

Critical Acclaim for Level of Detail for 3D Graphics

I’m really happy with what Luebke et al. have created. It’s exactly what I would want
to find on the shelf if I needed to implement some LOD techniques in a game. The
book gives both a survey of existing techniques and some specific examples of LOD
use, which is what makes it uniquely valuable. If you’re a game developer who is just
starting out, and you want to come up to speed on the state of the art in LOD, you can
read through the initial chapters to familiarize yourself with the important concepts.
On the other hand, if you’re familiar with LOD techniques but perhaps not how to
use them in a real-time system, you can jump straight to the game development and
terrain rendering chapters. Great stuff!

The extensive set of references at the end of the book is quite nice to have as well.
One of the challenges in implementing a cutting-edge technique and altering it to suit
your application is understanding the algorithm to its core. It’s invaluable having all
of those references in one place, so that you can easily find the exact paper where the
technique you want to implement was first detailed.

Mark DeLoura
Manager of Developer Relations, Sony Computer Entertainment America
Creator, Game Programming Gems series

A fantastic and well-written book, filled with a lot of very useful information. There
is no other like it on the market.

The concept of level of detail is an important one in the field of computer graph-
ics, dating back to James Clark’s 1976 Communications of the ACM paper entitled
“Hierarchic al Geometric Models for Visible Surface Algorithms.” Current books on
graphics discuss only the basics of level of detail and present one or more of a small
number of algorithms on the topic. The field has evolved greatly over the last decade
to the point where there is a lot more to say about it.

Level of Detail for 3D Graphics says it all! This is the first and only book that
provides a comprehensive coverage about level of detail. At a high level, the book
is organized into three parts. The first concerns theory and algorithms for generation
of level of detail. The second discusses applications, including optimizations for game
programming and level of detail for terrain. The third details advanced issues, includ-
ing a discussion on visual systems and on temporal level of detail. At a low level, the
book is well written and the authors cover the topics in meticulous detail. Not only
are the algorithms themselves presented but comparisons are made between them so
you know which one is the best choice for your application. This book is packed with
information. When you are finished reading it, all you will be able to say is “Wow!”

Level of Detail for 3D Graphics is absolutely a must-have book for practitioners in
any graphics field including game programming, scientific or medical visualization,
computer aided design, or virtual reality systems.

Dave Eberly
President, Magic Software, Inc.

Team LRN

A comprehensive presentation of the terminology, theory, and practice of mesh sim-
plification. Includes extensive references to Web-accessible source code and data. This
book will find a choice spot on my bookshelf.

Will Schroeder
Cofounder, Kitware, Inc.

I like the writing style of the book! The first three chapters nicely outline and divide
concepts that have been floating around the literature. The book presents a good
classification of algorithms and their general strategies and variations. I hope this
classification extends to the research community and fosters better communication
among researchers.

The applications section gives a solid glimpse into the issues and complexities that
arise when developing geometry-rendering systems for real and large applications.

The advanced issues section is very enlightening! The summary of perceptual
issues and the ideas for measuring visual fidelity will help both new and experienced
researchers develop novel and revolutionary algorithms to take level-of-detail work
to the next stage.

The book does a great job of piecing together years of work and presenting it in
an organized fashion. This betters the understanding for both new and experienced
researchers, and it provides a mechanism to put researchers on the same wavelength,
thus promoting better communication. In addition, the advanced issues section of
the book contains several forward-looking concepts that hopefully will take level-of-
detail work to the next stage!

Daniel Aliaga
Computer Graphics Researcher
Bell Laboratories

Team LRN

Level of Detail for 3D Graphics

Team LRN

The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling

Series Editor: Brian A. Barsky, University of California, Berkeley

Level of Detail for 3D Graphics
David Luebke, Martin Reddy, Jonathan D. Cohen,
Amitabh Varshney, Benjamin Watson, and Robert
Huebner

Geometric Tools for Computer Graphics
Philip Schneider and David Eberly

Texturing & Modeling: A Procedural Approach,
Third Edition
David S. Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley

Jim Blinn’s Corner: Notation, Notation, Notation
Jim Blinn

Understanding Virtual Reality
William Sherman and Alan Craig

Digital Video and HDTV Algorithms and Interfaces
Charles Poynton

Pyramid Algorithms: A Dynamic Programming Ap-
proach to Curves and Surfaces for Geometric Modeling
Ron Goldman

Non-Photorealistic Computer Graphics: Modeling, Ren-
dering, and Animation
Thomas Strothotte and Stefan Schlechtweg

Curves and Surfaces for CAGD: A Practical Guide,
Fifth Edition
Gerald Farin

Subdivision Methods for Geometric Design: A Construc-
tive Approach
Joe Warren and Henrik Weimer

Computer Animation: Algorithms and Techniques
Rick Parent

The Computer Animator’s Technical Handbook
Lynn Pocock and Judson Rosebush

Advanced RenderMan: Creating CGI for Motion Pictures
Anthony A. Apodaca and Larry Gritz

Curves and Surfaces in Geometric Modeling: Theory and
Algorithms
Jean Gallier

Andrew Glassner’s Notebook: Recreational Computer
Graphics
Andrew S. Glassner

Warping and Morphing of Graphical Objects
Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz
Velho

Jim Blinn’s Corner: Dirty Pixels
Jim Blinn

Rendering with Radiance: The Art and Science of
Lighting Visualization
Greg Ward Larson and Rob Shakespeare

Introduction to Implicit Surfaces
Edited by Jules Bloomenthal

Jim Blinn’s Corner: A Trip Down the Graphics Pipeline
Jim Blinn

Interactive Curves and Surfaces: A Multimedia Tutorial
on CAGD
Alyn Rockwood and Peter Chambers

Wavelets for Computer Graphics: Theory and Applica-
tions
Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin

Principles of Digital Image Synthesis
Andrew S. Glassner

Radiosity & Global Illumination
François X. Sillion and Claude Puech

Knotty: A B-Spline Visualization Program
Jonathan Yen

User Interface Management Systems: Models and Algo-
rithms
Dan R. Olsen, Jr.

Making Them Move: Mechanics, Control, and Anima-
tion of Articulated Figures
Edited by Norman I. Badler, Brian A. Barsky, and
David Zeltzer

Geometric and Solid Modeling: An Introduction
Christoph M. Hoffmann

An Introduction to Splines for Use in Computer Graphics
and Geometric Modeling
Richard H. Bartels, John C. Beatty, and Brian A. Barsky

Team LRN

Level of Detail
for 3D Graphics

David Luebke University of Virginia

Martin Reddy SRI International

Jonathan D. Cohen Johns Hopkins University

Amitabh Varshney University of Maryland

Benjamin Watson Northwestern University

Robert Huebner Nihilistic Software

Team LRN

Publishing Director Diane Cerra
Assistant Publishing Services Manager Edward Wade
Production Editor Howard Severson
Senior Developmental Editor Marilyn Alan
Cover Design Frances Baca
Cover Image Shaun Egan / Stone
Text Design Rebecca Evans & Associates
Illustration Dartmouth Publishing Industries
Composition Windfall Software, using ZzTEX
Copyeditor Barbara Kohl
Proofreader James Gaglione
Indexer Bill Meyers
Printer Maple-Vail Book Manufacturing Group

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205, USA
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means—electronic, mechanical, photocopying, or
otherwise—without the prior written permission of the publisher.

Library of Congress Control Number: 2002107328
ISBN: 1-55860-838-9

This book is printed on acid-free paper.

Team LRN

To Emily Luebke,

Genevieve Vidanes,

Suzy Maska,

Poonam Gupta, and

Polly Watson

Team LRN

Team LRN

Foreword
Frederick P. Brooks, Jr.

Kenan Professor of Computer Science
University of North Carolina at Chapel Hill

A perennial goal (by no means the only one) of computer graphics is to produce
visual evocations of virtual worlds that look real. This is a formidable challenge for
modeling, for illumination, and then for rendering on displays of limited resolution
and limited dynamic range.

For interactive computer graphics, this challenge is aggravated by the necessity of
rendering a new picture 25–30 times per second for each eye so that the whole task
must be done in 17 milliseconds or so.

Modeling and model management is perhaps the biggest part of the challenge.
The God-made world looks real because it is everywhere and is dense in detail, far
below visual resolution. Any of our models of real world scenes are limited to fewer
than a billion primitives (usually colored, shaded triangles.)

The strategy by which the overall challenge has been tackled is conceptually very
simple: People devise algorithms so that the primitives actually fed into the graphics
pipeline are (almost) only those that will be seen and noticed by the viewer of the
final image.

Thus, view-frustum culling eliminates primitives outside the field of view, re-
calculated frame by frame. Back-facing triangles are eliminated by a simple test.
Obscuration culling calculates, for each new image, those triangles completely be-
hind others. Texture mapping enables detailed 2D patterns to be carried by a single
triangle.

Many unobscured triangles in a field of view will nevertheless be invisible to the
viewer. At their distance to the viewpoint, their projection on the final image will be
substantially less than the pixel resolution of the display. So there is no need to burden
the graphics pipeline with those.

Instead, one wants to manage the world model so that fine levels of detail are
grouped together into a single primitive when, and only when, they would not be
seen separately. This fine book is an exposition of the concepts, algorithms, and
data structures for doing this grouping. The authors have developed many of the
techniques described here. The book provides both a treatment of the underlying
theory and a valuable practical reference for the graphics practitioner.

ix

Team LRN

Team LRN

Contents

Foreword ix

Preface xix

About the Authors xxiii

PART

I Generation

Chapter

1 Introduction 3

1.1 Coverage and Organization 6

1.2 History 7

1.3 Simplifications in Computer Graphics 8

1.4 LOD Frameworks 9

1.4.1 Discrete LOD 9
1.4.2 Continuous LOD 10
1.4.3 View-Dependent LOD 10
1.4.4 LOD in Practice 12

1.5 Polygonal meshes 13

1.5.1 Topology 14

1.6 Fidelity Metrics 17

Chapter

2 Mesh Simplification 19

2.1 Overview 19

2.1.1 Fidelity-Based Simplification 20
2.1.2 Budget-Based Simplification 20

xi

Team LRN

xii Contents

2.2 Local Simplification Operators 21

2.2.1 Edge Collapse 21
2.2.2 Vertex-Pair Collapse 23
2.2.3 Triangle Collapse 24
2.2.4 Cell Collapse 24
2.2.5 Vertex Removal 25
2.2.6 Polygon Merging 25
2.2.7 General Geometric Replacement 26
2.2.8 Comparing the Local Simplification Operators 27

2.3 Global Simplification Operators 28

2.3.1 Volume Processing 29
2.3.2 Alpha-Hull–Based Topology Simplifications 32
2.3.3 When Is Topology Simplification Desirable? 37
2.3.4 When Is Topology Simplification Unacceptable? 37

2.4 Simplification Frameworks 38

2.4.1 Nonoptimizing 39
2.4.2 Greedy 40
2.4.3 Lazy 41
2.4.4 Estimating 42
2.4.5 Independent 43
2.4.6 Interleaved Simplification Operators 44

2.5 Conclusions 46

Chapter

3 Simplification Error Metrics 47

3.1 Why Measure Error? 48

3.1.1 Guide and Improve the Simplification Process 48
3.1.2 Know the Quality of the Results 48
3.1.3 Know When to Show a Particular LOD 49
3.1.4 Balance Quality across a Large Environment 49

3.2 Key Elements 50

3.2.1 Geometric Error 50
3.2.2 Attribute Error 55
3.2.3 Combining Errors 60
3.2.4 Incremental and Total Error 60

3.3 Range of Approaches 61

3.3.1 Vertex–Vertex Distance 61
3.3.2 Vertex–Plane Distance 65
3.3.3 Vertex–Surface Distance 69

Team LRN

Contents xiii

3.3.4 Surface–Surface Distance 72
3.3.5 Image Metric 81

3.4 Conclusions 82

PART

II Application

Chapter

4 Run-Time Frameworks 87

4.1 LOD Selection Factors 88

4.1.1 Distance 88
4.1.2 Size 90
4.1.3 Priority 91
4.1.4 Hysteresis 93
4.1.5 Environmental Conditions 94
4.1.6 Perceptual Factors 94

4.2 Fixed-Frame Rate Schedulers 96

4.2.1 Reactive Fixed-Frame Rate 96
4.2.2 Predictive Fixed-Frame Rate 98

4.3 View-Dependent LOD 104

4.3.1 Overview 104
4.3.2 The Vertex Hierarchy 105
4.3.3 Variations on the Vertex Hierarchy 107
4.3.4 View-Dependent Criteria 107
4.3.5 Tracking Mesh Dependencies 110
4.3.6 Global Simplification 113

4.4 Blending Between Transitions 114

4.4.1 Alpha Blending 114
4.4.2 Geomorphs 116

4.5 Conclusions 119

Chapter

5 A Catalog of Useful Algorithms 121

5.1 Vertex Clustering 122

5.1.1 Overview 122
5.1.2 Vertex Importance 122

Team LRN

xiv Contents

5.1.3 Clustering Vertices and Filtering Degenerate Triangles 123
5.1.4 Displaying Degenerate Triangles 124
5.1.5 Advantages and Disadvantages 124
5.1.6 Floating-Cell Clustering 125
5.1.7 Simplifying Massive Models 127

5.2 Vertex Decimation 128

5.2.1 Overview 129
5.2.2 Classification of Vertices 129
5.2.3 Decimation Criteria 130
5.2.4 Triangulation 130
5.2.5 Advantages and Disadvantages 130
5.2.6 Topology-Modifying Continuous LOD 131

5.3 Quadric Error Metrics 133

5.3.1 Overview 133
5.3.2 Recap: Measuring Surface Error with Quadrics 133
5.3.3 Candidate Vertex Pairs 134
5.3.4 Details of the Algorithm 135
5.3.5 Accounting for Vertex Attributes 135

5.4 RSimp: Reverse Simplification 136

5.4.1 Overview 136
5.4.2 Normal Variation Error Metric 137
5.4.3 Cluster Splitting 137
5.4.4 Advantages and Disadvantages 138
5.4.5 Simplifying Massive Models 139

5.5 Image-Driven Simplification 139

5.5.1 Overview 140
5.5.2 Image Metrics 141
5.5.3 Evaluating Edge Cost 142
5.5.4 Fast Image Updates 142

5.6 Skip Strips 142

5.6.1 An Aside: The Vertex Cache 146

5.7 Triangulation of Polygonal Models 146

5.8 Conclusions 150

Chapter

6 Gaming Optimizations 151

6.1 Introduction 152

6.2 The Game Environment 152

6.2.1 Constant Frame Rate 152

Team LRN

Contents xv

6.2.2 Very Low Memory 153
6.2.3 Multiple Instantiations 153
6.2.4 Scalable Platforms 154
6.2.5 Fill Rate Versus Triangle Rate 154
6.2.6 Average Triangle Size 156

6.3 Game-Specific Difficulties with LOD 157

6.3.1 Modeling Practices 157
6.3.2 Hardware Transformation and Lighting 160
6.3.3 Static and Dynamic Geometry 161
6.3.4 Cache Coherence and Triangle Strips 162
6.3.5 Vector Unit Packetization 162

6.4 Classic LOD Suitability to Games 163

6.4.1 Discrete LOD 163
6.4.2 Continuous LOD 166
6.4.3 Higher-Order Surfaces 169
6.4.4 Shadow LOD 169

6.5 Nongeometric Level of Detail 171

6.5.1 Shader LOD 171
6.5.2 Vertex-Processing LOD 172
6.5.3 Object Priority 174
6.5.4 Lighting 175

6.6 Imposters 175

6.6.1 Prerendered Texture Imposters 176
6.6.2 Render-to-Texture 178
6.6.3 Geometric Imposters 179

6.7 Selection and Metrics 180

6.7.1 Distance Selection 180
6.7.2 Game-Specific Metrics 180
6.7.3 LOD Blending 181

6.8 Conclusions 182

Chapter

7 Terrain Level of Detail 185

7.1 Introduction 186

7.2 Multiresolution Techniques for Terrain 187

7.2.1 Top Down and Bottom Up 187
7.2.2 Regular Grids and TINs 188
7.2.3 Quadtrees and Bintrees 190
7.2.4 Tears, Cracks, and T-Junctions 193

Team LRN

xvi Contents

7.2.5 Paging, Streaming, and Out of Core 194
7.2.6 Texture-Mapping Issues 198

7.3 Catalog of Useful Terrain Algorithms 200

7.3.1 Continuous LOD for Height Fields 200
7.3.2 The ROAM Algorithm 202
7.3.3 Real-Time Generation of Continuous LOD 206
7.3.4 View-Dependent Progressive Meshes for Terrain 208
7.3.5 Multitriangulation 211
7.3.6 Visualization of Large Terrains Made Easy 213

7.4 Georeferencing Issues 218

7.4.1 Ellipsoids 218
7.4.2 Geoids 220
7.4.3 Datums 222
7.4.4 Coordinate Systems 222

7.5 Geospatial File Formats 225

7.6 Terrain Data on the Web 226

7.7 Conclusions 228

PART

III Advanced Issues

Chapter

8 Perceptual Issues 231

8.1 Motivation 232

8.2 Some Perceptually Motivated LOD Criteria 232

8.2.1 Eccentricity Level of Detail 233
8.2.2 Velocity Level of Detail 235
8.2.3 Depth-of-Field Level of Detail 236
8.2.4 Applicability of Gaze-Directed Techniques 237
8.2.5 The Need for Better Perceptual Models 239

8.3 Introduction to Vision 239

8.3.1 The Visual System 239
8.3.2 The Eye 240
8.3.3 The Visual Cortex 245
8.3.4 Sensitivity to Visual Detail 245
8.3.5 The Multichannel Model 247

8.4 Measuring Visual Sensitivity 248

8.4.1 Contrast Gratings and Spatial Frequency 248

Team LRN

Contents xvii

8.4.2 The Contrast Sensitivity Function 250
8.4.3 An Aside: Visual Acuity 250
8.4.4 Applicability of the CSF Model 252
8.4.5 Other Perceptual Phenomena 255
8.4.6 Further Reading 263

8.5 Managing LOD Through Visual Complexity 264

8.6 Modeling Contrast Sensitivity 265

8.6.1 Incorporating Velocity into the Model 266
8.6.2 Incorporating Eccentricity into the Model 267
8.6.3 Modeling Visual Acuity 269
8.6.4 Incorporating the Display into the Model 269
8.6.5 Visualizing the Effect of the Perceptual Model 270

8.7 Example Implementations 272

8.7.1 Perceptually Modulated LOD 272
8.7.2 Imperceptible Gaze-Directed Simplification 273
8.7.3 Perceptually Optimized 3D Graphics 275

8.8 Conclusions 277

Chapter

9 Measuring Visual Fidelity 279

9.1 Why Measure Fidelity? 280

9.2 Experimental Measures 280

9.2.1 Search Performance 280
9.2.2 Naming Times 281
9.2.3 Subjective Ratings 283
9.2.4 Threshold Testing 284
9.2.5 Comparing Experimental Measures 285

9.3 Automatic Measures for Static Imagery 286

9.3.1 Digital Measures 286
9.3.2 Single-Channel Measures 287
9.3.3 Multi-Channel Measures 288
9.3.4 Evaluating Measure Accuracy 289
9.3.5 Applications in Graphics 291

9.4 Automatic Measures for Run-Time LOD 291

9.4.1 Fidelity Measurement for Run-Time LOD 292
9.4.2 Contrast Sensitivity in Run-Time LOD 292

9.5 Automatic Measures for Simplification 294

9.6 Evaluation of LOD Techniques and Measures 295

9.6.1 Search with Low Fidelity Peripheries 295

Team LRN

xviii Contents

9.6.2 Visual Fidelity Measures and Simplification 295

9.7 Conclusions 298

Chapter

10 Temporal Detail 301

10.1 Introduction 301

10.2 Measuring Temporal Detail 302

10.2.1 Frame Rate and Refresh Rate 303
10.2.2 System Latency and Responsiveness 305
10.2.3 Two Example Systems 307

10.3 Controlling Temporal Detail 309

10.3.1 Frame-Only Manipulation 309
10.3.2 Latency-Only Manipulation 310
10.3.3 Frame-Latency Manipulation 312
10.3.4 Comparing and Using Manipulations 313

10.4 Temporal Detail and User Performance 315

10.4.1 Perceptual Limits 315
10.4.2 Open- and Closed-Loop Tasks 316
10.4.3 Closed-Loop Tasks as Dynamic Control Systems 317
10.4.4 Designing for Successful Dynamic Control 319
10.4.5 Temporal Detail and Complex Tasks 321

10.5 Trading Off Temporal and Visual Detail 324

10.6 A Practical Summarization 326

10.7 Conclusions 329

Glossary of Terms 331

References 349

Index 371

Team LRN

Preface

Managing level of detail (LOD) is at once a very current and a very old topic in com-
puter graphics. As early as 1976 James Clark described the benefits of representing
objects within a scene at several resolutions, and flight simulators have long used
handcrafted multiresolution models of airplanes to achieve a constant frame rate.
Recent years have seen many algorithms, papers, and software tools devoted to gen-
erating and managing such multiresolution representations of objects automatically.
Indeed, an entire field of computer graphics dedicated to regulating level of detail
virtually exploded into existence in the early 1990s. This book presents a detailed
treatment of that field.

Coverage and Audience

In this book we cover the following:

We survey the state of the art, describing past and current research as well as
trends and open questions in the field to date.

We discuss the theoretical underpinnings of the field, such as visual perception,
how to measure geometric error, and how to evaluate temporal factors such as
frame rate and latency.

We provide an applied resource for graphics developers, detailing a host of useful
algorithms and addressing two applications of particular interest: video games
and terrain visualization.

By covering both theory and application, we hope to create a useful resource for
graphics researchers as well as developers of any real-time graphics application: video
games, flight and driving simulators, visualization engines for scientific, medical, and
CAD applications, and virtual reality systems for training and entertainment. Nor is
level of detail strictly limited to the realm of interactive graphics; the same techniques
have long been used to accelerate offline rendering for animation. Readers interested
in this topic may find particularly interesting those simplification techniques that
prioritize preserving the appearance of simplified models, as well as the chapters on
perception and the perceptibility of simplification.

xix

Team LRN

xx Preface

This book should be accessible to anyone familiar with the essentials of computer
science and interactive computer graphics. For example, we assume knowledge of
graphics fundamentals such as transformations and texture mapping, but we do not
presuppose a working knowledge of a specific graphics library such as DirectX or
OpenGL. In general we presume no advanced math beyond what any introductory
computer graphics text will cover: the basics of linear algebra, such as vectors, matri-
ces, and so on, and the basics of three-dimensional geometry, such as the equation of
a plane and the distance between two points. We provide simple pseudocode for some
algorithms but do not assume knowledge of any particular programming language.
We also provide an extensive glossary to define unfamiliar terms, academic jargon,
and formal notation. In short, we have tried to make this book useful to everybody
from aspiring game developers to researchers in mesh simplification.

Why We Wrote this Book

This book grew out of a course titled “Advanced Issues in Level of Detail” that we have
taught at ACM SIGGRAPH starting in 2000. We felt that that there was a need for an
advanced course on LOD; many courses, tutorials, and books on high-performance
interactive rendering cover the basics of LOD, but only the basics. A great deal more
information is available on the Web, from the latest research results to implementa-
tions for sample video game engines, but that information is hard to find, everchang-
ing, and sometimes unreliable. Where could a graphics developer go to learn about
the state of the art in LOD, or to learn the basics of supporting fields such as visual
perception? Answer: nowhere. We set out to create a course targeted toward serious
graphics developers that serves as a vehicle for reviewing and disseminating the lat-
est research results as well as the underpinning theory of our field. As we prepared,
taught, and refined the SIGGRAPH course, we began to perceive a real gap in the
computer graphics market.

LOD is a vital technique for real-time graphics, an essential tool in the developer’s
grab bag. Probably every high-performance graphics application or toolkit built in
the last five years includes some support for LOD, whether simple or sophisticated.
The last decade saw a flurry of research and development around the problem of
taking a detailed object and creating simple yet faithful versions. Many algorithms,
mechanisms, and metrics were tossed around in a frenzy of experimentation. Now
the field appears to be approaching maturity. Many questions remain open, but
many have been settled. Some excellent algorithms now exist for creating simple, yet
faithful, LODs. A graphics developer can choose from a buffet of excellent algorithms
for creating LODs, each with particular strengths: some are simple, some are fast,
and some create remarkably high-fidelity simplifications. Yet no graphics text gives
the field more than a handful of pages. Right now a developer seeking information

Team LRN

Acknowledgments xxi

on this field must root through conference proceedings and journal articles, follow
references, and generally do a full-scale research dig.

We decided that the time was ripe to write a book. Our goals were the following:

1. To become the seminal reference for issues surrounding level of detail manage-
ment.

2. To describe and review state-of-the-art advances in the field of level of detail, and
to distill the breadth of cutting-edge research into a coherent, accessible treatise.

3. To develop an applied resource that researchers and software developers alike
could use to assess and implement the best solution for their graphics application.

You hold the result in your hands. We hope you will find it useful!

Acknowledgments

We would like to thank a few of the great many people whose contributions were
instrumental in taking this book from an initial suggestion to a final product. First,
we would like to express our gratitude to Dr. Frederick P. Brooks, Jr. of the Univer-
sity of North Carolina for his time reviewing this book and writing the preceding
foreword. Dr. Brooks has made outstanding contributions to our field over several
decades, and we are honored and delighted by his involvement in our own modest
effort.

Several reviewers provided many invaluable pages of feedback and suggestions:
Jarek Rossignac (Georgia Institute of Technology), Michael Garland (University of
Illinois at Urbana-Champaign), Leila De Floriani (University of Genova), Peter Lind-
strom (Lawrence Livermore National Laboratory), David Duchaineau (Lawrence
Livermore National Laboratory), Thomas True (SGI), Colin Ware (University of New
Hampshire), Ben Discoe (Virtual Terrain Project), Ian Ashdown (byHeart Consul-
tants Limited), Steven Woodcock (National Missile Defense System), and Mike Lucas
(Victor Valley College Academy of Digital Animation).

Also deserving thanks are our many colleagues and peers who gave us support,
offered constructive criticisms, or provided illustrations to include in the book.
These include Jack Tumblin (Northwestern University), Hugues Hoppe (Microsoft
Research), Thomas Funkhouser (Princeton University), Yvan Leclerc (SRI Inter-
national), Bob Bolles (SRI International), Cliff Woolley and Nathaniel Williams
(University of Virginia), Toshikazu Ohshima (Canon, Japan), Hiroyuki Yamamoto
(Canon, Japan), James Ferwerda (Cornell University), Thomas Gerstner (University
of Bonn), and Leila de Floriani and Paola Magillo (University of Genova).

We would also like to acknowledge the prodigious work of the people at Morgan
Kaufmann Publishers. They were always quick to answer queries and provided the ut-
most support during the publishing process. In particular, we would like to recognize

Team LRN

xxii Preface

our valued relationships with Diane Cerra, our executive editor; Marilyn Alan, our
senior developmental editor; Howard Severson, our production editor; and Sarah E.
O’Donnell, our marketing manager, among many others at Morgan Kaufmann. They
made this process a smooth and enjoyable ride.

About the Web Site

We have developed a Web site to accompany this book at http://LODBook.com/ .
Here you will find various helpful resources, such as source code to many of the
systems described in the text, links to polygon simplification products, tools, 3D
models, and documentation. Our aim is to supplement the descriptions here with
practical material that developers can use today in their applications. We will also use
this site to publish updated information about the book such as errata or revision
announcements. This Web site provides us with a more timely mechanism to keep
you, the reader, up to date with the latest developments in the field of level of detail.

Team LRN

About the Authors

David Luebke is an Assistant Professor in the Department of Computer Science at
the University of Virginia. His principal research interest is the problem of rendering
very complex scenes at interactive rates. His research focuses on software techniques
such as polygonal simplification and occlusion culling to reduce the complexity of
such scenes to manageable levels. Luebke’s dissertation research, summarized in a
SIGGRAPH ’97 paper, introduced a dynamic, view-dependent approach to polyg-
onal simplification for interactive rendering of extremely complex CAD models. He
earned his Ph.D. at the University of North Carolina, and his bachelor’s degree at the
Colorado College. David’s email address is <luebke@cs.virginia.edu>.

Martin Reddy is a Research Engineer at SRI International where he works in the area
of terrain visualization. This work involves the real-time display of massive terrain
databases that are distributed over wide-area networks. His research interests include
level of detail, visual perception, and computer graphics. His doctoral research in-
volved the application of models of visual perception to real-time computer graphics
systems, enabling the selection of level of detail based on measures of human per-
ception. He received his B.Sc. from the University of Strathclyde and his Ph.D. from
the University of Edinburgh, UK. He is on the board of directors of the Web3D
Consortium and chair of the GeoVRML Working Group. Martin’s email address is
<reddy@ai.sri.com>.

Jonathan D. Cohen is an Assistant Professor in the Department of Computer Science
at The Johns Hopkins University. He earned his doctoral and master’s degrees from
the University of North Carolina at Chapel Hill and earned his bachelor’s degree from
Duke University. His interests include polygonal simplification and other software ac-
celeration techniques, parallel rendering architectures, collision detection, and high-
quality interactive computer graphics. Jon’s email address is <cohen@cs.jhu.edu>.

xxiii

Team LRN

xxiv About the Authors

Amitabh Varshney is an Associate Professor in the Department of Computer Sci-
ence at the University of Maryland. His research interests lie in interactive computer
graphics, scientific visualization, molecular graphics, and CAD. Varshney has worked
on several aspects of level of detail, including topology-preserving and topology-
reducing simplification, view-dependent simplification, parallelization of simplifica-
tion computation, as well as using triangle strips in multiresolution rendering. Varsh-
ney received his Ph.D. and master’s degrees from the University of North Carolina at
Chapel Hill in 1994 and 1991, respectively. He received his bachelor’s degree in com-
puter science from the Indian Institute of Technology at Delhi in 1989. Amitabh’s
email address is <varshney@cs.umd.edu>.

Benjamin Watson is an Assistant Professor in computer science at Northwestern Uni-
versity. He earned his doctoral and master’s degrees at Georgia Tech’s GVU Center,
and his bachelor’s degree at the University of California, Irvine. His dissertation fo-
cused on user-performance effects of dynamic level of detail management. His other
research interests include object simplification, medical applications of virtual reality,
and 3D user interfaces. Ben’s email address is <watsonb@cs.nwu.edu>.

Robert Huebner is the Director of Technology at Nihilistic Software, an indepen-
dent development studio located in Marin County, California. Prior to cofounding
Nihilistic, Robert has worked on a number of successful game titles including “Jedi
Knight: Dark Forces 2” for LucasArts Entertainment, “Descent” for Parallax Soft-
ware, and “Starcraft” for Blizzard Entertainment. Nihilistic’s first title, “Vampire The
Masquerade: Redemption” was released for the PC in 2000 and sold over 500,000
copies worldwide. Nihilistic’s second project will be released in the winter of 2002 on
next-generation game consoles. Robert has spoken on game technology topics at SIG-
GRAPH, the Game Developer’s Conference (GDC), and Electronic Entertainment
Expo (E3). He also serves on the advisory board for the Game Developer’s Conference
and the International Game Developer’s Association (IGDA). Robert’s email address
is <innerloop@nihilistic.com>.

Team LRN

Part I

Generation

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
Introduction

Practitioners of computer graphics have always struggled with the tradeoff be-
tween complexity and performance. Every graphics programmer knows the

tension between realism and speed, between fidelity and frame rate, between rich,
highly detailed graphical worlds and smooth, flowing animation. An entire field has
grown out of this tension. Known as level of detail, or LOD for short, this discipline
of interactive computer graphics attempts to bridge complexity and performance by
regulating the amount of detail used to represent the virtual world. This book is de-
voted to the field of LOD—its mechanisms and underpinnings, its principles and
practices, its application and theory.

Level of detail is as relevant today as ever, for despite tremendous strides in
graphics hardware, the tension between fidelity and speed continues to haunt us.
The complexity of our 3D models—measured most commonly by the number of
polygons—seems to grow faster than the ability of our hardware to render them. No
matter how powerful our platform, the number of polygons we want always seems to
exceed the number of polygons we can afford. The problem may be sheer complexity:
for example, Figure 1.1 shows several massive models ranging from handmade CAD,
to procedurally generated geometry, to laser scans of real objects. All are too complex
to render interactively with any machine available to date. The problem may be

3

Team LRN

(a) (b)

(c)

Figure 1.1 A variety of large models, all well beyond the interactive rendering capabilities of
today’s hardware. (a) The UNC Powerplant (≈13 million polygons), (b) the Digital
Michelangelo scan of David (≈56 million polygons), and (c) a model produced by
a plant ecosystem simulation (≈16 million polygons) (University of North Carolina
[Aliaga 99] and Stanford University [Levoy 00][Deussen 98]). Copyright © 2000 and
1998 Association for Computing Machinery, Inc.

Team LRN

Introduction 5

69,451
triangles

2,502
triangles

251
triangles

76
triangles

(a)

(b)

Figure 1.2 The fundamental concept of LOD. (a) A complex object is simplified, (b) creating
levels of detail or LODs to reduce the rendering cost of small, distant, or unimportant
geometry [Luebke 01a]. Copyright © 2001 IEEE.

unsegmented or poorly segmented data, which is often the case for surfaces generated
in scientific and medical visualization. Or the problem may be limited rendering
resources, a challenge well known to video game developers who must support last
year’s hardware. Even offline rendering of animation and visual effects, which does
not require interactive rates, can benefit from regulating level of detail.

The fundamental concept of LOD, summed up in Figure 1.2, is almost embarrass-
ingly simple: when rendering, use a less detailed representation for small, distant, or
unimportant portions of the scene. This less detailed representation typically consists
of a selection of several versions of objects in the scene, each version less detailed and

Team LRN

6 Chapter 1 Introduction

faster to render than the one before. Generating and rendering these progressively
coarser versions of objects, known themselves as levels of detail or LODs, has become
an extremely hot topic over the last decade. Dozens of LOD algorithms have been
published, and dozens more have undoubtedly been whipped up by developers un-
aware of or confused by the menagerie of techniques available. This book presents a
detailed treatment of the field of LOD, distilling into a single volume research, theory,
and algorithms from journals and conferences spanning several countries and several
years. The book also aims to provide an applied resource that will help developers in-
tegrate state-of-the-art LOD into their games, simulations, and visualizations. In our
field an unfortunate gulf separates much research from implementation; many excel-
lent algorithms have never made it from the ivory towers of academia to the practical
world of industrial development. This book aims to bridge that gulf.

1.1 Coverage and Organization

We cover a wide gamut of topics in LOD, broadly categorized into three areas reflected
in the three parts of the book: Generation, Application, and Advanced Issues.

Generation. Part I discusses frameworks and algorithms for generating levels of
detail. We focus here on the most common task in LOD: starting from a complex
polygonal model, create a series or spectrum of simpler models that resemble the
original but use fewer polygons. Once an entirely manual process, a great many
algorithms have been proposed in the last decade to perform this simplification.
In Chapter 2 we categorize and discuss work on mesh simplification, emphasizing
the underlying similarities and differences among algorithms: what local simplifi-
cation operation removes polygons, in what order that operation is applied, what
metric guides simplification. We also discuss issues of mesh topology, since mod-
ifying that topology (e.g., closing holes in the mesh) can permit more drastic
simplification, but can also lead to poor fidelity. Finally, in Chapter 3 we focus
on error metrics in simplification. We examine not only geometric error but also
analytic and image-based measures of error for surface attributes, such as colors,
normals, and texture coordinates.

Application. Part II focuses on the task of managing the level of detail used to
render a scene. Here the tradeoff between fidelity and performance becomes con-
crete: the system must choose or generate LODs to represent the objects in the
scene, and their total complexity will determine the rendering performance. We
move from the general to the specific, opening with a discussion of run-time
frameworks for level of detail in Chapter 4. Such frameworks may assemble the
scene from LODs created ahead of time, or they may generate LODs on the fly,
tailoring them to the particular viewing scenario. Chapter 5 provides a catalog
of useful algorithms related to LOD, including several approaches to mesh sim-
plification. We have chosen algorithms that span the gamut of simplification

Team LRN

1.2 History 7

research: some are particularly fast, some particularly robust, and others pro-
duce particularly high-fidelity simplifications. Chapter 6 addresses special topics
of particular applied interest: video game programming, and the implementa-
tion issues and practical realities of managing level of detail in video games. The
most mainstream application of computer graphics, video games impose unique
constraints, such as tight polygon and computation budgets, as well as unique
opportunities, such as a staff of full-time artists to manually create or optimize
LODs. Chapter 7 is devoted to the special case of terrain simplification. Terrains
and height fields have a specific structure and often tremendous complexity that
enable and require specialized algorithms. Many innovations in mesh simplifica-
tion were first invented for the particular case of terrains.

Advanced Issues. Part III turns to more theoretical, but no less important, top-
ics. These are the deeper questions underlying level of detail management. What
principles of visual perception can help us design better LOD algorithms? How
can we evaluate the perceptual error introduced by our simplifications? What is
an appropriate frame rate, and how does it vary by task? In Chapter 8, we begin
with an overview of human visual perception, present a simple model of low-
level vision suitable for driving LOD, and describe some algorithms based on
variations of that model. In Chapter 9, we examine techniques to evaluate visual
fidelity in level of detail. We describe automatic and experimental measures of
visual fidelity, and discuss the implications of recent research comparing these
measures. Finally, in Chapter 10, we consider temporal issues. What is an appro-
priate frame rate, and how does it vary by task? How do the effects of latency,
frame rate, and overall system responsiveness differ? Is a fixed frame rate always
best?

1.2 History

No introduction to the use of LOD in real-time 3D graphics would be complete
without acknowledging the seminal work of James Clark. In a 1976 paper titled “Hi-
erarchical Geometric Models for Visible Surface Algorithms,” Clark codified the basic
principles behind level of detail [Clark 76]. Recognizing the redundancy of using
many polygons to render an object covering only a few pixels, Clark described a
hierarchical scene graph structure that incorporated not only LOD but other now
common techniques, such as view-frustum culling. Many advanced topics in current
level of detail research first surfaced in Clark’s paper, including keeping a graphical
working set in immediate-access store (what we now term out-of-core simplification
and rendering), parallel processing of scene graphs, and perceptual metrics for LOD
such as the eccentricity and velocity criteria described in Chapter 8. We highly recom-
mend this paper to readers interested in the historical genesis of computer graphics.

Flight simulators were probably the earliest applications to make extensive use of
LOD [Cosman 81]. In these early days, LODs were created by hand—considering the

Team LRN

8 Chapter 1 Introduction

overall cost of a flight simulator system, the cost of paying a designer or artist to create
multiple models of each object was insignificant. The early 1990s saw a sudden inter-
est in automating this process, and researchers published a flurry of papers describing
algorithms for simplifying a highly detailed model while still capturing its visual ap-
pearance. Some of those first algorithms, such as vertex decimation [Schroeder 92]
and gridded vertex clustering [Rossignac 92], remain among the most important
and useful; we describe them in detail in Chapter 5. Over the years other algorithms
and frameworks for LOD have been developed. The many key developments, which
we will elucidate throughout the book, include optimization-based predictive sched-
ulers for selecting LODs [Funkhouser 93b], progressive meshes for continuous LOD
[Hoppe 96], vertex hierarchies for view-dependent LOD [Hoppe 97][Luebke 97][Xia
96], quadric error metrics for measuring simplification error [Garland 97], guaran-
teed bounds on surface and texture distortion [Cohen 96][Cohen 98a], and princi-
pled simplification of topology [He 96][El-Sana 99b]. Today the graphics developer
faces a bewildering array of choices. Simplification algorithms range from simple and
fast to sophisticated and slow, and the resulting LODs range from crude to excellent.
This book should provide a guide to the many techniques for creating and managing
LODs, as well as an understanding of the deeper underlying principles.

