void)
{

D3DXMATRIX matTranslation;
// Clear the backbuffer and the zbuffer
pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

D3DCOLOR_XRGB(0,0,255), 1.0f, 0);
// Begin rendering
pd3dDevice->BeginScene();
// Set default position, scale, and rotation

498 12. Inside Direct3D Rendering

NOTE
The .jpg format is best for small texture files because of its lossy
compression format, but the image quality suffers.The other for-
mats use lossless compression; therefore, they have the best image
quality.There is no clear winner format-wise, but my personal pref-
erence is to use .tga files.

D3DXMatrixIdentity(&matTranslation);
pd3dDevice->SetTransform(D3DTS_WORLD, &matTranslation);
// Set the texture to render
pd3dDevice->SetTexture(0, g_pTexture);
// Set the vertex buffer to render
pd3dDevice->SetStreamSource(0, lpVertexBuffer, sizeof(MYVERTEX));
// Set the vertex format
pd3dDevice->SetVertexShader(D3DFVF_MYVERTEX);
// Rendering
// Draw the primitive
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
// Clear the reference
pd3dDevice->SetTexture(0, NULL);
// Stop rendering
pd3dDevice->EndScene();
// Output the scene
pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

I took the liberty of putting the relevant changes in bold text. Everything else is
business as usual as far as rendering is concerned. To tell the 3D system which tex-
ture to use, you must use the SetTexture() function.

The IDirect3DDevice8::SetTexture()
Function
The IDirect3DDevice8::SetTexture() function sets which texture is active for future
rendering. Here is the prototype.

HRESULT SetTexture(
DWORD Stage,
IDirect3DBaseTexture8* pTexture

);

The first parameter wants you to
specify which texture stage you want
to assign to the texture. DirectX 8
supports up to eight textures, but
you need to set this to 0 for now.
The second parameter expects a
pointer to the IDirect3DTexture8
interface you created earlier.

499Show Me the Textures!

NOTE
There are multiple texture stages avail-
able. For basic purposes, you will only
use texture stage zero.When you learn
how to perform multi-texturing, you will
use more than one stage.

The reason I set texture stage zero
to NULL after I am done rendering is
because I want to make sure the
texture is turned off for next time.

The vCleanup()
Changes
Here you are, at the end of yet another sample program. The last thing to do
before turning out the lights is clear the memory associated with the texture you
loaded.

if(g_pTexture != NULL)
g_pTexture->Release();

There is nothing special here, just your run-of-the-mill Release() function call.
Once you accomplish that, you are done! Before you go, you might want to check
out what the program looks like when run (see Figure 12.17).

500 12. Inside Direct3D Rendering

CAUTION
Be sure to always set texture stages to
NULL when you are done with them.This is
a good practice to keep the reference
counter for the texture at bay.

Figure 12.17

Output from the
Draw3DTexturedPrimitive
program.

Lights, Cameras, Action!
Well, two out of three isn’t bad, right? In the 3DLight project on the CD, you will
find the sample project to implement hardware lighting into your scenes. Go ahead
and load it now to follow along with me. The point of this program is to show you
how to create and add dynamic lighting to your 3D scenes. DirectX 8 lets you add
up to eight hardware lights of any intensity and color. This lets you add some cool
effects to your games. Keep in mind that lighting does slow down the system, so use
it wisely.

The 3DLight project is just like the last one as far as code structure and project
space go. The library files d3d8.lib and d3dx8.lib are included under the link
section.

As with the last section, I am only going to highlight the changes made. So without
further ado, move on to the header changes.

The D3DFVF_NORMAL
Vertex Format
The first part of the program looks very similar to the texture example. The main
difference is the inclusion of a new flexible vertex format flag.

// Definition for our vertex shader
#define D3DFVF_MYVERTEX (D3DFVF_XYZ|D3DFVF_NORMAL|D3DFVF_TEX1)
// Vertex structure
typedef struct MYVERTEX
{

D3DXVECTOR3 vecPos;
D3DXVECTOR3 vecNorm;
float u;
float v;

} MYVERTEX, *LPMYVERTEX;
// Global vertices
MYVERTEX g_Vertices[4];

501Lights, Cameras, Action!

Adding Normals to
the Vertex Format
The relevant code changes in bold add normals to the vertex format. Actually, the
vecPos variable is just a better way of storing the x, y, and z position of the vertex. In
the previous examples, I stored the variables separately. I have now put them into a
vector, which contains an x, y, and z coordinate. The relevant change is the inclu-
sion of the D3DFVF_NORMAL format in the vertex definition. This tells the 3D system to
expect normals information for each vertex.

Normals in a 3D object determine how lights and textures affect the faces of the
object. If you do not include normals information, then textures and lighting do
not appear properly. Figure 12.18 shows normals for the square object with which
you have been working. As you can see, the
normals point perpendicular to the sur-
face. This ensures that light is reflected
back properly. You don’t really have to
worry about normals too much because
the 3D object loading routines you will

502 12. Inside Direct3D Rendering

Normal

Figure 12.18

Vertex normals for a square

TIP
A D3DXVECTOR3 data structure that
contains an x, y, and z coordinate is
cleaner to use than three separate
coordinate variables.

learn later will calculate them for you. In fact, most of the complicated vertex for-
mat stuff is automatic with .x objects.

Defining Normals in the
vInitGeometry() Function
The program stays the same for the hrInit3D() function, and the next one down
the line is the vInitGeometry() function. This is where you need to set up the vertex
normals information. Here is the code.

void vInitGeometry(void) {
void *lpVertices;
float fSizeX = 5.0f;
float fSizeY = 5.0f;
// Create the geometry
g_Vertices[0].vecPos = D3DXVECTOR3(-fSizeX/2,fSizeY/2,0.0f);
g_Vertices[0].u = 0.0f;
g_Vertices[0].v = -1.0f;
g_Vertices[0].vecNorm = D3DXVECTOR3(0.0f,0.0f,1.0f);
g_Vertices[1].vecPos = D3DXVECTOR3(-fSizeX/2,-fSizeY/2,0.0f);
g_Vertices[1].u = 0.0f;
g_Vertices[1].v = 0.0f; // Y
g_Vertices[1].vecNorm = D3DXVECTOR3(0.0f,0.0f,1.0f);
g_Vertices[2].vecPos = D3DXVECTOR3(fSizeX/2,fSizeY/2,0.0f);
g_Vertices[2].u = -1.0f; // X
g_Vertices[2].v = -1.0f;
g_Vertices[2].vecNorm = D3DXVECTOR3(0.0f,0.0f,1.0f);
g_Vertices[3].vecPos = D3DXVECTOR3(fSizeX/2,-fSizeY/2,0.0f);
g_Vertices[3].u = -1.0f; // X
g_Vertices[3].v = 0.0f; // Y
g_Vertices[3].vecNorm = D3DXVECTOR3(0.0f,0.0f,1.0f);
// Create the vertex buffer
if(FAILED(pd3dDevice->CreateVertexBuffer(4*sizeof(MYVERTEX), 0,

D3DFVF_MYVERTEX, D3DPOOL_DEFAULT, &lpVertexBuffer))) {
return;

}
// Lock the buffer
if(FAILED(lpVertexBuffer->Lock(0, sizeof(g_Vertices),

503Lights, Cameras, Action!

(BYTE**)&lpVertices, 0))) {
return;

}
// Copy the g_Vertices information into the buffer
memcpy(lpVertices, g_Vertices, sizeof(g_Vertices));
// Unlock the buffer
lpVertexBuffer->Unlock();
// Load the texture
if(FAILED(D3DXCreateTextureFromFile(pd3dDevice, “texture.jpg”,
&g_pTexture))) {

return;
}

}

The portion of this code that sets the vecPos field is just a simpler replacement
of setting the x, y, and z coordinates explicitly. For example, take the following
code.

g_Vertices[0].vecPos = D3DXVECTOR3(-fSizeX/2,fSizeY/2,0.0f);

In the previous programs, this looked like the following:

g_Vertices[0].x = -fSizeX/2;
g_Vertices[0].y = fSizeY/2;
g_Vertices[0].z = 0.0f;

All I am doing with the D3DXVECTOR3 structure is cleaning up the code from three
lines of initialization to one. The real changes in this function are the vecNorm ini-
tializations.

For each normal, I set the x to 0.0, the y to 0.0, and the z to 1.0. What this does is
make the faces point toward the camera. Because the camera is at (0.0,0.0,10.0), it
is pointing back at the origin. This is somewhat hard to explain, so take a look at
Figure 12.19. Notice how the normals of the faces point toward the camera. If the
normals pointed the other way, then the polygons wouldn’t even show up at render
time. If you want to, change the values to (0.0,0.0,-1.0) and see how the polygons
disappear.

Besides the normals initialization, the rest of the function is the same, so it’s time
to move on.

504 12. Inside Direct3D Rendering

How to Create Hardware Lighting
The next different function to come along is the vCreateLight() function.
Previously, this function wasn’t even present, so here it is in its entirety.

void vCreateLight(void) {
D3DMATERIAL8 mtrl;
D3DLIGHT8 d3dLight;
// Clear out material structure
ZeroMemory(&mtrl, sizeof(D3DMATERIAL8));
mtrl.Diffuse.r = 1.0f;
mtrl.Diffuse.g = 1.0f;
mtrl.Diffuse.b = 1.0f;
pd3dDevice->SetMaterial(&mtrl);

505Lights, Cameras, Action!

Top Front

Left

Polygon

P
o
l
y
g
o
n

Polygon

Camera

Camera

Camera

Normal

Normal

Figure 12.19

Normals facing the
camera

// Clear out light structure
ZeroMemory(&d3dLight, sizeof(D3DLIGHT8));
d3dLight.Type = D3DLIGHT_POINT;
d3dLight.Diffuse.r = 1.0f;
d3dLight.Diffuse.g = 1.0f;
d3dLight.Diffuse.b = 1.0f;
d3dLight.Position.x = 0.0f;
d3dLight.Position.y = 5.0f;
d3dLight.Position.z = 120.0f;
d3dLight.Attenuation0 = 1.0f;
d3dLight.Range = 1000.0f;
// Set the active light
pd3dDevice->SetLight(0, &d3dLight);
// Enable the light
pd3dDevice->LightEnable(0, TRUE);
// Tell D3D to utilize lights
pd3dDevice->SetRenderState(D3DRS_LIGHTING, TRUE);

}

The purpose of this function is pretty straightforward—it is to create a 3D light in
your scene. However, the function actually accomplishes two things—it creates a
default material and a 3D light.

Materials
Surfaces of objects in 3D games consist of materials, just as objects do in real life.
Normally, a material denotes how rough a surface is or what color it is. Materials
in the 3D game world have similar properties. The main use of materials in 3D
gaming is to set how a surface reflects light. Because light reflection is what causes
things to appear, it is quite important. Imagine having a material that reflected
only yellow light—that material would appear yellow! Yes, I know, this all sounds
very much like common sense, but you need to realize that materials in 3D gam-
ing work much like their real-life counterparts. To define materials, you use the
D3DMATERIAL8 data structure.

The D3DMATERIAL8 Data Structure
The D3DMATERIAL8 data structure holds any and all information about a material.
Here is the structure.

typedef struct _D3DMATERIAL8 {
D3DCOLORVALUE Diffuse;

506 12. Inside Direct3D Rendering

D3DCOLORVALUE Ambient;
D3DCOLORVALUE Specular;
D3DCOLORVALUE Emissive;
float Power;

} D3DMATERIAL8;

Material Diffusion

The diffuse value for a material sets how the material reflects light. The possible
values range from 0.0 to 1.0 for each color component—red, green, and blue. If
you set all of these values to 1.0, then the material reflects white light as normal.
You can play around with changing the values to achieve differently colored materi-
als. For example, if you only set the red component to 1.0, then the object only
reflects red and white light. If you have a green light in the scene, then the red
material will appear to be black.

Material Ambience

The ambient values work just like the diffuse value
except the ambient color only takes into considera-
tion the ambient light of the scene.

The diffuse color is used when other lights are in
the scene, but the ambient color only reflects the
ambient light in the scene. This value usually doesn’t
have much of an effect because most 3D games use
very dim ambient settings.

Material Specularity

The specular value of a material sets how a material
treats highlights. With no specularity, the material
appears dull. With a high specularity, the material looks something like plastic or
glass. The power value in the data structure sets how powerful the specularity color
is. Some people call specularity shininess. Figure 12.20 shows the difference between
a specular material and a non-specular one.

Material Emissiveness

You can use the emissive value of a material to make the material look as though it
is emitting light. Other objects in the scene are not lit by it, but the material at least
appears to be emitting the light value.

507Lights, Cameras, Action!

Ambient light is light that
comes from everywhere in the
scene.You will not see
ambient light cast shadows;
rather it just gives everything
a minimum light level. It’s sort
of like turning up the
brightness on your monitor.
Most of the time, you will
want to avoid setting ambient
light above zero.The main
reason is that objects look
washed out when they have
ambient lighting applied.

Setting Up the Default Material
In the vCreateLight() function, you need to create the default material for the
scene. This is accomplished by using the following block of code.

ZeroMemory(&mtrl, sizeof(D3DMATERIAL8));
mtrl.Diffuse.r = 1.0f;
mtrl.Diffuse.g = 1.0f;
mtrl.Diffuse.b = 1.0f;
pd3dDevice->SetMaterial(&mtrl);

The first part of the code is straightforward. All you have to do is zero out the
memory for the structure and then set the diffuse color for the material. You can
set the other parameters if you so desire, but for this application’s purpose, the dif-
fuse is all you need.

The last part of the code is where the magic happens. To set the active material in
a scene, you must make a call to the IDirect3DDevice8::SetMaterial() function. This
activates the material you pass to the function.

The D3DLIGHT8 Data Structure
The next block of code deals with creating the hardware light for your scene. You
use the D3DLIGHT8 data structure to specify the properties of the light. Here is the
layout for this data structure.

typedef struct _D3DLIGHT8 {
D3DLIGHTTYPE Type;

508 12. Inside Direct3D Rendering

Figure 12.20

Specular highlight
versus no
specularity

No Specularity Specular Highlight

D3DCOLORVALUE Diffuse;
D3DCOLORVALUE Specular;
D3DCOLORVALUE Ambient;
D3DVECTOR Position;
D3DVECTOR Direction;
float Range;
float Falloff;
float Attenuation0;
float Attenuation1;
float Attenuation2;
float Theta;
float Phi;

} D3DLIGHT8;

Wow, would you look at that, another big data structure. Lucky for you, this pro-
gram only has to deal with a subset of all the values. This demo creates a point
light, so I’ll show you the relevant parameters.

The first parameter expects the type of light you want to create. To create a point
light, you must specify the light type to be D3DLIGHT_POINT. The second parameter
expects the color of the light. This works just as materials do. To create a red light,
you would use colors (1.0,0.0,0.0). The third parameter sets what the color specular
highlights are when emitted from the light. The fourth parameter sets how much
ambient light is emitted from the light. The fifth parameter sets up the position of
the light.

The sixth parameter sets up a vector that defines the direction of the light. You
only need to set this for directional lights and spotlights. The seventh parameter
sets the range at which light no longer is emitted. This does not have an effect for
directional lights. The eighth parameter sets the rate at which lights diminish when
using spotlights. Most of the time, you will set this to 1.0. The next three parame-
ters deal with how the light changes over distance. The last two parameters affect
the cone of a spotlight.

Activating Hardware Lighting
Once the material and light data structures are set up, it’s time to activate the light
with the following calls.

// Set the active light
pd3dDevice->SetLight(0, &d3dLight);
// Enable the light
pd3dDevice->LightEnable(0, TRUE);

509Lights, Cameras, Action!

// Tell D3D to utilize lights
pd3dDevice->SetRenderState(D3DRS_LIGHTING, TRUE);

The first function call, SetLight(), specifies the properties of a particular light. The
next function call, LightEnable(), tells the 3D system to activate the set light. If you
don’t call this function, no light calculations are made. The third function call,
SetRenderState(), tells the 3D system to perform lighting calculations. If you don’t
set this, no lighting will work.

Hey, guess what? It’s that time again—time to run the program and see the output!
The output for the lighting program appears in Figure 12.21.

If you are interested in playing around with the lighting, I suggest you try the
following:

■ Adjust the material for the scene to see how diffusion affects the polygons.
■ Adjust the color of the light to see how it affects the material.
■ Change the texture.jpg file to something other 256 × 256 graphics to see how

lighting has an effect.
■ Try all of the properties for lights and materials to get a feel for their uses.

510 12. Inside Direct3D Rendering

Figure 12.21

Output from the
3DLight project

Loading X-Files
Even though Fox Mulder is apparently out of the series, some of you might still
want to load x-files. All right, I know; that was predictable. Anyway, if you don’t
already know, an x-file is a 3D-formatted data file created by a utility that comes with
the DirectX SDK. A program called conv3ds.exe converts 3D-Studio 3D files to
x-files. You can then use the utility functions within DirectX to load the files. In the
XFileLoader project, I’ll show you how to load and display an x-file. Go ahead now
and load up the project, and you can get started.

The XFileLoader Project Space
The XFileLoader project space is much like the other demo programs in this chap-
ter. The following libraries are needed for the link section.

■ d3d8.lib
■ d3dx8.lib
■ mmsystem.lib

The mmsystem.lib file is needed by the dxutil.cpp helper code. You’ll recall that
you learned about the mmsystem.lib at the beginning of this book. Anyway, it has
various multimedia calls; timeGetTime() is the one dxutil.cpp needs.

The next difference with this project is the inclusion of the dxutil.cpp and dxutil.h
files. These files come with the DirectX SDK and provide various helper functions
to make life easier. You can thank Microsoft for them; believe me, they deserve it.

The XFileLoader Header
There is no better time than the present to jump into the code, so here is the first
part of code needed to load an x-file.

#define INITGUID
#define WIN32_LEAN_AND_MEAN // No MFC
#include <d3d8.h>
#include <d3dx8.h>
#include <stdio.h>
#include “dxutil.h”
// Direct3D globals

511Loading X-Files

LPDIRECT3D8 pD3D;
LPDIRECT3DDEVICE8 pd3dDevice;
D3DXMATRIX matProj; // Projection data
D3DXMATRIX matCameraView; // Camera data
D3DXVECTOR3 vecCameraSource;
D3DXVECTOR3 vecCameraTarget;
LPD3DXMESH pMesh;
D3DMATERIAL8 *pMeshMaterials;
LPDIRECT3DTEXTURE8 *pMeshTextures;
DWORD dwNumMaterials;
LPD3DXBUFFER pD3DXMtrlBuffer;

Most of this should look familiar to you by now. The new part comes in at the
inclusion of the dxutil.h file. As I said a minute ago, the dxutil family has several
useful functions in it.

The next bit of new information shows itself when you get to the LPD3DXMESH vari-
able, which is a pointer to an ID3DXMesh interface. The ID3DXMesh interface is used
for all sorts of 3D object handling. It is the main workhorse for x-files.

The D3DMATERIAL8 holds the data about the future x-file’s materials. The
LPDIRECT3DTEXTURE8 pointer holds data about the future x-file’s textures. You use a
DWORD next to store how many materials you have to deal with in the x-file. X-files
can have multiple materials and textures that you have to render separately.

The last new variable is type LP3DXBUFFER and it is used as a generic buffer in which
to store material information while you load it.

Loading the X-File
Once the window is created and the 3D environment is initialized, the program
makes a call to the hLoadXFile() function. The purpose of this function is to load
an x-file with the filename passed to it. When the function executes, it not only
loads the geometry for the object, but it also loads the materials and textures for
the x-file object. All of the data for the object is stored in the global variables I
talked about a minute ago. Here is the source code for the function.

HRESULT hLoadXFile(char *szName)
{

HRESULT hResult = S_OK;
int i;

512 12. Inside Direct3D Rendering

char szFullPath[256];

dwNumMaterials = 0;
// Load geometry
if(FAILED(D3DXLoadMeshFromX(

szName,
D3DXMESH_SYSTEMMEM,
pd3dDevice,
NULL,
&pD3DXMtrlBuffer,
&dwNumMaterials,
&pMesh))) {
return(-1);

}
D3DXMATERIAL* d3dxMaterials =
(D3DXMATERIAL*)pD3DXMtrlBuffer->GetBufferPointer();

// Allocate memory for materials and textures
pMeshMaterials = new D3DMATERIAL8[dwNumMaterials];
pMeshTextures = new LPDIRECT3DTEXTURE8[dwNumMaterials];
// Load in the materials and textures
for(i = 0; i < (signed)dwNumMaterials ; i++) {

// Copy the material
pMeshMaterials[i] = d3dxMaterials[i].MatD3D;
// Set the ambient color for the material (D3DX does not do this)
pMeshMaterials[i].Ambient = pMeshMaterials[i].Diffuse;
sprintf(szFullPath,”3DData//%s”,d3dxMaterials[i].pTextureFilename);
// Create the texture
if(FAILED(D3DXCreateTextureFromFile(

pd3dDevice,
szFullPath,
&pMeshTextures[i]))) {

delete pMeshTextures[i];
pMeshTextures[i] = NULL;

}
}
// Release the material buffer
SAFE_RELEASE(pD3DXMtrlBuffer);
return(hResult);

}

513Loading X-Files

If you follow the code, you can see that the function performs the following
operations.

1. Load the mesh.

2. Allocate memory for the materials.

3. Allocate memory for the textures.

4. Copy the materials.

5. Load the textures.

6. Release temporary buffers.

7. Return.

The D3DXLoadMeshFromX() Function
The D3DXLoadMeshFromX() function is provided as a helper function with DirectX 8.
The sole purpose of this function is to load an x-file into memory. Here is the
prototype.

HRESULT D3DXLoadMeshFromX(
LPSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE8 pDevice,
LPD3DXBUFFER* ppAdjacency,
LPD3DXBUFFER* ppMaterials,
PDWORD pNumMaterials,
LPD3DXMESH* ppMesh

);

The first parameter specifies the filename of the x-file you want to load. The sec-
ond parameter lets you specify various options. The one you will use most of the
time is the D3DXMESH_SYSTEMMEM flag. This flag tells the function to store the memory
for the vertices and the indices in system memory.

The third parameter expects the IDirect3DDevice8 interface you want to use with
the loaded mesh. The fourth parameter lets you specify a pointer to an ID3DXBuffer
interface. If you specify a pointer, the buffer is filled with information that specifies
the neighbors of each face in the mesh. I normally set this parameter to NULL.

The fifth parameter retrieves the materials used in the x-file. The materials loaded
are put into the D3DXMATERIAL buffer passed here. The sixth parameter lets you
know how many materials were passed back in the fifth parameter. The last para-
meter receives the actual mesh that gets loaded. The type used here is an ID3DXMesh
pointer.

514 12. Inside Direct3D Rendering

Loading and Creating the Materials
Once the code executes that calls this function, the pD3DXMtrlBuffer buffer holds all
relevant material information in a raw format. The raw data cannot be used as is.
You need to convert the raw data to actual material data for use with the mesh.
This is where the next line of code comes into play.

D3DXMATERIAL* d3dxMaterials = (D3DXMATERIAL*)pD3DXMtrlBuffer->GetBufferPointer();

This line of code creates a new data structure called d3dxMaterials and sets it equal
to the temporary material buffer. To do this, it points to the GetBufferPointer()
member of the material buffer.

The next couple of lines of code deal with creating memory for both the materials
and the textures.

pMeshMaterials = new D3DMATERIAL8[dwNumMaterials];
pMeshTextures = new LPDIRECT3DTEXTURE8[dwNumMaterials];

Because dwNumMaterials holds the number of materials loaded, you can just allocate
memory for that number. There is no real way to know exactly how many of the
materials have textures, but you can go ahead and allocate memory under the
assumption that each material has one. If you run across a material that does not
have a texture, you can just delete that particular texture and move on.

The loop that follows loops through each material loaded and assigns it to the
newly created pMeshMaterials buffer. For each material you come across, you should
try to load a corresponding texture. If the texture is not found, then go ahead and
delete the texture for the material.

Once all of the textures and materials are loaded, the code cleans up the tempo-
rary material buffer using the SAFE_RELEASE macro. The SAFE_RELEASE macro, which
is part of the dxutil.cpp utility set, is useful for deleting interfaces that have the
Release() functionality.

Now that the function has completed, the pMesh object is ready to be rendered.

Rendering the X-File
Once the mesh is loaded, the program goes on to set up the view in the normal
fashion. The only difference here is that the camera has been moved to a more fit-
ting position in which to view the x-file object. To get a feel for where the camera is
located, take a look at Figure 12.22.

515Loading X-Files

Once the setup view function returns, the system executes the rendering function.
Most of what you see in the render function is the same as in previous programs. The
first minor difference is that this program uses a black background. You can tell this
from the D3DCOLOR_XRGB values in the Clear() function. The main part you should
note is the rendering of the actual x-file, which happens within a fairly simple loop.

// Render the objects
for(mat = 0 ; mat < (signed)dwNumMaterials ; mat++) {

// Activate the material
pd3dDevice->SetMaterial(&pMeshMaterials[mat]);
// Set the appropriate texture
pd3dDevice->SetTexture(0, pMeshTextures[mat]);
// Draw the mesh subset
pMesh->DrawSubset(mat);

}

Recall when the mesh was loaded that the dwNumMaterials variable holds how many
materials were loaded. This is very important to the program because you have to
render each material separately. This is why the code uses a loop to go through
each material within the x-file object.

516 12. Inside Direct3D Rendering

Figure 12.22

The camera,
positioned to view
the x-file

Camera

(0,35,-50)

-z

+y

The DrawSubset() Function
Basically, the loop activates the next material in the list, activates the texture, and
then renders the material with the DrawSubset() function. I wish I could make it
more complicated than that, but that’s really all there is to it! Once you render
each material, you’re done with the x-object. If you run the program and every-
thing works out as planned, then you should see something similar to Figure 12.23.

The Living World
So far, the 3D examples have been pretty stagnate. Nothing has moved around;
everything has been lifeless and rather boring. Well, all of that changes with the
XFileAnimator project. Go ahead and load it up so you can start learning how to
move 3D objects. In this program, you load the robot mesh from the last project.
Once the mesh is loaded, you render the robot to the screen. The new part about
this program is that you can use the left and right arrow keys to rotate the robot
about its y-axis.

517The Living World

Figure 12.23

Output from the
XFileLoader program

Radians or Die!
One of the more obscure things about 3D animation is the formula for rotating
objects. Most people would think that you just tell the system how many degrees
you want something to turn and it does it. This is not the case for 3D animation sys-
tems. Turns are indicated in units called radians. To find the number of radians in
a certain degree, you must use the following formula.

(degrees/180.0f)* 3.1415926535897932384626433832795

I don’t know about you, but I’m not the biggest mathematics fan in the world, and
that formula looks a bit intimidating. It’s really not that bad once you stick it into a
macro that you can use over and over again. This is where the following piece of
code helps. It is declared at the beginning of the program and is used later for cal-
culating radians from degrees.

#define PI 3.1415926535897932384626433832795
#define DegToRad(deg) ((deg/180.0f)*PI)

From now on, all you have to do is use the DegToRad() function when you want to
know how many radians there are in a particular degree.

The Dynamic Message Loop
In previous programs, the rendering function was called only once because there
was nothing to animate. Now that you want to rotate the x-file object, you need to
re-render the scene each time it moves. This is why the message loop now incorpo-
rates the rendering function with each cycle.

// Process messages until the program is terminated
ZeroMemory(&msg, sizeof(msg));
while(msg.message!=WM_QUIT) {

if(PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
else {

vRenderScene();
}

}

Each time the message loop checks for a message and no message is found, the
vRenderScene() function is called.

518 12. Inside Direct3D Rendering

Reading the Arrow Keys
Another new addition to this program is keyboard checking. This program actually
needs to check the keyboard for user input, which is all handled at the window’s
messaging level.

case WM_KEYDOWN:
// Handle any non-accelerated key commands
switch (wParam)
{
case VK_ESCAPE:

break;
// Left arrow key
case 37:

fRotation += 2.0f;
break;

// Right arrow key
case 39:

fRotation -= 2.0f;
break;

default:
break;

}
break;

If you look closely, you can see that key codes 37 and 39 relate to the arrow keys on
the keyboard. A global floating-point variable called fRotation keeps track of which
way the robot is rotated in this program. Whenever the user presses the left-arrow
key, the robot rotates two degrees clockwise. Whenever the user presses the right-
arrow key, the robot rotates two degrees counterclockwise.

So there you have it, how to rotate the robot! Oh, wait, I forgot to show you how to
render the little rascal.

The Rotation Matrix
If you go ahead and hop on down to the vRenderScene() function, you get to see
how you go about rotating the robot. Here is the code.

void vRenderScene(void)
{

D3DXMATRIX matRotation;

519The Living World

int mat;

// Clear the backbuffer and the zbuffer
pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

D3DCOLOR_XRGB(0,0,0), 1.0f, 0);
// Begin rendering
pd3dDevice->BeginScene();
// Set the rotation
D3DXMatrixRotationY(&matRotation, (float)DegToRad(fRotation));
pd3dDevice->SetTransform(D3DTS_WORLD, &matRotation);
// Render the objects
for(mat = 0 ; mat < (signed)dwNumMaterials ; mat++) {

// Activate the material
pd3dDevice->SetMaterial(&pMeshMaterials[mat]);
// Set the appropriate texture
pd3dDevice->SetTexture(0, pMeshTextures[mat]);
// Draw the mesh subset
pMesh->DrawSubset(mat);

}
// Stop rendering
pd3dDevice->EndScene();
// Output the scene
pd3dDevice->Present(NULL, NULL, NULL, NULL);

}

The important part to rotating the 3D object appears in the bold text. To set up a
rotation matrix for the robot’s y-axis, you need to use the D3DXMatrixRotationY()
helper function.

The D3DXMatrixRotationY() Function
The D3DXMatrixRotationY() function creates a default rotation matrix with a given
radian value. The matrix returned is filled with the proper data to rotate the object
as many radians as requested. For this function, you pass the DegToRad() value of
the fRotation global variable. This tells the matrix function to return to you a rota-
tion matrix that contains the proper values for rotating the robot.

The SetTransform() function then activates the rotation matrix created. Once this is
done, any object rendered is rotated about the y-axis.

520 12. Inside Direct3D Rendering

If you want to play around with this functionality, replace the D3DXMatrixRotationY()
function with the D3DXMatrixRotationX() or D3DXMatrixRotationZ() function. By
doing this, you change the axis on which the robot rotates. Output for this pro-
gram appears in Figure 12.24.

Review
Now that you have finally learned how to render something other than a blank
screen, it’s time to review. Take the following key points with you.

■ All 3D objects are made up of polygons. Each polygon is made up of three
points. Each of the points has its own x, y, and z coordinate on the Cartesian
plane.

■ Of the various primitive types, most 3D games use triangle lists and triangle
strips for rendering.

■ Normals are used to determine how the surface of a 3D object reflects light.
If your normals are not set up properly, your object will look strange when
rendered.

521Review

Figure 12.24

Output from the
XFileAnimator program

■ Translation matrices determine the position of geometry in your scenes.
Rotation matrices determine the orientation of the geometry, and scale
matrices determine the scale (or size) of the geometry. You use the
SetTransform() function to activate the current matrix.

■ All rotation values in Direct3D are used in radians and not degrees.

Hey! Guess what! It’s that time again—time for another chapter!

522 12. Inside Direct3D Rendering

CHAPTER 13

Now
Showing,

DirectInput
and

DirectAudio!

You are almost there; the taste of battle is overpowering. All throughout the
land, everything is still and lifeless. Neither a bird sings nor a cannon fires.

You cannot move for you are frozen, a sitting target. What’s that on the horizon?
Why, it’s DirectInput and DirectAudio to the rescue!

Dorky introductions aside, this chapter is all about audio and input. By learning
DirectInput, you will learn how to add responsive controls to your games. The stan-
dard Windows keyboard controls are clunky and unresponsive, and don’t even get
me started about joystick support. By the same token, DirectSound is much better
than using the standard Windows calls to play a mere one sound per channel. With
DirectAudio, you can add multichannel playback to your games for a truly immer-
sive experience. In this chapter, you will learn how to

■ Initialize DirectInput
■ Create a keyboard device
■ Read buffered keyboard input
■ Initialize DirectAudio
■ Load a wave file
■ Play a wave file

Let’s get started!

Using a Keyboard
with DirectInput
DirectX 8.0 has made initializing DirectInput quite simple. The heart of using the
DirectInput system is the IDirectInput8 interface.

The IDirectInput8 Interface
The IDirectInput8 interface is what you use to create and access devices for input.
The main purpose of DirectInput is to use keyboard, joystick, or unique devices.
You do not gain very much by using DirectInput to control the mouse. For mouse
controls, you should stick with the standard Windows methods.

524 13. Now Showing, DirectInput and DirectAudio!

To create an IDirectInput8 interface, you use the DirectInput8Create() function.
There is no better way to show you how to do something than with source code, so
go ahead and load up the DirectInputKeyboard project found in the Chapter13
Zip file on the book’s CD. In this project, you will learn how to initialize
DirectInput and create a keyboard device.

The DirectInputKeyboard Project
Instead of mixing graphics and other stuff with the project, this project only initial-
izes DirectInput and creates a keyboard device. For one thing, I believe this will
help you see how to do the task at hand instead of having you spend a lot of time
wading through source code.

To use DirectInput, you must include the dinput8.lib and dxguid.lib libraries in
your project. The only header file you need for DirectInput is the dinput.h header
file. Here is the source code.

#include <stdio.h>
#include <dinput.h>
#define INPUTERROR_NODI 0x81000001
#define INPUTERROR_NOKEYBOARD 0x81000002
LPDIRECTINPUT8 pDI = NULL;
LPDIRECTINPUTDEVICE8 pKeyboard = NULL;

// Windows globals
const char *szWndClass = “DirectInputKeyboard”;
const char *szProgramName = “Direct-Input Keyboard Example”;
HINSTANCE g_hInstance;
// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

void vCleanup(void);
HRESULT hrInitDirectInput(void);
HRESULT hrInitKeyboard(HWND hWnd);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{

525Using a Keyboard with DirectInput

WNDCLASS wc;
HWND hWnd;
MSG msg;
HRESULT hr;

// Set up and register window class
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = MsgProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = szWndClass;
RegisterClass(&wc);
// Create a window
hWnd = CreateWindowEx(WS_EX_TOPMOST,

szWndClass, szProgramName, WS_OVERLAPPEDWINDOW,
0, 0, 640, 480, NULL, NULL, hInstance, NULL);

// Set up global window instance
g_hInstance = hInstance;
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
hr = hrInitDirectInput();
if(hr == INPUTERROR_NODI) {

MessageBox(hWnd, “DirectInput Error”, “Unable to initialize
DirectInput.”, MB_ICONERROR);

vCleanup();
exit(1);

}
hr = hrInitKeyboard(hWnd);
if(hr == INPUTERROR_NOKEYBOARD) {

MessageBox(hWnd, “DirectInput Error”, “Unable to initialize
Keyboard.”, MB_ICONERROR);

vCleanup();
exit(1);

}
// Process messages until the program is terminated
ZeroMemory(&msg, sizeof(msg));

526 13. Now Showing, DirectInput and DirectAudio!

while(msg.message!=WM_QUIT) {
if(PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else {
}

}
// Clean up the environment
vCleanup();
return(msg.wParam);

};
LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch(msg)
{
case WM_DESTROY:

PostQuitMessage(0);
return 0;

default:
break;

}
return DefWindowProc(hWnd, msg, wParam, lParam);

}
void vCleanup(void)
{

if(pKeyboard) {
pKeyboard->Unacquire();
pKeyboard->Release();

}
if(pDI) {

pDI->Release();
}
UnregisterClass(szWndClass, g_hInstance);

}
HRESULT hrInitDirectInput(void)
{

HRESULT hReturn = 0;

// Do not try to create DirectInput if already created
if(!pDI) {

527Using a Keyboard with DirectInput

// Create a DInput object
if(FAILED(hReturn = DirectInput8Create(GetModuleHandle(NULL),
DIRECTINPUT_VERSION,

IID_IDirectInput8, (VOID**)&pDI, NULL)))
return(INPUTERROR_NODI);

}
return(hReturn);

}
HRESULT hrInitKeyboard(HWND hWnd)
{

HRESULT hReturn = 0;
DIPROPDWORD dipdw;

// Obtain an interface to the system keyboard device
if(FAILED(hReturn = pDI->CreateDevice(GUID_SysKeyboard,
&pKeyboard, NULL)))

return(INPUTERROR_NOKEYBOARD);

// Create buffer to hold keyboard data
ZeroMemory(&dipdw,sizeof(DIPROPDWORD));
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0;
dipdw.diph.dwHow = DIPH_DEVICE;
dipdw.dwData = 10;
// Set the size of the buffer
if(FAILED(hReturn = pKeyboard->SetProperty(DIPROP_BUFFERSIZE,
&dipdw.diph)))

return(INPUTERROR_NOKEYBOARD);
// Set the format of the keyboard
if(FAILED(hReturn = pKeyboard->SetDataFormat(&c_dfDIKeyboard)))

return(INPUTERROR_NOKEYBOARD);
// Set the cooperative level to exclusive access
if(FAILED(hReturn = pKeyboard->SetCooperativeLevel(hWnd,
DISCL_EXCLUSIVE | DISCL_FOREGROUND))) {

return(INPUTERROR_NOKEYBOARD);
}
// Acquire the keyboard device
pKeyboard->Acquire();
return(0);

}

528 13. Now Showing, DirectInput and DirectAudio!

The Keyboard Program Layout
The keyboard project breaks down into five main functions.

■ WinMain()

■ MsgProc()

■ vCleanup()

■ hrInitDirectInput()

■ hrInitKeyboard()

The first three functions, WinMain(), MsgProc(), and vCleanup(), should all look familiar
to you by now. The two new ones are the hrInitDirectInput() and hrInitKeyboard()
functions. To see how the project is laid out, check out Figure 13.1.

As you see in Figure 13.1, the program executes the WinMain() function, which then
calls the hrInitDirectInput() function. If this function succeeds, then the
hrInitKeyboard() function is called. Nothing is actually displayed on the screen if
everything works out okay. The only time you get feedback in this program is if any
of the operations fail.

529Using a Keyboard with DirectInput

WinMain MsgProc

hrInitDirectInput

hrInitKeyboard

vCleanup

Title

DirectInputKeyboard
Project

Figure 13.1

The DirectInputKeyboard
project

The hrInitDirectInput() Function
The first fun function to come along is the hrInitDirectInput() function. This func-
tion is actually quite short because DirectX 8.0 has made creating input interfaces
very easy. The one and only purpose of this function is to create an IDirectInput8
interface. This happens using the aforementioned DirectInput8Create() function call.

The DirectInput8Create() Function
The DirectInput8Create() function is similar to the other DirectX create functions
in that it retrieves an interface. The parameters for the function are as follows.

HRESULT WINAPI DirectInput8Create(
HINSTANCE hinst,
DWORD dwVersion,
REFIID riidltf,
LPVOID* ppvOut,
LPUNKNOWN punkOuter

);

The first parameter is a little different in that it expects the instance of the applica-
tion or DLL that is creating the DirectInput interface. For this, you can pass in the
global HINSTANCE stored at the beginning of the program.

The second parameter lets you specify the version of DirectX you are using. This
will ensure that you are using the proper header file. For this, you should pass in
the DIRECTINPUT_VERSION definition.

The third parameter specifies which version of the interface you want to use, either
ASCII or Unicode. The flags available for the parameter can be seen in Table 13.1.

The fourth parameter receives the created interface. The last parameter lets you
specify a pointer for aggregation. Normally, you just pass a NULL here.

530 13. Now Showing, DirectInput and DirectAudio!

Table 13.1 DirectInput8Create() Interface Flags

Flag Description

IID_IDirectInput8 Selects ASCII or Unicode based on the #UNICODE define

IID_IDirectInput8A Selects the ASCII interface

IID_IDirectInput8W Selects the Unicode interface

As for the DirectInputKeyboard program, it implements the interface creation like so:

HRESULT hrInitDirectInput(void) {
HRESULT hReturn = 0;

// Do not try to create DirectInput if already created
if(!pDI) {

// Create a DInput object
if(FAILED(hReturn = DirectInput8Create(g_hInstance,
DIRECTINPUT_VERSION,

IID_IDirectInput8, (VOID**)&pDI, NULL)))
return(INPUTERROR_NODI);

}
return(hReturn);

}

The first thing you do in the hrInitDirectInput() function is check whether the
DirectInput interface has already been created. If it has, then you should just leave
the function. If the interface has not been created, you go on to call the
DirectInput8Create() function. As you can see from the code, you are passing the
global g_hInstance variable for the current instance of the application. Next comes
the DIRECTINPUT_VERSION definition. For the interface type, you pass IID_IDirectInput8,
which tells the system to choose either ASCII or Unicode depending on the current
settings for the project. For the next and most important parameter, you pass the
global pDI variable. Finally, you need to pass NULL for the last parameter.

Okay, once you’ve created the DirectInput interface, you are ready to create some
devices. Remember, devices are things such as keyboards, joysticks, and mice.

The hrInitKeyboard() Function
The next function to come along is the hrInitKeyboard() function. This is where
you create the actual keyboard device. To see what you have accomplished so far,
take a look at Figure 13.2.

You must accomplish five things before the keyboard device is ready to go.

1. Create the device.

2. Set the buffer size.

3. Set the format.

4. Set the cooperative level.

5. Acquire the device.

531Using a Keyboard with DirectInput

The IDirectInput8::CreateDevice() Function
The first thing you need to do is create the actual keyboard device using the
CreateDevice() member function of the IDirectInput8 interface you created earlier.
Here are the parameters for the function.

HRESULT CreateDevice(
REFGUID rguid,
LPDIRECTINPUTDEVICE *lplpDirectInputDevice,
LPUNKNOWN pUnkOuter

);

The first parameter specifies the GUID of the device you are trying to create. If you
don’t know which devices are available, you can use the IDirectInput8::EnumDevices()
function. However, you do know that there is a keyboard attached to the system, so
you can go ahead and specify the GUID of GUID_SysKeyboard here.

The second parameter receives the IDirectInputDevice8 device pointer you are cre-
ating. The last parameter is used for aggregation. Normally, you just set this to NULL.

As you can see in the code for the keyboard project, you are using all of the values
I suggested. The main item of interest here is the GUID_SysKeyboard value being
passed for the device’s GUID. This tells the system to give you the keyboard device.

532 13. Now Showing, DirectInput and DirectAudio!

WinMain

hrInitDirectInput DirectInput8Create

Creates IDirectInput8
Interface

Title

DirectInputKeyboard
Project

Figure 13.2

Processes up to creating
the device

// Obtain an interface to the system keyboard device
if(FAILED(hReturn = pDI->CreateDevice(GUID_SysKeyboard, &pKeyboard, NULL)))

return(INPUTERROR_NOKEYBOARD);

Now that you have the keyboard device, you can go ahead and set up the buffer to
receive input from the user.

Setting Up the Keyboard Buffer
To set up a buffer for devices, you must initialize a DIPROPDWORD data structure. The
code used in the current project works like the following:

// Create buffer to hold keyboard data
ZeroMemory(&dipdw,sizeof(DIPROPDWORD));
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0;
dipdw.diph.dwHow = DIPH_DEVICE;
dipdw.dwData = 10; // Buffer Size

533Using a Keyboard with DirectInput

Buffered Versus Immediate Data

For all DirectInput devices, you can use either buffered or immediate
data.When you retrieve immediate data, you retrieve the absolute
current state of the device at the time of the call.This works fine for
devices that only need to worry about their current state. For all
other devices, you can use buffered data.When using buffered data, the
system records input from the user and stores it in a specified buffer.
The application can then go and read data from the buffer.When data
is read, it is removed from the buffer. If the application overflows the
buffer, new data is lost.

In most cases, you will want to use buffered data.The main reason is
that with immediate data, input is only as accurate as the frame rate of
the game. If it takes 30ms to render a frame, the user can only input
data at a rate of 30ms per entry.This can cause serious problems with
keyboard input. Imagine how you would feel if half of your keyboard
presses were lost while you were playing a game—this is what can
happen if you don’t use buffered data.

The main part of setting up the data structure comes in setting up the parameters
for the diph member structure of type DIPROPHEADER. The DIPROPHEADER data structure
sets up the properties of a device.

All you really need to notice here is the dwData member of the DIPROPDWORD data
structure. This tells DirectInput how many elements to store in the keyboard’s
input buffer. If you set this to 0, then nothing is buffered. If you set the value too
low, keyboard data will overflow. Normally, a value ranging from 10 to 20 is suffi-
cient. To see how a program should operate when using buffered data, check out
Figure 13.3.

534 13. Now Showing, DirectInput and DirectAudio!

WinMain

hrInitDirectInput DirectInput8Create

Creates IDirectInput8
Interface

Message Loop

Check Input
Device

Element 1

Element 2

Element 3

Element 4

Loop through buffer

Title

Game

Figure 13.3

Buffered device
data processing

The IDirectInputDevice8::SetProperty() Function
The IDirectInputDevice8::SetProperty() function is what you call to tell the key-
board device to use buffered data. So now that you have the buffer data structure
initialized, you can go ahead and set the keyboard to be buffered. Here are the
parameters for this function.

HRESULT SetProperty(
REFGUID rguidProp,
LPCDIPROPHEADER pdiph

);

The first parameter specifies the GUID of the property you are trying to set. For set-
ting the buffer property, you use the DIPROP_BUFFERSIZE GUID. The last parameter
passes in the address of the DIPROPHEADER data structure that defines the property.

Once the property is set, it is time to set up the keyboard format.

// Set the size of the buffer
if(FAILED(hReturn = pKeyboard->SetProperty(DIPROP_BUFFERSIZE,
&dipdw.diph)))

return(INPUTERROR_NOKEYBOARD);
// Set the format of the keyboard
if(FAILED(hReturn = pKeyboard->SetDataFormat(&c_dfDIKeyboard)))

return(INPUTERROR_NOKEYBOARD);

The IDirectInputDevice8::SetDataFormat()
Function
The SetDataFormat() function sets the format of the device you created. Here is the
prototype.

HRESULT SetDataFormat(
LPCDIDATAFORMAT lpdf

);

The one and only parameter for this function specifies the format of the device in
the form of a DIDATAFORMAT data structure. If you want to, you can use one of the
predefined types.

■ c_dfDIKeyboard ■ c_dfDIJoystick
■ c_dfDIMouse ■ c_dfDIJoystick2
■ c_dfDIMouse2

535Using a Keyboard with DirectInput

The IDirectInputDevice8::SetCooperativeLevel()
Function
Once you create the keyboard device, set up its buffer, and set the data format, it
is time to set the cooperative level of the device using the SetCooperativeLevel()
function.

The cooperative level of a device tells the instance of the device how to operate in
regard to other instances of the device. Because multiple applications can use the
keyboard at once, you need to set the cooperative level. Here is the prototype for
the function.

HRESULT SetCooperativeLevel(
HWND hwnd,
DWORD dwFlags

);

The first parameter specifies the handle of the window that will use the device.
Make sure you specify a top-level window here. The last parameter lets you specify
certain cooperative level flags. You can use the following flags.

■ DISCL_BACKGROUND ■ DISCL_NONEXCLUSIVE

■ DISCL_EXCLUSIVE ■ DISCL_NOWINKEY

■ DISCL_FOREGROUND

The main thing to remember when setting a device’s cooperative level is that you
must use either the DISCL_FOREGROUND or the DISCL_BACKGROUND value for one flag. You
also must use either the DISCL_EXCLUSIVE or the DISCL_NONEXCLUSIVE value for the
other flag. You only use DISCL_NOWINKEY to tell the device not to accept the Windows
key.