1.3 Simplifications in Computer Graphics

Geometric mesh simplification is not the only form of LOD management. Some sim-
plifications are so woven into the practice of computer graphics that we tend to forget
about them, such as the quantization of color to 24 bits or the use of three-color chan-
nels (red, green, and blue) to represent the spectral response of the virtual scene. Even
storing a polygonal mesh may involve simplification, since we clamp the precision of
the coordinates and normals (typically to 32 bits each for X, Y, and Z). Although
useful and long-used approximations, especially in interactive graphics, the quan-
tization of color and geometric attributes is indeed simplification, and recognizing
this can lead to many benefits. For example, game programmers once commonly op-
timized storage and computation by using fixed-point arithmetic and fewer bits of
precision for vertex coordinates, and Michael Deering’s seminal work on geometry
compression introduced many ways of controlling precision to optimize storage and
transmission of 3D models [Deering 95]. In general the line between simplification
and lossy compression techniques, which include quantization in its various forms,
can be blurry. In the main, however, we will define LOD and simplification through-
out this book as processes that reduce the complexity of polygonal meshes, not their
precision or storage size.

Shading and illumination form another spectrum of simplification in computer
graphics. Many packages let the user control rendering performance with the familiar
progression from wireframe to flat shading, to Gouraud shading, to texture map-
ping, and finally to per-pixel effects, such as Phong shading, bump mapping, and

Team LRN

1.4 LOD Frameworks 9

environment mapping. Lighting calculations range from simple local illumination
techniques, such as the Phong model (still used for the majority of interactive graph-
ics, since this is what most hardware supports), to sophisticated global illumination
methods such as radiosity and path tracing. Designers have long recognized the pos-
sibility of managing rendering performance by varying the complexity of shading
and illumination applied to objects within the scene. The connection between tex-
ture mapping and level of detail deserves particular mention. One can think of MIP
mapping and other texture filtering techniques as a form of LOD management. For
example, Dumont et al. manage texture memory (and hence rendering performance)
with a perceptually motivated metric by varying the maximum-resolution MIP map
used [Dumont 01]. A more frequent technique, however, replaces geometric detail in
LODs with texture maps. Termed imposters by Maciel and Shirley [Maciel 95], these
textured LODs are especially common in video games and visual simulation applica-
tions. Although we chiefly focus on geometric level of detail management, we discuss
the use of textured imposters and backdrops in Chapter 6.

1.4 LOD Frameworks

The rest of this chapter introduces some important concepts and terminology in
LOD, providing a brief overview of the field as context for the remainder of the book.
We begin with an overview of three basic frameworks for managing level of detail:
discrete, continuous, and view-dependent LOD.

1.4.1 Discrete LOD

We refer to the traditional approach to LOD as discrete LOD. The original scheme
proposed by Clark in 1976 and used without modification in most 3D graphics ap-
plications today, this approach creates multiple versions of every object, each at a
different level of detail, during an offline preprocess. At run-time the appropriate
level of detail, or LOD, is chosen to represent the object. Since distant objects use
coarser LODs, the total number of polygons is reduced and rendering speed in-
creased. Because LODs are computed offline during preprocessing, the simplification
process cannot predict from what direction the object will be viewed. The simplifica-
tion therefore typically reduces detail uniformly across the object, and for this reason
we sometimes refer to discrete LOD as isotropic or view-independent LOD.

Discrete LOD has many advantages. Decoupling simplification and rendering
makes this the simplest model to program: the simplification algorithm can take as
long as necessary to generate LODs and the run-time rendering algorithm simply
needs to choose which LOD to render for each object. Furthermore, modern graph-
ics hardware lends itself to the multiple model versions created by static level of detail,
because individual LODs can be compiled during preprocessing to an optimal render-
ing format. For example, depending on the particular hardware targeted, developers

Team LRN

10 Chapter 1 Introduction

may convert models to use features such as triangle strips, display lists, and vertex
arrays. These will usually render much faster than simply rendering the LODs as an
unordered list of polygons.

1.4.2 Continuous LOD

Continuous LOD1 departs from the traditional discrete approach. Rather than creat-
ing individual LODs during the preprocessing stage, the simplification system creates
a data structure encoding a continuous spectrum of detail. The desired level of detail
is then extracted from this structure at run-time. A major advantage of this approach
is better granularity: since the level of detail for each object is specified exactly rather
than selected from a few precreated options, no more polygons than necessary are
used. This frees up more polygons for rendering other objects, which in turn use only
as many polygons as needed for the desired level of detail, freeing up more polygons
for other objects, and so on. Better granularity thus leads to better use of resources
and higher overall fidelity for a given polygon count. Continuous LOD also supports
streaming of polygonal models, in which a simple base model is followed by a stream
of refinements to be integrated dynamically. When large models must be loaded from
disk or over a network, continuous LOD thus provides progressive rendering and in-
terruptible loading—often very useful properties.

1.4.3 View-Dependent LOD

View-dependent LOD extends continuous LOD, using view-dependent simplification
criteria to dynamically select the most appropriate level of detail for the current view.
Thus view-dependent LOD is anisotropic: a single object can span multiple levels of
simplification. For instance, nearby portions of the object may be shown at higher
resolution than distant portions, or silhouette regions of the object shown at higher
resolution than interior regions (Figures 1.3 and 1.4). This leads to still better gran-
ularity: polygons are allocated where they are most needed within objects, as well as
among objects. This in turn leads to still better fidelity for a given polygon count,
optimizing the distribution of this scarce resource.

Indeed, very complex models representing physically large objects, such as ter-
rains, often cannot be adequately simplified without view-dependent techniques.
Creating discrete LODs does not help: the viewpoint is typically quite close to
part of the terrain and distant from other parts, so a high level of detail will pro-
vide good fidelity at unacceptable frame rates, while a low level of detail will provide

1. This class of algorithms is often termed “progressive LOD” after Hoppe’s groundbreaking
progressive mesh data structure [Hoppe 96]. However, we prefer the term “continuous LOD” to
emphasize the contrast with “discrete LOD.”

Team LRN

1.4 LOD Frameworks 11

Figure 1.3 View-dependent LOD: a birds-eye view of a terrain model simplified in view-
dependent fashion. The field of view is shown by the two lines. The model is dis-
played at full resolution near the viewpoint and at drastic simplification far away
[Luebke 01a]. Copyright © 2001 IEEE.

good frame rates but terrible fidelity. Unsegmented or poorly segmented data, such
as the skeleton extracted from an MRI scan shown in Figure 1.5, may also require
view-dependent LOD. Here almost the entire data set forms one connected surface,
preventing the use of discrete LODs to speed rendering and preserving detail in the
area of interest. Another source of difficult models is scientific visualization, which
tends to produce extremely large data sets that are rarely organized into conveniently
sized objects. Again, view-dependent LOD can enable interactive rendering without
manual intervention or extra processing for segmentation.

Team LRN

12 Chapter 1 Introduction

(a) (b)

Figure 1.4 A sphere simplified with silhouette preservation, seen (a) head-on and (b) from the
side. Note that the polygons facing away from the viewer, shown here for clarity,
would typically be culled away by backface culling.

1.4.4 LOD in Practice

Despite advances in continuous and view-dependent LOD, traditional discrete LOD
remains by far the most common approach in practice. View-dependent LOD, despite
its advantages, also comes with some significant drawbacks. The extra processing re-
quired for evaluating, simplifying, and refining the model at run-time, and the extra
memory required by the view-dependent data structures, steer many developers away
from this approach. Video games, often the most demanding and tightly optimized
of graphics applications, have been notably reluctant to adopt view-dependent LOD
outside of situations that almost require it, such as terrain rendering. Continuous
LOD also imposes a cost in processing and memory, but has fared somewhat better
in game usage. For example, the Unreal game engine pictured in Figure 4.1 uses a
continuous LOD scheme to manage player objects.

To summarize, the traditional static approach of creating multiple discrete LODs
in a preprocess is simple and works best with most current graphics hardware. Con-
tinuous simplification supports progressive streaming of polygonal models and pro-
vides better granularity, which in turn can provide better fidelity. View-dependent
simplification can provide even better fidelity for a given polygon count, and can
handle models (such as terrains) containing very large or poorly segmented individ-
ual objects, but it increases the run-time processing and memory requirements. If the

Team LRN

1.5 Polygonal meshes 13

Figure 1.5 An isosurface generated from a medical visualization.

rendering system is CPU-bound, or memory is particularly tight, this additional load
can decrease the frame rate and cut into the speedup provided by regulating level of
detail.

1.5 Polygonal meshes

The essential concepts of LOD management apply to any model representation.
Polygonal meshes, splines, voxels, implicit surfaces, and even point- and image-based
representations are all compatible with the notions of static, continuous, and view-
dependent LOD. All of these representations are important for certain applications
or problem domains. For example, 3D design systems ranging from mechanical en-
gineering to character animation rely on nonuniform rational B-splines (NURBS).
Medical visualization and scientific simulations often use volumetric models stored
as voxels, while the QSplat system by Rusinkiewicz and Levoy applies view-dependent
techniques to point-based rendering of massive scanned models [Rusinkiewicz 00].
However, the most common and important application of LOD remains the simpli-
fication of polygonal meshes.

Team LRN

14 Chapter 1 Introduction

Polygonal models currently dominate interactive 3D computer graphics. This is
chiefly due to their mathematical simplicity: by providing a piecewise linear approx-
imation to shape, polygonal meshes lend themselves to simple, regular rendering
algorithms in which the visibility and colors of most pixels are determined by in-
terpolating across the polygon’s surface. Such algorithms embed well in hardware,
which has in turn led to widely available polygon rendering accelerators for every
platform. In addition, polygons serve as a sort of lowest common denominator for
computer models, since most model representations (spline, implicit-surface, volu-
metric isosurface) may be converted with arbitrary accuracy to a polygonal mesh. For
these and other reasons, polygonal models are the most common representation for
every application from video games to visualization of medical, scientific, and CAD
data sets. A great deal of LOD research has therefore focused on the specific problem
of simplifying polygonal meshes.

Informally, we define a polygonal model as a collection of vertices and polygons
that connect those vertices. This definition is intentionally loose; for example, we do
not necessarily assume that all polygons form a single connected component, or that
all edges between vertices are shared by two polygons. Most LOD algorithms actually
simplify the problem by assuming that polygonal meshes have been fully triangulated.
The constant memory requirements and guaranteed planarity of triangles make them
preferable to generic polygons. We will often use “polygon” interchangeably with
“triangle,” or refer to polygonal models without making the additional distinction
that most algorithms assume those models are triangulated. Polygon triangulation
is a well-studied problem; we present one practical algorithm for triangulation in
Chapter 5.

1.5.1 Topology

The treatment of mesh topology during simplification provides an important distinc-
tion among algorithms. First, a word on terminology: mesh topology is a formal and
rigorous mathematical topic. For readability we have elected to use loose informal
language when discussing topology in this book, and in particular have avoided the
use of simplicial complex notation. For example, we prefer language such as “the set
of triangles surrounding edge e” to the terser notation ���e���. However, our defini-
tions are of necessity less precise as a result, and the interested reader is encouraged to
consult [Edelsbrunner 01a] for a good introduction to and a more rigorous treatment
of this very important field.

With this disclaimer in mind, let us define a few terms: in the context of polygonal
simplification, topology refers to the structure of the connected polygonal mesh. The
genus is the number of holes in the mesh surface. For example, a sphere and a cube
have a genus of zero, while a doughnut and a coffee cup have a genus of one. The
local topology of a face, edge, or vertex refers to the connectivity of that feature’s
immediate neighborhood. The mesh forms a 2D manifold if the local topology is
everywhere equivalent to a disc, that is, if the neighborhood of every feature consists

Team LRN

1.5 Polygonal meshes 15

Figure 1.6 A 2D manifold with boundary (boundary edges bold). Each edge is shared by one or
two triangles, and each vertex is shared by a connected ring of triangles.

of a connected ring of polygons forming a single surface. In a triangulated mesh
displaying manifold topology, every edge is shared by exactly two triangles, and every
triangle shares an edge with exactly three neighboring triangles. A 2D manifold with
boundary permits boundary edges, which belong to only one triangle (Figure 1.6).

Manifold meshes make for well-behaved models; virtually any simplification al-
gorithm can successfully operate on a manifold object. Manifold meshes are also
desirable for many other applications, such as finite element analysis (a common tool
in engineering and scientific simulations) and radiosity (an illumination algorithm
that computes shadows and interreflections between surfaces). Some algorithms and
modeling packages are guaranteed to produce manifold output; for example, the
Marching Cubes algorithm [Lorensen 87] can construct manifold isosurfaces (such
as the skeletal model pictured in Figure 1.5) from volumetric data. Unfortunately,
many models encountered in actual practice are not perfectly manifold, with topo-
logical flaws such as cracks, T-junctions, and nonmanifold points or edges (Figure
1.7). These problematic defects are particularly common in handmade models, such
as those created by artists for a video game, or engineers in a CAD system.

A topology-preserving simplification algorithm preserves manifold connectivity
at every step. Such algorithms do not close holes in the mesh, and therefore preserve
the overall genus. Since no holes are appearing or disappearing during simplification,
the visual fidelity of the simplified object tends to be relatively good. This constraint
limits the simplification possible, however, since objects of high genus cannot be sim-
plified below a certain number of polygons without closing holes in the model (Fig-
ure 1.8). Nor can a topology-preserving algorithm eliminate or merge small objects,
since both operations would violate the manifold connectivity property. A topology-
preserving approach also presumes that the initial mesh has manifold topology. Some
algorithms are topology tolerant: they ignore regions in the mesh with nonmanifold
local topology, leaving those regions unsimplified. Other algorithms, faced with non-
manifold regions, may simply fail.

Team LRN

16 Chapter 1 Introduction

(a) (b) (c)

Figure 1.7 Examples of nonmanifold meshes: (a) An edge shared by three triangles. (b) A vertex
shared by two otherwise unconnected sets of triangles. (c) A T-junction, in which the
edge of one triangle is spanned by edges from two other triangles.

4,736 triangles, 21 holes
(a)

1,006 triangles, 21 holes
(b)

46 triangles, 1 hole
(c)

Figure 1.8 Preserving genus limits drastic simplification. (a) The original model of a brake rotor
is shown (b) simplified with a topology-preserving algorithm and (c) a topology-
modifying algorithm [Luebke 01a]. Copyright © 2001 IEEE. Courtesy Alpha_1
Project, University of Utah.

Topology-modifying algorithms do not necessarily preserve manifold topology.
The algorithms can therefore close up holes in the model and aggregate separate ob-
jects into assemblies as simplification progresses, permitting drastic simplification
beyond the scope of topology-preserving schemes. This drastic simplification often
comes at the price of poor visual fidelity, and distracting popping artifacts as holes ap-
pear and disappear from one LOD to the next. Most topology-modifying algorithms

Team LRN

1.6 Fidelity Metrics 17

do not require valid topology in the initial mesh, which greatly increases their util-
ity in real-world CAD applications. Some topology-modifying algorithms attempt to
regulate the change in topology, but many are topology-insensitive, paying no heed to
the initial mesh connectivity at all.

As a rule, topology-preserving algorithms work best when visual fidelity is crucial,
or with an application such as finite element analysis, in which surface topology can
affect results. Preserving topology also simplifies some applications, such as multires-
olution surface editing, which require a correspondence between high- and low-detail
representations of an object. Real-time visualization of very complex scenes, how-
ever, requires drastic simplification, and here topology-modifying algorithms have
the edge. We will return to the questions of when and how to modify topology in
Section 2.3.

1.6 Fidelity Metrics

Methods for creating LODs can also be characterized by how they use a fidelity met-
ric to guide simplification. Many early algorithms used no metric at all, but instead
required the user to run the algorithm with different settings and manually decide
when each LOD should represent the original object. For large databases, however,
this degree of user intervention is simply not practical. Those algorithms that regulate
simplification with a fidelity metric fall into two categories. Fidelity-based simplifica-
tion techniques allow the user to specify the desired fidelity of the simplification in
some form, and then attempt to minimize the number of polygons without violating
that fidelity constraint. Budget-based simplification techniques allow the user to spec-
ify a target number of polygons or vertices, and attempt to maximize the fidelity of
the simplified model without exceeding the specified budget.

To be most useful, an LOD algorithm needs to support both fidelity- and budget-
based operation. Fidelity-based approaches are important for generating accurate
images, whereas budget-based approaches are crucial for time-critical rendering. The
user may well require both of these tasks in the same system.

Of course, how to measure fidelity is a profound question to which much of this
book is devoted. Most algorithms to date have considered various measures of the
geometric error introduced by simplification; some also consider the effect of sim-
plification on surface attributes such as colors, normals, and texture coordinates.
Chapter 3 examines such error metrics in detail. However, often the crucial measure
of fidelity is not geometric but perceptual: does the simplification look like the orig-
inal? We return to this higher-level question in Part III of the book, which considers
advanced perceptual issues in LOD management.

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
Mesh

Simplification

This chapter provides a high-level overview of various mesh simplification al-
gorithms. We describe mesh simplification as an optimization process under

fidelity-based or triangle–budget-based constraints, to be achieved by the applica-
tion of local and global mesh simplification operators. Local operators simplify the
geometry and connectivity in a local region of the mesh, reducing the number of
polygons, while global operators operate over much larger regions and help simplify
the mesh topology. We also briefly address the desirability of topology simplification
for different applications. After describing the range of mesh simplification operators
available, we conclude with a discussion of the various optimization frameworks in
which these operators are chosen and applied to the mesh.

2.1 Overview

A mesh in 3D graphics has two components: the mesh geometry, represented by the
vertices, and the mesh connectivity, represented by the edges or faces that connect the
vertices. The mesh connectivity encodes the topology of the mesh, that is, the number

19

Team LRN

20 Chapter 2 Mesh Simplification

of holes, tunnels, and cavities in that mesh. Simplification of the mesh geometry may
or may not result in simplification of the mesh topology.

Before we start describing the various approaches to the simplification of mesh
geometry, we should reemphasize that algorithms for mesh simplification deal al-
most exclusively with triangle meshes. If your mesh is composed of nontriangulated
polygons, you will almost certainly wish to triangulate them in a preprocessing step.
Many triangulation algorithms exist; one example is Seidel’s incremental random-
ized algorithm to triangulate a non–self-intersecting polygon with n vertices in time
O(nlog*n) [Seidel 91]. We describe this algorithm at a high level in Chapter 5 and in-
clude source code by Narkhede and Manocha on this books’ accompanying Web site
[Narkhede 95]. O’Rourke provides an excellent introduction to the topic of triangu-
lation algorithms for the interested reader [O’Rourke 94].

2.1.1 Fidelity-Based Simplification

In fidelity-based simplification the user provides a fidelity constraint that the sim-
plified mesh must satisfy with respect to the original input mesh. The simplification
algorithm then generates a simplified mesh, attempting to minimize the number of
triangles while respecting the fidelity constraint. The simplifications that these meth-
ods produce are typically best suited for applications in which visual fidelity is more
important than interactivity. The fidelity constraint is usually specified as some mea-
sure of the difference between the simplified mesh and the input mesh, denoted by
the simplification error ε. This error can be measured many ways; Chapter 3 dis-
cusses various error metrics in detail. Solving this minimization problem optimally
is suspected to be NP-hard. Graphics practitioners therefore settle for algorithms that
generate mesh simplifications with a small (instead of the minimum) number of tri-
angles that satisfy the given error tolerance ε.

Given a fidelity-based simplification algorithm, one can generate successive sim-
plifications, for example with errors of ε, 2ε, 4ε, 8ε, and so on. LOD management
techniques (described in Part II of this book) can then be used to assess the permissi-
ble rendering error for an object at run time, and determine the appropriate level of
detail for rendering.

2.1.2 Budget-Based Simplification

In budget-based simplification the user specifies the maximum number of trian-
gles, and the algorithm attempts to minimize the error ε without exceeding that
constraint. Since this approach allows us to generate a fixed number of triangles, it
is appropriate for time-critical applications where a desired frame rate dictates the
per-frame triangle budget. Thus, this approach is often used for applications where
interactivity is paramount. Since the error ε is not controllable by the end user, this
approach does not guarantee visual fidelity. Solving the budget-based simplification

Team LRN

2.2 Local Simplification Operators 21

problem optimally is also difficult. Comparisons across different budget-based algo-
rithms are often based on empirical observations on a few data sets that have become
de facto benchmarks in the field. We will return to the topic of evaluating visual fi-
delity in Chapter 9.

2.2 Local Simplification Operators

In this section we discuss the various low-level local operators that have been used
for simplification of meshes. Each of these operators reduces the complexity of a
mesh by some small amount. Section 2.4 will describe how to combine these low-
level operators into a high-level simplification algorithm.

2.2.1 Edge Collapse

Hoppe first proposed using the edge collapse operator for mesh simplification [Hoppe
93]. This operator collapses an edge (va, vb) to a single vertex vnew. This causes the
removal of the edge (va, vb) as well as the triangles spanning that edge. The inverse
operator of an edge collapse is a vertex split, which adds the edge (va, vb) and the
triangles adjacent to it. Thus, the edge collapse operator simplifies a mesh and the
vertex split operator adds detail to the mesh. Figure 2.1 illustrates the edge collapse
operator and its inverse, the vertex split.

The edge collapse operator has been widely used in view-independent simplifi-
cation [Hoppe 96], view-dependent simplification [Xia 96] [Hoppe 97], progressive
compression [Bajaj 99], as well as progressive transmission [Bajaj 99] [Guéziec 99b].
There are two variants of the edge collapse operator: half-edge collapse and full-edge
collapse. In the half-edge collapse (Figure 2.2), the vertex to which the edge collapses
to is one of its end points, that is, vnew = va or vb. In the more general full-edge col-
lapse (often abbreviated as simply edge collapse) the collapsed vertex vnew may be a
newly computed vertex.

Edge collapse

Vertex split

va
vnew

vb

Figure 2.1 An edge collapse and its inverse vertex split.

Team LRN

22 Chapter 2 Mesh Simplification

Half-edge
collapse

Vertex split

va va

vb

Figure 2.2 A half-edge collapse and its vertex split inverse.

Edge collapseva

vb

vcvd
vd

vc

vnew

Figure 2.3 A mesh foldover arising from an edge collapse.

Although the edge collapse operator is simple to implement, care must be taken
not to apply an edge collapse if it would cause a mesh foldover or a topological
inconsistency, as described in the next section.

Mesh Foldover

Mesh foldovers are an undesirable side effect of some edge collapses [Xia 97]. In
Figure 2.3, consider the triangle (vd, vc, va). When the edge (va, vb) collapses to the
new vertex vnew, the mesh around the vertex vnew gets a folded crease or a foldover
due to the newly created triangle (vd, vc, vnew). This can be detected by measuring
the change in the normals of the corresponding triangles before and after an edge
collapse: a mesh foldover is characterized by a large change in the angle of the normal,
usually greater than 90°. Mesh foldovers result in visual artifacts, such as illumination
and texture discontinuities, where none existed before.

Topological Inconsistency

If the neighborhoods of vertices va and vb share three or more vertices (as shown
in Figure 2.4), the collapse of the edge (va, vb) will create one or more nonmanifold

Team LRN

2.2 Local Simplification Operators 23

Edge collapseva
vnew

vb

Figure 2.4 A manifold mesh becoming nonmanifold due to an edge collapse.

va
vnew

vb

Virtual-
edge collapse

Vertex split

Figure 2.5 Virtual-edge or vertex-pair collapse.

edges. Nonmanifold edges have one, three, or more adjacent triangles; since many al-
gorithms rely on manifold connectivity, introducing such edges can create problems
later in the simplification process.

2.2.2 Vertex-Pair Collapse

A vertex-pair collapse operator [Schroeder 97] [Garland 97] [Popovic 97] [El-Sana
99a] collapses two unconnected vertices va and vb. Since these vertices do not share an
edge, no triangles are removed by a vertex-pair collapse, but the triangles surround-
ing va and vb are updated as if an imaginary edge connecting va and vb underwent an
edge collapse (Figure 2.5). For this reason, the vertex-pair collapse operator has also
been referred to as a virtual-edge collapse. Collapsing unconnected vertices enables
connection of unconnected components as well as closing of holes and tunnels.

In general, for a mesh with n vertices there can be potentially O(n2) virtual edges,
so an algorithm that considers all possible virtual edges will run slowly. Most of the
topology simplification algorithms that rely on virtual-edge collapses therefore use
some heuristic to limit the candidate virtual edges to a small number. One such
heuristic chooses virtual edges only between nearby vertices, considering virtual-
edge collapses from each vertex va to all vertices within a small distance δ from va

Team LRN

24 Chapter 2 Mesh Simplification

Triangle collapseva
vnew

vb

vc

Figure 2.6 A triangle collapse operator.

[Garland 97] [El-Sana 99a]. In practice this reduces the number of candidate edges to
a linear factor of the model size, though care must be taken to choose δ small enough.

2.2.3 Triangle Collapse

A triangle collapse operator simplifies a mesh by collapsing a triangle (va, vb, vc) to a
single vertex vnew [Hamann 94] [Gieng 98]. The edges that define the neighborhood
of vnew are the union of edges of the vertices va, vb, and vc. The vertex vnew to which
the triangle collapses can be either one of va, vb, or vc or a newly computed vertex.
This is shown in Figure 2.6. A triangle collapse is equivalent to two edge collapses. A
triangle collapse-based hierarchy is shallower than an equivalent edge collapse-based
hierarchy and thus requires less memory. However, triangle collapse hierarchies are
also less adaptable, since the triangle collapse is a less fine-grained operation than an
edge collapse.

2.2.4 Cell Collapse

The cell collapse operator simplifies the input mesh by collapsing all the vertices in a
certain volume, or cell, to a single vertex. The cell undergoing collapse could belong to
a grid [Rossignac 93], or a spatial subdivision such as an octree [Luebke 97], or could
simply be defined as a volume in space [Low 97]. The single vertex to which the cell
collapses could be chosen from one of the collapsed vertices or newly computed as
some form of average of the collapsed vertices.

We present the cell collapse operator here following the discussion in [Rossignac
93]. Consider a triangle mesh object as shown in Figure 2.7(a). The vertices of the
mesh are placed in a regular grid. All the vertices that fall in the same grid cell are then
unified into a single vertex. The vertices are identified in Figure 2.7(b). All triangles
of the original mesh that have two or three of their vertices in a single cell are either
simplified to a single edge or a single vertex. This is shown in Figure 2.7(c). The final
mesh is shown in Figure 2.7(d). Note that such a simplification does not preserve

Team LRN

2.2 Local Simplification Operators 25

(a) (b) (c) (d)

Figure 2.7 A cell collapse. (a) A regular grid classifies the vertices. (b) A single vertex is selected
to represent all vertices within each cell. (c) Triangles with 2 or 3 corner vertices in the
same cell simplify to a single edge or vertex, respectively. (d) The final simplification
[Rossignac 92].

the topology of the input mesh, and that the level of simplification depends on the
resolution of the grid.

2.2.5 Vertex Removal

The vertex removal operator removes a vertex, along with its adjacent edges and tri-
angles, and triangulates the resulting hole. Schroeder et al. [Schroeder 92] were the
first to propose this approach. As shown by Klein and Kramer [Klein 97], triangula-
tion of the hole in the mesh resulting from removal of the vertex v can be accom-
plished in several ways and one of these triangulations is the same as a half-edge
collapse involving the vertex v. In this respect at least, the vertex removal operator
may be considered to be a generalization of the half-edge collapse operator. Figure
2.8 illustrates such a vertex removal operation.

As an aside, the number of possible ways to fill such a hole (i.e., to triangulate
a polygon) is bounded by the elements of the Catalan sequence [Dörrie 65] [Plouffe
95]:

C(i) = 1

i + 1
∗
(

2i

i

)
= 1

i + 1
∗ (2i)!

i!(2i − i)!
= 1

i + 1
∗ (2i)!

i!i!
= (2i)!

(i + 1)!i!

C(i) is the number of ways to fill a convex, planar hole with i + 2 sides. We can think
of choosing from among these possible ways as a discrete optimization problem.

2.2.6 Polygon Merging

In one of the earliest papers on simplification, Hinker and Hansen [Hinker 93]
proposed merging nearly coplanar and adjacent polygons into larger polygons, which

Team LRN

26 Chapter 2 Mesh Simplification

RetriangulationVertex removal

(a) (b) (c)

Figure 2.8 A vertex removal operation. (a) A vertex va is chosen for removal. (b) The vertex
and all surrounding triangles are removed, leaving a hole in the mesh. (c) The hole is
retriangulated with two fewer triangles than the original mesh.

are then triangulated. As an example, we can consider the shaded triangles in Figure
2.8(a) to have been merged in (b) and then retriangulated in (c). Polygon merging is,
however, more general than vertex removal since it can combine polygons (not just
triangles), can result in removal of several vertices at once, and may even result in
merged polygons with holes. Polygon merging as a simplification operator has been
used in different applications under different names, such as superfaces [Kalvin 96]
and face clustering [Garland 01]. Figure 2.9 illustrates face clustering from [Garland
01].1

2.2.7 General Geometric Replacement

The general geometric replacement operator proceeds by replacing a subset of ad-
jacent triangles by another set of (simplified) triangles, such that their boundaries
are the same. DeFloriani et al. [DeFloriani 97] [DeFloriani 98] have proposed this
operator (they call it the multi-triangulation), which is the most general of the mesh
simplification operators. It can encode edge collapses and vertex removals. It can also
encode an edge flip, in which the common edge between two triangles is replaced by
another edge that joins the two other opposite vertices. It has been shown that edge
collapses and edge flips are sufficient to generate any simplification of mesh geometry
and hence the general geometric replacement operator suffices for encoding all mesh

1. Garland et al. [Garland 01] consider face clustering to be the graph dual of the edge collapse
operator. This concept involves the graph-theoretic dual of a triangle mesh, in which the
triangles correspond to the nodes and the vertices correspond to the faces. An edge connects
two nodes if the corresponding triangles in the original mesh shared an edge. Therefore,
an edge collapse operator in the primal representation will correspond to a face-clustering
operator in its dual representation.

Team LRN

2.2 Local Simplification Operators 27

10,000 clusters 5,000 clusters 2,500 clusters 1,000 clusters 100 clusters

Figure 2.9 Face clustering simplifications [Garland 01]. Copyright © 2001 Association for Com-
puting Machinery, Inc.

geometry simplifications. This general operator can even be used to replace geometry
of one primitive type with geometry of another primitive type. For example, Cohen
et al. [Cohen 01] use this operator to describe the substitution of point primitives for
triangles primitives.

2.2.8 Comparing the Local Simplification Operators

The collapse operators (edge collapse, triangle collapse, and cell collapse) are the sim-
plest to implement. Further, since they can be conceptualized as gradually shrinking
the appropriate geometric primitive (edge, triangle, or cell, respectively) to a single
vertex, they are well suited for implementing geomorphing between successive levels
of detail (see Section 4.4.2).

The full-edge collapse operator has greater flexibility in determining the new
vertex after edge collapse than the half-edge collapse operator, and in practice, this
means that one can compute higher-fidelity simplifications using full-edge collapses
than using half-edge collapses. However, the advantage of the half-edge collapse

Team LRN

28 Chapter 2 Mesh Simplification

operator is that the vertices of the simplified mesh are a subset of the high-detail input
mesh. This simplifies the bookkeeping associated with keeping track of the vertices
and results in substantial storage savings since no new vertices must be stored. Finally,
the number of triangles modified by a half-edge collapse is smaller than the number
modified by a full-edge collapse. This may lead to more efficient simplification since
fewer triangles need to be updated.

The cell collapse operator has many advantages: it provides both geometry and
topology simplification, it is robust, and it is very simple to implement. The cell
collapse also has disadvantages. First, it is not invariant with respect to rotation and
translation, meaning that an object may be simplified differently depending on its
rotation and positioning, since different parts of the object will end up in different
grid cells. Second, cell collapse does not simplify topology in a controlled fashion.
For example, a small hole that happens to span a cell boundary may be magnified,
but if the same hole falls entirely within a cell, it will disappear. We expand on these
difficulties in Section 5.1, but despite these disadvantages the cell collapse operator
has much to recommend it.

The vertex removal operator requires somewhat more effort than the collapse op-
erators to implement correctly, since it involves triangulating a hole in 3D. Schroeder
et al. describe a recursive loop-splitting method for triangulation [Schroeder 92]. If
the 3D hole can be projected without self-intersections onto a 2D plane, an algorithm
such as Seidel’s randomized method [Seidel 91] may be used for its triangulation.
There are several publicly available LOD algorithms based on the vertex removal
operator, such as the Visualization ToolKit or VTK [Schroeder 98] that may serve as a
good starting point for the practitioner. The implementation of the general geomet-
ric replacement operator takes slightly more effort to capture its full generality, but
once implemented offers great flexibility.

The vertex removal operator and the edge collapse operator each have their
strengths and weaknesses, but neither is strictly more powerful than the other. Each
can produce triangle meshes that the other cannot. Computing the new output ver-
tex of an edge collapse is a continuous optimization problem, whereas choosing from
among the possible ways to fill the hole after a vertex removal is a discrete optimiza-
tion problem. The number of triangles affected by the vertex removal operation is
smaller than that of the edge collapse (i.e., those triangles surrounding one vertex as
opposed to two), which may be relevant if coherence of the set of primitives rendered
from frame to frame is valued. It is interesting to note that there is a subset of the
possible edge collapse operations that are equivalent to a subset of the possible ver-
tex removal operations. This common subset is the set of half-edge collapses, which
share some of the properties of each of the other two operation types.

2.3 Global Simplification Operators

The global simplification operators modify the topology of the mesh in a controlled
fashion. Since they tend to be more complex than the local simplification operators,

Team LRN

2.3 Global Simplification Operators 29

which only consider a small portion of the model, our discussion will necessarily be
at a higher level. If you do not need to modify topology, you may wish to skip ahead
to Section 2.4 on simplification frameworks.

The global simplification operators include methods based on volumetric, digital
signal processing [He 96] [Nooruddin 99], Delaunay tetrahedralization and alpha
hulls [Edelsbrunner 83] [Edelsbrunner 94] [Popovic 97] [El-Sana 98], and more
recently on filtration methods grounded in Morse theory [Edelsbrunner 00] [Wood
01] [Edelsbrunner 01b].

2.3.1 Volume Processing

Two schemes have been proposed for simplification of the topology in the volumet-
ric domain [He 96] [Nooruddin 99]. Both schemes proceed by first voxelizing, or
converting the input objects into a volumetric grid, followed by application of the
topology simplifying operations in the volumetric domain, and finally, using an iso-
surface extraction method to convert the volumetric densities into a triangle mesh.
The topology simplifying operators used in the middle stage are low-pass filtering
[He 96] and morphological operations of dilation and erosion [Nooruddin 99].

Low-Pass Filtering

He et al. introduced the first algorithm [He 96] to simplify the topology of an input
model in the volumetric domain. Their approach first converts the input object into a
volumetric data set using an approach such as the one by Wang and Kaufman [Wang
93]. This approach places a filter at each grid value and computes the intersection of
the geometric primitive with the extent of the filter kernel. This intersection amount
produces a filtered density value for each voxel, enabling data sets derived from polyg-
onal meshes and implicit functions to be treated in the same manner as innate volu-
metric data sets such as those from CT or MRI scans. Wang and Kaufman’s method
generates reasonable results for all classes of objects outlined above, but works best
for objects that represent volumes with no sharp discontinuities or corners.

The approach of He et al. proceeds by applying a low-pass filter to each of the grid
values of the volumetric buffer. Low-pass filtering eliminates fine details in the volu-
metric model, including topological features such as small holes and tunnels. This is
followed by isosurface reconstruction using a method such as the marching cubes al-
gorithm [Lorensen 87]. Marching cubes approximates an isosurface by determining
its intersections with edges of every voxel in the volume buffer. Up to five triangles
are used to approximate the surface within a voxel. Figure 2.10 shows the results of
topology simplification using this approach.

From a signal-theoretic point of view, a lower sampling resolution of the volume
corresponds to a lower Nyquist frequency, and therefore requires a low-pass filter
with wider support for a good approximation. This direct correspondence between
the size of the filter support and the resolution of the volume leads to a hierarchical

Team LRN

30 Chapter 2 Mesh Simplification

(a) (b) (c)

(d) (e) (f)

Figure 2.10 LODs of a medical isosurface using volume-domain topology simplifications: (a)
334K triangles, (b) 181K triangles, (c) 76K triangles, (d) 17K triangles, (e) 3K tri-
angles, and (f) 568 triangles [He 96]. Copyright © 1996 IEEE.

representation of the model. The base of such a hierarchy contains the most detailed
and the highest resolution version of the object. As one moves up the hierarchy, low-
pass filters with wider support are applied, and the top contains the least detailed
version of the object. Convolving the original object with a low-pass filter of an
appropriate support creates each level of the simplification hierarchy, which in turn
is used to create a polygonal LOD. This avoids error propagation from one stage of
the simplified volume to the next. A wide variety of low-pass filters can be used, such
as the hypercone and the Gaussian.

Morphological Operators

Nooruddin and Turk [Nooruddin 99] describe a different scheme for topology sim-
plification in the volumetric domain. Their scheme voxelizes the input model into

Team LRN

2.3 Global Simplification Operators 31

(a) (b)

(c) (d)

Figure 2.11 Merging multiple components of the Al Capone model: (a) original model, (b) wire-
frame of the original model, (c) wireframe of the model after conversion to a single
manifold, and (d) filled rendering of the single manifold model [Nooruddin 99].
Copyright © 1999 Graphics, Visualization, & Usability Center, Georgia Institute of
Technology.

a volumetric data set using a parity-count scheme for a single component polygo-
nal model, or a ray stabbing method for polygonal models with multiple intersecting
components. The results of voxelization using ray stabbing are shown in Figure 2.11.
Note how cleanly this method converts 15 intersecting components into a single man-
ifold.

The next step in Nooruddin and Turk’s algorithm is to build a distance field on
the volumetric model. Their distance field associates with each voxel a distance to
the nearest voxel that lies inside the object. After this, the morphological operators of
erosion and dilation [Jain 89] are applied on the distance field. In the dilation operator
with a threshold T, any voxel that has a distance less than the value T is reclassified

Team LRN

32 Chapter 2 Mesh Simplification

as being inside the object. Thus, this process effectively ends up enlarging the object,
filling up its holes, and connecting the disconnected components that lie within a
distance T. The erosion operator is the complement of the dilation operator and ends
up shrinking the object. A dilation operator followed by an erosion operator will
result in a topologically simplified object with the same dimensions as the original.

Once the model has been simplified in the volumetric domain, the isosurface
is extracted using marching cubes. This is followed by a geometry simplification
stage in which an algorithm such as QSlim by Garland and Heckbert [Garland 97]
is used (see Section 5.3). The advantage of this approach is that the dilation and
erosion operators are very precise and can be used to control very finely the level of
topological simplification of the object. Figure 2.12 shows the results of this approach.
Note how well the morphological operators preserve the shape of the model while
simplifying the topological detail as shown in Figure 2.12(c), compared with directly
simplifying the geometry as shown in Figure 2.12(d).

2.3.2 Alpha-Hull–Based Topology Simplifications

Controlled simplification of mesh topology can also be accomplished using the con-
cept of alpha hulls. These are best illustrated with a somewhat fanciful example.

Consider a set of points P embedded inside a block made out of styrofoam. Now,
you are given a spherical eraser of radius α and you are asked to erase away as much
of the styrofoam as possible. The only constraint is that the eraser cannot overlap any
point in P. The resulting mass of styrofoam left over after such an erasing process will
correspond to an α-hull over P. When the value of α = 0, the α-hull consists of exactly
the points of P. As the value of α is increased from 0, the topological complexity of the
α-hull gradually decreases. When α = ∞ our spherical eraser becomes a half-plane
and the α-hull becomes the convex hull over P. Alpha hulls have been widely used
in a number of applications, including reconstruction of surfaces from point data
[Bajaj 97] and computation and display of molecular surfaces [Varshney 94b]. For a
mathematically precise description of 2D and 3D alpha hulls, see [Edelsbrunner 83]
and [Edelsbrunner 94].

El-Sana and Varshney [El-Sana 98] have developed a method to simplify the
polygonal meshes by generalizing the concept of α-hulls over polygonal objects. The
intuitive idea underlying this approach is to simplify the genus of a polygonal object
by rolling a sphere of radius α over it and filling up all the regions that are not
accessible to the sphere. Bajaj and Kim [Bajaj 88] have nicely worked out the problem
of planning the motion of a sphere amidst polyhedral obstacles in 3D. They show
that planning the motion of a sphere S of radius α among triangles is equivalent to
planning the motion of a point among triangles “grown” by the radius of the sphere.
Mathematically, a grown triangle Ti(α) is the Minkowski sum of the original triangle
ti with the sphere S(α). Formally, Ti(α) = ti ⊕ S(α), where ⊕ denotes the Minkowski
sum, which is equivalent to the convolution operation. The boundary of ∪n

i=1Ti(α),
where n is the number of triangles in the data set, will represent the locus of the

Team LRN

2.3 Global Simplification Operators 33

(a) (b)

(c) (d)

Figure 2.12 Topology simplifications using morphological operators: (a) original model of a car
motor (140K faces), (b) topology simplified (5K faces), (c) geometry of part further
simplified by Qslim (3.3K faces), and (d) original model directly simplified by QSlim
(3.3K faces) [Nooruddin 99]. Copyright © 1999 Graphics, Visualization, & Usability
Center, Georgia Institute of Technology.

Team LRN

34 Chapter 2 Mesh Simplification

(a) (b)

Figure 2.13 Convolving a triangle with L∞ cube in (a) to generate a grown triangle convex poly-
hedron in (b) [El-Sana 98]. Copyright © 1998 IEEE.

center of the sphere as it is rolled in contact with one or more triangles and can be
used in the topology simplification stage. Computing the union of Ti(α), 1 ≤ i ≤ n
can be simplified by considering the offsetting operation in the L1 or the L∞ distance
metrics instead of the L2 distance metric. This is equivalent to convolving the triangle
ti with an oriented cube (which is the constant distance primitive in the L1 or the L∞
metrics, just as a sphere is in the L2 metric). Each resulting grown triangle forms a
convex polyhedron Ti(α) (Figure 2.13).

Computing the union of the convex polyhedra Ti(α) can be computed from
pairwise intersections. Intersection of two convex polyhedra with p and q vertices
can be accomplished in optimal time O(p + q) [Chazelle 92]. A simpler algorithm to
implement takes time O((p + q) log(p + q)) [Muller 78].

Figure 2.14 provides an overview of the stages involved in this approach. Consider
a hole abcde in the mesh shown in Figure 2.14(a). First, we generate the α-grown
triangles in the region of interest (in this case the triangles bordering the hole) and
compute their union (Figure 2.14(b)). Second, this union is used to generate a valid
surface triangulation (Figure 2.14(c)). The result of this process as shown for this
example adds an extra triangle abe in the interior of the region abcde. This extra
triangle is added in the region where the oriented L∞ cube of side α could not pass
through.

Although this approach can work on any region of the triangulated mesh, it can
also be selectively applied in the neighborhood of holes. Such holes can be detected
using heuristics, such as finding adjacent triangles which meet at an angle greater
than some threshold (say 70°). Figure 2.15 shows an example in which a hole is filled,
internal triangles detected and deleted, and finally a geometry-simplification stage
yields a simple cube. Another example appears in Figure 2.16.

Team LRN

2.3 Global Simplification Operators 35

(a) (b) (c)

b

de

c

a
b

de

c

a

Figure 2.14 Topology simplifications by using generalized α-hulls: (a) original mesh, (b) α-
grown triangles, and (c) partially filled mesh [El-Sana 98]. Copyright © 1998 IEEE.

(a) (b) (c) (d)

Figure 2.15 Explicit detection and filling up of holes whose radii are less than threshold α [El-
Sana 98]. Copyright © 1998 IEEE.

Let us reconsider the concept of α-hulls in three dimensions. With an increasing
value of α, larger and larger concave regions in the external surface get progressively
“filled.” Finally, when α = ∞, all concavities in the external surface are filled and the
α-hull is the convex hull of the input points. This leads to the question, what would
happen if the sphere were being rolled from inside the object instead of outside? The
answer is evident in Figure 2.17—all the protuberances and convexities of the surface
are progressively simplified. In the implementation, the rolling of an α-sphere or α-
cube on the interior as opposed to the exterior is accomplished by simply inverting
the normals of every triangle in the polygonal model, conceptually turning the object
inside out.

Team LRN

36 Chapter 2 Mesh Simplification

(a) (b)

Figure 2.16 Topology simplification for a mechanical CAD part: (a) 5180 triangles and (b) 1438
triangles [El-Sana 98]. Copyright © 1998 IEEE.

612 triangles
(a) (b) (c)

(d) (e)
12 triangles

(f)

Figure 2.17 (a–f) Alternating simplification of the protuberances and geometry [El-Sana 98].
Copyright © 1998 IEEE.

Team LRN

2.3 Global Simplification Operators 37

Figure 2.18 A topology-preserving LOD hierarchy for a rotor from a brake assembly [Cohen 96].
Copyright © 1996 Association for Computing Machinery, Inc.

2.3.3 When Is Topology Simplification Desirable?

Topology simplification is compelling—indeed, often vital—for interactive visualiza-
tion applications. As an example, we return to the brake rotor shown in Figure 1.8.
Consider the topology-preserving LODs of this rotor created by the simplification
envelopes approach [Cohen 96] shown in Figure 2.18. The closest rotor has 4700 tri-
angles and the farthest rotor has about 1000 triangles. Most of the triangles in the
farthest rotor are used for representing the 21 holes in the rotor even though barely
one hole is visible. For this example, if the topology for the farthest rotor were simpli-
fied to a single hole, it will permit a much more aggressive geometric simplification
without sacrificing visual realism. Topology simplifications of sub-pixel holes may
also help reduce aliasing artifacts, effectively removing details that will be undersam-
pled.

2.3.4 When Is Topology Simplification Unacceptable?

There are several applications when simplification of the topology is undesirable and
leads to unacceptable changes in the structure of the object. For example, topological
structures are often of great interest in the study of protein structure and function.
For instance, ion-transport channels are highly susceptible to small changes in side
chains that border such channels. An example of Gramicidin A, a peptide antibiotic,
is shown in Figure 2.19 with a channel. This channel is important for the transport
of ions and water molecules across lipid membranes [Edelsbrunner 00]. The figure

Team LRN

38 Chapter 2 Mesh Simplification

(a) (b)

Figure 2.19 Gramicidin A’s channel accessibility for (a) probe radius < 1.38 Å, and (b) probe
radius > 1.38 Å.

shows the accessibility for molecules or ions with radii less than 1.38 Å on the left
and greater than 1.38 Å on the right. Topological simplifications for such mesh data
sets will obviously lead to the loss of important structural information, such as the
channel, and should not be attempted.

Analysis of mechanical CAD models provides another example where unre-
stricted topological simplification may be undesirable. Finite element analysis to
determine the strength or stress at different parts of a mechanical part might re-
quire continued presence of certain topological structures such as holes and voids.
Topological simplification of such structures may sometimes drastically alter the re-
sults of such simulations and should therefore be avoided. Study of tolerances in
mechanical CAD also requires that the topology of the models not be simplified.
Similarly, in medical imaging the data collected from computer-aided tomography
(CT) or magnetic resonance imaging (MRI) scans often have important topological
structures that are better left in the data, rather than simplified away. In applications
such as these, it is important for an application domain expert to guide the process
of topological simplification.

2.4 Simplification Frameworks

Having described local and global simplification operators, we now turn to the high-
level algorithmic framework in which these operators are applied. A typical goal of
simplification is to create a hierarchy of meshes with varying numbers of polygons.
Most hierarchy-building algorithms can be classified as top-down or bottom-up. To
use tree terminology, top-down approaches start from the root of the hierarchy and
work toward the leaves. For polygon simplification, this top-down scheme starts from

Team LRN

2.4 Simplification Frameworks 39

1 for each level of hierarchy
2 for each possible independent operation op

3 ApplyOp(op)

Figure 2.20 The nonoptimizing queuing algorithm for ordering mesh operations.

a simplified version of the mesh and then progressively adds more detail to it by
following some refinement rules. Methods such as subdivision surfaces [Catmull 74]
and wavelets for meshes [Eck 95] follow this approach. This approach has also been
used for simplifying terrains [Fowler 79], and occasionally for more general polygon
meshes [Brodsky 00].

Bottom-up approaches start from the leaves of the hierarchy and work upward
toward the root. The bottom-up polygon simplification schemes start from a high-
detail version of the model and repeatedly apply the simplification operators de-
scribed in Section 2.3 to generate a sequence of successive simplifications of the mesh.
Most of the algorithms described in this book follow this approach, so it is useful to
consider it in more detail.

We can classify a simplification algorithm according to the simplification error
metric, the simplification operator, and the simplification process that it uses. The
typical simplification algorithm uses a nested optimization process: an outer opti-
mization makes a sequence of discrete choices for which operations to perform and
in what order, and an inner optimization makes choices in processing the operator,
such as which way to fill the hole during a vertex removal or where to place the new
vertex during an edge collapse.

In this section we ignore the question of how to measure error and focus on how
to choose which simplification operations to perform and in what order to perform
them. Most geometry simplification algorithms use just a single simplification oper-
ator, so we are left only with the choice of ordering. However, we will see that some
algorithms alternate geometry and topology simplification, thus introducing a choice
of simplification operator as well. We will first discuss a few of the high-level queu-
ing algorithms for choosing the ordering of the simplification operations and then
discuss the choice of simplification operators (as in the case of interleaving geometry
and topology simplifications).

2.4.1 Nonoptimizing

The simplest algorithm essentially applies all possible simplification operations in an
arbitrary order (Figure 2.20). This is often appropriate for a cell-clustering approach,
in which any operation may be performed completely independently of any other
operation, and all operations produce roughly the same geometric error bound for

Team LRN

40 Chapter 2 Mesh Simplification

1 for each possible operation op

2 ComputeCost(op)
3 Q->insert(op)
4 while Q not empty
5 op = Q->extractMin()
6 ApplyOp(op)
7 for each neighbor operation i

8 ComputeCost(i)
9 Q->changeKey(i)

Figure 2.21 The greedy queuing algorithm for ordering mesh operations.

the simplified mesh. In the case of multilevel clustering approaches, all the clustering
operations from the finest level are performed before all the operations of the next
coarser level, and so on. Note that this algorithm is nonoptimizing in the sense that
it does not concern itself with the outer optimization problem described previously.
It is still possible for some optimization to take place during the actual application of
the selected operation (i.e., the inner optimization).

2.4.2 Greedy

The greedy queuing algorithm solves the outer optimization problem according to
some cost function, usually a measure or bound on the error ε for the simplified
mesh after a proposed operation is performed. The pseudocode shown in Figure 2.21
illustrates this approach, evaluating potential mesh operations using ComputeCost and
placing them on the priority queue Q in lines 1 to 3. The minimum cost operation is
removed from the queue and applied to the current mesh in lines 5 to 6. Applying this
mesh operation may affect the cost of other operations in the neighboring mesh, so
we update the cost of neighboring operations in lines 7 to 9. Note that the changeKey
function may require some sharing of data pointers between the queue and the
operation, allowing the priority queue to efficiently find, remove, and reinsert an
element that is not the one with minimum cost.

In a typical implementation, ComputeCost and ApplyOp will share a great deal of
code, and this shared code amounts to most of the time spent by the simplification
process. Thus, reducing the number of calls to ComputeCost will dramatically impact
the running time of the simplification algorithm. One way to reduce the number of
calls is to choose operations with fewer neighbors. For example, vertex removal and
half-edge collapse operations affect fewer triangles than the edge collapse, and thus

Team LRN

2.4 Simplification Frameworks 41

1 for each possible operation op

2 ComputeCost(op)
3 op->dirty = false
4 Q->insert(op)
5 while Q not empty
6 op = Q->extractMin()
7 if (op->dirty == false)
8 ApplyOp(op)
9 for each neighbor operation i

10 i->dirty = true
11 else
12 ComputeCost(op)
13 op->dirty = false
14 Q->insert(op)

Figure 2.22 The lazy queuing algorithm for ordering mesh operations.

they change the costs of fewer neighboring operations. However, many people still
prefer the edge collapse for its other desirable properties (discussed in Section 2.2).

2.4.3 Lazy

The lazy queuing algorithm, introduced by [Cohen 97], attempts to reduce the num-
ber of calls to ComputeCost as compared to the greedy algorithm, without increasing
the error of the resulting meshes too much. It is based on the observation that in the
greedy algorithm, many operations will have their cost updated multiple times before
they are ever actually applied to the mesh. Thus, many of these cost updates may be a
waste of time. To remedy this (Figure 2.22), we avoid recalculating the cost of neigh-
boring operations, instead setting a dirty flag (in line 10) for neighboring operations
when we apply an operation. The dirty flag indicates that the cost value used to prior-
itize this operation is no longer accurate (but is hopefully not too far off). When we
extract the minimum cost operation from the priority queue, we check its dirty flag.
If the dirty flag is false, we know this operation has the lowest cost currently known,
and we go ahead and apply the operation. Otherwise, we clean the operation by com-
puting its actual cost and reinserting it into the queue. Notice that this process ensures
that any operation with a lower actual cost must be currently dirty. This means that
such a lower-cost operation had its cost reduced when one of its neighbors was ap-
plied. Thus, these cost reductions are the only opportunities we miss by performing
the cost reevaluations in a lazy fashion.

Team LRN

42 Chapter 2 Mesh Simplification

1

0.1

0.01

0.001

0.0001
10 100 1000 10000 100000

Number of triangles

Er
ro

r
(a

s
p

er
ce

nt
 o

f b
ou

nd
in

g
bo

x
di

ag
on

al
)

Greedy
Lazy

Independent

Figure 2.23 Plotting number of triangles versus error for the bunny model using the greedy, lazy,
and independent frameworks, measured with the error metric of [Cohen 97].

The number of cost evaluations performed per applied operation depends in
part on how accurate the costs of the dirty operations remain as the simplification
progresses. If a dirty operation has an inaccurate cost, it will not re-emerge near the
head of the queue when it is cleaned, resulting in more cost computations before we
find a clean operation at the head of the queue. In Figure 2.23, we see that the lazy
queuing algorithm is almost identical to the greedy algorithm for the bunny model.
However, the average number of cost evaluations per applied edge collapse is reduced
from 39.4 to 12.5 [Cohen 98b], resulting in a significant speedup.

2.4.4 Estimating

Another method for reducing the number of cost computations performed simply
replaces these computations with a faster-to-compute estimate. For example, in Fig-
ure 2.24, the priority ordering of the operations is determined entirely by estimated
costs, whereas the accurate cost computation is performed only once per operation
(inside ApplyOp). This method will work well if the ordering generated by the esti-
mated costs is similar to the ordering that would be generated by the accurate costs.
[Guéziec 99a] employs this approach to speed up the simplification, using an appro-

Team LRN

2.4 Simplification Frameworks 43

1 for each possible operation op

2 EstimateCost(op)
3 Q->insert(op)
4 while Q not empty
5 op = Q->extractMin()
6 ApplyOp(op) // also computes and stores actual cost

7 for each neighbor operation i

8 EstimateCost(i)
9 Q->changeKey(i)

Figure 2.24 The estimating queuing algorithm for ordering mesh operations.

priately weighted edge length as the estimated cost. It may also be possible to use cost
estimation as part of a lazy queuing algorithm, so that each possible operation has
three possible states instead of two—dirty, estimated, or computed.

2.4.5 Independent

The independent queuing algorithm (see Figure 2.25), introduced by DeFloriani et al.
[DeFloriani 97] and Xia et al. [Xia 97], targets view-dependent LODs in which the
goal is to build a vertex hierarchy (described in detail in Chapter 4) of simplification
operations. The independent algorithm performs operations one level of the hierar-
chy at a time. It performs a maximum set of independent operations, or operations
whose mutual neighborhoods do not overlap, chosen in order of the cost function.
Each pass defined by the outer loop of line 3 creates one level of the simplification hi-
erarchy. Within a pass, only operations affecting independent mesh neighborhoods
are applied, with the remaining operations placed on a list, L, for processing in a fu-
ture pass. The major benefit of this approach over the greedy algorithm (as well as the
lazy and estimating variants) is that it produces hierarchies with logarithmic height.
Thus, the hierarchy can always be traversed depth first, from root to leaf, in logarith-
mic time. For example, the hierarchy built for the bunny model using the greedy or
lazy algorithm has roughly 100 levels, whereas the hierarchy built using the indepen-
dent algorithm has roughly 50 levels. However, because the independence criterion
causes some higher-cost operations to be performed before lower-cost alternatives, it
often produces output meshes with more triangles for a given error bound, as seen in
Figure 2.23.

Team LRN

44 Chapter 2 Mesh Simplification

1 for each possible operation op
2 L->insert(op)
3 while L not empty
4 while L not empty
5 op = L->removeNext()
6 ComputeCost(op)
7 op->independent = true
8 Q->insert(op)
9 while Q not empty
10 op = Q->extractMin()
11 if (op->independent == true)
12 ApplyOp(op)
13 for each neighbor operation i
14 op->independent = false
15 else
16 L->insert(op)

Figure 2.25 The independent queuing algorithm for ordering mesh operations.

2.4.6 Interleaved Simplification Operators

Simplification of the geometry and topology are sometimes viewed as two distinct
stages in the simplification pipeline. In such a setting, geometry simplification alter-
nates with topology simplification. This is motivated by the observation that each
simplification stage allows the mesh to be simplified more aggressively than if only
one kind of simplification had been applied. In particular, topology simplifications
by small amounts can often enable large overall simplifications (e.g., by closing the
small holes of the brake rotor in Figure 2.18).

An example of such alternating topology and geometry simplifications appears
in Figure 2.26, based on work in El-Sana and Varshney [El-Sana 98]. Here the object
complexity is reduced as follows: (a) original object had 756 triangles; (b and c)
genus reduction removed the two holes on the side and followed this by geometry
simplification; (d and e) a second-level, genus-preserving simplification removed a
hole at the top and was followed by a geometry reduction; (f) to yield a final object
with 298 triangles.

Clearly, such interleaved ordering of different mesh simplification operators can
become fairly complicated, since one could conceivably use any of the previous
schemes (nonoptimizing, greedy, lazy, estimating, and independent) or any com-
bination of them to choose the order of the different simplification operators. The
simplest is the nonoptimizing approach for both simplification operators ApplyOp1()
and ApplyOp2(), shown in Figure 2.27.

Team LRN

2.4 Simplification Frameworks 45

756 triangles
(a) (b) (c)

(d) (e)
298 triangles

(f)

Figure 2.26 (a–f) Alternating topology and geometry simplifications [El-Sana 98]. Copyright ©
1998 IEEE.

1 for each level of hierarchy
2 for each possible independent operation op

3 ApplyOp1(op)
4 for each possible independent operation op

5 ApplyOp2(op)

Figure 2.27 The nonoptimizing queuing algorithm for ordering multiple mesh-simplification
operators.

Team LRN

46 Chapter 2 Mesh Simplification

2.5 Conclusions

We can characterize a mesh simplification according to the optimization algorithm,
simplification operator, and error metric that it uses. In this chapter we have exam-
ined two of these elements in detail: the various simplification operators, both local
and global, and the various simplification optimization processes. The choice of the
simplification process and simplification operator largely depend on the constraints
imposed by the target application, ease of coding, and the nature of the input data
sets. In Chapter 3, we turn to the major remaining ingredient of a simplification
algorithm—the simplification error metric.

Team LRN

1 2 3 4 5 6 7 8 9 10
Simplification
Error Metrics

We have studied mechanisms for and approaches to mesh simplification, but
so far we have glossed over a crucial component—the measurement of the

output quality. The way we measure error both during and after the simplifica-
tion process can have a dramatic impact on the visual appeal and usefulness of our
simplified models. However, it is often this component that baffles the reader of a
conference or journal article on polygon simplification. For some algorithms, error
measurement may involve complex geometrical constructs, and error minimization
may rely on solving nontrivial algebraic problems. In this chapter, we will examine
some of the key elements of measuring simplification quality at a high level, looking
to several of the published algorithms to see the range of possible approaches to the
problem.

47

Team LRN

48 Chapter 3 Simplification Error Metrics

3.1 Why Measure Error?

Before we move on to the how of simplification error metrics, let us first consider
the why. In the domain of manually created levels of detail, the only error metric
is the judgment of a human modeler. The modeler decides how to create a simple
version of a detailed model and may also decide how small it must be on the screen
before it looks good. In some respects, this is an excellent error metric, because it
uses the human visual system and human intuition to make intelligent decisions. In
other respects, however, this human error metric falls short—it is labor intensive and
thus not appropriate for any LOD system more complex than the use of a few discrete
levels of detail. We will next discuss several important reasons for the development of
automatic, quantitative measures of simplification error for the domain of automatic
simplification.

3.1.1 Guide and Improve the Simplification Process

Just as a human modeler uses visual criteria to decide the best way to create a sim-
pler version of a model, so does our simplification algorithm need to make decisions
about the best way to simplify a model. As we have seen in Section 2.3, many simpli-
fication algorithms look like a nested optimization problem. The outer optimization
is often a greedy process that chooses the best available simplification operation to
perform next. The inner optimization seeks to make each simplification operation
work as well as possible. A consistent, quantitative error metric is useful for both of
these optimization problems.

In the outer optimization problem, we are given a large number of possible
simplification operations to choose from, and we wish to choose the “best” of these
operations to apply to the current model. For many algorithms, this best operation is
defined with respect to a simplification error metric. The better the simplification
error metric, and the tighter our bounds are on this error, the better the choices
we will make throughout the simplification process. Although this greedy process
does not guarantee optimal results, experience has shown that better greedy choices
improve the output quality of the simplification.

Optimizing an appropriate error metric in the inner optimization problem im-
proves the quality of the choices available to the outer optimization problem. Thus,
the use of a good error metric here also improves the final quality of the simplification
output.

3.1.2 Know the Quality of the Results

Polygonal levels of detail have a number of uses besides rendering acceleration. For
instance, they may speed up computations, such as in collision detection and finite
element analysis. In each of these cases, it is important to know the accuracy of

Team LRN

3.1 Why Measure Error? 49

the simplified models. In addition, polygon simplification can be used as a form of
lossy compression. In this scenario, the user expresses the desired compression as an
error tolerance, the system simplifies the model until it reaches the specified error
tolerance, and the user discards the original model in favor of the simplified model.

Sometimes we will want to apply an error metric to evaluate the quality of the
results after simplification is complete, separately from the simpler metric or heuristic
used to guide the simplification process. For example, if the goal is to produce a small
set of discrete LODs, it may prove practical to use a tool such as Metro [Cignoni 98b]
to measure the true simplification error after the fact (we return to Metro in Section
3.3.3). Similarly, if the goal is to produce a single level of detail with a given number of
polygons (e.g., for lossy compression), this approach may work well. However, when
generating a large number of levels of detail (as in the case of a hierarchy for view-
dependent adaptation), it may prove more sensible to measure the error during the
actual simplification process.

3.1.3 Know When to Show a Particular LOD

One of the primary ways to use LOD for multiresolution rendering is to reduce the
resolution of all the models in an environment to a specified quality level. More for-
mally stated, we are given a screen-space error tolerance, and we wish to choose levels
of detail to minimize the number of polygons while respecting the specified error tol-
erance. To accomplish this, we need to know the screen-space error of a particular
level of detail when viewed from a given viewpoint. By knowing the error of every
level of detail we create, computing the screen-space error from a given viewpoint
and choosing the level of detail to render are straightforward. This approach applies
not only to discrete per-object LODs, but also to dynamic view-dependent level of
detail of an object or environment.

3.1.4 Balance Quality across a Large Environment

The other common way to use LOD is to reduce the quality across an entire rendered
environment by just enough to achieve a desired polygon count or frame rate. In this
case, we are given the desired polygon count, and we wish to choose the levels of
detail to minimize the error while respecting the specified polygon budget. As we will
see in Chapter 4, this problem amounts to solving a type of knapsack optimization
problem [Funkhouser 93b]. As in the fidelity-driven LOD selection scheme, this
budget-driven LOD selection scheme applies in both the contexts of discrete and
continuous levels of detail. The better the screen-space error metric we have to work
with, and the more closely it corresponds to perception of fidelity by the human
visual system, the better the visual quality our system will produce for a given polygon
budget.

Team LRN

50 Chapter 3 Simplification Error Metrics

3.2 Key Elements

Several key conceptual elements are common to the error metrics for a number of
simplification algorithms. Most simplification error metrics incorporate some form
of object-space geometric error measure, which is often stored and converted to a
screen-space distance by the run-time multiresolution display algorithm. In addition,
many modern simplification algorithms also incorporate some measure of attribute
errors, including color, normal, and texture coordinate attributes. These geometric
and attribute errors may be combined in a number of ways during the simplification
process and later in the run-time rendering system. We next discuss these conceptual
elements in preparation for discussion of several error metrics from actual simplifi-
cation systems in Section 3.3.

3.2.1 Geometric Error

The polygonal surfaces we see in computer graphics are embedded in a 3D object
space, and their vertices are specified by 3D coordinates. Simplifying a polygonal
surface reduces the number of vertices, changing the shape of the surface as a result.
Measuring and minimizing a 3D geometric error as we perform the simplification
allows us to preserve the original shape as best we can. If we consider this shape
preservation in the screen space, it helps the object cover the correct pixels on the
screen and maintain an accurate silhouette.

Euclidean geometry defines a measure of the distance between two points. For
two points p1 = (x1, y1, z1) and p2 = (x2, y2, z2), the distance d between them is

d =
√

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2

However, finding the distance between two surfaces is more involved. We can think
of each surface as an infinite set of infinitesimal points. Then conceptually, finding
the distance between the two surfaces involves matching up pairs of points, com-
puting their distances, and tabulating all the results. In practice, we may exploit the
polygonal nature of our surfaces to allow us to use small, finite sets of points, or we
can compute conservative bounds or estimates on these distances rather than taking
many pointwise measurements.

Hausdorff Distance

The Hausdorff distance is a well-known concept from topology, used in image pro-
cessing, surface modeling, and a variety of other application areas. The Hausdorff
distance is defined on point sets, but because a surface may be described as a form of
a continuous point set, it applies to surfaces as well. Given two point sets, A and B,

Team LRN

3.2 Key Elements 51

A

B

w
v

Figure 3.1 The Hausdorff distance between two surfaces. The one-sided Hausdorff distances are
h(A, B) = ‖v‖ and h(B, A) = ‖w‖. The two-sided Hausdorff distance is H(A, B) =
max(‖v‖, ‖w‖) = ‖v‖.

the Hausdorff distance is the max of min distances between points in the two sets.
In other words, for every point in set A, we find the closest point in set B, and vice
versa. We compute the distance between all these closest point pairs, and take the
maximum. We can express this algebraically as follows:

H(A, B) = max(h(A, B), h(B, A))

where

h(A, B) = max
a∈A

min
b∈B

‖a − b‖

h(A, B) finds for each point in A the closest point in B and takes the maximum. This
function, called the one-sided Hausdorff distance, is not symmetric. Every point in
A has been paired with a single point in B, but there may be unpaired (and multiply
paired) points in B. Thus, h(A, B) �= h(B, A). The Hausdorff distance (or two-sided
Hausdorff distance), however, is constructed to be symmetric by considering both of
the one-sided Hausdorff distances and reporting the maximum. This is illustrated in
Figure 3.1.

Mapping Distance

The Hausdorff distance is, by construction, the tightest possible bound on the max-
imum distance between two surfaces. However, for the purpose of polygon simplifi-
cation, it has a number of shortcomings. It does not provide a single set of pointwise
correspondences between the surfaces, but rather relies on two potentially conflict-
ing sets of correspondences. In addition, each of these sets of correspondences may

Team LRN

52 Chapter 3 Simplification Error Metrics

have discontinuities, regions of the point sets with no correspondences, and regions
of the point sets that have multiple correspondences. These limitations of the Haus-
dorff distance mapping make it difficult to carry attribute values from the original
surface to the simplified surfaces in a continuous fashion.

As an alternative to the Hausdorff distance, we consider a continuous, one-to-
one, and onto mapping (called a bijection) between the two surfaces, and measure
the distance with respect to this mapping.

Given such a continuous mapping

F : A → B

we define this mapping distance as

D(F) = max
a∈A

‖a − F(a)‖

So D is the distance between corresponding points in A and B, where the correspon-
dence is established by the mapping function F. If this mapping is accomplished via
correspondences in a 2D parametric domain, such as a texture map, we call this map-
ping distance a parametric distance. Such a correspondence is illustrated in Figure 3.2.
In this case, we might express the distance as

D(F) = max
x∈P

‖F−1
i−1(x) − F−1

i (x)‖

Here x is a point in the 2D parametric domain and each of the F−1 functions maps this
2D point onto a 3D mesh, either before or after a particular simplification operation.

Because there are many such mappings, there are many possible mapping dis-
tances. Conceptually, the theoretically minimum possible mapping distance is simply

Dmin = min
F∈M

D(F)

where M is the set of all such continuous mapping functions. Note that although
Dmin and its associated mapping function may be impossible to explicitly compute,
any continuous mapping function F provides an upper bound on Dmin as well as on
the Hausdorff distance. If our simplification goal is to provide a guaranteed bound on
the maximum error, any such function will accomplish this. However, if the bound is
very loose, we might use many more polygons than necessary to provide a specified
quality. Similarly, if our goal is to optimize the quality for a fixed polygon budget, we
would like the bound to be as tight as possible to ensure the best real quality in our
rendered scene.

Team LRN

3.2 Key Elements 53

Xi–1

Mi–1

X

Xi

Mi

Fi
–1Fi–1

ith edge collapse

P 2D parametric domain
(”texture space”)

3D object space

Figure 3.2 Correspondences established in a 2D parametric domain. The points Xi and Xi−1
correspond to the same point, x, in the parametric domain [Cohen 98a].

Maximum versus Average Error

Both the Hausdorff distance and the general mapping distance compute the final
distance between two surfaces as the maximum of all the pointwise distances. This
is a valid choice, but there are other reasonable choices as well. Rather than taking
the maximum of the pointwise distances (known as the L∞ norm), we could take
the average (the L1 norm), the root mean square (the L2 norm), or some other
combination.

The advantage of the maximum error is that it provides what is often referred to
as a guaranteed error bound (this term has been somewhat overloaded, so the meaning
should be considered carefully for a particular usage). For some applications such as
medical and scientific visualization applications, knowing that the error is never more
than some specified tolerance may be desirable.

The average error, on the other hand, can be an indication of the error across
the entire surface as opposed to a few particularly bad locations. Anecdotal evidence
indicates that the maximum error may be 10 times larger than the average error for
many models [Erikson 00]. Thus, a system that focuses entirely on minimizing the
maximum error may ignore large increases in the average error. Similarly, heuristics
that have been shown to do well in terms of minimizing average error may exhibit
erratic behavior when gauged according to their maximum error. Ideally, a system

Team LRN

54 Chapter 3 Simplification Error Metrics

should show some compromise between the two, bounding the maximum error
without allowing the average error to grow in uncontrolled fashion. Such systems are
currently rare in practice.

Screen-Space Error

All of the geometric error measures we have described thus far measure surface de-
viation in a 3D object space. However, when we render the surface using perspective
projection, our run-time level of detail manager can make better use of a screen-space
error bound. Given a set of viewing parameters (viewpoint, field of view, etc.) and an
LOD created with a bound ε on the 3D surface deviation of the simplified model from
the original, we can compute a bound on the screen space deviation p measured in
pixel units. Figure 3.3 depicts a particular view of an LOD within a rendering appli-
cation. In this figure, θ is the total field of view, d is distance in the viewing direction
from the eye point to the level of detail (or its bounding volume), and x is the res-
olution of the screen in pixels. We denote by w the width of the viewing frustum at
distance d. For the LOD enclosed by the bounding sphere, c is the center and r is the
radius. Notice that we place an error vector of length ε just in front of the level of
detail and orthogonal to the viewing vector. This will enable us to compute a conve-
nient approximation to the projected size of the error in pixels. It is correct when the
level of detail is at the center of the screen, but it underestimates the size as the object
gets farther off center. (A more accurate computation would orient the error vector
orthogonal to the vector from the eye to the level of detail rather than orthogonal to
the primary view vector.) The level of detail may actually be an entire object (in the
case of a discrete level of detail system) or just a small portion of a surface (in the case
of a continuous level of detail system).

We see from the diagram, using the properties of similar triangles, that

ε

w
= p

x

which we then solve for p:

p = εx

w
= εx

2d tan θ
2

(3.1)

Given this formulation, it is easy to compute this bound p on the screen-space devi-
ation for a given level of detail at a given viewing distance. We compute d as

d = (c − eye) · v − r

where v is the unit view vector. We then need just one more multiplication and one
division to compute p from the other known constants using Equation 3.1.

Team LRN

3.2 Key Elements 55

Eye

Viewing
plane

LOD
c

r
w

d

x

p

�

�

Figure 3.3 Converting object-space geometric error ε to screen-space geometric error p mea-
sured in pixels of deviation [Cohen 98a] [Cohen 98b].

In a discrete level of detail system, we may want to quickly choose the appropri-
ate level of detail from a sequence of possibilities so that we render the minimum
the number of triangles while meeting a tolerance bound, t ≥ p, on the maximum
allowable screen-space error. Solving Equation 3.1 for ε yields:

ε = p
2d tan θ

2

x
≤ t

2d tan θ
2

x

Now, rather than converting ε for a particular LOD from object space to screen
space and comparing to the tolerance, we are essentially converting the tolerance
from screen space to object space and comparing to the ε for each candidate LOD
(notice that we have eliminated the division in this case). The application chooses
to render the LOD whose ε is as large as possible, while still small enough to satisfy
the inequality; this is the LOD with the smallest number of triangles for the error
tolerance.

3.2.2 Attribute Error

Many of today’s interesting polygonal models comprise not only geometric coordi-
nates but other attributes as well. Colors, normals, and texture coordinates are the
most common attributes; they may be specified on faces, vertices, or corners. A cor-
ner attribute is one that is specified at a particular (face, vertex) pair. This allows
vertices to have multiple attribute values, describing attribute discontinuities across

Team LRN

56 Chapter 3 Simplification Error Metrics

adjacent faces when desired. For example, an object with a sharp crease may represent
the vertices along the crease as having two normals.

Simplification algorithms vary widely in their support for these attribute fields.
Some algorithms, especially the earlier ones, offer no support for attributes. The
inputs to these algorithms are purely geometric models. If desired, we can compute
face normals for the simplified models using cross products of the triangle edges and
compute a weighted average of these face normals to compute vertex normals. This
allows for flat or smooth shading of the simplification output.

Other algorithms support attributes to the extent that they “carry” them through
the simplification process. For algorithms whose simplified vertices are a subset of the
input vertices—for example, algorithms using the vertex removal or half-edge col-
lapse operators—this amounts to just retaining the attribute values of the input ver-
tices. For algorithms that produce new vertices—for example, those algorithms using
the full-edge collapse operator—this generally entails interpolating the attribute at
the new vertex from the attributes of the vertices that contribute to it.

Another option is to carry the attribute value but also to measure the attribute
error incurred by the simplification operation. One approach is to use the same cor-
respondences method from the geometry error measurement to determine which
attribute values to compare. This error measurement can then be used in the compu-
tation of an operation’s priority for the purpose of guiding the choice of operations.
In this case, we are leaving the minimization of attribute error up to the outer opti-
mization loop that chooses the operations in a greedy fashion.

Finally, an algorithm can both measure and optimize the attribute error. This
allows us to actually reduce the attribute error for a given simplification operation
as part of the inner optimization by carefully choosing the attribute values for the
newly created vertices.

We will next briefly consider the issues that arise with measuring and optimizing
error for color, normal, and texture coordinate attributes.

Colors

The colors of a polygonal model are typically stored as (r, g , b) triples with each value
in the range [0, 1]. The most straightforward way to measure color error is to treat
the RGB space (in which red, green, and blue form the orthogonal basis vectors of
the coordinate system) as a Euclidean space and compute the RGB distance between
corresponding points as

dcolor =
√

(r1 − r2)
2 + (g1 − g2)

2 + (b1 − b2)
2

In optimizing the color error, we can actually think of the r, g, and b values over the
mesh as three separate scalar fields and optimize each scalar value separately.

Team LRN

3.2 Key Elements 57

Position

C
ol

or
 v

al
ue

Original vertices
Optimal simplified vertex
Clamped simplified vertex

0

1

Figure 3.4 The optimized color value of a simplified vertex may lie outside the valid color range.
Clamping the value to [0,1] keeps it in range (and increases the color error).

A frequently ignored problem with this approach is that this RGB space is percep-
tually nonlinear. Thus, equal-sized distances in different portions of the RGB color
cube appear to the human visual system as different distances. It is possible, however,
to evaluate the error in a more perceptually linear space, such as the CIE-L*u*v* space
[Rigiroli 01].

A harder-to-ignore problem results from the optimization of this color distance.
When choosing the color value for a new vertex to minimize the overall color error,
the resulting color value may very well lie outside the [0,1] range of valid color values.
Such a situation is illustrated in Figure 3.4. The hollow vertex indicates the optimal
color value to minimize the maximum color error, but it is unfortunately greater than
1. A reasonable solution to this problem is to clamp the value to the [0,1] range, as
indicated by the solid gray vertex.

Normals

The natural space for normal vectors is on the Gaussian sphere—a unit radius sphere
centered at the origin, on which each point represents a normal vector [Carmo 76].
The proper measure for distance between two normal vectors is an angular distance,

d = arccos
((

n1x
, n1y

, n1z

)
·
(

n2x
, n2y

, n2z

))

Some algorithms optimize normals at a gross level by preventing foldovers (see Figure
2.3). Such a foldover may be detected by comparing the normal of a triangle before

Team LRN

58 Chapter 3 Simplification Error Metrics

Figure 3.5 Four normal vectors and their associated points on the Gaussian sphere. The thick
dashed lines indicate Euclidean-space interpolation of normal vectors.

a simplification operation to the normal of a corresponding triangle after the opera-
tion. If the angle is more than some threshold, the operation may be disallowed.

Algorithms may also minimize the normal error by choosing the best normal
vector at newly created vertices. Because optimization in the true normal space of
the Gaussian sphere is difficult, a common approach is to optimize the normals
as if they live in a standard Euclidean space. Thus, we can consider the normal
vectors as standard 3D points. If necessary, interpolated normals across a triangle
may be interpreted using a Euclidean linear interpolation, as indicated by the thick
dashed lines in Figure 3.5. Optimizing normals in a Euclidean normal space generally
requires us to renormalize the resulting normal, which projects it back onto the
Gaussian sphere.

Texture Coordinates

Texture coordinates for polygonal surfaces are represented as (u, v) coordinate pairs
that define a mapping of vertices to points in a 2D texture space. As with the color
space, this texture space generally uses values in the range [0,1], so the same issues

Team LRN

3.2 Key Elements 59

(a)

(c) (d) (e)

(b)

Figure 3.6 Edge collapse viewed in the 2D texture space. (a) Bold edge and vertices to be col-
lapsed. (b) Collapsing to the edge midpoint causes folding in the texture space.
(c) The gray kernel of the polygon defines the safe region for placing the texture
coordinates of the new vertex. (d) Valid edge collapse in the texture space. (e) Edge
with an empty kernel. The edge cannot be collapsed without causing a texture fold.

with optimized values going out of range apply, and clamping remains a viable solu-
tion (see Colors section, above).

However, unlike the color space, the u and v values should not be considered as
totally independent. The difference here is that the texture coordinates are intended
to describe a bijection (one-to-one and onto mapping) between the polygonal surface
and the texture space. The simplification process should take care to avoid creating
folds in the texture space, causing the same texture space location to map to mul-
tiple locations on the surface. (This will appear as an odd local texture warping on
the rendered surface.) As seen in Figure 3.6, we can avoid such folds during an edge
collapse operations by placing the new texture coordinate within the edge neighbor-
hood’s kernel, defined by the intersection of its boundary edge half spaces. Note that
for some edges, the kernel is empty, meaning that any choice of texture coordinates
for the new vertex will cause a fold (this also applies to other simplification operations
that would remove either of the edge’s vertices, such as a vertex removal or half-edge
collapse). In such cases, the simplification algorithm should disallow or penalize the
operation.