When you set a device flag to use the DISCL_FOREGROUND value, you tell the device to
become inactive when its window is sent to the background. This is what applica-
tions normally do because you don’t want input from the user going to your appli-
cation when the application is minimized. If you follow along with the code for the
project, you see that it sets the cooperative level to both exclusive mode and fore-
ground mode.

// Set the cooperative level to exclusive access
if(FAILED(hReturn = pKeyboard->SetCooperativeLevel(hWnd,
DISCL_EXCLUSIVE | DISCL_FOREGROUND))) {

return(INPUTERROR_NOKEYBOARD);
}

536 13. Now Showing, DirectInput and DirectAudio!

The IDirectInputDevice8::Acquire() Function
The final step to setting up a DirectInput device is acquiring it with the duly-named
Acquire() function. This function does not take any parameters, so it’s pretty easy to
use. If the function succeeds, it passes back a DI_OK value.

// Acquire the keyboard device
pKeyboard->Acquire();

Well, now you have created a keyboard device, and everything should be just dandy.
Yeah, I know, dumb word. Anyway, the only thing left to do is show you how to clean
up the mess that was made—using our old favorite, the vCleanup() function.

The vCleanup() Function
When the application exits, the vCleanup() function needs to accomplish a few things.

1. Unacquire the keyboard.

2. Release the keyboard.

3. Release DirectInput.

If you look at the code, you’ll see how this happens.

void vCleanup(void) {
if(pKeyboard) {

pKeyboard->Unacquire();
pKeyboard->Release();

}
if(pDI) {

pDI->Release();
}
UnregisterClass(szWndClass, g_hInstance);

}

The IDirectInputDevice8::Unacquire() Function
The IDirectInputDevice8::Unacquire() function is the counterpart to the Acquire()
function. This function takes no parameters and returns DI_OK upon success. You
use this function to free the acquired device.

You have already seen the Release() function used in many places, so I won’t cover
that one again. Just keep in mind that you need to release both devices and inter-
faces for DirectInput. To see how the initialization and cleanup operations relate to
each other, look at Figure 13.4.

537Using a Keyboard with DirectInput

All right, now that you have a working keyboard device, it probably would be nice
to do something with it. In other words, you still need to know how to read the
buffered keyboard input. This is where the DIK_Read project comes into play.

The DIK_Read Project
In the last project, I showed you how to create an IDirectInput8 interface along
with an IDirectInputDevice8 keyboard device. The main thing missing from that
project was reading the data from the keyboard. In the DIK_Read project, I’ll show
you how to do the following tasks.

1. Initialize an IDirectInput8 interface.

2. Create an IDirectInputDevice8 keyboard device.

3. Read the keyboard’s buffered data.

4. Check to see whether the Esc key is being pressed.

You have already learned how to do the first two steps, so I’ll mainly concentrate on
the last two items. Go ahead and load up the project to follow along with the code.

Changes to the Header
If you compare this project to the last project, you’ll notice a few changes. Here is
the latest code.

538 13. Now Showing, DirectInput and DirectAudio!

CreateDeviceDirectInput8Create

Unacquire

Release

Release

IDirectInput8 IDirectInputDevice8

Figure 13.4

Initialization and cleanup of
DirectInput objects

#include <stdio.h>
#include <dinput.h>

#define KEYBOARD_BUFFERSIZE 10
#define INPUTERROR_NODI 0x81000001
#define INPUTERROR_NOKEYBOARD 0x81000002
#define INPUTERROR_KEYBOARDEXISTS 0x81000003
LPDIRECTINPUT8 pDI = NULL;
LPDIRECTINPUTDEVICE8 pKeyboard = NULL;
BYTE diks[256];
BYTE ascKeys[256];
HKL g_Layout;
// Windows globals
const char *szWndClass = “DirectInputKeyboardRead”;
const char *szProgramName = “Direct-Input Keyboard Read Example”;
HINSTANCE g_hInstance;
// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

void vCleanup(void);
HRESULT hrInitDirectInput(void);
HRESULT hrInitKeyboard(HWND hWnd);
int Scan2Ascii(DWORD scancode, unsigned short* result);
HRESULT hrReadKeyboard(void);

The two main additions, shown in bold, store the state of keys on the keyboard.
When you read key data for a video game, you should not think in terms of which
single key is being pressed. Instead, you must consider all the keys on the keyboard
at once. This allows your game to accept multiple keys being pressed and released
at the same time. Of course, I always recommend you keep keyboard input to a
minimum, but sometimes it is necessary for gameplay.

Scan-Codes Versus ASCII Codes
The diks[] array stores the state of each scan-code key. The acsKeys[] array stores
the state of each ASCII key. In its default state, a keyboard sends back codes called
scan-codes. DirectInput has created several macros to identify special scan-codes.
The main problem with scan-codes is that they are not compatible with standard
string functionality. In other words, you cannot use scan-codes for alphabetic input
and expect the letter B to follow the letter A. Scan-codes are stored out of order

539Using a Keyboard with DirectInput

and rarely seem to follow a pattern. This is where ASCII codes come in. Using spe-
cial functions, you can convert scan-codes to ASCII codes that are string-friendly.

The HKL Keyboard Layout Variable
The next global variable that is new to this project is the g_Layout object. This
object stores the layout of the keyboard. Knowing the keyboard layout is important
for language and regional issues. Some keyboards do not follow standard conven-
tions, so you need to know the layouts before you can start converting scan-codes to
ASCII codes. The g_Layout variable is actually initialized later in the
hrInitDirectInput() function. Figure 13.5 offers a visual of how the new variables
relate to the functions in the project.

Reading the Keyboard
If you follow the code along in the WinMain() function, you’ll see that the message
loop has changed a little bit.

// Process messages until the program is terminated
ZeroMemory(&msg, sizeof(msg));
while(msg.message != WM_QUIT) {

if(PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
else {

hrReadKeyboard();
// Exit the program if the Esc key is hit
if(diks[DIK_ESCAPE])

break;
}

}

The first change is the inclusion of a new function called hrReadKeyboard().

The hrReadKeyboard() Function
The hrReadKeyboard() function checks the status of keys on the keyboard and sets
their status flags. If you recall, the diks[] and ascKeys[] arrays each store 256 flags
representing both scan-codes and ASCII key codes. If a key is up, then its flag is set
to 0. If a key is down, then its flag is set to 1. The hrReadKeyboard() function oper-
ates by first checking the keyboard input buffer. If the buffer has data in it, the

540 13. Now Showing, DirectInput and DirectAudio!

function loops through the buffer and sets the appropriate flags for each key. Here
is the code for the function.

HRESULT hrReadKeyboard(void)
{

HRESULT hr;
DWORD dwCurBuffer;
DIDEVICEOBJECTDATA didKeyboardBuffer[KEYBOARD_BUFFERSIZE];
DWORD dwItems = KEYBOARD_BUFFERSIZE;
BYTE byteASCII;

// Don’t try to read the keyboard if the interface or device is invalid
if(!pKeyboard || !pDI)

return(INPUTERROR_NOKEYBOARD);
// Read the buffered data
hr = pKeyboard->GetDeviceData(sizeof(DIDEVICEOBJECTDATA),

didKeyboardBuffer, &dwItems, 0);
// Process data if there is data to read
if (dwItems) {

// Process the data
for(dwCurBuffer = 0; dwCurBuffer < dwItems; dwCurBuffer++) {

// Map scan-code to ASCII code

541Using a Keyboard with DirectInput

hrInitDirectInput hrInitKeyboard Scan2AsciihrReadKeyboard vCleanup

pDI

pKeyboardg_Layout

pDI g_LayoutpDI

pKeyboard

diks

ascKeys

pDI

pKeyboard

WinMain

Figure 13.5

Global variable
relationships in
the DIK_Read
project

byteASCII = Scan2Ascii(didKeyboardBuffer[dwCurBuffer].dwOfs);
// Set key to be down (pressed)
if(didKeyboardBuffer[dwCurBuffer].dwData & 0x80) {

ascKeys[byteASCII] = 1;
diks[didKeyboardBuffer[dwCurBuffer].dwOfs] = 1;

}
// Set key to be up
else {

ascKeys[byteASCII] = 0;
diks[didKeyboardBuffer[dwCurBuffer].dwOfs] = 0;

}
}

}
return S_OK;

}

Okay, roll up your sleeves; it’s time to get messy. The first things the function per-
forms are what I like to call idiot checks. The function checks to make sure that
pKeyboard and pDI are valid pointers. If either one of the pointers is NULL, then the
function terminates. It’s always a good practice to check pointers on which you are
dependent. I know that many of the programs in this book do not include these
checks, but it’s never too late to start!

The IDirectInputDevice8::GetDeviceData() Function

The GetDeviceData() function retrieves buffered data from a DirectInput device.
Here is the prototype.

HRESULT GetDeviceData(
DWORD cbObjectData,
LPDIDEVICEOBJECTDATA rgdod,
LPDWORD pdwInOut,
DWORD dwFlags

);

The first parameter is pretty easy because all you have to pass to it is the size of a
DIDEVICEOBJECTDATA structure. The second parameter expects you to pass a pointer
to an array of DIDEVICEOBJECTDATA data structures. This array will receive the
buffered data.

The third parameter tells the function call how many elements are in the array
used in the second parameter. Once the function completes, this variable is set to
the number of elements actually received.

542 13. Now Showing, DirectInput and DirectAudio!

The last parameter lets you set certain read flags for the data. If you pass a
DIGDD_PEEK here, the data you read is not removed from the buffer. Normally, you
just pass a NULL value here.

Looping through the Buffered Data

If you look at the code, you’ll see that it passes the dwItems variable to hold the
number of elements read. The didKeyboardBuffer array holds the actual elements
returned. Once the function completes, the code looks at the dwItems variable that
holds the buffered data. If there is buffered data to read, then the program goes
on to loop through the returned data.

The first thing that happens in the loop is a call to the Scan2Ascii() function. This call
is made to convert the scan-code found in the didKeyboardBuffer[dwCurBuffer].dwOfs
data member to an ASCII code. The byteASCII variable holds the converted value.

Next, the code checks the state of the key returned in the buffer. If the key can
pass a logical AND with the value of 0 × 80, then you know the key is being held
down. Otherwise, the key is in the released, or up, state. Once the state is deter-
mined, the appropriate diks[] and ascKeys[] arrays are updated.

The Scan2Ascii() Function
Unfortunately, the DirectX helper libraries do not include functions to convert
scan-codes to ASCII codes. But, no need to despair; I have written one for you. The
Scan2Ascii() function prototype follows.

BYTE Scan2Ascii(
DWORD scancode,

);

The first parameter expects the scan-code you want to convert to ASCII. The func-
tion returns the converted ASCII code upon completion. I suggest that you copy
the source code for this function and incorporate it into all of your projects if you
don’t have one of your own. It has proven time and time again to be very useful.

You might be asking, how does it work? First of all, you must get the current key-
board layout with the GetKeyboardLayout() function. If you look at the code, you’ll
see that it was called in the hrInitDirectInput() function. Remember that you only
need to check the keyboard layout once per application instance. Once you have
the layout, you can go into the meat of the function.

BYTE Scan2Ascii(DWORD scancode)
{

543Using a Keyboard with DirectInput

UINT vk;

vk = MapVirtualKeyEx(scancode, 1, g_Layout);
return(vk);

}

The first and only function call is the MapVirtualKeyEx() function. This function
takes a scan-code or ASCII code and converts it to a scan-code or ASCII code. The
keyboard layout tells the function how to map the key returned. The vk variable
holds the converted ASCII code. That’s all there is to it!

Checking for the Escape or Enter Keys
Now that the hrReadKeyboard() function and all of its pals are out of the way, you
can begin the fun part of checking for certain keys. Figure 13.6 shows how the pro-
gram flows in relation to keyboard events. Once you have looked at the figure,
check out the following code.

// Exit the program if the Esc key is hit
if(diks[DIK_ESCAPE])

break;
else if (ascKeys[13])

break;

544 13. Now Showing, DirectInput and DirectAudio!

hrInitDirectInput hrInitKeyboard

Scan2Ascii

hrReadKeyboard

vCleanupWinMain Message Loop

SCAN CODE

ASCII CODE

Figure 13.6

Program flow for the
DIK_Read program

The DIK_ESCAPE definition is provided within the dinput.h header file. If you open
that file, you’ll find many other useful keyboard definitions. Basically, by checking
for either the DIK_ESCAPE scan-code or the ASCII value of 13, the program exits
whenever the user presses the Escape key or the Enter key.

Of course, you can do all sorts of other things here, but to keep things simple, I’ll
leave the program as is. If you want, you can output any keyboard data to a text file
to see just how it works. Try some other DirectInput key codes such as DIK_LEFT and
DIK_RIGHT.

You are now finished with the absolute basics of DirectInput. I didn’t show you how
to use mice because mouse controls are better left to standard Windows calls. The
main reason is that the mouse is not dependant on Windows messages, which
allows it to be very responsive. Another reason not to use the DirectInput mouse is
that it records all information in relative coordinates. In other words, you never
really know where the mouse is on the screen. It mainly detects how much the
mouse has moved.

Introduction to DirectAudio
At the heart of the DirectX sound system is DirectAudio. DirectAudio is the combi-
nation of the former DirectSound and DirectMusic APIs that came with DirectX.
Before I can show you how to initialize DirectAudio, you must first understand the
following terms.

■ Loader
■ Performance
■ Segment

The IDirectMusicLoader8
Interface
In DirectAudio, you have an interface called a loader. A loader loads all types of
audio data, from wave files to MIDI files. The interface used to do all of this comes
in the nice tidy package of the IDirectMusicLoader8 interface. You normally only
need to create one of these objects per application, and it really isn’t all that hard
to do. The IDirectMusicLoader8 interface does not have a helper function to create
it, so you must first initialize COM before you can make one.

545Introduction to DirectAudio

The IDirectMusicPerformance8
Interface
You can think of the IDirectMusicPeformance8 interface as the sound manager for the
system. It regulates playback, sets audio channels, sets sound parameters, and man-
ages messages. This interface is the heart of the sound system. Each performance
has one main channel and n number of secondary channels. Only one sound can
play per primary channel, but multiple sounds are allowed on secondary channels.
If you want two primary channels, you can create two performance interfaces.

The IDirectMusicSegment8
Interface
The IDirectMusicSegment8 interface controls and contains the actual sound data
used for playback. Multiple sound tracks can be present in the object when storing
music, or you can use only one track to store sound effects. When you play back
segments, you can play them in either the primary or secondary channel of the per-
formance object. As I mentioned in the performance description, only one primary
segment can play per performance object.

Now that you have been exposed to the three object types within DirectAudio, you
can reflect on what each type does.

■ The IDirectMusicLoader8 interface loads sound.
■ The IDirectMusicPerformance8 interface plays back sound.
■ The IDirectMusicSegment8 interface holds the sound data that is loaded.

If you look at Figure 13.7, you’ll see that I have made a neat little graphic to repre-
sent these objects. (Okay, maybe it’s not that neat.)

546 13. Now Showing, DirectInput and DirectAudio!

IDirectMusicLoader8 IDirectMusicPerformance8IDirectMusicSegment8

Sound Data

Figure 13.7

Interfaces in
DirectAudio

How to Initialize DirectAudio
There is no better way to get your feet wet than to jump right into the pool. So go
ahead and load up the DirectAudioInit project, and you can get started. The
DirectAudioInit project’s only purpose is to initialize the DirectAudio system and
then shut it down. No sound is actually loaded or played back, but you will see how
to set up the system to play sounds. The next project will show you how to play the
actual sounds.

The DirectAudioInit
Header Information
Most of the code in the project matches that of the examples you have seen so far,
so I will not list the entire code base here. What I will do is point out relevant infor-
mation. The first thing you need to know is what header files to include. Here is
the header code for this project.

#include <stdio.h>
#include <Dmusici.h>
#define SOUNDERROR_MUSICLOADER 0x85000001
#define SOUNDERROR_MUSICPERFORMANCE 0x85000002
#define SOUNDERROR_INITAUDIO 0x85000003
#define SOUNDERROR_PATH 0x85000004
#define SOUNDERROR_VOLUME 0x85000005
// Windows globals
const char *szWndClass = “DirectAudio”;
const char *szProgramName = “Direct-Audio Init Program”;
HINSTANCE g_hInstance;
// DirectAudio globals
IDirectMusicLoader8 *pLoader = NULL;
IDirectMusicPerformance8 *pPerformance = NULL;
// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

void vCleanup(void);
HRESULT hrInitDirectAudio(HWND hWnd);

547How to Initialize DirectAudio

The only header file you must have for DirectAudio is the Dmusici.h file. It actually
includes the various header files within it so that you don’t have to. You also need
to add the dsound.lib and dxguid.lib libraries to your DirectAudio projects. Once
you have these three items in place, you are good to go.

You may have noticed the SOUNDERROR definitions. These are just custom errors that I
created to be returned when certain aspects of the initialization fail. You are free to
add or remove these error codes at your leisure. They exist purely for error tracking.

Probably the most important objects in the preceding code listing are the pLoader
and pPerformance objects. You only really need one loader in your project, and most
of the time you only need one performance object.

The last thing that is noteworthy is the hrInitDirectAudio() function. This function
does all of the initialization for the audio system. And don’t forget about vCleanup();
even though I did not highlight it, it is used to shut down the audio interfaces.

The hrInitDirectAudio() Function
If you follow along in WinMain(), you’ll see that it makes a call to the
hrInitDirectAudio() function.

// Initialize the audio system
hr = hrInitDirectAudio(hWnd);
if(hr != S_OK) {

MessageBox(hWnd, “DirectAudio Error”, “Unable to initialize
DirectAudio.”, MB_ICONERROR);

vCleanup();
exit(1);

}

If the function returns anything other than S_OK, a message box is displayed and
the program exits. Nothing else happens in WinMain() except for the standard mes-
sage handling. Without further ado, here is the code for the hrInitDirectAudio()
function.

HRESULT hrInitDirectAudio(HWND hWnd)
{

HRESULT hResult;
IDirectMusicAudioPath8 *path;

// Initialize COM
CoInitialize(NULL);

548 13. Now Showing, DirectInput and DirectAudio!

// Create the loader
if(FAILED(hResult = CoCreateInstance(CLSID_DirectMusicLoader, NULL,

CLSCTX_INPROC, IID_IDirectMusicLoader8,
(void**)&pLoader))) {

return(SOUNDERROR_MUSICLOADER);
}
// Create the performance
if(FAILED(hResult = CoCreateInstance(CLSID_DirectMusicPerformance,
NULL,

CLSCTX_INPROC, IID_IDirectMusicPerformance8,
(void**)&pPerformance))) {

return(SOUNDERROR_MUSICPERFORMANCE);
}
// Initialize the audio
if(FAILED(hResult = pPerformance->InitAudio(

NULL,
NULL,
hWnd,
DMUS_APATH_DYNAMIC_STEREO,
4,
DMUS_AUDIOF_ALL,
NULL
))) {
return(SOUNDERROR_INITAUDIO);

}
// Get the default path
if(FAILED(pPerformance->GetDefaultAudioPath(&path)))

return(SOUNDERROR_PATH);
// Set the default volume
if(FAILED(path->SetVolume(0,0)))

return(SOUNDERROR_VOLUME);
return(S_OK);

}

It might look a little wordy, but believe me; it’s not all that bad.

Flow of the hrInitDirectAudio() Function
To better visualize how the function operates, take a look at Figure 13.8. As you can
see, the first thing that is accomplished is the initialization of COM. This is neces-
sary because all DirectAudio functions are COM-based.

549How to Initialize DirectAudio

The second step is the creation of the IDirectMusicLoader8 interface. The third step
is the creation of the IDirectMusicPerformance8 interface. The fourth step is to call
the InitAudio() member function of the performance interface. The fifth step is to
call the GetDefaultAudioPath() member function of the performance interface. The
last step is to set the default volume.

Creating the IDirectMusicLoader8
Interface
Before you can create any interfaces, you must first initialize COM using the all too
familiar CoInitialize() function. Once that is out of the way, you can create the
IDirectMusicLoader8 interface using the CoCreateInstance() function.

if(FAILED(hResult = CoCreateInstance(CLSID_DirectMusicLoader, NULL,
CLSCTX_INPROC, IID_IDirectMusicLoader8,
(void**)&pLoader))) {

550 13. Now Showing, DirectInput and DirectAudio!

Create
IDirectMusicLoader8

Create
IDirectMusicPerformance8

Init COM

Init Audio

Get Default
Path

IDirectMusicAudioPath8

Set Volume

Figure 13.8

Structure of the
hrInitDirectAudio()

function

return(SOUNDERROR_MUSICLOADER);
}

If the function fails, then it returns an error of SOUNDERROR_MUSICLOADER. If the func-
tion succeeds, then the pLoader pointer is set to hold the interface.

Creating the IDirectMusicPerformance8
Interface
Once the loader is created, you can create the performance interface with the
same call used in creating the loader.

// Create the performance
if(FAILED(hResult = CoCreateInstance(CLSID_DirectMusicPerformance, NULL,

CLSCTX_INPROC, IID_IDirectMusicPerformance8,
(void**)&pPerformance))) {

return(SOUNDERROR_MUSICPERFORMANCE);
}

If the function fails, it returns an error of SOUNDERROR_MUSICPERFORMANCE. If the func-
tion succeeds, the pPerformance pointer is set to hold the interface.

The IDirectMusicPerformance8::InitAudio()
Function
The InitAudio() member function of the performance interface initializes the per-
formance interface for use. You cannot play any sounds or use the interface until
this function is called. You can also set up the default audio path using this call, if
you so choose. Here is the prototype.

HRESULT InitAudio(
IDirectMusic** ppDirectMusic,
IDirectSound** ppDirectSound,
HWND hWnd,
DWORD dwDefaultPathType,
DWORD dwPChannelCount,
DWORD dwFlags,
DMUS_AUDIOPARAMS *pParams

);

551How to Initialize DirectAudio

The first parameter lets you specify an IDirectMusic8 interface to either use or receive
from the function call. If you leave this at NULL, an internal interface is created. The
second parameter lets you specify an IDirectSound8 interface to either use or receive
from the function call. If you leave this at NULL, an internal interface is created. The
third parameter expects the handle of the window to be used for the sound system.

The fourth parameter specifies the type of the default audio path. The following
types are valid.

■ DMUS_APATH_DYNAMIC_STEREO

■ DMUS_APATH_DYNAMIC_MONO

■ DMUS_APATH_DYNAMIC_3D

■ DMUS_APATH_SHARED_STEREOPLUSREVERB

The fifth parameter lets you specify the number of performance channels with the
default audio path.

The sixth parameter specifies various flags for use with the interface. Table 13.2
lists the available flags.

The last parameter lets you pass in a DMUS_AUDIOPARAMS data structure containing
parameters for the performance interface. If you leave this at NULL, the default set-
tings are used.

552 13. Now Showing, DirectInput and DirectAudio!

Table 13.2 InitAudio() Flags

Flag Description

DMUS_AUDIOF_3D Allow 3D buffers

DMUS_AUDIOF_ALL Use all features

DMUS_AUDIOF_BUFFERS Allow multiple buffers

DMUS_AUDIOF_ENVIRON Use environmental modeling

DMUS_AUDIOF_EAX Use EAX effects

DMUS_AUDIOF_STREAMING Allow streaming wave files

If you look back at the code the program uses to call the InitAudio() function,
you’ll see that the program is trying to set up a stereo playback system with all
effects enabled. If all goes well, then S_OK is returned from the function.

Getting the Default Audio Path
Before you are finished with initialization, you must retrieve the default audio path.
The audio path is what you use to play back sounds, so you need to have access to
it. This is accomplished using the IDirectMusicPerformance8::
GetDefaultAudioPath() function.

// Get the default path
if(FAILED(pPerformance->GetDefaultAudioPath(&path)))

return(SOUNDERROR_PATH);

The only parameter you pass to this function
is the pointer of an IDirectMusicAudioPath8
interface to receive the audio path
information.

Now that you have the audio path, you can go
ahead and set up the system volume using the
IDirectMusicAudioPath8::SetVolume()
function.

The IDirectMusicAudioPath8::SetVolume()
Function
The SetVolume() function lets you specify the volume for an individual audio path.
Here is the prototype.

HRESULT SetVolume(
long lVolume,
DWORD dwDuration

);

The first parameter is the actual volume settings. The range allowed here is from 0
to –9600. Zero is considered full volume.

553How to Initialize DirectAudio

TIP
You don’t necessarily have to
get the default audio path; it’s
just good practice to keep it
handy. In this program, you are
getting the path to set the vol-
ume for it.

The second parameter specifies how many milliseconds it should take for the volume
change to be fully in place. You can use this to perform ramping effects. By setting
the second parameter to 0, you tell the program to change the volume immediately.

Cleaning Up DirectAudio
You are almost done with DirectAudio. All you have left to do is clean up the sys-
tem before your program exits. This is handled by the vCleanup() function.

// Clear the loader
if(pLoader) {

pLoader->Release();
pLoader = NULL;

}
// Clear the performer
if(pPerformance) {

pPerformance->Release();
pPerformance = NULL;

}
// Shut down COM
CoUninitialize();
// Clear the window class object
UnregisterClass(szWndClass, g_hInstance);

The two interfaces you created for DirectAudio are cleaned up with the Release()
function. After those are released, you can shut down the COM system you initial-
ized earlier. The last thing to do before leaving is clear out the window class. That’s
it; you have just initialized DirectAudio! What’s that? You want to know how to play
a sound? Well, geez, okay. . . . Oh, but before you go, be sure to look at Figure 13.9
to see how the whole program operated.

Playing Sound with
DirectAudio
All right, now it is time for the fun part of DirectAudio—playing sound! The
DirectAudioPlaySound project loads up a test wave file of yours truly and plays it
back three times in a row. Each time the sound plays, the next one kicks in just a
half a second later. This results in the sounds overlapping one another. The reason

554 13. Now Showing, DirectInput and DirectAudio!

I do this is to show you how cool DirectAudio is, in that you can overlay all sorts of
sound effects. Feel free to change out the sound that is played to see the effect with
your own files. Go ahead and load up the project now to follow along.

New Additions to the Project
I added a few files to the project to play sounds. The new additions are

■ dxutil.cpp

■ dxutil.h

■ mmsystem.lib

You should already be familiar with these files because you have used them in the
past. The dxutil files are provided to aid in some of the rather mundane tasks asso-
ciated with DirectX. The mmsystem.lib library file is needed for one of the func-
tions in the dxutil.cpp file.

The header portion of the code has changed a little bit to include the new func-
tionality as well. Here is the new header code.

555Playing Sound with DirectAudio

Create
IDirectMusicLoader8

Create
IDirectMusicPerformance8

Init COM

Init Audio

Get Default
Path

IDirectMusicAudioPath8

Set Volume

hrInitDirectAudio()

WinMain

Message
Loop

hrInitDirectAudio

Cleanup

Figure 13.9

Operation of the
DirectAudioInit
program

#include <stdio.h>
#include <Dmusici.h>
#include “dxutil.h”

#define SOUNDERROR_MUSICLOADER 0x85000001
#define SOUNDERROR_MUSICPERFORMANCE 0x85000002
#define SOUNDERROR_INITAUDIO 0x85000003
#define SOUNDERROR_PATH 0x85000004
#define SOUNDERROR_VOLUME 0x85000005
#define SOUNDERROR_LOAD 0x85000006
#define SOUNDERROR_DOWNLOAD 0x85000007
#define SOUNDERROR_NOSEGMENT 0x85000008
#define SOUNDERROR_PLAYFAIL 0x85000009
// Windows globals
const char *szWndClass = “DirectAudio”;
const char *szProgramName = “Direct-Audio Init Program”;
HINSTANCE g_hInstance;
// DirectAudio globals
IDirectMusicLoader8 *pLoader = NULL;
IDirectMusicPerformance8 *pPerformance = NULL;
IDirectMusicSegment8 *pSound = NULL;
// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow);

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM lParam);

void vCleanup(void);
HRESULT hrInitDirectAudio(HWND hWnd);
HRESULT hrLoadSound(char *szFileName);
HRESULT hrPlaySound(IDirectMusicSegment8 *pSegment);

I took the liberty of putting all of the changes into bold text for you. The first
change is the inclusion of the dxutil.h header file that is necessary in order to use
the dxutil helper functions. The next few changes deal with some new error mes-
sages. The important change comes in the form of the IDirectMusicSegment8 global
variable named pSound. This variable holds the loaded wave file.

The next two lines of code deal with the function prototypes used to load and
play the wave file. If you follow along in WinMain(), you’ll see that hrLoadSound() is
called first. If you look at Figure 13.10, you can see the main components of the
project.

556 13. Now Showing, DirectInput and DirectAudio!

The hrLoadSound() Function
The hrLoadSound() function takes only one parameter, the name of the sound to
load. The function uses the global IDirectMusicSegment8 interface to hold the sound
once it is loaded. Here is the code for the function.

HRESULT hrLoadSound(char *szFileName)
{

WCHAR wstrFileName[256];
// Convert the filename to wide character format
DXUtil_ConvertGenericStringToWide(wstrFileName, szFileName);

// Make sure audio is initialized
if(!pLoader)

return(SOUNDERROR_MUSICLOADER);
if(!pPerformance)

return(SOUNDERROR_MUSICPERFORMANCE);
// Clean up sound if it already exists
if(pSound) {

557Playing Sound with DirectAudio

IDirectMusicLoader8

IDirectMusicSegment8

IDirectMusicPerformance8

pLoader

pSound

pPerformance

hrInitDirectAudio

hrLoadSound

hrPlaySound

Project Requirements

Interfaces Functions

FILE

DXUTIL.CPP

FILE

DXUTIL.H

FILE

DSOUND.LIB

FILE

WINMM.LIB

FILE

DXGUID.LIB

Figure 13.10

Components of the
DirectAudioPlaySound
project

pSound->Unload(pPerformance);
pSound->Release();
pSound = NULL;

}
// Load the sound from a file
if (FAILED(pLoader->LoadObjectFromFile(

CLSID_DirectMusicSegment,
IID_IDirectMusicSegment8,
wstrFileName,
(LPVOID*) &pSound

)))
{

return(SOUNDERROR_LOAD);
}
// Download the data
if (FAILED (pSound->Download(pPerformance))) {

return(SOUNDERROR_DOWNLOAD);
}
return(S_OK);

}

Converting the Name
to Wide String Format
The first strange thing you might notice is that the function converts the filename
from normal string format to wide string format. The reason this is necessary is that
DirectX 8.0 and above expect you to pass wide strings for any string parameters.
This allows DirectX to not worry about whether you are using Unicode. In fact, I
recommend that you always use Unicode when possible. As you probably have
noticed, I don’t use it very much, but I am trying! The dxutil helper function,
DXUtil_ConvertGenericStringToWide(), performs the conversion. Once the filename
is converted, it is held in the wstrFileName variable.

Checking the Required Interfaces
The next few lines of code deal with the dummy-checking aspects of the code.
Basically, it is checking to make sure that the required interfaces are present.
Remember, you must have a loader and a performance object present to load a
sound. If the pSound object is already in use, the code unloads and releases it so that
it can load in new data.

558 13. Now Showing, DirectInput and DirectAudio!

The IDirectMusicLoader8::LoadObjectFromFile()
Function
The IDirectMusicLoader8::LoadObjectFromFile() function loads up a sound resource
from a file and places it into a segment object. Here is the prototype.

HRESULT LoadObjectFromFile(
REFGUID rguidClassID,
REFIID iidInterfaceID,
WCHAR *pwzFilePath,
void ** ppObject

);

The load function can actually load many types of data for DirectAudio. This is
where the first parameter comes into play. It lets you specify the GUID for the type
of object you want to load. The available types appear in Table 13.3.

559Playing Sound with DirectAudio

Table 13.3 Loader Type GUIDs

Type GUID Extension

Audiopath CLSID_DirectMusicAudioPathConfig .aud

Band CLSID_DirectMusicBand .bnd

Chordmap CLSID_DirectMusicChordMap .cdm

Container CLSID_DirectMusicContainer .con

DLS collection CLSID_DirectMusicCollection .dls

Script CLSID_DirectMusicScript .spt

Segment CLSID_DirectMusicSegment .sgt

Style CLSID_DirectMusicStyle .sty

Template CLSID_DirectMusicSegment .tpl

Toolgraph CLSID_DirectMusicGraph .tgr

Wave CLSID_DirectSoundWave .wav

The second parameter specifies the unique identifier of the interface. I use the
IID_IDirectMusicSegment8 ID here. The third parameter passes in the filename of
the object to load. The last parameter receives the loaded object once the function
completes.

If the function succeeds, then the pSound global segment variable will be holding
the newly loaded wave file. Once you have a valid audio segment, you need to send
it to the performance interface.

The IDirectMusicSegment8::Download()
Function
Before a sound can be played, it must first be transferred to the performance inter-
face that is going to play it. You transfer it using the Download() function. Here is
the prototype.

HRESULT Download(
IUnknown *pAudioPath

);

The one and only parameter specifies the audio path in which you want to put the
object.

// Download the data
if (FAILED (pSound->Download(pPerformance))) {
return(SOUNDERROR_DOWNLOAD);
}

As you can see in the code used to download the segment, the code passes in the
pPerformance pointer. This sends the segment data to the performance interface
created earlier. If the function fails, then the code returns an error message.

560 13. Now Showing, DirectInput and DirectAudio!

TIP
If a segment has used the
Download() function, you should
be sure to call Unload() before
releasing the segment.

The hrPlaySound()
Function
Once you have the IDirectMusicSegment8 interface loaded up with sound data, you
can go ahead and play it! For this, you use the hrPlaySound() function.

HRESULT hrPlaySound(IDirectMusicSegment8 *pSegment)
{

// Make sure there is a performance object present
if(!pPerformance)

return(SOUNDERROR_MUSICPERFORMANCE);
if(!pSegment)

return(SOUNDERROR_NOSEGMENT);
// Play the sound segment
if(FAILED (pPerformance->PlaySegmentEx(

pSegment,
NULL,
NULL,
DMUS_SEGF_DEFAULT | DMUS_SEGF_SECONDARY,
0,
NULL,
NULL,
NULL
)))
return(SOUNDERROR_PLAYFAIL);

return(S_OK);
}

The hrPlaySound() function takes one parameter, and that parameter passes in the
segment to be played. There is only one segment in this project, pSound, but I made
the function parameter-based so that you can use it in other applications.

The first few lines of code just do your normal dummy-checking to make sure that
the performance and segment objects are valid. The main part of the function is
the call to the IDirectMusicPerformance8::PlaySegmentEx() function.

561Playing Sound with DirectAudio

The IDirectMusicPerformance8::
PlaySegmentEx() Function
The only purpose of the PlaySegmentEx() function is to play back a segment. It is
very similar to the PlaySegment() function except the PlaySegmentEx() function has
more capabilities. Here is the prototype.

HRESULT PlaySegmentEx(
IUnknown* pSource,
WCHAR *pwzSegmentName,
IUnknown* pTransition,
DWORD dwFlags,
__int64 i64StartTime,
IDirectMusicSegmentState** ppSegmentState,
IUnknown* pFrom,
IUnknown* pAudioPath

);

The first parameter expects the segment you want to play. The second parameter is
not implemented in DirectX 8.0, so leave it at NULL. Don’t you just love these types
of parameters? The third parameter lets you specify a transition object to associate
with the playback. This is optional and can be left at NULL. The fourth parameter
lets you specify flags to be used in the playback. There are tons of these flags avail-
able, but the most commonly used are DMUS_SEGF_DEFAULT | DMUS_SEGF_SECONDARY.
Refer to the DirectX documentation for a full list.

The fifth parameter lets you specify when to start playing the sound. If you set this
to 0, then the sound attempts to play immediately. The sixth parameter receives the
IDirectMusicSegmentState8 pointer for the playback. You can set this to NULL if you
do not want to retrieve the state pointer. The seventh parameter lets you specify an
audio path or segment state to stop when the passed-in segment starts playing. This
can be set to NULL. The last parameter lets you specify the audio path to use when
playing the sound. If you leave it at NULL, then the sound plays on the default path.

If you look at the code, you’ll see that it uses the DMUS_SEGF_DEFAULT |
DMUS_SEGF_SECONDARY flags to play the sound. This tells the sound to play on the sec-
ondary channel. Because only one sound can play at a time on the primary chan-
nel, you need to use the secondary channel for sounds you want to play
simultaneously.

562 13. Now Showing, DirectInput and DirectAudio!

The code in WinMain() is calling the hrPlaySound() function multiple times. In
between each call, the program waits 500 milliseconds, or half of a second. This
results in the sounds overlapping each other. You can remove all but one of the
hrPlaySound() function calls if you just want to hear the sound play back normally.

Cleaning Up the Segment
The final part of the project deals with cleaning up the interfaces. Nothing is new
here except for the cleanup of the segment interface.

// Clear the sound
if(pSound) {

pSound->Unload(pPerformance);
pSound->Release();
pSound = NULL;

}

The new function here is the Unload() function. This is required if you downloaded
the segment into a performance object. Once you unload it, you can go on to
release it and then set the pointer to NULL. Check out Figure 13.11 to see all of the
steps to playing a sound.

563Playing Sound with DirectAudio

Init COM Create Loader
Create

Performance
Init Audio

Get Default
Path

Set Volume

Convert
Filename
To Wide

Load Segment
From File

Download

Play Segment

Figure 13.11

Complete steps
to playing and
releasing a sound

Review
Before you move on, take a moment to reflect on some key points covered in the
chapter.

■ The IDirectInput8 interface is the heart of the DirectInput system.
■ Input devices such as keyboards and mice are created using IDirectInput8’s

CreateDevice() member function.
■ Buffered input is desired so that your game never loses user input. If you do

not use buffered data, players will get frustrated when the game misses their
input.

■ Before using a device, you must acquire it with the Acquire() function. When
you are done with the device, you must use the Unacquire() function to prop-
erly release it.

■ Keyboard devices return scan-code input codes. You must convert the scan-
codes to ASCII if you want to check ASCII values. This is done using the
Scan2Ascii() function. The DIK definitions are useful for checking the native
scan-codes.

■ The IDirectMusicLoader8 interface is used to load sound media.
■ The IDirectMusicPerformance8 interface is used to manage loaded sounds.
■ The IDirectMusicSegment8 interface is used to hold loaded sound media.

Now you are armed with the knowledge to load and play back sounds. You also
know how to accept responsive input from the keyboard. With this new knowledge,
you are ready to compose a complete game. Turn the page to begin your next
adventure!

564 13. Now Showing, DirectInput and DirectAudio!

CHAPTER 14

SpacePirates:

Your First
Complete

Game

I think the chapter title pretty much sums it up. You are now ready to write a com-
plete peer-to-peer video game. Every chapter before this one has prepared you

for this day. Get ready; the adventure begins anew!

Although you have learned a great deal so far, there is still much to digest within
this chapter. Here is a list of the topics I will cover.

■ Game design
■ Timing
■ Network synchronization
■ Classes
■ Video initialization
■ Graphics
■ Player management

SpacePirates:
The Game Design
Before you write a game, you really need to write out a game design. Most non-
professional developers just think of an idea and start coding it. This style might
work for simple projects, but serious games require a ton of work on the front end.
In fact, you shouldn’t be surprised when the planning phase of your project takes
up almost as much time as the implementation phase.

The Game Objective
The first thing you need to know before you write a game is the player’s objective.
Is it to advance a virtual character in skill? Is it to get the most frags? Is it to take
over the world? The objective is completely up to you, but you should be able to
sum it up in one sentence.

The game objective for SpacePirates is to get the highest score. It’s really that
simple—just get the highest score. All right, now that you have the objective, how
does the player accomplish it? Well, in this game, the players will fire pulses of

566 14. SpacePirates: Your First Complete Game

energy that explode upon impact on the arena or other players. Whenever one of
your pulses hits another player, you get points. So the objective is to get the highest
score by shooting other players.

The Game Objects
The game objects are the pieces that make up the game. You can think of the
whole process as similar to creating a sculpture. The design is what the sculpture is
going to look like, the objective is what the sculpture is going to be doing pose-
wise, and the objects represent what the sculpture is made of. There you go, a bona
fide analogy. Anyway, SpacePirates will have players who play in an arena. The game
will include the following objects.

■ Players
■ Arena
■ Bullets
■ Explosions
■ Sound
■ Text

The Players
Because this is a multiplayer game, multiple players will be present. You can be
assured that one player will always be there, but the total number is an uncertainty.
One good way to keep track of each player is to create a player data structure or
class. The SpacePirates game has a data structure called PLAYER_INFORMATION. This
data stores everything about each player
in the game.

Besides the player information, you
also need graphics for the players. In
SpacePirates, the players will control
mechanized warriors. Each warrior
comes from the same 3D object files,
though. This saves on memory and
storage because you must load only
one set of geometry for all of the play-
ers. The player’s object looks like that
shown in Figure 14.1.

567SpacePirates: The Game Design

NOTE
There are various packages you can
use to create or modify 3D models for
your games. My personal favorite is
3ds max (3D Studio Max).The only
downside is that it is a very expensive
package if you are a hobbyist program-
mer. Some cheaper packages that get
the job done are MilkShape 3D and
trueSpace.

The Arena
The players in the game need somewhere to play, so in SpacePirates, you will create
a game arena from scratch. The arena has the shape of a square and four walls. You
create all of this by rendering a single quad in many different positions. This saves
a lot of memory because you must load only two polygons in memory for the entire
arena. The layout for the arena appears in Figure 14.2.

Because the arena consists of a quad, you need a storage structure to hold the
vertex information. In the program’s header file, you’ll find the all-too-familiar
MYVERTEX data structure. The structure holds all of the vertex data, including the
position, normals, color, and texture information.

The Bullets
It was determined in the design that players would be able to shoot pulses of
energy at each other. This means that you need to keep track of each bullet in the
scene while the game is being played. To do this, the program has a BulletObject
data structure that holds all pertinent information.

568 14. SpacePirates: Your First Complete Game

Figure 14.1

The player in
3ds max

You also need a graphic for the energy pulses,
which you add with a targa graphics file called
pulse.tga. This image holds the graphic of the
energy pulse along with an alpha map to
define transparency. Because you don’t want
blocks of energy bolts flying around, you
need a texture map that includes trans-
parency information. The bullet image and its
alpha channel appear in Figure 14.3.

569SpacePirates: The Game Design

Figure 14.2

The arena

Figure 14.3

The energy pulse graphic

NOTE
Adobe Photoshop is by far my
favorite tool for editing 2D
graphics. It costs about $600,
but it is well worth the price.

The Sounds
Every successful game has sounds to go with it. Unfortunately, many game develop-
ers design sound into their projects as a last step. You should pre-plan all sound
activity when creating a game and use it extensively. Believe me, sound makes a
huge difference in the gaming experience. Good sound design results in your
game environments being more lifelike and rich. Players also benefit by experienc-
ing a more real sense of immersion. Okay, now that I have climbed off my high
horse, I can show you how sound is handled in SpacePirates.

To make sound handling easier on the code-base, I created SoundSystem and
GameSound classes. The SoundSystem class loads and plays back GameSound objects. You
have to look at a little C++, but don’t fret; I’ll show you how all of it was written.

The game uses only two sounds—one for when the player fires his cannon and the
other for when the energy pulses hit something. I guess you could bypass the whole
class system for only two game sounds, but I think you will see the advantage.

The Text
At this point, you might be wondering why text is needed in a 3D game! The rea-
son you need text in your game is to show the player his score. You also use text to
display which player has the highest score and the command prompt.

The problem with a 3D game is that there is no simple way to put 2D text on the
display. Instead, you have to map 3D objects to 2D space and simulate 2D graphics.
Does that sound a little confusing? The cool part is that DirectX includes a helper
interface called ID3DXFont. The ID3DXFont interface can load system fonts and dis-
play them in 2D space on a 3D display. If you look at the SpacePirates header file
closely, you’ll see the pD3DXFont variable that holds the font interface.

Game Timing
The subject of timing is rather important, so please don’t skip over it! Many novice
game programmers make the mistake of putting hardware-specific timing into their
game loops. What do I mean by this? I mean that they might do such things as update
their game objects based on the frame counter and not on how much actual time has
passed. There is no better way to explain this than with the following pseudo-code.

Begin Game Loop
Player’s X-Position += 5

End Game Loop

570 14. SpacePirates: Your First Complete Game

In this code, the game might be moving a player across the screen 5 units at a time.
Well, suppose the player has a 500MHz computer, and it takes his computer 1/30th
of a second for the game loop to process. So in one second, his game updates 30
times. This results in the player moving 150 units per second. The formula works in
the following way:

Frames Per Second * Speed = Units Per Second

Suppose you program your entire game based around this speed. Based on this set-
ting, you might limit the player’s speed to 10 to keep him from moving too fast.
You might also limit the player to only firing every 50 game updates. The whole
game would work just fine on your computer, but this is where the problem begins.
Imagine if you then ran the game on your friend’s computer with a 1GHz system.
Imagine, for simplicity’s sake, that his system runs the game at 60 frames per sec-
ond, twice as fast as yours does. Now apply the movement formula.

60 * 5 = 300 Units Per Second

Wow! He scoots across the game world at 300 units per second. Now imagine play-
ing against each other on the Internet. He would be able to transverse the map
twice as fast as you could. Just imagine the kind of advantage he would have.

Time-Based Movement
There is light at the end of the tunnel, though. The most common way to regulate
game updates is with timers. Internal timers available in Windows tell you how
many milliseconds have passed since the system was turned on. Because the timers
work in milliseconds, you can be accurate up to 1/1000th of a second.

Now if you were using the same example from the last section, you would have
player speed set to five units. Suppose you want to limit the player to 150 units per
second of movement. One good measurement is to keep everything locked at 30
frames per second. The reason 30 frames per second is good is that the human eye
is tricked into seeing smooth movement at that speed. Anything over 30 frames per
second pretty much wastes frames. Of course, I am sure many people would argue
with that statement, but as far as motion goes, 30 frames per second is just fine. Just
don’t get the motion limit confused with performance. It is best that your game
run at hundreds of frames per second; you just need to regulate updates to 30
frames per second.

Okay, you have a predetermined limit of 150 units of movement per second. So
apply the following formula:

Total Units / 30 = Units Per Frame

571Game Timing

In this case, the value of units per frame is 5. Now that you know this, you have a
locked-in speed to use. To implement time-based movement, your game loops have
to look different. Here is the pseudo-code for time-based movement.

Old Time = Get Current Time
Begin Game Loop

Get Current Time
Is Current Time > (Old Time + 33)

Player’s X-Position += 5
Old Time = Current Time

End Game Loop

The pseudo-code makes sure that your game does not update more than 30 frames
per second. Because the player’s position is not updated unless 33 milliseconds
have passed, you can be sure that he does not move too quickly. If you caught the
glaring mistake in this code, then give yourself a pat on the back.

Time Multipliers
The aforementioned mistake is really not a mistake per se, but rather an omission.
Imagine what happens if the player’s computer cannot run fast enough to update
30 times a second. I’ll tell you what happens: His game runs slower than anyone
else’s who can run at least 30 frames per second. This has the same bad result as
before. You have succeeded in keeping fast players from exceeding the limits, but
now how do you keep slow players from lagging behind? The answer lies within
time multiplication. The basis of this concept is that you take the time elapsed
since the last update and divide it by your locked frame rate. Here is the formula.

Elapsed Time = Current Time – Old Time
Multiplier = Elapsed Time / Frame Lock

For example, assume that the player in your game has only enough computing
power to update 15 times per second instead of 30 times per second. To figure out
the multiplier, you use the preceding formula like so:

Elapsed Time = 66 milliseconds (speed of 2 updates per second)
Multiplier = (66 / 33) = 2

In this example, you ended up with a multiplier of 2. Now that you have the multi-
plier, you just update the player’s position with his speed multiplied by 2. So your
pseudo-code now looks like the following.