Team LRN

60 Chapter 3 Simplification Error Metrics

3.2.3 Combining Errors

As we have seen, a simplification algorithm can measure the geometry error plus a
host of other attribute errors during the process of evaluating a potential simplifi-
cation operation. For priority-based simplification algorithms, such as the optimiza-
tion schemes presented in Section 2.4, we need to compute a single number to be used
as the priority key for a given operation. In general, we compute some combination
of the individual error terms to arrive at a single error value. For example, we can
take a weighted linear combination of the error terms, with the weights chosen em-
pirically [Hoppe 96]. It is also possible to weight the terms according to other factors,
such as whether the operation causes topological changes or affects discontinuities
of the original model. Currently, little consensus exists on the most meaningful way
to combine an arbitrary set of error terms. Although the terms are combined for the
purpose of prioritization of simplification operations, it is possible to also track the
individual errors through the entire process to make them available to the rendering
system as part of the simplification output.

3.2.4 Incremental and Total Error

Most simplification algorithms involve iteratively simplifying the surface, so the tri-
angles we simplify with a particular operation may themselves be the result of some
previous simplification operations. With this in mind, it is important to consider
whether we are measuring and optimizing the incremental error or the total error.
The incremental error is the error between triangles being simplified by an operation
and those that result from the operation. The total error, on the other hand, is the
error between the triangles of the original surface and the triangles resulting from an
operation.

In many cases, the incremental error is more efficient to measure and optimize.
However, the total error is the more useful measure as part of the simplification out-
put. It may be used for operation prioritization as well as for determining switching
distances at rendering time. Interestingly, Lindstrom and Turk have demonstrated
that using only the incremental error for the prioritization can still produce measur-
ably good simplifications [Lindstrom 99]. This can be very useful if we never need to
know the total error, or if we only need to know it for a few discrete levels of detail (as
opposed to requiring it for every simplification operation for use in a dynamic LOD
system).

The direct approach to computing total error measures it directly from the orig-
inal surface. If this is required for each simplification operation, then the simplifica-
tion operations become increasingly time consuming as the surface becomes more
and more simplified. This occurs because increasingly coarse triangles correspond to
more and more of the original triangles, so a direct error computation takes longer
for coarser triangles.

Team LRN

3.3 Range of Approaches 61

An alternative approach computes bounds on the total error instead. For exam-
ple, we can store a spatial data structure, such as a sphere, box, or other simple 3D
volume, with the simplified mesh elements. Here, the simple volume indicates the
size and locality of the total error thus far. We then accumulate the new incremental
error with the previous total error by growing the volume to contain the new incre-
mental error. We compose two volumes by computing the position and size of a new
volume that contains all the various component volumes (a type of 3D analog of in-
terval arithmetic). The error bounds produced by this type of approach may be less
tight than those produced by direct measurement, but at least the measurement will
not slow down as simplification proceeds.

3.3 Range of Approaches

Having considered many of the issues surrounding simplification error metrics, we
now examine a number of simplification algorithms from the literature. There are
so many published algorithms that we can only discuss a small proportion of them;
those we present were chosen to encompass a broad range of approaches to the
measurement and optimization of simplification error.

Our emphasis in this discussion is not on providing a detailed description of
the various algorithms, but on understanding their error metrics and how these
metrics are applied. We will revisit some of these approaches in Chapter 5. For each
algorithm, we wish to consider issues such as what type of error is measured, how
tight a bound it computes on this error, how easy the metric is implement, and to
what class of models it applies. We therefore organize the algorithms according to
which geometric elements they use to construct the correspondences for measuring
error. The categories we discuss are vertex–vertex, vertex–plane, vertex–surface, and
surface-surface approaches. Finally, we discuss the use of image-space metrics as
opposed to object- and attribute-space metrics.

3.3.1 Vertex–Vertex Distance

The simplest approach to measuring the error of a simplified model is to measure
the distances between the original vertices and simplified vertices. How we choose
the vertex–vertex correspondences and the specific simplification operators involved
determine the accuracy of results. Take, for example, the four vertices shown in Figure
3.7. Starting with the two triangles ABC and ACD, we swap the diagonal edge to get
the triangles ABD and BCD. Although we have not changed the vertices, the surface
has changed, perhaps dramatically. If we measure the Hausdorff distance between
the vertices only, we get a distance of 0, but the distance at the interior points of the
surface is much greater.

Team LRN

62 Chapter 3 Simplification Error Metrics

A

B

D

C

A

B

D

C

Figure 3.7 Measuring vertex–vertex error may not capture the error between surfaces. Here the
four vertices remain unchanged, as do the four boundary edges of this surface patch,
but the surfaces have some unmeasured geometric deviation between them.

Having said that, there are circumstances where we can consider only the dis-
tances between vertices and still compute a useful bound on the distance between
surfaces. In particular, during vertex merging operations (edge collapse, cell collapse,
etc.) we can find an appropriate mapping between vertices to achieve a conservative
distance bound.

Uniform Grid-Based Vertex Clustering

The grid-based vertex clustering algorithm of Rossignac and Borrel [Rossignac 92]
[Rossignac 93] is one of the fastest and most robust simplification algorithms known.
A uniform spatial grid is imposed on the space of the polygonal input surface (a
simple example is shown in Figure 3.8). Within each grid cell, all vertices are collapsed
to a single representative vertex, which may be one of the input vertices or some
weighted combination of the input vertices (see Section 5.1 for more implementation
details). As a result of this collapse operation, some triangles degenerate to edges or
points, which are discarded if they coincide with the remaining triangles.

This clustering of two or more vertices lends itself to a natural mapping [Cohen
97] between the input and output surfaces, shown in Figure 3.9. Each of the input
triangles is stretched as a result of the vertex merging. Given the correspondences of
these triangle vertices before and after the merge, we can assign correspondences to
the interior points of the triangles using linear interpolation. This linear interpola-
tion also applies to the distance that all the surface points move. Thus, the greatest
distance moved by any point of the surface must occur at a vertex, and the maximum
geometric distance of this mapping is the maximum distance between corresponding
vertices.

The clustering algorithm and associated natural mapping are quite general. They
apply not only to meshes as in Figure 3.9 but also to arbitrary vertex merges on
triangle sets. Note, however, that this distance measure may be quite conservative, as

Team LRN

3.3 Range of Approaches 63

Before simplification After simplification

Figure 3.8 The vertices of each grid cell are collapsed to a single representative vertex, leaving
only the dark gray triangle and a disconnected point [Luebke 97].

a
c

e

b
d

h

f

g

a

e

b
d

h

f

Figure 3.9 The natural mapping for vertex clustering operations. Most triangles map to trian-
gles. Some triangles (the gray triangles, c and g in this case) degenerate to edges, and
some edges degenerate to points. The maximum error according to this map is the
maximum 3D distance any vertex moves [Cohen 98a].

shown in Figure 3.10. In fact, an even more conservative error measure is typically
used in practice—the diagonal length of the grid cell, which is an upper bound
on the distance any merged vertex may have moved. Given that this approach was
originally used to compute a discrete level of detail, this conservative distance may
be reasonable, because the largest error over all the cells will probably be used to
determine the error for the level of detail.

In terms of dealing with attributes, the original algorithm recomputes vertex
normals for the simplified vertices from the simplified triangles and does not mention

Team LRN

64 Chapter 3 Simplification Error Metrics

(a) (b)

H
H´

N

Figure 3.10 Distances for merging two vertices. (a) Vertex position chosen to minimize N , the
natural mapping distance, which is more conservative (i.e., longer) than H , the
Hausdorff distance. (b) Vertex position chosen to minimize H ′, which is now even
smaller than H .

color. However, when a representative vertex is chosen from among the input vertices,
carrying color attributes through the simplification is straightforward.

The cell diagonal length is guaranteed to bound the total error from the original
surface to the simplified surface. Thus, if multiple levels of detail are created, it is
acceptable to start from the current level of detail to compute the next simpler one
using a coarser, nested grid. The cell acts in some sense as our spatial data structure
to bound both the incremental error and the total error to the original surface.

Hierarchical Grid-Based Vertex Clustering

Luebke and Erikson perform simplification using a hierarchical grid in the form of
an octree [Luebke 97]. This vertex tree (each octree node is associated with a vertex)
allows for dynamic, view-dependent adaptation of the level of detail. Their algorithm
makes the vertex clustering method even more general, allowing a single hierarchy
to perform drastic simplification across an entire environment, with no notion of
individual objects.

This algorithm uses the same object-space geometric error bound as Rossignac
and Borrel [Rosignac 92], but it allows local, view-dependent adaptation of the model
according to screen space geometric deviation. The cell size is projected to screen-
space to determine the error caused by folding (merging) or unfolding (splitting) an
octree node. Note that it would be straightforward for this algorithm to incorporate
a somewhat tighter, more local error bound than the cell size. For example, the
maximum distance from a cell’s representative vertex to all of the original vertices
contained in the cell may produce a tighter bound for some cells.

In addition, the algorithm provides for more sophisticated handling of normal
error. In one variant of the tree construction, a normal cone is constructed to measure
the maximum normal vector deviation of each simplified vertex. These normal cones

Team LRN

3.3 Range of Approaches 65

are used at run-time to detect silhouettes, enabling the use of different screen-space
error thresholds for silhouette and nonsilhouette regions. Much more detail on view-
dependent simplification is provided in Section 4.4.

Floating Cell-Based Vertex Clustering

Low and Tan present a modified vertex clustering algorithm using floating cells rather
than a uniform grid [Low 97]. Their algorithm provides quantitative and qualitative
improvements to the simplification algorithm of the grid-based approach.

As in the algorithm of Rossignac and Borrel [Rossignac 92], the floating cell al-
gorithm begins by grading the original vertices to see which are best to retain as
representative cell vertices (for more on grading, see Section 5.1.2). However, the
cells are now chosen to surround these representative vertices, rather than choos-
ing the vertices according to the cells. The vertices are prioritized according to their
grades. Then, in priority order, a vertex is chosen, surrounded by a fixed radius cube
or sphere, and the other vertices in that radius are merged to the chosen vertex. We
can think of this as using a bounding volume approach rather than a spatial parti-
tioning approach to perform the clustering. From the standpoint of the optimization
approaches presented in Section 2.3, floating-cell clustering uses the greedy high-level
algorithm rather than the nonoptimized high-level algorithm.

An immediate quantitative advantage of this approach is a tighter error bound:
whereas the grid-based approach used the cell diameter as a conservative bound on
the distance vertices could move, the floating-cell approach can use the cell radius,
in effect halving the error bound while supporting roughly the same number of
vertices in the output model. The floating cell approach also removes the sensitivity
of the grid approach to the placement of the grid, and reduces the occurrence of
some qualitatively undesirable cases. In terms of attribute handling, Low and Tan
also incorporate thick lines rendered with view-dependent, cylinder-based normals
as opposed to single-pixel-width lines rendered with a fixed normal. We expand on
the features and implementation of floating-cell clustering in Section 5.1.6.

3.3.2 Vertex–Plane Distance

The distance between a point and a plane is even more computationally efficient
than the distance between two points. Given a plane with unit normal n, and signed
distance from the origin D, the shortest distance from point p = (x, y, z) to the plane is

d = n · p + D = nxx + nyy + nzz + D

Because our models are composed of planar polygons rather than infinite planes,
the vertex–plane distance methods do not really provide a bound on the maximum
or average distance between models. Measuring the error of a simplified mesh thus

Team LRN

66 Chapter 3 Simplification Error Metrics

requires another metric or a tool such as Metro. However, simplification methods
based on vertex–plane distance generally work well in practice: they are fast and
moderately accurate, tending to produce LODs with measurably low error for a given
polygon count. These methods have generated a great deal of interest in recent years
due to their speed and empirically demonstrated accuracy.

Maximum Supporting Plane Distance

The algorithm of Ronfard and Rossignac [Ronfard 96] follows the greedy high-level
algorithm using edge collapse operations. It measures for each potential edge col-
lapse the maximum distance between the simplified vertex and each of its supporting
planes. Each vertex of the original mesh has one supporting plane for each adjacent
face. When an edge is collapsed, the set of supporting planes for the resulting vertex
is the union of the set of supporting planes from the two edge vertices (thus, the sets
are merged and the duplicates removed). This set of planes grows larger and larger as
the simplified vertices cover more and more of the original mesh. We write this error
metric as

Ev = max
p∈planes(v)

(p · v)2

where v = (x, y, z, 1) and p = (nx, ny, nz, D). Ev is a total distance measure rather
than an incremental distance. This measure may underestimate the maximum error
between the surfaces for several reasons. First, the vertex–plane distance for some
planes may be much smaller than the actual distance to the supporting polygon from
the original mesh, and the maximum vertex–plane distance may also underestimate
the actual distance (see Figure 3.11). In addition, the maximum distance between the
two surfaces may not occur at one of the simplified vertices at all, but at the interior of
some triangle or along some edge. However, Ronfard and Rossignac use an auxiliary
plane at sharp corners of the mesh to guarantee that the measured bound is off by no
more than a factor of

√
3 from the maximum error.

Error Quadrics

Garland and Heckbert [Garland 97] follow a similar approach. However, they modify
the error metric of Ronfard and Rossignac [Ronfard 96] to make it faster and more
compact in storage space. In addition, they extend its application to the class of ver-
tex pairing operations, which can merge nearby but nonadjacent vertices to produce
topological changes. This topology merging can have quantitative as well as qualita-
tive benefits, reducing the number of triangles for a given error bound. The quadric

Team LRN

3.3 Range of Approaches 67

A C

B

c a

b

(a)

A C

B

c

a
b

(b)

A C

B

c

a

b

(c)

Figure 3.11 Distance from a simplified vertex to some supporting planes. (a) The maximum
vertex–plane distance, b, is the shortest distance to the supporting polygons. (b) The
maximum vertex–plane distance, c, overestimates the shortest distance to the sup-
porting polygons. (c) The maximum vertex–plane distance, b, underestimates the
shortest distance to the supporting polygons.

error metric replaces the maximum of squared vertex–plane distances, used above,
with the sum of squared vertex–plane distances as follows:

Ev =
∑

p∈planes(v)

(
p · v

)2 =
∑

p

(
vTp

) (
pTv

)
= vT

[∑
p

(
ppT

)]
v = vT

∑
p

Qpv = vTQvv

Given the initial substitution of the sum for the maximum, followed by a few al-
gebraic manipulations, we find that each plane p’s contribution to Ev amounts to
Qp, a quadratic form (or error quadric). This quadratic form is a 4x4 symmetric ma-

trix, computed as ppT and represented using 10 unique floating point numbers. The

Team LRN

68 Chapter 3 Simplification Error Metrics

Figure 3.12 Ellipsoids (level surfaces of error quadrics) illustrate the orientation and size of the
error quadrics associated with a simplified bunny [Garland 97]. Copyright © 1997
Association for Computing Machinery, Inc.

contribution of multiple planes is computed by summing their matrices, for exam-
ple, summing all the Qps to arrive at Qv. Thus, as we combine two vertices during the
simplification, we compute the new quadric as the sum of the two previous quadrics.
To evaluate the error for a vertex v, we perform the matrix-vector multiplication Qvv
and take the dot product of the result with v. Thus, neither the storage nor the com-
putation requirements grow as the simplification progresses, allowing for extremely
efficient management of an approximate total error metric. Figure 3.12 shows graph-
ically how the size and orientation of these quadrics reflect the shape of the bunny’s
surface as it is simplified.

Boundary edges are preserved by incorporating additional planes perpendicular
to the edges to be preserved. Lindstrom [Lindstrom 01b] employs a similar approach
in the context of out-of-core models, but applies these constraints to every edge.
The edge planes of adjacent or nearly adjacent triangles will cancel each other out,
while those of boundary edges retain their full weight. This is useful for models where
adjacency information is unknown.

In addition, it is possible to choose v to minimize Ev by solving a small sys-
tem of linear equations. The main computational cost in solving this minimization
problem is to invert the 4 × 4 matrix Qv. Lindstrom and Turk [Lindstrom 98] [Lind-
strom 99] provide an alternate solution to the computation of v. They constrain
the choice of v to preserve the volume enclosed by the surface and the local area
around the boundary edges, then choose v to minimize the error subject to these con-
straints. Interestingly, they choose not to store a quadric with each vertex of the mesh,
but compute their edge collapses based only on the incremental error. Thus, the
quadric for a simplified vertex is defined by the planes of its triangles at their current

Team LRN

3.3 Range of Approaches 69

simplified resolution. They demonstrate that this memoryless approach to simplifica-
tion still produces quantitatively good results.

Several different approaches to attribute handling are possible in the domain
of error quadrics. Garland and Heckbert propose the use of higher-dimensional
quadrics to track and minimize the error of models with attributes [Garland 98]. For
example, a model with 3 vertex coordinates, 3 color values, 3 normal coordinates, and
2 texture coordinates would use quadrics operating in an 11-dimensional space. This
is a mathematically elegant approach that directly extends the mechanics of dealing
with the geometry-space quadrics to the problem of attiributes. However, the stor-
age requirements for an n-dimensional quadric, represented as an n×n symmetric
matrix, an n-vector, and a constant are

n(n + 1)

2
+ n + 1

resulting in the storage of 78 floating point values for the 11-dimensional quadric.
In addition, the optimization of the vertex values requires the inversion of an n × n
matrix. However, most models do not have colors, normals, and texture coordinates.
The more common cases are six-dimensional and possibly eight-dimensional, requir-
ing only 28 floating point values.

Hoppe proposes a different quadric constructed based on separating the geomet-
ric error from the attribute error [Hoppe 99b]. In his formulation, the geometric
optimization results in the same values that would result if no attributes were present,
and the attribute errors are determined with this geometric correspondence in mind.
The required attribute quadric for this formulation also contains an n×n matrix, an
n-vector, and a constant, but the n×n matrix is sparse, and the total space depen-
dency on the number of attributes is only linear rather than quadratic. For example,
the 11-dimensional quadric for geometry, colors, normals, and texture coordinates
requires only 43 nonzero values rather than 78. He demonstrates that not only does
this approach require less storage and computation, but it produces better-looking
results.

In both of these approaches to incorporating attributes into quadrics, color values
and texture values are clamped, normal values are normalized, and texture folding is
ignored. Because of the popularity and importance of quadric error metrics, we will
revisit the above topics in some detail in Section 5.3.

3.3.3 Vertex–Surface Distance

The vertex–surface distance metric is a sampled approach to mapping one surface to
another. In this case, the vertices of the original model are mapped to their closest
points on the polygons of the simplified surface (Figure 3.13). This approach may be
entirely appropriate for models whose existence begins as a set of point samples that
are then triangulated. For such models, one can argue that it is the input vertices that

Team LRN

70 Chapter 3 Simplification Error Metrics

Figure 3.13 The original, curvy surface is mapped to a highly simplified surface. The black points
are the vertices of the original surface, and the hollow points are associated closest
points on the simplified surface. The lengths of the gray lines are pairwise distances.

are the true data to be preserved rather than the input surface. In fact, the approach
may be generalized by resampling the input surface to any desired resolution to more
finely optimize the distance between the two surfaces. Vertex–surface approaches
are generally much slower than vertex–plane approaches because suitable mappings
must be found for the many input vertices, each of which ultimately adds terms to
the optimization function.

Mesh Optimization and Progressive Meshes

Hoppe’s well-known progressive mesh algorithm [Hoppe 96] provides continuous
LOD. It does not produce a small, discrete number of LODs, but rather a more
continuous spectrum of detail, stored as a simple base mesh and a series of refinement
operations. These refinement operations lend themselves to storing, rendering, and
transmitting meshes in a progressive manner. They also support smooth morphing
between different level-of-detail approximations, mesh compression, and selective
refinement (Figure 3.14).

The progressive mesh algorithm follows a greedy edge collapse algorithm, mini-
mizing the change to an energy function with each successive edge collapse. Although
the high-level optimization process differs from Hoppe’s previous mesh optimization
algorithm [Hoppe 93], the two algorithms share the same geometric error metric. For
a proposed edge collapse, the following procedure is performed:

1. Choose an initial value for the position of the new vertex v (e.g., an edge vertex
or midpoint).

2. For each original vertex, map it to the closest point on one of the simplified
triangles.

Team LRN

3.3 Range of Approaches 71

Figure 3.14 Progressive mesh levels of detail containing 150, 500, 1000, and 13,546 triangles,
respectively [Hoppe 96]. Copyright © 1996 Association for Computing Machinery,
Inc.

3. Optimize the position of v to minimize the sum of squared distances between the
pairs of mapped points (solve a sparse, linear least-squares problem).

4. Iterate steps 2 and 3 until the error converges.

Notice that when the vertex v is moved in step 3, the mappings we had found in step 2
are no longer closest point pairs, so we must re-map them and re-optimize the system
until it converges.

In some cases, this system will never converge, because the optimal vertex po-
sition may be at infinity. This is possible because the vertex–surface metric is an
approximation to a one-sided, surface-to-surface distance rather than the two-sided
distance. It may be that none of the input samples map near to the vertex, so mov-
ing the vertex farther away does not negatively impact the metric (and may in fact
benefit it). To deal with this problem, Hoppe introduces a spring energy term to the
geometric error function. Conceptually, all the edges around v act as springs, apply-
ing some force that pulls v toward its neighboring vertices. The force of these springs
is reduced as the number of samples mapped to v’s adjacent faces increases. Thus, the
forces are stronger at the start of the simplification process and decrease over time. As
in the vertex–plane algorithm of [Ronfard 96], the work per edge collapse increases
as the number of points mapped to the edge’s adjacent faces increases, and the error
measured is a total error rather than an incremental error.

The progressive mesh algorithm also introduced the first sophisticated handling
of attribute values. Edge collapses are prioritized according to how they affect the
following energy function:

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M)

Edist and Espring refer to the geometric error and spring energy terms described above.
Escalar refers to color distances and other scalar value errors. These are optimized

Team LRN

72 Chapter 3 Simplification Error Metrics

using the pointwise correspondences determined for the geometric error, and do not
affect the iterative process of finding these correspondences. Another sparse, linear
least-squares problem is solved to determine these scalar attribute values at v. The
algorithm also preserves discontinuity curves in the attribute fields (such as normal
creases or sharp edges in the mesh coloring) by assigning a penalty, Edisc, to the
final error value of operations that alter the discontinuity. Normal vectors are simply
carried through the simplification by assigning v the normal value from its initial
position in step 1.

Metro

Metro is not a simplification algorithm but a tool for measuring the output quality
of simplification algorithms using a point–surface distance metric [Cignoni 98b].
Metro takes as input two polygonal models and a sampling distance. One of the input
models is sampled by points spaced at the specified distance. Each point is mapped
to a closest point on the second model; a uniform spatial grid accelerates the task
of finding the nearest polygons to a given point. The (possibly signed) distance is
computed between these closest point pairs. The program outputs the maximum and
average distance from the first model to the second model, as well as producing visual
output to show how the distance function is distributed across the model. A two-
sided distance function may also be computed by swapping the order of the models
and running the algorithm again. The tool has been used in several research papers
to report on the relative merits of various simplification algorithms [Cignoni 98a]
[Lindstrom 99].

3.3.4 Surface–Surface Distance

A surface–surface distance metric can provide the strongest guaranteed bounds on
the error of a simplified surface. By definition, such a metric considers all points on
both the original and simplified surface to determine the error at a given stage of
the simplification process. These methods generally choose to minimize the maxi-
mum error, perhaps because finding a guaranteed maximum bound on the simpli-
fication error is the whole point of using such a rigorous (and sometimes painstak-
ing) approach. Applications for which such bounds may be especially useful include
medicine and scientific visualization. One can also make an argument for using a
surface–surface metric for scanned models: although the raw scanned data may take
the form of points or vertices, implying that a vertex–surface metric may suffice,
great effort is often put into creating a high-quality surface reconstruction from these
points. Thus, it may make sense to minimize the error from this entire reconstructed
surface during the simplification process. We now present several algorithms based
on surface–surface distance metrics.

Team LRN

3.3 Range of Approaches 73

Simplification Envelopes

The simplification envelopes algorithm [Varshney 94a] [Cohen 96] uses a nonopti-
mizing high-level queuing to compute each discrete level of detail. It uses an intuitive
and conceptually compelling method to bound the maximum geometric deviation
between the original and simplified surfaces. It first constructs inner and outer enve-
lope surfaces that together enclose the original surface. These envelopes are modified
offset surfaces, constructed by displacing the original vertices by a distance of ≤ ε

along their normal vectors. Some vertices are displaced by less than ε to prevent self-
intersections among the envelope polygons. By construction, all points within the
envelopes are within distance ε of the original surface. Examples of these envelope
surfaces are shown in Figure 3.15.

The input to the algorithm is a manifold triangle mesh (possibly with borders)
and an error tolerance; the output is a simplified mesh with a maximum error that
is as close as possible to the tolerance without exceeding it. The algorithm places all
the original vertices in a queue for removal, and attempts a vertex removal operation
for each one, filling the resulting holes using greedy triangle insertion. If a candidate
triangle intersects an envelope surface (or the rest of the simplified surface), it is
invalid and may not be used to fill the hole. The process is applied iteratively until
none of the remaining vertices may be successfully removed. Such a simplification
is depicted in 2D in Figure 3.16. The source code for the simplification envelopes
algorithm is available on the Web site accompanying this book.

One interesting aspect of this algorithm is that it performs an overall distance
computation using only conservative intersection tests, so little information is known
about the error of the triangles except that they do not violate the given error toler-
ance. We should therefore classify this as a nonoptimizing algorithm in the simplifi-
cation frameworks terminology of Section 2.3. The error tolerance may be specified
for each individual vertex, if desired, rather than for the model as a whole, generating
a manifold surface with bounded maximum error that varies across it, as shown in
Figure 3.17. For example, this can be used to favor regions with greater perceptual
importance, such as eyes or faces.

Borders are preserved within the specified tolerance in a similar fashion to the
entire surface. Border tubes, essentially a set of non–self-intersecting, piecewise cylin-
drical tubes surrounding the edges of the border, are used to constrain the deviation
of the border edges as the simplification progresses.

Because this algorithm uses vertex removal operations, attributes are easily car-
ried through the process. Of course, the use of vertex removal operations also leaves
less freedom for optimizing the error. The error for each vertex removal operation is
a binary value—either it satisfies the bound or it violates the bound. There is some
room to optimize combinatorically by searching for a tessellation of a vertex’s hole
that does not violate the bound. Varshney and Cohen experiment briefly with an ex-
haustive hole-filling approach that tries all possible tessellations, if necessary, to find
a satisfactory one.

Team LRN

74 Chapter 3 Simplification Error Metrics

1%

3%

2%

Figure 3.15 3D inner and outer envelope surfaces for the bunny model at three different settings
of the error tolerance ε [Cohen 96]. Copyright © 1996 Association for Computing
Machinery, Inc.

Team LRN

3.3 Range of Approaches 75

(a) (b)

Figure 3.16 2D example of simplification using envelopes. (a) Original black surface is displaced
by ε along normal vectors to compute inner and outer envelope surfaces. (b) Simpli-
fication is performed by staying within the envelopes.

To compute multiple discrete LODs, we may either simplify the original model
several times with different error thresholds, or cascade the simplifications. In a cas-
caded simplification, the first level of detail is simplified to produce the second, the
second to produce the third, and so on. In the former scheme, ε specifies the total
error bound, while in the latter it specifies an incremental error bound. To compute
a total error bound for the cascaded simplifications, we add the errors of successive
levels of detail.

Mappings in the Plane

Bajaj and Schikore’s plane mapping algorithm [Bajaj 96] employs a greedy frame-
work, using a priority queue of vertex removal operations to simplify a mesh while
measuring the maximum surface–surface error at each step of the simplification. The
measure of error used here is the maximum pointwise mapping distance, where the
mapping function is locally defined by orthogonally projecting the affected set of tri-
angles before and after the vertex removal operation onto the same plane. Points of
each surface that project to the same location on the plane are corresponding point
pairs.

Bajaj and Schikore begin evaluating a vertex removal operation by orthogonally
projecting to a plane the triangles surrounding the vertex to be removed. Working in
this planar domain is equivalent to considering this local piece of mesh as a height
field, where the “vertical” direction is the chosen direction of projection (typically

Team LRN

76 Chapter 3 Simplification Error Metrics

Figure 3.17 An adaptive simplification for the Stanford bunny model. ε varies from 1/64% at
the nose to 1% at the tail [Cohen 96]. Copyright © 1996 Association for Computing
Machinery, Inc.

the average face normal). In this plane, the vertex is removed and the planar polygon
retriangulated. The mutual tessellation of the original vertex neighborhood with the
new triangulated polygon is then computed, as shown in Figure 3.18.

Every point inside this polygon in the plane now corresponds to two points in
3D—one on the mesh before the vertex removal and one on the mesh after the re-
moval. The error function is the maximum pointwise distance between these mapped
points. For each subpolygon of this mutual tessellation, the distance function varies
linearly. Thus, the maximum distance must occur at one of the subpolygon ver-
tices. These subpolygon vertices are just the projection of the removed vertex and the

Team LRN

3.3 Range of Approaches 77

(a) (b) (c) (d)

Figure 3.18 Mapping a vertex neighborhood in the plane. (a) The neighborhood of a removal
vertex. (b) The vertex has been removed and the hole triangulated. (c) A mutual tes-
sellation of the two sets of triangles. (d) Edge crossing points for error measurement
[Bajaj 96].

edge–edge crossings between the two tessellations. To compute the maximum error
across the entire local mesh neighborhood, we just compute the distance between
these special point pairs and take the maximum. The maximum error is stored at each
triangle of the mesh as an interval ranging from the greatest error below the triangle
to the greatest error above the triangle. The same mapping can be used to measure
the error in scalar fields, such as colors and texture coordinates that vary across the
triangles.

The planar mapping method is extended by Cohen, Manocha, et al. [Cohen 97]
for use with the edge collapse operation. They propose a simple algorithm for testing
a direction of projection to see if it produces a valid, fold-free projection to the plane,
as well as a rigorous algorithm based on 3D linear programming to find a valid direc-
tion if one exists. They then employ similar algorithms in 2D to find a valid placement
of the new vertex in the plane (placing the vertex in the planar polygon’s kernel; see
Figure 3.6). Given this 2D vertex placement, Cohen, Manocha, et al. compute the
mutual tessellation shown in Figure 3.19. Finally, they optimize the placement of the
new vertex along the plane’s normal vector to minimize the maximum incremental
error using a 1D, linear programming algorithm. In this algorithm, an axis-aligned
bounding box is associated with each triangle of the simplified mesh to propagate
the total error from one simplification operation to the next. (Plots of the total error
versus the number of triangles for the bunny model using this metric are shown in
Figure 2.23.) The same planar mapping is also used to carry texture coordinates of
the original mesh through the simplification process.

Local Error and Tolerance Volumes

Like the simplification envelopes algorithm, Guéziec’s approach to simplification
[Guéziec 95] [Guéziec 99a] uses a bounding volume approach to measuring simplifi-
cation error. However, his error volumes are measured locally and grown iteratively.

Team LRN

78 Chapter 3 Simplification Error Metrics

(a) (b)

New
vertex

Collapsed
edge

Figure 3.19 (a) Edge neighborhood and generated vertex neighborhood superimposed. (b) A
mapping in the plane, composed of 25 polygonal cells. Each cell maps between a pair
of planar elements in 3D [Cohen 97] [Cohen 98].

This makes the approach highly suitable for measuring and optimizing the error
of each individual operation as well as for producing a continuous progression of
guaranteed-quality levels of detail.

The algorithm uses the estimated high-level simplification framework (see Sec-
tion 2.3). It employs a priority queue of edge collapses ranked by maximum error.
However, for the purpose of prioritization, edge collapse error bounds are initially
computed using a fast—but less tight—method. When the edge is actually collapsed,
a more expensive but accurate method may be applied.

A bound on geometric error is tracked using an error volume (see Figure 3.20). A
sphere with zero radius is initially centered at each vertex. As the model is simplified,
the spheres of the simplified mesh vertices grow at different rates to indicate the
maximum local error. This error is defined across the entire surface of the mesh by
interpolating the vertex sphere radii across each triangle. The union of these varying
radius spheres swept over the entire triangle mesh forms an error volume, and the
radius at any given point of the mesh bounds the maximum geometric deviation
error at that point.

Using the fast error bound computation, the sphere radii after an edge collapse are
determined as follows. All the unchanged vertices surrounding the edge retain their
sphere radii. The new vertex is placed at the edge midpoint, and the radius of the new
vertex’s sphere is chosen to contain the spheres of the collapsed edge’s vertices. We can
think of this approach as using the natural mapping (see Figure 3.9) to measure the
error; it is roughly equivalent to using the weighted edge length as a loose error bound
for the purpose of edge prioritization.

When edges are actually chosen to be collapsed, a tighter bound is used to mea-
sure and optimize the location of the new vertex. In this computation, the sphere
radii of all the vertices surrounding the collapsed edged may grow to produce a more

Team LRN

3.3 Range of Approaches 79

(a) (b) (c)

Figure 3.20 2D example of growing an error volume. (a) The solid lines indicate the current mesh.
An error sphere with some radius is centered at each vertex, indicating its current
error. Sweeping the spheres across the surface and interpolating their radii define
the current error volume. (b) For fast error estimation, the new vertex after an edge
collapse is placed at the edge center and its sphere contains the two collapsed vertex
spheres. (c) For slower, more optimized error computation, all spheres are allowed
to change size, and vertex is placed to minimize their sizes while containing the old
error volume within the new error volume.

optimal result. A mapping is created between the local mesh before and after the edge
collapse. Similar to the mapping used by [Bajaj 96], Guéziec’s mapping contains data
not only for the vertices of both local meshes, but also for the edge crossings. In this
case, however, the mapping is constructed directly on the two surfaces rather than on
an arbitrary plane, so the distance measurements may be less conservative. As in Co-
hen, Manocha, et al. [Cohen 97], the mapping is incremental (between two successive
meshes), but here it used to optimize a bound on the total error rather than the in-
cremental error. With all these vertex radii as variables, as well as the position of the
new vertex, the new vertex position and the radii are chosen to minimize the error of
the mapping (as indicated by the sphere radii) and to preserve the mesh volume. This
error sphere approach can also be used to measure and optimize maximum errors in
color, normal, and texture coordinate attributes.

Mappings in Texture Space

The appearance-preserving simplification algorithm of Cohen, Olano, et al. [Cohen
98a] proposes a new screen-space error metric for textured models, the 2D texture
deviation. Intuitively, this texture deviation measures how many pixels a particular
texel may shift on the screen from its correct position due to the use of a simplified
model. By using parameterized models, with the colors stored in texture maps and the
normals stored in normal maps (shown in Figure 3.21), this algorithm preserves the
rendered appearance of the model. The primary visual artifact is then a screen-space

Team LRN

80 Chapter 3 Simplification Error Metrics

Figure 3.21 Parameterized surface patch and its normal map. The x, y, and z normal components
are stored as red, green, and blue colors, respectively [Cohen 98]. Copyright © 1998
Association for Computing Machinery, Inc.

distortion of the texture and normal maps, which the user can control by choosing
an acceptable tolerance for the texture deviation at run-time.

The simplification algorithm used is quite similar to that of Cohen, Manocha,
et al. [Cohen 97] (see Mappings in the Plane section, above). The primary difference
is that rather than using orthographic projections to produce mappings in a planar
domain, the surface’s texture coordinate parameterization is used to establish these
mappings. The parametric error of this mapping is the 3D texture deviation. That
is to say, it measures the maximum distance that any texel moves in 3D as the level
of detail is changed from the original model to the simplified model. This texture
deviation is thus a geometric error measure, and we can apply the same techniques
as for other geometric deviations to convert to a screen-space deviation (see Screen-
Space Error in Section 3.2.1, above). Thus, the texture deviation provides a bound on
other geometric deviations, such as silhouette deviation, while bounding the sliding
motion of the texture (Figure 3.22).

Another contribution of this algorithm in the handling of textures is the detec-
tion of valid and invalid texture coordinates for the new vertex after an edge collapse

Team LRN

3.3 Range of Approaches 81

Figure 3.22 Armadillo model (2 million polygons) simplified using appearance-preserving sim-
plification’s texture deviation metric. LODs are shown with 250K, 63K, 8K, and 1K
triangles (from left to right) [Cohen 98]. Copyright © 1998 Association for Comput-
ing Machinery, Inc.

operation. If the new texture coordinates lies outside the kernel of the edge neighbor-
hood as seen in the texture plane (as in Figure 3.6), then there will be a folding of the
texture as it is mapped to the surface. Restricting the new texture coordinates to this
kernel eliminates this type of artifact.

The use of texture deviation and normal mapping to provide high-quality, low-
polygon-count, multiresolution surfaces has been explored further in recent works,
such as Lee et al. [Lee 00] and Sander et al. [Sander 01].

3.3.5 Image Metric

All of the error metrics described thus far have been measured in object space and
attribute space, with the hope of eventually translating these bounds into some mean-
ingful image-space metric. After all, what we typically hope to optimize is the visual
appearance of the models when we view them as images rendered on the screen.
Lindstrom and Turk [Lindstrom 00b] take a more direct approach by actually ren-
dering the model to evaluate the quality of the model output as the simplification
proceeds (see Chapter 5 for more implementation details). They use the lazy high-
level algorithm, with a priority-queue-driven edge collapse scheme. The placement
of new vertices for edge collapses is purely geometry driven, based on the memory-
less algorithm of Lindstrom and Turk [Lindstrom 98], but they use an image-space
error metric to prioritize the edge collapses in the queue.

Conceptually, Lindstrom and Turk measure the error for simplification opera-
tions by rendering multiple images of the object using a sphere of virtual cameras.
The cameras are placed at the 20 vertices of a dodecahedron. Each camera renders an

Team LRN

82 Chapter 3 Simplification Error Metrics

image of the original model and of the simplified model, and a root-mean-squared
error of pixel luminance values is computed between the two sets of pixels from all
the cameras. This RMS error is the edge’s key in the priority queue.

This approach has a number of benefits. It naturally incorporates visual errors
due to a number of sources, such as motion of the silhouette, and deviation of color,
normal, and texture coordinate attributes. It even accounts for factors such as the
content of the texture maps and the shading modes used to render the model (such
as flat or Gouraud shading).

The image metric is therefore in many ways an excellent one for measuring sim-
plification error, and it promises to work even better as more sophisticated perceptual
image-based metrics are developed. However, image-based simplification has dis-
advantages as well. The algorithm is significantly slower than the slowest geometric
algorithms, since rendering and rerendering multiple images for every edge collapse
is an intrinsically expensive way to measure error. Since it uses a fixed, relatively small
number of camera positions (Lindstrom and Turk use 20 to 30), the algorithm may
also make poor choices as a result of undersampling the visual space around the
model, or even inside the model. Finally, since LODs are generated with respect to
a particular set of rendering parameters (number of lights, flat versus smooth shad-
ing, etc.), the LODs may prove suboptimal if the rendering parameters of the scene
change. However, for the models and rendering environments tested, the algorithm
has been shown thus far to deal well with such problems in practice.

3.4 Conclusions

To summarize, we have examined the reasons to measure simplification error, the
key elements common to many simplification error metrics, and several metrics
themselves from the literature. We broadly classified these metrics into vertex–vertex,
vertex–plane, vertex–surface, and surface–surface distance measures. These different
classes provide a range of characteristic performance in terms of speed, quality, ro-
bustness, and ease of implementation.

The vertex–vertex measures are the fastest and most robust, followed by the
vertex–plane measures. The vertex–vertex measures do provide guaranteed bounds
on quality, but these are typically much looser than we would like. The vertex–
plane measures produce much higher-quality models overall, but the latest quadric
error measures do not actually guarantee a particular quality, so they do not support
fidelity-based simplification systems well. The vertex–vertex measures are quite easy
to implement, and the vertex–plane measures are only slightly harder, requiring a few
more functions in your algebraic toolbox.

The vertex–surface and surface–surface measures tend to be somewhat slower
than the first two classifications. However, the surface–surface measures provide
guaranteed error bounds on their output, making them useful for both fidelity-based
and budget-based simplification systems. For the highest-quality simplifications, sys-

Team LRN

3.4 Conclusions 83

tems based on these measures generally assume a clean, manifold mesh as input and
preserve the topology of that mesh throughout the process. The surface–surface mea-
sures may be particularly difficult to implement compared to the vertex–vertex and
vertex–plane approaches, requiring more geometry-based coding rather than just a
few algebraic tools. Some implementations are available, such as the simplification
envelopes software on this book’s accompanying Web site.

We have now studied three of the major components we use for simplifica-
tion: optimization algorithms, simplification operators, and error metrics. Given this
framework for generating LODs, we now move on to applying these LODs in a variety
of run-time settings.

Team LRN

Team LRN

Part II

Application

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
Run-Time

Frameworks

In this chapter we turn from the offline task of LOD creation to the run-time task
of LOD management. When using discrete LOD, this task reduces to the selec-

tion of which LODs will represent each object each frame. We describe some popular
schemes for selecting LOD, ranging from simple distance-to-viewpoint to sophisti-
cated predictive schedulers for maintaining a fixed frame rate. These schemes are
easily extended to support continuous LOD, which can be thought of as very fine-
grained discrete LOD. However, view-dependent approaches add another level of
complexity to run-time LOD management. We describe a generic run-time frame-
work for view-dependent LOD similar to several published approaches, and discuss
the subtle but important issue of respecting dependencies in the mesh simplification
process. Finally, we examine two run-time techniques to reduce “popping,” alpha
blending and geomorphs. Both are applicable to both view-dependent and view-
independent LOD. These techniques are alpha blending and geomorphs.

87

Team LRN

88 Chapter 4 Run-Time Frameworks

4.1 LOD Selection Factors

Clearly the most important question in LOD management is when to switch to a
lower or higher resolution model. The basic observation that we need less detail for
small or distant objects seems straightforward, but how small or far away should an
object be before we transition to a simpler model? The following chapters discuss
the various aspects of this problem in detail. Here, we begin by looking at the major
frameworks that have been used to modulate LOD.

4.1.1 Distance

A distance-based framework is probably the easiest way to manage level of detail: sim-
ply assign a distance to each LOD at which it will be used to represent the object. The
underlying theory is obvious. Since fewer high-detail features of a distant object are
visible, we can select a lower LOD without greatly affecting the fidelity of the image.
Historically, flight simulators were among the first applications to use distance-based
LOD heavily [Yan 85] [Schachter 81] [Cosman 81]. These days, it is a common tech-
nique available in most graphics APIs and game engines. Figure 4.1 shows an example
from the popular Unreal game engine. This system provides support for distance-
based continuous LOD for 3D models, as well as smooth adaptation of texture map
detail [Miliano 99].

Implementing a distance-based scheme simply requires a data structure to store
the different levels of detail for each object, and a list of distance thresholds to indicate
when each LOD should be used. Given such a structure, a simple pointer switch
suffices to select the most appropriate model for any distance. A more subtle issue is
the question of which point within the model to use for the distance calculation. This
point might be assigned to the object’s centroid, assigned directly by the designer, or
more accurately calculated as the point closest to the viewer. The LOD node of the
VRML97 graphics file format [VRML 97] encapsulates these factors:

LOD {
exposedField MFNode level []
field SFVec3f center 0 0 0 # (∞,∞)
field MFFloat range [] # (0,∞)

}

The level field contains a list of nodes, one for each LOD representation, where the
highest detail level is given first. The range field specifies the distances at which to
switch between the levels of detail in the level array. Finally, the center field gives the
offset (in the local coordinate system) that specifies the point of the LOD model used
for the distance calculations. Therefore, given n levels of detail (level1 to leveln) and
n − 1 range thresholds (range1 to rangen−1), the appropriate level of detail to use on

Team LRN

4.1 LOD Selection Factors 89

(a) (b)

(c) (d)

Figure 4.1 Screen shots of an Unreal tournament player showing how level of detail reduces as
distance increases. The original model (a) contains over 600 polygons (excluding the
weapon), whereas (b), (c), and (d) show, respectively, vertex counts reduced to 75%,
50%, and 25%. Copyright © 1999–2001 Epic Games, Inc.

Team LRN

90 Chapter 4 Run-Time Frameworks

any frame, given a distance d from the viewer position to the center of the LOD node,
is computed as:

level(d) =

level1 where d < rangei
leveli where rangei−1 ≤ d < rangei for 1 ≤ i < n − 1
leveln where d ≥ rangen−1

For example, given a range array of [50, 100] (specified in meters) and three levels
of detail, the highest LOD is used when the object’s distance is less than 50 m away,
the medium LOD is used between 50 and 100 m, and the lowest LOD is used for all
distances over 100 m. Often the lowest detail model is made to be an empty set of
triangles to allow the object to be culled beyond a certain distance.

Distance-based LOD is both simple and efficient. A few conditional statements
suffice to check whether a distance exceeds the predefined thresholds, and the only
potentially expensive computation is calculating the 3D Euclidean distance between
two points. This normally involves the square root operation, which for example
takes about 80 cycles on a Pentium II using the standard C library sqrt() function
[King 01]. Various optimizations exist for this calculation, however, such as comput-
ing and comparing against the square of the distance thresholds, or using the Man-
hattan distance (L1 norm) as an approximation to the Euclidean distance (L2 norm)
[Ritter 90].

Despite its simplicity, distance LOD has some definite disadvantages. Choosing
an arbitrary point within the object for all distance calculations introduces inevitable
inaccuracy, since the actual distance to the viewpoint can change depending on orien-
tation. This can lead to more obvious popping effects under certain conditions. The
best solution is to calculate the distance to the point on the object nearest the viewer.
Scaling the object to make it larger or smaller, using a different display resolution,
and changing the field of view all invalidate the original distance thresholds. In addi-
tion, a pure distance measure does not take into consideration the parameters of the
perspective projection used to render all objects. To combat some of these problems,
for example, the OpenGL Performer API lets the user specify a scaling factor (PFLOD_
SCALE) for all range thresholds. For example, setting PFLOD_SCALE to 2.0 doubles all
distance ranges [Silicon Graphics 00a].

4.1.2 Size

Distance-based criteria measure the distance from viewpoint to object in world space.
Alternatively, the system can use a screen space criterion. Since objects get smaller as
they move further away, size-based LOD techniques use the projected screen coverage
of an object, and switch between LOD based on a series of size thresholds rather than
a series of distances.

Size-based techniques avoid some of the problems with distance-based LOD,
since projected size is insensitive to display resolution, object scaling, or field of view.

Team LRN

4.1 LOD Selection Factors 91

In addition, size-based LOD selection uses the entire object, rather than requiring
the user to select an arbitrary point for the calculation. As a result, size-based LOD
techniques provide a more generic and accurate means for modulating LOD than
distance-based techniques. However, they can also be more computationally expen-
sive, requiring a number of world coordinates to be projected into screen coordinates.
For example, many systems use a bounding box of a bounding box, projecting the
eight vertices of an object’s bounding box into screen space, and using the 2D bound-
ing box of the eight transformed vertices to quickly estimate the projected area of
the object. This requires eight vertex–matrix multiplications, which is certainly more
expensive than the viewpoint-to-object distance computation test used for distance-
based LOD selection. Nor is this approach rotation-invariant, which presents another
disadvantage. The screen-space-projected area of a thin object (e.g., a model of a knife
or credit card) can vary drastically when the object rotates on the screen, which may
cause some disturbing fluctuations in LOD.

As an example of this, the Open Inventor graphics toolkit from Silicon Graphics
provides a means to automatically select different levels of detail based on a screen
area criterion. The screen area is calculated by projecting the 3D bounding box for a
model onto the viewport and then computing the area of the screen-aligned rectangle
surrounding that bounding box [Wernecke 93]. An alternative technique used by
many systems is to calculate the projected radius of an object’s bounding sphere (see
Section 3.2). This approach—in effect a form of distance-based LOD selection that
accounts for field of view and object size—provides a very lightweight and effective
mechanism for representing the size of an object in screen space. It also provides
a rotation-invariant method because the projected radius will be the same length
for all object orientations. However, bounding spheres offer a poor fit for some
object shapes, which can result in unnecessarily conservative error estimates. Many
researchers have investigated or suggested more sophisticated bounding volumes,
such as ellipsoids or oriented bounding boxes, that could provide better fits to the
geometry (e.g., Luebke and Erikson [Luebke 97]). Figure 4.2 illustrates the use of two
different bounding volumes to calculate screen size.

Finally, screen-space LOD techniques have proven particularly popular in contin-
uous and view-dependent LOD systems, such as in the area of terrain visualization.
For example, Lindstrom et al. used a screen-space error metric that added further
detail until the projected distance between adjacent vertices fell below a predefined
pixel threshold [Lindstrom 95]. We discuss view-dependent LOD and terrain LOD
extensively in Section 4.3 and Chapter 7, respectively, but pause to note here that this
example is subtly different from the previous size-based techniques because it is the
size of the error that is being measured rather than the size of the object itself.

4.1.3 Priority

In many environments, some objects are particularly important for preserving the
illusion of the scene and the user’s acceptance of that illusion. For example, in an

Team LRN

92 Chapter 4 Run-Time Frameworks

(a) (b)

(c) (d)

Figure 4.2 (a–b) A 3D model shown at two different orientations, illustrating the effect of using
a screen-aligned bounding box and (c–d) a projected bounding sphere to estimate
screen size. Note that the screen area varies more for the screen-aligned bounding
box in this case.

architectural walkthrough system, the walls of a building are crucial to the perception
of the scene. If these were to be simplified to the point that they are removed from the
scene, then the user’s experience will be drastically affected, much more so than if a
pencil were to disappear from a desk [Funkhouser 93b]. Similarly, a virtual reality
system with a glove-tracking device will typically display a virtual representation of
the hand. Reducing the hand to a cuboid, or removing it completely, would seriously
impair the user’s ability to perform grabbing or other hand–eye coordination tasks.

Team LRN

4.1 LOD Selection Factors 93

Hysteresis

Distance

d

LOD

LOD1

LOD2

Figure 4.3 Distance-based switching thresholds between two LODs illustrating a period of hys-
teresis around the threshold distance d [Astheimer 94] [Reddy 97].

Therefore, a number of LOD researchers proposed schemes in which objects receive a
priority ranking, so that those objects deemed most important are degraded the least.
This is often referred to as a priority- or semantic-based solution.

For example, Richard Holloway implemented a simple priority scheme in his
Viper system at the University of North Carolina [Holloway 91]. Two priorities (high
and low) were used to define whether an object should always be rendered at the
highest level of detail. A representation of the user’s hand might be classed as a
high-priority object and hence should never be degraded. Funkhouser and Séquin’s
walk-through system, discussed in detail later, used a benefit heuristic to estimate
the contribution any LOD makes to model perception. This heuristic consisted of
a number of components, one of which was termed semantics. Funkhouser notes
that certain types of objects may have inherent importance in the scene. He therefore
modulated the benefit value for each LOD by an amount proportional to the object
type’s semantic importance, as determined by the user [Funkhouser 93a].

4.1.4 Hysteresis

In the context of LOD systems, hysteresis is simply a lag introduced into the LOD
transitions so that objects switch to a lower LOD slightly further away than the
threshold distance, and switch to a higher LOD at a slightly closer distance. This is
done to reduce the flickering effect that can occur when an object constantly switches
between two different representations as it hovers near the threshold distance. This
concept is illustrated in Figure 4.3. In their work, Astheimer and Pöche experimented
with hysteresis techniques and found that a hysteresis of 10% of each LOD’s distance
range produced favorable results [Astheimer 94]. For example, consider two levels of

Team LRN

94 Chapter 4 Run-Time Frameworks

detail of an object, L1 and L2, where L1 is the higher resolution model. If the distance
threshold used to switch between L1 and L2 is 100 m, the system may instead choose
to switch from L1 to L2 at 110 m and switch back from L2 to L1 at 90 m.

Hysteresis formed another component of Funkhouser’s benefit heuristic. Noting
that rendering an object at different levels of detail in successive frames could be
bothersome to the user, Funkhouser reduced the benefit value for an LOD by an
amount proportional to the difference in level of detail from that used in the previous
frame. The degree of hysteresis employed could be controlled interactively through
sliders on the system’s control panel (see Figure 4.4).

Gobbetti and Bouvier introduced a hysteresis factor into their cost/benefit model
[Gobbetti 99], although they eventually removed it because they found it unnecessary
for most complex scenes. Nonetheless, their model for hysteresis is given as follows,
where s is a visible multiresolution object, r is a continuous resolution value between
0 and 1, and n is the number of visible objects:

hysteresis(s, r) = 1 − 1

n

n∑
i=1

(
ri − rold

i

)2

4.1.5 Environmental Conditions

One trick often used to camouflage the switching between levels of detail, or to re-
duce the range over which models need to be displayed, is to enable atmospheric
effects such as haze and fog. For example, the NPSNET group at the Naval Postgrad-
uate School (NPS) performed work regarding the integration of dismounted infantry
into their system. They report that their distance-based LOD feature enabled them to
increase the number of infantry personnel more than sevenfold, while maintaining a
10- to 15-Hz frame rate [Chrislip 95]. They generated four different levels of detail for
each figure and used various environmental conditions to slacken the LOD distance
thresholds, including clouds, fog, smoke, and haze. In general, of course, fogging so-
lutions cannot be used for every application, and should not be introduced artificially
to cover up LOD artifacts.

4.1.6 Perceptual Factors

Researchers have observed that 3D graphics systems should be based more on how
our human visual system works than how a pinhole camera works. A number of per-
ceptual factors that can affect the amount of detail we can perceive under different
circumstances are typically ignored in computer graphics. For example, we can per-
ceive less detail for objects in our peripheral vision, or for objects moving rapidly
across our gaze. We could therefore imagine reducing the resolution of objects un-
der these circumstances, improving the frame rate without perceptible degradation.

Team LRN

4.1 LOD Selection Factors 95

Figure 4.4 The control panel used to manage the various LOD parameters in Funkhouser’s
architectural walkthough system [Funkhouser 93a].

Team LRN

96 Chapter 4 Run-Time Frameworks

LOD researchers have indeed studied systems that exploit such perceptual factors;
however, we will postpone their discussion to Chapter 8, which is dedicated entirely
to perception and LOD.

4.2 Fixed-Frame Rate Schedulers

A naive real-time graphics application is often implemented as a free-running system
allowed to take as long as necessary to render each frame. This means that when the
current viewpoint contains a few simple objects, the scene can be rendered rapidly,
while a viewpoint consisting of complex high-polygon models will take much longer
to render. As a result, if a user navigates around a scene in a free-running system, the
frame rate will normally vary on a per-frame basis. However, many problems exist
with variable frame rate systems. For example, they can affect users’ ability to per-
ceive velocities accurately and thus perform temporal coordination tasks. They can
cause problems in training simulators where subjects learn to associate a change in
frame rate with a certain event, such as an opponent about to enter the scene. Asyn-
chronous visual delays can even cause motion sickness [Uliano 86]. Conventional
wisdom therefore dictates maintaining a steady and consistent frame rate for most
applications [Hawkes 95] [Helman 96]. Fortunately, level of detail techniques give
the graphics developer a powerful tool for managing rendering complexity to main-
tain frame rates. For example, flight simulators have long used handcrafted LODs to
allow the system to produce fixed-frame frames [Clark 76] [Cosman 81]. Chapter 10
investigates more deeply how temporal delays affect user performance. For now, we
will look at the various frameworks that have been proposed to produce systems that
maintain a fixed frame rate. These include two principal approaches: reactive sched-
ulers, (based on the last frame’s rate) and predictive schedulers (based on estimates of
how much work can be done within the current frame).

4.2.1 Reactive Fixed-Frame Rate

The simplest way to implement a fixed frame rate scheduler simply checks how long
the previous frame took to render, and assigns LOD settings accordingly. If the last
frame was completed after the deadline, detail should be reduced. However, if the last
frame finished before the deadline, detail can be increased. This technique does not
guarantee a bounded frame rate, but simply adjusts the detail level based on whether
the previous frame was rendered within the target frame rate.

Some examples of LOD-based reactive fixed frame rate systems include Airey
et al.’s architectural walkthrough system [Airey 90], Hitchner and McGreevy’s Virtual
Planetary Testbed at NASA [Hitchner 93], and Holloway’s Viper system [Holloway
91]. The last is a good example of a very simple reactive system. This attempted to
degrade LOD in order to maintain a user-specified fixed frame rate by simply ter-
minating the rendering process as the system became overloaded. This could cause

Team LRN

4.2 Fixed-Frame Rate Schedulers 97

objects to appear with holes in them, or to disappear completely, as the graphics load
increased. Holloway noted that if the system adjusted the load as quickly as possi-
ble, this introduced abrupt and often oscillating image changes. Instead, Holloway
suggested that adapting to the load gradually would provide better results, in essence
adding a degree of hysteresis. Viper’s top-level main function implemented this, as
follows:

main()
{

init();
read_3D_geometry();
create_world();
while (! done)
{

// calculate the frame rate for the previous frame

frameRate = calcFrameRate();
// compare this to the desired frame rate for this frame

adjustment = evaluateLastFrame(frameRate, DesiredFrameRate);
// adjust LODs to display

adjustDisplayList(adjustment);
// read the tracker, update head and hand positions

read_tracker();
// handle any button presses or keyboard commands

handle_button_events();
// finally, update the displays (one for each eye)

update_displays();
}

}

The OpenGL Performer graphics API from Silicon Graphics also supports a reac-
tive fixed-frame-rate model. This is specified using the pfFrameRate() function with a
rate parameter. Performer will round this number to the nearest frame rate that cor-
responds to an integral number of screen refreshes. For example, a value of 33 Hz is
rounded to 30 Hz when the screen refresh rate is 60 Hz. If the scene has been modeled
with levels of detail (represented in Performer using pfLOD nodes), Performer can au-
tomatically reduce or increase scene complexity to attain the specified frame rate. In
this case, the system load is calculated as the percentage of the frame period it took to
process the previous frame. It is possible that the system can still become overstressed
and result in dropped or skipped frames. Figure 4.5 shows a frame-timing diagram
with different frame rate scenarios.

It is worth noting that Performer includes support for dynamically reducing fill
rate, or the rate at which the graphics hardware can rasterize pixels. This highlights a
limitation of LOD techniques: when fill rate becomes the system bottleneck, reducing
the level of detail of objects in the scene will not generally help, since even the simpler

Team LRN

98 Chapter 4 Run-Time Frameworks

Time in seconds

Refresh count
modulo three 0 1 2 0 1 2 0 1 2 0

Frame display interval

Overrun Floating

Locked
Video
refresh
interval

1/60
1/20

Figure 4.5 A frame-timing diagram showing three frame updates: one that overruns the frame
rate, the resulting out-of-phase frame, and a frame-rate locked frame. In this exam-
ple, the video refresh rate is 60 Hz and the frame rate is 20 Hz [Performer 00a].

LODs cover roughly the same number of pixels. However, on SGI InfiniteReality
machines, Performer can use the Dynamic Video Resolution (DVR) feature to help
maintain a constant frame rate. The methods in pfPipeVideoChannel monitor the
time required to draw each frame. If the frame takes too long to draw because of
fill rate, the size of the viewport is reduced so that fewer pixels must be rendered. The
output video buffer is then scaled up (magnified) so that the image appears to be the
correct size. If the frame requires less time to draw than the frame rate threshold, the
video output is not reduced [Silicon Graphics 00a].

4.2.2 Predictive Fixed-Frame Rate

In contrast to reactive fixed-frame-rate schedulers, a predictive scheduler estimates
the complexity of the frame about to be rendered and enforces LOD assignments to
ensure that the update deadline is never exceeded. This approach is substantially more
complicated to implement than a reactive system because it requires an accurate way
to model how long the specific hardware will take to render a given set of polygons.
However, the major benefit of doing this is that the system can maintain a bounded
frame rate even for scenes that vary greatly in detail between successive frames. Under
these circumstances, a reactive fixed frame system could overrun the threshold for a
few frames, dropping below the desired frame rate, until the feedback mechanisms
reduced the scene detail sufficiently to get back under the desired frame time.

Team LRN

4.2 Fixed-Frame Rate Schedulers 99

View-Independent LOD

Funkhouser and Séquin’s architectural walkthrough system employed a predictive
fixed frame rate scheduler for selecting discrete LODs [Funkhouser 93b]. They used
a cost/benefit paradigm that attempted to optimize the perceptual benefit of a frame
against the computational cost of displaying it. That is, given a set S of object tuples
(O, L, R) of which each describes an instance of an object O, rendered at LOD L and
using rendering algorithm R, the overall image quality for each frame was calculated
via the following equation.

Maximize: ∑
S

Benefit(O, L, R)

Subject to:

∑
S

Cost(O, L, R) ≤ TargetFrameTime

(4.1)

The Cost(O, L, R) heuristic was estimated by assuming a two-stage, pipelined ren-
dering model involving a per-primitive processing stage (e.g., coordinate trans-
forms, lighting, and clipping) and a per-pixel processing stage (e.g., rasterization,
Z-buffering, alpha blending, and texture mapping). Assuming a pipelined architec-
ture, only one of these two stages will be the bottleneck to the system. That is, the
maximum time of the two is used, as follows, where C1, C1, C1 and are constants
specific to the rendering algorithm and target hardware.

Cost(O, L, R) = max

{
C1Poly(O, L) + C2Vert(O, L)

C3Pix(O)

The Benefit(O, L, R) heuristic incorporated a number of factors to estimate the
object’s contribution to model perception. The primary factor was the screen-space
size of an object measured in pixels. An accuracy component was also used to estimate
the quality of the image produced based on the rendering algorithm used. For ex-
ample, a textured, lit model would have higher accuracy and thus contribute greater
benefit than an untextured, unlit model. Finally, a number of more qualitative fac-
tors were applied as scaling factors to these two components: object importance (e.g.,
priority), focus (eccentricity), motion (velocity), and hysteresis. The weights of these
scaling factors were controlled manually through sliders in the user interface (see Fig-
ure 4.4). The final benefit heuristic can be given as follows:

Benefit(O, L, R) = Size(O) ∗ Accuracy(O, L, R) ∗ Importance(O)

∗ Focus(O) ∗ Motion(O) ∗ Hysteresis(O, L, R)

Team LRN

100 Chapter 4 Run-Time Frameworks

Table 4.1 Results for Funkhouser and Séquin’s evaluation of four different
LOD models, including their own predictive fixed-frame rate system.

Compute Time (s) Frame Time (s)

LOD Algorithm Mean Max Mean Max Std Dev

No LOD 0.00 0.00 0.43 0.99 0.305

Distance LOD only 0.00 0.01 0.11 0.20 0.048

Reactive System 0.00 0.01 0.10 0.16 0.026

Predictive System 0.01 0.03 0.10 0.13 0.008

The accuracy component is further refined as:

Accuracy(O, L, R) = 1 − Error = 1 − BaseError

Samples(L, R)m

where Samples(L, R) is the number of vertices for Gouraud shading, the number of
polygons for flat shading, or the number of pixels for ray tracing. The exponent m is
instantiated to 1 for flat shading and 2 for Gouraud shading. The BaseError constant
was set to 0.5.

Given the cost and benefit heuristics, Funkhouser and Séquin’s system could
solve Equation 4.1 at each frame in order to choose the best set of object tuples to
render. Unfortunately, this combinatorial optimization problem can be shown to
be NP-complete; it is in fact a variant of the Knapsack Problem (where elements
are partitioned into sets and at most one element from each set may be selected at
any time). Instead, Funkhouser and Séquin used a greedy approximation algorithm
to select LODs. They evaluated their system using a model of an auditorium, UC
Berkeley’s Soda Hall, containing 87,565 polygons at full resolution. They tested the
system using four LOD selection algorithms: no LOD, traditional view-independent
(distance-based) LOD, a reactive fixed frame system, and their predictive fixed frame
rate system. Their results are presented in Table 4.1.

Mason and Blake produced a hybrid of Funkhouser and Séquin’s predictive
scheduler and Maciel and Shirley’s imposters technique [Maciel 95]. This used a
hierarchical LOD concept in which multiple smaller objects in a scene are recur-
sively replaced with a larger single representation [Mason 97]. This view-independent
scheme gracefully handled scenes with many objects by allowing these to be merged
into group imposters. Mason and Blake extended the optimization algorithm of
Funkhouser and Séquin to support hierarchical LOD and incorporated frame-to-
frame coherence within the LOD selection process, incrementally updating the results
from the previous frame rather than recomputing LODs from scratch each frame.
They also performed a number of perceptual experiments to evaluate their system

Team LRN

4.2 Fixed-Frame Rate Schedulers 101

(a) (b)

(c) (d)

Figure 4.6 Images (a) and (b) compare the hierarchical fixed frame rate algorithm versus the
nonhierarchical algorithm, respectively, and (c) and (d) show the same comparison
for a different level of system stress [Mason 97]. Copyright © 1997 Blackwell Pub-
lishers.

against Funkhouser and Séquin’s using a stimulus comparison method. This involved
15 subjects comparing a number of pairs of images produced using the two tech-
niques and selecting which image was “better” on a 6-point scale. They found that the
images produced by the hierarchical algorithm were perceived as being significantly
better than those rendered with the nonhierarchical algorithm, probably because the
nonhierarchical algorithm removed objects the hierarchical algorithm was able to
preserve with a lower resolution imposter (see Figure 4.6).

Team LRN

102 Chapter 4 Run-Time Frameworks

Continuous LOD

Building upon the initial work of Funkhouser and Séquin, Gobbetti and Bouvier
developed a predictive fixed-frame-rate system that worked with continuous LOD
models instead of simply discrete ones [Gobbetti 99]. They performed a constrained
optimization at each frame to select the best resolution for each potentially visible
object while meeting the specified timing constraint. They used a similar cost/benefit
architecture, in which they define S(r) as a parameterized set of visible objects gen-
erated at each frame. Each element of the vector r takes a value between 0 and 1 that
represents the degree of simplification to be applied to that object’s multiresolution
mesh. Given this representation, and a factor W to represent the viewing configura-
tion (camera and lights), they characterize their solution as follows.

Maximize:

benefit(W , S(r))

Subject to:

cost(W , S(r)) ≤ TargetFrameTime

Their benefit heuristic provided an estimation of the quality of the image that would
be produced when rendering the set of multiresolution objects S at resolutions r. This
was given as:

benefit(W , S(r)) =
∑

i

coverage(SiW) ∗ focus(Si, W) ∗ semantics(Si) ∗ accuracy(Si, ri)

where coverage(Si, W) is an estimate of the number of pixels covered by the object,
focus(Si, W) is the distance of the object’s projection to the center of the screen,
semantics(Si) is a user-specified importance factor for the object, and accuracy(Si, ri)is
a factor measuring how well the mesh at resolution ri approximates the mesh at max-
imum resolution. This accuracy component was modeled as the square root of the
resolution factor, r, times the number of vertices in the highest LOD for the object
S. Gobbetti and Bouvier state that they originally introduced a hysteresis factor into
their model but eventually removed it because they found it unnecessary for most
complex scenes.

This cost heuristic estimated the time required to render a scene of objects at reso-
lutions r given the viewing parameters W. This included terms to model the graphics
initialization phase (e.g., clearing the Z-buffer and setting up initial state), the se-
quential rendering of each object, and the finalization phase (e.g., buffer swapping).
The equation can be given as follows.

cost(W , S(r)) = Tinit + Tfinal +
∑

i

T
setup
i + tmax · r

Team LRN

4.2 Fixed-Frame Rate Schedulers 103

Checkpoint

Culling

Optimization

Display
T (desired)

t0 t0 + T (lag)

T (optimize)

Figure 4.7 The rendering pipeline in Gobbetti and Bouvier’s time-critical system, showing the
time taken to perform view culling, constrained optimization of the cost/benefit
problem, and polygon rendering for each frame [Gobbetti 99].

where Tinit is the initialization time, Tfinal is the finalization time, Tsetup is the time
to set up the rendering environment for an object, tmax is the vector of maximum
rendering time for each mesh (the symbol · represents the inner product). Each entry
in the r vector is determined to be between 1 and the minimal resolution, rmin, under
which a reduction in resolution does not reduce rendering time. The instantiation
of these factors was performed experimentally for the target platform through a
benchmarking preprocess.

To find the appropriate level of detail at which to display each object, Gobbetti
and Bouvier solved the cost/benefit equation using an interior point algorithm, in-
cluding the time taken to perform this optimization in the algorithm itself (see Figure
4.7). The authors tested their system on a scene with 166 chairs, totaling 1,393,072
polygons, using a flight path through the scene that produced drastic variations in
scene content. They reported that without their adaptive rendering system the frame
time would vary between 50 and 1950 ms. However, when they applied their predic-
tive fixed frame rate system, and specified a target frame time of 100 ms, the system
never exceeded this threshold.

Need for Perceptual Model

You will have noticed a common thread running through the description of al-
gorithms for LOD selection. Even the most sophisticated fixed-frame-rate sched-
ulers rely heavily on heuristics to estimate the various factors that influence an ob-
ject’s perceptual importance. Funkhouser and Séquin’s system, though an important

Team LRN

104 Chapter 4 Run-Time Frameworks

contribution to the state of the art, still used a series of sliders set empirically by the
user to control the relative importance of the various benefit factors. Later systems,
by Mason and Blake and by Gobbetti and Bouvier, extended the Funkhouser–Séquin
model to hierarchical and continuous LOD, but continued to rely on a fundamentally
heuristic and ad hoc model of visual importance. Such a system has many drawbacks.
For example, a user must have a fair amount of expertise in setting the various sliders,
and those settings may not apply correctly to a different 3D scene, rendering scenario,
or rendering platform. In Chapter 8 we will return to the problem of managing LOD,
and describe more recent attempts by researchers to use models of human perception
for a principled approach to this problem.

4.3 View-Dependent LOD

Managing level of detail with discrete LOD reduces to the LOD selection problem:
for every frame, choose which LODs will represent which objects. Continuous LOD
poses a similar problem: for every frame, choose how much detail to allocate to each
visible object. We now turn to view-dependent LOD, which presents a much more
complicated task for the run-time system but also offers much more flexibility in how
to allocate detail.

Several researchers independently proposed techniques for view-dependent sim-
plification of polygonal meshes at about the same time, including Xia and Varshney
[Xia 96], Hoppe [Hoppe 97], and Luebke and Erikson [Luebke 97]. All of these
techniques are based on essentially the same concept, a hierarchy of vertex merge
operations applied or reversed at run-time according to a set of view-dependent cri-
teria. A single object may span multiple levels of detail. For example, distant portions
of a large object may be simplified more aggressively than nearby portions, or silhou-
ette regions may be allocated more detail than interior regions. View-dependent LOD
techniques can produce very high-fidelity reductions for a given polygon count, since
they allocate polygons exactly where needed. Their continuous fine-grained adjust-
ments also tend to provide smoother transitions between levels of detail, reducing
the “popping” artifacts that plague discrete LOD. However, they come at a relatively
high computational cost, since the mesh is continuously evaluated, simplified, and
refined at run-time. In this section we describe a generic view-dependent simplifica-
tion framework and relate it to some published schemes. We detail some examples
of view-dependent critieria that can be plugged into such a framework, and discuss
how to track mesh dependencies to avoid certain simplification artifacts. We close
with a discussion of the advantages and disadvantages of view-dependent methods
over traditional discrete LOD.

4.3.1 Overview

Most view-dependent simplification approaches encode the model and the gamut of
possible simplifications as a single data structure, which we call the vertex hierarchy.

Team LRN

4.3 View-Dependent LOD 105

High detail

Vertex
hierarchy

Active nodes

Nodes on cut

Low detail

Figure 4.8 A schematic view of the vertex hierarchy. A cut across the hierarchy encodes a par-
ticular simplification. Refining a region to high detail pushes the cut down, whereas
coarsening a region to low detail pushes the cut up. Note that although we have drawn
the hierarchy here as a single rooted tree, it may be generalized to a forest.

As the name suggests, this structure is a hierarchy of vertices from the original model.
These vertices are recursively merged during initialization by repeated application
of a collapse-based simplification operator (e.g., cell collapse, edge collapse, and
triangle collapse; see Section 2.2). Leaf nodes of the vertex hierarchy represent a
single vertex from the original model, and interior nodes represent multiple merged
vertices. If the hierarchy forms a single tree, the root of that tree represents the
entire model clustered together. At run-time, the vertex hierarchy is dynamically and
continuously queried to generate a simplified scene. Every possible cut across the
hierarchy represents a different simplification, with vertices collapsed according to
which nodes are on the cut (Figure 4.8). The algorithm operates by continuously
testing nodes on the cut against view-dependent criteria, such as the projected screen-
space size or the silhouette status of triangles associated with a cluster, and moving
the cut up and down to locally simplify or refine the model according to the result.

4.3.2 The Vertex Hierarchy

Algorithms create the vertex hierarchy by a clustering process in which vertices from
the original model are merged into clusters, the clusters then merged into larger clus-
ters, and so on. Any vertex-merging simplification operator can guide this clustering.
For example, Luebke and Erikson [Luebke 97] use the cell collapse operator, with a
recursive octree providing an adaptive version of the Rossignac–Borrel uniform grid
approach. The edge collapse operator, which merges two vertices at a time, provides
another common alternative. For instance, the vertex hierarchy might encode the se-
quence of edge collapses performed by the Garland–Heckbert quadric error metrics

Team LRN

106 Chapter 4 Run-Time Frameworks

8 7

10

1

54

39

2 A

6

1 2 7

10 A

D

C 3

E

4 5 6

B

R

8 9

Fold node A

Unfold node A

Figure 4.9 Folding and unfolding. Here, nodes 1, 2, and 7 are folded into their parent node A,
merging the proxies of those nodes into the proxy of A. Unfolding A splits its proxy
vertex into the proxies of its children. Folding A removes the shaded triangles from
the model. Unfolding A reintroduces the triangles.

algorithm (see Sections 3.3.2 and 5.3). Note that our generic framework allows a node
to cluster any number of vertices; we do not assume a binary tree. We will return to
this issue shortly.

Let us define some terminology. In our parlance, a node N supports a vertex V if
the leaf node associated with V descends from N. Similarly, N supports a triangle T if
it supports one or more of the corner vertices of T. The set of triangles in the model
supported by a node forms its region of support. Each node stores a representative
vertex called the proxy. For leaf nodes, the proxy is exactly the vertex, of the original
model, that the node represents. For interior nodes, the proxy is typically some
average of the vertices supported by N. For example, the position of the proxy could
be calculated using optimal vertex placement driven by quadrics. Folding a node
merges all of the vertices supported by that node into the node’s single proxy vertex.
In the process, triangles whose corner vertices have been merged are removed from
the scene, decreasing the overall polygon count. Unfolding a node splits its proxy
vertex into the proxies of the node’s children, reintroducing some triangles into the
scene (Figure 4.9).1 Precomputing and storing with each node the set of triangles to
remove and add makes folding and unfolding fast enough to perform dynamically,
enabling run-time view-dependent simplification. The cut is the set of folded nodes
closest to the root, and is typically encoded with a linked list for efficient traversal,
insertion, and deletion.

1. Note that fold and unfold are run-time tasks. We use the terms to distinguish the run-time
action from the simplification operators (such as cell collapse or edge collapse), which are
chosen and applied during preprocessing.

Team LRN

4.3 View-Dependent LOD 107

4.3.3 Variations on the Vertex Hierarchy

Some important variations on the general vertex hierarchy structure deserve further
mention. Many view-dependent LOD algorithms use repeated application of the edge
collapse operator to build a binary vertex hierarchy. For instance, Hoppe’s view-
dependent progressive mesh (VDPM) algorithm extends his influential progressive
mesh structure to support view-dependent refinement [Hoppe 97]. Xia and Varshney
use a similar binary vertex hierarchy structure, which they term merge trees [Xia
96]. The binary hierarchy structure leads to several advantages. The individual nodes
require less storage since, for example, nodes need not store the number of children.
In addition, a node can avoid storing indices of both children by guaranteeing that
sibling nodes are stored in adjacent positions of an array. If a node’s left child has
index i, the right child will have index i + 1, so the node can simply store i. The simple,
regular structure of a binary hierarchy also lends itself to efficient traversal. The
primary disadvantage of such a binary vertex hierarchy is the very fine granularity
it imposes. Since each node represents an edge collapse, folding a node removes only
two triangles from the mesh. As a result, the hierarchy will contain many nodes, and
many folds and unfolds will be needed each frame to achieve the desired level of
detail.

Other algorithms build binary vertex hierarchies but do not require the two
vertices merged by a node to share an edge. (Merging two nonadjacent vertices has
been given several names: virtual edge collapse [Garland 97], vertex pair collapse, and
vertex unification [Popovic 97]; see Chapter 2.) This permits nonmanifold meshes
and enables changes to the mesh topology, such as closing holes and merging separate
meshes. El-Sana and Varshney [El-Sana 99a] use the term view-dependence tree to
describe one such binary vertex hierarchy. Still other algorithms, such as Luebke and
Erikson’s hierarchical dynamic simplification, use an octree vertex hierarchy (which
they call the vertex tree) in which every node has at most eight children [Luebke 97].
One unique feature of this algorithm is its choice of proxy: a cell collapse operation
merges all vertices in an octree cell to the single “most important” vertex, so that
interior nodes as well as leaves represent vertices of the original model. This reduces
the overall storage of the hierarchy at the cost of some fidelity, since the vertices of
the simplified LOD cannot be optimized to capture the shape. Octrees are just two
of a number of possible spatial subdivision hierarchies that may be used to construct
vertex hierarchies [Samet 89a, Samet 89b].

4.3.4 View-Dependent Criteria

A vertex hierarchy supports fast local simplification and refinement by folding and
unfolding nodes to move the cut up and down. Since different regions of the model
can be simplified differently at run-time, vertex hierarchies support view-dependent
LOD. Various view-dependent criteria can be used to guide simplification, in ef-
fect serving as callbacks that evaluate a node in the vertex hierarchy and returning

Team LRN

108 Chapter 4 Run-Time Frameworks

whether it should be folded or unfolded. We typically require that unfolding be
monotonic down the tree: any criterion that would unfold a node should also unfold
its parent. Given a set of criteria, a view-dependent LOD algorithm simply traverses
the nodes near the cut, evaluating whether to unfold nodes (lowering the cut and in-
creasing local detail) or fold their parents (raising the cut and decreasing local detail).

For example, Luebke and Erikson described three criteria: a screen-space error
threshold, a silhouette test, and a triangle budget [Luebke 97]. The screen-space er-
ror threshold monitors the projected extent of a node in the vertex hierarchy using
a bounding sphere that contains the node’s region of support (see Section 3.2), and
folds nodes smaller than some user-specified number of pixels on the screen. This
results in size-based LOD in which small and distant objects are represented in less
detail than nearby objects. Xia, El-Sana, and Varshney [Xia 97] have described an
additional criterion of local illumination to guide view-dependent rendering. This
criterion increases detail in regions of high illumination gradient and uses normal
cones. Other view-dependent criteria include visibility [El-Sana 01] and motion
[El-Sana 02].

The silhouette test uses a precalculated cone of normals test to determine whether
a vertex cluster is currently on the silhouette. This technique associates a cone (which
encapsulates the normals of triangles supported by the node) and a sphere (which
bounds the vertices supported by the node [Figure 4.10]). The silhouette test dove-
tails nicely with the screen-space error threshold approach; that is, clusters on the
silhouette are simply tested against a tighter screen-space threshold than clusters in
the interior. Many other techniques could be used for determining silhouette status.
Johnson and Cohen generalize the “cone of normals” concept to spatialized normal
cone hierarchies, and show their use for several applications beyond silhouette detec-
tion [Johnson 01]. Shirman and Abi-Ezzi use a slightly different variant with a cone
that contains the geometry [Shirman 93], which Sander et al. have extended to an
anchored cone hierarchy that gives excellent results [Sander 00]. Using a normal mask
technique inspired by Zhang and Hoff [Zhang 97], Luebke and Hallen represent the
normals spanned by a node with a quantized cube, which they encode as a bit vec-
tor that can simply be ANDed with a mask to find silhouette status [Luebke 01]. The
result is expensive in memory, but is very fast and less conservative than cone-based
methods (Figure 4.11).

Finally, vertex hierarchies support view-dependent budget-based simplification
by minimizing an error criterion while staying within a user-specified triangle bud-
get.2 For example, Luebke and Erikson evaluate the error represented by a node ac-
cording to the bounding sphere containing the node’s region of support, reasoning
that vertices cannot move further than the diameter of the bounding sphere. They

2. This is the view-dependent analog of predictive fixed frame rate scheduling, discussed in
Section 4.3. Although we describe the budget in terms of number of polygons, this could be
extended to include factors such as fill rate to give a more accurate estimate of rendering time.