Old Time = Get Current Time
Begin Game Loop

572 14. SpacePirates: Your First Complete Game

Get Current Time
Is Current Time > (Old Time + 33)

Multiplier = ((Current Time - Old Time) / 33)
Player’s X-Position += (5 * Multiplier)
Old Time = Current Time

End Game Loop

With the new and improved code, the player’s speed adjusts to the frame rate.
Things won’t appear as smooth for the player with the slow machine, but at least
the playing field is even. The SpacePirates game uses a 30 frames-per-second locking
mechanism that works just like the preceding code. To see this concept illustrated,
take a look at Figure 14.4. In the illustration, you can see that the 1000MHz machine
player moves at twice the speed of the 500MHz machine player. If you didn’t throttle
the speed of the game updates, then the 1000MHz player would have a distinct
advantage.

Network Synchronization
Network synchronization covers the same ground as frame synchronization in the
last section. Basically, you need to keep everyone in the game synchronized with
each other. Many multiplayer games limit their network updates to no more than
10 times per second. By keeping updates limited to 10 times per second, you can
limit the amount of bandwidth needed to play the game. If your game requires
updates constantly, then you run into big problems with laggy players.

573Network Synchronization

Figure 14.4

Time multipliers

100 MHz

Movement Units

500 MHz

FRAME 1

FRAME 1

FRAME 5

FRAME 5

Scheduled Updates
SpacePirates maintains network synchronization by sending update packets only
once every 10 seconds. You can see this in the vUpdateNetwork() function. If it is
time to update, the player broadcasts his position, heading, velocity, and score to
everyone else in the game.

Now, if you sent packets only 10 times per second, then you might see jerky move-
ments from other players. To keep this from happening, the game lets players
broadcast changes in their state to other players whenever they happen. For an
example of this, take a look at Figure 14.5.

In Figure 14.5, Player A is sending scheduled updates to Player B and vice versa.
Player A decides to fire his cannon, so a bullet packet is sent to Player B immedi-
ately. This prevents a lag in time from when the bullet is fired and when it should
appear. If Player A waited for the next network synch to happen, then the bullet
would fall behind in time.

Non-Synchronization
One thing you’ll notice with SpacePirates is that what one player sees on his screen
might not be exactly what another player sees. The reason is that none of the pack-
ets is sent via guaranteed delivery. Another reason is that scoring is left completely
up to the victim. In the game, you do not tell another player when he is hit.
Instead, players decide for themselves when they take damage.

574 14. SpacePirates: Your First Complete Game

Figure 14.5

Network
synchronization

UPDATE UPDATE UPDATE

TIME SAVED

UPDATE UPDATE UPDATE UPDATE

UPDATE UPDATE UPDATE UPDATE UPDATE UPDATE

PLAYER APLAYER FIRES
PACKET SENT IMMEDIATELY

PLAYER B

UPDATE

One benefit of non-synchronization is that players won’t gripe when they take
unseen damage. Another benefit is that it reduces cheating. If I can’t tell you when
you take damage, then I can’t send you fake damage packets. I have seen many
games where cheating happened because clients trusted other clients for detrimen-
tal news.

The bottom line is that you shouldn’t be surprised to see that the game does not
look identical when running on two side-by-side computers. In fact, you can try this
with many networked games, and you will notice that very few maintain absolute
synchronization.

The Game Classes
If you haven’t already done so, load up the SpacePirates project in the Chapter14
Zip file on the CD. If you look at the project space, you might notice the presence
of more files than usual. The game project now uses two new classes: one for sound
management and the other for 3D object management.

The Sound Classes
As I mentioned earlier, the SoundSystem class loads and plays the GameSound class
objects. I created these two wrappers to help manage multiple sounds within a
game. The first thing you need to look at is the header file, SoundSystem.h.

The SoundSystem Header File
The first part of the sound header file deals with including required headers,
setting up error codes, and defining the GameSound class. Here is the code to do all
of this.

#include <dmusici.h>
#include <dsound.h>
#include <dshow.h>

#define SOUNDERROR_MUSICLOADER 0x85000001
#define SOUNDERROR_MUSICPERFORMANCE 0x85000002
#define SOUNDERROR_INITAUDIO 0x85000003
#define SOUNDERROR_PATH 0x85000004
#define SOUNDERROR_VOLUME 0x85000005

575The Game Classes

#define SOUNDERROR_LOAD 0x85000006
#define SOUNDERROR_DOWNLOAD 0x85000007
#define SOUNDERROR_NOSEGMENT 0x85000008
#define SOUNDERROR_PLAYFAIL 0x85000009

class GameSound
{

public:
IDirectMusicSegment8 *pSound;
IDirectMusicPerformance8 *pPerformance;
~GameSound();
GameSound();

};

The GameSound Class Header
The GameSound class only holds actual sound data. If you remember the chapter on
sound, then you might recall that sounds are held in IDirectMusicSegment8 inter-
faces. This is why the first variable within the game sound class is the pointer for an
IDirectMusicSegment8 interface.

The next variable is a pointer for an IDirectMusicPerformance8 interface. You will
not actually create a performance object, but you do need a pointer to the perfor-
mance interface that plays the sound. The reason you need this pointer is that you
need to call the sound’s Unload() function when the sound is released. If you don’t
keep track of the performance object, then your program will leak memory.

Besides the two interface pointers, the only two items of note for the class are the
constructor and destructor functions. Be sure to look at Figure 14.6 to see the lay-
out of the GameSound class.

The SoundSystem Class Header
The SoundSystem class isn’t much more complicated then the GameSound class. This
class’s main purpose is to initialize the sound system and load and play sounds.
Here is the class header code.

class SoundSystem
{

private:

public:
HWND hWnd;

576 14. SpacePirates: Your First Complete Game

IDirectMusicLoader8 *pLoader;
IDirectMusicPerformance8 *pPerformance;

// Functions
SoundSystem();
~SoundSystem();
HRESULT hrInitSoundSystem(void);
HRESULT hrLoadSound(char *szname,GameSound *gs);
HRESULT hrPlaySound(GameSound *gs);

};

The first variable, hWnd, holds the handle to the window that will play the sounds.
This is necessary for DirectSound to work properly. The second variable, pLoader,
points to the loader interface. The loader will load all game sounds. The last vari-
able, pPerformance, points to the performance interface that will play the actual
sounds.

The first two functions deal with the constructor and destructor for the class. The next
function, hrInitSoundSystem(), must be called only once to initialize DirectAudio. This
function creates the loader and performance interfaces. The next function,
hrLoadSound(), loads the passed-in filename and returns a pointer to the new sound
data. The last function, hrPlaySound(), plays the passed-in game sound object. To see
how the variables and functions correspond to one another, check out Figure 14.7.

577The Game Classes

GAMESOUND CLASS

pSound pPerformance

Constructor

Destructor

Figure 14.6

The GameSound
class architecture

The SoundSystem Class Functions
The first two functions, the constructor and the destructor, don’t do very much
except set the interfaces to NULL and release the interfaces upon shutdown. Here is
the code for the functions.

// Destructor
SoundSystem::~SoundSystem()
{

SAFE_RELEASE(pLoader);
SAFE_RELEASE(pPerformance);

}
// Constructor
SoundSystem::SoundSystem()
{

pLoader = NULL;

578 14. SpacePirates: Your First Complete Game

SOUNDSYSTEM CLASS

pLoader pPerformance

Constructor

Destructor

hrInitSoundSystem

hrLoadSound

hrPlaySound

Figure 14.7

The SoundSystem
class architecture

pPerformance = NULL;
}

You can see the constructor setting pLoader and pPerformance to NULL. You do this so
the destructor does not accidentally destroy an un-initialized interface. The
destructor completes a SAFE_RELEASE() on each interface. The SAFE_RELEASE() func-
tion, which is part of the dxutil.cpp file, checks whether the interface is NULL before
calling Release().

The SoundSystem::hrInitSoundSystem() Function
The SoundSystem::hrInitSoundSystem() function initializes DirectAudio. If you look
at the initialization code in Chapter 13, “Now Showing, DirectInput and
DirectAudio,” you’ll see that the initialization code here is identical. Here is the
code used for SpacePirates.

HRESULT SoundSystem::hrInitSoundSystem(void)
{

HRESULT hResult;
IDirectMusicAudioPath8 *path;

// Initialize COM
CoInitialize(NULL);
// Create the loader
if(FAILED(hResult = CoCreateInstance(CLSID_DirectMusicLoader, NULL,

CLSCTX_INPROC, IID_IDirectMusicLoader8,
(void**)&pLoader))) {

return(SOUNDERROR_MUSICLOADER);
}
// Create the performance
if(FAILED(hResult = CoCreateInstance(CLSID_DirectMusicPerformance,
NULL,

CLSCTX_INPROC, IID_IDirectMusicPerformance8,
(void**)&pPerformance))) {

return(SOUNDERROR_MUSICPERFORMANCE);
}
// Initialize the audio
if(FAILED(hResult = pPerformance->InitAudio(

NULL,
NULL,
hWnd,
DMUS_APATH_DYNAMIC_STEREO,

579The Game Classes

4,
DMUS_AUDIOF_ALL,
NULL
))) {
return(SOUNDERROR_INITAUDIO);

}
// Get the default path
if(FAILED(pPerformance->GetDefaultAudioPath(&path)))

return(SOUNDERROR_PATH);
// Set the default volume
if(FAILED(path->SetVolume(0,0)))

return(SOUNDERROR_VOLUME);
return(S_OK);

}

Because everything that happens here is old hat by now, I’ll just list the actions that
take place.

1. The COM is initialized.

2. The loader is created.

3. The performance is created.

4. The audio is initialized.

5. The default path is retrieved.

6. The sound volume is set.

The SoundSystem::hrLoadSound() Function
Now that the initialization of the audio system is out of the way, you can concen-
trate on the function to load sound data—the SoundSystem::hrLoadSound() function.
The function is actually similar to the code in Chapter 13, except this function is
passed a GameSound object pointer as well as a filename. Here is the prototype.

HRESULT SoundSystem::GameSound(char *szname,GameSound *gs);

The first parameter passes in the filename for the sound resource you want to load.
The second parameter passes in a GameSound pointer that will receive the newly
loaded data.

Now that you know the prototype, here is the code for the function itself.

HRESULT SoundSystem::hrLoadSound(char *szname,GameSound *gs)
{

WCHAR wstrFileName[256];

580 14. SpacePirates: Your First Complete Game

// Convert the filename to wide character format
DXUtil_ConvertGenericStringToWide(wstrFileName, szname);
// Make sure audio is initialized
if(!pLoader)

return(SOUNDERROR_MUSICLOADER);
if(!pPerformance)

return(SOUNDERROR_MUSICPERFORMANCE);
// Clean up sound if it already exists
if(gs->pSound) {

gs->pSound->Unload(pPerformance);
gs->pSound->Release();
gs->pSound = NULL;

}
// Load the sound from a file
if (FAILED(pLoader->LoadObjectFromFile(

CLSID_DirectMusicSegment,
IID_IDirectMusicSegment8,
wstrFileName,
(LPVOID*) &gs->pSound

)))
{

return(SOUNDERROR_LOAD);
}
gs->pPerformance = pPerformance;
// Download the data
if (FAILED (gs->pSound->Download(pPerformance))) {

return(SOUNDERROR_DOWNLOAD);
}
return(S_OK);

}

Look through the code for a minute, and you’ll see how Figure 14.8 corresponds to
the order of events.

581The Game Classes

hrLoadSound
Convert Name
to Wide String

If pSound

Unload

LoadObjectFromFile()
Set Performance

Pointer
Download()

Figure 14.8

The hrLoadSound()
function

The only thing new here is the code that sets the GameSound’s internal performance
pointer to the performance interface created in the SoundSystem class. By doing
this, the GameSound object can unload the downloaded sound upon program exit.

The SoundSystem::hrPlaySound() Function
The only function left is the SoundSystem::hrPlaySound() function that plays loaded
sounds. This function is also similar to the code used in Chapter 13, except this
function plays a passed-in GameSound instead of a global segment. Here is the code
for the function.

HRESULT SoundSystem::hrPlaySound(GameSound *gs)
{

// Make sure there is a performance object present
if(!pPerformance)

return(SOUNDERROR_MUSICPERFORMANCE);
if(!gs->pSound)

return(SOUNDERROR_NOSEGMENT);
// Play the sound segment
if(FAILED (pPerformance->PlaySegmentEx(

gs->pSound,
NULL,
NULL,
DMUS_SEGF_DEFAULT | DMUS_SEGF_SECONDARY,
0,
NULL,
NULL,
NULL
)))
return(SOUNDERROR_PLAYFAIL);

return(S_OK);
}

The first thing the function does is make sure that the performance and segment
interfaces are valid. If they are not valid, the function returns an error code. The
next thing that happens is the loading of the actual sound data. The loaded data is
stored in the GameSound’s segment interface.

The GameSound Class Functions
Now that you have the sound system class out of the way, you can look at the
GameSound class functions. The only two functions are the constructor and destruc-
tor, and they look like this:

582 14. SpacePirates: Your First Complete Game

GameSound::GameSound()
{

pSound = NULL;
pPerformance = NULL;

}
GameSound::~GameSound()
{

if(pSound) {
if(pPerformance)

pSound->Unload(pPerformance);
}
SAFE_RELEASE(pSound);

}

The constructor initializes the interface pointers to NULL. You do this to keep the
destructor from illegally destroying interfaces. The destructor unloads the sound
from the performance object and releases the loaded sound.

That’s it for the sound classes. Go ahead and look through the SpacePirates.cpp
code to see where and how the sound classes are called, to get a better idea of how
the game sound works.

The 3D Object Class
The 3D object class encapsulates all of the data
needed to load and manage an x-file object. When
you don’t encapsulate everything, you have to keep
track of meshes, materials, textures, and buffers.
The class keeps all of that out of the way and lets
the programmer concentrate on loading and dis-
playing models. The main functions of this class
are to load and display the object.

The Object3DClass Header
Load up the 3DObjectClass.h header file so you can see how the class is laid out.
Here is the source code.

#include <d3dx8.h>
#include <stdio.h>
#include “dxutil.h”
#define RADIAN_TO_DEGREES 57.29577951308232286465f

583The Game Classes

CAUTION
Always unload sounds that
have been downloaded into
a performance interface.
This keeps the sounds
from leaking memory.

class Object3DClass
{

private:

public:
LPD3DXMESH pMesh;
D3DMATERIAL8 *pMeshMaterials;
LPDIRECT3DTEXTURE8 *pMeshTextures;
DWORD dwNumMaterials;
LPD3DXBUFFER pD3DXMtrlBuffer;
LPDIRECT3DDEVICE8 pd3dDevice;
Object3DClass(void);
~Object3DClass(void);
HRESULT hLoad(char *szName,LPDIRECT3DDEVICE8 p3d);
void vCleanup(void);
void vDisplayXYZ(float x, float y, float z, float rx=0.0f,
float ry=0.0f, float rz=0.0f);

};

The first thing of note is the definition of radians to degrees that is used in the
vDisplayXYZ() function to set up rotations. You might recall from previous chapters
that rotations in 3D are measured in radians and not degrees.

The next part of the code deals with the class mem-
ber variables and functions. The first five variables
hold information about the loaded 3D object. The
pd3dDevice pointer stores a pointer to the
IDirect3DDevice8 interface used in the program. You
need this interface to load and display the 3D object.

The Member Variables
The pMesh variable stores the loaded mesh, which contains the geometry for the
object. The pMeshMaterials variable stores any number of materials needed by the
3D object. Keep in mind that there can be multiple materials within one object.
The pMeshTextures variable stores any number of textures needed by the
3D object. The same rules apply here as do with meshes.

The dwNumMaterials counter stores the number of materials used in the object. This
is useful at render time so that you know how many materials to display. You use the
pD3DXMtrlBuffer variable as a temporary material buffer when loading the 3D data.

584 14. SpacePirates: Your First Complete Game

TIP
To find the equivalent
radians for degrees, divide
the degree value by
57.29577951308232286465.

The pd3dDevice pointer points to the 3D interface used by the system. The object
class does not actually create this interface, which gets passed in the hLoad() function.

The Member Functions
The first function, hLoad(), loads the 3D data. The second function, vCleanup(),
clears any loaded 3D data. This function is called within the object’s destructor.
The last function, vDisplayXYZ(), displays the 3D object at the given x, y, and z coor-
dinates. You can also specify the rotation of the object.

Okay, you have seen the nickel tour of the variables and functions; now it is time to
see the actual code at work. Before you go, look at Figure 14.9 to see how the func-
tions and variables correspond to one another.

585The Game Classes

OBJECT3D
CLASS

pMesh

pMeshMaterials

pMeshTextures

dwNumMaterials

pD3DXMtrlBuffer

pd3dDevice

Constructor

Destructor

hLoad()

vCleanup()

vDisplayXYZ()

Figure 14.9

Layout of the
Object3DClass

The Object3DClass Member Functions
All of the member functions for the Object3DClass appear in the Object3DClass.cpp
file that is included in the SpacePirates project space. Most of the code in the func-
tions is similar to the code in the XFileLoader and XFileAnimator projects in
Chapter 12, “Inside Direct3D Rendering.”

The Constructor and Destructor
As with any class, you normally have a constructor and a destructor. Remember that
the constructor is called when the object is created, and the destructor is called
when the object is deleted or leaves program scope. Here is the code for the con-
structor and destructor functions.

#include “Object3DClass.h”
// Constructor
Object3DClass::Object3DClass(void)
{

pMesh = NULL;
pMeshMaterials = NULL;
pMeshTextures = NULL;
pD3DXMtrlBuffer = NULL;
pd3dDevice = NULL;

}
// Destructor
Object3DClass::~Object3DClass(void)
{

vCleanup();
}

There isn’t much to the constructor because all it does is set all of the pointers for
the class to NULL. This step is necessary so that the destructor does not accidentally
delete an invalid pointer.

The Object3DClass::hLoad() Function
The Object3DClass::hLoad() function loads the geometry, materials, and textures for
the 3D object. The code is similar to that used in the XFileLoader project. Here is
the code in all of its glory.

HRESULT Object3DClass::hLoad(char *szName,LPDIRECT3DDEVICE8 p3d)
{

HRESULT hResult = S_OK;

586 14. SpacePirates: Your First Complete Game

int i;
char szFullPath[256];
D3DXMATERIAL* d3dxMaterials;

// Set the IDirect3DDevice8 pointer to the internal one
pd3dDevice = p3d;
// Initialize number of materials to 0
dwNumMaterials = 0;
// Load login geometry
if(FAILED(D3DXLoadMeshFromX(

szName,
D3DXMESH_SYSTEMMEM,
pd3dDevice,
NULL,
&pD3DXMtrlBuffer,
&dwNumMaterials,
&pMesh))) {
return(-1);

}
// Set temp pointer for easier-to-read code
d3dxMaterials = (D3DXMATERIAL*)pD3DXMtrlBuffer->GetBufferPointer();
// Create the materials and textures
pMeshMaterials = new D3DMATERIAL8[dwNumMaterials];
pMeshTextures = new LPDIRECT3DTEXTURE8[dwNumMaterials];
// Load in material information and textures
for(i = 0; i < (signed)dwNumMaterials ; i++) {

// Copy the material
pMeshMaterials[i] = d3dxMaterials[i].MatD3D;
// Set the ambient color for the material (D3DX does not do this)
pMeshMaterials[i].Ambient = pMeshMaterials[i].Diffuse;
sprintf(szFullPath,”Data//3DObjects//%s”,
d3dxMaterials[i].pTextureFilename);
// If the texture did not load, set it to NULL
if(FAILED(D3DXCreateTextureFromFile(

pd3dDevice,
szFullPath,
&pMeshTextures[i]))) {
// Delete the texture from memory
delete pMeshTextures[i];
pMeshTextures[i] = NULL;

587The Game Classes

}
}
SAFE_RELEASE(pD3DXMtrlBuffer);
return(hResult);

}

The first part of the code sets the internal IDirect3DDevice8 interface pointer to
that of the one passed in. This is necessary so that you can load and display the
object. The next thing that happens is the loading of the actual data through the
D3DXLoadMeshFromX() function. Once the mesh is loaded, the function allocates
memory for the materials and textures. The code then loops through the number
of materials present and attempts to load a texture for each one. If a texture is pre-
sent, it is loaded; if not, the memory allocated for the texture is deleted. Lastly, the
code releases the temporary material buffer. That’s it in a nutshell; to see the steps
illustrated, refer to Figure 14.10.

The Object3DClass::vDisplayXYZ() Function
The Object3DClass::vDisplayXYZ() function renders the 3D object based on its posi-
tion and rotation within the world. Here is the prototype.

void Object3DClass::vDisplayXYZ(
float x,
float y,
float z,
float rx,
float ry,
float rz

);

The first three variables pass in the x, y, and z coordinates of the object to render.
The last three variables pass in the x, y, and z rotation of the 3D object. Unlike

588 14. SpacePirates: Your First Complete Game

hLoad() Set p3D Device D3DXLoadMeshFromX()
Allocate

pMeshMaterials

Allocate
pMeshTextures

Loop Through
Materials

Copy Material

D3DXCreateTextureFromFile()

Release
Material
Buffer

Figure 14.10

The hLoad()
function

most rotation functions, this one uses degrees for the values. All degree values are
translated to radians within the function itself. Here is the code.

void Object3DClass::vDisplayXYZ(float x, float y, float z, float rx,
float ry, float rz)

{
D3DXMATRIX matWorld,matRotation,matTranslation,matScale;
int mat;

// Set default translation
D3DXMatrixIdentity(&matTranslation);
// Rotate on x
D3DXMatrixRotationX(&matRotation, rx/RADIAN_TO_DEGREES);
D3DXMatrixMultiply(&matTranslation,&matRotation,&matTranslation);
// Rotate on y
D3DXMatrixRotationY(&matRotation, ry/RADIAN_TO_DEGREES);
D3DXMatrixMultiply(&matTranslation,&matRotation,&matTranslation);
// Rotate on z
D3DXMatrixRotationZ(&matRotation, rz/RADIAN_TO_DEGREES);
D3DXMatrixMultiply(&matTranslation,&matRotation,&matTranslation);
// Move to x,y,z coordinates
matTranslation._41 = x;
matTranslation._42 = y;
matTranslation._43 = z;
// Set the matrix
pd3dDevice->SetTransform(D3DTS_WORLD, &matTranslation);
// Display each material
for(mat = 0 ; mat < (signed)dwNumMaterials ; mat++) {

pd3dDevice->SetMaterial(&pMeshMaterials[mat]);
// Activate the appropriate texture
pd3dDevice->SetTexture(0, pMeshTextures[mat]);
// Draw the mesh subset
pMesh->DrawSubset(mat);
// Turn off the texture
pd3dDevice->SetTexture(0, NULL);

}
}

Okay, this type of function hasn’t appeared in previous examples, so I’ll discuss it a
bit more than usual.

589The Game Classes

The Identity Matrix

Whenever you want to place a 3D object into a scene, you need to set up its identity
matrix. An identity matrix places the object at the origin of the world with no rota-
tions. In this function, you use the D3DXMatrixIdentity() helper function to create a
base identity matrix.

Refer to Figure 14.11 to see how the 3D robot
looks with just an identity matrix. Notice how
the object is set to the center of the world with
no rotation. This is the default setting. Now, if
you want to rotate the object, you need to set
up rotation matrices. This is where the next
chunk of code comes into play.

The Rotation Matrices

For each of the three rotations (x, y, and z), you need to create a rotation matrix.
The code uses the D3DXMatrixRotationX(), D3DXMatrixRotationY(), and
D3DXMatrixRotationZ() helper functions to set the rotation of the object. Each time
the rotation is set, you have to multiply the rotation matrix by the current transla-
tion matrix, which makes the effects of rotation cumulative. Now look at Figure
14.12 to see the robot with all three rotations in place.

Now that you have the rotation matrices in place, you need to translate the object
to its end destination.

590 14. SpacePirates: Your First Complete Game

Figure 14.11

3D object with
identity matrix only

TIP
The origin of a 3D world is the
(0,0,0) position.This means
that x = 0, y = 0, and z = 0.

Setting the Translation

To move the 3D object to its end destination, you need to update the matrix with
the three coordinate values. You do this by changing the _41, _42, and _43 members
of the current translation matrix. By doing this, you set the location for the 3D
object to be rendered. To see how this has affected the robot in the previous fig-
ures, check out Figure 14.13.

591The Game Classes

Figure 14.12

3D object with rotation
matrices applied

Figure 14.13

3D object with rotation
and translation

Notice in Figure 14.13 how the object has been rotated and translated to its desired
location. You can play around with changing the order of rotation and translation;
you might be surprised by the results!

Rendering the Object

Now that the object is in its current rotation and translation, you can go ahead and
lock in the transformation using the familiar SetTransform() function. For this func-
tion to operate as you need it to, you pass in D3DTS_WORLD as the matrix to which to
apply the transformation. This sets the world translation for all future renderings.
Now the object is in place; it’s time to render it!

The actual rendering of the object happens as it did in the XFileLoader and
XFileAnimator projects. Basically, you loop through each material, set the material,
set the texture, and then draw the material. After you are done with each material,
you set the texture to 0 and then continue the loop.

Guess what: You are done with the display function, so you can move on to the
cleanup phase.

The Object3DClass::vCleanup() Function
Whenever you delete an Object3DClass or leave program scope with one in memory,
the program calls the vCleanup() function. The purpose of this function is to
release all geometry, materials, and textures that have been loaded. Here is the
code.

void Object3DClass::vCleanup(void)
{

SAFE_RELEASE(pMesh);
SAFE_DELETE_ARRAY(pMeshMaterials)
SAFE_DELETE_ARRAY(pMeshTextures);
SAFE_RELEASE(pD3DXMtrlBuffer);

}

To free the memory, I use the SAFE_RELEASE() and SAFE_DELETE_ARRAY() helper
macros in the dxutil files. Because you can have more than one material or texture
loaded, you need to use the array version of the functions when releasing these
pointers.

Go ahead and take a break now; maybe go play a game of Unreal Tournament or
something. Hey, you know what? That sounds like a good idea. I will see you back
here in 20.

592 14. SpacePirates: Your First Complete Game

Space Pirates:
The Game Architecture
All of the classes are out of the way now, so you can go ahead and load up the
SpacePirates.cpp file to see the main body of source code. It might look a little
intimidating at first, but don’t worry too much; I’ll cover each piece. Just looking
through the code doesn’t give you a very good picture of what the application is
doing. In Figure 14.14, you can see the layout for the entire program.

593Space Pirates: The Game Architecture

SPACEPIRATES
PROJECT

vInitializeObjects()

hrInitializeDirectPlay()

hrInit3D()

hrInitDirectInput()

hrInitKeyboard()

vInitGeometry()

vSetupView()

vCreateLights()

vInitSoundEngine()

In
iti

al
iz

at
io

n
F

un
ct

io
ns

vUpdateObjects()

vUpdateNetwork()

vRenderScene()

Keyboard Logic

G
am

e Loop F
unctions

hrJoinGame()

hrHostGame()

hrCreatePlayer()

hrDestroyPlayer()

hrSendPeerMessage()

DirectPlayMessageHandler()

DirectPlay Functions

Figure 14.14

Layout of the
SpacePirates.cpp file

The WinMain() Function
As with all Windows programs, the first thing you normally do is create the window
in the WinMain() function. Check out the function and you’ll see that I follow the
usual steps in setting up the window. In this particular WinMain() function, you
accomplish several initialization steps, each one through a function. Here is a list of
the initialization functions the WinMain() function calls.

■ vInitializeObjects()
■ hrInitializeDirectPlay()
■ hrInit3D()
■ hrInitDirectInput()
■ hrInitKeyboard()
■ vInitGeometry()
■ vSetupView()
■ vCreateLights()
■ vInitSoundEngine()

The vInitializeObjects() Function
The first function called by WinMain() sets up some of the global data structures. This
is necessary to clear out the object structures for later use. Here is the code used.

void vInitializeObjects(void)
{

int i;
for(i = 0 ; i < MAX_PLAYERS ; i++) {

PlayerInfo[i].bActive = 0;
}
for(i = 0 ; i < MAX_BULLETS ; i++) {

Bullet[i].bActive = 0;
}
for(i = 0 ; i < MAX_EXPLOSIONS ; i++) {

Explosion[i].bActive = 0;
}
for(i = 0 ; i < MAX_TEXTURES ; i++) {

g_pTexture[i] = NULL;
}
g_GameSounds.gsExplosion = NULL;
g_GameSounds.gsFire = NULL;

}

594 14. SpacePirates: Your First Complete Game

The first thing initialized is the PlayerInfo array. The PlayerInfo array stores all the
information about each player in the game. When new players join the game, they
are added to the PlayerInfo list. The game keeps track of which player slots have
been used with the bActive flag. By setting each bActive flag to 0, you turn off all
player slots.

The next two arrays to get initialized, Bullet[] and Explosion[], keep track of the
bullets and explosions in the game. By setting the bActive flag for each one to 0,
you turn them off. This ensures that all of the bullets and explosions are inactive
when the game first starts.

The next array to get set up is the g_pTexture[] array. This array stores all of the
textures used in the game that do not belong to x-objects. It is important to set
them to NULL so that the vCleanup() function does not try to remove non-initialized
textures.

The last two variables to be set up, g_GameSounds.gsExplosion and
g_GameSounds.gsFire, are used for the in-game sounds. They are loaded later.

The hrInitializeDirectPlay() Function
Wow, it’s been a little while since you’ve seen this function, eh? The
hrInitializeDirectPlay() function in SpacePirates sets up everything needed for
DirectPlay. You might remember from the peer-to-peer example in Chapter 9,
“Chatting with DirectPlay,” that a few objects must be in place for DirectPlay to
work, including

■ COM
■ IDirectPlay8Peer interface
■ DirectPlay message handler
■ IDirectPlay8Address interface for the device
■ IDirectPlay8Address interface for the host
■ Completion event

The most important of these is initializing the COM interface, a required step
when you create the IDirectPlay8Peer interface. Without COM, you cannot use
DirectPlay. Take a look at the hrInitializeDirectPlay() function in the code and
follow along with me.

HRESULT hrInitializeDirectPlay(HWND hWindow)
{

HRESULT hReturn;

595Space Pirates: The Game Architecture

// Initialize COM
hReturn = CoInitialize(NULL);
if(FAILED(hReturn)) {

MessageBox(hWindow, “Error Initializing COM”,
“DirectPlay Error”, MB_ICONERROR);

return hReturn;
}
// Initialize critical sections for multithreading
InitializeCriticalSection(&g_csModifyPlayer);
// Create IDirectPlay8Peer object
if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Peer,

NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Peer,
(LPVOID*) &g_pDP)))

MessageBox(hWindow, “Can’t Create DPlayPeer”, “DirectPlay Error”,
MB_ICONERROR);

// Init IDirectPlay8Peer message handler
if(FAILED(hReturn = g_pDP->Initialize(NULL,
DirectPlayMessageHandler, 0))) {

MessageBox(hWindow, “Failed to Message Handler”,
“DirectPlay Error”, MB_ICONERROR);

return -1;
}
// Create a device address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address, NULL,

CLSCTX_INPROC_SERVER, IID_IDirectPlay8Address,
(LPVOID*) &g_pDeviceAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Device”,

“CoCreateInstance()”, MB_ICONERROR);
return -1;

}
// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(
&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Device Address”,
“Invalid Param”, MB_ICONERROR);

return -1;

596 14. SpacePirates: Your First Complete Game

}
// Create a host address
hReturn = CoCreateInstance(CLSID_DirectPlay8Address,

NULL,CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address, (LPVOID*) &g_pHostAddress);

if(FAILED(hReturn)) {
MessageBox(hWindow, “Failed to Create Host Address()”,

“Invalid Param”, MB_ICONERROR);
return -1;

}
// Set the host address to TCP/IP
if(FAILED(hReturn = g_pHostAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Host Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}
// Create connection complete event for later use
g_hConnectCompleteEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
return S_OK;

}

The first thing that happens is the initialization of COM with the CoInitialize()
function. The next thing to get set up is the critical section used to keep track of
player data in the game. This step is necessary to make sure that the code does not
run over itself when updating the global player data.

Now that COM is initialized, you can create the IDirectPlay8Peer interface that is
needed for communication, using the CoCreateInstance() function.

Once you have the IDirectPlay8Peer interface, you can go ahead and set the default
DirectPlay message handler to receive all game communication. Remember that
this function is called whenever a packet
arrives. For communication, SpacePirates uses
the DirectPlayMessageHandler() function. If
you look at the handler, you’ll see that it has
the usual suspects for creating players,
destroying players, and processing game
packets.

597Space Pirates: The Game Architecture

CAUTION
SpacePirates will not initialize if
you do not have an active con-
nection to the Internet. If you
use dial-up, be sure to connect
to the Internet before launching
the game.

You might recall that you need DirectPlay addresses to store the information neces-
sary to connect to the host or to join a game. The address stores information about
the player and the connection. For each address, the program sets the service
provider to be TCP/IP.

Once all of the addresses and service providers are set, the g_hConnectCompleteEvent
event is set up. This event signals when the player has successfully connected to the
host. Well, that’s it for initialization. None of it should have come as a surprise to
you, considering it is mostly copied straight from previous examples. To see how
the functions relate to their global variable counterparts, check out Figure 14.15.

The hrInit3D() Function
The hrInit3D() function is where the 3D initialization magic happens. The function
sets up the video device to display the wonderful graphics. Okay, maybe they aren’t
that wonderful in this game, but they don’t stink either! In the previous 3D sample

598 14. SpacePirates: Your First Complete Game

hrInitializeDirectPlay()

g_csModifyPlayer

g_pDP

g_pDeviceAddress

g_pHostAddress

g_hConnectCompleteEvent

Figure 14.15

Global variable usage in the
hrInitializeDirectPlay()

function

programs, I only showed you how to force the 3D graphics system to set the display
mode. I performed no actual checking of the hardware for the best possible mode.
I did not show you how to do full-screen graphics either, and we all know that real
games use full-screen. Well, the pattern stops with SpacePirates: I’ll now show you
how to enumerate all available graphics cards and their modes. It does require
quite a bit more work to get things done, but your application will be better for it.
Here is the code for the new and improved hrInit3D() function.

HRESULT hrInit3D(HWND hWnd)
{

D3DPRESENT_PARAMETERS d3dpp;
HRESULT hResult;
RECT rcWindowBounds;
// Saved window bounds for mode switches
RECT rcWindowClient;
// Saved client area size for mode switches
D3DAdapterInfo *pAdapterInfo = &g_Adapters[g_dwAdapter];
D3DDeviceInfo *pDeviceInfo = &pAdapterInfo->
devices[pAdapterInfo->dwCurrentDevice];
D3DModeInfo *pModeInfo = &pDeviceInfo->
modes[pDeviceInfo->dwCurrentMode];

// Create the D3D object
if(NULL == (pD3D = Direct3DCreate8(D3D_SDK_VERSION))) {

MessageBox(hWnd, “Direct3D Error”,
“Unable to initialize Direct3D, please check version.”,
MB_ICONERROR);

return(E_FAIL);
}
// Build a list of available devices
hResult = hrBuildDeviceList(hWnd);
if(hResult == VIDEODEVICEERROR_NOCOMPATIBLE) {

MessageBox(hWnd, “Adapter Error”,
“No compatible 3D adapters found.”, MB_ICONERROR);

return(E_FAIL);
}
else if(hResult == VIDEODEVICEERROR_NOWINDOWED) {

MessageBox(hWnd, “Adapter Error”, “No available
windowable 3D adapter found, please switch to 16

599Space Pirates: The Game Architecture

or 32 bit mode.”, MB_ICONERROR);
return(E_FAIL);

}
// Get the size of the window
GetWindowRect(hWnd, &rcWindowBounds);
GetClientRect(hWnd, &rcWindowClient);
// Set to full-screen
if(!g_bWindowed)

SetWindowLong(hWnd, GWL_STYLE, WS_POPUP|WS_SYSMENU|WS_VISIBLE);
// Set temp pointers
pAdapterInfo = &g_Adapters[g_dwAdapter];
pDeviceInfo = &pAdapterInfo->devices[pAdapterInfo->dwCurrentDevice];
pModeInfo = &pDeviceInfo->modes[pDeviceInfo->dwCurrentMode];
// Set up the presentation parameters
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = pDeviceInfo->bWindowed;
d3dpp.BackBufferCount = 1;
d3dpp.MultiSampleType = pDeviceInfo->MultiSampleType;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.EnableAutoDepthStencil = g_bUseDepthBuffer;
d3dpp.AutoDepthStencilFormat = pModeInfo->DepthStencilFormat;
d3dpp.hDeviceWindow = hWnd;
// Run this code if in windowed mode
if(g_bWindowed) {

d3dpp.BackBufferWidth = (rcWindowClient.right -
rcWindowClient.left);

d3dpp.BackBufferHeight = (rcWindowClient.bottom -
rcWindowClient.top);

d3dpp.BackBufferFormat = pAdapterInfo->d3ddmDesktop.Format;
}
// Run this code if in full-screen mode
else {

d3dpp.BackBufferWidth = pModeInfo->Width;
d3dpp.BackBufferHeight = pModeInfo->Height;
d3dpp.BackBufferFormat = pModeInfo->Format;

}
// Create the device
hResult = pD3D->CreateDevice(g_dwAdapter,

600 14. SpacePirates: Your First Complete Game

pDeviceInfo->DeviceType, hWnd,
pModeInfo->dwBehavior, &d3dpp, &pd3dDevice);

if(!SUCCEEDED(hResult)) {
MessageBox(hWnd, “Device Error”, “Failed to create
display device!”,

MB_ICONERROR);
return(E_FAIL);

}
// Turn on the z-buffer
pd3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
// Turn on ambient lighting
pd3dDevice->SetRenderState(D3DRS_AMBIENT, 0x00606060);
return S_OK;

}

The first part of the function creates the IDirect3D8 system object. The next item of
interest is that call to the hrBuildDeviceList() function. This function is where the
new part comes into play. It creates a list of compatible video devices and modes
for the given application. Before I go further into it, let me finish talking about the
init function.

Once the list of devices is created, the init function then checks whether the game
is to be played in full-screen mode. If the game is to run in full-screen mode, the
program updates the current window settings. The purpose of this is to turn off the
controls for the window, such as the minimize, maximize, and exit buttons. All of
this happens in the SetWindowLong() function provided by Windows.

The next part of the code sets up the presentation parameters for the display
device. The difference here is that the initialization function uses the default device
found in the hrBuildDeviceList() function to set up the parameters. This is why you
see the pDeviceInfo and pModeInfo pointers.

The next section of the function sets up the back buffer. If the program is to run in
windowed mode, the function uses the size of the client window for the back
buffer. If the program is to run in full-screen mode, the function uses the actual
size of the desired resolution for the back buffer.

The last thing to do is create the IDirect3DDevice8 interface using the presentation
parameters with the CreateDevice() function. Take a look at Figure 14.16 to see the
steps involved in the hrInit3D() function.

601Space Pirates: The Game Architecture

The hrBuildDeviceList()
Function
The hrBuildDeviceList() function is a pretty complicated function that creates a list
of compatible adapters and devices, and their modes for a given application. It con-
sists of the following subfunctions.

■ hrConfirmDevice()

■ bFindDepthStencilFormat()

■ bValidateFormat()

At first glance, the hrBuildDeviceList() function might look intimidating. Your
assumption is correct, in this case. There is nothing pretty about the process, but it
is a necessary evil. Look at Figure 14.17 to see the flow of the hrBuildDeviceList()
function.

602 14. SpacePirates: Your First Complete Game

hrInit3D()

Direct3DCreate8()

hrBuildDeviceList()

CreateDevice()

Set Presentation
Parameters

Enable Z-Buffer
and Set Ambient

Levels

Figure 14.16

The hrInit3D() function

Enumerating the Adapters
You might be able to tell from the diagram that the first thing the function does is
loop through all of the adapters in the system. This is necessary because some peo-
ple have systems with multiple video cards. To figure out how many adapters are in a
system, the program uses the GetAdapterCount() function that belongs to the
IDirect3D8 interface. This function returns the total number of adapters in a system.

At the beginning of each new adapter, the program grabs the desktop setting for
the device. The setting is then stored in the adapter’s data structure under the
d3ddmDesktop variable. This is stored for later use when playing the game in win-
dowed mode. You can see this in action in the following lines of code.

pAdapter = &g_Adapters[g_dwNumAdapters];
pD3D->GetAdapterDisplayMode(iAdapter, &pAdapter->d3ddmDesktop);

603Space Pirates: The Game Architecture

hrBuildDeviceList()

Loop
Through
Adapters Loop

Through
Modes

and
Formats

Loop
Through
Devices

Check Format

Check for
Hardware

Acceleration

Check Compatible
Modes

Check Compatible
Device

Check if
WindowableChoose

Default
Adapter

Figure 14.17

The hrBuildDeviceList()
function

pAdapter->dwNumDevices = 0;
pAdapter->dwCurrentDevice = 0;
dwNumAdapterModes = pD3D->GetAdapterModeCount(iAdapter);

Enumerating the Video Modes
The last line of code mentioned here gets the number of video modes available for
the adapter. As you can see, you find the number of modes by calling the
GetAdapterModeCount() function. Once it knows the numbers of video modes, the
program can loop through each mode looking for a compatible one.

In the video mode loop, the first function called is the EnumAdapterModes() function.
This function finds out all available refresh rate settings for the particular mode.
Some video mode refresh rates can greatly enhance performance, so this is a neces-
sary step.

Checking the Video Mode Resolution

The first thing that happens after the refresh rates are enumerated is checking the
mode’s width and height. Because you don’t want to add an incompatible mode to
the list of available modes, you need to filter out any that are smaller in resolution
than the desired game size. In the case of SpacePirates, the minimum resolution is
800 × 600. Here is the code.

if((DisplayMode.Width < SCREEN_WIDTH) || (DisplayMode.Height < SCREEN_HEIGHT))
continue;

Adding Modes to the List

Once a mode has passed the resolution test, the program goes on to check whether
the mode is new to the current list of compatible ones. If it is a new mode, then it
is added to the list of compatible modes.

if(m == dwNumModes) {
modes[dwNumModes].Width = DisplayMode.Width;
modes[dwNumModes].Height = DisplayMode.Height;
modes[dwNumModes].Format = DisplayMode.Format;
modes[dwNumModes].RefreshRate = 0;
dwNumModes++;
// Check if the mode’s format already exists
for(f = 0; f < dwNumFormats; f++) {

if(DisplayMode.Format == formats[f])
break;

}

604 14. SpacePirates: Your First Complete Game

// If the format is new, add it to the list
if(f == dwNumFormats)

formats[dwNumFormats++] = DisplayMode.Format;
}

Within the process of adding the new mode to the list, the program also makes a
check to see whether the format is new. If the format is new, it is added to the list
of compatible formats.

Adding Compatible Devices
Now that the modes and formats are enumerated, it is time to check the video
devices. This function checks two types of devices, hardware and software. If the
player’s computer has hardware acceleration, you want to take advantage of it. This
is where device checking comes in handy.

At the beginning of the device-enumeration loop, each device is initialized with its
name and default settings. Once that is accomplished, the function begins to loop
through each of the formats found earlier. The first check is done with a call to the
CheckDeviceType() function. This function returns whether the passed-in device and
format will work together. If not, the function goes on to the next device.

Checking for Hardware Support in a Window

Once a device has proven that it can render in the checked format, the program
makes a check to see whether the format and device can handle hardware accelera-
tion in a window. This step is very important if the game is run in windowed mode.
You would not want to select a hardware device only to find out that windowed
mode will not work.

if(pDevice->DeviceType == D3DDEVTYPE_HAL) {
// This system has a HAL device
bHALExists = TRUE;
// Check if windowed mode is possible
if(pDevice->d3dCaps.Caps2 & D3DCAPS2_CANRENDERWINDOWED) {

// HAL can run in a window for some mode
bHALIsWindowedCompatible = TRUE;
if(f == 0) {

// HAL can run in a window for the current desktop mode
bHALIsDesktopCompatible = TRUE;

}
}

}

605Space Pirates: The Game Architecture

To check whether the device supports hardware acceleration, the program checks
the DeviceType member variable against the D3DDEVTYPE_HAL definition. If the check
succeeds, then you know that the device is a hardware device. After that check is
passed, the code then checks the capabilities of the device against the
D3DCAPS2_CANRENDERWINDOWED definition. This tells the system whether the device sup-
ports hardware-accelerated window rendering. If all of the checks pass, then the
bHALIsDesktopCompatible variable is set to True.

Checking for Hardware
Transform and Lighting Support

The next few lines of code deal with checking for transform and lighting (T&L)
support at the hardware level. Some video cards, such as the GeForce series from
Nvidia, support hardware-accelerated vertex processing. By processing vertices in
hardware, these cards can greatly increase the speed at which games run.

You perform the check for hardware T&L by looking at the card’s device capa-
bilities with the current mode and format. If the capabilities include the
D3DDEVCAPS_HWTRANSFORMANDLIGHT flag, then you know that hardware T&L are
supported.

Once hardware T&L are located, the function goes on to check whether the device
is a pure device. If it is not a pure device, the function checks whether it supports
hardware vertex processing. If the device does not support hardware vertex pro-
cessing, the function checks whether it supports mixed vertex processing. You per-
form these checks by comparing the device capabilities to the
D3DDEVCAPS_PUREDEVICE, D3DCREATE_HARDWARE_VERTEXPROCESSING, and
D3DCREATE_MIXED_VERTEXPROCESSING flags. The actual comparison check is accom-
plished using the hrConfirmDevice() function defined later in the application. In
SpacePirates, the hrConfirmDevice() function checks whether the video card can sup-
port alpha blending, which is required to do transparency with textures. In this
game, the bullets and explosions need transparency, hence the requirement. Feel
free to add your own requirements to the hrConfirmDevice() function.

Finding a Compatible Depth Buffer

Once the device is proven to support hardware or software, the code performs a
loop check to see whether it has a compatible depth buffer. This is necessary if your
game will use a z-buffer.

// Find a suitable depth/stencil buffer format for this device/format
if(bFormatConfirmed[f] && g_bUseDepthBuffer) {

606 14. SpacePirates: Your First Complete Game

if(!bFindDepthStencilFormat(8, 0, iAdapter, pDevice->DeviceType,
formats[f], &fmtDepthStencil[f])) {
bFormatConfirmed[f] = FALSE;

}
}

To find out whether the device is compatible, you make a call to the
bFindDepthStencilFormat() function. This function is defined in SpacePirates and
checks for a compatible depth format with the passed parameters. In this case,
SpacePirates requires that the user have at least an 8-bit depth buffer. This is where
the first parameter applies. If you require a 16-bit buffer, then you pass in a 16 to
the first parameter. As new depth formats come out with DirectX releases, you
should add them to the bFindDepthStencilFormat() function. Hey, it’s been a little
while since you’ve seen an illustration. Look at Figure 14.18 to see how the device
formats are checked.

607Space Pirates: The Game Architecture

Loop Through
Devices

CheckDeviceType()

Check if HAL

Check for
Hardware

Transform &
Lighting

Check for
Software
Vertex

Processing

bFindDepthStencilFormat()

Valid
Device
Found

Figure 14.18

Processing the device formats

Adding Device Modes to the List

Once all of the formats are checked for compatibility with a particular device, a
loop moves through all formats and modes to see which ones work together. When
a match is found, it is added to the permanent list of modes for the device.

for(m = 0; m < dwNumModes; m++) {
for(f = 0; f < dwNumFormats; f++) {

if(modes[m].Format == formats[f]) {
if(bFormatConfirmed[f] == TRUE) {

// Add this mode to the device’s list of valid modes
pDevice->modes[pDevice->dwNumModes].Width
= modes[m].Width;
pDevice->modes[pDevice->dwNumModes].Height
= modes[m].Height;
pDevice->modes[pDevice->dwNumModes].Format
= modes[m].Format;

pDevice->modes[pDevice->dwNumModes].dwBehavior
= dwBehavior[f];
pDevice->modes[pDevice->dwNumModes].DepthStencilFormat
= fmtDepthStencil[f];

pDevice->dwNumModes++;
if(pDevice->DeviceType == D3DDEVTYPE_HAL)

bHALIsSampleCompatible = TRUE;
}

}
}

}

As you can see in the source code, if the mode’s format equals the format and the
format has passed compatibility checks, then the mode is added to the device’s list.
The code performs a final check to see whether the device is hardware accelerated.
It checks the DeviceType member against the D3DDEVTYPE_HAL definition.

Checking Whether a Valid Device Was Found

The next rather complicated-looking loop checks whether a compatible device
mode was found to match the game’s requirements. If one is found, the
bFoundVidMode variable is set. This variable is used in a later check to see whether
any compatible devices were located.

608 14. SpacePirates: Your First Complete Game

Checking for a Window-Compatible Device

The next check that comes along is a check to see whether the device can operate
in a window.

// Check if device can work in a window
if(bFormatConfirmed[0] && (pDevice->d3dCaps.Caps2 &
D3DCAPS2_CANRENDERWINDOWED)) {

pDevice->bCanDoWindowed = TRUE;
pDevice->bWindowed = TRUE;

}

You do the check by comparing the device capabilities to the
D3DCAPS2_CANRENDERWINDOWED value. If the device can be windowed, then the
bCanDoWindowed and bWindowed flags are set to True.

Choosing the Default Adapter
The final block of code in the hrBuildDeviceList() function sets the default adapter
returned to the calling function. The check is done by looping through all of the
adapters and their devices.

If the device supports windowing and the game is to be windowed, then the
adapter is chosen. If the game is to be run in full-screen, then the first available
adapter is picked. Once the default adapter is
chosen, it is stored in the g_dwAdapter global
variable. This variable sets up the display
parameters in the hrInit3D() function.

Whew! Talk about a complicated function.
If you are a little confused about it, don’t
worry; you can pretty much plug it in and
forget about it. For other examples of this,
check out the Direct3D framework that
comes with the DirectX SDK. It has exam-
ples of setting up the video mode.

609Space Pirates: The Game Architecture

TIP
Many video cards do not sup-
port windowed 3D. Be sure to
make your application flexible
enough to switch between win-
dowed and full-screen mode
based on the user’s settings.
SpacePirates allows the switch
with the g_bWindowed flag.The
best-case scenario is to make
this variable adjustable through
a configuration file or GUI.

The hrInitDirectInput()
Function
SpacePirates uses DirectInput because it provides for much smoother control over
the keyboard. However, DirectInput is not always the best for text input, so the
game actually uses a little bit of both DirectInput and standard keyboard handling.
The actual movement control and firing control are activated through DirectInput.
Text entry for in-game commands is handled through the Windows keyboard han-
dler. Here is the code for the initialization function.

HRESULT hrInitDirectInput(void)
{

HRESULT hReturn = 0;

// Do not try to create DirectInput if already created
if(!pDI) {

// Create a DInput object
if(FAILED(hReturn = DirectInput8Create(g_hInstance,

DIRECTINPUT_VERSION,
IID_IDirectInput8, (VOID**)&pDI, NULL)))
return(INPUTERROR_NODI);

}
// Get the keyboard layout
g_Layout = GetKeyboardLayout(0);
return(hReturn);

}

You can give thanks now for short functions, eh? This should look familiar to you
because it is copied from the DirectInput chapter. Anyway, the main thing accom-
plished here is the creation of the IDirectInput8 interface. Once this is accom-
plished, a call is made to the GetKeyboardLayout() function. You might recall that
this happens for when you want to convert scan codes to ASCII codes later.

The hrInitKeyboard()
Function
The hrInitKeyboard() function is used just as it was in the DIK_Read project—it
creates and initializes the DirectInput keyboard device. You use buffered input
here so no keystrokes are lost. As long as everything works out okay, no errors are
returned. Here is the code.

610 14. SpacePirates: Your First Complete Game

HRESULT hrInitKeyboard(HWND hWnd)
{

HRESULT hReturn = 0;
DIPROPDWORD dipdw;

// Don’t try to create the keyboard twice
if(pKeyboard)

return(INPUTERROR_KEYBOARDEXISTS);
// Exit out if no DirectInput interface found
else if (!pDI)

return(INPUTERROR_NODI);
// Obtain an interface to the system keyboard device
if(FAILED(hReturn = pDI->CreateDevice(GUID_SysKeyboard,
&pKeyboard, NULL)))

return(INPUTERROR_NOKEYBOARD);
// Create buffer to hold keyboard data
ZeroMemory(&dipdw,sizeof(DIPROPDWORD));
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0;
dipdw.diph.dwHow = DIPH_DEVICE;
dipdw.dwData = KEYBOARD_BUFFERSIZE;

// Set the size of the buffer
if(FAILED(hReturn = pKeyboard->SetProperty(DIPROP_BUFFERSIZE,
&dipdw.diph)))

return(INPUTERROR_NOKEYBOARD);
// Set the format of the keyboard
if(FAILED(hReturn = pKeyboard->SetDataFormat(&c_dfDIKeyboard)))

return(INPUTERROR_NOKEYBOARD);
// Set the cooperative level to exclusive access
if(FAILED(hReturn = pKeyboard->SetCooperativeLevel(hWnd,
DISCL_NONEXCLUSIVE | DISCL_FOREGROUND))) {

return(INPUTERROR_NOKEYBOARD);
}
// Acquire the keyboard device
pKeyboard->Acquire();
return(0);

}

611Space Pirates: The Game Architecture

As you can see from the code, the following events transpire.

1. The keyboard device is created with the CreateDevice() function.

2. The buffer is set up with the SetProperty() function.

3. The format is set up with the SetDataFormat() function.

4. The cooperative level is set with the SetCooperativeLevel() function.

In SpacePirates, the cooperative level is set to be non-exclusive. This allows more
than one iteration of the game to run on the user’s desktop. If you set the coopera-
tive level to exclusive and try to run two iterations of the game, you’ll notice that
each keystroke is sent to both windows! Go ahead and try it if you want to see it in
action. You can look at Figure 14.19 to see the setup steps illustrated.

The vInitGeometry() Function
You only have three more initialization functions after this one to wade through;
hang in there! The vInitGeometry() function actually does more than just initialize
the 3D data. It also loads up the textures used in the game.

Loading the Robot Models
To animate the robot in the game, the program actually loads multiple copies of it
in different poses. There are 12 frames in all to simulate a walking motion. You can
see these frames of movement in Figure 14.20. You do not have to use 12 frames
for every walk cycle you create—I just use a number of frames that looks good.

To load the 12 frames, all the program has to do is loop through some code that
loads the separate models into their own Object3DClass object. Look at the follow-
ing code, and you can see how each frame is loaded into one element of the
o3dShip[] global array. This array is used in the rendering function later to display
the robots.

for(i = 0 ; i < 12 ; i++) {
sprintf(szFileName,”Data\\3DObjects\\droid%d.x”,i);
o3dShip[i].hLoad(szFileName,pd3dDevice);

}

Creating the Arena Geometry
The next part of the hrInitGeometry() function deals with creating the custom geom-
etry for the arena. The arena actually consists of several quads, but you only need to

612 14. SpacePirates: Your First Complete Game

create one and use it multiple times. There is nothing really new with creating the
quad; you use the same techniques found in the Draw3DTexturedPrimitive project.
One thing to keep in mind is that the quads used in SpacePirates have texture, color,
and normal information stored in them. This is necessary to take advantage of tex-
turing and lighting. To see the arena, check out Figure 14.21.

613Space Pirates: The Game Architecture

hrInitKeyboard() CreateDevice() SetProperty() SetDataFormat() SetCooperativeLevel() Acquire()

Figure 14.19 Keyboard creation

Figure 14.20 Frames for the 3D robot

Figure 14.21

The 3D arena

12 Frames of Animation

0 1 2 3 4 5 6 7 8 9 10 11

Loading the Textures
The game uses a few textures to create such things as the arena, explosions, and
bullets. The first set of textures to be loaded is used for the explosion animation
when a player gets shot or when a bullet hits the arena.

for(i=0;i<8;i++) {
sprintf(szFileName,”Data\\3DObjects\\exp%d.tga”,i);
if(FAILED(D3DXCreateTextureFromFile(pd3dDevice, szFileName,
&g_pTexture[i]))) {

return;
}

}

You can look at this code and see that the program loops through eight frames
worth of loading. Each time a texture is loaded, it is stored in the next g_pTexture[]
array element. The next several lines of code load the remaining textures. To see
all of the textures used, refer to Figure 14.22.

614 14. SpacePirates: Your First Complete Game

Figure 14.22

Custom textures for
SpacePirates

Explosion Frames Droid Texture

Arena Texture Energy Pulse

Loading the Game Font
You might recall from the design phase of the project that the game is to have text
on the screen for the player’s score and other messages. To use the Direct3D font
system, you must load up a system font. I like the Georgia font, so it is the one
loaded. Here is the code to load the font.

hFont = CreateFont(26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, PROOF_QUALITY,
0, “georgia”);

D3DXCreateFont(pd3dDevice, hFont, &pD3DXFont);

The CreateFont() function is provided
by Windows and loads up the system
font. The D3DXCreateFont() function is
a Direct3D function that converts the
system font to a 3D font. Once the
font is loaded, you can use it to dis-
play text in a 3D scene.

The vSetupView() Function
The vSetupView() function is similar to the vSetupView() function in past projects.
The only real difference here is where the camera is located. If you look at the
source code for it, you see that the camera is set back and up from the center of
the world. This gives the player a bird’s-eye view of the arena.

void vSetupView(void)
{

// Set where camera is viewing from
vecCameraSource.x = -300.0f;
vecCameraSource.y = 50.0f;
vecCameraSource.z = 150.0f;
// Set what camera is looking at
vecCameraTarget.x = 0.0f;
vecCameraTarget.y = 0.0f;
vecCameraTarget.z = 0.0f;

615Space Pirates: The Game Architecture

NOTE
The CreateFont() function will load the
default system font if you try to use one
that it cannot find. So, if you don’t have
the Georgia font, don’t worry; the sys-
tem will load a default font for you.

// Set up camera view
D3DXMatrixLookAtLH(&matCameraView,

&vecCameraSource,
&vecCameraTarget,
&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

// Tell the device to use the camera view for the viewport
pd3dDevice->SetTransform(D3DTS_VIEW, &matCameraView);
// Set up projection
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, 1.0f, 1.0f, 800.0f);
// Tell the device to use the above matrix for projection
pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);

}

The vCreateLights() Function
The vCreateLights() function has been updated for SpacePirates to include multiple
colored lights. Four lights of different colors are put into the arena’s four corners.
In the center of the arena is one white light. The multiple colored lights give the
arena a cool effect and keep things interesting.

You perform the setup for the lights using the SetLight() and LightEnable() func-
tions. Look at Figure 14.23 to see how the lights are arranged in the arena.

616 14. SpacePirates: Your First Complete Game

Figure 14.23

Lighting layout in
the arena

Purple light

Green light

Red light

White light

Blue light

The vInitSoundEngine() Function
The sound class requires initialization, so I put that functionality into the
vInitSoundEngine() function. Here is the code used.

void vInitSoundEngine(HWND hWnd)
{

SoundEngine.hWnd = hWnd;
if(!FAILED(SoundEngine.hrInitSoundSystem())) {

g_GameSounds.gsExplosion = new GameSound;
SoundEngine.hrLoadSound(“data\\sfx\\hit.wav”,
g_GameSounds.gsExplosion);
g_GameSounds.gsFire = new GameSound;
SoundEngine.hrLoadSound(“data\\sfx\\attack.wav”,
g_GameSounds.gsFire);

}
}

The first function called is hrInitSoundSystem(). This function belongs to the global
SoundEngine class variable. If it succeeds, the game sounds are loaded. There are two
game sounds, one for firing and one for explosions.

Hey, you are done with game initialization! Yay, throw a party, go to Mardi Gras—
oh, wait; you still have to write the actual game.

Controlling the Game
Now that the game is initialized and ready to go, you need to plan how the control
mechanism is going to work. Actually, all of this was planned before the code was
ever written, but who’s counting anyway? In the game design, it was determined that
each player would be able to move his robot around the arena and shoot at other
robots. When a player’s bullet hits another player, the firing player gets points. This
is fine and works very well for the game’s purposes. There is one problem, though:
How will the game let the player choose to join a game or host a game?

The Command Console
The actual connection parameters are read from the config.txt file, but choosing to
host or join happens through the game interface. One way that games such as
Quake handle this type of input is through a text console. Figure 14.24 shows the
Quake III command console.

617Controlling the Game

As you can see in Figure 14.24, the command console appears in the game area.
This allows players to enter various information and set flags while playing the
game. SpacePirates uses a watered-down version of this concept. When players press
the Enter key, they are put into command mode. While they are in command
mode, the text “Command:” is displayed on the screen. Anything they type is added
to the command. When the player is done entering his command, he can press
Enter to execute the command.

The Commands
SpacePirates needs to process only two commands, host and join. If the player uses
the host command, then he attempts to host the game. If the player uses the join
command, then he attempts to connect to the IP address found in the config.txt
file. The hrJoin() and hrHost() functions are responsible for joining and hosting
the game. Each of these is virtually identical to the ones shown in the peer-to-peer
DPChat project. I suggest that you go back and look at that project if you are a lit-
tle fuzzy on how joining and hosting work.

The reason SpacePirates uses a config.txt file is that it makes it a little easier to
demonstrate the game without spending too much time on interfaces. If SpacePirates

618 14. SpacePirates: Your First Complete Game

111
HEALTH

4
AMMO

Console output
Console output
Console output
Console output
Console output
Console output
Console output
Console output
Console output
Console output
Console output
Console output
] (The player can input data here)

The console overlays the game area

The Game Area

Figure 14.24

Command console
layout

were a commercial game, it would definitely use in-game menus to set up the para-
meters for play. You can see the console used in SpacePirates in Figure 14.25.

Movement Keys
Most games let you specify the
keys you want to use for con-
trolling your character. This is
the optimal solution because
players can configure the
game to their liking.
SpacePirates does not follow
this method because it would
introduce tons of code to the
system. Instead, players con-
trol their characters using a
fixed set of keys. Table 14.1
shows the keys used to control
the robots and each key’s
respective function.

619Controlling the Game

Figure 14.25

The SpacePirates
command console

Table 14.1 SpacePirates Key
Controls and Functions

Key Function

Left arrow Rotate left

Right arrow Rotate right

Up arrow Speed up

Down arrow Slow down/reverse

Spacebar Fire bullet

Each of the movement arrow keys looks for the DirectInput macro to check the val-
ues. The fire button looks to the ASCII code to be activated. There is no reason
you have to use the ASCII code for the spacebar; I just put it in there for demon-
stration purposes.

The Game Loop
The most important part of the source code is the game loop. The game loop is
where all of the magic happens. Everything in the game, from graphics to commu-
nication, is handled in the game loop. To get a better understanding of the flow of
the loop, look at Figure 14.26. You can see that the game constantly loops through
checking Windows messages. If there is no Windows message to process, the game

620 14. SpacePirates: Your First Complete Game

WinMain()

vUpdateObjects()

vUpdateNetwork()

vRenderScene()

Check for
Message

Message
Buffer

Time to
Update?

Figure 14.26

The game loop flow

checks to see whether it is time to update the game. When game updates happen,
the following functions are called.

■ vUpdateObjects()

■ vUpdateNetwork()

■ vRenderScene()

The vUpdateObjects() function is called to update all elements in the scene. The
vUpdateNetwork() function updates network players of current positions and orienta-
tion. The vRenderScene() function displays all of the game objects.

Once the check for game updates is com-
pleted, the game loop checks the user’s
input to see whether he has issued a com-
mand. The hrReadKeyboard() function is
called here to update the keyboard state. It
works just as it did in the DIK_Read project.

Now that the keyboard state is updated, the
program checks each of the command keys
for input. If the player has pressed
one of the keys, then a global vari-
able is set with his command. The
next time the game is updated, the
global command variables are
checked to see whether the player
has issued a command. If the
player has issued a command, then
action is taken.

Updating the Game
The three functions that deal with updating the game are vUpdateObjects(),
vUpdateNetwork(), and vRenderScene(). These three functions are called no more
than 30 times per second due to the time governor in place. This is an essential
aspect of game updates for multiplayer games.

621Updating the Game

TIP
To keep faster machines from
having an advantage, the game
is locked at 30 frames per sec-
ond with the dwGovernor timer.

CAUTION
If you execute player commands outside of
the update functions, then faster players
have an advantage. By forcing updates to
happen within the timed update loop, all
players have equal opportunity.

The vUpdateObjects() Function
The vUpdateObjects() function actually serves two purposes. The first purpose is to
send action packets based on the user’s input, and the second purpose is to update
all in-game objects.

Processing Player Actions
The five possible actions the player can take are accelerate, decelerate, turn left,
turn right, and fire bullet. Each of these actions is flagged in the main game loop
by pressing a particular key. With this scheme, it is actually possible to process both
a turn-left and a turn-right message in the same loop; the two just negate each
other.

Processing Acceleration
To test whether a particular action should be executed, the program checks the
global Boolean variable for the action. For example, here is the code to execute an
acceleration action.

// Accelerate
if(bAccelerate) {

bAccelerate = 0;
if(PlayerInfo[g_iMyPlayerId].fVelocity < 2.0f)

PlayerInfo[g_iMyPlayerId].fVelocity += 1.0f;
pacVel.dwSize = sizeof(PacketVelocity);
pacVel.dwType = PACKET_TYPE_VELOCITY;
pacVel.fVelocity = (float)PlayerInfo[g_iMyPlayerId].fVelocity;
// Convert the packet to a void stream
packet = (VOID*)&pacVel;
// Send the velocity packet
hReturn = hrSendPeerMessage(-1,PACKET_TYPE_VELOCITY,packet);

}

Take notice of how the bAccelerate variable is checked before executing the player
action. You might recall that this variable gets set in the main game loop back in
WinMain().

The first thing the code does is set the bAccelerate global to 0. This keeps the
action from being called again unless the player presses the up-arrow again. The
next logical check is performed to see whether the player is already moving along
at the maximum speed. If the player’s speed is less than 2.0, then he speeds up by
1.0 unit. You might want to change this maximum setting to see what happens.

622 14. SpacePirates: Your First Complete Game

Once the new velocity is figured out, a packet is sent to all of the other players con-
nected to the game, using the packet type of PACKET_TYPE_VELOCITY. The
hrSendPeerMessage() function sends the actual packet. This function is just like the
one used in the peer-to-peer DPChat project. Once the packet is sent, the code
goes on to check the next action.

Processing Rotation
If the player presses the left- or right-arrow keys, he flags a rotation action to take
place during the next game update. To demonstrate, here is the code for turning
left.

if(bTurnLeft) {
bTurnLeft = 0;
PlayerInfo[g_iMyPlayerId].fRot -= 10.0f;
if(PlayerInfo[g_iMyPlayerId].fRot < 0.0f)

PlayerInfo[g_iMyPlayerId].fRot = 350.0f;
pacAngle.dwSize = sizeof(PacketAngle);
pacAngle.dwType = PACKET_TYPE_ANGLE;
pacAngle.fAngle = PlayerInfo[g_iMyPlayerId].fRot;
// Convert the packet to a void stream
packet = (VOID*)&pacAngle;
// Send the rotation packet
hReturn = hrSendPeerMessage(-1,PACKET_TYPE_ANGLE,packet);

}

The PlayerInfo[g_iMyPlayerId].fRot variable stores player rotations. By setting the
g_iMyPlayerId element of the PlayerInfo[] array, the program is rotating the right
robot. You might have noticed that the player rotates his robot in increments of 10
degrees. You can change this if you want smoother rotations. Once the rotation is
set, a packet of type PACKET_TYPE_ANGLE is sent to all players.

Firing a Bullet
There wouldn’t be much competition in the game if the players couldn’t shoot at
one another, so the game includes the ability to fire pulses of energy at other play-
ers. When a player presses the spacebar, the fire bullet action is set. Here is the
code to process the bullet request.

if(bFireBullet) {
vCreateBullet(PlayerInfo[g_iMyPlayerId].dpnidPlayer,
PlayerInfo[g_iMyPlayerId].vecCurPos.x,
PlayerInfo[g_iMyPlayerId].vecCurPos.z,

623Updating the Game

(float)PlayerInfo[g_iMyPlayerId].fVelocity,
PlayerInfo[g_iMyPlayerId].fRot);
bFireBullet = 0;

}

The vCreateBullet() Function

The vCreateBullet() function creates a bullet from any player. For parameters, it
takes the DPNID of the shooter; the x, y, and z coordinates; the velocity; and the
angle of the bullet. The angle of the bullet determines which direction it is moving.
Here is the code for that function.

void vCreateBullet(DPNID dpowner, float fx, float fz,
float fvel, float frot)

{
int i;
PacketBullet pacBul;
void *packet;
HRESULT hReturn;

for(i = 0 ; i < MAX_BULLETS ; i++) {
if(!Bullet[i].bActive) {

break;
}

}
// Exit if no room for bullets
if(i == MAX_BULLETS)

return;
Bullet[i].bActive = 1;
Bullet[i].fx = fx;
Bullet[i].fz = fz;
Bullet[i].fVelocity = fvel+3.0f;
Bullet[i].dpOwner = dpowner;
Bullet[i].fRot = frot;
SoundEngine.hrPlaySound(g_GameSounds.gsFire);
// This is our bullet; send a bullet packet to everyone
if(dpowner == g_dpnidLocalPlayer) {

pacBul.dwSize = sizeof(PacketBullet);
pacBul.dwType = PACKET_TYPE_BULLET;
pacBul.Bullet.bActive = 1;
pacBul.Bullet.dpOwner = g_dpnidLocalPlayer;

624 14. SpacePirates: Your First Complete Game

pacBul.Bullet.fRot = frot;
pacBul.Bullet.fVelocity = fvel;
pacBul.Bullet.fx = fx;
pacBul.Bullet.fz = fz;
// Convert the packet to a void stream
packet = (VOID*)&pacBul;
// Send the bullet packet
hReturn = hrSendPeerMessage(-1,PACKET_TYPE_BULLET,packet);

}
}

The first thing the create bullet function does is loop through the number of possi-
ble bullets looking for an empty slot. This is done by checking the bActive flag. If
no slots are found, the function exits.

The next part of code sets up the parameters for the Bullet[] array element that
was found to be available. By doing this, the next game update includes the new
bullet in it.

The last order of business is to check whether the local player
is the one who fired the bullet. If the local player did fire
the bullet, then a packet is sent to all of the other players,
telling them that a new bullet has entered the game. The
packet used to do this is type PACKET_TYPE_BULLET.

That just about sums it up for possible player actions. Look
at Figure 14.27 to see the actions illustrated.

625Updating the Game

The term local
player refers to the
player who is
actually playing on
the computer.
Remote players are
players who are
competing from
other locations.

Figure 14.27

Possible player
actions

Move or Rotate Fire
Velocity Change

Updating Player Objects
Each and every player in the game, be it the local player or a remote player, must
have his position updated every game update. This is necessary to maintain smooth
motion in the game. If you updated players only when packets arrived, then you
would see jerky motion. SpacePirates isn’t the prime example for smooth motion,
considering that it doesn’t use interpolation, but it gets the job done well enough
for the current level of difficulty.

The vUpdateObjects() function is responsible for updating all in-game objects,
including players, bullets, and explosions. The first things to be updated are the
players. You do this by looping through the PlayerInfo[] array to look for active
players. If a player is active, then the game updates him.

Updating Player Positions and Animation
The player loop not only updates the position of each player, it also updates the
animation frame for each player. Because there are 12 robot animation frames,
there can be 12 animation positions for each player.

The first thing the player loop does is figure out the velocity for the player using
the vGetVelocity() function that I included with the project. The vGetVelocity()
function tells you how much to offset the model on the x and z coordinate, based
upon its heading.

vGetVelocity(PlayerInfo[i].fRot,fx,fz);

Once you have the x and z velocity, you multiply them by the timing multiplier.
Recall from the section about timing that you do this to make up for machines that
are either too fast or too slow.

fx *= fMultiplier;
fz *= fMultiplier;

Now that you have the modified x and z offsets, you just add them to the player
information structure to get the new position.

PlayerInfo[i].vecCurPos.x += (float)(fx*PlayerInfo[i].fVelocity)*-1;
PlayerInfo[i].vecCurPos.z += (float)(fz*PlayerInfo[i].fVelocity)*-1;

You update the player’s animation by checking whether his robot has moved far
enough from his last animated position. If he has moved the required distance,
then the player’s animation frame is incremented. All of this is handled by the
PlayerInfo[i].vecLastPos and PlayerInfo[i].vecCurPos data members. Once the ani-
mation frame counter is updated, a final check makes sure that the animation

626 14. SpacePirates: Your First Complete Game

frame does not go over the last frame. If it does, then the animation loops back to
the beginning.

// Check if animation needs to loop
if(PlayerInfo[i].iFrame >= 12)

PlayerInfo[i].iFrame = 0;
else if(PlayerInfo[i].iFrame < 0)

PlayerInfo[i].iFrame = 11;

The next few lines of code check to see whether the player’s robot has hit one of
the arena walls. If it does hit a wall, then its velocity is set to 0. This keeps the play-
ers within the arena.

Updating the Bullets
The bullets in the game are updated just as the players are. The code runs through
the list of bullets and processes each one that is active. When the program finds a
bullet that is active, its position is updated. Bullets in SpacePirates don’t have anima-
tion frames, so at least you don’t have to worry about that aspect of it.

One thing that is unique to the bullets is that you have to check to see whether they
hit a player in the game. If they hit anyone but their owner, then an explosion is cre-
ated and the player who shot the bullet gains some points. The collision detection
used is a standard distance algorithm that checks whether the bullet is within range
of a player. If the bullet gets close enough to a player, an explosion happens.

When a bullet hits another player or a wall, it is flagged for destruction. The bullet
is deactivated, and an explosion is created in its place. To create an explosion, the
code loops through all possible explosion objects until it finds an open slot. Once
an open slot is found, the system sets the explosion up and activates it for future
rendering.

if(iKillBullet) {
Bullet[i].bActive = 0;
iKillBullet = 0;
// Find next explosion object
for(j = 0 ; j < MAX_EXPLOSIONS ; j++) {

if(!Explosion[j].bActive) {
Explosion[j].bActive = 1;
Explosion[j].fx = Bullet[i].fx;
Explosion[j].fz = Bullet[i].fz;
Explosion[j].iFrame = 0;
Explosion[j].dwFrameTime = timeGetTime()+100;

627Updating the Game

SoundEngine.hrPlaySound(g_GameSounds.gsExplosion);
break;

}
}

}

Notice that the explosion sound is played when the explosion is created. This hap-
pens with the hrPlaySound() member function of the SoundClass.

Updating the Explosions
The explosions are static entities, but they do have frames of animation. The frame
for each explosion is updated if the frame timer has exceeded 100 milliseconds.

for(i = 0 ; i < MAX_EXPLOSIONS ; i++) {
if(Explosion[i].bActive) {

// Update explosion frame
if(timeGetTime() > Explosion[i].dwFrameTime) {

Explosion[i].iFrame ++;
Explosion[i].dwFrameTime += 100;

}
if(Explosion[i].iFrame >= 8) {

Explosion[i].bActive = 0;
}

}
}

Once an explosion has reached its last frame, it is deactivated.

Updating the Highest Score
Every action game from the old school had a high score to beat. SpacePirates follows
along these lines and keeps track of who has the highest score. It does this by loop-
ing through all active players in the game and sorting the scores. The player with
the highest score has his name displayed at the top of the play window. You can see
this in Figure 14.28.

The loop for the highest score is rather simple.

// Check who has highest score
for(j = 0 ; j < MAX_PLAYERS ; j++) {

if(PlayerInfo[j].bActive) {
if(PlayerInfo[j].lScore > lHighestScore) {

628 14. SpacePirates: Your First Complete Game

iHighestScoreHolder = j;
lHighestScore = PlayerInfo[j].lScore;

}
}

}

Once the highest score is determined, the szHighestScoreWinner global character
array is loaded with the name of the high score holder.

Updating the Remote Players
Although you send a packet to everyone whenever you complete an action, games
can still get out of sync. This can cause big problems if left unattended, so the
vUpdateNetwork() function comes in handy.

The vUpdateNetwork() Function
The vUpdateNetwork() function is called whenever the game loop updates, which is
30 times per second. Normally, you do not want to update your network 30 times a
second, so the vUpdateNetwork() function has its own time governor built in. The

629Updating the Game

Figure 14.28

The high score and
name displayed in
the game window

function actually limits itself to 10 updates per second, which is a pretty standard
frequency for this type of game. Here is the code for the function.

void vUpdateNetwork(void)
{

void *packet;
PacketAngle pacAngle;
PacketVelocity pacVel;
PacketPosition pacPos;
PacketScore pacScore;
HRESULT hReturn;

if(timeGetTime() > dwUpdateTime+100) {
// Only send packets if other players are in the game
if(g_lNumberOfActivePlayers > 1) {

// Send our angle
pacAngle.dwSize = sizeof(PacketAngle);
pacAngle.dwType = PACKET_TYPE_ANGLE;
pacAngle.fAngle = PlayerInfo[g_iMyPlayerId].fRot;
packet = (VOID*)&pacAngle;
hReturn = hrSendPeerMessage(-1,PACKET_TYPE_ANGLE,packet);
// Send our velocity
pacVel.dwSize = sizeof(PacketVelocity);
pacVel.dwType = PACKET_TYPE_VELOCITY;
pacVel.fVelocity = (float)PlayerInfo
[g_iMyPlayerId].fVelocity;
packet = (VOID*)&pacVel;
hReturn = hrSendPeerMessage(-1,PACKET_TYPE_VELOCITY,packet);
// Send our position
pacPos.dwSize = sizeof(PacketPosition);
pacPos.dwType = PACKET_TYPE_POSITION;
pacPos.fx = PlayerInfo[g_iMyPlayerId].vecCurPos.x;
pacPos.fz = PlayerInfo[g_iMyPlayerId].vecCurPos.z;
packet = (VOID*)&pacPos;
hReturn = hrSendPeerMessage(-1,PACKET_TYPE_POSITION,packet);
// Send our score
pacScore.dwSize = sizeof(PacketScore);
pacScore.dwType = PACKET_TYPE_SCORE;
pacScore.lScore = PlayerInfo[g_iMyPlayerId].lScore;
packet = (VOID*)&pacScore;

630 14. SpacePirates: Your First Complete Game

hReturn = hrSendPeerMessage(-1,PACKET_TYPE_SCORE,packet);
}
dwUpdateTime = timeGetTime();

}
}

The first logic check that the function performs is the check of the update timer. If
the function is trying to run at more than the specified 10 times per second, then
the function just exits.

Once you are inside the loop to update the other network players, a second check
is made to see whether there is anyone in the game except for you. If there are no
other players, then there is no need to send packets!

If the game has players, then the function sends one of each packet type to all of
the other players. Your speed, position, heading, and score stay current on the
other players’ machines.

Lastly, the frequency timer is updated to keep the pesky updates at the specified
limit. If you want, change the timer to go off 30 times per second and see what it
does. You might be surprised at the results.

Rendering the Scene
As much as I like to talk only about multiplayer game programming, the little (but
booming) voice in my head reminds me that I have to talk about graphics. Okay,
well, the render loop is illustrated in Figure 14.29.

By looking at Figure 14.29, you can tell that the objects in the scene render in a
particular order. The arena is rendered first, followed by the players, then the
explosions, the bullets, and then the score. The reason the objects are rendered in
this order is to ensure that the elements are layered properly from back to front.
The code might look complicated, but most of it is due to the special effects such
as different wall and ground pieces.

Updating the Camera
The camera is updated using the vUpdateCamera() function that is present at the
beginning of the rendering loop. This function positions the camera over the
player controller robot. You accomplish this by setting the camera’s x and z coordi-
nates relative to the controlled robot.

631Updating the Game

Building the Arena
The first part of the rendering loop deals with creating the arena in which the play-
ers can compete. The first thing you have to do before displaying your own poly-
gons is set up the vertex stream source. You might recall from the DrawPrimitive
project that this is done using the SetStreamSource() function.

// Set the vertex buffer to render
pd3dDevice->SetStreamSource(0, lpVertexBuffer, sizeof(MYVERTEX));
// Set the vertex format
pd3dDevice->SetVertexShader(D3DFVF_MYVERTEX);

632 14. SpacePirates: Your First Complete Game

RENDER LOOP

Arena

Players

Explosions

Bullets

Score

Figure 14.29

The rendering function

Once you have the stream set, you then set the vertex shader to use. The one
used in SpacePirates is the D3DFVF_MYVERTEX shader defined in the SpacePirates.h
header file.

Now that you have the stream and shader all set up, you can display the floor and
walls.

Rendering the Floor
The floor is actually organized into a five-by-five grid of 25 tiles. The rendering
function starts in two loops to accomplish the rendering of the tiles. The top-left
tile is rendered first, moving horizontally until the entire row is finished. Once a
row of tiles is rendered, the next row down is started. Look at Figure 14.30 to see
the rendering order.

Rendering the Walls
As the floor is rendered, one tile at a time, the row and column numbers are
checked for the existence of a wall piece. If the row or column matches where a
wall should be, then a wall is drawn. One neat item involved is the rendering of the

633Updating the Game

Figure 14.30

The rendering order for
the floor tiles

1 2 3 4 5

6

Floor
Tile

Start Here

11

16

21 25

game title, “SpacePirates,” on the middle walls. You render the title by changing
the active texture when the particular wall pieces need to be drawn. Here is an
example.

if(j == 0)
pd3dDevice->SetTexture(0, g_pTexture[12]);

else
pd3dDevice->SetTexture(0, g_pTexture[11]);

When j equals 0, the logo is displayed; otherwise, the normal wall piece is dis-
played. This logic is what puts the game logo on the top and bottom walls.

Another neat trick used in the game is changing from solid rendering to wire-
frame rendering when the player goes behind the bottom wall. This is done so that
the player can see his own robot when it goes behind the wall. The code to do this
looks like the following:

if(PlayerInfo[g_iMyPlayerId].vecCurPos.z >= 200.0f)
pd3dDevice->SetRenderState(D3DRS_FILLMODE,D3DFILL_WIREFRAME);

else
pd3dDevice->SetRenderState(D3DRS_FILLMODE,D3DFILL_SOLID);

The SetRenderState() function accomplishes the task by setting the D3DRS_FILLMODE
to either solid or wire-frame, depending on the need.

Other checks happen at the end of the arena-rendering loop to see whether a cor-
ner piece needs to be displayed. If you launch the game and look at the floor
pieces, you’ll notice a special piece for the four corners. I included this piece in
anticipation of you adding some new code to the game. Maybe you could set ran-
dom starting positions at the four corners. On the other hand, maybe you could
place power-ups in the corners. It’s really up to you, but I do encourage you to play
with the code.

Rendering the Players
The player rendering is handled after the arena is drawn. It is fairly easy to accom-
plish because you have the Object3DClass functionality to do it for you. Here is the
code.

// Display robots
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(PlayerInfo[i].bActive)
o3dShip[PlayerInfo[i].iFrame].vDisplayXYZ(
PlayerInfo[i].vecCurPos.x,

634 14. SpacePirates: Your First Complete Game

0.0f,PlayerInfo[i].vecCurPos.z,
0.0f,
PlayerInfo[i].fRot,
0.0f);

}

The program is looping through the entire list of possible players and only render-
ing the ones that are active. Each player object is rendered according to its current
frame, position, and orientation.

Rendering the Explosions
The explosions in the game are displayed whenever a bullet hits a wall or a player.
Because the explosions have translucency to them, the render state must be
adjusted. You do this by setting the alpha state for the render system.

pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

With this code, the explosion textures are displayed according to their alpha chan-
nel. The result is semi-transparent explosions.

The rendering loop for the explosions works much like the other render loops. It
just loops through all possible explosions and renders the ones that are active.

for(i = 0 ; i < MAX_EXPLOSIONS ; i++) {
if(Explosion[i].bActive) {

D3DXMatrixTranslation(&matTranslation, Explosion[i].fx,
0.0f+(0.25f*i), Explosion[i].fz);

D3DXMatrixRotationX(&matRotation, -90.0f/RADIAN_TO_DEGREES);
matRotation *= matTranslation;
pd3dDevice->SetTransform(D3DTS_WORLD, &matRotation);
// Set the explosion’s texture frame
pd3dDevice->SetTexture(0, g_pTexture[Explosion[i].iFrame]);
// Draw the primitive
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

}
}

You might be wondering what the 0.0f+(0.25f*i) code is for. This renders each
explosion at a slightly different height. This way, the explosions never render into
each other. This keeps visual anomalies from happening too often.

635Updating the Game

Rendering the Bullets
The bullets in the game are rendered much like the explosions, except that the
bullets do use the depth buffer for rendering. If the bullets did not use the depth
buffer, then they would appear on top of the players. Here is the source code.

for(i = 0 ; i < MAX_BULLETS ; i++) {
if(Bullet[i].bActive) {

D3DXMatrixScaling(&matScale, 0.5f, 0.5f, 0.5f);
D3DXMatrixTranslation(&matTranslation, Bullet[i].fx, 15.0f,
Bullet[i].fz);

D3DXMatrixRotationX(&matRotation, -90.0f/RADIAN_TO_DEGREES);
matScale *= matRotation;
matScale *= matTranslation;
pd3dDevice->SetTransform(D3DTS_WORLD, &matScale);
// Draw the primitive
pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

}
}

The reason lighting is turned off for the explosions and the bullets is that they do
not need to be lit with dynamic lighting. By turning off the lights and setting the
ambient color to full blast, you render the explosions and bullets at absolute bright-
ness. You do this because you wouldn’t want shaded explosions or pulses of energy!
Keep this in mind when rendering objects that are self-illuminated.

Displaying the Score
The last elements to be displayed are the score and system message. You accom-
plish this with the font system’s DrawText() function.

The color of each font is determined by using the D3DCOLOR_RGBA macro, as in the
following:

D3DCOLOR_RGBA(255, 255, 255, 255)

You can change the RGB values for different colored fonts. Feel free to experiment
with them until you find a color you like. Personally, I think white is just fine for
the task at hand.

636 14. SpacePirates: Your First Complete Game

Player Management
At the heart of the SpacePirates multiplayer engine is the DirectPlay message han-
dler in the form of the DirectPlayMessageHandler() function. This function is
responsible for handling all incoming network traffic. If you didn’t have the mes-
sage handler, then you wouldn’t have a multiplayer game.

The DirectPlayMessageHandler()
Function
If you look at the DirectPlayMessageHandler() function, you’ll see that it has the
message types to which you have become accustomed in past projects. Unlike the
graphics coding for the game that required new logic, the message handler hasn’t
changed very much.

The function handles creating and destroying players, host migration, session ter-
mination, and game packet decoding. Each of these functions operates almost
identically to its counterpart in the peer-to-peer DPChat project.

The hrCreatePlayer() Function
Scroll on through the code until you get to the hrCreatePlayer() function, and
you’ll see the order of the steps in Figure 14.31.

Once the creation packet is decoded, the peer information for the added player is
pulled using the GetPeerInfo() function. Down further in the code, you’ll see that
the player is added to the PlayerInfo[] data array with the iAddPlayer() function.

The iAddPlayer() function loops through the entire list of possible players and
assigns the new player to the first available slot. All of the parameters for the player
are set to the defaults until an update packet is received.

Once the player is added, the function leaves the update player critical section and
returns to the message handler.

637Player Management

The hrDestroyPlayer() Function
The nemesis of the hrCreatePlayer() function is the dreaded hrDestroyPlayer()
function. Okay, maybe it isn’t that dreaded. . . . Anyway, hrDestroyPlayer() is called
when a player exits or is kicked out of a networked game. The main purpose of the
destroy player function is to remove the player from the global player data array.

HRESULT hrDestroyPlayer(PVOID pvUserContext, PVOID pMsgBuffer)
{

PDPNMSG_DESTROY_PLAYER pDestroyPlayerMsg;
HRESULT hReturn = S_OK;
int i;
char szOutput[256];

638 14. SpacePirates: Your First Complete Game

hrCreatePlayer()

GetPeerInfo()

DXUtil_ConvertWideStringToGeneric()

iAddPlayer()

InterlockedIncrement()

LeaveCriticalSection()

Am I the
Host?

hrSendPeerMessage()

Figure 14.31

The hrCreatePlayer()
function

// Get a destroy message pointer to the buffer
pDestroyPlayerMsg = (PDPNMSG_DESTROY_PLAYER)pMsgBuffer;
// Update the number of active players in a thread-safe way
InterlockedDecrement(&g_lNumberOfActivePlayers);
EnterCriticalSection(&g_csModifyPlayer);
// Remove player from list
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(PlayerInfo[i].bActive) {
if(PlayerInfo[i].dpnidPlayer ==
pDestroyPlayerMsg->dpnidPlayer) {

PlayerInfo[i].bActive = 0;
sprintf(szOutput,”<%s> Left The Game”,
PlayerInfo[i].szPlayerName);
sprintf(szSystemMessage,szOutput);
break;

}
}

}
LeaveCriticalSection(&g_csModifyPlayer);
return(hReturn);

}

As you can see in the code, the destroy player function loops through the entire list
of players and looks for the matching player ID to destroy. Once the match is
found, the player is set to be inactive. This removes him from all future rendering
and game updates.

Handling Game Packets
The main portion of the code remaining in the message handler is dedicated to
handling the game packets such as position, rotation, and speed updates. Check
out Figure 14.32 to see how the packets relate to game functions and objects.

In Figure 14.32, you can see that angle, velocity, and position packets all affect
player data. The bullet packet adds a new bullet to the game, and the score packet
is used for a score update.

None of the packet-handling routines require knowledge of nuclear physics
because they are straightforward. The only subfunction used is the vCreateBullet()
function that was covered earlier. The rest of the operations just update the appro-
priate global data and move on.

639Player Management

Review
Isn’t that great? The network code portion of SpacePirates is actually the easiest part,
in my opinion. It just goes to show you that once you understand multiplayer gam-
ing, the multiplayer part becomes the easiest portion. As a quick review, browse the
following points.

■ You should always pre-plan sound implementation in your games. Players will
appreciate it.

■ Always update your game events based on the amount of real time that has
elapsed. This helps your game run evenly regardless of hardware.

■ By including time multipliers in your game update function, you can help
keep players with slow machines competitive.

■ Be careful how often you update players across the network. A good rule of
thumb is to update everyone a maximum of ten times per second.

■ Identity matrices are used to set up 3D objects in their default position, ori-
entation, and scale.

■ Render 3D objects from back to front for proper ordering. Z-buffers are used
to compensate for out of order objects, but they are not as effective as good
old ordering.

Hey wait; you haven’t seen MMORPG programming and design yet. The best is yet
to come!

640 14. SpacePirates: Your First Complete Game

PACKET_TYPE_SCORE PACKET_TYPE_ANGLE PACKET_TYPE_VELOCITY PACKET_TYPE_POSITION PACKET_TYPE_BULLET

vUpdateObjects()

DirectPlayMessageHandler()

vUpdateNetwork()

Figure 14.32

Packet-to-object
relationships

Part Four

Developing
Online
Worlds

15 MMORPG Design and Implementation

16 Writing the RPGQuest Game Server

17 Writing the RPGQuest Game Client

CHAPTER 15

MMORPG
Design and

Implementation

Wow, isn’t that a great chapter title? In case you have slept since reading the
previous chapters, MMORPG stands for Massively Multiplayer Online Role

Playing Game. Of course, the game does not have to be a role-player game per se; it
can be any game in which many people can play at once. The other rule this type of
game must follow is that the game servers must save players for as long as the game
is in existence. This means that players can log out, log back in five days later, and
pick up where they left off. Some of the games that follow this method include
Asheron’s Call, Ultima Online, and EverQuest. Because these types of games are such
great sellers, you probably want to know how to write your own. Well, get ready: You
are about to learn what you need to know to get started down the path to glory.

This chapter has three main parts:

■ Game architecture
■ Server architecture
■ Client architecture

You are not building a house here or anything, but you have to understand the
architecture of MMORPGs before you can make your own.

Game Architecture
So what do I mean by game architecture? I mean what it takes for a game to deliver
a massively multiplayer experience. To begin with, your game must be persistent.
This is fairly easy to comprehend, but implementation is another story.

Persistent Worlds
A persistent-world game maintains players’ states even when they are not playing
the game. This means that the game world must permanently store all pertinent
information about a player. The main advantage to players is that they don’t have
to store their characters locally on their machines. If players don’t have to store the
information locally, the game lets them play from any computer or console that has
the game software.

The work that goes into saving player data might seem trivial, but it is anything but
that. First of all, you must store everything about the player and the game world.

644 15. MMORPG Design and Implementation

Multiply the player’s data by thousands, and it starts to add up. Now, you must
throw into the mix information about every object in the game. Just think about
how many Ultima Online players have thousands of items. Each item requires a little
bit of storage, so the data alone gets to be huge.

Data Storage
You really have only a couple of solutions for storing game world data—either cus-
tomized flat files or off-the-shelf databases. The first method, a customized file sys-
tem, might seem like the obvious choice. I mean, all of us programmers know that
everything deserves to be reinvented, right? Okay, maybe I’m kidding.

Customized storage solutions offer the flexibility of an in-house product. By this, I
mean that you have complete control over how the system works. You also don’t
have to wait for last-minute patches from vendors or deal with bugs that they do
not want to fix. So what are the downsides? Well, for one, you have to reinvent the
proverbial wheel. There are reasons why software by Microsoft and Oracle sell so
well. It is because products such as SQL Server and Oracle specialize in only one
thing, data storage and retrieval. The other downside is that you have to spend
quite a bit of time writing a comprehensive file solution. If you are just starting out,
then a custom file system might be your only choice due to a lack of funds. If you
can afford it, I recommend that you at least try Microsoft’s SQL Server.

Pre-built solutions are great because someone else has already gone through the
trouble of developing them for you. Not only do the products provide one-stop
solutions, but they have also been tested by thousands of users. The fact that thou-
sands of people use Oracle’s products or Microsoft’s products goes a long way
toward proving a valuable product.

Data Storage Layout
Maybe you have shelled out the $3,000 or so it takes to get started with Microsoft’s
SQL Server product; what do you do now? I hope you have created an entire game
design document that outlines every bit of information you have to store.
Nevertheless, don’t worry; for now you can act as if you have one. Imagine that you
want to store a player’s name, address, phone number, account number, and date
of purchase. Now, that sounds a lot like account information. With this in mind,
you’d probably create a database called AccountInfo. Within this database, you
could create a table called ContactInfo. Within the table, you could store the
names, addresses, and phone numbers as columns of data. Look at Figure 15.1 to
see how the database is laid out so far.

645Game Architecture

In Figure 15.1, I have labeled the database, table, and columns. Databases can contain
multiple tables. In this case, however, there is only one table, the ContactInfo table.
Tables consist of columns of data. Each record entered into a database has informa-
tion stored in each of the columns. These records are referred to as rows of data.

One important item you need to add to the ContactInfo table is a primary key.
Primary keys in databases uniquely identify records or rows. For a real-world exam-
ple, you can look to the United States government’s use of Social Security numbers.
You can think of a Social Security number as a primary key to government’s data-
base of citizens.

Data Access
Once you lay out all of your databases and tables, you can start to worry about how
to access the data in a timely fashion. The main problem here is that once you start
getting millions of entries, the database gets slower and slower. To combat this, you
must plan carefully.