Team LRN

4.3 View-Dependent LOD 109

(a)

(c) (d)

(b)

Vn

n

v

Vv

Figure 4.10 Testing silhouette status with a cone of normals: (a) A node supporting four triangles
(shaded). The arrows represent the normals of the triangles and the dashed circle
represents the bounding sphere of the node. (b) The cone of normals for the node,
represented as an average vector Vn and semiangle θn. (c) The viewing cone tightly
contains the node’s bounding sphere, with center vector Vv from the viewpoint to
the center of the sphere and semiangle θv. (d) If any vector in the cone of normals
is orthogonal to any vector in the viewing cone, the node potentially lies on the
silhouette. The node may be classified as backfacing, frontfacing, or silhouette by
comparing φ, θv, and θn.

then unfold nodes so as to minimize the screen-space error obtained by projecting
this sphere onto the screen. The intuitive meaning of this process is easily put into
words: “Vertices on the screen can move as far as x pixels from their original po-
sition. Minimize x without exceeding the triangle budget.” To implement this, they
maintain a priority queue of nodes in the vertex hierarchy, initialized to contain the
root node and sorted by screen-space error. The node with the largest error is ex-
tracted and unfolded, and its children are placed in the queue. This process iterates
until unfolding the top node of the queue would exceed the triangle budget, at which
point the maximum error has been minimized.

Team LRN

110 Chapter 4 Run-Time Frameworks

. . .

(a) (b)

(c)

Figure 4.11 Efficient computation of silhouette nodes with the node’s normal mask. (a) The
node’s supported triangles. (b) A cell in the normal mask is set if a normal falls within
the corresponding range. (c) Each cell corresponds to a bit in a bit vector.

4.3.5 Tracking Mesh Dependencies

The vertex hierarchy can be viewed as a partial ordering of simplification operators.
The preprocessing stage applies these operators one at a time, in effect performing
view-independent simplification while recording a history of the operators used.
The run-time system applies the operators out of order, according to some set of
view-dependent criteria. Clearly some orderings are not possible. For example, we
cannot unfold a node unless we first unfold its parent. The arcs connecting parent
and child nodes can thus be viewed as dependencies that impose a partial ordering
on the simplification operators encoded by nodes in the vertex hierarchy. However,
these dependencies are not in general sufficient. That is, we cannot always define a
triangulation over these vertices as a cut across the hierarchy and guarantee that the
triangulation will not have foldovers or nonmanifold connectivity. In addition to the
parent-child arcs, there exist other dependencies among the simplification operands
[Xia 97]. Figure 4.12 shows an example of such a dependency.

In this example, A shows the initial state of the mesh. While constructing the
merge tree, we first collapsed vertex v2 to v1 to get mesh B, and then collapsed
vertex v3 to v4 to get mesh C. Now suppose at run-time we determined that we
needed to display vertices v1, v2, and v4, and could possibly collapse vertex v3 to v4.
However, if we collapse vertex v3 to v4 directly, going from mesh A to mesh D, we
get a mesh foldover where there should have been none. It is possible to construct

Team LRN

4.3 View-Dependent LOD 111

v1

v2

v4

v3 v1(v2)

v4

v3

A

v4(v3)

v1

v2 v3

D

B

C

v1(v2)

v4(v3)

Figure 4.12 Simplification dependencies. The simplification preprocess collapsed v2 to v1(A →
B), then collapsed v3 to v4(B → C). If at run-time the system folds v3 to v4 without
first folding v2 to v1(A → D), a mesh foldover occurs [Xia 97].

procedures for checking and preventing such mesh foldovers at run-time, but these
may be computationally expensive. Instead, several researchers have addressed this
problem by explicitly storing dependencies in the vertex hierarchies. Although the
dependencies may be constructed and stored with any simplification operator, let
us trace their evolution in the literature using the simplest case of an edge collapse
operator.

Explicit Dependencies

Xia et al. [Xia 96] and Gueziec et al. [Guéziec 98] stored the entire list of vertex
neighbors around an edge collapse or a vertex split explicitly. Thus, in Figure 4.13,
edge (va, vb) may collapse to the vertex vnew only when the vertices v0, v1, . . . vk exist
in the current level of simplification (i.e., are on the cut of the vertex hierarchy) and

Team LRN

112 Chapter 4 Run-Time Frameworks

Edge collapse

Vertex split

va

v0 v1

v2

v3v4

v5

v0 v1

v2

v3v4

v5
vnew

vb

Figure 4.13 Storing the simplification dependencies.

are adjacent to (va, vb). Extending this reasoning further, we can derive the following
dependencies that define safe edge collapses and vertex splits:

Edge (va, vb) may collapse to the vertex vnew only when the vertices v0, v1, . . . vk
exist in the current level of simplification and are adjacent to (va, vb).

Vertex vnew may split to create the edge (va, vb) only when vertices v0, v1, . . . vk
exist in the current level of simplification and are neighbors of vnew.

These dependency checks are performed during each vertex split or edge collapse
during the real-time simplification. These dependencies are explicitly stored as lists of
vertices v0, v1, . . . vk in the vertex hierarchy during its creation. Returning to Figure
4.12, we can now see that the collapse of edge (v3, v4) depends on the adjacency of
vertex v1 to v3. If vertex v2 is present, then v1 will not be adjacent to v3 and therefore
v3 cannot collapse to v4.

Implicit Dependencies

Such explicit dependencies require extra memory to store and are cumbersome to test
at run-time, largely due to the memory overhead of making several nonlocal accesses.
These nonlocal accesses ruin cache coherence and may even lead to paging for large
data sets or on computers with insufficient memory. Furthermore, it has proven
difficult to extend explicit dependencies lists to handle the view-dependent topology
simplification. El-Sana and Varshney [El-Sana 99a] have proposed a compact scheme
to encode the dependencies implicitly. This scheme uses only local memory accesses.

Implicit dependencies rely on the enumeration of vertices generated after each
collapse. El-Sana and Varshney assign the n vertices of a full-resolution mesh ver-
tex IDs 0, 1, . . . , n − 1. Every time they collapse an edge to generate a new vertex,
they assign the ID of the new vertex to be one more than the maximum vertex ID

Team LRN

4.3 View-Dependent LOD 113

thus far. This process continues until the entire hierarchy has been constructed. At
run-time, the dependency checks now require only a few simple tests based on vertex
IDs before each fold and unfold operation, as follows.

Edge collapse: An edge (va, vb) may collapse to the vertex vnew if the vertex ID of
vnew is less than the vertex IDs of the parents of the vertices adjacent to (va, vb).

Vertex split: A vertex vnew can be safely split at run-time if its vertex ID is greater
than the vertex IDs of all of its neighbors.

El-Sana and Varshney implement the previous checks efficiently by storing two inte-
gers with each node in the vertex hierarchy: (1) the maximum vertex ID of its adjacent
vertices and (2) the minimum vertex ID m of the parents of its adjacent vertices. For a
comprehensive survey of dependencies and their relationships to selective simplifica-
tion and refinement, the interested reader can refer to the survey paper by DeFloriani
et al. [DeFloriani 02].

4.3.6 Global Simplification

Note that nothing in our definition of vertex hierarchies prevents nodes that merge
vertices of separate objects, though a topology-modifying operator must be used to
generate such a hierarchy. For example, Luebke and Erikson’s hierarchical cell col-
lapse algorithm merges vertices across objects, which enables their system to aggre-
gate small objects and represent them at a distance with a single LOD—a definite
advantage for drastic simplification. The ability to aggregate objects coupled with the
adaptive nature of view-dependent LOD enable global simplification, in which the en-
tire scene is treated as a single model to be simplified in view-dependent fashion. This
provides an extremely general and robust visualization solution, since no division of
the scene into individual objects is necessary. Such a solution is particularly useful
for previewing models such as unsegmented (or poorly segmented) isosurfaces from
medical or scientific visualization, or unorganized “polygon soup” CAD models.

The chief disadvantage of view-dependent LOD is the computational load in-
curred by continuous evaluation, simplification, and refinement of the vertex hier-
archy. Another difficulty arises with the representation of the model: modern graph-
ics hardware generally performs best on meshes that have been “compiled” using
techniques such as display lists and triangle strips. For this reason, the application
of view-dependent LOD techniques is limited today to a few special cases (such as
the unorganized models just mentioned, and terrains, which have a long tradition
of view-dependent LOD). In Section 5.5 we describe a method for maintaining tri-
angle strips through view-dependent simplification of the underlying mesh, but as
this technique incurs additional computation and memory, this only solves part of
the problem. However, recent trends in graphics hardware design seem promising.
Transform and lighting has moved from the CPU onto the graphics hardware even

Team LRN

114 Chapter 4 Run-Time Frameworks

for commodity systems, and modern chips now provide post-transform-and-lighting
vertex caches, which reduce the importance of maintaining triangle strips. Perhaps
in the future advances in graphics hardware and the underlying algorithms will make
view-dependent LOD techniques more generally applicable.

4.4 Blending Between Transitions

Often the selection thresholds used for each LOD will not completely minimize or
eliminate the visual impact of a switch. The likely result is a noticeable and dis-
tracting “popping” during the transition between LODs. To combat these artifacts,
researchers and developers have proposed a number of smooth blending techniques
with the goal of softening the transitions between levels. The following sections de-
scribe two common blending approaches: alpha blending and geomorphs.

4.4.1 Alpha Blending

This technique smooths the abrupt transition between levels of detail by blending
one LOD into another, associating an opacity or alpha value with the two LODs.
An alpha of 1.0 means that the object is opaque; an alpha of 0.0 means that the
object is invisible. With each object, the system specifies a fading range centered at
the switching distance for each LOD. For example, if the switching distance is 100 m,
and a fade range of 10 m is specified, alpha blending will take place between 95 and
105 m. Specifically, as LOD1 moves away from the viewpoint and reaches 95 m, both
LOD1 and LOD2 are rendered at the same time, until the object moves beyond 105 m,
at which point only LOD2 is rendered. Within the fade region, the alpha value of
both levels of detail is linearly interpolated between 0.0 and 1.0 (and vice versa). At a
distance of 95 m, LOD1 will have an alpha of 1.0 (opaque), whereas LOD2 will have
an alpha of 0.0 (invisible). By 100 m distance, both LOD1 and LOD2 are rendered
with an alpha transparency of 0.5. Finally, by the time the object has reached 105
m, LOD1’s alpha value will have dropped to 0.0 and LOD2’s value is 1.0. Naturally,
when an LOD has an alpha value of 0.0, the system need not render that LOD. These
concepts are illustrated in Figure 4.14. Note that it is also possible to perform the fade
transition over a brief period of time instead of over a distance. This has the advantage
of completing the transition process in a timely manner for objects remaining within
the fade distance range for extended intervals.

Although alpha blending can produce far smoother LOD transitions, the disad-
vantage of this approach is that two versions of an object are necessarily rendered
within the fade region. The result is an increase in the number of polygons being
rendered during the time of the transition. This may be problematic, since the sys-
tem may well be switching to a lower level of detail precisely to reduce the number

Team LRN

4.4 Blending Between Transitions 115

High-resolution image

Transition region

Low-resolution image

Ran
ge 2

Range 1

Figure 4.14 Showing the fade range where two levels of detail for an object are blended using
alpha transparency [Performer 00a]. Copyright © 2000 Silicon Graphics, Inc.

of polygons. For this reason, it is best to keep the fade region as short as necessary to
mitigate any popping artifacts.

Note that ideally each LOD should be rendered as an opaque image, and the re-
sulting images subsequently blended. Rendering the two levels of detail on top of
each other as partially transparent will likely cause self-occlusion artifacts [Helman
96]. Many modern graphics platforms offer hardware support for alpha-blending
level of detail. For example, SGI’s OpenGL Performer API includes a function to
control this feature: pfLODTransition() lets the programmer set the distance over
which Performer should fade between levels of detail. The distance specified is ap-
plied before and after the switch boundary between two LODs, such that the fade
between one LOD and another actually occurs over twice the distance value. The
default fade distance is 1, and Performer limits the transition distances to the short-
est distance between the switch range and the two adjacent switch ranges. Other

Team LRN

116 Chapter 4 Run-Time Frameworks

examples of commercial products that support alpha-blending LOD include the
Vega visual simulation system from MultiGen–Paradigm (www.multigen.com), and
the Rxscene polygon- and spline-based modeler from German company REALAX
(www.realax.com).

4.4.2 Geomorphs

Just as alpha blending performs blending in image space, geomorphing blends
smoothly between levels of detail in object space, morphing the vertices in one LOD
toward those in the next LOD. This is certainly the most complex of the techniques
introduced thus far, but it provides a very effective way to switch seamlessly from
one level of detail to another. In practice, using geomorphs can make screen-space
errors of a few pixels—which would certainly incur visible popping otherwise—
appear nearly imperceptible [Hoppe 98a]. Some commercial and public-domain
LOD systems support geomorphs. For example, the Unreal game engine provides
geomorphing as part of its continuous LOD feature.

The first instance of morphing between LODs was demonstrated by Greg Turk
for his polygon retiling algorithm [Turk 92]. This algorithm distributed a new set of
vertices over the surface of a model and connected them to create a retiling of a surface
that was faithful to both the geometry and the topology of the original surface. The
vertices of the original and the retiled meshes could then be interpolated so that at
one end of the interpolation they all lie on the low-detail mesh, whereas at the other
end of the interpolation they all follow the high-detail mesh (see Figure 4.15). Turk
notes that a linear interpolation was sufficient to produce smooth transitions between
models.

Hoppe applied the term geomorph to a similar geometric interpolation between
LODs in his progressive meshes algorithm [Hoppe 96]. Recall that progressive meshes
encode a series of vertex split operations to refine a coarse version of a mesh into
the original high-resolution mesh. Hoppe used geomorphing to smooth the visual
transition resulting from a vertex split, or its inverse edge collapse. For example, an
edge collapse geomorph simply interpolates the position of two vertices in the finer
mesh linearly between their current position and the position of their corresponding
parent vertex in the coarser mesh. Thus, in Figure 4.16, a geomorph of the edge
collapse operation involves vertex vu moving toward vt until they merge, at which
point the two vertices are replaced by one, vs, and the supporting faces fl and fr are
removed.

Hoppe also performed geomorphing of surface appearance attributes, interpo-
lating vertex attributes in addition to their locations. He noted that any sequence of
these smooth transitions can be composed so that geomorphs can be constructed
between any two meshes of a progressive mesh representation (Figure 4.17). Hoppe
later extended the progressive meshes algorithm to support view-dependent refine-
ment [Hoppe 97], and then applied this technique to the area of terrain rendering

Team LRN

4.4 Blending Between Transitions 117

Figure 4.15 An example of the smooth retiling process developed by Turk, showing a transition
(starting top left) from low to high detail in a clockwise direction [Turk 92]. Copy-
right © 1992 Association for Computing Machinery, Inc.

Edge collapse

Vertex split
fn

1

fn
1

fl fr

fn
3

fn
0

fn
2

fn
0

fn
2

fn
3

vs
vt

vu

Figure 4.16 The vertex split refinement operation and its inverse, the edge collapse coarsening
operation [Hoppe 98a].

Team LRN

118 Chapter 4 Run-Time Frameworks

(a) (b) (c)

(d) (e)

Figure 4.17 An example of geomorphing between two meshes (one with 500 faces and the other
with 1,000 faces) in Hoppe’s progressive meshes algorithm. The geomorph percent-
ages in each case are for images (a) through (e), respectively, 0%, 25%, 50%, 75%, and
100% [Hoppe 96]. Copyright © 1992 Association for Computing Machinery, Inc.

[Hoppe 98a]. In the latter system, geomorphs were created at run-time to gradually
transition between edge collapse or vertex-split operations. This was only done for
regions visible to the user, since it would be wasteful and unnecessary to geomorph
an invisible region of the mesh. Once a geomorph refinement was initiated, it was
defined to last over gtime frames (Hoppe chose gtime to last one second). Geomorph
coarsening (smoothing an edge collapse) operated in a similar fashion, except that
certain constraints led Hoppe to restrict these geomorphs to occur over only one
layer of the vertex hierarchy at a time. He halved the gtime parameter for these cases.
Fortunately, geomorph coarsening is somewhat unusual, since it usually reflects the
infrequent situation of the user receding backward from the terrain. During a 2-
minute flyover of the Grand Canyon terrain model, Hoppe reported that 28.3% of
vertices underwent geomorph refinement, whereas only 2.2% of vertices underwent
geomorph coarsening.

Team LRN

4.5 Conclusions 119

4.5 Conclusions

In this chapter, we have looked at some of the fundamental run-time concepts for
view-independent and view-dependent LOD. In terms of view-independent schemes,
we looked at a number of ways to modulate LOD, including distance or size crite-
ria, priority, hysteresis, and environment conditions. The topic of perceptually based
LOD was introduced and is covered in greater detail in Part III. We also covered fixed-
frame-rate schedulers, learning the distinction between reactive and predictive sched-
ulers. This bridged the discussion into view-dependent LOD, where we described
the various run-time factors involved in building a view-dependent LOD system.
Finally, we described the concept of smooth blending between LODs to reduce pop-
ping effects, both in image space (alpha blending) and geometry space (geomorphs).
Whereas this chapter dealt primarily with general run-time concepts, the next chap-
ter focuses on a few specific LOD algorithms, and provides more in-depth discussion
of each of these.

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
A Catalog of

Useful Algorithms

No single LOD algorithm is fast, robust, simple to code, and capable of both
drastic and high-fidelity simplification on all types of models. Instead, in

this chapter we describe several LOD algorithms or families of algorithms, each of
which excels in some particular respect. Our intent is not to provide an exhaustive
list of work in the field of polygonal simplification, nor to select the best published
papers, but to describe a few important and useful algorithms that span the gamut
of simplification research. You may choose to implement one of these algorithms
(or use publicly available code), use another algorithm from the literature, or design
your own, but hopefully this book and this chapter will help you make an informed
decision.

We begin with vertex clustering, a family of algorithms that are fast, robust, and
relatively simple. Next we briefly describe an important algorithm for vertex deci-
mation, which uses the vertex removal operation described in detail in Chapter 2.
Decimation excels at removing redundant detail such as coplanar or nearly copla-
nar polygons. We then turn to Garland and Heckbert’s algorithm using quadric error

121

Team LRN

122 Chapter 5 A Catalog of Useful Algorithms

metrics, which strikes perhaps the best balance between speed, robustness, simplicity,
and fidelity. We also review image-driven simplification, which is quite slow in com-
parison to the previous algorithms but produces very high-fidelity LODs by guiding
simplification with actual rendered images. Finally, we describe two useful auxiliary
algorithms, which do not generate LODs but augment the other algorithms presented
in this book. First, we introduce skip strips, a technique for accelerating rendering of
view-dependent LOD meshes. Next, we provide a high-level description of a fast, ro-
bust polygon triangulation algorithm for which a publicly available implementation
is included on the companion Web site.

5.1 Vertex Clustering

First proposed by Rossignac and Borrel in 1992, vertex clustering remains one of
the most useful LOD algorithms to date [Rossignac 92]. Robust, fast, and simple to
implement, vertex clustering has provided a springboard for other LOD researchers,
such as Low and Tan [Low 97] and Lindstrom [Lindstrom 00a], who have extended or
improved Rossignac and Borrel’s original algorithm. Multiple graphics packages and
toolkits have implemented vertex clustering for simple and efficient LOD generation,
and we include a simple implementation (Greg Turk’s plycrunch) on the companion
Web site. Here we describe the original algorithm, as well as some notable later
extensions.

5.1.1 Overview

Vertex clustering begins by assigning a weight or importance to every vertex in the
model. For example, Rossignac and Borrel assign higher importance to vertices at-
tached to large faces, and to vertices in regions of high curvature (since such vertices
are more likely to lie on the silhouette). Next, the algorithm overlays a 3D grid on the
model and collapses all vertices within each cell of the grid to the single most impor-
tant vertex within the cell. The resolution of the grid determines the quality of the
resulting simplification. A coarse grid will aggressively simplify the model, whereas a
fine grid will perform only minimal reduction. In the process of clustering, triangles
whose corners are collapsed together become degenerate and are filtered out.

Clearly the major implementation issues are the choice of an importance metric
and the efficient clustering of vertices with the concurrent removal of degenerate
triangles. We discuss each of these in the following sections.

5.1.2 Vertex Importance

To evaluate vertex importance, Rossignac and Borrel examine the edges attached to
the vertex and assign importance as a weighted sum of two factors. The first factor is
the length of the longest attached edge, which reflects the size of the associated faces.

Team LRN

5.1 Vertex Clustering 123

Note that all edge lengths should be normalized to the model size, so that the resulting
simplification does not depend on the scale of the model. For example, the developer
could divide all edge lengths by the diagonal span of the model bounding box, or by
the mean edge length. The second factor affecting vertex importance is the maximum
angle between edges, which relates to the local curvature. That is, the maximum angle
θ between all pairs of attached edges is small in regions of high curvature. Since
high-curvature vertices are more likely to lie on the silhouette, Rossignac and Borrel
weight these vertices according to 1/θ . In other words, the importance of a vertex is
a weighted sum of the length of its longest edge and the reciprocal of the maximum
angle between its edges. This can be efficiently computed in a linear-time traversal of
vertices and their associated edges.1

Other importance criteria are possible. For example, Low and Tan, in their exten-
sion of the vertex clustering algorithm (described later), argue that cos(θ/2) provides
a better estimate of silhouette probability than 1/θ [Low 97]. Depending on the ap-
plication, one might want to rate vertices on the boundary of the mesh as more
important than vertices in the mesh interior. When attributes such as color, normal,
and texture coordinates are present, vertices at discontinuities (e.g., a crease in the
normal field, or a change in the texture ID) could be of higher importance. One other
point of note: since Rossignac and Borrel use the length of incident edges to estimate
the size of the polygons associated with a vertex, they calculate vertex importance be-
fore triangulation. This avoids inaccurate ratings of small features on large polygons,
since vertices at those small features may get associated with long, skinny triangles
during triangulation (Figure 5.1).

5.1.3 Clustering Vertices and Filtering Degenerate Triangles

The gridded clustering technique of Rossignac and Borrel lends itself to implementa-
tion as a spatial hash table. To apply a uniform grid to the vertices, we first find which
cell of the grid each vertex occupies, and then find to which entry in the table that
cell hashes. A simple hash function (such as the sum of the cell indices in x, y, and z
weighted by different prime numbers) suffices. Some implementations optimize this
further by converting all vertex coordinates to fixed-point representations and by re-
stricting the grid size to powers of 2. This makes computing the cell indices of a vertex
as simple as truncating its fixed-point coordinates to fewer bits.

Given a way to map vertex coordinates to grid cells, the algorithm makes a pass
over the model vertices, associating each vertex with the appropriate grid cell and
keeping track of the most important vertex in each cell. Next, a pass over the model
triangles assigns each triangle corner to the most important vertex in the respective
cell, and removes triangles for which two or three corners map to a single vertex.

1. This assumes that no vertex has more than a small constant number of edges, which is almost
always the case for real-life meshes. Technically, the running time is O(| V | +M2), where | V |
is the number of vertices and M is the maximum valence of any vertex.

Team LRN

124 Chapter 5 A Catalog of Useful Algorithms

Figure 5.1 An example illustrating why the Rossignac–Borrel algorithm weights vertices by im-
portance before triangulation. Triangulating the outlined polygon associates the least
important vertices (in the corner cut off) with the longest edges in the triangulated
model (dashed lines). This could inflate their importance and lead to poor clustering.

5.1.4 Displaying Degenerate Triangles

Rossignac and Borrel also propose a novel technique for displaying simplified
meshes—in particular the degenerate triangles created by clustering. Reasoning that
a triangle with two collapsed corners is simply a line segment, and a triangle with
three collapsed corners is simply a point, they choose to render such triangles using
the line and point primitives of the graphics hardware (but filtering out redundant
lines and points). Thus, an LOD for a polygonal object will generally be a collection
of polygons, lines, and points. The resulting simplifications are therefore more ac-
curate from a schematic than a strictly geometric standpoint. For the purposes of
drastic simplification, however, the lines and points can contribute significantly to
the recognizability of the object. Objects with long, skinny features (such as the an-
tenna of a car, or the legs of a table) particularly benefit from this. Low and Tan add a
clever extension: they keep track of the diameter of collapsed vertex clusters and use
the thick-line primitive present in most graphics systems to render degenerate lines
as thick edges. By shading these thick edges with dynamically assigned normals, they
achieve a cylinder-like appearance at very low rendering cost.

5.1.5 Advantages and Disadvantages

Vertex clustering operates at the level of individual triangles and vertices, resulting
in a topology-insensitive algorithm that neither requires nor preserves valid topol-
ogy. Vertex clustering can therefore deal robustly with messy models and degenerate
meshes with which other approaches have little or no success. The Rossignac–Borrel
algorithm is simple to implement and can be made very efficient, producing one of

Team LRN

5.1 Vertex Clustering 125

the fastest algorithms known. However, the method suffers several disadvantages.
Since topology is not preserved, and no explicit error bounds with respect to the
surface are guaranteed, the resulting simplifications are often less pleasing visually
than those of slower algorithms. The algorithm does not lend itself to fidelity-based
or budget-based simplification, since the only way to predict how many triangles an
LOD will have using a specified grid resolution is to perform the simplification.

The use of a uniform grid for clustering also leads to some specific disadvantages.
No correspondence exists between two LODs unless the grid resolution used for one
is an even multiple of the resolution used for the other. In addition, changing the
resolution or placement of the grid even a small amount can alter the appearance
of the resulting LOD considerably, since important vertices may end up in different
cells. Similarly, Low and Tan point out that a small addition (such as adding a pot to
the tree model in Figure 5.2) can significantly change the simplification of otherwise
identical objects by changing the size of the bounding box and distorting the resulting
grid [Low 97]. Finally, simplification is sensitive to the orientation of the clustering
grid, since two identical objects at different orientations can produce quite different
simplifications.

5.1.6 Floating-Cell Clustering

Motivated by the disadvantages of uniform-grid clustering, Low and Tan propose an
alternative to the original Rossignac–Borrel algorithm. This alternative uses floating-
cell clustering, as follows:

1. Assign an importance weight to vertices, as in the standard Rossignac–Borrel
approach.

2. Sort the vertices by importance (note that this needs to be done only once per
model, regardless of the number of LODs generated from that model).

3. Center a clustering cell on the most important vertex in the model and collapse
all vertices within the cell to this most important vertex. In the process, delete all
vertices in the cell from the list.

4. Repeat step 3 on the most important remaining vertex.

Floating-cell clustering leads to more consistent simplification. Since the impor-
tance of vertices controls the positioning of clustering cells, the unpredictable sim-
plification artifacts illustrated in Figure 5.3 are greatly reduced. By using a spherical
rather than cubical clustering cell, floating-cell clustering can also avoid the depen-
dence on orientation inherent to uniform-grid clustering. Two similar models are
much more likely to produce similar LODs, since the size of the bounding box does
not affect simplification.

Implementing floating-cell clustering requires only slightly more work than im-
plementing uniform-cell clustering. The key step is the previously cited step 3, which

Team LRN

126 Chapter 5 A Catalog of Useful Algorithms

(a) (b)

(c) (d)

Figure 5.2 (a–b) Uniform-grid clustering produces substantially different LODs when the bound-
ing box is changed, here by the addition of a small pot. (c–d) Floating-cell clustering
looks better and is more consistent [Low 97]. Copyright © 1997 Association for Com-
puting Machinery, Inc.

finds all vertices within a given radius and collapses them to the center of the cell. To
use spherical cells rather than cubical cells is simply a matter of testing the Euclidean
distance (L2 norm) between vertices rather than the Manhattan distance (L1 norm).
It is important, however, that we reduce the number of vertices the algorithm must
check for inclusion in the cell, since a naive implementation that checked all vertices
for inclusion in every cell would require time quadratic to the number of vertices. To

Team LRN

5.1 Vertex Clustering 127

Figure 5.3 A triangle in uniform-grid clustering may be simplified inconsistently, depending on
which grid cells it intersects [Low 97].

avoid this slowdown, we can hash vertices into a uniform cubical grid, in which the
size of the grid cells equals the user-specified clustering radius. Then, for a clustering
cell centered in a given grid cell, only vertices in adjacent cells need be checked—26
adjacent cells for spherical (Euclidean distance) clustering, and even fewer for cubi-
cal (Manhattan distance) clustering. In practice this hashing process makes checking
vertices extremely efficient.

5.1.7 Simplifying Massive Models

The chief disadvantage of Low and Tan’s algorithm is its asymptotic running time.
Whereas uniform-grid clustering may be implemented in time linear to the size of the
model, floating-cell clustering requires sorting vertices by importance, which raises
the running time to O(n log n). In practice, with a good sorting algorithm (such
as quicksort), the algorithm remains very fast for all but the largest of models. But
what if you have to simplify truly large models, with tens or hundreds of millions

Team LRN

128 Chapter 5 A Catalog of Useful Algorithms

of vertices? Here, uniform-cell clustering again has the advantage, since it can be
implemented to run in linear time. Lindstrom further extends the Rossignac–Borrel
algorithm to support out-of-core simplification, in which the memory requirements
of the LOD generation do not depend on the size of the original model. By decoupling
simplification from input size, Lindstrom is able to create LODs of models much too
large to fit in main memory.

Though we do not present Lindstrom’s algorithm in detail here, the key idea
is worth noting. Lindstrom uses a minor variation of vertex clustering in which
the representative vertex for a cluster is synthesized, rather than chosen from the
set of clustered vertices. In other words, rather than choosing the most important
vertex for a cluster and collapsing all vertices to it, a new vertex is created from the
collapsed vertices. For example, the new vertex coordinates may simply be the mean
of the clustered vertex coordinates (plycrunch uses this approach), or some weighted
mean that takes importance into account. Lindstrom uses the quadric error metric
(see Sections 3.3.2 and 5.3) proposed by Garland and Heckbert to position the new
vertex. As it traverses the triangles of the original model, Lindstrom’s algorithm stores
with each occupied grid cell the cumulative quadric of all triangles with a vertex in
that cell. After calculating and accumulating their quadrics, all triangles that do not
span three grid cells (i.e., triangles that will be collapsed away by the clustering) are
discarded. The coordinates of the final vertices, which will form the new corners of
the remaining triangles, are computed from the accumulated quadrics in a more
numerically stable variation of Garland and Heckbert’s original algorithm. Using
quadrics in this fashion allows Lindstrom’s algorithm to generate an LOD with a
single linear pass through the original model,2 which can be streamed from disk
or from a compressed file, as opposed to the two passes required by Rossignac and
Borrel. The resulting algorithm is memory efficient and extraordinarily fast, both
crucial attributes for simplifying massive models.

5.2 Vertex Decimation

Like vertex clustering, this seminal algorithm was first published in 1992 and re-
mains heavily used to this day. The original decimation algorithm (by Schroeder,
Zarge, and Lorenson) provided a fast topology-preserving LOD technique that ex-
cels at removing redundant geometry and has proven well suited to scientific and
medical visualization. The algorithm has long been freely available as part of the
Visualization ToolKit (VTK), which also accounts for its wide acceptance in the vi-
sualization community. Here we describe the original algorithm, and briefly discuss
a later topology-modifying extension for continuous LOD.

2. This assumes that the bounding box of the original model is provided in the model file
format.

Team LRN

5.2 Vertex Decimation 129

Simple Interior
edge

Non-
manifold

Boundary Corner

Figure 5.4 Vertices considered for decimation are classified as simple, nonmanifold, boundary,
interior edge, or corner [Schroeder 92].

5.2.1 Overview

The vertex decimation algorithm uses the vertex removal operation described in
Section 2.2. Here we focus on the structure of the surrounding algorithm, which
consists of multiple passes over the vertices of a triangulated mesh. During a pass,
a vertex is considered for removal by evaluating the decimation criteria described
in the following section. Vertices that meet those criteria are deleted, along with
all associated triangles, and the resulting hole is retriangulated. The algorithm then
increases the threshold at which vertices are removed, and makes another pass. The
algorithm terminates when it reaches the desired simplification level, specified as a
number of triangles or in terms of the decimation criteria. We discuss each aspect of
the algorithm in the following sections.

5.2.2 Classification of Vertices

Vertices considered for removal are classified into five categories, illustrated in Figure
5.4: simple, boundary, interior edge, corner, and nonmanifold. A simple vertex is locally
manifold, surrounded by a single complete ring of triangles, each of which shares
a single edge with the vertex. Boundary vertices differ in that the set of triangles
does not form a complete ring. The algorithm classifies vertices that do not fit either
category as nonmanifold, and does not consider them for removal. Simple vertices
can be further classified according to the geometry of the surrounding triangles. Two
triangles can form a feature edge, which Schroeder et al. [Schroeder 92] define by the
angle between the triangles, but which could also depend on material attributes such
as color or texture coordinates. A simple vertex with less than three feature edges
is classified as an interior edge vertex; vertices with three or more feature edges are
considered corners.

Team LRN

130 Chapter 5 A Catalog of Useful Algorithms

5.2.3 Decimation Criteria

Once classified, a geometric error metric is applied to evaluate whether the vertex
should be removed. Chapter 3 describes surface error metrics in detail. Here we de-
scribe the author’s original algorithm. For simple vertices, an average plane is com-
puted from the surrounding triangles. The normal of the average plane is an average
of the triangle normals weighted by the triangle areas. A point on the average plane is
computed by averaging the centroids of the surrounding triangles, also weighted by
area. The distance of the vertex from the average plane of its surrounding triangles
is used as the decimation criterion. If this distance is less than some user-specified
threshold, the vertex is removed. Note that a threshold of zero will remove only ver-
tices in planar regions. The efficiency with which vertex decimation removes coplanar
triangles (done in a single linear pass) is especially useful when dealing with algo-
rithms such as Marching Cubes [Lorensen 87], which can produce many such re-
dundant triangles.

Boundary and interior edge vertices are tested against an average line formed
from the two vertices on the boundary or feature edge. The distance of the candidate
vertex from this line is tested against the same threshold, and the vertex is deleted if
the distance is under threshold. Corner vertices are assumed to represent important
features and are generally not deleted. However, if the mesh is known to be noisy, with
many extraneous feature edges, the user may choose to evaluate corner and interior
edge vertices against the average plane criterion used for simple vertices.

5.2.4 Triangulation

Schroeder’s original algorithm triangulated the polygonal holes resulting from a ver-
tex removal. This triangulation used a recursive loop-splitting procedure, which we
do not describe here (see Section 5.6 for discussion of a fast and robust triangulation
routine). Instead, we simply mention some special cases. The original vertex deci-
mation algorithm strictly preserves topology, which prevents some vertex removal
operations. For example, a series of decimations may reduce an object to a simple
closed mesh, such as a tetrahedron. Removing a vertex of the tetrahedron would cre-
ate two coincident triangles sharing the same three vertices. Similarly, a hole in the
mesh may be reduced to a single triangular gap, which would close up upon removal
of one of its corner vertices. Both of these operations would change the topology of
the mesh. To prevent such operations, the algorithm only removes vertices after ver-
ifying that no duplicate edges or triangles would be created during triangulation.

5.2.5 Advantages and Disadvantages

Vertex decimation, which simply consists of a few linear passes over the vertices,
clearly operates in linear time with respect to the number of vertices. Quite fast in

Team LRN

5.2 Vertex Decimation 131

practice, vertex decimation is routinely used in VTK to simplify isosurfaces with mil-
lions of polygons. Removing redundant coplanar geometry in a single pass proves
particularly useful for the heavily overtessellated models common to many visualiza-
tion applications. The vertices of a model simplified by the decimation algorithm are
a subset of the vertices of the original model. This property is convenient for reusing
normals and texture coordinates at the vertices, but it can also limit the fidelity of the
simplifications.

As Chapter 4 discusses, the distance-to-average-plane metric described previ-
ously may lead to less accurate results than more careful criteria. A developer imple-
menting this algorithm may wish to consider a different metric, and indeed current
versions of VTK include decimators based on quadric error metrics (as well as an im-
plementation of Lindstrom’s out-of-core vertex clustering algorithm, described in the
previous section). Performing vertex removal in multiple passes can make it difficult
to specify a target polygon count very exactly, since too high a distance threshold may
simplify the model far past the target, and avoiding oversimplification by increasing
the distance threshold in small increments may make the algorithm too slow. Finally,
the strict topology-preserving nature of the algorithm may be an advantage or a lia-
bility, depending on the application. Preserving topology leads to higher fidelity but
limits the potential for drastic simplification.

5.2.6 Topology-Modifying Continuous LOD

Schroeder addresses several of these limitations in a topology-modifying extension of
the original algorithm [Schroeder 97]. In this variation, vertices are ranked and sorted
into a priority queue according to the same distance-to-plane and distance-to-line
metrics. Vertices are then extracted in order, beginning with vertices whose deletion
will introduce least error. Vertices are then classified, and decimated if classification
permits. If performing all permitted decimations fails to achieve the user-specified
reduction, a vertex split operation modifies the mesh topology, separating the mesh
along feature edges and at nonmanifold vertices (Figure 5.5). This increases the vertex
count by one but permits simplification to continue again, eventually reaching the
target polygon count or even eliminating the mesh entirely.

Unlike the original vertex decimation algorithm, which iteratively removes ver-
tices and triangulates the resulting hole, the topology-modifying algorithm uses the
half-edge collapse operation, effectively performing a specific type of retriangulation
(Figure 5.6a). The algorithm permits edge collapses that introduce topological de-
generacies, such the duplicate edge that results from closing a hole (Figure 5.6b).
Since the edge collapse is invertible, the sequence of simplifications forms a reversible
stream (similar to Hoppe’s progressive meshes) that supports continuous LOD. Un-
like progressive meshes, however, Schroeder’s representation encodes the (also invert-
ible) vertex split operations as well.

The modified decimation algorithm remains quite fast in practice, though main-
taining the priority queue brings the asymptotic time to O(n log n). Changing the

Team LRN

132 Chapter 5 A Catalog of Useful Algorithms

Interior edge

vr

vs

vl

vr

vt

vs

vl

Split

Merge

(a)

(b)

Corner

Non-manifold Other types

Figure 5.5 Vertex-split operations. (a) A typical vertex split and merge. (b) Splitting various
vertex types. Splits are exaggerated [Schroeder 97].

vr

vs vt

vl

vr

vt

vl

Collapse

(a) (b)

Figure 5.6 (a) A half-edge collapse can be viewed as a constrained vertex removal and triangu-
lation. (b) An edge collapse causing a hole to close [Schroeder 97].

Team LRN

5.3 Quadric Error Metrics 133

topology using edge collapse and vertex split operations allows the algorithm to re-
duce a mesh to any desired number of triangles, regardless of the initial genus or any
nonmanifold degeneracies that may be present. One disadvantage of the algorithm is
that it contains no provision for joining meshes. As a result, fidelity may suffer when
performing drastic simplification of a collection of small objects. The decimation al-
gorithm will simply delete the objects one by one rather than merging them into a
single, large LOD.

5.3 Quadric Error Metrics

This algorithm, published in 1997 by Michael Garland and Paul Heckbert [Garland
97], set a new standard for LOD techniques. Though not without flaws, the quadric
error metrics algorithm offers a combination of speed, robustness, and fidelity not
previously seen. Garland and Heckbert’s algorithm is also relatively simple to imple-
ment, and source code is publicly available (and included on the companion Web
site), making it the most attractive LOD method for many applications. Here we de-
scribe the original algorithm, and mention some later improvements and extensions.

5.3.1 Overview

As described in Chapter 3, the quadric error metric measures the cumulative surface
distortion introduced by a series of vertex merge operations. Garland and Heck-
bert’s algorithm iteratively merges pairs of vertices until it reaches the desired level
of simplification. The algorithm begins by finding candidate vertex pairs, including
all vertices that share an edge. The candidate vertex pairs are entered into a prior-
ity queue sorted by their quadric error, and merged in order of increasing resulting
error. Merging a vertex pair changes the error associated with other pairs in the lo-
cal mesh neighborhood. These pairs are reevaluated and reinserted into the priority
queue. Simplification terminates when the desired number of polygons is reached.