646 15. MMORPG Design and Implementation

AccountInfo

ContactInfo

Name

Address

PhoneNumber

Table

C
O
L
U
M
N
S

Database

John Doe 1515 WrongWay, NJ (555)555-1212
Jane Doe 1516 WrongWay, NJ (555)555-1212
Jimmy Doe 1530 WrongWay, NJ (555)555-1212
Joseph Doe 1600 WrongWay, NJ (555)555-1212

ROW

ROW

ROW

ROW

1
2
3
4

Primary
Key

Figure 15.1

The account information
database

If you have created your own file system, then your options are only limited by the
functionality you have created. Unfortunately, I can’t cover the options because I
didn’t create them! However, I can cover the options you have if you go with a
ready-made product such as SQL Server. To see the table information GUI for
Microsoft’s SQL Server, look at Figure 15.2.

Figure 15.2 shows an example of data storage where I have created a database
called PlayerData. Within the database, I have created a table called
AccountInformation. The good part about using a pre-packaged solution is that
you normally have nice GUIs with which to work.

The Standard Query Language
Many database products, ranging from Oracle to Access, allow you to use what is
called SQL (Structured Query Language). SQL lets you do all sorts of neat things to
add, modify, delete, and access data in a database. The cool part about it is that it
uses a rather English-looking language to process the transactions you require.

647Game Architecture

Figure 15.2

SQL Server’s table
view screen

Selecting Data with SQL

Suppose that you want to pull the account information for user account number
10045. To do this with the database you created earlier, you use the following SQL.

Select * from ContactInfo where AccountNumber = ‘10045’;

The select keyword in the query tells the database that you want to retrieve data.
The asterisk tells the database that you want to retrieve all of the columns in the
table you are selecting. Using the from keyword, you indicate the table from which
you want to pull the data. In this case, you want to pull from the ContactInfo table.
The where clause lets you specify criteria for your search. In this example, you limit
your retrieval to the record that has an account number of 10045.

Counting with SQL

To really comprehend the power of the SQL syntax, you must play around with var-
ious tables of data. Take, for instance, a marketing campaign. Maybe you want to
send a mail piece to people in the areas where most of your customers are. You fig-
ure that the people in these areas are likely to play your game, so you want to tar-
get them. To do this, you can issue a series of count requests to the database. The
area code that has the highest count contains your greatest concentration of cus-
tomers. To create a count request, you use the following syntax.

Select count(*) from ContactInfo where AreaCode = ‘501’;

This query counts all of the records with an area code of 501 and returns the total
to you. Not only can you use counting for marketing, but you can also use it to fig-
ure out the greatest concentrations of items in your game. Imagine that you have a
table containing information about the items in your game world. This table might
have data such as the item name, identifier, weight, type, zone, and owner. To fig-
ure out the number of items in zone 1, you would use the following query.

Select count(*) from ItemInfo where Zone = ‘1’;

See how easy that is? If you take the time to think about it, SQL can be a very use-
ful language. Imagine how long it would take you to code every possible query for a
custom data solution. This is where the true value of an off-the-shelf product comes
into play. If money is a concern, which it normally is, then try some of the free
databases out there, such as MySQL. Figure 15.3 shows the table detail screen for
SQL Server.

648 15. MMORPG Design and Implementation

Adding Data with SQL

Selecting and counting data is fun and all, but you really must have data present
before you can mess around with it. This is where the insert command comes into
play. In the previous example, suppose that you want to add an item to a zone. You
do this using the following SQL.

Insert into ItemInfo set ItemName=’sword’, Identifier=9005,
Weight=5, Type=10, Zone=1;

This SQL adds a sword to the item table. Using SQL, you don’t have to worry about
seeking to the end of the file, replacing out-of-date items, or anything else. You just
call the insert function, and the database does the rest.

ODBC
Now that you have seen just some of the power available in an off-the-shelf data-
base, you might be wondering how to access such a powerful tool. Well, you lucky
Windows users have a thing called ODBC (Open Database Connectivity). What this

649Game Architecture

Figure 15.3

SQL Server’s table
detail screen

means in human terms is that ODBC is a standard protocol for accessing relational
databases that are based upon SQL.

When you install a package such as SQL
Server and add a database, you also must cre-
ate a pipeline to access the database. This is
how you use ODBC. Once you create your
database, you then create an ODBC connec-
tion to it within the Windows control panel.
Take a peek at Figure 15.4 to see the ODBC
icon in Windows 2000.

Each SQL-compliant database that comes out
usually has an ODBC driver that is installed
when you install the package. To create a con-
nection to a database you have created, you go
into the ODBC panel and select the driver
that you want to use for the connection. Once
that is out of the way, you select the database
to which you want to connect. You can do all
sorts of fancy things here, such as set the user
name and password for the database.

650 15. MMORPG Design and Implementation

Figure 15.4

The control panel view
in Windows 2000

ODBC icon

TIP
In Windows NT, you can find
the ODBC icon in the top
level of the control panel. In
Windows 2000, you must look
in Administrative Tools within
the control panel.

CAUTION
You should always select diffi-
cult user names and passwords
for your databases.The last
thing you want is some hacker
out there gaining ODBC
access to your game data.

In Figure 15.5, you can see the ODBC window that shows the available database
drivers.

Data Hardware
Before you can ride off into the sunset with your newly found database knowledge,
you must learn about data storage hardware design. You can just store your data on
any old system, but you will not get the best performance possible. You must also
contemplate several security issues.

Hardware Security
One mistake people make is housing their databases on the same machines that
have access to the Internet. This is a huge security risk that you do not need to
take. The reason this is a security risk is that if your data resides on a machine with
Internet connectivity, anyone can try to connect directly to your databases.

Private Networking

One method of keeping your data safe is creating a private network within your
public network. The network that can see the Internet is considered the public net-
work. To create a private network within the public network, you give each
machine in your network two Ethernet cards. One card goes to the Internet
router/switch, and the other card goes to the internal network switch. For all prac-
tical purposes, each machine maintains two IP addresses. You can see this illus-
trated in Figure 15.6.

651Game Architecture

Figure 15.5

The ODBC driver panel

In Figure 15.6, you can see that people on
the Internet can only see the public network.
To see the private network, computers must
be physically connected to the machine they
want to access. There is no better protection
than to require a physical connection to
your data.

Data Integrity
Another problem with MMORPGs is that the game world data is very important
and should never be lost. If you were playing a game of Quake III and the game
crashed, it wouldn’t be any big deal since player data is reset for every new game
anyway. The players would all just reconnect and resume business as usual. If a
game such as EverQuest crashed, you would have thousands of hacked-off

652 15. MMORPG Design and Implementation

Private
Network

Game Server

Ethernet Card (Internet)

Ethernet Card (Private)

Hub

Database Server

Internet

Router

Figure 15.6

Dual NIC network setup

CAUTION
Even if your data resides in a
private network, you should
require a password to access it.

customers because many of them have worked months or even years building up
their characters. The worst scenario possible is if the game world crashes and loses
all of the player data. If you didn’t have backups, then you would probably be out
of business. So as you can see, data integrity is a very important topic for massively
multiplayer games.

Backups

You have several ways to preserve your data, the easiest one being daily backups of
your databases. Even with daily backups, though, you still have the potential for
players to lose all of their hard-earned work for an entire day. This is where replica-
tion software can help.

Replication Software

Replication software is designed in such a way that you can have multiple comput-
ers act as mirrors of one another. If they all have replication software installed,
whenever a machine changes, they all do. In this case, you have replication soft-
ware installed on your database machines. Each time data is updated or added to
the database, it is replicated across all database servers. To see how the hardware
would look, take a gander at Figure 15.7.

653Game Architecture

Replicated Databases

Game Server

Ethernet Card (Private)

BigIP

Database
Server 1

Database
Server 2

Database
Server 3

Figure 15.7

Replication software setup
Single IP address
seen by server

Transaction Logging

Most databases out there today have the ability to keep transaction logs. A transac-
tion log for a database keeps a record of all data inserted or updated to the system.
It can also keep track of every read performed. This is helpful in that you can
“back out” the data to a previous time. Imagine that in your game world, people
found a way to duplicate gold. You might catch the bug four hours into the first use
of it. Well, by the time four hours have passed, the game world probably has mil-
lions of duplicated gold stashes. The problem this causes is that your entire in-
game economy is out of balance. Rather than resort to a previous backup that
might be 12 hours old, you can backtrack the transaction log and revert everything
that happened to the database in the last four hours. This is where you see the true
power of the transaction log. Since the logs are constantly running, you can revert
the game world to any previous state that day without having to go all the way back
to the daily backup. The main disadvantage of transaction logs is that they con-
sume tons of storage space. You will probably want to clean out the logs every day.

Fail Over

Now that you have your replication system in place, you need to plan for hardware
failure. One problem arises when a complete database computer goes down. How
do you handle it? Well, you can use a load balancer such as BigIP. The BigIP hard-
ware system lets you hook multiple computers to it, and they all have the same IP
address to the outside world.

You can program the hardware to use one machine as the primary system. If that
one machine goes down, then the BigIP automatically routes traffic to the next sys-
tem in line. Because all of your databases are replicated, it doesn’t really matter
which machine is picked next. The beauty of this system is that the servers that con-
nect to the database only have to know one IP address, that of the BigIP. The best
way for you to visualize this is with a figure, so take a look at Figure 15.8.

The main drawback to the BigIP solu-
tion is that it is very expensive. But if
you haven’t figured it out yet, massively
multiplayer games are expensive to start
up and operate.

654 15. MMORPG Design and Implementation

NOTE
One of the more expensive parts of
maintaining an MMORPG tends to
fall into the bandwidth category.You
can expect to pay several thousand
dollars a month for the Internet
connection alone.

Offsite Storage

This topic might sound like an obvious tip, but you would be surprised how many
people out there don’t keep offsite backups. Offsite storage refers to the practice of
keeping an alternate database system running at all times. You actually maintain
the alternate system in a different physical location from the primary systems. This
type of setup helps in case your building burns down, gets blown away by a tor-
nado, or meets any other disaster. This isn’t something that many companies think
about, but you are asking for trouble if you don’t plan for it.

655Game Architecture

Replicated Databases

Big IP

Database
Server 1

Database
Server 2

Database
Server 3

Game Server Backup Game
Server

BigIP

Client

Figure 15.8

BigIP hardware setup

Single IP address
seen by clients

Single IP address
seen by servers

The cheapest method is to
keep backups of your data off-
site. This allows you to at least
maintain world data integrity
from the previous 24 hours.
Your game might be down for
a very long time, but you do
not lose the data.

Every Player Is a Hero
Unlike single-player games, every player in an MMORPG must have the ability to be
a hero. You don’t want to create adventures and quests where the first player to
solve it is the only hero in the game. Most quests and adventures should be solvable
by every player in the game. One of the problems with such a system is how you
maintain balance while keeping it fun for everyone. Just imagine if you created a
quest where the end goal was freeing some prisoner. Well, this goal wouldn’t work
very well if someone had already freed the prisoner. Situations such as this can be
difficult to handle properly.

The main game that comes to mind in the area of quests is Asheron’s Call, which has
the most in-depth quest system I have ever experienced. Not only does everyone
have a chance to solve the quests, but new quests are introduced every month. This
is what keeps players coming back for more.

Repeatable Quests
The lesson to learn here is that you need to design your
game in such a way that you can add new quests on a regu-
lar basis. You must also allow the quests to be solved over
and over again. One problem this creates is quest camping.

Quest Timers
To prevent camping, some games use timers. The timers
prevent players from solving the quest over again within
too short a period of time. A quest in Asheron’s Call lets players get a special hilt.
The hilt, called a Bandit Hilt, lets you modify one of your light weapons to make
double hits every time. Because this is a very powerful quest item, it has a four-
month timer. Once you solve the quest and get the item, you must wait four real
months to solve it again. I would like to see the goof who tries to camp that one!

656 15. MMORPG Design and Implementation

CAUTION
Your number-one concern should be your
world data. If you ever have to reset the player
world, you are guaranteed to lose several cus-
tomers, so that is the last thing you would
ever want to do in a persistent-world game.

Camping refers to
players who sit at
one spot in the
game to either kill a
certain spawning
creature or retrieve
a spawning treasure.
This is usually con-
sidered very rude
behavior.

Spawnable Items
The normal way to allow for a repeatable quest is to let the end goal be a magic
item or special reward. An example for a magic caster quest is a quest in which the
final item is a powerful magic wand. There is no reason every magic user in the
game can’t have the wand, so you make the
quest repeatable.

The problem you run into with recurring
items is that people might literally line up to
get them. This can be very boring for the
players who have completed a quest and
must wait in line to get the reward. An exam-
ple of this is a dungeon in which you must
fight several creatures to get to the end. Suppose that once you get past all the evil
minions, the treasure chest at the end contains a special quest item. Well, you
would probably end up with dozens of people standing around at the end waiting
for the treasure to appear. The lesson to learn here is to let quest items regenerate
every few seconds. As long as you put timers on each quest, you will not have a
problem. To see some of the quest items in Asheron’s Call, look at Figure 15.9.

657Game Architecture

TIP
Make sure that you do not
create quest items that are too
powerful.This can lead to a
major imbalance of power.

Figure 15.9

A few quest
items in
Asheron’s Call

One-Time Quests
Now, don’t get me wrong: Not every quest should be repeatable. To maintain a
sense of competition, you might want to create special quest events that can only be
accomplished once. For these quests, you should recognize the victor and remind
players of their accomplishments for the life of the game. For example, you might
add a banner to a town sign that recognizes winners’ actions. This isn’t too hard to
do, and it encourages others in the game to win one-time quests.

Boasting Rights
One pitfall that some MMORPGs fall into is making the game too difficult for new
players. No matter what the level or skill of the players, they should have something
to do to get a sense of accomplishment. The lesson here is that you should create
quests for all ranges of skill levels.

Of course, with every good thing, there is bad. One problem that arises with newbie
quests is the arrival of skilled players in the quest area. Sometimes, you get very
skilled players who rush in and solve the easy quests just to aggravate people. I know
this sounds very immature, but it happens. To combat this, you should put both mini-
mum and maximum skill restrictions on the quests. A common method is to prevent
certain level characters from even entering the quest area. Asheron’s Call uses this
method effectively—higher-level characters can’t go into some low-level areas.

Visual Rewards
Not only do players like to boast about their accomplishments, but they also want
something to show for them. You should seriously consider creating quest items
that stand out visually. You know, what fun is that new fire sword you just got if it
looks like any other sword? The king of the offenders in this category is Ultima
Online. Only recently did they start to add items to the game that look somewhat
interesting. Even now, most magic items in the game look identical to their normal
counterparts.

Dynamic Questing System
As far as game design goes, you should design your game engine in such a way that
you can add and remove quests from the game without any code changes.
Normally, this requires an extensive scripting system, but in the end, you are better
off. The scripting system can even resemble code-like instructions, but it should
allow for dynamic loading of new scripts as you create them.

658 15. MMORPG Design and Implementation

Player Communities
One thing that always occurs in MMORPGs is the evolution of player communities.
Most people like to amass into groups, so you’ll see people join together and form
virtual communities within your game. The key to benefiting from this phenome-
non is encouraging community development.

Guilds
In most medieval adventure-type MMORPGs, the games allow for the creation of
guilds. A guild is a sort of club in which like-minded players join together. For
instance, you might have a thieves guild or a mages guild. The types of guilds really
don’t matter as long as like-minded players have the chance to band together.

One way to encourage guilds is to provide a formal in-game system in which players
can create, disband, and modify their own guilds. Ultima Online accomplishes this
with guild stones. In UO, you can purchase a guild stone for around 10,000 gold
pieces. Once a player has a guild stone, he can invite other players to join his guild.
He can also declare war on other guilds in the game. This allows for a certain
group mentality that just wouldn’t be possible without formal clubs.

Allegiance Systems
Another popular method for communities is allegiance systems. Asheron’s Call
employs this method quite effectively. In its allegiance system, players can swear
allegiance to other players. Each time someone swears allegiance to you, he
becomes your vassal. From that point on, whenever he gets experience points, you
get a little extra for being his patron. By giving patrons experience points, the
game encourages people to form alliances. It really boils down to a pyramid
scheme, but it does make for interesting play. To see how the pyramid works, look
at Figure 15.10.

Player Towns
Ultima Online actually lets players create their own towns. A player-run town is really
nothing more than a collection of player-owned housing. To add to the ambience
of the collection, the game masters in UO placed permanent decorations around
the area to make it look like a real town. This method is the ultimate example of a
player community. What better way to bring players together than to let them cre-
ate their own virtual village?

659Game Architecture

The Good, the Bad, and the PK
As I have mentioned before, some games let people kill each other in the game.
This can lead to all sorts of anti-social behavior, and if it is left unchecked, it can
wreck your entire game. If you must have player-versus-player combat, then I rec-
ommend that you set up dedicated areas where players can fight one another. I do
not recommend having open season on all players. Ultima Online suffered from
this, and many people quit the game. Origin finally came to its senses and created
a duplicate world in which player killing is not allowed. The funny part is that
everyone complained that the game would be ruined without player killing. Well,
guess what: The old PK lands are practically deserted now, and the new, non-PK
lands have more players than ever.

On the other hand, player killing can be an enjoyable experience for players. So
you might want to plan how to allow player killing for those who want to partici-
pate. The main thing I suggest is making it voluntary. Only let players fight other
players who have agreed to participate in that aspect of gaming. Some MMORPGs
require that players complete a PK quest to be able to fight other PKs. This ensures
that only PKs fight other PKs.

660 15. MMORPG Design and Implementation

Kala Bon
(Monarch)

Kala Kayla
(Vassal/Patron)

Thind Elous
(Vassal/Patron)

Sakei
(Vassal/Patron)

Sputnik The Great
(Vassal/Patron)

Fiona Pendragon
(Vassal)

Jenster
(Vassal)

Tokugawa Soshi
(Vassal)Vassals of Sakei

Figure 15.10

The allegiance system
in Asheron’s Call

Player Advancement
One thing common to all MMORPGs is that players get better with time. This is a
key success factor to the genre. If players don’t get any better over time, then why
should they keep coming back for more? The only real downside to this method of
gameplay is that you usually have to take out any physical skill factor. By physical
skill factor, I mean the skill it takes to play games such as Quake and Unreal. In those
games, some players are physically better at playing the games due to a mixture of
practice and reflexes.

In MMORPGs, players get better virtually over time. By this, I mean that their in-
game characters develop better skills and abilities as they play. Some physical skill is
required to play, but not as much as in other games.

Practice Makes Perfect
One common way to allow for character advancement is through practicing skills.
For example, take a fighter’s ability to use a sword. Each time the fighter uses his
sword, his skill increases a little bit. Over time, the fighter gets better at using his
sword. With better sword skill, the fighter has a better chance of hitting creatures
with every swing.

Measured Advancement
A good rule to follow is to let players see how they are advancing. The last thing you
want to do is keep players in the dark about how they are advancing in a skill.
Suppose you only give skill gains in whole points. The system might be keeping track
of the decimal place, but the player’s actual skill is based upon whole numbers. For
such a system, you want to at least show the player the decimal place for his skill. UO
made this mistake early on, and it frustrated many players. The problem was that it
could take weeks for a single skill point to go up. Because players could not see the
decimal place, they had to guess when the skill would finally increase a point. Origin
finally added the decimal place to the skill window, and now players can see how
they are progressing. Figure 15.11 shows the UO skill window.

Advancement Units
Players must be able to measure their advancement, but they also need something
by which to measure. Normally, this takes the form of experience points, levels, or
skill points. You really want players to be able to see a numerical representation of
their skill gains. If they have nothing tangible to represent their efforts, then they’ll

661Game Architecture

get discouraged. The ultimate solution is for players to actually change in physical
appearance according to their ability. Just think how cool it would be for a fighter
to appear more muscular as his strength increases. I think that with the advent of
3D graphics, this feature is not too far off.

Item Ownership
I touched upon the subject of ownership in previous chapters, and it is a very
important part of the MMORPG experience. All you have to do is look at eBay to
see how much people value virtual goods. Players in MMORPGs want stuff to play
with. A good rule of thumb is to let players buy only the essentials at in-game
stores. They should have to adventure to get good items. By doing this, you give a
sense of accomplishment to those who obtain the good equipment. You will also
find that players in the game trade items extensively.

Look, Shiny Objects
As strange as it might seem, players of MMORPGs like to have all of their equip-
ment color-coded. You will see players go to extreme lengths to acquire a whole suit
of black plate-mail. A good trick to keep players coming back for more is to color
items in the game. Ultima Online did this first by giving players the ability to dye
their clothing any color they wanted. Asheron’s Call came about and offered the
same thing with dye plants. They made a quest out of getting stuff dyed different
colors. In AC, players have to collect colored plants. Once they have enough of a

662 15. MMORPG Design and Implementation

Figure 15.11

The skill window in Ultima Online
(©2000 Electronic Arts.All rights

reserved.)

certain color, they take them to an alchemist and cook to convert them to dye. The
cook then applies the dye to the desired piece of armor. As long as the cook’s skill
is high enough, the player ends up with colored armor.

The bottom line here is that you should plan to
let characters create their looks in the game.
EverQuest suffers from a lack of options, and it
shows because many players in the game look
identical to one another. I think the main prob-
lem there is limited texture memory. When you
design a 3D world, you must keep in mind the
numbers of textures present onscreen at once.
You can’t go over the limit without slowing down
the game engine.

Server Architecture
One common question I see on game-development forums concerns what kind of
machine is required to operate an MMORPG. Well, my answer is several powerful
machines. You can’t run an MMORPG off your everyday PC. You must use powerful
servers if you hope to host a good number of players.

Server Specifications
Although production-ready MMORPGs require large servers, you can prototype
one on a relatively cheap machine. I recommend that you at least purchase the fol-
lowing hardware for your first server.

■ Dual 1GHz processors
■ 1GB of RAM
■ 40GB of SCSI storage
■ Two 100MBit Ethernet cards
■ Nvidia MX dual-head card

This system might set you back a little more than $1,000, but it is well worth it. Of
course, by the time you read this, you might want to up the specifications. The bot-
tom line is that you should buy the largest machine you can afford.

The reason I recommend the dual-head video card is that it supports two monitors.
The game server does not actually view the game, but you can use it to view all

663Server Architecture

TIP
You should create a texture
manager in your 3D games
to manage priority textures
in the game.When textures
are not in use, they should
be unloaded to make room
for active ones.

aspects of the game, such as database information. You will find that the game
server can have several information screens open at once. With two monitors, you
can view it all at once.

Internet Connection
As great as DSL or ADSL might seem, it really is not suited to host an MMORPG.
You need a T-3 line or better to host the actual game servers. In fact, you probably
need several T-3 lines in the end. Because these types of lines can be very expen-
sive, I suggest that you work out a deal with a local ISP. It might let you put your
own server at its place of business for a piece of the action. I have found ISPs that
let me house a server on their Internet backbones for as little as $250 per month.

One good thing about MMORPGs is that you can spread them out across multiple
servers. By doing this, you can put each server on its own Internet connection. This
might let you get by with a lower cost than having to lease one huge line.

Server Layout
One question you might be asking is why you would need multiple game servers.
Well, you want to distribute the load across multiple machines. In MMORPGs, it is
not unheard of to have thousands of players playing at the same time. It is unlikely
that you could handle all of them on one computer, so you must distribute the
players across multiple servers.

Zone Servers
As I mentioned in previous chapters, a common way to distribute players is by
using zones. The RPGQuest game in Chapter 16, “Writing the RPGQuest Game
Server,” uses a zone method even though there is only one game server. The pur-
pose of the zone method is so you can house each zone on its own server if you
want. Whenever you want to add new areas to your game, you just add a new server
to handle it. This can get to be quite expensive over time, though, because you will
eventually have too much overhead to add new places in the game. To see how you
can lay out zone servers, take a look at Figure 15.12.

Game Cells
Another method for handling the distribution of players is creating a cell system of
servers. The game world is divided into hundreds of cells. Within each cell are n
number of players at one time. Each server is given n number of cells to maintain. If

664 15. MMORPG Design and Implementation

a game cell gets too many players in it, the cell is divided into two, and half the play-
ers are sent to another server. All of this happens behind the scenes and without the
players’ knowledge.

The game cell method is pretty cool because each game cell is dynamically handled
by a particular game server. If a game server gets too many loaded-down cells, it
can transfer some of its cells to another server. You can check out one company
that claims to be using a similar method, at http://www.bigworldgames.com.

Server Security
All of your game servers should sit behind at least one firewall. You should only
open up the ports that are absolutely necessary to host the game. This rule is very
important because a single hacker can financially ruin you. You should also follow
some other rules to prevent security problems.

■ Disable pinging to your server; this keeps people from slamming your server
with too many ping requests.

665Server Architecture

Shared Storage

100 Game Clients 50 Game Clients 125 Game Clients

Zone 1
Zone 2

Zone 3

Figure 15.12

Zone server layout

http://www.bigworldgames.com

■ Keep your operating system up to date with the latest security patches.
It surprises me to see how many server administrators fail to follow this
simple rule.

■ Do not share any folders or drives that reside on your server. You should not
have any shared directories open on your server.

■ Do not store any game data on the main Internet server. You should keep all
game data stored on servers within your private network.

■ Use complicated passwords. Never use user names such as SA. I recommend
that you use the most complicated password you can think of. You should
mix uppercase and lowercase with numerical characters as well. Also, be sure
to change your password at least once per week.

I cannot stress enough how important it is
to be vigilant in the area of server security.
The day your game becomes popular, you
will have tons of immoral hackers trying to
take it down. I recommend that you pur-
chase several books on security because I
cannot even begin to scratch the surface
here.

Data Stream Security
Not only must you physically protect your game servers, but you must also protect
the data stream between the server and its clients. One problem with MMORPGs is
that many game players will try to hack into the data stream. They invent all sorts
of neat utility programs to intercept game packets and mess with them.

You can follow simple or even complex methods to prevent the hacking of your
data stream. One easy method is to bit-shift the data within packets. This makes it a
little difficult to interpret. Because hackers have to reverse-engineer your game
packets, you can at least make it hard for them to recognize patterns in the data.

Another method to maintain data-stream security is to actually encrypt the packet
data. Many utilities out there will let you encrypt data, and they can be quite useful.
The main problem with packet encryption is that it slows things down. Not only
does the server have to encrypt tons of data, but also the player ends up having to
decrypt it on his end.

666 15. MMORPG Design and Implementation

TIP
The Security Focus Web site
offers great articles and utilities
regarding system security.Visit it
at http://www.securityfocus.com
for more information.

http://www.securityfocus.com

The best rule for data-stream security is to not rely on the data stream for integrity.
You should never let a player tell the server something and take it at face value. If a
player sends me his coordinates, I am not going to accept them blindly. I first
check to see whether he should be in that location before I accept it. The bottom
line here is that the best protection is to not trust the client at all.

Player Validation
Because players for any type of MMORPG have to establish an initial connection to
the game, you need a place for them to connect. Usually, you don’t want them to
connect to any of the game servers. Instead, you can create a central place for
them to connect. The place where players establish their initial connection to a
game world is called the login server.

The login server’s role is to accept new player connections, validate their account
information, and send them to the appropriate game server. By letting the login
server handle connections, your game servers can concentrate on actual game
events. The other benefit to having a login server is that players don’t have to know
the IP addresses for the game servers; they only have to know the address of the
login server. You can see this illustrated in Figure 15.13.

Client Architecture
The game clients in MMORPGs have to take care of all the graphical elements in
the game. Because game servers don’t deal with graphics, the client is on its own in
this department. Clients are really not that complicated when it comes to
MMORPGs. The main reason is that they only have to worry about one thing, the
game server. All information, whether request or response, is sent through the
game server.

Action Validation
Take, for example, when the player wants to move forward. The client doesn’t actu-
ally move the player forward; rather, it requests a move forward from the server. If
the server accepts the movement, the player gets to move. Sometimes, it is a good
idea to let the player start moving anyway; you just might pop him back into place
if he tries to go to an illegal location.

667Client Architecture

The reason MMORPGs are designed this way is that clients cannot be trusted.
It’s unfortunate that human nature forces this type of system, but it is a necessary
precaution.

Dynamic Patching
One cool feature about online games is that you will see a lot of game patching.
Because MMORPGs are dynamic systems, client software must be updated through-
out the lifespans of the games. When you design a game client, you should incor-
porate a patching mechanism. The first thing the client should do is check for
updated client software. If a new patch is available, then the client downloads the
patch and upgrades itself. This allows for some cool stuff because you don’t have to
worry about new updates; the client automatically downloads them. Look at Figure
15.14 to see Ultima Online’s patch GUI.

668 15. MMORPG Design and Implementation

Login Server

100 Game Clients 50 Game Clients 125 Game Clients

Shared Storage

Zone 1
Zone 2

Zone 3

Figure 15.13

The login server
architecture

Client Portability
I recommend that you create your game clients in such a way that they can be
ported to multiple operating systems. Because all of the hard stuff is handled by
the servers, clients shouldn’t be too difficult to design in a nice, clean, object-
oriented fashion.

Multiple Clients
Another cool part about MMORPGs is that you could technically have different
types of clients out there. Just take a look at Ultima Online Third Dawn to see this
effect. It has one 3D client, but another client is 2D-based. Because the servers only
care about the data stream, it doesn’t matter what the client looks like. As long as
the data transfer between client and server is compatible, it doesn’t matter which
operating system or graphics system is present on the client.

The User Interface
It is interesting to note that most MMORPGs have complicated user interfaces.
Some could attribute it to the depth of the genre; others might attribute it to bad
design. Personally, I never mind a complicated display as long as it doesn’t distract
from gameplay.

A good rule to follow is that if you are designing a massively multiplayer game for
consoles, then you want a very simple interface. If you are designing for personal
computers, then you can get away with more elements. No matter what you do,
though, you should let players configure their displays to their liking. At the very
least, let players set their own keyboard configuration. Figure 15.15 shows how
Asheron’s Call does this.

669Client Architecture

Figure 15.14

Patching the game client in
Ultima Online

Review
In this chapter, you have learned some of the key elements to designing and imple-
menting an MMORPG. Some of the key points are as follows.

■ Off-the-shelf database packages can save you time and money for your data
storage solution.

■ Always maintain a robust backup system for your game world. Customers will
not put up with losing hard-earned progress.

■ Pre-plan your network architecture. Be sure to include several layers of secu-
rity between your game data and the outside world.

■ Design your game world around a scripting system. This allows you to add
content dynamically to the game world, which will keep players interested.

■ Architect your load-balancing schema early on to avoid problems when your
game becomes popular.

■ Be sure to reward players for their time investment in the game. Players should
see a noticeable difference as their characters gain experience and power.

■ Validate all critical player actions. When your game is popular, people will try
to hack into it.

Well, it has been a shorter visit than usual, but you are finished with this chapter. In
the next two chapters, you will see the beginnings of an MMORPG. See you soon!

670 15. MMORPG Design and Implementation

Figure 15.15

The keyboard configuration
screen in Asheron’s Call

CHAPTER 16

Writing the
RPGQuest

Game
Server

Now that you have seen the basics of game-server design, you can begin to
write your own applications. In this chapter, you will learn how to write the

server for a client/server-based persistent-world game. In this case, the game is
called RPGQuest. It is a simple game system in that it allows players to create
accounts, log in, and run around the game world. When a player leaves, his posi-
tion and orientation are saved for the next time he logs in. The only rule in the
game is that players cannot go outside of the arena boundaries, and they cannot
go through obstructions.

I will discuss the following points in this chapter.

■ How to set up the project space
■ Game play mechanics
■ Account authorization and storage
■ Message queuing
■ Processing player messages
■ Updating time of day
■ Updating player data

The RPGQuestGameServer project, located in the Chapter16 Zip file on the book’s
CD, contains all of the files necessary for the RPGQuest server application. Go
ahead and load it up now so you can get started with the code. To see the client’s
view of RPGQuest, look at Figure 16.1.

The Game Project Space
The project space for the RPGQuest game server is rather simple considering the
server doesn’t have to handle the graphics for the game. The only two unusual
libraries required are winmm.lib and dplay.lib. The required list of files can be seen
in Table 16.1.

Before I go into the code too much, I think you need to know what RPGQuest is all
about.

672 16. Writing the RPGQuest Game Server

673The Game Project Space

Figure 16.1

RPGQuest from the
client’s view

Table 16.1 RPGQuest Project Files

File Description

RPGQuestGameServer.cpp Main program

RPGQuestGameServer.h Main header file

dxutil.cpp Utility code file

dxutil.h Utility header file

dplay.lib DirectPlay library file

winmm.lib Windows multimedia library, used for
timeGetTime()

RPGQuest Gameplay
The title for the game might be a little deceiving because there is no role-playing
present, but nothing is keeping you from adding some! Basically, RPGQuest has
three zones. Each zone is accessible through a doorway. When players get close
enough to one of the doors, they are sent to the appropriate zone.

Players who connect to the game can see other connected players via their avatars.
An avatar in a game is nothing more than an object representing another player. In
RPGQuest, each player looks like a floating cube-like head. Check out Figure 16.2 to
see the player avatar.

You might be wondering why I chose a floating cube head. Well, as it turns out, the
space marine I’d originally planned involved an additional 3,000 polygons in the
scene. This brought some machines to their knees. So, I resorted to a super-low
model with only enough faces to form a cube. The good part is that the rest of the
graphics look pretty decent.

The Zones
As I said earlier, the game has three zones. In each zone, you must keep track of
obstacles and portals to other zones. This is important because as the server, you

674 16. Writing the RPGQuest Game Server

Figure 16.2

The player’s avatar in
RPGQuest

must confirm or deny player movement. Currently, the code uses standard bound-
ing boxes to determine player collision with the scenery. A production game would
probably use a more precise method such as vertex-to-vertex collision detection,
but it gets the point across well enough here. Look at Figure 16.3 to see the colli-
sion areas in the first game zone.

Not only does each zone have its own set of collision boxes, but each zone also
has its own 3D data. I created the zones in 3D Studio MAX and then saved them to
x-files. Figure 16.4 shows how the first zone looks in the 3D program.

Account Verification
RPGQuest uses a flat-file system for game-data storage. Each player has his own file
that is stored in the PlayerData folder. If a player connects with a user name that is
not known to the server, a new account is created for that player. If a player con-
nects to the game with a registered account, then the password is checked versus
the one saved for that player. If his password fails, then he is not given access to
the game.

The player data files also store the last position of the player. Whenever a player
logs out of the game, his position is saved so that he can resume where he left off.

675The Game Project Space

Figure 16.3

Collision areas in the
merchant zone

Wall

Arena
Zone

Waste
Zone

Pillar

Building Obstructions

I suggest that you experiment with the player files by adding new and interesting
information to store. Perhaps you can add attributes and skill levels. Take a look at
Table 16.2 to see the current layout of the player data file.

676 16. Writing the RPGQuest Game Server

Figure 16.4

The merchant zone
in 3D Studio MAX

Table 16.2 Player Data File Layout

Data Type

Player rotation Floating-point value, in degrees, stored in the fRot data
member

Player X coordinate Floating-point value stored in the vecCurPos data member

Player Y coordinate Floating-point value stored in the vecCurPos data member

Player Z coordinate Floating-point value stored in the vecCurPos data member

Player zone Integer stored in the iZone data member

Player password Character buffers stored in the szPassword data member

Player Commands
The controls for the game are pretty basic because all the player can do is move
around the game zones. Because the server is responsible for all movement verifica-
tion, all the client gets to send from a movement perspective are angle and velocity
change requests. You can look at the vProcessMessages() function to see the various
messages processed by the server.

From the player’s point of view, there are a few steps involved in playing the game.

1. Connect to the server.

2. Submit password.

3. Receive credential confirmation.

4. Move around the game.

Program Structure
The game-server code is laid out very much like the code in the chat server
program covered in Chapter 10, “Lions and Clients and Servers, Oh My!” The main
difference with RPGQuestGameServer is that it does not react to messages immedi-
ately in the DirectPlay message-handling loop. Instead, the program adds them to a
queue to be processed later with the vAddMessage(), iGetMessage(), and
vProcessMessages() functions.

Message Queuing
The main reason messages are queued is that the DirectPlay handler does not
accept messages while others are being processed. In a message-intensive application
such as a game server, you want to spend as little time as possible handling mes-
sages. When you put the messages into another
queue, they can be processed later without
holding up current incoming messages.

The second reason messages are queued is
that you would run into threading problems if
you altered player data in the DirectPlay mes-
sage handler. You see, the DirectPlay message
handler runs in its own thread and can be
called at any time. If you happened to be alter-
ing the player data when a message came
through, the program might try to alter the

677The Game Project Space

CAUTION
Always be very careful when
modifying global data within a
threaded function. If you do
not handle it properly, you can
crash the computer.The best
practice is to use critical sec-
tions or mutexes whenever
you modify global data.

player data at the same time. This can result in the blue screen of death on
Windows machines.

Player Handling
Because all network messages are put into the message queue, the game server only
has to worry about handling player data within the vProcessMessages() function.
Within this function, the server retrieves all player commands and processes them.

The other area of interest for player processing is the WinMain() function. Within
the main message handler, the game server calls the vUpdatePlayers() function.
This function updates player positions and verifies player movement. If a player
hits an obstruction or needs to go to another zone, it is handled within this func-
tion. To see how the game server is laid out, check out Figure 16.5.

As you can see from Figure 16.5, the server program does not have too many main
components. Most of the code actually performs various player logic functions. For
the most part, the game server is just like the chat server program. Of course, the
game server has a lot more logic to it. Hey, I was just flipping through Linux Game
Programming (Prima, 2001), and it is pretty cool. Maybe I’ll try my hand at writing a
Linux-based game after I’m done with this book. Oh, wait; my wife just reminded
me that I have about 100 things to do around the house first. Oh, well. . . .

The Game-Server Code
Wow, doesn’t that title say it all? “The Game-Server Code!” Okay, you can go home
now; you are done here. What’s that? You want to know how the code works? Oh,
okay; here you go.

678 16. Writing the RPGQuest Game Server

Windows LoopDirect Play Initialization
Update Time Of

Day
Update Players

Process
Messages

Message
Queue

GAME-SERVER
APPLICATION

Figure 16.5 Main components of the RPGQuestGameServer program

The WinMain() Function
It all comes down to this, the WinMain() function. By this time, you should be very
familiar with this function. The WinMain() function is the function required by
Windows programs to handle the functionality for the program. Its equivalent in
the rest of the world is the Main() function you see in most other types of programs.
All right, enough nostalgia. For the game-server project, the WinMain() function
accomplishes the following tasks.

1. Create the server window.

2. Initialize DirectPlay.

3. Host the game world.

4. Process game messages from clients.

5. Update world time of day.

6. Update player positions and settings.

Creating the Server Window
The server window is a pretty basic-looking application window whose main pur-
pose is to display game-world information. You can look at Figure 16.6 to see the
server window in action.

Looking at Figure 16.6, you can see that there are only two elements to the window,
an output box and an input box. The input box is for future functionality where
you might want to issue server commands. For now, you won’t use it. The output

679The Game-Server Code

Figure 16.6

The game server window

box shows various server-side messages such as when players join or exit. The fol-
lowing vCreateInterface() function creates these two elements.

void vCreateInterface(HWND hWnd,HINSTANCE hInstance)
{

// Output window
hLB_Output = CreateWindowEx(

WS_EX_CLIENTEDGE,
“LISTBOX”,
NULL,
WS_CHILD | WS_VISIBLE | LBS_NOTIFY | WS_VSCROLL | WS_BORDER,
5, 5, 580, 340,
hWnd,(HMENU)IDC_hLB_Output,hInstance,NULL);

// Edit field to enter chat messages into
hEB_InputField = CreateWindowEx(

WS_EX_CLIENTEDGE,
“EDIT”,NULL,
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT | ES_AUTOVSCROLL |
ES_MULTILINE,
5, 340, 580, 30,
hWnd,(HMENU)IDC_hEB_InputField,hInstance,NULL);

}

As you can see, this code creates two Windows elements, a LISTBOX and an EDIT box.
There is nothing very special here, just your run-of-the-mill Windows controls.

Initializing DirectPlay
The next task is initializing DirectPlay. This step should also be familiar to you by
now because it follows the pattern of its predecessor, the chat server program. If
you look at WinMain(), you’ll see the following piece of code.

// Initialize DirectPlay
hReturn = hrInitializeDirectPlay(hWnd);
if(FAILED(hReturn)) {

vCleanup();
exit(1);

}

The hrInitializeDirectPlay() function is called here. If the function returns as
FAILED(), then the code calls the vCleanup() function to clean up the program
environment before exiting.

680 16. Writing the RPGQuest Game Server

The hrInitializeDirectPlay() Function
The hrInitializeDirectPlay() function is similar to server-initialization functions of
the past. Five main actions take place in this function, as far as communication is
concerned.

■ Initialization of COM
■ Creation of the IDirectPlay8Server interface
■ Initialization of the message handler
■ Creation of the IDirectPlay8Address interface
■ Setting the service provider to use TCP/IP

Initializing COM

Because DirectX is COM-based, you must initialize COM before creating objects for
it. This is all handled using the all-too-familiar CoInitialize() function. The follow-
ing code initializes COM for the game server.

hReturn = CoInitialize(NULL);
if(FAILED(hReturn)) {

MessageBox(hWindow, “Error Initializing COM”, “DirectPlay Error”,
MB_ICONERROR);

return hReturn;
}

The Critical Sections

One new item of note for this project is the inclusion of two critical sections.
Sample programs of the past used only one critical section for player data. Well,
this game server needs another one for the message-queuing mechanism.

// Initialize critical sections for multithreading
InitializeCriticalSection(&g_csModifyPlayer);
InitializeCriticalSection(&g_csMessageSection);

The ModifyPlayer critical section locks any changes to global player data. The
MessageSection critical section locks any changes to the global message queue.

Creating the DirectPlay Interfaces

To run a server with DirectPlay, you must create at least two interfaces, one for the
server interface and one for the address interface. You accomplish this step using
the CoCreateInstance() function you have come to love. If you look at the code,
you’ll see that two interfaces are created in this manner.

681The Game-Server Code

if(FAILED(hReturn = CoCreateInstance(CLSID_DirectPlay8Server,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Server,
(LPVOID*) &g_pDPServer)))

MessageBox(hWindow, “Can’t Create DPlayServer”, “DirectPlay Error”,
MB_ICONERROR);

In this code, you can see the IDirectPlay8Server interface being created. This inter-
face performs all server-required functions.

The second interface created, the IDirectPlay8Address interface, specifies the type
of connection the server requires. In the game server’s case, the address is the
internal NIC card or modem that the server uses for its Internet connection.

Setting the Message Handler

One of the most important steps that you must not forget is the initialization of the
function to handle all DirectPlay communication. This function will receive all mes-
sages from clients. The RPGQuestGameServer uses the DirectPlayMessageHandler()
function to receive all client messages. To set the function to receive messages, you
use the Initialize() member function of the IDirectPlay8Server interface.

Setting the Service Provider

So far, all the programs I have shown you use TCP/IP as the means of communica-
tion. You can feel free to try other methods, but I prefer TCP/IP, especially for
game servers. You will be hard-pressed to write an efficient game server that sits on
a 28.8K modem! The code to set the service provider is as follows.

// Set our service provider to TCP/IP
if(FAILED(hReturn = g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

MessageBox(hWindow, “Failed to SetSP() for Device Address”,
“Invalid Param”, MB_ICONERROR);

return -1;
}

If you look at this code, you can see that the
SetSP() member function of the
IDirectPlay8Address interface sets up TCP/IP
as the service provider.

The last few lines of code in the initialize func-
tion deal with deactivating players and sending

682 16. Writing the RPGQuest Game Server

NOTE
The GUIDs for the various ser-
vice provider types appear in
the dplay8.h header file that
comes with the DirectX SDK.

a message to the server window. Since that is out of the way, you can move on to
hosting. To see what was accomplished in this function, take a look a Figure 16.7.

Hosting the Game World
The next part of WinMain() deals with hosting the game world using the
hrHostGame() function. Because the game server should always be active, there is no
need to tie the host functionality to a keypress or command. That is why this partic-
ular program just hosts immediately.

The hrHostGame()
Function
The hrHostGame() function is similar to the
host functions of previous examples; the
main difference here is that the port num-
ber is hard-coded. There is no real reason I
have it hard-coded; I mainly did it to keep
the code simple.

683The Game-Server Code

DirectPlay Initialization

Initialize
COM

Create
Critical

Sections

Initialize
Message
Handler

Create
Device

Address

Set TCP/IP
as Service

Provider

Figure 16.7

The hrInitializeDirectPlay()
function

NOTE
Hard-coded values are fine for
demonstration programs and
prototypes, but you should
always soft-code settings for pro-
duction games and applications.

If you look closely at the hrHostGame() function, you’ll see that it accomplishes a few
key steps. It

■ Sets up the server information
■ Sets the application description
■ Adds the port number component to the address
■ Hosts the game

Setting the Server Information

You must set up the server’s information so that players know the name of the
game session, among other things. You do this by setting up a DPN_PLAYER_INFO data
structure with the pertinent data. Once the data structure is set with the proper
data, you call the SetServerInfo() function. The SetServerInfo() function belongs
to the IDirectPlay8Server interface that you created earlier.

DXUtil_ConvertGenericStringToWide(wszServerName, “RPGQuest Server”);
ZeroMemory(&dpPlayerInfo, sizeof(DPN_PLAYER_INFO));
dpPlayerInfo.dwSize = sizeof(DPN_PLAYER_INFO);
dpPlayerInfo.dwInfoFlags = DPNINFO_NAME;
dpPlayerInfo.pwszName = wszServerName;
// Set us up to be non-asynchronous
if(FAILED(hReturn = g_pDPServer->SetServerInfo(&dpPlayerInfo, NULL,
NULL, DPNSETSERVERINFO_SYNC))) {

MessageBox(hWindow, “Failed to SetServerInfo()”, “Unknown Error”,
MB_ICONERROR);

return -1;
}

684 16. Writing the RPGQuest Game Server

NOTE
Don’t forget that all string parameters in
DirectPlay use wide character strings.You can
always use the very useful dxutil functions,
such as DXUtil_ConvertGenericStringToWide(),
to help with conversions.

Setting the Application Description

You might recall that the application description for DirectPlay games describes the
game in terms of communication. Different information such as the maximum
number of players and the type of game is defined here. You define this by loading
a DPN_APPLICATION_DESC data structure with the appropriate information.

ZeroMemory(&dnAppDesc, sizeof(DPN_APPLICATION_DESC));
dnAppDesc.dwSize = sizeof(DPN_APPLICATION_DESC);
dnAppDesc.guidApplication = GUID_GAMESERVER;
dnAppDesc.pwszSessionName = wszSessionName;
dnAppDesc.dwMaxPlayers = MAX_PLAYERS;
dnAppDesc.dwFlags = DPNSESSION_CLIENT_SERVER;

In this code, the program sets the game to be of client/server architecture. It also
sets the GUID that identifies the application for other programs out there. The
maximum number of players is set to a define value in the header file for the game
project. In this scenario, the maximum number of players is set to 64.

Setting the Port Number

As with any good sockets-based program, the game server must specify the port
used to accept player connections with the AddComponent() function.

hReturn = g_pDeviceAddress->AddComponent(DPNA_KEY_PORT,&dwPort,
sizeof(DWORD),DPNA_DATATYPE_DWORD);
if(hReturn != S_OK) {

MessageBox(hWindow, “Failed to AddComponent()”, “hrHostGame()”,
MB_ICONERROR);

return -1;
}

If you look at this code, you’ll see that I
pass a DPNA_KEY_PORT keyword to the func-
tion. This tells the function to add a port
number setting to the host address.

The IDirectPlay8Server::
Host() Function

The Host() function kicks off the actual
game-hosting process. It requires the device
address and application description that you have so diligently created. If all things
go well, then the game is hosted and the server can await client connections. To see
what was accomplished in the host function, look at Figure 16.8.