5.3.2 Recap: Measuring Surface Error with Quadrics

A quadric is a 4 × 4 symmetric matrix that captures information about one or more
planes. In particular, given a vertex coordinate v and a quadric Q representing a set
of planes, evaluating (vT Q v) gives the sum of the squared distances from the vertex
to each plane. Quadrics are additive. That is, the quadric of the union of two sets of
planes is the sum of the quadrics of each set. When two vertices vi and vj with quadrics
Qi and Qj are merged to form a new vertex vk, the quadric Qk is simply Qi + Qj. This
enables the algorithm to track sets of planes implicitly with a single matrix. The error
associated with this merge operation is (vT

k Qk vk), which represents the sum of the
distances from vk to all of the planes accumulated in both Qi and Qj. Garland and

Team LRN

134 Chapter 5 A Catalog of Useful Algorithms

Heckbert show how to find a target position for the new vertex vk that minimizes this
error, as follows:

vk = 1

2

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

−1

0
0
0
2

This requires inverting the matrix shown. If the matrix is not invertible, they test the
error at the two endpoints vi and vj and at the midpoint between them, and choose
as the target whichever solution produces the least error.

The quadrics at each vertex of the original model are initialized to represent the
planes of all triangles that meet at that vertex. If the equation of a given plane is
represented by

p =

a
b
c
d

then the fundamental error quadric for that plane is the matrix

Kp = ppT =

a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd a2

The quadric error metrics algorithm begins by calculating the fundamental error
quadric for each triangle in the original model, and initializing the quadric of each
vertex in the original model to the sum of the quadrics of its associated triangles. Note
that the error at each initial vertex is zero, since the vertex lies at the intersection of
the planes of its triangles.

5.3.3 Candidate Vertex Pairs

Ideally, the algorithm could consider every possible pair of vertices for contraction,
and choose the pair with the least error. In practice, this would require time and space
quadratic in the number of vertices. Instead, Garland and Heckbert consider as can-
didates for collapse all vertex pairs connected by an edge, and optionally all vertex
pairs within a threshold distance ε of each other. The inclusion of unconnected ver-
tex pairs allows the algorithm to aggregate separate objects, an important feature for
high-fidelity drastic simplification. However, it also exposes one of the weaknesses of
the algorithm: the number of potential edge collapses in a polygonal mesh will be lin-

Team LRN

5.3 Quadric Error Metrics 135

ear,3 but the number of vertices within ε of each other grows quadratic as ε increases.
Thus, choosing a value for ε is something of an art. Too small a value will prevent
useful aggregation, and too large a value will ruin the performance of the algorithm.

5.3.4 Details of the Algorithm

Once candidate vertex pairs are chosen and quadrics at every vertex initialized, the
algorithm computes the target vertex vk for every vertex pair (vi, vj). The cost of

merging vi and vj then becomes vT
k (Qi + Qj)vk, and the vertex pair is entered into

priority queue (implemented as a simple heap) keyed on that cost. The algorithm
then iteratively removes the vertex pair with the least cost, merges both vertices to
the calculated target vertex, and updates the cost of all vertex pairs associated with
the vertices. This update step involves deleting the pairs from the heap, recomputing
target vertices and cost, and reinsertion. An LOD is output upon reaching the de-
sired simplification level. If multiple LODs are desired, simplification just continues
without restarting.

To preserve boundaries in the simplified mesh, Garland and Heckbert detect
boundary edges or interior edges where discontinuities of texture or color occur. At
each face containing a boundary edge, they create a “penalty plane” perpendicular
to the face. This plane is converted to a quadric, weighted heavily, and added to the
initial quadrics of the edge vertices. The resulting quadrics will tend to penalize vertex
contractions that pull the mesh away from the boundary, and generate target vertices
that lie on the penalty planes. Garland and Heckbert also penalize or prevent mesh
foldovers (see Figure 2.11), which they detect by checking the normals of neighboring
faces before and after merging a pair of vertices.

5.3.5 Accounting for Vertex Attributes

Though the original quadric error metrics algorithm preserves geometric fidelity
nicely, many models define additional attributes at the vertices, such as color, normal,
and texture coordinates. We generally wish to account for these attributes during sim-
plification, for two reasons. First, when merging vertices, we must assign attributes
to the newly created representative vertex with care. For example, just as simple av-
eraging of coordinates produces generally poor geometric results, simple averaging
of colors can produce poor visual results. Second, at times the attribute information
should guide simplification. Radiosity-illuminated polygonal models provide a per-
fect example. Often large patches (e.g., representing walls and floors) are broken up
into many small coplanar polygons. Here color is the key attribute. Some of these

3. This follows from Euler’s formula: V − E + F = X . Here V is the number of vertices of a
polygonal mesh, E is the number of edges, F is the number of faces, and X reflects the genus
of the surface. Note that for a given genus, the number of edges is linear with respect to the
number of vertices and faces.

Team LRN

136 Chapter 5 A Catalog of Useful Algorithms

polygons can be simplified away, whereas others are crucial for capturing lighting
discontinuities. A simplification algorithm that considers both color and geometry is
vital in this case. Chapter 3 provided an in-depth discussion of attribute error met-
rics. Here we briefly return to two algorithms that extend the original quadric error
metrics method to account for vertex attributes.

Garland and Heckbert follow up their first publication with an extension that
generalizes the definition of a quadric, effectively treating these attributes as addi-
tional spatial dimensions [Garland 98]. For example, a vertex defined by only geom-
etry is represented as a vector [x, y, z]; a vertex with associated color is represented by
a vector [x, y, z, r, g , b]; a vertex with texture coordinates by [x, y, z, u, v], and so on.
In the case of a vertex with color (six coordinates), Garland and Heckbert use a 6x6
matrix to represent the associated quadric. Naturally, dealing with these quadrics be-
comes significantly more expensive in time and memory as the dimension increases.
Another disadvantage is that the relative importance of the various attributes is dif-
ficult to control, since the representation used by the algorithm essentially captures
both geometric and attribute error in an abstract higher-dimensional space.

Hoppe improves on this approach in several ways [Hoppe 99b]. The most sub-
stantial change captures attribute error based on a geometric closest-point correspon-
dence in 3D. This leads to a sparse quadric that proves much more efficient in both
memory and computational complexity, especially as the number of attributes stored
with vertices increases. Hoppe also integrates some concepts from previous work, in-
cluding a wedge data structure for representing attribute discontinuities [Hoppe 98b],
and Lindstrom’s [Lindstrom 98] memoryless simplification technique (see Section
3.3). The resulting algorithm produces significantly more accurate simplifications of
models with attributes.

5.4 RSimp: Reverse Simplification

RSimp, published in 2000 by Dima Brodsky and Ben Watson, combines elements
from vertex clustering and quadric error metrics along with several new ideas to pro-
duce a unique algorithm. The name refers to its “reverse” approach to simplifica-
tion—a crudely defined initial simplification is iteratively refined. This approach
brings particular advantages when simplifying very large models. Shaffer and Gar-
land [Shaffer 01] have since proposed an algorithm for massive models that draws
heavily from RSimp, while Choudhury and Watson [Choudhury 02] have also re-
cently completed a version of RSimp specialized for operation on massive models
in virtual memory. RSimp’s source code is publicly available; see the companion
Web site.

5.4.1 Overview

Like many algorithms, RSimp uses a greedy simplification framework. Its principal
data structure is the cluster, which represents a surface patch on the input model and a

Team LRN

5.4 RSimp: Reverse Simplification 137

single vertex in the output model. The algorithm creates the first eight clusters simply
by splitting the input model’s bounding box, and then sorting them into a priority
queue using a normal variation error metric. The cluster with the greatest normal
variation is then split, and the newly produced subclusters are placed into the priority
queue. This process iterates until the budgeted number of vertices is reached. At that
point, an output vertex is computed for each remaining cluster in the queue using
quadric error minimization. As in vertex clustering, the only input faces retained in
the output model are those with vertices in three different clusters.

5.4.2 Normal Variation Error Metric

RSimp’s error metric departs from most metrics discussed in Chapter 3 in that it does
not measure distance. Intuitively, the goal of RSimp is to split large, curved patches
on the model before splitting small, flat patches. In a model with M faces, if a cluster
contains N faces and the ith face has area ai and unit normal ni, the error metric for
the cluster is

∑N
1 ai∑M
1 ai

(
1 −

∑N
1 aini∑N

1 ai

)

Here the left factor indicates the relative area of the patch, while the right factor is
larger when the faces in the patch are less coplanar. Note that the upper sum in the
right factor will equal the lower sum if all the unit face normal vectors are aligned.
Despite the fact that this metric does not directly measure distance, it proves quite
effective, even when post hoc distance metrics (such as those in Metro) are used to
evaluate its output.

5.4.3 Cluster Splitting

Clusters are split according to the pattern of normal variation. To describe this pat-
tern, RSimp uses principal component analysis (PCA) on the quadric matrices de-
fined by the cluster’s faces. PCA is a widely used technique for extracting the direc-
tions of maximal change in a data set [Jolliffe 86]. These directions of change are
the eigenvectors of a covariance matrix; their relative strengths are described by the
matching eigenvalues. As Garland has noted, in this context these directions corre-
spond roughly to the mean normal of the cluster, the direction of maximum cur-
vature, and the direction of minimum curvature [Garland 99]. When all are roughly
equal in strength, RSimp splits the cluster into eight new subclusters using three split-
ting planes orthogonal to the eigenvectors (Figure 5.7a). When only the directions of
maximum and minimum curvature are approximately equal in strength, RSimp uses
two splitting planes orthogonal to these maximum and minimum directions to pro-
duce at most four subclusters (Figure 5.7b). Finally, when none of the strengths are
close to each other, RSimp uses just one splitting plane orthogonal to the direction

Team LRN

138 Chapter 5 A Catalog of Useful Algorithms

(a) (b) (c)

Figure 5.7 Splitting a cluster in RSimp. (a) Normal variation is extreme and the cluster is split
with three planes. (b) Normal variation indicates a spherical bump or depression and
the cluster is split with two planes. (c) Variation indicates a cylindrical shape and the
cluster is split with one plane.

of maximum curvature, producing two subclusters (Figure 5.7c). To ensure that two
widely separated surface patches in a new subcluster are not erroneously joined in
output, RSimp uses a breadth-first search on the mesh connectivity. If it finds two
or more disjoint components, the new subcluster is divided into two or more corre-
sponding subclusters.

5.4.4 Advantages and Disadvantages

RSimp strikes a useful compromise between speed and output quality, simplifying
models with greater speed and error than Garland’s quadric error algorithm, but with
less speed and error than Rossignac and Borrel’s vertex clustering algorithm. The re-
verse approach to simplification means that its time complexity is n log m, where n is
input size and m is output size. Thus, despite the adaptive nature of its simplification,
for a fixed output size it runs in time linearly proportional to the output size. Because
it refines rather than simplifies, RSimp builds coarse approximations more quickly
than fine approximations. These characteristics prove to be especially valuable when
simplifying large or even massive models.

RSimp is very robust, easily handling messy and degenerate meshes. However,
because it uses the cell collapse local operator, like vertex clustering, it does not
guarantee preservation of input topology. The original RSimp algorithm could not
guarantee output quality with fidelity-based simplification, nor could it take special
action to preserve mesh boundaries. These latter shortcomings have recently been
remedied.

Team LRN

5.5 Image-Driven Simplification 139

5.4.5 Simplifying Massive Models

Shaffer and Garland [Shaffer 01] exploited the strengths of RSimp to modify it for
use with massive models. They used a two-pass approach: The first pass simplified
the model to a relatively large size (e.g., 1 million faces) using Lindstrom’s out of core
quadric-based algorithm. The next pass applied a variation of the RSimp algorithm.
Their changes to RSimp used quadrics as the error metric, allowed only two-way
splits, and used dual quadrics describing the direction of greatest vertex position
change to orient splitting planes. The resulting algorithm was roughly three times
slower than Lindstrom’s algorithm, but 30% more accurate on average, as measured
by Metro.

Choudhury and Watson [Choudhury 02] have also recently improved RSimp
for use with massive models. Their strategy is centered on efficient use of virtual
memory. They observe that RSimp produces increasingly finer partitions of the input
model as it proceeds, with each new partition contained by a preceding partition.
They exploit this pattern of execution to build locality of memory use by casting
simplification as a sort. As a cluster is split, the faces and vertices corresponding to
each new subcluster are sorted into corresponding subranges in the input face and
vertex arrays. This simple but powerful improvement shrinks the effective working
set continually as execution proceeds, and it enables cluster records in the priority
queue to reference matching faces and vertices much more efficiently, hence lowering
memory usage. The resulting algorithm is capable of fully adaptive simplification
of models containing 56 million faces in 90 minutes on a 1 GHz Pentium III PC
with 1 GB RAM. Output simplifications are 25% more accurate on average than
Shaffer and Garland’s output, according to Metro, with maximum error reduced by
a factor of two. Sensitivity to topology allows the new algorithm to preserve mesh
boundaries and avoid joining spatially separated model components. The tradeoff
for these improvements is slower speed, roughly five times slower than Shaffer and
Garland’s algorithm.

5.5 Image-Driven Simplification

This novel technique by Lindstrom and Turk guides simplification using rendered
images of the resulting simplification [Lindstrom 00b] (see Figure 5.8). Image-driven
simplification solves the problem of how to weight appearance attributes such as nor-
mals, color, and texture versus geometric distortion of the surface. Other algorithms
either ignore attributes or deal with them in an abstract mathematical fashion, such
as the quadric error metrics described in this chapter. The unique approach of us-
ing image-based rather than geometric metrics to evaluate and direct simplification
produces LODs with excellent fidelity. Other advantages of the approach are good
silhouette preservation, drastic simplification of hidden portions of the model, and
texture-content-sensitive simplification. These advantages come at a cost, however.
Image-driven simplification probably ranks as the slowest modern algorithm for pro-
ducing LODs.

Team LRN

140 Chapter 5 A Catalog of Useful Algorithms

Figure 5.8 Image-driven simplification uses a series of images, rendered from viewpoints uni-
formly distributed around the model, to guide simplification [Lindstrom 00b]. Copy-
right © 2000 Association for Computing Machinery, Inc.

5.5.1 Overview

Image-driven simplification reduces models through a series of edge collapse opera-
tions. As in many algorithms (including, for example, the Garland-Heckbert quadrics
error metrics algorithm previously described), Lindstrom and Turk store a list of can-
didate edge collapse operations in a priority queue sorted by an estimate of the error
that collapsing the edge would incur. The algorithm computes this estimate by ren-
dering the model from many viewpoints before and after the collapse is applied, and
comparing the resulting images (Figure 5.8). A crucial aspect of this work is a clever

Team LRN

5.5 Image-Driven Simplification 141

technique for fast image updates using graphics hardware, which enables the algo-
rithm to calculate edge collapse costs in reasonable time.

Since image-driven simplification depends on rendering the model many times
at every level of simplification, it is impractically slow for very large models. Image-
driven simplification proves most useful for creating high-quality LODs of medium-
size models at drastic simplification levels. Lindstrom and Turk therefore pair the
algorithm with a fast geometry-based approach [Lindstrom 98] that “presimplifies”
the model to a reasonable level (roughly in the range 5,000 to 50,000 triangles in their
examples) before applying image-driven simplification for the final stage of drastic
simplification.

5.5.2 Image Metrics

At the heart of image-driven simplification is a method for evaluating the distance
between two images—one of the original model and the other of a proposed simplifi-
cation. The literature of computer graphics, computer vision, and human perception
includes many image metrics. Chapter 8 discusses a few examples of such metrics.
Although their algorithm could easily be adapted to use any of these image metrics,
for efficiency Lindstrom and Turk use a simple metric based on a pixel-by-pixel com-
parison of the images. Since the human visual system relies primarily on luminance
for detection and recognition of form and texture, they reduce the computational ex-
pense of the problem further by calculating and working with the luminance channel
Y for the images.4 The final metric is a root-mean-square (RMS) pairwise difference
between the pixels of the two images. For two luminance images Y 0 and Y 1 of m × n
pixels, the RMS difference is

dRMS(Y 0, Y 1) =
√√√√ 1

mn

m∑
i=1

n∑
j=1

(y0
ij − y1

ij)
2

Each potential edge collapse must be evaluated by rendering multiple images
from different viewpoints, since the effect of collapsing the edge will be reduced or
missed altogether from many directions. Deciding the number of viewpoints used
clearly involves a trade-off between simplification speed and the risk of missing an
important effect. Lindstrom and Turk choose to render from 20 viewpoints posi-
tioned at the vertices of a dodecahedron. They use a single light source, positioned
near the viewpoint so that the model is fully illuminated in each image. Each image
is 256 × 256, rendered using hardware acceleration against a mid-gray background.

4. The luminance channel Y of a color image is defined as its monochrome equivalent. The
standard formula for the luminance of an RGB pixel (for CRT displays) is: Y = 0.2125 ∗ R +
0.7154 ∗ G + 0.0721 ∗ B [ITU-R 90].

Team LRN

142 Chapter 5 A Catalog of Useful Algorithms

5.5.3 Evaluating Edge Cost

Once an edge has been collapsed, the error of the edges in its local neighborhood
typically increases. Since evaluating this error is relatively expensive, Lindstrom and
Turk use the lazy queuing algorithm from Chapter 2. That is, rather than reevaluating
the error of each affected edge immediately, they simply mark the edge as “dirty” and
proceed with simplification. When a dirty edge reaches the top of the priority queue,
they recompute its cost and reinsert it into the queue. Lindstrom and Turk report
that lazy evaluation reduces the number of edge cost evaluations by roughly a factor
of five, without significantly lowering model quality.

5.5.4 Fast Image Updates

Since every potential simplification operation requires rendering multiple images of
the resulting model, Lindstrom and Turk develop an extremely efficient technique
for updating these images. The key idea is to maintain the images incrementally,
rendering the entire model only at the beginning and updating only the pixels that
may be affected as the algorithm proceeds. To determine which pixels might be
affected by an edge collapse, Lindstrom and Turk find the screen-space bounding
box of the affected triangles—eight to ten triangles, on average. Unfortunately, it
is not sufficient to simply render the simplified triangle set over the presimplified
triangles, since changes in silhouette and depth may in principle expose any triangle
in the model, even those geometrically and topologically distant from the collapsed
edge.

Instead, Lindstrom and Turk implement a clever scheme for quickly finding and
rerendering all triangles in the affected screen-space bounding box. A set of hash
tables T keeps track of which triangles intersect each row and column of pixels.
For a screen-space bounding box spanning pixel columns i..j and pixel rows m..n,
they compute the set of triangles included in those columns from Tij and the set
of triangles included in those rows from Tmn. The intersection of these sets forms
a conservative (but tight in practice) estimate of the set of triangles contained in
the bounding box. To accelerate this computation further, Lindstrom and Turk cre-
ate auxiliary hash tables �T for every pixel and row that store only triangles not
present in the preceding row or column. In other words, �Ti+1 includes only tri-
angles present in Ti+1 but not in Ti. The set of triangles intersecting columns i..j thus
becomes Ti ∪ �Ti+1 ∪ Ti+2 · · · ∪ Tj−1 ∪ Tj. Using these optimizations, Lindstrom
and Turk achieve adequate simplification rates of roughly 100 to 300 triangles per
second.

5.6 Skip Strips

Triangle strips provide a compact representation of triangular mesh connectivity. An
ideal or sequential triangle strip encodes a sequence of n triangles using n + 2 vertices

Team LRN

5.6 Skip Strips 143

1 2 3 4 5 6

1 3

(a)

5

2 4 6

1 3

(b)

5

2 4 6

7

1 2 3 4 5 4 6 7

Figure 5.9 (a) A sequential triangle strip encodes n triangles using n − 2 vertices. (b) A gener-
alized triangle strip can encode “bends” in the strip by repeating vertices, in effect
creating zero-area degenerate triangles [El-Sana 00].

(Figure 5.9a). This represents a substantial savings over the more direct encoding of
triangles by their three corner vertices, which requires 3n vertices per triangle. This
savings is reflected in storage size, but more importantly it results in a significant ren-
dering speedup by reducing per-vertex memory bandwidth and computation costs
operations such as transformation, lighting, and clipping. A generalized triangle strip,
usually implemented by repeating vertices in the strip, can encode more complicated
mesh structures (Figure 5.9b) at the cost of lesser savings (since repeated vertices rep-
resent redundant storage and computation).

Because they reduce storage and accelerate rendering, most high-performance
graphics applications break the meshes of their LODs into multiple triangle strips in a
postprocessing step (Figure 5.10). Indeed, one benefit of discrete LOD is the ability to
create triangle strips of the individual LODs. A number of algorithms have been pro-
posed for stripping triangulated meshes [Akeley 90] [Evans 96] [Xiang 99] [Hoppe
99a], and several publicly available implementations are available. We include one
such implementation (STRIPE by Evans and Varshney) on the companion Web site.
Unfortunately, for continuous and view-dependent LOD it is less obvious how to ex-
ploit the benefits of triangle strips, since the triangles of the underlying model are
continuously in flux. In this section we present skip strips, an efficient way to update
triangle strips in the presence of connectivity changes resulting from view-dependent
LOD.

Let us study what happens when folding a node in the vertex hierarchy induces
an edge collapse within a triangle strip (Figure 5.11). In this case we can replace both
affected vertices with the new vertex. For simplicity, assume a half-edge collapse. We
can replace all occurrences of the child vertex in the triangle strip by the parent vertex.
In general, to maintain triangle strips under view-dependent changes to the triangle
mesh connectivity, we should replace each vertex in a triangle strip by its nearest

Team LRN

144 Chapter 5 A Catalog of Useful Algorithms

Figure 5.10 A single triangle strip in a model of a cow [El-Sana 00]. Copyright © 2000 Elsevier
Science.

1 2 3 4 5 6

1 3

(a)

5

2 4 6

1 2 3 2 5 6

1 3

(b)

5

2, 4 6

collapse

Figure 5.11 A half-edge collapse in a triangle strip. Here the child node (4) collapses to the parent
node (2) [El-Sana 00].

unfolded ancestor. In an arbitrarily long sequence of folds, efficient traversal of links
to a vertex’s ancestors clearly becomes important.

Skip strips are inspired by skip lists [Pugh 90], an efficient probabilistic structure
for storing and retrieving data. Skip lists rely on efficient compression of pointer
paths. Consider a simple linked list. Such a list stores one pointer per node and
requires on average O(n) pointer hops to reach a desired node. A skip list stores
an additional factor of O(log n) pointers that probabilistically link to nodes that are
2 away, 4 away, and so on. This enables skip lists to reduce the expected access time
to any desired node down to O(log n).

Team LRN

5.6 Skip Strips 145

c pVertex info Log nth collapse

c pVertex info

c pVertex info

c pVertex info

c pVertex info

Collapse 3

Collapse 2

Collapse 1

Figure 5.12 The skip strip data structure. Parent pointers for each skip strip node in the array are
shown on the right, and the list of child pointers on the left [El-Sana 00].

Skip strips use the skip list approach to efficiently access ancestor nodes in a view-
dependent LOD vertex hierarchy. The skip strips scheme splits preprocessing into two
stages. First, the vertex hierarchy is generated using any appropriate simplification
operator (e.g., edge collapse or cell collapse). Second, a triangle-stripping algorithm
converts the original full-resolution mesh into a collection of triangle strips. The
run-time system loads the vertex hierarchy and triangle strips during initialization,
and builds the skip strips from both. At run-time the skip strips are used as the
vertex hierarchy. View-dependent simplification and refinement perform vertex-split
and edge collapse operations directly on the skip strips, which are used to generate
triangle strips of each frame for display.

A skip strip is an array of skip strip nodes, each of which consists of the vertex
information, a list of child pointers, and a list of parent pointers. Exactly one of the
child and parent pointers is marked as active at any time (Figure 5.12). Skip strips are
constructed during initialization by allocating a skip strip node for every node in the
vertex hierarchy, with parent–child pointers set up to reflect the hierarchy structure.
To perform the vertex collapse operation encoded by a node in the vertex hierarchy,

Team LRN

146 Chapter 5 A Catalog of Useful Algorithms

we activate the parent pointer and increment the child index of the collapsed node.
Deactivating the parent pointer and decrementing the child index reverses the col-
lapse operation. The algorithm maintains a set of display strips, which represent the
current simplification of the full-resolution triangle strips. Whenever a fold or unfold
affects a triangle strip, the corresponding display strips are regenerated by walking the
original triangle strip and following parent pointers at each vertex to find the corre-
sponding vertex in the simplified mesh. Figure 5.13 illustrates operations on a vertex
hierarchy and the corresponding changes to the skip strip structure.

Note that the simplified triangle strips begin to accumulate identical vertices
as the mesh becomes very coarse. Sending such vertices multiple times equates to
sending degenerate triangles; that is, they add overhead to the rendering process
but do not contribute to the final scene. To avoid this, we detect and skip repetitive
sequences of the form (aa) or (ab)—where a and b are vertices from the original
mesh—when building the display strips.

5.6.1 An Aside: The Vertex Cache

Skip strips bring the important rendering acceleration benefits of triangle strips to
view-dependent LOD, but at the cost of some extra memory and computational ma-
chinery. It is worth noting that graphics hardware increasingly includes a vertex cache
that stores a small number of post–transform-and-lighting vertices for reuse. If the
application renders a given vertex twice and the result of the previous render is still
in the cache, the hardware can avoid the cost of transforming and lighting the vertex
a second time. The vertex cache captures much of the rendering benefits of triangle
strips, since the primary speedup of using strips results from avoiding the redundant
calculation of repeating triangle corner multiple times. As vertex cache hardware be-
comes ubiquitous it seems likely that the goal of maintaining triangle strips through
view-dependent simplification will be generalized to the goal of maintaining good
vertex cache coherence throughout view-dependent LOD. This is an important area
for future research. The interested reader may wish to consult Hoppe [Hoppe 99a]
and Bogomjakov and Gotsman [Bogomjakov 01] for early related work.

5.7 Triangulation of Polygonal Models

Since most LOD creation algorithms assume triangle meshes, but many real-world
models contain more general polygonal meshes, a triangulation algorithm is often
an important component of an LOD system. Simply put, a triangulation algorithm
divides a polygon with n vertices into n − 2 triangles by inserting n − 3 edges or di-
agonals between vertices of the polygon. Sometimes triangulation is straightforward.
A model consisting entirely of convex polygons, for example, can easily be triangu-
lated simply by picking a vertex in each convex polygon and forming triangles by

Team LRN

5.7 Triangulation of Polygonal Models 147

1

1 3

1 2 3 4

5

5 7

5 6 7 8

9

9 10

Triangle Strip A: 7 6 4 5 3 2 1
Display Strip A: 7 6 4 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7
Display Strip B: 1 10 3 9 4 8 7

Highest resolution
(a)

1

1 3

1 2 3 4

5

5 7

5 6 7 8

9

9 10

Triangle Strip A: 7 6 4 5 3 2 1
Display Strip A: 5 5 4 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7
Display Strip B: 1 10 3 9 4 5 5

Lower resolution
(b)

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1

1 3

1 2 3 4

5

5 7

5 6 7 8

9

9 10

Triangle Strip A: 7 6 4 5 3 2 1
Display Strip A: 5 5 4 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7
Display Strip B: 1 10 3 9 4 5 5

Lower resolution
(c)

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1

1 3

1 2 3 4

5

5 7

5 6 7 8

9

9 10

Triangle Strip A: 7 6 4 5 3 2 1
Display Strip A: 5 5 4 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7
Display Strip B: 1 10 3 9 4 5 5

Lower resolution
(d)

1
2
3
4
5
6
7
8
9

10

Figure 5.13 A vertex hierarchy and corresponding skip strip structure. (a) The vertex hierarchy
begins at the highest resolution; the triangle strips and display strips are the same.
(b) Vertices 6, 7 , and 8 have all been folded to vertex 5. The skip strip shows the
updated pointers, which are used to derive the new display strips from the triangle
strips. (c–d) The pointer traversal. (e) Using multiple parent pointers per skip strip
node (akin to the multiple child pointers) provides more efficient pointer traversal
[El-Sana 00].

Team LRN

148 Chapter 5 A Catalog of Useful Algorithms

connecting it to all other vertices in that polygon (Figure 5.14a).5 However, polygons
in some models contain concavities and possibly even holes (Figure 5.14b), making
them much more difficult to triangulate.

Narkhede and Manocha present a fast and robust algorithm for polygonal tri-
angulation [Narkhede 95] based on Seidel’s algorithm [Seidel 91]. This incremental
randomized algorithm runs in expected O(n log∗ n) time on a polygon with n ver-
tices, equivalent to linear time for all practical purposes. In practice their implemen-
tation seems quite fast enough for use on any real-world graphics data set. Narkhede
and Manocha provide source code for their implementation free for noncommercial
use, which we in turn have included on the companion Web site.

A full description of Seidel’s triangulation algorithm would require a significant
background discussion grounded in basic computational geometry. We therefore de-
part from the detailed descriptions given in the previous sections, and provide only a
very high-level sketch of the algorithm. The interested reader may wish to consult
Seidel’s original paper [Seidel 91], or the source code by Narkhede and Manocha
included on the companion Web site, for more details. We also highly recommend
Joseph O’Rourke’s book Computational Geometry in C for a very readable introduc-
tion to triangulation (including Seidel’s algorithm) and other topics in computational
geometry [O’Rourke 94].

The triangulation algorithm consists of three steps (Figure 5.15), as follows.

1. Decompose the polygon into trapezoids.

2. Use trapezoids to decompose the polygon into monotone polygons6 by drawing
a diagonal between opposite-side vertices, forming corners of a trapezoid.

3. Triangulate the resulting monotone polygons.

Decomposing a polygon into trapezoids uses a randomized algorithm that adds
segments of the polygon to the trapezoidal decomposition in random order. A clever
data structure built during this process supports efficient point-location queries. The
authors point out that this structure can be used for efficient point-in-polygon test
after triangulation. Seidel shows that the trapezoidal decomposition takes expected
time O(n log∗ n) time. The trapezoids are then used to create monotone polygons in
linear time by introducing diagonals between any pair of points in a trapezoid that
corresponds to vertices from opposite sides of the polygon. The resulting polygons
may be easily triangulated in linear time by repeatedly “cutting off” convex corners
(Fournier 84).

5. Note that many other algorithms exist to triangulate convex polygons, some less prone to
creating sliver triangles than this approach. Slivers are very thin triangles that can pose numeric
problems for some algorithms, such as finite element analysis. However, slivers are typically not
a problem in rendering.
6. Informally, a monotone polygon does not “curl back on itself.” If a polygon P is monotone,
some line L exists for which no perpendicular will cross more than two edges of P.

Team LRN

(a) (b)

Figure 5.14 (a) Convex polygons may be easily triangulated (dashed lines), but (b) polygons with
concavities and holes are more difficult.

(a) (b)

(c)

Figure 5.15 Seidel’s triangulation algorithm. (a) A polygon is decomposed into trapezoids, then
(b) diagonals are introduced that (c) partition the polygon into pieces that are easy
to triangulate [Seidel 91].

Team LRN

150 Chapter 5 A Catalog of Useful Algorithms

5.8 Conclusions

To provide a comprehensive survey of every algorithm published in the mesh sim-
plification literature is well beyond the scope of this book. Instead we have tried to
highlight a few important algorithms that will prove useful to the graphics developer.
We have reviewed a family of simple, fast, and robust vertex clustering algorithms
that use the cell collapse simplification operator. RSimp also employs cell collapse;
this algorithm strikes a nice balance between quality and speed, and its coarse-to-
fine approach to simplification works well for generating LODs of very large datasets.
Another helpful algorithm is vertex decimation, which uses the vertex remove oper-
ator and is a particularly common choice for eliminating redundant detail from
highly tessellated isosurfaces in visualization applications. Garland and Heckbert’s
quadric-driven edge collapse approach provides an excellent combination of speed,
robustness, and fidelity, and has led to many other important algorithms. Finally, we
described Lindstrom and Turk’s image-driven approach, which achieves high-quality
simplification by choosing edge collapse operations based on actual rendered imagery
of the resulting model. We also reviewed two useful auxiliary algorithms. Skip strips
help improve rendering performance of view-dependent LODs, and Narkhede and
Manocha’s triangulation code provides a robust and publicly available tool that is very
useful during preprocessing for simplification.

Team LRN

1 2 3 4 5 6 7 8 9 10
Gaming

Optimizations

Level of detail is of particular importance to developers of game software and
hardware. Games push the envelope of advanced real-time techniques harder

and faster than other disciplines, and the hardware applied to games is often the first
place where important advances occur. In game environments, offline preprocessing
of render data is essential for optimum efficiency, and this has a significant impact
on our use of LOD. Game techniques such as triangle strips, display lists, instancing
of data, skin deformation, and complex shaders can complicate our choice of detail
systems. Games operate under tighter memory constraints than any other medium
for 3D graphics. A modern video game platform has the processing power of the
highest-end workstation, but only 16 megabytes of memory with which to feed its
graphics pipeline. Games also give us unique advantages when dealing with detail.
Our need for accuracy is less rigorous than, say, medical imaging, which allows
our use of approximations or impostors, and because games are interactive, we can
incorporate more information about where detail is important to the user based on
the situation. This chapter examines and describes the particulars of using LOD in
games by applying and refining the techniques discussed elsewhere in this book.

151

Team LRN

152 Chapter 6 Gaming Optimizations

6.1 Introduction

Interactive gaming is arguably the biggest consumer of “advanced level of detail”
techniques. Video game machines impose some of the most severely constrained
environments to program in, but consumer demand for realism and complexity is
intense. Games are also the most commercial environment using level of detail, so
the algorithms must be as robust and visually appealing as possible. This chapter
examines the LOD techniques described throughout this text in the context of current
and future game platforms.

6.2 The Game Environment

Modern 3D gaming platforms rely heavily on dedicated hardware processing to ren-
der images. The goal of the game programmer is generally to maximize throughput
through these dedicated processors, and to manage the flow of data between the dif-
ferent components of the machine. Other components of the game machine, such as
the CPU and main memory, become less critical as the technology advances.

There are actually two different platforms we consider here. We use the term video
games to refer to specific, closed systems that connect to a user’s TV set. Examples
include the Sony Playstation, Microsoft XBOX, Nintendo Gamecube, and so on.
Computer games run on standard personal computers connected to a high-refresh-
rate monitor. Each environment poses unique challenges for LOD. Game developers
design their engine architecture around the specific capabilities and limitations of
their target platform.

A video game system is basically a special-purpose computer designed to effi-
ciently render and display images on a video display. Video game systems are usually
less powerful than general computers in terms of their memory, storage, or gen-
eral processing power, but can be more efficient at tasks such as 3D rasterization,
3D math, and memory manipulation. The primary design consideration for video
game hardware is cost, so components are often highly integrated into just one or two
chips, and memory (although generally very fast) is often very scarce. Even computer
games running on general-purpose hardware, such as a common desktop PC, are
moving toward a multiprocessor model that assumes a high-performance graphics
co-processor. This graphics co-processor performs the majority of the display man-
agement, and has its own command set and local memories.

6.2.1 Constant Frame Rate

In most genres, a video game is expected to advance at a consistent, fixed frame rate
of either 30 Hz or 60 Hz in the NTSC market, or 25 Hz or 50 Hz in PAL markets.
Computer games, on the other hand, have typically been less bound to the video-
standard refresh rates, and tend to try and achieve the highest possible frame rate

Team LRN

6.2 The Game Environment 153

up to the maximum refresh rate of the user’s monitor, typically between 60 and
100 Hz. If a game drops significantly below this refresh rate, the player will experience
noticeably “choppy” response times, as described in Section 10.4. For commercial
video games, the hardware vendor has the power to reject games for release if they
fail to maintain a minimum acceptable frame rate. Because video game hardware is
tied to the television refresh rate, missing the 60 Hz performance target by even a
small amount will result in an immediate drop to a 30 frames per second, so the costs
of failure are quite high.

This requirement for near-constant refresh makes level of detail simultaneously
more critical and more difficult for a game environment. We are forced to avoid
methods that require significant periodic recomputation. At the same time, the need
to maintain frame rate during different parts of a game requires real-time load bal-
ancing methods that can adjust LOD on a per-frame basis in response to instanta-
neous load measurement.

6.2.2 Very Low Memory

The biggest challenge facing game developers, particularly on video game platforms,
is the relatively low amount of available memory relative to the needs of the game
content. This forces developers to be very frugal in the use of memory in all areas,
including the use of compression when possible. Geometry, the main focus of the
algorithms in this book, is generally not the largest user of this precious RAM, but
it does require that any level of detail methods used not add considerably to the
memory load. LOD methods that can themselves act as a form of compression, such
as parametric terrain representations or progressive detail streaming, are therefore
highly prized for games.

Most platforms must also deal with the issue of segmented memory, with each
dedicated processor having its own local memory pool. This means games must not
only manage the total amount of memory they use to implement their systems, but
this memory must also reside in the correct memory segment, or be moved there
efficiently. This becomes a main concern for LOD algorithms that would endeavor
to use the main CPU to manipulate geometry information that will be rendered by
the graphics subsystem, so the cost of moving this memory between systems must be
factored into the selection of LOD management schemes.

6.2.3 Multiple Instantiations

Games typically include multiple instances of the same model in a visible scene,
usually in the form of a number of identical or near-identical “enemies” or “players.”
The goal of the developer is to share as much data as possible between these instances.
When choosing level-of-detail methods, we want to avoid using methods with a high
per-instance memory or per-instance computation cost.

Team LRN

154 Chapter 6 Gaming Optimizations

Without LOD, most game engines store mesh and model data in a single shared
object that can be referenced multiple times at multiple positions in the game. The
basic geometry of the object—including vertex position, normal, color, texture place-
ment, and bone influences—is stored in this shared object. Information unique to
one instance (such as its current origin position and orientation) and the positions
of any key-framed skeletal bones are stored in the per-instance object. The goal is to
move as much data as possible into the shared object and instantiate objects with as
little memory overhead as possible.

This type of instantiation is typical in many systems and is not unique to games,
but games tend to push this memory-saving device further than other applications.
Games often use instances not only for the interactive characters that move through
the game world, but also for entire rooms, decorative objects, or terrain sections (see
Figure 6.1). All this enables the game to present an apparently vast, detailed world
within a limited memory budget. Geometry instanced multiple times in a visible
scene can also benefit from certain rendering efficiencies. If the models in a scene
can be sorted according to their shared geometry, they can be rendered sequentially,
which may avoid costly state changes and, most importantly, texture cache misses. On
a system with a small high-speed texture cache, this can be a critical optimization.

The primary drawback of using instanced geometry in this way is the difficulty in
making per-instance modifications of the geometry. For example, a game that wishes
to allow the player to deform the geometry at will by adding, removing, or modifying
vertex data would be unable to do so in a purely instanced system.

6.2.4 Scalable Platforms

Dealing with wide variations in hardware configurations was one of the first practical
applications of LOD in games. Even before 3D hardware became commonplace,
games were expected to run equally well on systems with a 90- or 200-MHz processor.
This is still a serious concern, but one mainly found on games designed for PC or
Macintosh platforms, since dedicated consoles have generally fixed specifications.

With a functional LOD system, using any of the techniques described in this text,
the entire platform can be scaled up or down by adding a global bias to the LOD
selection algorithm. In more extreme cases, we can also add limits to the maximum
LOD the game can select under any circumstance. Capping the LOD can also allow
us to scale the memory requirements for the game. If the highest-detail model can
never be accessed by the game running on a constrained machine, we can avoid even
loading the data. Scaling on such hardware affects not only geometry but texture
resolution selection and the enabling/disabling of various effects.

6.2.5 Fill Rate Versus Triangle Rate

One major disparity between video games and computer games is the balance
between fill-rate and triangle-rate throughput. Computer games typically run at

Team LRN

6.2 The Game Environment 155

(a)

(b)

Figure 6.1 Illustrating the use of multiple instantiations of objects such as players, chairs, lights,
and so on. Everything in (b), but not in (a), is instantiated, which saves memory.

Team LRN

156 Chapter 6 Gaming Optimizations

resolutions of 800 × 600 or higher, and often give the user a choice of different
screen resolutions. Video games, however, are generally restricted to resolutions of
640 × 240 or 640 × 480, depending on whether the game is rendering fields or full
frames. In field rendering, the game relies on the particulars of the video refresh sys-
tem, which actually renders a 240-line image twice per frame offset by a single line to
give an apparent 480-line image through a process called interlacing. Most consoles
allow a 640 × 480 pixel frame buffer, which is re-interlaced by the video encoding
device for display. As newer video standards begin to take hold, this disparity will
begin to disappear. Some current systems support output at video rates above nor-
mal NTSC rates, such as 480p (640 × 480 pixels progressive scanned at 60 Hz) or
HDTV resolutions such as 720p (720 lines progressive scan) or 1,080i (1,080 lines
interlaced).