685The Game-Server Code

NOTE
The key names for the various
components appear in the
dpaddr.h header file that comes
with the DirectX SDK. Just
search for DPNA_KEY_PORT in that
file, and you will see the others.

The Windows Message Loop
The Windows message loop, which should not be confused with the DirectPlay
message loop, processes all Windows messages. Back in the WinMain() function, you
can see the loop in action.

ZeroMemory(&msg, sizeof(msg));
while(msg.message != WM_QUIT) {

if(PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
else {

// Read player messages
vProcessMessages();
if(timeGetTime() > dwGovernor+33) {

// Update players and execute pending actions
vUpdateTimeOfDay();
vUpdatePlayers();
dwGovernor = timeGetTime();

}
}

}

686 16. Writing the RPGQuest Game Server

The Host Function

Set Up Server�
Information�

Add Port#�
Component to�
the Address
�

Host the�
Game

�
�

�

Figure 16.8

The hrHostGame() function

Basically, the message loop sits there and constantly checks for Windows messages. If
one is found, it is sent to the fnMessageProcessor() function to be handled. The game
server program does not do much with standard Windows messages, so it is pretty
plain. It’s the other functions present in the message loop that deserve attention.

Processing Player Messages
The vProcessMessages() function present in the WinMain() portion of the program
processes all communications from clients. If you take a minute to study the code,
you’ll see that it loops through a maximum of 250 pending messages and acts upon
them.

while((iMessage = iGetMessage()) != -1 && iCount < 250) { … }

The code snippet here shows where the loop begins. To pull the next message out
of the queue, the vProcessMessages() function calls the iGetMessage() function. As
long as iGetMessage() does not return a –1, the message processor knows to con-
tinue. Take a look at the different types of messages.

■ PACKET_TYPE_CREATEPLAYER

■ PACKET_TYPE_DESTROYPLAYER

■ PACKET_TYPE_SUBMITPASSWORD

■ PACKET_TYPE_ANGLE

■ PACKET_TYPE_VELOCITY

■ PACKET_TYPE_REQUESTPLAYERINFO

The Create-Player Message
The create-player message works just as it did in previous program examples. When
a player requests to join the game, he sends a create-player message. The code here
shows how the call is processed.

if(gameMessage[iMessage].iType == PACKET_TYPE_CREATEPLAYER) {
vShowText(hLB_Output,”Creating Player”);
hrCreatePlayer(gameMessage[iMessage].byteMessageBuffer);
continue;

}

687The Game-Server Code

If you look at the code, you’ll see that the hrCreatePlayer() function is actually
called to create the player.

The hrCreatePlayer() Function
The hrCreatePlayer() function activates a player slot in the game. Because all player
data is stored in the PlayerInfo[] array, the new data is updated there. The create-
player function accomplishes the following tasks.

■ Retrieves information about the client
■ Finds and activates an empty player slot
■ Requests a password from the player
■ Increments the number of active players

Retrieving Information about the Client

Before the game server can process the new player request, it must find out valu-
able information about the client, such as its name. It does this with the
GetClientInfo() function that belongs to the IDirectPlay8Server interface. Once the
call is made, the pointer to the DPN_PLAYER_INFO data structure is loaded with the
pertinent information.

Activating the Player

Information about the players in the game is stored in the PlayerInfo[] data struc-
ture array. The bActive member variable in the array indicates whether a slot is
open. If the slot is not active, then a player can be allocated there. The following
code finds the free slot.

// Add player to list
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(!PlayerInfo[i].bActive) {
PlayerInfo[i].bCredentialsAccepted = 0;
PlayerInfo[i].bActive = 1;
PlayerInfo[i].dpnidPlayer = pCreatePlayerMsg->dpnidPlayer;
strcpy(PlayerInfo[i].szPlayerName,strName);
vRequestPlayerPassword(i);
break;

}
}

688 16. Writing the RPGQuest Game Server

Requesting the Password

The program loops through the player information array and checks for an inac-
tive player slot. Once one is found, it is activated and filled with the player’s DPNID
and name. After that is accomplished, the vRequestPlayerPassword() function is
called to request the player’s password.

The vRequestPlayerPassword() Function I organized most of the packet-sending
logic into specialty functions, which makes it a little easier to follow what is happen-
ing. One of the most important of these functions is the vRequestPlayerPassword()
function. This function tells the player that he needs to send his password for
account verification. If his password does not match, then he is not allowed to play.
This is accomplished with a call to the hrSendServerMessage() function.

void *packet;
PacketGeneric pacPass;
vSendUniqueMessage(iplayer,”Server Requesting
Credentials”,D3DCOLOR_RGBA(255, 255, 255, 255));

pacPass.dwSize = sizeof(PacketMessage);
pacPass.dwType = PACKET_TYPE_REQUESTPASSWORD;
packet = (VOID*)&pacPass;
hrSendServerMessage(iplayer,pacPass.dwType,packet,DPNSEND_GUARANTEED);

The main item of note here is the
DPNSEND_GUARANTEED value passed to the flag’s
parameter. The password request is necessary
to gameplay, so it is sent using guaranteed
delivery. You will find that most of the other
packets in the game use non-guaranteed
delivery. Check out Figure 16.9 to see the
flow of the program when processing the
create-player message.

The Destroy-Player Message
Whenever a player leaves the game, he generates a destroy-player message. You
handle the message by calling the hrDestroyPlayer() function. The
hrDestroyPlayer() function is rather basic because all it has to do is deactivate the
player who has left the game.

689The Game-Server Code

NOTE
Guaranteed packet delivery is
extremely slow when compared
to non-guaranteed delivery. Use
guaranteed delivery only for
mission-critical messages.

The hrDestroyPlayer() Function
In the hrDestroyPlayer() function, the program loops through the player data array
and looks for a matching DPNID. Once the match is found, the player is deactivated.

HRESULT hrDestroyPlayer(PVOID pMsgBuffer)
{
PDPNMSG_DESTROY_PLAYER pDestroyPlayerMsg;
HRESULT hReturn = S_OK;
int i;
char szOutput[256];

// Get a destroy message pointer to the buffer
pDestroyPlayerMsg = (PDPNMSG_DESTROY_PLAYER)pMsgBuffer;
// Update the number of active players in a thread-safe way
InterlockedDecrement(&g_lNumberOfActivePlayers);
// Remove player from list

690 16. Writing the RPGQuest Game Server

Creating a Player

Decode the
Message

Get Client
Information

Loop Through
Player List

for Open Slot

Activate
Player

Send Password
Request
Message

Increment Number
of Players

Figure 16.9

Creating a player

for(i = 0 ; i < MAX_PLAYERS ; i++) {
if(PlayerInfo[i].bActive) {

if(PlayerInfo[i].dpnidPlayer == pDestroyPlayerMsg->dpnidPlayer) {
PlayerInfo[i].bActive = 0;
sprintf(szOutput,”<Slot%d><%s> Left The Game”,i,
PlayerInfo[i].szPlayerName);

vShowText(hLB_Output,szOutput);
// Save the player information for next login
bSavePlayerInfo(i);
vInformOfRemoval(i);
break;

}
}

}
return(hReturn);
}

The bSavePlayerInfo() Function

There are a couple of new functions here—bSavePlayerInfo() and
vInformOfRemoval(). The bSavePlayerInfo() function is called to save the current
position and orientation of the exiting player. You do this so that the next time the
player logs on, he will start where he left off.

The vInformOfRemoval() Function

The vInformOfRemoval() function, which is called after the save-player function, tells
all of the other players that someone has left. You accomplish this by sending a
PACKET_TYPE_REMOVEPLAYER packet to all other players in the game.

PacketRemovePlayer pacRemove;
void *packet;
int i;
pacRemove.dwSize = sizeof(PacketRemovePlayer);
pacRemove.dwType = PACKET_TYPE_REMOVEPLAYER;
pacRemove.iPlayerID = iplayer;
packet = (VOID*)&pacRemove;
for(i=0;i<MAX_PLAYERS;i++) {

if(PlayerInfo[i].bActive) {
if(i != iplayer) {

hrSendServerMessage(i,pacRemove.dwType,packet);
}

}
}

691The Game-Server Code

The program loops through the list of players and sends the removal message to all
active players. If you look at the code, you’ll see that it also makes sure not to send
a removal message to the player who is leaving. I’ve jumped around a bit showing
you the destroy-player function, so take a look at Figure 16.10 to see the flow.

The Submit-Password Message
The next message type checked is the password-submission message. This message
type is sent from players who are trying to authenticate their connections. Once the
packet is processed, the program calls the bValidatePlayer() function to validate
the submitted password.

692 16. Writing the RPGQuest Game Server

Destroying a Player

Decode the
Message

Decrement the
Number of

Players

Loop Through
Player List
for Match

De-activate
Player

Save Player
Information

Inform Other
Players

Figure 16.10

Flow of the program for destroying a player

The bValidatePlayer() Function
The bValidatePlayer() function validates player-submitted credentials. If the player’s
password is accepted, a 1 is returned. Upon failure, the function returns a 0.

This function involves two main logic paths. The first logic check sees whether the
player account can be loaded. All player accounts are based on data files stored in
the PlayerData folder on the game server’s hard drive. So to check for an existing
player, the program must only try to load the data file. If the data file does not
exist, then this is a new player trying to connect. In this case, a new account is cre-
ated using the supplied password. The vCreatePlayerAccount() function handles the
creation of the account.

If the player data can be loaded, the submitted password is checked against the
loaded one. If the two passwords match, the player is accepted and a 1 is returned.

The vCreatePlayerAccount() Function

The vCreatePlayerAccount() function is rather straightforward because all it has to
do is call the bSavePlayerInfo() function with the new player information.

void vCreatePlayerAccount(int iplayer, char *szpassword)
{

PlayerInfo[iplayer].bCredentialsAccepted = 1;
strcpy(PlayerInfo[iplayer].szPassword,szpassword);
PlayerInfo[iplayer].iZone = 0;
bSavePlayerInfo(iplayer);
vSendUniqueMessage(iplayer,”New Player Account Created!”,
D3DCOLOR_RGBA(255, 255, 255, 255));

}

Before the function calls the save-player function, it sets the player’s zone to the
first zone in the game. The player’s password is also copied over to ensure proper
saving. After everything is taken care of, the server sends a message to the player
informing him of his new account status.

The vZonePlayer() Function
Once a player is validated, he needs to know which zone he logged off from, so you
call the vZonePlayer() function. In this function, the player is sent which zone he
needs to be in and what his position should be. Because you don’t just pop into
new zones in your current position, this step is necessary.

693The Game-Server Code

To update the player with his new position, you make a call to the
vUpdatePlayerPosition() function. This function does nothing more than send a
position update packet to the player.

Once the player has his new position, his arrival is broadcast to all the players in
the new zone. Not only is the zoning player’s information sent to all those in the
new zone, but the zoning player also receives information about everyone in the
zone. This happens so all the players involved are kept up to date about who is in
their zone. Figure 16.11 might make this functionality a little easier to digest.

The Angle Message
When a player wants to rotate his avatar, he sends an angle change message to the
server. This message takes form as the PACKET_TYPE_ANGLE message type. There is not
much work required to process the actual angle message; all the server has to do is
acknowledge the message and send the new heading to all other players involved.
To send the new heading to everyone, the angle handler calls the
vSendPlayerAttitude() function.

The vSendPlayerAttitude() Function
The vSendPlayerAttitude() function sends a player’s rotation, velocity, and position
to other players in the game. It can also send the player’s information to himself.
This functionality is built in so that the server can tell a player to adjust his move-
ment. The following code sends the player’s own statistics.

if(bEcho) {
// Send the message to the player
pacAttitude.iPlayerID = -1;
hrSendServerMessage(iplayer,pacAttitude.dwType,packet,
DPNSEND_GUARANTEED);

}

The bEcho flag tells the function to echo the packet to the player who the attitude
involves. So when you want to echo the attitude, just set this flag to TRUE.

The Velocity Message
The velocity message works just like the angle message except that the player’s
velocity is changing, not his angle. Whenever a player accelerates or decelerates, he
sends the velocity-change message. Once the server receives the message, it
processes it and then broadcasts it to all other players involved. This all works in
the same way the angle packet does.

694 16. Writing the RPGQuest Game Server

The Request-Player-Information
Message
The PACKET_TYPE_REQUESTPLAYERINFO is sent by a client when it wants information
about a player that it does not recognize. There are a few scenarios in which this
might happen; the main one is a player who misses the zoning packet. Anyway, if a
player receives a packet about another player that he does not have active, he sends
the request-player-information packet to the server. The actual sending of player
information happens with the vSendPlayerInformation() function.

The vSendPlayerInformation() Function
The vSendPlayerInformation() function sends all pertinent information regarding a
player to another player or to the player himself.

void vSendPlayerInformation(int iplayer, int ireceive)
{

PacketPlayerInfo pacPInfo;
void *packet;
pacPInfo.dwSize = sizeof(pacPInfo);
pacPInfo.dwType = PACKET_TYPE_ADDPLAYER;
pacPInfo.iPlayerID = iplayer;
pacPInfo.piInfo.fRot = PlayerInfo[iplayer].fRot;
pacPInfo.piInfo.vecCurPos.x = PlayerInfo[iplayer].vecCurPos.x;
pacPInfo.piInfo.vecCurPos.y = PlayerInfo[iplayer].vecCurPos.y;
pacPInfo.piInfo.vecCurPos.z = PlayerInfo[iplayer].vecCurPos.z;
pacPInfo.piInfo.fVelocity = PlayerInfo[iplayer].fVelocity;
pacPInfo.piInfo.iFrame = PlayerInfo[iplayer].iFrame;

695The Game-Server Code

Zoning a Player

Set New Zone
Number

Set New Position
and Rotation

Send Zoning
Message

Send Update
Message

Save Player
Information

Send # of
Players

Message

Inform All
Parties Involved

of Arrival

Figure 16.11

Process flow for
zoning a player

pacPInfo.piInfo.iZone = PlayerInfo[iplayer].iZone;
pacPInfo.piInfo.iZoneMap = PlayerInfo[iplayer].iZoneMap;
strcpy(pacPInfo.piInfo.szPlayerName,PlayerInfo[iplayer].szPlayerName);
packet = (VOID*)&pacPInfo;
hrSendServerMessage(ireceive,pacPInfo.dwType,packet,DPNSEND_GUARANTEED);

}

Take a look at the code, and you’ll see that the rotation, position, velocity, anima-
tion frame, zone, zone map, and player name are all sent in the transmission. Items
such as the password are not sent because you do not want to give out the player’s
password to other people.

Whenever a player enters a zone or enters the game, his player information is sent
to everyone in the zone. This happens so that all players present know what to do
with the new player. You can also send the information when other players request
it. Check out Figure 16.12 to see when this function is called.

Calculating the Time of Day
Most persistent-world online games have a persistent time of day. If you change the
setting of the sun, the game world seems more alive than if time stands still. I’ll
show you how to do this in RPGQuest using the vUpdateTimeOfDay() function.

The vUpdateTimeOfDay() Function
The vUpdateTimeOfDay() function works by adjusting a value that ranges from 0 to
255. There is nothing very special about the time of day; all it affects is the ambient
levels for rendering the 3D scenes on the client.

To keep the light setting from seesawing too much, I put in timers to make it sit for
a longer period of time at high noon and at midnight. This provides an effect of
night and day. To see how the timeframe works out, take a look at Figure 16.13.

Once the proper time of day is updated, a PACKET_TYPE_TIMECHANGE packet is sent
containing the new setting.

696 16. Writing the RPGQuest Game Server

Send Player Information
Function

Zone Player
Function

Message
Processing

Function

Figure 16.12

Methods that call the
vSendPlayerInformation()
function

Updating the Players
Once the time of day is sent, the players in the game need their positions updated
based on their velocity and angle. You accomplish all of this using the
vUpdatePlayers() function.

The vUpdatePlayers() Function
The vUpdatePlayers() function updates players’ positions and velocity settings.
It also checks for collision detection and sends updated player attitudes when
necessary.

The function starts out by looping through each zone. Within each zone, it loops
through the list of players, checking for active players in that zone. If an active
player is found, the program updates his position according to his angle and
velocity.

for(iZone = 0 ; iZone < 3 ; iZone++) {
for(i = 0 ; i < MAX_PLAYERS ; i++) {

// Update the player if active
if(PlayerInfo[i].bActive) { …

In this code snippet, you can see that the zone loop is first, followed by the player
loop. Only active players are updated. The vGetVelocity() function, which is identi-
cal to the one in SpacePirates, determines their position changes.

After a player’s position and frame are updated, his new position is checked with
the iValidatePlayerPosition() function to see whether he has collided with some-
thing in the scene.

The iValidatePlayerPosition() Function
In the iValidatePlayerPosition() function, I included checks for all bounding
boxes in the three zones. If the player collides with a collision zone, the function
returns a 0. A more efficient method is for the program to read in a list of collision
zones, but I have done it the former way to keep things simple.

697The Game-Server Code

Figure 16.13

Time-of-day scaleRamp Up Extended day Ramp Down Extended Night

if(x > -300.0f && x < -258.0f) {
if(z > -18.0f && z < 17.0f) {

return(3);
}

}

You might have noticed that sometimes the function returns a value greater than 1.
A return code greater than 1 means that the player has entered a zoning box. This
means that the player should be sent to another zone. By subtracting 1 from the
return value, you can find the zone to which he needs to go. So in the preceding
example, he should be transported to zone 2 (3-1). Players who need to zone are
transported by the vZonePlayer() function that I mentioned earlier.

Review
This entire chapter was dedicated to showing you how to create the game server
application, so there is not a whole lot to review here. Nevertheless, please keep in
mind the following points.

■ The player data is stored on the server’s hard drive in the PlayerData folder.
You can delete any player you want, simply by removing his data file from the
folder.

■ The RPGQuest server utilizes a secondary message queue method to process
player messages. This is the desired method since it keeps the DirectPlay
message handler from having to wait for messages to process.

■ Critical sections are required to keep the secondary message queue from
stepping over global memory. Be very careful with critical sections, because
you can write code in such a way that it locks up. This happens when code
tries to enter a critical section while the program is already in the critical
section.

That wraps it up for the server code. You now have a solid foundation of knowl-
edge, so the rest is downhill from here.

698 16. Writing the RPGQuest Game Server

CHAPTER 17

Writing
the

RPGQuest
Game

Client

In the last chapter, you learned how to write the RPGQuest game server. In this
chapter, you will learn how to write its counterpart, the game client. One of the

nice things about client/server-based multiplayer game programming is that once
you have the server written, you can concentrate on mostly non-network issues. The
client mainly consists of graphic, sound, and input calls. The actual network code
ends up rather small in comparison. In this chapter, I’ll cover the following topics.

■ Project layout
■ Graphics handling
■ Sound and input handling
■ Network handling

The Project Space
Go ahead and load up the project located on the CD in the Chapter17 Zip file. It
contains all of the files necessary to compile the game client. One thing you proba-
bly want to do is launch the game-server application so that you can test the client.
The project space for the client is actually a bit more complicated than the server,
but it’s not too bad. The libraries used in the project can be found in Table 17.1.

700 17. Writing the RPGQuest Game Client

Table 17.1 RPGQuest Libraries

Library Description

dinput8.lib DirectInput library

dxguid.lib GUIDs for DirectX

dsound.lib DirectSound library

winmm.lib Windows multimedia library

d3d8.lib Direct3D library

d3dx8.lib Direct3D helper library

There shouldn’t be too many surprises in the list of libraries; most, if not all of
them, are present in SpacePirates. Now that you have seen the libraries, take a look
at Table 17.2 to see the source files needed to compile the project. Then, take a
look at Figure 17.1 to see the project’s file view.

The Object3DClass Files
The Object3DClass files provide a simple class that loads and manages x-file objects.
It is the same class that you used back in the SpacePirates game, so you should be
rather familiar with it. As a brief refresher, the following functions are provided by
the class.

■ hLoad()

■ vDisplayXYZ()

The hLoad() function loads x-file object data and textures. Its real power comes
from the fact that it allocates all the memory needed for the geometry, material,
and texture data associated with the object.

The vDisplayXYZ() function puts the 3D object anywhere in your scene at the given
coordinates. You can also set the orientation of the object by passing in rotation
parameters for all three axes.

701The Project Space

Table 17.2 RPGQuest Source Files

File Description

dxutil.h Helper functions header file

dxutil.cpp Helper functions source file

Object3DClass.h X-file class header file

Object3DClass.cpp X-file class source file

SoundSystem.h Sound functions header file

SoundSystem.cpp Sound functions source file

RPGQuest.h Main game code header file

RPGQuest.cpp Main game code source file

The SoundSystem Class Files
The SoundSystem class files provide a simple foundation for loading and playing
sound files. The files have not changed since their first appearance in SpacePirates,
so you might recognize most of the code. The following functions are provided by
the SoundSystem class.

■ hrInitSoundSystem()

■ hrLoadSound()

■ hrPlaySound()

You call the hrInitSoundSystem() function only once in your application because all
it does is initialize the sound system for use. It handles all of the nitty-gritty details
involved in creating the interfaces and such.

The hrLoadSound() function does just what its name implies: It loads sound data
from wave files. You can then use the loaded sound data for playback.

The hrPlaySound() function plays back a previously-loaded game sound. It doesn’t
get any simpler than this!

702 17. Writing the RPGQuest Game Client

Figure 17.1

The project’s file view

The Graphics System
The graphics system for RPGQuest is very similar to that of SpacePirates except that
RPGQuest uses a first-person view of the world. By a first-person view, I mean that
the camera is positioned at the eye level of the player. This gives a much greater
sense of immersion in the game world and provides for a different experience than
in SpacePirates. Besides the camera perspective, there is not a whole lot different for
the RPGQuest game client. The graphics system can be organized into the following
parts.

■ Direct3D initialization
■ 3D data loading
■ Light initialization
■ Camera positioning
■ Time-of-day adjustment
■ Scene rendering

Before you go any further into the graphics system, you might want to see the final
output for the client application. The output for the client appears in Figure 17.2.

703The Graphics System

Figure 17.2

The client’s view

Direct3D
Initialization
As with the other 3D programs demon-
strated in the book, all of the 3D system
initialization happens with the hrInit3D()
function. This function’s one and only
purpose is to set up the client’s display in
a manner that is compatible with the
application’s requirements.

The hrInit3D() Function
The hrInit3D() function, which you should have seen before, contains all of the
function calls necessary to set up the client’s graphics system to play RPGQuest. If
everything works as planned, the player’s computer will be ready to display graph-
ics. Initializing the graphics system involves the following steps.

■ Creation of the IDirect3D8 interface
■ Enumeration of available adapters, devices, and modes
■ Creation of the IDirect3DDevice8 interface

Creating the IDirect3D8 Interface
The IDirect3D8 interface is the heart of the 3D system. Without it, you cannot set
up the graphics display adapter, device, or mode. In other words, you won’t have
anywhere to display your graphics. Although DirectX is COM-based, there is a spe-
cial function for creating the 3D interface. This special function is called
Direct3DCreate8().

if(NULL == (pD3D = Direct3DCreate8(D3D_SDK_VERSION))) {
MessageBox(hWnd, “Direct3D Error”, “Unable to initialize Direct3D.”,
MB_ICONERROR);

return(E_FAIL);
}

The only parameter you have to worry
about when creating the Direct3D inter-
face is the version macro. For this, you
pass D3D_SDK_VERSION. All this does is

704 17. Writing the RPGQuest Game Client

NOTE
Some of the functions in RPGQuest
are duplicates of those found in
SpacePirates. For these functions, I’ll
only gloss over how they work. For
complete explanations, refer to the
chapters in which the functions
originally appeared.

NOTE
The DirectX interface objects are
easy to pick out because they all
start out with an I—as in the
IDirect3D8, IDirectPlay8Client,
and IDirectInput8 interfaces.

ensure that you have the proper header and library files included in your project.
If you have a mismatch of versions, the compiler lets you know.

Building the Device List
Once you create the 3D interface, you need to figure out which video adapter to
use. You also need to know what type of devices and modes are supported by the
adapter. You find all this using the hrBuildDeviceList() function.

The hrBuildDeviceList() function is a little too complicated for me to cover again,
so I’ll just scratch the surface. Basically, the function detects all the video adapters
connected to the user’s system and finds display modes that meet the game
requirements.

Creating the Display Device
Now that you have a list of available devices, you have to set up the system to use
the default one returned. You don’t actually have to use the default adapter
returned; you could present the list of identified modes and let the user pick the
one he wants to use.

The first part of code that sets up the display device specifies the presentation para-
meters for the device. These parameters set such things as the screen resolution
and color depth.

// Set up the presentation parameters
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = pDeviceInfo->bWindowed;

705The Graphics System

NOTE
It is important to plan on users having more than one video
adapter. Many motherboards come with one built on-board, but
quite a few people with these types of motherboards go on to pur-
chase better display adapters. If you just assume that the first
adapter you enumerate is fine to use, then your program probably
uses the slower graphics system.This is why it is important to check
for all adapters and let the user decide which one he wants to use.

d3dpp.BackBufferCount = 1;
d3dpp.MultiSampleType = pDeviceInfo->MultiSampleType;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.EnableAutoDepthStencil = g_bUseDepthBuffer;
d3dpp.AutoDepthStencilFormat = pModeInfo->DepthStencilFormat;
d3dpp.hDeviceWindow = hWnd;

The next block of code sets up some device parameters based upon whether the
game is to be displayed in a window. Because full-screen games require different
parameters, you must use this logic.

// Run this code if in windowed mode
If(g_bWindowed) {

d3dpp.BackBufferWidth = (rcWindowClient.right - rcWindowClient.left);
d3dpp.BackBufferHeight = (rcWindowClient.bottom - rcWindowClient.top);
d3dpp.BackBufferFormat = pAdapterInfo->d3ddmDesktop.Format;

}
// Run this code if in full-screen mode
else {

d3dpp.BackBufferWidth = pModeInfo->Width;
d3dpp.BackBufferHeight = pModeInfo->Height;
d3dpp.BackBufferFormat = pModeInfo->Format;

}

The last block of code in the initialization function deals with creating the actual
device interface. If all goes well, then you end up with a usable 3D device interface.

hResult = pD3D->CreateDevice(g_dwAdapter, pDeviceInfo->DeviceType,
hWnd, pModeInfo->dwBehavior, &d3dpp, &pd3dDevice);

if(!SUCCEEDED(hResult)) {
MessageBox(hWnd, “Device Error”, “Failed to create display device!”,
MB_ICONERROR);

return(E_FAIL);
}

The initialization function has a few more lines of code; all they do is set up the
z-buffer and ambient light levels for the 3D scene. To see all of the steps used to
set up the display environment, look at Figure 17.3.

706 17. Writing the RPGQuest Game Client

Loading the 3D Data
As with all 3D games, you must load data. Because all objects in a 3D environment
contain geometric information, this is a necessary step. In RPGQuest, all of the work
happens in the vInitGeometry() function. The code for the function follows.

void vInitGeometry(void)
{

char szFileName[256];
float fSizeX = 50.0f;
float fSizeY = 50.0f;

DWORD dwColor = D3DCOLOR_XRGB(255,255,255);

sprintf(szFileName,”Data\\3DObjects\\rpgquest0.x”);
o3dZone[0].hLoad(szFileName,pd3dDevice);

707The Graphics System

hrInit3D()

Create the Direct3D
Interface Object

Build a List of
Compatible Display

Modes

Calculate Window
Size

Set Presentation
Parameters

Set Up the
Back Buffer

Create the
3D Device

Figure 17.3

Setting up the display
environment

sprintf(szFileName,”Data\\3DObjects\\rpgquest1.x”);
o3dZone[1].hLoad(szFileName,pd3dDevice);
sprintf(szFileName,”Data\\3DObjects\\rpgquest2.x”);
o3dZone[2].hLoad(szFileName,pd3dDevice);
// Load the player (cubehead)
sprintf(szFileName,”Data\\3DObjects\\cube_head.x”);
o3dPlayer.hLoad(szFileName,pd3dDevice);
// Create the common text font
hFont = CreateFont(12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, PROOF_QUALITY,
0, “arial”);

D3DXCreateFont(pd3dDevice, hFont, &pD3DXFont);
}

The first thing that jumps out at you is that this function is so short. In SpacePirates,
a lot of the geometry was created within the program, thus the larger initialization
function. In RPGQuest, all of the geometry is created in 3D Studio MAX; therefore,
it all gets loaded in. Take a peek at Figure 17.4 to see the merchant zone when
viewed from afar.

708 17. Writing the RPGQuest Game Client

Figure 17.4

The merchant zone

Loading the Zone Data
Each zone in RPGQuest has different geometry. To keep things simple, I made the
entire zone all one big piece of data. Because all of the data is contained in a single
x-file mesh object, you have to call the load function only once per zone.

sprintf(szFileName,”Data\\3DObjects\\rpgquest0.x”);
o3dZone[0].hLoad(szFileName,pd3dDevice);
sprintf(szFileName,”Data\\3DObjects\\rpgquest1.x”);
o3dZone[1].hLoad(szFileName,pd3dDevice);
sprintf(szFileName,”Data\\3DObjects\\rpgquest2.x”);
o3dZone[2].hLoad(szFileName,pd3dDevice);

Each zone is named rpgquest plus a number. So zone 1 is rpgquest0.x, zone 2 is
rpgquest1.x, and zone 3 is rpgquest2.x. You load each of these using the hLoad()
function I discussed earlier.

The player’s avatar data is loaded next in the form of the cube_head.x file object.
After that is done, the font for the text display is loaded. Well, as I said, the geome-
try initialization routine is rather simple, and that is all there is to it!

Lighting the Scene
You set up the lights in RPGQuest in the same manner as you did in SpacePirates.
This means that you put a single white light in the middle of each zone and add
four colored lights, one in each corner.

d3dLight.Diffuse.r = 1.0f;
d3dLight.Diffuse.b = 1.0f;
d3dLight.Diffuse.g = 1.0f;
d3dLight.Position.x = 0.0f;
d3dLight.Position.y = 50.0f;
d3dLight.Position.z = 50.0f;
d3dLight.Attenuation0 = 1.0f;
d3dLight.Attenuation1 = 0.0025f;
d3dLight.Range = 1000.0f;
// Set the active light
pd3dDevice->SetLight(0, &d3dLight);
// Enable the light
pd3dDevice->LightEnable(0, TRUE);

709The Graphics System

You create each light by setting its diffuse color, attenuation, and range. Once the
settings for the light are in place, you create the light using the SetLight() func-
tion. Next, you use the LightEnable() function to activate the light. Because all of
the lighting is the same for each zone, you create the lights only once.

Setting the Camera Position
The camera in RPGQuest follows the character as he walks around the zone. To
keep up with the player, the camera’s rotation is kept in step with the player’s rota-
tion. All of this is handled by the vUpdateCamera() function.

The vUpdateCamera() Function
At the beginning of each rendering frame, you call the vUpdateCamera() function to
set the camera in the proper position. In RPGQuest, the proper position is eye level
with the player’s coordinates.

void vUpdateCamera(void)
{

D3DXMATRIX matRotation;
// Set where camera is viewing from
vecCameraSource.x = LocalPlayer.vecCurPos.x;
vecCameraSource.y = 15.0f+LocalPlayer.vecCurPos.y;
vecCameraSource.z = LocalPlayer.vecCurPos.z+1;
// Set what camera is looking at
vecCameraTarget.x = LocalPlayer.vecCurPos.x;
vecCameraTarget.y = 15.0f+LocalPlayer.vecCurPos.y;
vecCameraTarget.z = LocalPlayer.vecCurPos.z;
// Set up camera view
D3DXMatrixLookAtLH(&matCameraView,

&vecCameraSource,
&vecCameraTarget,
&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

// Rotate the camera view now
D3DXMatrixRotationY(&matRotation, -LocalPlayer.fRot/RADIAN_TO_DEGREES);
matCameraView *= matRotation;
// Tell the device to use the camera view for the viewport
pd3dDevice->SetTransform(D3DTS_VIEW, &matCameraView);

}

710 17. Writing the RPGQuest Game Client

For the most part, the update camera function is identical to the one in SpacePirates.
The main difference is that this version contains a rotation adjustment for the cam-
era. Just like any other object in 3D space, the camera is set into the scene with
matrices. Once the camera is positioned, its rotation is adjusted to match the
player’s orientation. You accomplish this by multiplying the camera’s view matrix by
the player’s rotation matrix. The end result is a properly-rotated camera.

Setting the Client’s Time of Day
In Chapter 16, “Writing the RPGQuest Game Server,” you learned about how the
server sends time-of-day updates to all connected clients. This gives a sense of time
passing in the game. It is really a simple effect; all the game engine has to do is set
the ambient light level according to the time value sent from the server.

In the DirectPlay message-processing function, a time packet that comes through
calls the vUpdateTimeOfDay() function. Here is the snippet of code that calls the
function.

else if(PGen->dwType == PACKET_TYPE_TIMECHANGE) {
pacTime = (PacketTimeChange*)pReceiveMsg->pReceiveData;
vUpdateTimeOfDay(pacTime->iTime);
break;

}

The vUpdateTimeOfDay() Function
The update time-of-day function is rather simple because all it must do is set the
global variable, colorTimeColor, to the proper setting. The proper setting is the one
passed by the server. The value from the server, 0 to 255, denotes the brightness
level for the graphic display. By converting this number to a color value, the render
function can plug it straight in for use.

void vUpdateTimeOfDay(int newtime)
{

if(newtime < 0)
newtime = 0;

else if (newtime > 255)
newtime = 255;

bUpdateTime = 1;
colorTimeColor = D3DCOLOR_XRGB(newtime,newtime,newtime);

}

711The Graphics System

The first part of the function makes
sure the value received is valid. If
you try to create a color value
greater than 255 or less than 0, you
could bring up the blue screen of
death. This is why the function
checks newtime to make sure it is
between 0 and 255.

The bUpdateTime flag is set to TRUE so
that the next rendering phase knows to
adjust the brightness of the scene. You can just update the brightness every frame,
but that would slow down the rendering unnecessarily.

The last bit of code sets the actual color value based on the newtime variable. You do
this using the D3DCOLOR_XRGB() macro provided in the dxutil function set. Figure 17.5
outlines the series of events that transpire when an update time packet is received.

712 17. Writing the RPGQuest Game Client

NOTE
It is always a good idea to check
data received from the server.
Sometimes packets can be mangled.
In that case, you’ve probably got bad
data within the packet. As they
always say, better safe than sorry.

Time Packet

vUpdateTimeOfDay()
Function

DirectPlay
Message
Handler

Time Message

Set the
bUpdateTime Flag

vRenderScene()

Act on the
bUpdateTime

Flag

Set the Ambient
Level

Game
Client

Game
Server

Figure 17.5

Events that take place
when a time-of-day
packet is received

Rendering the Scene
To create the graphical display for the player, you must render the 3D scene. It is
called a scene because you have actors, lights, and at least one camera. So you see,
the vernacular comes from the movie industry. In this case, the 3D models are the
actors. Anyway, on with the show! All of the rendering for RPGQuest happens in the
good ol’ vRenderScene() function.

The vRenderScene() Function
The render scene function’s only purpose is to create the graphical display for the
player. To do this, it completes the following tasks.

■ Adjust light levels if necessary
■ Clear the display buffers
■ Update the camera’s orientation
■ Set texture filtering levels
■ Render the players
■ Render the arena
■ Calculate frames per second
■ Display various information
■ Output the message log
■ Present the created scene

Adjusting the Light Level
As I discussed earlier, if the bUpdateTime flag is signaled, the rendering function
updates the ambient light levels. This is as easy as calling the SetRenderState() func-
tion with a D3DRS_AMBIENT value.

if(bUpdateTime) {
pd3dDevice->SetRenderState(D3DRS_AMBIENT, colorTimeColor);
bUpdateTime = 0;

}

The last step is setting the bUpdateTime variable to
non-signaled.

713The Graphics System

When something is signaled, it
means it has been activated. In
this case, bUpdateTime equals 1
when it is signaled and 0 when it
is non-signaled.

Clearing the Display Buffers
Every time you render your 3D scene, you must clear the display buffers. This is
necessary to make sure that you don’t have any leftover garbage in your display.
Because you are also using a depth buffer in RPGQuest, you must clear it to make
sure objects are displayed properly. You do all of this with the Clear()
function.

// Clear the backbuffer and the z-buffer
pd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB(0,0,0), 1.0f, 0);

In this code, the program clears the display
buffer along with the z-buffer. Both buffers are
set to (0,0,0), which is true black.

Updating the Camera’s
Orientation
Updating the camera is easy because all you
have to do is make a call to the vUpdateCamera()
function that I mentioned earlier.

Setting the Anistropic Level
Anistropic texture filtering fixes texture distortion caused by textures at certain angles
to the camera. This subject is kind of coming at you from left field, but I thought
you might be interested in knowing how to turn it on. To activate the anistropic
texture filter, all you have to do is set the texture stage state to use it.

// Turn on texture filtering
pd3dDevice->SetTextureStageState(0,D3DTSS_MINFILTER ,D3DTEXF_ANISOTROPIC);
pd3dDevice->SetTextureStageState(0,D3DTSS_MAGFILTER ,D3DTEXF_ANISOTROPIC);

This isn’t really the time or place to get into
how it works, but to see the difference, com-
ment out the preceding code in the render
loop. The best way to notice the difference is
to look at textures that are at 90 degrees to the
camera. Go ahead and try compiling the code
with it turned off. You should notice the
change almost immediately.

714 17. Writing the RPGQuest Game Client

NOTE
Always be sure to clear your
depth buffer if you are using
one. If you forget to do this,
you’ll end up with strange
rendering anomalies.

NOTE
Not all video cards support
anistropic filtering. If you are
using a card that does not
support it, you will not notice
a difference with filtering
turned on or off.

Rendering the Players
Ah, now comes the fun part, rendering the cube heads! Okay, maybe it’s not that
much fun, but at least it’s easy. Because the game can have multiple players, you
must loop through the list of players and render ones that are active. You accom-
plish this using the following loop.

// Display players
for(i = 0 ; i < MAX_PLAYERS ; i++) {

if(PlayerInfo[i].bActive && PlayerInfo[i].iZone == iZone)
o3dPlayer.vDisplayXYZ(PlayerInfo[i].vecCurPos.x,12.0f,
PlayerInfo[i].vecCurPos.z,0.0f,PlayerInfo[i].fRot,0.0f);

}

The program loops through the total list of possible players and renders out the
ones who are active and in the same zone. The actual rendering happens in the
vDisplayXYZ() member function of the Object3DClass.

Rendering the Arena
The rendering of the player’s surroundings is the easiest part because the zones
consist of single objects. So to render the zone, all you have to do is call the
vDisplayXYZ() function.

// Display the arena
o3dZone[iZoneMap].vDisplayXYZ(0.0f,0.0f,0.0f);

You might have noticed that the rotation parameters are missing. The zones never
rotate; they are always at a fixed orientation.

Calculating Frames per Second
RPGQuest never operates at more than 30 frames per second because of the time-
governing system built into the WinMain() function. But the engine might operate
slower than 30 frames per second on machines that lack the horsepower to display
the scene. To give the player an idea of the game performance, RPGQuest includes
a frames-per-second indication. By frames-per-second, I mean how many times the
entire 3D scene is rendered per second of gameplay. You will find that most games rate
themselves this way. The following code illustrates how to perform the calculations.

if(timeGetTime() > dwFrameTimer+1000) {
iFPS = iFrames;
dwFrameTimer = timeGetTime();
iFrames = 1;

}

715The Graphics System

else {
iFrames++;

}

The dwFrameTimer variable is a global variable that keeps track of the amount of
time that has passed since the last time update. You use this to see whether a sec-
ond has passed. Once a full second has passed, the iFPS variable is set to the num-
ber of frames that were rendered during that second. Once that is accomplished,
the dwFrameTimer is reset and iFrames is set to 1. If a full second has not passed, then
the global variable, iFrames, is incremented. This variable counts the number of
frames that have passed since the last time update.

Outputting Information
Now that the program knows the frames per second, it needs to output this infor-
mation using the DrawText() function. In RPGQuest, you are outputting the player’s
position, frames per second, and rotation. All of these values are displayed in a
small Arial font at the top-left corner of the user’s screen.

// Display the player cords & fps
sprintf(szMessage,”X = %.2f, Z = %.2f, FPS = %d, Rotation = %.2f”,
LocalPlayer.vecCurPos.x,LocalPlayer.vecCurPos.z,iFPS,LocalPlayer.fRot);
pD3DXFont->DrawText(szMessage, -1, &rTemp4, DT_LEFT,
D3DCOLOR_RGBA(255, 255, 255, 255));

Displaying the Message Log
If you have ever played Asheron’s Call or EverQuest, you should be familiar with a
message box. Basically, the message box conveys messages from the server and from
other players. Figure 17.6 shows the message box that Asheron’s Call uses.

In RPGQuest, the only messages sent come from the server or the local client, but
you still need a message box. To accomplish this, a loop outputs text in the mes-
sage buffer.

// Output message log
for(i = iMessageLogPos ; i < iLastMessage ; i++) {

rTemp1.bottom = SCREEN_HEIGHT;
rTemp1.left = 15;
rTemp1.right = SCREEN_WIDTH;
rTemp1.top = (SCREEN_HEIGHT-200)+((i-iMessageLogPos)*12);
pD3DXFont->DrawText(MessageLog[i].szMessage, -1, &rTemp1, DT_LEFT,
MessageLog[i].color);

}

716 17. Writing the RPGQuest Game Client

Because the DrawText() function uses a rectangle to determine where it displays
text, the message loop adjusts the position of the rectangle for each line of text.
Once the rectangle is defined, the text is output.

Presenting the Scene
Now that you have a great 3D scene rendered, you need to present it to the user
with the Present() function.

// Output the scene
if((pd3dDevice->Present(NULL, NULL, NULL, NULL)) ==
D3DERR_DEVICELOST) {

}

You might have noticed that the code checks for a device-lost return code. It
doesn’t do anything if the code is returned, but it does illustrate how to check the
return code of the Present() function.

717The Graphics System

Figure 17.6

The message output
box in Asheron’s
Call

Message box

Sound and Input Handling
The sound and input routines in RPGQuest are identical to those in SpacePirates, so
I’m not going to spend a heck of a lot of time here. There are a few key functions
involved.

Handling DirectInput
Before you can start checking for buffered input from the user, you must initialize
DirectInput using the hrInitDirectInput() function. The code does little more than
create an IDirectInput8 interface. Once that is accomplished, the keyboard layout is
captured for later use.

// Do not try to create DirectInput if already created
if(!pDI) {

// Create a DInput object
if(FAILED(hReturn = DirectInput8Create(g_hInstance,
DIRECTINPUT_VERSION,

IID_IDirectInput8, (VOID**)&pDI, NULL)))
return(INPUTERROR_NODI);

}

Once you initialize DirectInput, you can go on to create the keyboard device using
the hrInitKeyboard() function.

Initializing the Keyboard Device
In the keyboard initialization routine, the program creates the device and sets up
buffers to receive input from the device. Buffered input is important because with-
out it, you miss valuable input from the user. Look at Figure 17.7 to see the steps
involved in creating the keyboard device.

In Figure 17.7, you can see that once a keyboard device is created, the code goes
on to set up the input buffer using the SetProperty() function. The last thing the
code must do is acquire the keyboard device with the Acquire() function.

718 17. Writing the RPGQuest Game Client

hrInitKeyboard()
Create the

Keyboard Device
Set the

Keyboard Buffer
Set the Data

Format

Set the
Cooperative

Level

Figure 17.7 Creating the keyboard device

Reading the Keyboard
Inside of the WinMain() function, you call the hrReadKeyboard() function. This func-
tion updates the key flags stored in the keyboard buffer. When a key is pressed, it is
signaled; otherwise, it is equal to 0. The following code checks the cursor keys for
their state.

if(diks[DIK_LEFT]) {
bTurnLeft = 1;

}
if(diks[DIK_RIGHT]) {

bTurnRight = 1;
}
if(diks[DIK_UP]) {

bAccelerate = 1;
}
if(diks[DIK_DOWN]) {

bDeaccelerate = 1;
}

The DIK values check the cursor key states for the movement keys in the game.
Because all the player can do is move around, these are the only keys that you have
to deal with. In the preceding code, global flags are set when the keys are pressed.
These flags tell the system to send update communication packets to the game
server. The only real difference between this code and that in SpacePirates is that the
code in RPGQuest must send a packet only to the game server and not to a bunch
of peers.

The last thing you have to deal with when it
comes to DirectInput is the cleanup portion of
the game code. The vCleanup() function has
code to clean up the DirectInput system.

// Release keyboard
if(pKeyboard)

pKeyboard->Unacquire();
SAFE_RELEASE(pKeyboard);
SAFE_RELEASE(pDI);

Before you can release the keyboard and DirectInput interfaces, you must
unacquire the keyboard device. This is a very important step to complete because it
frees up the keyboard resource. After that step is out of the way, you can use
SAFE_RELEASE to free up the device and interface.

719Sound and Input Handling

NOTE
DIK codes for all the main keys
supported by DirectInput
appear in the dinput.h header
file that comes with DirectX.

Handling DirectSound
If you have launched RPGQuest and tried it out, which I hope you have, you might
have noticed the lack of sound in the game. The program doesn’t actually play any
sounds at this time. You might be asking a very normal question: Why is there a sec-
tion about sound, then? Well, I went ahead and included sound in the project so
that you can add your own effects and events as desired, without having to figure
out where to put sound routines.

Luckily, the entire sound system is encapsulated in the SoundSystem class object you
used back in SpacePirates. The only function you need to deal with from SpacePirates
is the vInitSoundEngine() function. This function both initializes the sound class
object and loads any game sounds you might want to use.

void vInitSoundEngine(HWND hWnd)
{

SoundEngine.hWnd = hWnd;
if(!FAILED(SoundEngine.hrInitSoundSystem())) {

g_GameSounds.gsFire = new GameSound;
SoundEngine.hrLoadSound(“data\\sfx\\attack.wav”,g_GameSounds.gsFire);

}
}

The hrInitSoundSystem() member function is called to perform the one-time sound
initialization necessary to play sounds in the game. After that is done, the
hrLoadSound() function actually loads up a game sound. The sound is never played
in the game, but nothing is keeping you from changing that!

Network Handling
Hey, look, I saved the best for last. Considering network handling is what this book
is all about, you might have expected this section to be the first in the chapter. The
truth is that because RPGQuest is a culmination of everything learned so far, there is
little in the way of new information here. So relax, open up a cold one, and read
on about the pure joy of network implementation.

The basic elements of network handling for the RPGQuest client involve the follow-
ing areas.

■ Message sending
■ Message receiving
■ Player synchronization

720 17. Writing the RPGQuest Game Client

Sending Messages to the Server
Because all communication in games involves either sending or receiving data, it
only seems natural that sending messages to the server is a key element of
RPGQuest. All message transmission for the client is handled in the
hrSendClientMessage() function. This function is very similar to its counterpart in
SpacePirates, hrSendPeerMessage(). The main difference here is that messages are
only sent to one computer, the game server.

In the RPGQuest client, messages are sent to the server in only a few instances.

■ When submitting the player password
■ When submitting a player action
■ When requesting player information

Submitting the Player’s Password
It’s a safe bet to say that every MMORPG requires a user name and password to gain
access. In RPGQuest, when the client logs into the game, the server sends a packet
requesting the player’s password. In response, the player sends his password to the
server via a PACKET_TYPE_SUBMITPASSWORD type packet. Figure 17.8 illustrates this process.

721Network Handling

Password
Request

vSubmitPassword()
Function

DirectPlay
Message
Handler

Password Submit Message

Send Password

DirectPlay
Message
Handler

Password
Submission

Validate
Credentials

Game
Server

Game
Client

Figure 17.8

The process for
submitting the
player’s password

Submitting a Player Action
When a player decides to accelerate, decelerate, or turn, he needs to inform the
server of his intentions. All of this is handled by player action packets, such as the
following packet types.

■ PACKET_TYPE_VELOCITY

■ PACKET_TYPE_ANGLE

Wow, not a very long list, eh? The truth of the matter is that because the player is
not trusted to send position packets, he only has to deal with sending velocity and
angle changes.

The vUpdateObjects() function is where the actual movement packets are sent. This
function can be called up to 30 times per second by the WinMain() function. The
following flags determine which actions to send to the server during the update
process.

■ bTurnLeft

■ bTurnRight

■ bAccelerate

■ bDeaccelerate

These global variables are set in the WinMain() function whenever the player presses
a particular key. The left- and right-turn flags are activated when the respective left
and right cursor keys are pressed. When the player wants to speed up or slow down,
he presses the respective up or down cursor keys. Figure 17.9 illustrates to which
packets the keys correspond.

722 17. Writing the RPGQuest Game Client

PACKET_TYPE_VELOCITY

PACKET_TYPE_ANGLE PACKET_TYPE_ANGLE

PACKET_TYPE_VELOCITY

Figure 17.9

Key-to-packet
mapping

Requesting Player Information
Whenever a player performs a meaningful action, the server sends his action to all
of those involved. To be involved, other players must be in the same zone. Because
some packets can get lost, the odds are that players might not be aware of the play-
ers about whom they are hearing. Take the following example of two players
named Argoth and Belos.

1. Argoth is in zone 1.

2. Belos is in zone 2.

3. Belos walks into zone 1.

4. The server sends a zoning message to Argoth to tell him Belos is present.

5. Argoth misses the packet and doesn’t know Belos exists.

6. Belos turns left.

7. The server sends an angle update packet to Argoth.

8. Argoth receives the packet but doesn’t recognize Belos as a player.

9. Argoth requests Belos’s information with a PacketRequestPlayerInfo packet.

In these steps, Argoth ends up requesting Belos’s information to find out who he is
and what he is all about. The sole purpose of the PACKET_TYPE_REQUESTPLAYERINFO is
to perform the request.

The logic used to kick off the request packet is as follows.

// If the packet ID is not -1, then it is for another player
if(PGen->iPlayerID != -1) {

// Figure out who is sending the message
iPlayerID = iGetPlayerID(PGen->iPlayerID);
// If the player does not exist in the game,
// request information about him
If(iPlayerID == -1) {

vAddMessage(“Requesting Player Information”,
D3DCOLOR_RGBA(255, 255, 255, 255));
pacRequest.dwSize = sizeof(PacketRequestPlayerInfo);
pacRequest.dwType = PACKET_TYPE_REQUESTPLAYERINFO;
pacRequest.iPlayerID = PGen->iPlayerID;
packet = (VOID*)&pacRequest;
hReturn = hrSendClientMessage(pacRequest.dwType,packet);
break;

}

723Network Handling

}
else {

// Set the target player to ourselves
iPlayerID = -2;

}

The preceding logic, located in the DirectPlayMessageHandler() function, checks the
iPlayerID variable to see whether the packet is about another player in the game.
Messages with an iPlayerID of -1 are meant for the local player; messages with a
value greater than 0 give information about other players. So when a packet comes
in with an ID other than –1, you know that it pertains to information about another
player. When this happens, the code calls the iGetPlayerID() function to match the
iPlayerID with a currently active player. If no match is found, then a –1 is returned
from the get-player-ID function. When this happens, it means that no information is
on record for the player about whom the server is talking. In these cases, the local
player needs to request information about the unknown player. This is where the
information-request packet comes into play. As you can see in the code, a request
packet is sent with the iPlayerID variable set to that of the unknown player. All of
this might sound a bit confusing, so I drew a flowchart for you in Figure 17.10.

724 17. Writing the RPGQuest Game Client

Player Angle
Message

DirectPlay
Message
Handler

Player Angle Message

DirectPlay
Message
Handler

Player Information
Request

Send Add Player
Message

Not Local
Player?
(! = -1)

iGetPlayerID

Player
Not Found?

(= -1)

Request Player
Information

Process
Message

Set ID to -2

Set ID to Located
Player

Not Local

Not Found

Game
Server

Game
Client

Figure 17.10

Logic for requesting
player information

Processing Incoming Messages
Because the RPGQuest client lives in a client/server world, all incoming messages
come from the game server. This makes life easier because you don’t have to worry
about packets coming from all over the place. The main function to process all of
this traffic is the DirectPlayMessageHandler() function. It handles the following types
of messages.

■ DPN_MSGID_TERMINATE_SESSION

■ DPN_MSGID_RECEIVE

■ PACKET_TYPE_REQUESTPASSWORD

■ PACKET_TYPE_GAMEUPDATE

■ PACKET_TYPE_MESSAGE

■ PACKET_TYPE_ZONECHANGE

■ PACKET_TYPE_CHANGEPOSITION

■ PACKET_TYPE_TIMECHANGE

■ PACKET_TYPE_ADDPLAYER

■ PACKET_TYPE_REMOVEPLAYER

■ PACKET_TYPE_ANGLE

■ PACKET_TYPE_VELOCITY

■ PACKET_TYPE_POSITION

■ PACKET_TYPE_ATTITUDE

The DPN_MSGID_TERMINATE_SESSION
Message
When the game server disconnects the local player from the game, the local player
receives the terminate-session message. Its main purpose is to let clients know that
the game server is no longer available. RPGQuest doesn’t really do anything with
this message, so you might try adding some functionality to it.

case DPN_MSGID_TERMINATE_SESSION:
{

PDPNMSG_TERMINATE_SESSION pTerminateSessionMsg;
pTerminateSessionMsg = (PDPNMSG_TERMINATE_SESSION)pMsgBuffer;
break;

}

725Network Handling

The DPN_MSGID_RECEIVE Message
Whenever the game server sends a non-system message, it is sent as a
DPN_MSGID_RECEIVE message. This is how the game knows when to convert messages
into game messages.

Once you determine that you have a game message, the first step is to convert it
into a generic message to read the type variable. You can do so using the following
code.

PDPNMSG_RECEIVE pReceiveMsg;
PacketGeneric *PGen;
pReceiveMsg = (PDPNMSG_RECEIVE)pMsgBuffer;
// Cast it to a generic packet so we can check the type
PGen = (PacketGeneric*)pReceiveMsg->pReceiveData;

In the code, the message buffer is first cast as a PDPNMSG_RECEIVE pointer. You can
then use this pointer to retrieve the raw message data in the packet. To retrieve the
raw message data, the receive data is cast into a PacketGeneric pointer. This lets you
look at the dwType variable to determine the message type.

Now that you have the message type, you can perform the logic pertaining to each
type of packet.

The PACKET_TYPE_REQUESTPASSWORD
Message
Earlier, I covered how to submit your password. This is where you receive the
notice to submit that packet. When this type of packet comes in, you know that the
server is requesting your password for authentication. To handle this, I created a
separate function called vSubmitPassword().

The vSubmitPassword() function reads the config.txt file located in the player’s
installation directory. Once the password is read in, the function sends it to the
server with a PACKET_TYPE_SUBMITPASSWORD mes-
sage. One item of note is that the packet is
sent with the guaranteed flag turned on
because the password is such an important
packet.

726 17. Writing the RPGQuest Game Client

CAUTION
Don’t forget that guaranteed
packets take a lot more time to
send than non-guaranteed ones.
Use them sparingly.

The PACKET_TYPE_GAMEUPDATE
Message
So the player knows how often the game is updated by the server, you send a game-
update message. In each cycle where players are updated, the game server broad-
casts the update message. This keeps the player’s game world in synchronization
with the server. The main reason this is necessary is that slow computers might lag
behind. In these cases, you want the slow computers to make up for this speed dif-
ference by multiplying their updates accordingly. This is why you use the iUpdates
counter—it determines the rate of updates performed by the client. You will find
that iUpdates appears in the vUpdateObjects() function.

The PACKET_TYPE_MESSAGE Message
Every once in a while, the game server sends out a text message to players. These
messages generally inform the clients about what is going on. For example, when a
player zones, the name of the new zone is sent to the player via this messaging
mechanism.

else if(PGen->dwType == PACKET_TYPE_MESSAGE) {
pacMessage = (PacketMessage*)pReceiveMsg->pReceiveData;
vAddMessage(pacMessage->szMessage,pacMessage->color);
break;

}

Once the message is cast into the proper message format, the vAddMessage() func-
tion adds it to the message log. The next rendering cycle for the client displays the
actual message. One cool part about
the function is that the packet also
contains the message color. This lets
the server send different message
types that are easily discernable by
their colors.

727Network Handling

NOTE
Asheron’s Call makes good use of colored
messages.When you do damage to a
creature, the message appears in pink.
When a creature does damage to you,
the message appears in red.This makes
it very easy for players to know what the
messages concern without having to
read them.

The PACKET_TYPE_ZONECHANGE
Message
The zone-change packet is sent whenever the local player goes into another zone.
Because players don’t always end up in the same position for each zone, they have
to set their position and rotation when this message is received. The rest of the
logic takes care of setting the proper zone graphic/map to use and setting the
player’s velocity to 0.

The PACKET_TYPE_CHANGEPOSITION
Message
The change-position packet tells a player to change position. This packet is actually
sent to the player before a zoning packet is fired off. One thing this accomplishes is
setting the player’s velocity to 0.

The PACKET_TYPE_TIMECHANGE
Message
Whenever the game server changes the time of day, the information is sent to all
players in the form of a time-change packet. As you learned earlier, the
vUpdateTimeOfDay() function handles the new time setting.

The PACKET_TYPE_ADDPLAYER Message
Whenever another player enters your zone, the server sends an add-player message.
This provides you with everything you need to know about the player, such as his
name, position, and angle. All of the data is stored in a CLIENT_PLAYER_INFORMATION
data structure. The iAddPlayer() function finds a new player slot and copies the
data structure to his information block. The flow for the iAddPlayer() function
appears in Figure 17.11.

The PACKET_TYPE_REMOVEPLAYER
Message
The remove-player message is the arch-nemesis of the add-player message. This
message’s purpose is to let you know that a player has either disconnected or left
your zone. In this case, you loop through your list of active players and deactivate
the matching player ID. All of this logic is handled in the vRemovePlayer() function.

728 17. Writing the RPGQuest Game Client

The PACKET_TYPE_ANGLE Message
As you’ll find with the rest of the game message types, you can use the angle mes-
sage to send angle information either about your player or about other players.
There isn’t much to it, really. The main logic branch checks whether the packet is
for you. If its ID is set to –2, then you know it is for your player; otherwise, it is for
another player.

if(PGen->dwType == PACKET_TYPE_ANGLE) {
pacAngle = (PacketAngle*)pReceiveMsg->pReceiveData;
EnterCriticalSection(&g_csModifyPlayer);
if(iPlayerID != -2)

PlayerInfo[iPlayerID].fRot = pacAngle->fAngle;
else

LocalPlayer.fRot = pacAngle->fAngle;
LeaveCriticalSection(&g_csModifyPlayer);

}

The PACKET_TYPE_VELOCITY Message
The PACKET_TYPE_VELOCITY message works just like the angle message except that it
updates the velocity of the player.

729Network Handling

Add Player
Message

Direct Play
Message
Handler

Add Player Message

iAddPlayer()
Function

Empty
Slot

Found?

Display
Message

Activate
Player

Set Player
ID

Game
Client

Game
Server

Figure 17.11

The flow of the
iAddPlayer()

function

The PACKET_TYPE_POSITION Message
The PACKET_TYPE_POSITION message works just like the angle message except that it
updates the position of the player.

The PACKET_TYPE_ATTITUDE Message
The PACKET_TYPE_ATTITUDE message works just
like the angle message except that it updates
the attitude of the player. The attitude for
the player is a culmination of his position,
rotation, and velocity. It makes for less net-
work traffic when you send all of the infor-
mation in a single packet.

Player
Synchronization
Although the game server is responsible for
keeping everyone informed about the game
world, clients still have to use some synchro-
nization logic. The main purpose of this logic is to guess where other players will
be in the future. One reason this is needed is the event of lag. If you quit receiving
messages from the server for some reason, you don’t want other players to grind to
a halt. Instead, the other players should continue in their current direction without
interruption.

This effect is very noticeable in most online games. Take a look around, and some-
times you’ll see other players head in a straight line for a few seconds only to pop
back into place elsewhere. This happens because you estimated where they were
going while the connection to the server lagged. Once you started getting packets
again, you were informed that those players were not where you expected; there-
fore, your client program put them into the proper place. RPGQuest doesn’t
include the code to smooth out client corrections, but it does do some predicting.

Take a look at the vUpdateObjects() function, and you’ll see where player move-
ment is predicted. Player-action requests are also sent within this function. The
player-action requests should look very familiar to you because they are almost
exact duplicates of the ones in SpacePirates.

730 17. Writing the RPGQuest Game Client

TIP
Although you should strive for
packets under 1,024 bytes, you
should also avoid sending many
small packets. Each packet
requires a hidden header, which
eats up bandwidth. One efficient
method of packet transmission
is sending a single fixed-size
update packet that contains
many small packets.

The actual prediction code is similar to the code in SpacePirates. Basically, it loops
through the list of active players and adjusts their positions based upon their veloc-
ity and angle. The code also slows the players down by multiplying their velocity by
50 percent. You do this so that players come to a natural stop without having to
explicitly do so.

The last bit of update code updates your own player. If you didn’t update yourself,
then you would have to rely on the server to tell you where you were at all times.
That type of scenario results in extremely jerky movement.

Review
You might not like review sections, but guess what? This is the last one you have to
read. Luckily, the client program is a rehash of everything learned so far, so there
are not many new points to remember. Here are two points to keep in mind, in all
their glory.

■ Be sure to validate data sent to the client. Just as in the time-of-day update
function, you should not completely trust values received. By following this
rule, you will eliminate program problems caused by bad packets.

■ Use guaranteed message delivery for vital packets only. Guaranteed messag-
ing takes up a lot of time and bandwidth.

Oh, no! You are done with the final chapter! Okay, wait; I have something more for
you. Read the appendixes for some great game-development resource information
and other tidbits of knowledge.

731Review

This page intentionally left blank

Part Five

Appendixes

A Game-Development Resources

B Installing the Software

C ASCII Chart

D What’s on the CD-ROM

APPENDIX A

Game-
Development

Resources

You can find game-development information in many places, but nothing
comes close to the amount of information available on the Internet.

In this appendix, I’ll share with you some of the places I like to visit for game-
development information.

Gaming Sites
The following sites are good at providing some of the latest information about the
gaming industry and the games scene in general.

http://www.msxbox.com. This is my favorite site for information about Microsoft’s
Xbox game console. It has up-to-date news and information about the console.

http://www.gamespot.com/gamespot. This site is a good place to read about new
games that are coming out.

http://www.happypuppy.com. This is a great site for downloading the latest game
demos. It also has several game reviews for all genres.

Development Sites
The following sites deal primarily with game-development news, articles, and
forums. They should be able to provide you with answers to any game-development
questions and needs you might have.

http://www.lostlogic.com. Lost Logic Inc. is the company I own and operate, and
this site is where you’ll find updates, fixes, or additions to this book. I plan to add
several articles and information not covered in the book, so visit when you get a
chance.

http://www.gamedev.net. Gamedev.net is a great site that has many articles on all
aspects of games programming. I especially like its message forums. This is a great
place to pose questions about any development problem you might have.

http://www.flipcode.com. The Flip Code site is similar to Gamedev.net, but it also
offers a few unique items of interest, such as the screenshot of the day and contests.

736 A. Game-Development Resources

http://www.msxbox.com
http://www.gamespot.com/gamespot
http://www.happypuppy.com
http://www.lostlogic.com
http://www.gamedev.net
http://www.flipcode.com

http://www.microsoft.com/directx. This page contains information about the
latest versions of DirectX. You can also download the latest version of the API from
this site.

Product Sites
The following sites are specific to different commercial products. You might find
these products useful in your game-development projects.

http://www.fastgraph.com. Fastgraph is a great programming library that reduces
the overhead of graphics programming. The latest version even includes a great 3D
software-rendering system that makes 3D graphics programming a breeze.
Fastgraph is especially useful if you find DirectX’s graphics a bit difficult to use. A
demo version of Fastgraph/Light 6.0 is available on this book’s CD-ROM.

http://www.discreet.com. Discreet is the maker of 3D Studio MAX. I believe 3D
Studio MAX to be the best 3D animation and modeling software available. Check
out this site if you are interested in purchasing a modeling package.

http://www.garagegames.com. This site offers publishing services for indie develop-
ers. You might also want to check it out for ready-made game engines.

http://www.asheronscall.com. This is the main page for one of my favorite
MMORPGs—Microsoft’s Asheron’s Call.

Magazines
The Internet is full of great information, and you can find great content in online
periodicals.

http://www.gdmag.com. This is a great magazine for game-development articles
and news.

http://www.next-generation.com. Unlike many gaming magazines, NextGen has
stories that pertain to the business side of the gaming industry. The job-offer adver-
tisements at the back of the magazine are one of the best features for aspiring
game developers.

737Magazines

http://www.microsoft.com/directx
http://www.fastgraph.com
http://www.discreet.com
http://www.garagegames.com
http://www.asheronscall.com
http://www.gdmag.com
http://www.next-generation.com

APPENDIX B

Installing
the

Software

739Installing the DirectX 8 SDK

One of the most important software components you need to use this book is
the DirectX SDK. Without this software development kit, you will not be able

to use most of the code. This appendix takes you through the following steps.

■ Installing the DirectX 8 SDK
■ Configuring Microsoft’s Visual C++ for the DirectX 8 SDK

Installing the DirectX 8 SDK
On the CD that comes with this book, you will find a directory containing the
setup program to install the DirectX 8 SDK. Launch the setup program now to
begin installation.

The first screen you see is a standard introduction page that prompts you to
continue. Go ahead and select Next. Figure B.1 illustrates what you should see on
your screen.

Figure B.1

The DirectX 8 SDK
installation welcome screen

After you view the introduction page and select Next, you are greeted with the soft-
ware license agreement for the SDK. Feel free to consult your lawyer at this time,
or if you are like most people, select Yes to continue. The license screen appears in
Figure B.2.

740 B. Installing the Software

Figure B.2

The installation license
screen

Figure B.3

The setup type selection
screen

Once you select Yes, you are greeted with the screen in Figure B.3.

741Installing the DirectX 8 SDK

The screen in Figure B.3 gives you the option to install the Complete, Custom, or
DirectX Run-Time Only versions of the software. If you were a non-developer, you
might install the Run-Time Only version, but you are a developer, so leave the
selection at Complete and select Next. Now, if you have a rebellious streak and you
decide to select Custom, you’ll see the screen in Figure B.4.

Figure B.4

The Custom setup
selection screen

As long as you selected Complete, the next screen you’ll see asks whether you want
to install the Retail or Debug version of DirectX. The Retail version offers the most
speed but limits the amount of information shown when you debug your applica-
tions. The Debug version is slower than the Retail version, but it gives you much
more information when debugging a DirectX game. The choice is yours, so make it
and select Next. Oh, yes, this wonderful screen appears in Figure B.5.

The next screen asks you where you
want to install the SDK. I personally
keep all of my source code in C:\source,
so I put DirectX into C:\source\directx8.
Go ahead and browse to wherever you
want the code, and select Next. You
should be able to follow the rest of the
prompts without much trouble. Once
the installation is complete, you’re
almost ready to go!

TIP
If you have Visual C++ installed, the
DirectX 8 SDK installation program
prompts you to indicate whether
you want the libraries put into your
compiler’s paths. Select Yes at the
prompt so that your paths will be
correct when compiling.

Configuring the Microsoft
Visual C++ Compiler
If you own Microsoft’s Visual C++ compiler, you need to set up your paths to com-
pile the source code that comes with this book. If you chose to let the DX8 SDK
installation program set up your paths, you’re already halfway there.

Launch the Visual C++ integrated development environment now. Once you have
the program running, go to the Tools menu and select Options. Once you have the
Options menu open, select the Directories tab. If you have followed these steps suc-
cessfully, your screen should resemble Figure B.6.

742 B. Installing the Software

Figure B.5

The runtime type selection
screen

Figure B.6

The Options dialog box in the Visual
C++ program

743Configuring the Microsoft Visual C++ Compiler

Figure B.6 shows an example of what your current include paths might look like,
and Figure B.7 shows what your library paths might look like. The drop-down
menu labeled Show Directories For is where you select which paths you are editing.
In this drop-down menu, you’ll find selections for executable, include, library, and
source files.

Figure B.7

The library paths

To add a path, double-click your left-
mouse button on the next available entry
in the Directories box. Once you do that,
you can either type in the path manually
or select the Browse button to browse
for it.

Go ahead and add the following paths to
your include paths.

■ C:\source\directx8\include
■ C:\source\directx8\samples\multimedia\common\include

Add the following path to your library paths.

■ C:\source\directx8\lib

Add the following path to your source paths.

■ C:\source\directx8\samples\multimedia\common\src

CAUTION
The following path settings assume
you have installed the DirectX 8
SDK to C:\source\directx8. If you
have installed to another path,
replace the C:\source\directx8\
base path with yours.

To see the files you are gaining access to, open Windows Explorer and browse to
C:\source\directx8\samples\multimedia\common\include. Here you see some of the
extra files to which you are creating paths. The most common file you’ll use here is
the dxutil.h header file that contains useful helper code. Figure B.8 shows you the
directory listing for the common include folder.

Before you leave, you should make yourself familiar with the directory structure of
where you installed the DX8 SDK. You might need to access some of the programs
in there later.

744 B. Installing the Software

Figure B.8

Files in the common
include folder for the
DX8 SDK

APPENDIX C

ASC I I
Chart

746 C. ASCII Chart

Dec Hex ASCII

000 00 null

001 01

002 02

003 03 ♥

004 04 ◆

005 05

006 06

007 07 ˘
008 08

009 09 ¯
010 0A

011 0B �

012 0C �

013 0D �
014 0E

015 0F

016 10

017 11

018 12

019 13 !!
020 14 ¶

021 15 §

022 16 –

023 17

024 18

025 19

026 1A

027 1B

028 1C

029 1D

030 1E ▲

031 1F ▼

Dec Hex ASCII

032 20 space

033 21 !

034 22 “
035 23 #

036 24 $

037 25 %

038 26 &

039 27 ‘

040 28 (

041 29)

042 2A *

043 2B +

044 2C ’

045 2D -

046 2E .

047 2F /

048 30 0

049 31 1

050 32 2

051 33 3

052 34 4

053 35 5

054 36 6

055 37 7

056 38 8

057 39 9

058 3A :

059 3B ;

060 3C <

061 3D =

062 3E >

063 3F ?

��

747ASCII Chart

Dec Hex ASCII

064 40 @

065 41 A

066 42 B

067 43 C

068 44 D

069 45 E

070 46 F

071 47 G

072 48 H

073 49 I

074 4A J

075 4B K

076 4C L

077 4D M

78 4E N

079 4F O

080 50 P

081 51 Q

082 52 R

083 53 S

084 54 T

085 55 U

086 56 V

087 57 W

088 58 X

089 59 Y

090 5A Z

091 5B [

092 5C \

093 5D]

094 5E ^

095 5F –

Dec Hex ASCII

096 60 `

097 61 a

098 62 b

099 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y

122 7A z

123 7B {

124 7C

125 7D }

126 7E ˜

127 7F ∆

748 C. ASCII Chart

Dec Hex ASCII

128 80 Ç

129 81 ü

130 82 é

131 83 â

132 84 ä

133 85 à

134 86 å

135 87 ç

136 88 ê

137 89 ë

138 8A è

139 8B ï

140 8C î

141 8D ì

142 8E Ä

143 8F Å

144 90 É

145 91 æ

146 92 Æ

147 93 ô

148 94 ö

149 95 ò

150 96 û

151 97 ù

152 98 ÿ

153 99 Ö

154 9A Ü

155 9B ¢

156 9C £

157 9D ¥

158 9E Pt

159 9F ƒ

Dec Hex ASCII

160 A0 á

161 A1 í

162 A2 ó

163 A3 ú

164 A4 ñ

165 A5 Ñ

166 A6 ª

167 A7 º

168 A8 ¿

169 A9 ©
170 AA ™
171 AB ´
172 AC ¨
173 AD ¡

174 AE Æ
175 AF Ø
176 B0 ¤
177 B1 ¤
178 B2 ¤
179 B3 ≥
180 B4 ¥
181 B5 µ
182 B6 ∂
183 B7 ∑
184 B8 ∏
185 B9 π
186 BA ∫
187 BB ª
188 BC º
189 BD Ω
190 BE æ
191 BF ø

749ASCII Chart

Dec Hex ASCII

192 C0 ¿
193 C1 ¡
194 C2 ¬
195 C3 √
196 C4 ƒ
197 C5 +

198 C6 ∆
199 C7 «
200 C8 »
201 C9 …
202 CA

203 CB À
204 CC Ã
205 CD =

206 CE Œ
207 CF œ
208 D0 –
209 D1 —
210 D2 “
211 D3 ”
212 D4 ‘
213 D5 ’
214 D6 ÷
215 D7 ◊
216 D8

217 D9

218 DA ⁄
219 DB ¤
220 DC fl
221 DD ›
222 DE fi
223 DF ‹

Dec Hex ASCII

224 E0 ‡
225 E1 ·
226 E2 ‚
227 E3 „
228 E4 ‰
229 E5 Â
230 E6 Ê
231 E7

232 E8 Ë
233 E9 È
234 EA Í
235 EB Î
236 EC Ï
237 ED Ø

238 EE Ó
239 EF Ô
240 F0
241 F1 ±

242 F2 ≥
243 F3 ≤
244 F4 Ù
245 F5 ı
246 F6 Ò
247 F7 ˜
248 F8 ¯
249 F9 ˘
250 FA ˙
251 FB ˚
252 FC n

253 FD 2

254 FE ■

255 FF

⁄

À

APPENDIX D

What’s
On the CD

751Fastgraph/Light 6.0

The CD that comes with this book contains some very important software that
you need to copy to your machine. Here is the run-down of what is included.

Source Code
All of the source code for the in-book programs is located on the CD. Make sure
you install the source code to get the most out of the book.

DirectX 8 SDK
If you don’t already have at least DirectX 8.0 installed on your machine, you need
to install it from the book’s CD. You must have it if you want to compile or use
most of the code discussed in the book.

Games
You’ll also find on the CD a trial version of a cool robot combat game by Microsoft,
called MechWarrior 4: Vengeance. It has a very decent networking system that you
might want to analyze. It also happens to be a pretty cool game! Also included is a
trial version of another Microsoft game, called Crimson Skies.

Fastgraph/Light 6.0
Fastgraph is a cool alternative to DirectX. In fact, you can use the two together. It is
a programmer’s library for doing all sorts of graphic operations. The nice thing
about it is that it makes game development easier on beginners. I highly recom-
mend it if you want an easy way into programming game graphics. The version on
the CD is an evaluation copy, but don’t let that fool you; it is extremely powerful!

Index

A
acceleration action, processing, 622–623

Accept() function, 109, 121, 177–181

in C, 178–181

in C++, 182–184

diagram, 181

Accept_SocketObject program, 199

acsKeys[] array, 539–540

Adams, Scott, 5

AddComponent() function, 300–303, 413

in client/server games, 301, 413

in DPChat, 367

RPG (role-playing games), setting port
number in, 685

addresses. See also device addresses; host
address; IP addresses

DirectPlay addresses, 296–300

Adobe Photoshop, 569

ADSL lines for MMORPGs (Massively
Multiplayer Online Role-Playing
Games), 664

advancement

in MMORPGs (Massively Multiplayer Online
Role-Playing Games), 661–662

MUDs and, 7–8

AF_INET, 167

Age of Empires series, 156, 292, 382

AI (artificial intelligence)

processing, 50–51

in real-time strategy games, 18

allegiance systems in MMORPGs (Massively
Multiplayer Online Role-Playing
Games), 659, 660

ambient lighting, 507

in RPGQuest, 706

America Online (AOL), 91

Amiga computers, 210

analog sound, 46

angle message, RPGQuest, 694

animation, 62–63. See also 3D animation

anistropic texture filtering, 714

anti-social behaviors, 29

MMORPGs (Massively Multiplayer Online
Role-Playing Games) and, 660

API (application programming interface), 46.
See also DirectPlay; Direct3D

SDK (software development kit) and, 47

Apple’s Macintosh, 209–210

application description. See also DirectPlay

client in client/server games, 413

RPGQuest, 685

arena. See also SpacePirates

RPGQuest, rendering for, 715

ASCII code

for DirectInput, 530, 531

MapVirtualKeyEX() function, 544

Scan2Ascii() function, 543–544

Asheron’s Call, 5, 6, 11, 19, 37, 382

allegiance systems, 659, 660

anti-social behaviors in, 29

Bandit Hilt, 656

colored messages, 727

colors in, 662

message output box, 716, 717

as MMORPGs (Massively Multiplayer Online
Role-Playing Games), 644

peer-to-peer method, 81

portal storming, 95–96

quest items in, 367, 656, 657

skill levels for, 658

updates, 37

Asteroids

bitmaps in, 58–60

display, updating, 51

Atlantic server, 21

Attack Target command, 6

avatars, 674. See also RPGQuest

B
backgrounds, 61–62

backlog number, 177

Backspace key, 142

Baja server, 21

Battle.net servers, 93–96

BBS games, 12–14

BeginScene() function, 454

Berry, Dani Bunton, 14, 15

bFindDepthStencilFormat() function, 607

big-endian, 167

BigIP hardware system, 654–655

bind() function, 109, 168

as blocking call, 178

prototype for, 160–161

returns, 162

binding, 109, 168

C version of, 163–166

C++ version of, 168–172

failure of, 120

bitmaps, 58–60

animation, 62–63

blitting, 63–65

collision detection, 65–66

color depth, 59

color key, 59–60

common attributes, 59

size of, 59

transparency, 59–60

bits, 43, 44

blitting, 63–65

hardware vs. software blitting, 64

parameters, 64–65

blocking calls, 130

bind() function as, 178

.bmp format, 497

bounding-box collision detection, 65–66

broadcast messages, 372. See also DPChat

in client/server games, 401–406

SendTo() function for, 373

browsers, port numbers for, 193

bSavePlayerInfo() function, 691

buffers. See DirectInput; vertex buffers

BuildFromDPADDRESS() function, 300

BuildFromURLA() function, 300

bullets. See SpacePirates

BUTTON class, 263

Button.cpp file, 265

Button project, 264–270

bValidatePlayer() function, 692, 693

C
C

accept() function in, 178–181

recv() function in, 200–203

sending data in, 193–196

753Index

C++, 106. See also Visual C++

accept() function in, 182–184

binding in, 168–172

connect() function in, 190–193

listen() function in, 175–177

overview of, 150–156

recv() function with, 204–205

send() function in, 197–199

cable modems, 89, 90

callback functions, 216–217

cameras, 47. See also Direct3D; RPGQuest

SpacePirates, updating in, 631

for x-files, 515–516

camping, 656

Cartesian coordinates, 465–466

cbC1sExtra member, 229

cbSize member, 229

cbWndExtra member, 229

chaos mode, 20

characters

in EverQuest, 34

in MUDs (Multiuser Dungeons), 7–9

Ultima Online characters, 21–25

ChatPacket variable, 144

chat programs, 133–148. See also client/server
games; SimpleChat program

components for, 134

project space, creating, 328–330

cheating. See hacking

CheckDeviceType() function, 605

child windows. See also DPChat

coordinate system, 263, 264

creating, 261–264

classes, 156–158. See also SocketObject class

Microsoft Foundation Classes (MFC), 220

cleaning up. See vCleanup() function

Clear() function

Direct3D, 452–454

for polygons, 489

RPGQuest, 714

client/server games, 52–56. See also
IDirectPlay8Client; IDirectPlay8Server;
RPGQuest

AddComponent() function, 301, 413

adding players, 393–395, 396

application description of client, 413

architecture, 381

broadcasting messages, 401–406

chat message packet prototype, 400–401

CoInitialize() function, 406–408

Connect() function, 414–415

connections, 83–86

connection timer, setting, 415

critical sections

adding players in, 396

global data, modifying, 396

destroying player messages, 396–398

DirectPlay supporting, 80, 293–296

DPN_BUFFER_DESC data structure, 403

DPNMSG_CREATE_PLAYER message, 395

DPNMSG_DESTROY_PLAYER message,
397–398

DPN_MSGID_RECEIVE message, 398–399

DPNMSG_RECEIVE message, 400

firewalls, 382–384

flags

for Connect() function, 414

IDirectPlayServer interface, 387

SendTo() flags, 405

SetServerInfo() function, 389

fnMessageProcessor() function, 415

GetClientInfo() function, 395–396

g_hConnectCompleteEvent event, 416–417

host address, setting up, 413

Host() function for, 391–393

hosting sessions, 388–389

754 Index

hrDestroyPlayer() function, 396–397

hrInitializeDirectPlay() function, 408–409

hrJoinGame() function, 410–412

hrSendClientMessage() function, 417–420

hrSendServerMessage() function, 401–406

IDirectPlay8Address interface, 388, 391

IDirectPlay8Client

interface, 406–409

Send() function, 419–420

IDirectPlay8Server interface, 384–387

initializing

client steps for, 408–409

IDirectPlay8Client interface, 408

interfaces, 56

joining server’s session, 409–417

lagging, 86

managing players, 393–395

ON_APPLICATION_DESC structure,
390–391

PacketGeneric class, 399–400

pros and cons, 86

receiving client messages, 398–400

requests/responses in, 53–56

SendTo() function, 403–406

SetClientInfo() function, 412–413

SetServerInfo() function, 389–390

simplicity of, 384

szText character buffer, 401

timer

g_hConnectCompleteEvent event, 416

setting, 415

WaitForSingleObject() function, 416

ClientSocketObject, 110

CloseHandle() function, 247

closesocket() function, 168

CLSID_DirectPlay8Server, 294

CLSID identifiers, 310

CoCreateInstance() function

with COM objects, 310

in DirectPlay, 310–311

in DPChat, 347

peer communication object, creating, 292

RPGQuest, 681–682

CoInitialize() function

client/server games, 406–408

IDirectMusicLoader8, 550–551

SpacePirates, 597

collision detection, 65–66

color depth, 43, 44

bitmaps, 59

Direct3D and, 426

colored messages, 727

color key

bitmaps, 59–60

colors. See also lighting

for MMORPGs (Massively Multiplayer
Online Role-Playing Games)
equipment, 662–663

for SpacePirates fonts, 636

COMBOBOX class, 263

Command & Conquer, 16, 17, 18

commands

MUD commands, 6

in RPGQuest, 677

in SpacePirates, 618–619

Commodore Amigas, 210

communication protocols, 47–48

in peer-to-peer games, 57

COM objects. See also DirectPlay

CoCreateInstance() function with, 310

DirectAudio initialization, 549–550

in DirectPlay peer-to-peer session, 309

DPChat, initializing for, 345–346

RPGQuest, initializing for, 681

SpacePirates, initializing, 595–598

755Index

competition, MUDs and, 7–8

conv3ds.exe, 511

config/txt files, 618–619

conio.h file, 142–143

Connect() function, 110, 184–193

client/server games, 414–415

in C++ version, 190–193

C version of, 185–188

DirectPlay, connecting to, 323–325

DPChat, 367–368

of SocketObject class, 107

connection servers, 94–95

ConnectionTest program, 110–122

components for, 111

header information, 118

main() function, 119

running, 116–117

writing/compiling code, 114–116

constructors, 155, 170

in SpacePirates, 577, 586

coordinates

Cartesian coordinates, 465–466

for child window, 262, 263

for textures, 495–497

vDisplayXYZ() function, 588–592

copy command, 119

cout command, 116

CreateDevice() function

for DirectInput, 532–533

Direct3D, 442–444, 449–452

CreateEvent() function, 352

CreateFont() function, 615

CreateThread() function, 247–248

CreateVertexBuffer() function, 483–485

flags, 485

CreateWindowEx() function, 274–276

for edit fields, 282

CreateWindow() function, 229, 230–232

child window, creating, 261–264

for DPChat, 336–338

parameters for, 262

C++ reusable code, 156–157

critical sections. See also client/server games;
RPGQuest

in DPChat, 346–347

global data, modifying, 677

C-style structures, 157

D
datagram sockets, 160

DataPacket variable, 130

bytes, limits on, 131

data storage. See also MMORPGs (Massively
Multiplayer Online Role-Playing Games)

in RPGQuest, 675–676

debug folder, 127

dedicated game servers, 93–96

defensive play, 35

DefWindowProc() function, 238

destination X parameter, 64

destination Y parameter, 64

destructors, 155, 170

in SpacePirates, 577, 586

development Web sites, 736–737

device addresses, 297. See also DPChat

in DirectPlay, 312

device independence, 425–426

Diablo games, 58, 82–83

dial-up connections, 87

digital data, 46

DIK codes, 719

DIK_Read project, 538–545

DIPROPDWORD data structure, 533

DIPROPHEADER data structures, 534

DirecPC, 89–90

756 Index

DirectAudio, 545–563. See also
IDirectMusicLoader8;
IDirectMusicPerformance8; SpacePirates

cleaning up, 554

code-checking, 558

COM initialization, 549–550

default audio path, 552, 553

Download() function, 560

GUIDs, loader type, 559

header files, 547–548

for playing sound, 555–557

hrInitDirectAudio() function, 548–550

hrLoadSound() function, 556–560

hrPlaySound() function, 561–563

InitAudio() function, 551–553

initializing, 547–554

loaders, 545

GUIDs, 559

in SpacePirates, 577

LoadObjectFromFile() function, 559–560

object types in, 545–546

playing sound, 554–563

hrLoadSound() function, 556–560

hrPlaySound() function, 561–563

segments, playing, 562–563

PlaySegmentEx() function, 562–563

for RPGQuest, 720

segments, playing, 562–563

SetVolume() function, 553–554

Unload() function, 560, 563–564

vCleanup() function, 554

volume, setting, 553–554

wide string format filename, 558

DirectAudioInit header information, 547–548

DirectDraw, 288

DirectGraphics, 425–426. See also Direct3D

DirectInput, 524–538

Acquire() function, 537

acsKeys[] array, 539–540

buffers, 533–534

looping through, 543

retrieving buffered data, 542–543

setting up, 535

cooperative level of device, 536

CreateDevice() function, 532–533

DIK_Read project, 538–545

DirectInput8Create() function, 530–531

Enter key, checking, 544–545

Escape key, checking, 544–545

flags

for cooperative level of device, 536

DirectInput8Create() function, 530

format for device, 535

GetDeviceData() function, 542–543

GetKeyboardLayout() function, 543

g_Layout object, 540

GUIDs for device, 532–533

header files, 525–528, 538–539

HKL keyboard layout variable, 540

hrInitDirectInput() function, 529, 530–531

hrInitKeyboard() function, 531–537

hrReadKeyboard() function, 540–543

immediate data, using, 533

layout of program, 529–537

looping through buffered data, 543

MapVirtualKeyEx() function, 544

MsgProc() function, 529

reading keyboard, 540–543

for RPGQuest, 718–719

Scan2Ascii() function, 543–544

scan-code key array, 539–540

SetCooperativeLevel() function, 536

SetDataFormat() function, 535

SetProperty() function, 535

SpacePirates using, 610

vCleanup() function, 529, 537, 538

WinMain() function, 529

757Index

DirectInput8Create() function, 530–531

DirectMusic. See DirectAudio

DirectMusicAudioPath8, 553–554

DirectPlay, 15, 75, 288–296. See also
client/server games; DPChat;
IDirectPlay8Address; IDirectPlay8Peer;
IDirectPlay8Server; RPGQuest;
SpacePirates

AddComponent() function, 300–303

addresses, 296–300

strings, 299

application description, 315–317

on connecting, 324, 325

joining, setting on, 322

architecture, 289

BuildFromDPADDRESS() function, 300

BuildFromURLA() function, 300

chat message packet, 307–308

child windows for DPChat, 333

client/server games, 293–296

clients in, 296

CLSID identifiers, 310

CoCreateInstance() function, 310–311

components of address, 300–303

Connect() function, connecting with,
323–325

contents of address, 298–300

device address, creating, 312

dpPlayerInfo variable, 319

flags, 316

for connection, 324

game sessions, 290–296

GetApplicationDescription() function, 317

GUIDs, 297, 298

storing, 316–317

host address, creating, 313–314

host migration, 292–293

include files for DPChat, 332–333

initializing, 304–305

message handler, 311–312

peer-to-peer session, 309

joining peer-to-peer games, 322–325

message handler, 303–305

definitions, 306

in DPChat, 341–343, 348–350

initializing, 311–312

name of player, 318

overview, 80–86

peer-to-peer games, 80, 291–293

hosting, 314–315

IDirectPlay8Peer interface, 309–311

initializing session, 309

joining a session, 322–325

message handler in, 304–305

reviewing of hosting code, 319–322

setting peer information, 317–319

player information, setting, 317–319

port number, 323

processing messages, 305–308

project architecture, 329

responsibilities of host, 293

separators in address, 300

server communication object, 294

server hosting, 294–296

service providers, 289–290

setting, 297, 312–313

SetPeerInfo() member function, 318–319

string elements in address, 299

TCP/IP and, 288–290

wide character strings, 684

ZeroMemory() function, 316

DirectPlayMessageHandler() function, 359

RPGQuest, 682, 724, 725

SpacePirates, 637–640

DirectSound. See DirectAudio

758 Index

Direct3D, 288, 424–425. See also hrInit3D()
function; IDirect3D8; lighting;
polygons; primitives; textures; vertex
buffers; x-files

BeginScene() function, 454

BufferCount, 441

cameras, 457–458

destination, setting, 458

D3DXMatrixLookAtLH() function, 459

initializing matrix, 458–459

projection matrix, 460–461

SetTransform() function, 459–460

source, setting, 458

Clear() function, 452–454

color depth, 426

CreateDevice() function, 442–444, 449–452

device independence, 425–426

Direct3DCreate8() function, 436–437

D3DDISPLAYMODE data structure,
438–439

D3DFORMAT data structure, 439

D3DMatrixPerspectiveFovLH() function,
461–462

D3DXMATRIX data type, 456

D3DXMatrixLookAtLH() function, 459

D3DXVECTOR3 data type, 456–457

EndScene() function, 454

flags, 441

behavior of device, setting, 443

CreateVertexBuffer() function flags, 485

IDirect3DDevice8::Clear() flags, 453

Lock() function, 486

fog, 435–436

FullScreen_PresentationInterval values, 442

global variables, 478–479

gouraud shading, 430

hardware acceleration, 432–433

hardware lighting, 431–432

header files, 478

hFocusWindow values, 443

hrInit3D function, 482

IDirect3DDevice8

BeginScene() function, 454

Clear() flags, 453

initializing

camera matrix, 458–459

environment, 444–448

RPGQuest, 704–707

Init3D application, 444–448, 449

lighting in, 431–432

matCameraView variable, 458, 459

mip-mapping, 427–429

origin of 3D scene, 458

Present() function, 454–455

projection matrix, 460–461

radians, 461

RPGQuest initialization, 704–707

simulated lighting, 431, 432

software emulation, 426–427

2D vector, 456–457

Unlock() function, 486–487

vCleanup() function, 455

vertex buffers, 479–481

Visual C++, setting up, 448

vRenderScene() function, 452–455

vSetupView() function, 457–459

WinMain() function for, 448–449

z-buffers, 433–435

DirectX, 210. See also DirectAudio

blitting, 63–64

components, 288

fog, 435–436

graphics initialization, 41–42

interface objects, 704

Windows NT and, 211

DirectX SDK. See also x-files

for DPChat, 357, 361

759Index

installing software, 740–743

Disconnect() function, 109

DispatchMessage() function, 234, 236

display adapters, 44

displays

screen resolution, 42–43

updating, 51

Dmusici.h file, 548

DOS (Disk Operating System), 208–209

standard game loop, 216

Download() function, DirectAudio, 560

DPChat. See also client/server games

AddComponent() function in, 367

application description

joiner’s description, setting, 367

setting up, 357

application names, 334

asynchronous context parameter, 373

broadcast messages, 372

SendTo() function for, 373

buffer description parameter, 373

casting raw message data, 376

child windows

identifiers, 333

initializing, 338–340

class names, 334

COM objects, initializing, 345–346

Connect() function, 367–368

connection process diagram, 371

CreateEvent() function, 352

CreateWindow() function, 336–338

critical sections, 346–347

locking out threads with, 376

device addresses, 351

setting up, 357

diagrams

connection process diagram, 371

player, creating, 364

DirectPlay, chat message packet in, 307–308

DirectX SDK files for, 357, 361

DPChat.cpp.file, 335–336

DPN_BUFFER_DESC data structure, 372

dpnidPlayer variable, 361

DPN_MSGID_CONNECT_COMPLETE
message, 368–369

DPN_MSGID_HOST_MIGRATE message,
376

DPN_MSGID_TERMINATE_SESSION
message, 376

DPN_PLAYER_LOCAL flag, 362–363

EnterCriticalSection() function, 376

flags

broadcast messages, 372

DPNPLAYER_LOCAL flag, 362–363

SendTo() function, 374

fnMessageProcessor() function, 341–343

g_csModifyPlayer critical section, 347

GetPeerInfo() function in, 361–362

GUIDs

application identifier, 334

INITGUID, 332

header file, 330–332

host addresses, 351

for joining session, 367

Host() function, 357–358

hrCreatePlayer() function, 347, 359–361

in joiner’s view, 370

hrDestroyPlayer() function, 347, 373–375

hrHostGame() function, 354–356

hrInitializeDirectPlay() function, 343–345

hrJointGame() function, 365–367

hrSendChatMessage() function, 363,
370–372

IDirectPlay8Peer objection, 347

760 Index

include files, 332–333

initializing

child windows, 338–340

message handler, 348–350

window, 336–338

interface globals, 334–335

InterlockedDecrement() function, 376

InterlockedIncrement() function, 363–364

joining a session, 365–367

main project file, 335–336

message handlers

code, 341–343

initializing, 348–350

player information, 335

deleting, 374–375

diagram, 364

joiner’s peer information, setting, 367

setting up for, 356–357

storing, 362

program flow, 353

project architecture, 329

pwsz notation, 357

SendTo() function, 372–373

flags, 374

SetTimer() function, 334

text to window, outputting, 340–341

timer

identifier, 334

reading, 369

vShowText() function, 340–341

WinMain() function, 336–338

WM_TIMER check, 343

DPlay address object, 296

DPN_BUFFER_DESC data structure, 372

client/server games, 403

DPNHOST_OKTOQUERYFORADDRESSING flag,
315

dpnidPlayer variable, 361

DPNMSG_CREATE_PLAYER message, 395

DPNMSG_DESTROY_PLAYER message,
397–398

DPN_MSGID_CONNECT_COMPLETE
message, 368–369

DPN_MSGID_HOST_MIGRATE message, 376

DPN_MSGID_RECEIVE message

client/server games, 398–399, 400

RPGQuest, 726

DPN_MSGID_TERMINATE_SESSION message

DPChat, 376

RPGQuest, 725

DPNPLAYER_LOCAL flag, 362–363

dpPlayerInfo variable, 319

DrawSubset() function, 517

DrawText() function

for RPGQuest, 716, 717

SpacePirates score, displaying, 636

Draw3DPrimitive project, 470–478

Dreamcast, 38

DSL lines, 83, 89

for MMORPGs (Massively Multiplayer
Online Role-Playing Games), 664

dsound.lib, 548

D3DDISPLAYMODE data structure, 438–439

D3DFORMAT data structure, 439

D3DFVF_Normal vertex format, 501–505

D3DFVF_TEX1 vertex format, 493–494

D3DLIGHT8 data structure, 508–510

D3DMATERIAL8 data structure, 506–508

D3DMatrixPerspectiveFovLH() function,
461–462

D3DPRESENT_PARAMETERS data structure,
439–442

D3DXCreateFont() function, 615

D3DXCreateTextureFromFile() function,
497–498

761Index

D3DXLoadMeshFromX() function, 514–515

D3DXMATRIX data type, 456

D3DXMatrixLookAtLH() function, 459

D3DXMatrixRotationY() function, 520–521

D3DXVECTOR3 data structure, 456–457, 502,
504

dwStyle parameter, 230

dxguid.lib, 548

dxutil.file, 555–556

dynamic IP addresses, 91

dynamic-length packets, 100–101

Dynamix, 35. See also Tribes 2

E
eBay, 28

EDIT class, 263

edit fields, 278–283

GetWindowText() function, 282–283

eight-way systems, 214

Electronic Arts, 14

Empire, 12

encryption in MMORPGs (Massively
Multiplayer Online Role-Playing
Games), 666–667

EndScene() function, 492

EnterCriticalSection() function, 376

Enter key, checking, 544–545

Escape key, checking, 544–545

Ethernet cards, 91–92

Europa server, 21

EverQuest, 11, 19, 33–35, 382

character races in, 34

crash, effect of, 652–653

difficulty factor, 34–35

message log, 716

as MMORPG (Massively Multiplayer Online
Role-Playing Game), 644

peer-to-peer method, 81

players, customizing, 663

zones in, 34, 93

experience points

in EverQuest, 34

in MUDs (Multiuser Dungeons), 8–9

explosions. See SpacePirates

extended windows

creating, 274–276

styles of, 275

F
faces, 69–70

fail-over solutions, 96, 97

FIFO method, 95

56.6k modems, 87–88

files. See also header files

graphics files, 48–49

sound files, 49–50

firewalls, 77–80, 382–384

in Age of Empires, 382

cable modems, 89

ports, 78–80

software alternatives, 384

fixed IP addresses, 91

fixed-length packets, 100–101

flags. See also client/server games; DirectAudio;
DirectInput; DirectPlay; Direct3D;
DPChat

for child window, 261

DirectInput8Create() function, 530

DPNPLAYER_LOCAL flag, 362–363

Lock() function, 486

in PlaySound() function, 270

for recv() function, 199–200

send() function, 196–197

flat shading, 430

fnMessageProcessor() function, 236–238

for DPChat, 341–343

762 Index

fog, 435–436

fonts

CreateFont() function, 615

RPGQuest display, 716

in SpacePirates, 615, 636

formats

graphic formats, 48

sound files, 48–49

foundation classes, 220

frames, 62–63

full-screen applications, 44

FullScreen_PresentationInterval values, 442

G
game loops. See loops

gameplay, 26–28

in RPGQuest, 674–677

game sessions, 290–296

types of, 291–296

GameSound class, 570. See also SpacePirates

game state/game state changes, 81

gaming Web sites, 736

Gaming Zone, Microsoft, 78, 382

Garriot, Richard, 20

Gates, Bill, 208

g_csModifyPlayer critical section, 347

GDK (Game Development Kit), 210

GeForce, 606

geometry. See polygons; primitives

GetAdapterCount() function, 603–604

GetApplicationDescription() function, 317

GetClientInfo() function

in client/server games, 395–396

RPGQuest, 688

GetDeviceData() function, 542–543

gethostbyname() function, 188–190

GetKeyboardLayout() function, 543

GetMessage() function, 234, 235

GetPeerInfo() function

in DPChat, 361–362

in SpacePirates, 637–638

GetWindowText() function, 282–283

g_hConnectCompleteEvent event, 416–417

Goldeneye 007, 35

gouraud shading, 430

graphics. See also Direct3D; 3D graphics

DirectGraphics, 425–426

formats, 48

initialization, 41–45

RPGQuest, 703–717

screen resolution and, 42–43

graphics cards. See Direct3D

Great Lakes server, 21

greed in Ultima Online, 31

guaranteed packets, 726

guidgen program, 334

GUIDs, 297, 298. See also DirectPlay; DPChat

for DirectAudio, 559

DirectInput device, 532–533

guidgen program, 334

RPGQuest, 685

for service providers, 682

guilds in MMORPGs (Massively Multiplayer
Online Role-Playing Games), 659

H
hacking, 53

in peer-to-peer games, 58

Ultima Online, 54–56

Half-Life, 35

HAL (hardware abstraction layer), 432–433

hardware

blitting, 64

communication hardware, 87–96

data hardware, 651–656

763Index

private networks for, 651–652

hardware lighting, 431–432. See also T&L
(transform and lighting)

creating, 505–508

hbrBackground member, 229

hCursor member, 229

header files, 48–49. See also DirectAudio;
SpacePirates

ConnectionTest program, 118

DirectInput, 525–528, 538–539

Direct3D, 478

DPChat header file, 330–332

SimpleChat program, 142–143

for textures, 493–494

x-files, loading, 511–512

height parameter, 64

Hello World program, 253–256

hFocusWindow values, 443

hIcon member, 229

hIconSm member, 229

hInstance member, 229, 231

HINSTANCE type, 224

HKL keyboard layout variable, 540

hLB notation, 274

hLoad() function

RPGQuest, 702

SpacePirates, 585, 586–588

hLoadXFile() function, 512–514

host address, 297. See also DPChat

in client/server games, 413

in DirectPlay, 313–314

host command, 618–619

HOSTENT data structure, 187–188

modifying member variables, 189

Host() function

for client/server games, 391–393

in DPChat, 357–358

hosting peer-to-peer games, 292–293

housing in Ultima Online, 27–28

hrBuildDeviceList() function, 602–609

adapters, enumerating, 603–604

compatible devices, adding, 605–609

default adapter, choosing, 609

depth buffer, locating, 606–607

device modes, adding, 608

hardware support. checking for, 605–606

resolution test, 604

RPGQuest, 705

valid device found, checking, 608

video modes, enumerating, 604–605

window-compatible device, checking for,
609

hrConfirmDevice() function, 606

hrCreatePlayer() function, 347

in DPChat, 359–361

RPGQuest, 688–689

in SpacePirates, 637–638

hrDestroyPlayer() function, 347

in client/server games, 396–397

DPChat, 373–375

RPGQuest, 689–692

in SpacePirates, 638–639

hrHostGame() function, 342, 354–356

RPGQuest, 683–684

hrInitDirectAudio() function, 548–550

hrInitDirectInput() function, 529, 530–531

RPGQuest, 718

SpacePirates, 610

hrInitializeDirectPlay() function, 343–345

RPGQuest, 680–683, 683

SpacePirates, 595–598

hrInitKeyboard() function, 531–537

RPGQuest, 718

SpacePirates, 610–612

hrInitSoundEngine() function

764 Index

RPGQuest, 720

hrInitSoundSystem() function

RPGQuest, 702, 720

SpacePirates, 577, 579–580

hrInit3D() function, 449–452 598–602

adapter settings, retrieving, 450

device

creating, 451–452

parameters, setting, 450–451

interface, creating, 450

for lighting, 503

polygons, 482

RPGQuest, 704

hrJoinGame() function, 342

client/server games, 410–412

DPChat, 365–367

hrLoadSound() function, 556–560

RPGQuest, 702

SpacePirates, 577, 580–582

hrPlaySound() function, 561–563

RPGQuest, 702

SpacePirates, 577, 582

hrReadKeyboard() function, 540–543, 621

RPGQuest, 719

hrSendChatMessage() function, 342

DPChat, 363, 370–372

hrSendClientMessage() function, 417–420

hrSendServerMessage() function

client/server games, 401–406

password requests, 689

HTML codes, 203

htons() function, 167–168

with gethostbyname() function, 189

HTTP (Hypertext Transfer Protocol), 203, 205

Hughes Satellite, 89–90

Hungarian notation

prefixes, 220–221

pwsz notation, 357

HWND data type, 160

hWndParent parameter, 231

I
iAddPlayer() function, 637–638

iBytesReceived variable, 143–144

iBytesSent variable, 143–144, 198

ideal packet size, 100

IDirectInputDevice8

Acquire() function, 537

GetDeviceData() function, 542–543

SetCooperativeLevel() function, 536

SetDataFormat() function, 535

SetProperty() function, 535

Unacquire() function, 537

IDirectInput8, 524–528, 532–533

IDirectMusicLoader8, 545

creating interface, 550–551

LoadObjectFromFile() function, 559–560

IDirectMusicPerformance8, 546

creating interface, 551

InitAudio() function, 551–553

IDirectMusicSegment8, 546

Download() function, 560

hrPlaySound() function, 561–563

PlaySegmentEx() function, 562–563

IDirectPlay8Address, 296, 300, 301

client/server games, 388

in client/server games, 391

definitions of components, 302

for DPChat, 335

IDirectPlay8Client

addresses, setting up, 408

client/server games, interface for, 406–409

creating function, 408

Send() function, 419–420

IDirectPlay8Peer, 309–311

for DPChat, 335

765Index

objection, 347

IDirectPlay8Server. See also RPGQuest

for client/server games, 384–387

creating interface, 385

functions, 386–387

initializing, 385–387

SendTo() flags, 405

SetServerInfo() function, 389–390

IDirect3D8

CreateDevice() function, 442–444

Direct3DCreate8() function, 436–437

D3DDISPLAYMODE data structure,
438–439

D3DFORMAT data structure, 439

D3DPRESENT_PARAMETERS data
structure, 439–442

GetAdapterDisplayMode() function, 438

IDirect3DDevice8. See also vertex buffers

BeginScene() function, 454

Clear() flags, 453

DrawPrimitive() function, 491

EndScene() function, 454

Present() function, 454–455

SetStreamSource() function, 490

SetTexture() function, 499–500

SetTransform() function, 459–460

SetVertexShader() function, 491

vCleanup() function, 455

IDirect3DVertexBuffer8

Lock() function, 486–487

Unlock() function, 486–487

iGetMessage()function, 687

image composition, 58

iMaxSockets member, 166

iMaxUpdDg member, 166

INADDR_ANY, 167

in_addr data structure, 162

inet_addr() function, 188

INITGUID definition, 332

Initialize() function, 311–312

initializing. See also Direct Play; DPChat;
SpacePirates

DirectAudio, 547–554

graphics initialization, 41–45

IDirectPlay8Client interface, 408

IDirectPlay8Server interface, 385–387

input initialization, 46–47

for monsters, 151–152

network initialization, 47–48

RPGQuest, DirectPlay for, 680–683

sockaddr_in data structure, 167

sound initialization, 45–46

3D environment, 444–448

Winsock, 166

Init3D application, 444–448, 449

input. See also DirectInput

initialization, 46–47

user input, checking, 50

integrity risk, 82–83

interfaces

client/server games, 56

in real-time strategy games, 17–18

InterlockedDecrement() function, 376

InterlockedIncrement() function, 363–364

Internet. See also MMORPGs (Massively
Multiplayer Online Role-Playing
Games); Web sites

connecting to, 87–91

firewalls, 77

HTTP (Hypertext Transfer Protocol), 203

IP addresses, 75–77

satellite Internet access, 89–90

sockets, 75

Internet Service Providers (ISPs), 80, 90–91

for MMORPGs (Massively Multiplayer
Online Role-Playing Games), 664

int type, 224

766 Index

INVALID_SOCKET error, 166

investment factor, 11

iostream.h, 118, 165

IP addresses, 75–77

dynamic addresses, 91

finding, 117

firewalls, 77–78

fixed addresses, 91

HOSTENT structure, 188

in_addr data structure, 162

LANs (local area networks) and, 92

ports, 78–80

WinNuke, 177

iPort variable, 165

IPX protocol, 16

Tiberium Sun with, 18

IRC (Internet Relay Chat), 142

ISDN lines, 83, 89

iStatus variable, 165

iValidatePlayerPosition() function, 697–698

Izumo server, 21

J
join command, 618–619

joysticks, 476

.jpg format, 497, 498

K
Kali Inc., 16–17

_kbhit() function, 134

keyboard, 47. See also DirectInput; RPGQuest

MMORPGs (Massively Multiplayer Online
Role-Playing Games), configurations in,
669–670

in 3D animation, 519

killing. See PKing (player killing)

KISS standard, 15

Kris Jamsa’s Starting with Microsoft Visual C++,
222

L
lagging, 86

defined, 21

Lake Superior server, 21

LANs (local area networks), 75, 91–93

IP addresses, 75–77

setting up, 92–93

layering, 61–62

LB_ADDSTRING message, 276–278

LB_GETCOUNT message, 277

LB_SETCURSEL message, 277–278

libraries. See also specific libraries

Draw3DTexturedPrimitive project libraries,
493

with MFC classes, 223

networking libraries, 15

RPGQuest, 700

winsock.h, 165

LightEnable() function, 710

lighting, 431–432, 501–510. See also ambient
lighting; hardware lighting; RPGQuest;
SpacePirates

activating hardware lighting, 509–510

cone of spotlight, 509–510

default material, setting up, 508

diffuse value for materials, 507

D3DFVF_Normal vertex format, 501–505

D3DLIGHT8 data structure, 508–510

D3DMATERIAL8 data structure, 506–508

D3DXVECTOR3 data structure, 502, 504

emissive value of material, 507

hrInit3D() function, 503

materials, reflections and, 506–508

normals in 3D object, 502–505

shininess of materials, 507

767Index

specular highlights, 507

vInitGeometry() function, 503–505

light mapping, 431

line lists, 467–468

line strips, 468–469

Linux Game Programming, 678

Linux operating system, 84–85

ListBox class, 263, 270–278

ListBox.cpp file, 270–278

listboxes

creating, 270–278

edit field information, 282

LB_ADDSTRING message, 276–278

Listen() function, 121

listen() function, 109, 172–175

in C++, 175–177

prototype for, 174–175

load balancing, 95–96

loaders, DirectAudio, 545

LoadObjectFromFile() function, 559–560

login servers, 667, 668

Look Target command, 6

loops, 40–41. See also initializing

never-ending loops, 144–145

with recv() function, 205

in SpacePirates, 620–621

in 3D animation, 518

user input, checking, 50

Lord British, 20

lossy compression format, 498

M
magazine resources, 737

main() function, 119–120. See also WinMain()
function

variable usage in, 165

maintenance requirements, 95

MAKEWORD() function, 166

MapVirtualKeyEx() function, 544

materials

lighting, materials for, 506–508

for x-files, 515

matTranslation matrix, 489

member variables, 161

memory, 45

calculating need for, 63

cleaning up, 51

frames and, 63

graphics and, 48

3D cards and texture memory, 426

Meridian 59, 19–20, 34

message handlers. See also DirectPlay

in DPChat, 341–343, 348–350

RPGQuest, setting in, 682

in SpacePirates, 637–640

MFC APP Wizard, 222–223

Microsoft. See also Asheron’s Call; DirectPlay;
SQL Server; Windows programming

Age of Empires series, 156, 292, 382

Gaming Zone, 78, 382

GDK (Game Development Kit), 210

MSDN Library for Visual C++, 228

network software, 91–92

Visual C++ compiler, 134

Winsock, 75

Xbox, 38, 425

Microsoft Foundation Classes (MFC), 220,
222–223

problems with, 223

MIDI files, 49

MilkShape, 567

mip-mapping, 427–429

MMORPGs (Massively Multiplayer Online Role-
Playing Games), 19. See also Asheron’s
Call; RPGQuest; Ultima Online

actions, validation of, 667–668

768 Index

ADSL lines for, 664

advancement of players, 661–662

allegiance systems, 659, 660

anti-social behavior, 660

backing up data, 653

BigIP hardware system, 654–655

boasting rights, 658

camping, 656

client architecture, 667–670

client/server games, 84

colors for equipment, 662–663

data access, 646–649

data storage, 645–646

backing up data, 653

BigIP hardware system, 654–655

hardware design, 651–656

integrity of data, 652–653

offsite storage, 655–656

replication software, 653

in RPGQuest, 675–676

data stream security, 666–667

difficulty levels, 658

DirectPlay, using, 80

DSL lines, 664

dual-head video cards, 663–664

dynamic patching, 668–669

dynamic questing system, 658

encrypting data, 666–667

fail over, 654–655

firewalls, 665–666

game architecture, 644–663

game cells, 664–665

guilds, 659

integrity of data, 652–653

Internet connection, 664

cost of, 654

Internet Service Providers (ISPs) for, 664

item ownership, 662–663

keyboard configurations, setting, 669–670

login servers, 667, 668

magic items, 657

measuring advancement, 661

multiple clients, 669

newbie quests, 658

ODBC (Open Database Connectivity),
649–651

one-time quests, 658

packets, bit-shifting data between, 666

patching, 668–669

persistent-world games, 644–645

data storage, 656

PKing (player killing) in, 660

players

communities, 659

heroes, creating, 656–658

towns, 650

portability of client, 669

practicing skills, 661

quest timers, 656

recurring items, 657

repeatable quests, 656

replication software, 653

security

data stream security, 666–667

firewalls, 665–666

hardware security, 651–652

servers, 665–667

servers, 86

architecture, 663–667

layout, 664–665

login server, 667, 668

security for, 665–667

specifications, 663–664

skill levels, 658

spawnable items, 657

SQL (Structured Query Language), 647–649

769Index

texture management, 663

timers, 656

MMORPGs (continued)

transaction logging, 654

T-3 lines for, 664

units of advancement, 661–662

user interface, 669–670

validation

action validation, 667–668

player validation, 667

visual rewards, 658

zones, 93

zone servers, 664, 665

mmsystem.lib, 555

modems, 11, 87–88

cable modems, 89

modem-to-modem games, 14–15

Modem Wars, 14–15

Monster Program layout, 151–152

motherboards, 705

mouse, 47

move action, 98–99

Move North command, 6

Moving from C to C++, 58

MP3 files, 49

MSDN Library for Visual C++, 228

MSG_OOB flag, 200

MSG_PEEK flag, 200

MsgProc() function

for DirectInput, 529

for polygons, 481

MUDs (Multiuser Dungeons), 4–5

advancement, 7–8

character attributes, 5

commands, 6

competition, 7–8

experience points, 8–9

level one, 7–8

ownership, 9–11

simultaneous play, 7

multiple processors, 211

multitasking, 211–214

multithreading

CloseHandle() function, 247

CreateThread() function, 247–248

mutexes, 244–245

stack space, 242

theory of, 241

mutexes, 244–245, 346

N
NAT (Name Address Translation), 78–79

nerfing, 33

NetWare, 92

networking libraries, 15

networks. See also LANs (local area networks)

firewalls, 77–80

initialization, 47–48

IP addresses, 75–77

private networks, 651–652

sockets, 75

SpacePirates, network synchronization,
573–575

standard communication methods, 75–86

theory, 74–75

never-ending loop commands, 144

newbies, 5

NIC (Network Interface Card), 91–92

989 Studios, 33

nonguaranteed packets, 726

non-synchronization, 574–575

normals in lighting project, 502–505

Novell network software, 91–92

nth-way systems, 214

null-modem cable, 15

Nvidia, 69

770 Index

GeForce, 606

TNT2-Ultra card, 465

O
Oceania server, 21

ODBC (Open Database Connectivity), 649–651

user names for, 650

offsite storage, 655–656

ON_APPLICATION_DESC structure, 390–391

1pClassName parameter, 230

1pfnWndProc member, 229

1pHost variable, 187

1pParam parameter, 231

1pszClassName member, 229

1pszMenuName member, 229

*1pVendorInfo member, 166

1pWindowName parameter, 230

1001 Visual C++ Programming Tips, 158

Oracle, 645

Origin. See Ultima Online

origin of 3D scene, 458

ownership and MUDs (Multiuser Dungeons),
9–11

P
PacketGeneric class, 399–400

packets, 96

dynamic-length packets, 100–101

fixed-length packets, 100–101

guaranteed packets, 726

ideal packet size, 100

in MMORPGs (Massively Multiplayer Online
Role-Playing Games), 666

RPGQuest messages, 726–730

in SimpleChat program, 143

size of, 730

in SpacePirates, 639–640

tic-tac-toe example, 98–99

PACKET_TYPE_ADDPLAYER message, 728

PACKET_TYPE_ANGLE message, 729

PACKET_TYPE_ATTITUDE message, 730

PACKET_TYPE_CHANGEPOSITION message,
728

PACKET_TYPE_GAMEUPDATE message, 727

PACKET_TYPE_MESSAGE message, 727

PACKET_TYPE_POSITION message, 730

PACKET_TYPE_REMOVEPLAYER message,
728

PACKET_TYPE_REQUESTPASSWORD
message, 726

PACKET_TYPE_TIMECHANGE message, 728

PACKET_TYPE_VELOCITY message, 729

PACKET_TYPE_ZONECHANGE message, 728

page flipping, 433, 434

passwords. See also RPGQuest

for ODBC, 650

patching in MMORPGs (Massively Multiplayer
Online Role-Playing Games), 668–669

pay-for-play models, 19

PeekMessage() function, 256–257

DPChat and, 337–338

peer communication object, 292

peer-to-peer games, 56–58. See also DirectPlay;
DPChat

connections, 81–83, 293

hosting, 292–293

host migration, 292–293

pros and cons, 83

penalties, real-life, 34–35

persistent-world games, 7. See also MMORPGs
(Massively Multiplayer Online Role-
Playing Games)

Meridian 59, 19–20

perspective, 67

pixels, 42

PKing (player killing). See also MMORPGs

771Index

(Massively Multiplayer Online Role-
Playing Games)

hacking in, 58

in Ultima Online, 28–31

PlaySound() function, 269–270

in Button project, 264

.png format, 497

point lists, 467

polygons, 67–69, 465–466. See also textures

Clear() function for, 489

default for rendering, 489–490

DrawPrimitive() function, 491

hrInit3D function, 482

MsgProc() function, 481

rendering, 488–492

SetStreamSource() function for, 490

SetTransform() function for, 490

SetVertexShader() function, 491

in SpacePirates, 612–613

SpacePirates, rendering in, 632–634

translation matrix, 489

vCleanup() function, 481, 492

vInitGeometry() function, 482–483

vRenderScene() function, 481, 488–492

vSetupView() function, 487

WinMain() function, 481

z-buffers for, 482

portal storming, 95–96

ports. See also firewalls

browsers, port numbers for, 193

DirectPlay, setting on joining, 323

firewalls, 78–80

HTTP port number, 203

listen port number, 177

RPGQuest, setting port number, 685

preloading games, 42

preregistered windows class types, 263

Present() function, 717

primary display adapter, 44

primitives, 466–470. See also textures

drawing, 470–478

line lists, 467–468

line strips, 468–469

point lists, 467

in SpacePirates, 612–613

triangle fans, 470

triangle lists, 469

triangle strips, 469–470

private networks, 651–652

product Web sites, 737

projection of 3D graphics, 67, 68

PSTR type, 224

pulse.tga, 569

pwsz notation, 357

Q
Quake series, 35, 263

command console in, 617–618

crash, effect of, 652

servers, 294–295

R
radians, 461

in SpacePirates, 584

reading keyboard, 540–543

real-life penalties, 34–35

real-time strategy games, 16–17

AI (artificial intelligence) in, 18

appeal of, 17–19

network support, 18–19

recv() function, 123, 130–131

in C, 199–204

with C++, 204–205

flags for, 199–200

772 Index

looping through, 205

Red Storm Entertainment’s Rogue Spear, 79, 168

RegisterClassEx() function, 228–229

rendering, 69

solid objects, 69–70

SpacePirates scene, 631–636

replication software, 653

requests/responses, 53–56

Resident Evil, 7

reusable code, 156–157

RICHEDIT_CLASS class, 263

Rogue Spear, 79, 168

rotations. See also SpacePirates; 3D animation

in RPGQuest, 694

RPGQuest

account verification, 675–676

activating player, 688

angle message, 694

packet message, 729

anistropic level, setting, 714

application description, 685

arena, rendering, 715

attitude of player, adjusting, 730

avatars, 674

rotating, 694

zone data, loading, 709

bSavePlayerInfo() function, 691, 693

bValidatePlayer() function, 692, 693

cameras

orientation, updating, 714

setting position for, 710–711

Clear() function, 714

CoCreateInstance() function, 681–682

COM, initializing, 681

commands, 677

create-player message, 687–689

critical sections

global data, modifying, 677

two sections, including, 681

data file layout, 676

destroy-player message, 689–692

device listing, building, 705

DIK values, 719

DirectAudio, handling, 720

DirectInput, handling, 718–719

DirectPlayMessageHandler() function, 724,
725

Direct3D initialization, 704–707

display buffers, clearing, 714

display device, creating, 705–707

DPN_MSGID_RECEIVE message, 726

DPN_MSGID_TERMINATE_SESSION
message, 725

DrawText() function, 716, 717

frames per second, calculating, 715–716

gameplay, 674–677

game-server code, 678–687

GetClientInfo() function, 688

global data, modifying, 677

graphics system, 703–717

GUIDs, 685

hard-coded values, 683

hLoad() function, 702

hosting, 683–686

hrBuildDeviceList() function, 705

hrCreatePlayer() function, 688–689

hrDestroyPlayer() function, 689–692

hrHostGame() function, 683–684

hrInitDirectInput() function, 718

hrInitializeDirectPlay() function, 680–683,
683

hrInitKeyboard() function, 718

hrInitSoundEngine() function, 720

hrInitSoundSystem() function, 702, 720

hrInit3D() function, 704

773Index

hrLoadSound() function, 702

hrPlaySound() function, 702

hrReadKeyboard() function, 719

RPGQuest (continued)

IDirectPlay8Server

creating interface, 681–682

Host() function, 685–686

IDirect3D8 interface, 704–705

iGetMessage()function, 687

incoming messages, processing, 725–730

initializing DirectPlay, 680–683

interfaces for DirectPlay, creating, 681–682

iValidatePlayerPosition() function, 697–698

keyboard

initializing device, 718

reading, 719

libraries, 700

LightEnable() function, 710

lighting, 709–710

adjusting level of, 713

loading 3D data, 707–709

message handler, setting, 682

message log, displaying, 716–717

message queuing, 677–678

networks, handling, 720–731

outputting information, 716

packet messages, 726–729

passwords, 689

PACKET_TYPE_REQUESTPASSWORD
message, 726

server, submitting to, 721

submit-password message, 692–694

players

action, submitting, 722

messages, processing, 687–696

removing, 728

rendering, 715

synchronization, 730–731

port number, setting, 685

position of player, adjusting, 730

presenting the scene, 717

program structure, 677–678

project files, 673

project space

for client, 700–701

for server, 672–678

queuing messages, 677–678

removing players, 728

requesting player information, 695–696,
723–724

retrieving client information, 688

rotating player, 694

scene, rendering, 713–717

servers

code for, 677–678

incoming messages, processing, 725–730

passwords, submitting, 721

player action, submitting, 722

requesting player information, 723–724

sending messages to, 721–724

setting server information, 684

window, creating, 679–680

service provider, setting, 682–683

soft-code settings, 683

sound

DirectAudio, handling, 720

DirectInput for, 718–719

SoundSystem class, 702, 720

source files, 701

submit-password message, 692–694

synchronization of players, 730–731

TCP/IP for, 682–683

texture filtering, anistropic, 714, 714

3D object class files, 701–702

time of day

774 Index

calculating, 696–697

packet-type message, 728

setting, 711–712

updating players, 697–698

vCleanup() function, 819

vCreatePlayerAccount() function, 693

vDisplayXYZ() function, 701–702, 715

velocity, 626, 697–698

message, 694

packet message, 729

vGetVelocity() function, 626, 697–698

video adapters, 705

vInformOfRemoval() function, 691–692

vInitGeometry() function, 707–709

vProcessMessages() function, 677, 678

player messages, processing, 687–696

vRenderScene() function, 713–717

vRequestPlayerPassword() function, 689

vSendPlayerAttitude() function, 694

vSendPlayerInformation() function,
695–696

vUpdateCamera() function, 710–711

vUpdateObjects() function, 722

vUpdatePlayerPosition() function, 694

vUpdatePlayers() function, 697–698

vUpdateTimeOfDay() function, 696–697,
711–712

vZonePlayer() function, 693–694

Windows message loop, 686–687

WinMain() function, 678, 679

z-buffers, 706

zones, 674–675

data, loading, 709

loading data, 709

packet, zone-change, 728

servers, 664

zoning a player, 694–695

RPG (role-playing games), 61

R-Type series, 61

S
Sakei, 5, 6

sample rates, 45

saServerAddress variable, 165

satellite Internet access, 89–90

Scan2Ascii() function, 543–544

scan-codes, 539–540

MapVirtualKeyEx() function, 544

screen resolution, 42–43

changing, 44

scripted AI, 18

SCROLLBAR class, 263

scrollbars, 215, 263

SDK (software development kit), 47

security. See also firewalls; MMORPGs (Massively
Multiplayer Online Role-Playing Games)

cable modems, 89

for data hardware, 651–652

in peer-to-peer games, 82–83

Security Focus Web site, 666

Security Focus Web site, 666

SendDataTest program, 123–133

components for, 123–124

running, 127–128

vClientConnection() function, 131–133

vServerConnection() function, 129–131

walking through code, 128–133

writing, 124–127

send() function, 123, 131, 193–199

in C, 193–196

C++ version, 197–199

flags, 196–197

SendMessage() function, 276

775Index

SendTo() function. See also DPChat

client/server games, 403–406

serial cables, 15

servers. See also client/server games; MMORPGs
(Massively Multiplayer Online Role-
Playing Games); RPGQuest

accepting client connection, 163–165

architecture, 93–96

backlog number, 177

connection servers, 94–95

duplicate game servers, 96

fail-over solutions, 96, 97

functions, server-specific, 107

lagging, 86

load balancing, 95–96

in peer-to-peer games, 981

SocketObject class sample code, 108–110

for Starsiege Tribes, 35, 36

for Ultima Online, 21

zone-based servers, 93–94

service providers. See DirectPlay

SetClientInfo() function, 412–413

SetCooperativeLevel() function, 536

SetDataFormat() function, 535

set of turns in, 13–14

SetPeerInfo() member function, 318–319

SetStreamSource() function

for polygons, 490

in SpacePirates, 632–634

SetTexture() function, 499–500

SetTimer() function, 334

SetTransform() function

Direct3D, 459–460

for polygons, 490

for 3D animation, 520–521

7th Circle screen, 12–13

shards, servers as, 21, 22

shooter games, 35

Show Inventory command, 6

ShowWindow() function, 233

Simonyi, Charles, 220

SimpleChat program, 135–148

header information, 142–143

packet structure, 143

running, 141–142

vClientConnection() function, 148

vServerConnection() function, 143–148

walking through code, 142–148

writing, 135–140

The Sims, 7

simulated lighting, 431, 432

sin_family data member, 167

single-layer games, 35

sin_port member, 167

sizeof(sockaddr), 185

skAcceptSocket socket handle, 184

skills in Ultima Online, 26–27

skSocket variable, 165

smooth shading, 430

society, 11

Sockaddr data type, 161–162

SOCKADDR_IN data structure

accept() function, 178

initializing, 167

SOCKET data type, 158–159

SOCKET_ERROR, 162

socket() function, 163

SocketObject class, 107–110

C++, binding in, 168–172

to ConnectionTest program, 113–114

designing, 158–160

sample code, 108–110

vClientConnection() function, 122

SocketObject() function, 121

SocketObject.h header file, 118

sockets, 75. See also SocketObject class

776 Index

cleaning up, 168

datagram sockets, 160

stream sockets, 160

SOCK_STREAM sockets, 178

software

blitting, 64

emulation architecture, 426–427

replication software, 653

solid objects, rendering, 69–70

Sonoma server, 21

Sony. See EverQuest

SOUNDERROR definitions, 548

sounds. See also DirectAudio; SpacePirates

files, 48–49

initialization, 45–46

sample rates, 45

SoundSystem class

RPGQuest, 702, 720

SpacePirates, 570

source X parameter, 64

source Y parameter, 64

SpacePirates

acceleration action, processing, 622–623

animation, updating, 626–627

arena, 568

building, 632–634

floor, rendering, 633

geometry, creating, 612–613

textures for, 614

walls, rendering, 633–634

bFindDepthStencilFormat() function, 607

bullets, 568–569

collision detection, 627

fire bullet action, 623–624

initializing, 595

rendering, 636

textures for, 614

updating, 627–628

vCreateBullet() function, 624–625

camera, updating, 631

CheckDeviceType() function, 605

CoInitialize() function, 597

colors for fonts, 636

COM, initializing, 595–598

command console, 617–618, 619

commands in, 618–619

config/txt files, 618–619

DirectInput with, 610

DirectPlayMessageHandler() function,
637–640

DrawText() function in, 636

dwGovernor timer, 621

explosions

initializing, 595

rendering, 635

textures for, 614

updating, 628

floor of arena, rendering, 633

fonts, 615, 636

full-screen mode, 609

game font, loading, 615

game loop, 620–621

game objects, 567–570

GameSound class

functions, 582–583

header file, 576

GetPeerInfo() function, 637–638

header files

GameSound class, 576

SoundSystem class, 575–578

3D object class, 583–585

highest score, updating, 628

hLoad() function, 585, 586–588

hrBuildDeviceList() function, 602–609

hrConfirmDevice() function, 606

hrCreatePlayer() function, 637–638

777Index

hrDestroyPlayer() function in, 638–639

hrInitDirectInput() function, 610

hrInitED() function, 598–602

SpacePirates (continued)

hrInitializeDirectPlay() function, 595–598

hrInitKeyboard() function, 610–612

hrInitSoundSystem() function, 577,
579–580

hrLoadSound() function, 577, 580–582

hrPlaySound() function, 577, 582

iAddPlayer() function, 637–638

identity matrix, 590

initializing

DirectPlay, 595–598

object structures, 594–595

3D graphics, 598–602

key controls/functions, 619

layout of, 593

lighting

T&L (transform and lighting),
checking for, 606

vCreateLights() function, 616

loaded mesh, storing, 584–585

local players, 625

management of players, 637–640

message handler, 637–640

movement keys, 619–620

network synchronization, 573–575

non-synchronization, 574–575

packets, handling, 639–640

PlayerInfo array, initializing, 595

players

information, storing, 567–568

local players, 625

management of, 637–640

objectives, 566–567

remote players, updating, 629–631

rendering, 634–635

updating, 626–627

radians, 584

remote players, updating, 629–631

rendering scene, 631–636

robot models, loading, 612

rotation

functions, 588–592

matrix, creating, 590–591

processing action, 623

scheduled updates, 574

score

displaying, 636

highest score, updating, 628

SetStreamSource() function, 632–634

sounds, 570

classes, 575–583

initializing, 595

loaders, 577

unloading downloaded sounds, 583

vInitSoundEngline() function, 617

SoundSystem class

functions of, 582

header file, 575–578

T&L (transform and lighting), checking for,
606

TCP/IP for, 598

text, 570

game font, loading, 615

textures

initializing, 595

loading, 614

3D object class

constructors/destructors, 586

functions, 586–592

header file, 583–585

hLoad() function, 585, 586–588

identity matrix, 590

778 Index

layout of, 585

loaded mesh, storing, 584–585

players, rendering, 634–635

rendering object, 592

robot models, loading, 612

translation matrix, 591–592

vCleanup() function, 592

vDisplayXYZ() function, 588–592

time-based movement, 571–572

time multipliers, 572–573

timing, 570–571

translation matrix, 591–592

unloading downloaded sounds, 583

updating game, 621–636

vCleanup() function, 592

vCreateBullet() function, 624–625, 639–640

vCreateLight() function, 616

vDisplayXYZ() function, 588–592

velocity of players, 626

vGeometery() function, 612–615

vGetVelocity() function, 626

vInitializeObjects() function, 594–595

vInitSoundEngline() function, 617

vSetupView() function, 615–616

vUpdateNetwork() function, 629–631

vUpdateObjects() function

actions, processing, 622–625

animation, updating, 626–627

player positions, updating, 626–627

walls of arena, rendering, 633–634

windowed 3D support, 609

WinMain() function, 594

z-buffers in, 606–607

specular highlights, 507

SQL Server, 645–646, 647

table detail screen, 649

table view screen, 647

SQL (Structured Query Language), 647–649.
See also SQL Server

adding data with, 649

counting with, 648

selecting data with, 647–649

stack space, 242

Starcraft, 17

Starsiege Tribes, 35–36

defensive play, 35

game types in, 36

in-game view, 37

STATIC class, 263

static text, 257–260

coordinates for, 262, 263

resource object, 260–261

StaticText.cpp file, 257

StaticText project, 257–260

stdio.h, 165

stPacketHeader object, 143

strcpy() function, 131–132

streamed data, 50

stream sockets, 160

stricmp() function, 120

style member, 229

Subspace, 33

sxutil.cpp file, 330

szChatMessage, 147

szCommand, 144

szSendBuffer character array, 198

szServerIP, 118

szTempChar, 144

szText character buffer, 401

T
Take Item command, 6

talk action, 98–99

T&L (transform and lighting) cards, 444

checking for support, 606

779Index

creating device with, 451

target parameter, 64

TCP/IP, 15, 75

LANs (local area networks), setting up, 92

packet size, 100

RPGQuest using, 682–683

SpacePirates service provider, 598

texels, 69

text-based games, 4

texture-mapping, 427

textures, 70–71. See also SpacePirates

coordinates, setting, 495–497

displaying scene, 498–500

D3DFVF_TEX1 vertex format, 493–494

D3DXCreateTextureFromFile() function,
497–498

file formats for, 498–499

headers for, 493–494

libraries for, 493

loading, 497–498

managing priority of, 663

mapping, 427

maximum size, 426

memory, 426

mip-mapping, 427–429

SetTexture() function, 499–500

stages for, 499–500

u values for, 496–497

vCleanup() function for, 500

vertex buffers for, 497

vInitGeometry() function for, 494–498

vRenderScene() function for, 498–500

v values for, 496–497

.tga format, 497

threads, 242. See also multithreading

CloseHandle() function, 247

communicating with, 243–244

CreateThread() function, 247–248

mutexes, 244–245

one-way communication, 243

3D

accelerator cards, 43

display adapters, 45

page flipping, 433, 434

user interface, 20

3D animation, 517–521

D3DXMatrixRotationY() function, 520–521

dynamic message loop, 518

keyboard checking, 519

rotation matrix, 519–520

SetTransform() function for, 520–521

SpacePirates animation, updating, 626–627

3D graphics, 66–71. See also Direct3D

defined, 67

projection of, 67, 68

rendering, 69

textures, 70–71

3D Light project, 501–510

3DO, 19

3D object class. See also SpacePirates

RPGQuest, 701–702

3D Studio MAX, 567, 676

Tiberian Sun, 18

time multipliers, 572–573

time of day. See RPGQuest

timers. See also client/server games; DPChat

in MMORPGs (Massively Multiplayer Online
Role-Playing Games), 656

in SpacePirates, 621

time-slicing, 212–214

tinkering skill, 30–31

TNT2-Ultra card, 465

T-1 lines, 83

T-3 lines, 664

Total Annihilation, 17

trade skills, 26

780 Index

transaction logging, 654

TranslateMessage() function, 234, 235

transparency, 59–60

in SpacePirates, 569

triangle fans, 470, 471

triangle lists, 469

triangle strips, 469–470

Tribes 2

servers, 294–295

server setup for, 83–84

trueSpace, 567

Turok: Dinosaur Hunter, 435

2D cards, 43

2D vector, 456–457

two-way systems, 133–134, 214

type integers, 163

U
UberServer programs, 283

Ultima Online, 11, 19, 20–33. See also
client/server games

attributes of, 32–33

care-bear lands, 29

characters, creating, 21–25

colors in, 662

designing look for character, 24

gameplay in, 26–28

guild stones, 659

hacking, 54–56

hiding skills, 55

housing, 27–28

as MMORPGs (Massively Multiplayer Online
Role-Playing Games), 644

multiple clients, 669

nerfing, 33

patching GUI, 668–669

PKing (player killing), 28–31

player towns, 650

rude/annoying players, 29

safe zones in, 31–32

servers, 21, 84

skills, 26–27

skill window, 661, 662

specializations for warriors, 23

stagnation in, 33

subclasses of characters, 23

tinkering skill, 30–31

town, choosing, 24–25

trade skills, 27

UOExtreme program, 53, 54–56

visual rewards, 658

zones, 31–32, 93

Unacquire() function, 537

underscore before function, 134

Unicode

in DirectAudio, 558

for DirectInput, 530, 531

Unix, 84–85

stricmp() function with, 120

Unload() function, DirectAudio, 560, 563–564

Unlock() function, 486–487

Unreal Tournament, 35, 263

UOExtreme program, 53, 54–56

UpdateWindow() function, 234

user input, checking, 50

user names for ODBC, 650

V
validation. See MMORPGs (Massively Multiplayer

Online Role-Playing Games)

vCleanup() function

DirectAudio, 554

for DirectInput, 529, 537, 538

Direct3D, 455

polygons, 481, 492

RPGQuest, 819

781Index

in SpacePirates, 592

for textures, 500

vClientConnection() function, 122, 131–133

in ConnectionTest program, 118

SimpleChat program, 148

vCreateBullet() function, 624–625, 639–640

vCreateLight() function, 505–508

SpacePirates, 616

vCreatePlayerAccount() function, 693

vDisplayXYZ() function

RPGQuest, 701–702, 715

SpacePirates, 588–592

vecCameraSource variable, 456, 478–479

vecCameraTarget variable, 456, 479

velocity. See also RPGQuest

message, 694

SpacePirates, 626

Verant, 33

vertex buffers, 479–481

data structure for, 480

Lock() function, 486–487

for textures, 497

vInitGeometry() function, 482–483

vertices in 3D graphics, 67–69

vGetPacket(), 145, 147

vGetPacket() function, 133–134

vGetVelocity() function

RPGQuest, 626, 697–698

SpacePirates, 626

video adapters, 43–44

for RPGQuest, 705

video cards

anistropic filtering support, 714

windowed 3D support, 609

video mode, setting, 44–45

vInformOfRemoval() function, 691–692

vInitGeometry() function, 482–483

CreateVertexBuffer() function, 483–485

normals, defining, 503–505

RPGQuest, 707–709

SpacePirates, 612–615

for textures, 494–498

vInitializeObjects() function, 594–595

vInitSoundEngline() function, 617

Visual C++

configuring Compiler, 743–745

DirectPlay, setting up for, 328–330

Hello World program, 253–256

setting up project, 250–253

for 3D applications, 448

voices, 45

volume, setting, 553–554

Voodoo3500, 426

vProcessMessages() function, 677, 678

vRenderScene() function, 452–455

for polygons, 481, 488–492

RPGQuest, 713–717

for textures, 498–500

3D animation, 519–520

vRequestPlayerPassword() function, 689

vSendPlayerInformation() function, 695–696

vServerConnection() function, 120–121

in ConnectionTest program, 118

for SendDataTest program, 129–131

SimpleChat program, 143–148

vSetupView() function, 457–459

for polygons, 487

SpacePirates, 615–616

vShowText() function, 276

or DPChat, 340–341

vUpdateCamera() function, 710–711, 714

vUpdateNetwork() function, 574, 629–631

vUpdateObjects() function. See also SpacePirates

RPGQuest, 722

782 Index

vUpdatePlayerPosition() function, 694

vUpdatePlayers() function, 697–698

vUpdateTimeOfDay() function, 696–697

RPGQuest, 711–712

W
WaitForSingleObject() function, 247

client/server games, 416

Warcraft, 17

Watcom C++ compiler, 209

wave files, 49, 50. See also DirectAudio

wcslen() function, 302

Web camera. See cameras

Web sites

development sites, 736–737

displaying pages, 205

gaming sites, 736

magazine sites, 737

product sites, 737

weddings, online, 11, 12

Westwood, 16–17, 18–19

while(1) function, 144

wide character strings, 684

width parameter, 64

Win32 Application project, 448

winipcfg program, 117

Windows 1.0-2.0, 209

Windows 3.1-3.11, 209–210

Windows 95, 210

Windows 98, 210

Windows 2000, 211

DOS and, 209

multitasking, 213

ODBC (Open Database Connectivity) in,
650

Windows NT, 211

DOS and, 209

multitasking, 213

ODBC (Open Database Connectivity) in,
650

Windows operating system, 84–85

Windows programming. See also Multithreading;
Visual C++

buttons, programming, 264–270

callback functions, 216–217

child window, creating, 261–264

complete code listing, 239–241

CreateWindow() function, 229, 230–232

default message processor, 238

edit fields, 278–283

events in, 215–1w219

extended windows, creating, 274–276

flowchart for pseudocode, 219

fnMessageProcessor() function, 236–238

Hello World program, 253–256

history of, 208–211

Hungarian notation prefixes, 220–221

listboxes, creating, 270–278

message IDs, 238

message-processing loop, 234

multitasking, 211–214

showing window, parameters for, 225

ShowWindow() function, 233

standard program, 214–215

styles of windows, 231

UberAdventure, 283

UpdateWindow() function, 234

windows.h, 241

windows layer, 214–215

WinMain() function, 224–227

WinMain() function, 224–227, 232

coding for, 225–227

for DirectInput, 529

for Direct3D, 448–449

for DPChat, 336–338

for polygons, 481

783Index

RPGQuest, 678, 679

SpacePirates, 594

winmm.lib library file, 265, 271

WinNuke, 177

Winsock, 75

connect() function, 185

initializing, 166

recv() function, 199

send() function, 198

winsock.h, 165

WinUberClient program, 283

WM_COMMAND, 268

WM_KEYDOWN message, 237

WM_TIMER check, 343

Wndclass, 227–228

WNDCLASSEX, 227–228

member variables, 229

wndclass object, 228

WORD variable, 166

WSACleanup() function, 166, 168

wsaData variable, 165

WSAStartup() function, 166

WS_Child flag, 261

ws2-32.lib WinSock library, 112, 165, 166

wVersionRequested variable, 165

X
x-axis, 67

Xbox, Microsoft, 38, 425

x coordinates. See coordinates

XFileAnimator program, 517–521

x-files. See also SpacePirates; 3D animation

camera position for, 515–516

DrawSubset() function, 517

D3DXLoadMeshFromX() function,
514–515

headers for loading, 511–512

hLoadXFile() function, 512–514

loading, 511–515

material information for, 515

rendering, 515–517

RPGQuest, 702

Y
Yamato server, 21

y-axis, 67

y coordinates. See coordinates

Z
z-buffers, 433–435, 482

clearing frames with, 489

in RPGQuest, 706

SpacePirates using, 606–607

z-coordinates, 435

ZD Alarm, 384

Zelda, 61–62

ZeroMemory() function, 316

Zeus, 17

zones, 93–94. See also RPGQuest

load balancing, 95

for MMORPGs (Massively Multiplayer
Online Role-Playing Games), 664, 665

Ultima Online, 31–32, 93

784 Index

www.xgames3d.com ad

www.xgames3d.com

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions.
If, upon reading the following license agreement and notice of limited warranty, you cannot agree to
the terms and conditions set forth, return the unused book with unopened disc to the place where
you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disk. You
are licensed to copy the software onto a single computer for use by a single concurrent user and to
a backup disk. You may not reproduce, make copies, or distribute copies or rent or lease the soft-
ware in whole or in part, except with written permission of the copyright holder(s). You may transfer
the enclosed disc only together with this license, and only if you destroy all other copies of the soft-
ware and the transferee agrees to the terms of the license. You may not decompile, reverse assem-
ble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Prima Publishing to be free of physical defects in materials and
workmanship for a period of sixty (60) days from end user’s purchase of the book/disc combination.
During the sixty-day term of the limited warranty, Prima will provide a replacement disc upon the
return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PRIMA OR THE
AUTHORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF
DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERAT-
ING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPE-
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PRIMA
AND/OR THE AUTHOR HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH
DAMAGES EXISTS.

Disclaimer of Warranties:
PRIMA AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABILI-
TY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO
NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MAY NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of California without regard to choice of law
principles. The United Convention of Contracts for the International Sale of Goods is specifically dis-
claimed. This Agreement constitutes the entire agreement between you and Prima Publishing
regarding use of the software.