In either case, a typical video game system has far fewer pixels to rasterize for each
frame, up to a 4X advantage compared to a high-resolution computer game. Because
of this disparity, video game applications are more often computationally bound in
their ability to transform, light, and set up the rasterization of geometry. In this type
of triangle-rate-limited environment, geometric LOD methods yield immediate and
significant rewards.

6.2.6 Average Triangle Size

One metric of particular importance to video game developers is the average trian-
gle size. Typical 3D hardware in the gaming segment is constructed as two separate
units: a geometry-processing unit (which handles tasks such as triangle setup, light-
ing, and transformation) and a pixel-processing unit (which manipulates the final
frame buffer pixels in response to the output from the geometry unit). These are often
referred to as the “front-end” and “back-end” units, respectively. To achieve maxi-
mum throughput, these two units need to be carefully load balanced. If the front-end
unit is overloaded, the back-end unit will often be idle, awaiting rasterization jobs
from the geometry unit. If the back-end unit is overtaxed, the front-end unit must
block, waiting for the rasterizer to accept more commands. Because of the complex
interplay between these two parallel pipelines, hardware designers often implement
parallel pathways through one or both systems, and provide buffering of data between
the two.

The metric of average triangle size helps estimate the balance between the loads
on these two systems. A small number of large triangles shift more of the burden to
the pixel back end, whereas a larger number of tiny triangles will primarily tax the
front end. Triangle size in terms of screen pixels therefore provides a convenient es-
timate of this balance. Ideally, an engine would take steps to ensure that the average
screen triangle size remains as close as possible to some optimal balance, no matter
how the scene objects or observer change over time. Clearly, the other important fac-
tor in this relationship will be the cost of the individual triangle or pixel, which is far
from fixed. Generally, hardware vendors will advise developers on the ideal triangle
size (often presented graphically from empirical measurements) based on different

Team LRN

6.3 Game-Specific Difficulties with LOD 157

scenarios for vertex and pixel modes. The ideal size for a triangle that uses multiple
dynamic lights or skinned blending would be larger than the size recommendation
for a simple unlit triangle, because more pixel operations can be performed between
completed triangle computations. Conversely, a more complex pixel operation, per-
haps involving more than two texture lookups or blending to the frame buffer, would
require smaller triangles at equal levels of performance. Clearly some LOD methods
are required to maintain our average triangle size near optimum levels.

6.3 Game-Specific Difficulties with LOD

Clearly LOD is very important to game engine design, but the particular needs of
gaming make some techniques used in other fields difficult or impossible to imple-
ment effectively. This section discusses some of these pitfalls and suggests alternate
strategies or simplifications when available.

6.3.1 Modeling Practices

Game models are created using the same tools and workstations used by 3D artists in
other disciplines. But rather than using the rendering capabilities of these packages
to output fully rasterized frames, game projects use the model geometry itself as
the output product from the artist’s tool (see Figure 6.2). The process of taking a
complex, generalized 3D model from an art package is referred to as “exporting”
(or sometimes “compiling”) the model, and it shares much in common with how
a language compiler turns source code into tightly optimized, compiled object code.
The final output from the tool is normally in a format that is highly platform specific.
There have been some attempts at standardized game geometry formats, but the
rapid rate of hardware change—coupled with the need for this format to mimic, as
closely as possible, the preferred input format for the platform’s graphics processor—
has made most attempts at interchange short-lived. A game that runs across multiple
platforms might even compile geometry data differently for each variation of the
game, to optimize for the specifics of each targeted machine.

There are some idiosyncrasies in the way game models are constructed, compared
to the type of idealized input meshes used to demonstrate classical LOD algorithms.

Vertex Representation

To optimize render speed, interactive game models are normally stored with their
vertices in a format that can be directly processed by the hardware. Typically, this
means that all data elements for a specific vertex are stored together in a structure, and
a number of these vertex structures are stored as a linear array. The alternative, storing
each vertex property separately in parallel arrays, is often possible, but generally

Team LRN

158 Chapter 6 Gaming Optimizations

Figure 6.2 An artist’s modeling tool used to create game geometry.

requires more work by the CPU or hardware to “gather” the renderable vertex at run-
time.

This vertex storage strategy can affect LOD, since as a result vertices that lie along
discontinuities in the model have their shared components replicated. The final mesh
therefore contains multiple discrete vertices for that position. These discontinuities
are typically caused by a normal crease—unsmoothed vertex normals along a faceted
edge—or by texture seams due to texture compositing, discussed later. We must
give these vertices special consideration when performing mesh simplification. If one
shared discontinuous edge collapses to a different destination or at a different step of
reduction, a gap can open in the continuous mesh, and further reductions can cause
the error to grow.

Team LRN

6.3 Game-Specific Difficulties with LOD 159

There are two easy strategies to deal with split vertices of this type. We could sim-
ply harden the vertices and neighboring edges, excluding them from consideration
as collapse candidates when simplifying the mesh. This eliminates all possibility of
an inappropriate split, but reduces the maximum effectiveness of our reduction. This
method also has a less obvious but potentially advantageous side effect. In game mod-
els, texture seams often coincide with important silhouette edges, and discontinuous
normals may indicate important visual corners in the model. By preserving these dis-
continuous edges we sometimes unintentionally guide the LOD scheme to preserve
artistically important details. Artists aware of this restriction can also use it to pro-
vide manual guidance to the reduction algorithm by intentionally hardening edges
or placing texture seams where they can most benefit the model.

The other available strategy is to ensure that any collapse involving the coincident
vertices is performed in lock step with their associates. This may somewhat compli-
cate a run-time continuous LOD scheme, since we must store some additional data
to indicate which sets of reductions must be treated as atomic operations, but for dis-
crete LOD the export tool can enforce this restriction without any additional costs by
not selecting LOD levels that straddle such a pairing.

Texture Compositing

Texture seams are especially commonplace in game models because of a perform-
ance-enhancing technique known as texture compositing (see Figure 6.3). The goal
of compositing is to create a single texture map that contains all texture information
for a single model or even multiple models. This reduces the number of state changes
(both texture state and related shader state) required to render the model, and it
also allows for larger render batches, since only sets of faces with identical properties
can be rendered in a single batch. With consoles that utilize a small texture-memory
cache, avoiding texture state changes is one of the most important optimization
criteria.

Textures on most game platforms are also restricted to having power-of-two
dimensions in both u and v. This leads artists to aggressively pack subtextures into a
larger composite to efficiently use all available space in this precious texture resource.

All of these concerns can cause what would normally be a very clean manifold
mesh to become a model with frequent discontinuous regions that must be consid-
ered during LOD processing.

Nonstandard Geometry

One final noteworthy modeling convention in games is the frequent use of nonclosed
or nonmanifold mesh shapes. An open mesh in particular is often used for modeling
certain types of character components (e.g., clothing, capes, or teeth), as well as for
certain types of effects. Intersecting or folding geometry is sometimes used as a sort of

Team LRN

160 Chapter 6 Gaming Optimizations

Figure 6.3 Texture compositing optimizes texture memory by creating a single texture map of a
number of subtextures.

simplistic volume imposter, such as using two crossed quads with a masked texture
to represent a branch of a tree. It is important to consider these cases when select-
ing an algorithm or metric from those presented in this book. As a general strategy,
we attempt to detect these nonstandard constructions in our geometry and exempt
them from our chosen LOD scheme. Odd geometric features such as unpaired edges
are best preserved intact, since often the visual importance of these features is greater
than the geometry would appear to an LOD metric. This is particularly true when
such features are used in the area of a character’s face or clothing. Nothing makes for
amusing bugs more than disappearing eyelids or clothing. In effect, these construc-
tions represent a sort of “manual LOD,” an abstraction the artists apply to their art in
its initial expression. Such abstractions will generally not benefit from, and will likely
be harmed by, additional LOD reductions.

6.3.2 Hardware Transformation and Lighting

The latest generation of video game hardware contains dedicated hardware units to
handle the bulk of the rendering work, including transformation and lighting of

Team LRN

6.3 Game-Specific Difficulties with LOD 161

geometry. Typically these units can perform fixed-function or near–fixed-function
operations much faster than and in parallel with the main CPU. In part for this reason
(and in part for the overall desire of hardware producers to minimize costs), the
CPU power of a particular console is far inferior to its pixel rendering and vertex-
processing power. This is particularly true for Playstation 2 and Gamecube hardware,
and somewhat less true for Microsoft’s XBOX.

These hardware processing units vary greatly in their flexibility. The vector units
on the Playstation 2 are quite flexible and approach the level of a general-purpose
processor. The XBOX integrates programmable vertex processing on the same NV2A
chip as its pixel pipelines, as does the Gamecube on its “Flipper” GPU. In all of
these cases, providing vertex data in one of several preferred formats and using fairly
typical processing paths is the key to optimizing geometry throughput. For example,
even though the XBOX GPU is capable of processing vertices that have been blended
from two sources, deformed by four weighted bones and then lit, the throughput for
vertices of this type will be a fraction of those simply transformed and clipped to
screen space.

For these reasons, games generally prefer LOD methods that do not require com-
plex or unusual per-vertex operations on a per-frame basis. They tend to avoid con-
tinuous blending between LOD sets, or run-time algorithms that require real-time
interpolation or modification of vertex data such as the concept of geomorphing in-
troduced in Section 4.4.2.

6.3.3 Static and Dynamic Geometry

Not all geometry is created equal when it comes to rendering on game platforms. One
thing that characterizes almost all high-performance real-time 3D engines is a large
instruction queue placed between the main processor and the graphics processor.
Different platforms handle this buffering in different ways, but the main goal is
to provide more parallelism between the graphics and main processors for higher
performance.

Most games use a combination of dynamically generated geometry data and static
geometry. Dynamic geometry is necessary for interactive effects such as particles,
explosions, beams, and other secondary effects. To create dynamic geometry and pass
it to the graphics processor, the system libraries or game application must construct
the command packets in the correct format for the graphics processor and copy them
to the command queue for processing. All these operations add to the total processing
time for the geometry. Static geometry, on the other hand, can be precompiled into a
hardware command stream, and each time the geometry is rendered only some small
amount of state information is added to the existing command stream. The exact
mechanisms of this static geometry optimization vary between different platforms,
but are commonly referred to as “display lists,” or often “push buffers,” on DirectX
hardware. We clearly wish to make our LOD-enhanced geometry engine approach
static mesh speeds as much as possible.

Team LRN

162 Chapter 6 Gaming Optimizations

6.3.4 Cache Coherence and Triangle Strips

Let us return briefly to the topics of triangle strips and cache coherence, which we
have touched on in Section 5.6. Triangle strips as a method to represent geometry
more efficiently are not particularly new or novel, but their use on video game plat-
forms is becoming increasingly important. Recall that in a triangle strip, the first three
indices define a standard triangle, but from that point on each new triangle is defined
by a single new index and an implicit reuse of the two preceding indices. So the se-
quence “0 1 2 3” defines two triangles formed by indices (0,1,2) and (2,1,3). Most
strip implementations reverse the reused vertices in alternating triangles to ensure
that all triangles have the same winding order. The most obvious advantage of using
strips is their ability to define a triangle with only a single (possibly WORD-sized)
index.

In current games, strips are being used less as a compression scheme and more
as a way to ensure vertex cache coherence. The XBOX hardware, for example, imple-
ments a cache of post-transform vertices based on the index lists. Whenever a vertex
exists in this very small cache, the hardware can bypass the entire costly transform
and lighting engine; this gives a considerable performance boost, particularly when
the vertex processing is complex. Maximizing hits in this cache is one of the most
important performance optimizations for that platform. Other platforms benefit as
well from vertex reference locality. The Playstation 2, for example, requires packets
to be constructed that contain both vertex and index information for rendering. If all
references to a particular vertex are contained in a single packet, there will be no need
to copy this vertex into a second packet at a later time, and bandwidth will be saved.

Generating optimal strips for a video game console is a complex problem and an
area of active research and can only be done adequately as an offline preprocessing
step. The optimal strip representation depends directly on the characteristics of the
hardware, such as the size of the post-transform cache on the XBOX. This is one case
in which model data is likely to be compiled for specific hardware targets.

The desire to generate efficient strips using offline processing is one of the biggest
obstacles to using many popular LOD methods on game consoles. Even though it is
possible to render nonoptimized triangle index lists on all platforms, the performance
reduction might more than offset the LOD gains. In these cases, techniques such as
skip strips, described in Section 5.6, could prove particularly valuable.

6.3.5 Vector Unit Packetization

The Playstation 2 platform is unique in operation because it provides much lower-
level access to how data is transferred between different processors in the machine.
The basic unit of data transfer is a DMA packet of a fixed size. These packets are
buffered and presented sequentially to the vector processing units, where they are
processed according to game-specific microcode. When rendering geometry, these
packets will include the entire set of vertex and index information needed to render

Team LRN

6.4 Classic LOD Suitability to Games 163

a particular fragment of geometry. Creating these packets can be done either in real-
time or offline. Offline packet creation allows for more optimization as well as lower
CPU utilization, as the packets are simply streamed from RAM sequentially. The clos-
est analogy is compilation of source code into executable code. The source data of the
geometry is processed using complex methods and aggressive optimization that pro-
duce the graphical equivalent of optimized executable code. All platforms actually do
this to a greater or lesser degree, but not all platforms allow us to do all the compila-
tion offline and present the final “executable” formats directly to the hardware.

The LOD impact of this packetization is the need to avoid, at all costs, dynam-
ically generated geometry that would require real-time processing or packetization.
When we must deal with unprocessed data, we should expect a significant perfor-
mance penalty for doing so. This means LOD schemes that can be processed offline
will be more applicable.

6.4 Classic LOD Suitability to Games

Most games use a combination of geometric LOD approaches, but these mainly fall
into the broad categories of discrete and continuous LOD. The LOD data for a model
is generated as part of the export process that takes the model from 3D tool to in-
game format. Because all calculation-intensive processing happens offline, games are
free to use any of the more complex metrics for simplification.

View-dependent algorithms have not achieved wide acceptance in the game com-
munity. This is probably because they generally have higher run-time computation
costs and require more frequent recalculation, since models must be continuously
reprocessed as they rotate or move closer or further from the viewer. Games can also
be a worst-case environment for view-dependent LOD, since many games implement
a camera scheme that rotates the camera around a central player, resulting in frequent
changes in viewing angle of the character and the entire scene. View-dependent tech-
niques can, however, be used to great effect in terrain LOD, discussed in the next
chapter.

6.4.1 Discrete LOD

As stated earlier, video games can render meshes most efficiently when a considerable
amount of offline preprocessing can be performed on the data. Because of the need
for preprocessing, many games rely on simple discrete LOD systems, in which each
LOD can be aggressively “compiled” before it is loaded into the run-time engine (see
Figure 6.4).

Discrete LOD offers other advantages. Most continuous LOD methods assume
some continuity in vertex data. For example, a typical vertex removal algorithm
assumes that vertices carried over from the previous LOD are unchanged. When
simply replacing the LOD, we have the option to replace not only the model topology

Team LRN

164 Chapter 6 Gaming Optimizations

(a)

(b)

Figure 6.4 (a–b) Two discrete LODs for a trooper model.

Team LRN

6.4 Classic LOD Suitability to Games 165

but to completely rework the vertex data. There are two ways this can be useful. As
a model becomes less detailed, it is often useful to replace its (u,v) texture-mapping
coordinates. At higher detail levels, some models might contain multiple textures or
multiple sets of texture coordinates per vertex (perhaps for lighting, bump mapping,
or other effects). As the model reduces, the texturing can be changed to use fewer
maps, or even changed to use subtextures from a generic composite.

We can expend significant amounts of offline processing to optimize the final
LOD. This may be the most significant advantage of discrete LOD over continuous,
progressive, or algorithmic reduction schemes. The trend in high-end hardware is
definitely toward additional caching and pipelining. Taking full advantage of this
trend requires “compilation” of geometry whenever possible.

Shared Vertex Format

A discrete LOD scheme that uses a shared vertex pool is more restrictive, but also
more memory efficient. In this method, the base vertex data is shared between all
LOD steps, with each step simply referencing a smaller subset of the original data.
The model stores separate versions of the index list that defines the mesh faces for
each LOD. Finally, the vertex data can be sorted to appear in detail order, so the less
detailed faces reference data residing in a contiguous block.

In this format, the data is ideal for streaming to the hardware. Each time the
model is rendered, a decision can be made on the fly to send any of the available
index-ordering and vertex-block subsets to the hardware. There is no need to recom-
pute or regenerate any data, which means we can adjust detail on a frame-by-frame
basis with no penalty. The memory costs are also modest, since the bulk of the mem-
ory cost for a mesh (ignoring textures) is in the vertex definitions. For example, the
minimal vertex format used for a game mesh would consist of position, vertex nor-
mal, and one set of texture coordinates, for a total uncompressed size of 32 bytes.
Compare this to an index list entry, which is often 2 or sometimes 4 bytes in size.
Thus, storing multiple sets of index data for a mesh, even a significant number of
sets, represents a small percentage of the total memory used.

Separate Vertex Format

If vertices are not shared between LOD levels, the system is effectively just replacing
one model with another at different detail levels. This is the simplest and most di-
rect form of LOD management, but it is still a viable method, especially given the
constraints of video game hardware.

The advantage of not sharing vertex data in a single pool between all LOD levels
is flexibility. Different detail levels can use entirely different vertex formats, different
texture coordinates, and so on. The main drawback is obviously the memory cost,
which will limit the number of detail levels the game can reasonably store.

Team LRN

166 Chapter 6 Gaming Optimizations

Automated Versus Manual Processing

One less obvious advantage of discrete LOD is that each level can be handcrafted
and edited by an artist, using manual reduction techniques or a combination of
automated methods. Generally even the best automatically generated geometry can
benefit from some artistic “tweaking” inside a 3D editing tool.

If the game engine adopts a separate-vertex format, the artist has complete free-
dom to reshape and simplify a model using a variety of techniques or even by re-
building the model entirely (usually using the high-detail silhouette as a guide). In a
shared-vertex approach, restrictions on the artists can make manual tweaking more
difficult. It is possible, if the artist is conscious of the need to reuse existing vertices
when creating reduced models, but it is not a type of editing familiar to most artists
or directly supported by most tools.

The alternative is of course to use one or more of the automated reduction tech-
niques to algorithmically reduce the model in a way that is pleasing to the artist and
end user. Any of the techniques that iteratively remove vertices can be used to gen-
erate both continuous and discrete levels of detail. Because the automatic processing
is done completely offline, even the most computationally intensive methods can be
used to generate the run-time data, and different methods can be selected on a case-
by-case basis according to the specific needs of the model or preference of the artists.

6.4.2 Continuous LOD

At first glance, continuous LOD appears to have good characteristics for games.
The algorithm can progressively remove vertices and faces from a model, thereby
optimizing the precious bandwidth costs in a game engine.

Although no single canonical implementation of continuous LOD exists, some
obvious choices can be made for game rendering. The first restriction we place on
our system is that it be strictly based on vertex removal or half-edge collapse, rather
than on a more general vertex or topology reduction scheme. This reflects our need
to avoid creating or changing the underlying data whenever possible. By making each
continuous LOD step a vertex removal or half-edge collapse, we avoid changing or
adding to the underlying vertex data, and make only incremental changes to the index
list that replace each appearance of one index value with another. After each step,
more faces in the index list will become degenerate and can be removed. Since the
removal order is computed offline, the vertices and indices can be sorted in order
of their removal, allowing us to stream progressively smaller blocks of data to the
hardware as the detail level decreases.

Run-Time Processing for CLOD

No matter what type of metric we select for offline preprocessing to determine the
collapse or removal order, the run-time processing is the same for the general class of

Team LRN

6.4 Classic LOD Suitability to Games 167

continuous LOD algorithms based on half-edge collapse. In addition to storing the
renderable vertex data and the full-detail face index ordering, we store an additional
non–render-related data block to facilitate the LOD process. This array is of the same
data type as the index list entries (generally WORD or DWORD sized) and represents,
for each removable vertex between the maximum and minimum detail, the destina-
tion or “collapse-to” vertex index. We also sort the vertex array in order of increasing
detail, so the first vertices in the array are those that are part of the minimum LOD
set, and those at the end are the first removed. Given these constraints, the collapse-
to entry at a given array location can never be greater or equal to that location index,
since a vertex cannot collapse to a higher-detail destination.

To change the LOD selection for an instance of a model, we simply recompute
a new face index list by iteratively replacing each entry with its collapse-to value,
until the resulting value is less than the number of desired mesh vertices. Degenerate
faces are detected and removed from the list. We can optimize this process further
by reordering the faces in the base index list in order of removal. With this sorting,
when our reduction processing encounters the first degenerate face it can assume all
remaining faces will likewise be degenerate and exit early.

Although this reprocessing is very straightforward and reasonably fast, it falls
short of the “zero-processing,” streaming-data model we desire to achieve for maxi-
mum speed. However, we can cache the face indexing output by the reduction pro-
cessing and use it for a number of frames, thus amortizing the LOD processing costs
over tens or hundreds of frames. Whenever the desired LOD for a model is unchanged
over time, we simply stream the cached index list to the hardware, just as we would
the indexing for a discrete LOD or non-LOD model.

Storage costs for this scheme are also quite small. Although each instance of a
model must store a private index list, all of the bulkier underlying data—the vertices
and even the collapse instructions—will be shared among all instances. This mirrors
the data storage schemes used for PC graphics cards, which generally store vertex
arrays in video RAM while leaving index lists in system RAM where they can be more
efficiently changed at run-time.

Complications with CLOD

In the absence of other types of geometry optimization, such as triangle strip and
vertex-cache reordering, this method would appear nearly ideal. However, the prob-
lems encountered when dealing with the most optimized types of game geometry can
negate the gains possible from continuous LOD.

The most pressing problem is vertex cache coherence. As stated earlier, reordering
triangle indices for optimum cache performance can give tremendous performance
advantages on hardware such as the XBOX or high-end PC chip sets. We can achieve
near-optimal indexing of our geometry via extensive offline processing, but such
reordering is not practical at run-time. As vertices are removed from the model
and edge collapses change the content of the index lists, our geometry can become

Team LRN

168 Chapter 6 Gaming Optimizations

nonoptimized and performance will drop, rather than increase, as we make further
removals.

A similar problem occurs on systems such as Playstation 2, which require render-
ing instruction packets that contain both vertex and index data. For a given discrete
LOD we can pregenerate these packets and efficiently spool them to the hardware
via a dedicated DMA co-processor. But as a continuous LOD scheme removes ver-
tices and changes indices, we must regenerate packets or shift to a “pack on the fly”
strategy. Either method will cost precious processing time on the main CPU.

Both methods can benefit from reprocessing the detail level less frequently, so
that the one-time costs of reprocessing the data to a new LOD can be amortized over
several frames. We can also handle recomputation in a round-robin fashion, ensuring
that the potential CPU costs in a given frame will not exceed some fixed budget. Of
course, the less frequently we change LOD levels, the closer the visual results become
to simple discrete LOD, making the benefits of continuous schemes less clear-cut.

Degenerate Faces

As stated earlier, most game hardware achieves top performance only when process-
ing cache-optimized triangle strips. It should also be noted that the start of each new
strip generally involves issuing a new render call, and our goal is to minimize the to-
tal number of such calls to the extent possible. In addition, because we are generating
strips for a particular cache size, generating the longest strip possible is not our goal,
and in fact the strips generated for typical game hardware are considerably shorter
than the potential strips if pure index count reduction were the goal.

To process these strips efficiently, the model export stage will intentionally insert
degenerate strips intended to “stitch together” disjoint strips without calling the API
to start a new strip. Since this is a fairly common optimization, most hardware tries
to provide optimized pathways for detecting and rejecting degenerate triangles in a
strip without paying the full triangle setup cost for the data.

LOD and Degenerating Strips

In light of this hardware optimization, we can take steps to combine efficient
continuous-LOD reduction schemes with optimized triangle lists, and the result is
somewhat of a hybrid between shared-vertex discrete LOD and CLOD techniques.

As in discrete LOD, we can generate a highly optimized strip ordering for our in-
dices using offline processing at specific steps along the reduction. At run-time, once
we have determined our desired vertex count, we can take the next-larger optimized
strip (so for a 500-vertex rendering we could use an index strip generated for 600
vertices, but not one generated at 450) and replace vertices above our target num-
ber with their collapse targets, as in the nonstrip case. We then render the geometry
using the reprocessed indexing that contains additional degenerate triangles where

Team LRN

6.4 Classic LOD Suitability to Games 169

edge collapses or vertex removals have caused them to appear. We essentially rely on
the hardware to detect and discard these for us, until we reduce to the next pregen-
erated strip length. Therefore, we have an upper limit on the number of unnecessary
degenerate faces sent to the hardware, and this limit can be controlled by generating
a greater or lesser number of strips during export. In a sense this approach equates to
a limited but hardware-accelerated version of skip strips (Section 5.6).

6.4.3 Higher-Order Surfaces

The use of higher-order surfaces has gained gradual acceptance in video game ap-
plications, but is still nowhere near ubiquitous. The biggest hurdles are not always
technical (in fact, some new hardware offers dedicated curve-surface tessellation en-
gines), but are more often artistic. Game art is enjoying the multifold increase in
available complexity due to the new hardware chip sets, but the basic modeling strat-
egy is still based on hand-modeled details created with polygonal modeling. Switch-
ing to a higher-order surface, such as Bezier patches or displacement surfaces, places
restrictions on game artists they are not accustomed to. In addition, even though we
have more power at our disposal, we do not yet have anything close to “unlimited”
bandwidth, and the greater power is often channeled toward placing more instances
of models in a scene or rendering more complex shading equations on our surfaces,
and not to smoothing out the edges of each model.

The biggest stumbling block is often texture placement. Game artists are accus-
tomed to aggressively optimizing the use of texture memory, and this is still the case
on most platforms. Curved-based modeling does not allow arbitrary stitching and
mapping of textures on a per-face basis, and this often leads to artists abandoning the
curved methods in favor of traditional polygon modeling at higher face counts. All
indications are that future hardware will continue to make curved surfaces easier to
process. In particular, subdivision surfaces and the tools to help artists create these
models will also mature. Higher-order surface representation will likely never replace
polygonal modeling for things such as room interiors or basic objects, but it may gain
increasing use for organic characters.

6.4.4 Shadow LOD

Certain types of game engine operations can also benefit from level-of-detail systems.
The most common example is the use of low-detail versions of a model or mesh to
enable special effects such as shadowing (see Figure 6.5). Most shadow-generation
algorithms rely on rendering some type of silhouette or volume representation of a
model without any lighting, texture, or surface details. By keeping a separate low-
detail instance for the model, these effects can be accelerated without appreciable
artifacts.

Team LRN

170 Chapter 6 Gaming Optimizations

(a)

(c) (d)

(b)

Figure 6.5 A demonstration of shadow LOD in the OpenWorlds renderer, in which various off-
screen buffer sizes are used for rendering the shadow. (a) Detail as a fraction of the
current window size = 0.02, frame rate = 12 Hz, (b) detail = 0.1, frame rate = 11.9 Hz,
(c) detail = 0.2, frame rate = 10.1 Hz, and (d) detail = 0.5, frame rate = 3.05 Hz.

Team LRN

6.5 Nongeometric Level of Detail 171

6.5 Nongeometric Level of Detail

For games, reducing the complexity of a scene’s geometry is only half the battle. Most
games approach LOD as something that applies across all of the game’s subsystems,
from model rendering to shader rasterization, object lighting, and even sound play-
back. The specific choices made are highly platform and application specific, but
some general strategies are presented here.

6.5.1 Shader LOD

There are two main metrics for which games are generally optimized: geometry
processing and pixel fill rate. Most LOD schemes discussed until now attempt to
reduce geometry processing costs, but because the reduced geometry is intended to
fill the same amount of screen space, pixel fill-rate costs are not affected.

Fortunately, as objects become more distant, the screen space they occupy be-
comes smaller, thereby reducing fill-rate costs automatically. In cases for which this
natural reduction is not enough, shader LOD techniques help fill this gap.

Per-Pixel Costs

Per-pixel costs are highly platform dependent, but we can make some general as-
sumptions. On platforms that support multitexturing, the cost to draw a single pixel
goes up more or less linearly with the number of textures referenced. Therefore, a
pixel pipeline that accesses four texture maps to paint a single pixel will run at approx-
imately 4X slower than a single-texture setup. Beyond the basic texture mapping, each
additional effect applied to a pixel has a more subtle effect. Typical uses for multi-
ple textures include bump mapping, environment or gloss mapping, detail texturing,
and so on.

In addition to the per-pixel costs, switching shaders incurs a one-time setup cost,
as the rendering pipeline is reconfigured for a new set of parameters. Usually, the cost
of this mode change is dependent on the number of changes being made. Changing to
a mode that involves multiple texture maps or more complex operations is typically
higher.

By progressively disabling the additional passes or features as objects become
more distant, we can save on per-pixel rendering costs. Most games include multiple
code paths for each shader, and each code path represents a different shader LOD. At
extreme distances, the shader can often be reduced to a nontexture color fill, which is
typically the fastest way to fill screen pixels and represents the lowest up-front setup
cost.

Team LRN

172 Chapter 6 Gaming Optimizations

Effect Scaling

Certain visual effects are fairly costly to process at high fidelity. Shadow rendering, for
example, can be done in a highly accurate fashion by rendering the object silhouette
to a texture and projecting that texture onto nearby objects, but this method involves
an additional render pass on both the object and affected geometry. Faster methods to
render shadows include using a pregenerated generic silhouette and projecting this,
rather than an accurate shape, onto the affected areas, or even rendering a simple
round decal to the ground directly beneath the object. All of these are valid shadowing
methods, but the more accurate effects are only fully appreciated at close range. Just as
the shader applied to an object can be scaled and degraded with increasing distance,
so too can the effects applied to an object be degraded or eliminated when the object
important is reduced.

Particle effects are also candidates for this technique (see Figure 6.6). A particle
field that uses 1,000 billboard sprites to simulate a smoke volume at close range could
be equally well represented by 100 larger sprites at a greater distance. As long as the
basic shape and color of the final effect are maintained, the exact details are difficult
to discern at a distance.

6.5.2 Vertex-Processing LOD

Although LOD algorithms do a good job of reducing the total number of vertices
and faces that require processing, they do not provide ways of reducing the cost per
vertex. The sections that follow explore this issue.

Lighting LOD

The most complex per-vertex processing done by most game rendering systems is
vertex lighting. The cost of vertex lighting increases linearly with the number of lights
considered, with some variation for various types of lights. Games normally select up
to a maximum number of closest lights before rendering a mesh to limit this cost.
As the model becomes more distant, it is a simple process to reduce this maximum
light count until, at great distance, the model is lit only by an ambient average of
significant lights. As lights are removed from consideration, their contribution can
be added to an average ambient value to reduce visible discontinuities and avoid
gradually darkening the object.

A less obvious method often employed is to reduce more complex light types
to simpler approximations as the object moves to the background. The effect of
spotlights can be converted either to directional lights if the object is entirely inside
the umbra or removed altogether if the object is outside the penumbra. Point lights
can be converted to directional lights, and eventually to ambient lights. Since ambient
light is effectively free, at the lowest level of detail we can eliminate lighting costs
altogether.

Team LRN

6.5 Nongeometric Level of Detail 173

(a)

(b)

Figure 6.6 (a) Illustrating the use of billboard sprites to simulate smoke. (b) A wire frame
version.

Team LRN

174 Chapter 6 Gaming Optimizations

Transformation LOD

Once lighting is complete, the largest remaining expense to process a single vertex
is the transformation and clipping of the vertex positions. Under normal circum-
stances, this operation (handled by special-purpose hardware pathways) is nominally
free. But often a mesh is set up in a way that requires more complex handling. The
most common complex transformation scenario is a vertex that uses weighted skin
influences. In weighted skinning, each vertex is transformed by a number of bone
matrices (usually no more than four), and the results are blended according to blend
weights associated with each influence. The resulting position is then clipped and
projected as normal. The vertex normals are then blended in a similar fashion. Non-
weighted skinning is also common, and in this case each mesh vertex is bound to a
single bone matrix. Both of these cases are more complex than the classic rigid mesh,
in which a single matrix transforms all mesh vertices.

The mathematics of this type of processing is not significantly more complex
than the typical transformation, but because it is a less common pathway it can
suffer a greater performance penalty than anticipated. LOD can help with this in
two ways. If we are using an LOD system consisting of completely disparate models,
the lower LOD versions can be modeled using simpler types of skinning, typically
forcing all vertices to attach to a single matrix influence without weight variance.
Weighted skinning is most often used to give a natural look to high-polygon surfaces
stretched over a joint. Less complex meshes benefit less from the technique. Another
option is to gradually ignore some of the weighting information contained in the
vertices by dynamically re-weighting during processing. If we determine that a mesh
will be rendered at low complexity, the vertex could be forced to weight fully to
its more influential bone. If the weights for each vertex were sorted by decreasing
influence, this would mean either an abrupt or gradual shift to full weighting on the
first referenced bone. Because skinning normally involves very subtle blending effects,
this change is not as visually jarring as it might mathematically seem.

6.5.3 Object Priority

One very simple scheme used in games is the concept of geometry priority. In an
interactive game, visible objects are normally tied to higher-level abstractions repre-
senting game entities, such as enemies, props, decorative detail meshes, or base world
geometry. Depending on the purpose these entities serve in the game, they can be
handled differently by the LOD systems.

An extreme example of this is how some games handle objects such as “power-
ups.” These objects interact with the player only at close proximity. The player must
touch the object to pick it up and utilize it. Since these objects are small and cannot
be used from a distance, some games choose to remove the objects completely after
a certain fixed distance, gradually alpha-blending them out of the scene. Similar
techniques are used with decorative objects, particularly those that represent close-
detail “noise” objects such as rocks or trees on a terrain, small surface details, and

Team LRN

6.6 Imposters 175

similar objects. The game engine can adjust the “draw-in” distance of these objects
dynamically, based on performance measurements or estimated render loads in a
scene, without much disruption to the player.

6.5.4 Lighting

Most interactive games spend a considerable portion of their resources trying to
achieve realistic lighting, using a combination of precomputed and real-time tech-
niques. The most common way to render a complex mesh with high vertex density
is to calculate the lighting equation at each mesh vertex using a standardized model
such as the one used by OpenGL.

Typically games will restrict the maximum number of lights prior to rendering a
mesh, based on the intensities and locations of nearby lights. Since the total cost of
lighting is at least (numVertices * numLights), reducing the number of lights has a
considerable impact on the total cost of rendering.

Lighting is also important because it is the main source of visual discontinuities
in the rendered scene for games. When using any type of discontinuous LOD, such as
an unsmoothed edge collapse or a swap between discrete LODs, the actual geometry
changes generally have a fairly small effect on the rendered image, only shifting the
edges of the silhouette slightly. Changes affecting the lighting equation, however, can
span many more rendered pixels. If a vertex collapse shifts the vertex normal for a
triangle as much as 90 degrees, that could shift the computed lighting color from
white to black, a change Gouraud interpolation will then stretch across many pixels
on a large face.

There are two methods that can help deal with this problem. First, when we
reduce the geometry of a model, we continue to use vertex normals computed from
the original high-polygon version whenever possible. When using a vertex removal
method, we simply do not recompute vertex normals for the affected faces. When
using a discrete LOD replacement scheme, we can either use the original normals
from the remaining vertices in a particular level or, if the entire vertex array was
replaced, try to compute normals offline that represent the original surface.

Another way to reduce lighting discontinuities in real-time lit meshes is to gradu-
ally decrease the influence of directional and point lights in the equation, and shift
their contribution to ambient light. Replacing a directional light with an ambient
light clearly would cause a visual discontinuity if done immediately, but a gradual
blending can hide this. This type of blending, like many others, is often best done
based on viewer distance rather than screen depth, as described in Section 6.7.1.

6.6 Imposters

Video games, and to a lesser degree computer games, present a nearly ideal envi-
ronment for the use of image-based LODs, known as stand-ins or imposters. These
LODs replace geometric detail with image detail, consisting in their simplest form of

Team LRN

176 Chapter 6 Gaming Optimizations

an image of the object to be represented, texture mapped onto a single flat polygon.
Video game machines generally output to standard television resolutions, which are
unsuited to displaying fine details on distant images. Because of this low-resolution
output, game machines generally have more excess capacity for pixel processing
than vertex processing. Stand-ins represent the most efficient way to fill pixels on-
screen for distant objects. Most hardware even has optimized rendering pathways to
process screen-aligned quads or “point sprites,” which are well suited for rendering
stand-ins.

The use of predesigned imposters is almost ubiquitous in games. Often the im-
posters take the form of billboards, imposters whose polygons remain oriented per-
pendicular to the viewer so that the image is always seen straight-on. Most games use
a combination of particle and billboard effects to simulate volumetric effects such as
explosions or light volumes. Game engines often use billboards as imposters for trees
(see Figure 6.7) or other terrain features. It is sometimes difficult to classify these
shortcuts as LOD techniques. It is more often the case that artists or designers impro-
vise ways to generate images that would otherwise be impossible.

When used as stand-ins for more complex objects, the imposter image generally
uses an alpha channel, with at least 1 bit of alpha, to store the silhouette of the ren-
dered image. The imposter image is initialized uniformly to zero alpha, and the alpha
value is set non-zero for each pixel that represents the object image. It is also impor-
tant to maintain a 1-pixel buffer at the edge of the image, with zero alpha to avoid
artifacts caused by improper wrapping or clamping of the texture. By using an alpha
test in our pixel pipeline, we can accurately and efficiently superimpose the object
shape using a simple four-vertex quad. The imposter image is created with the object
appearing brightly lit, which enables the engine to use vertex coloration to darken
the image based on its position in the scene. We can use hardware-based lighting to
simulate this lighting automatically if we give our imposter quad vertex normal in-
formation approximating a spherical shape. This type of lighting will not accurately
light the details of the object being replaced, but it can increase the accuracy appre-
ciably, particularly in environments in which either the imposter or nearby lights are
in motion.

6.6.1 Prerendered Texture Imposters

One simple imposter technique for games involves offline rendering of an image or
set of images representing a complex character or object. In fact, before real-time 3D
games became commonplace, many games achieved a “3D look” using high-end 3D
modeling tools to render a series of images or “sprites.” To a game player unfamiliar
with the underlying technology, this type of 3D is often indistinguishable from real-
time rendering.

There are several possible techniques to create these imposter sprites for a real-
time 3D game. Our biggest challenges are dealing with the changing appearance of
the object due to point-of-view changes and with animation in the character itself.

Team LRN

6.6 Imposters 177

Figure 6.7 Billboards used to create a complex model of a tree.

We can simplify the point-of-view problem by restricting the possible angles to a
fixed number around a single axis. Most frequently, we opt for rendering the object
at between four and sixteen angles around their vertical axis. If we are using these
imposters mainly for distance rendering of upright objects, this is generally adequate.
At render time, the engine determines the angle between the viewer and the object’s
forward axis and selects the proper texture frame to apply to the imposter. If the
viewer gets into a position to view the object from an angle significantly higher or
lower, we should switch to a geometric version. For small changes in viewing angle,
we render the frames on a billboard with a locked vertical axis to approximate the
changing perspective. It is possible to expand this scheme to three axes with some
additional selection logic and additional frames of storage.

Team LRN

178 Chapter 6 Gaming Optimizations

Animation presents a trickier problem. The multiplicative cost of rendering mul-
tiple angles and multiple frames of animation is often prohibitive. For this reason,
most games opt for a restrictive set of animations for imposters, or restrict certain
animations to certain fixed viewing angles, when possible. Often a generic three- or
four-frame sequence to provide a general sense of pixel motion is an adequate ap-
proximation of more complex animations, so the animation states become effectively
“moving” and “not moving.”

One interesting option on some hardware is the availability of 3D volume tex-
tures. These textures provide a third axis of information that can be used to store mul-
tiple angles for an imposter. But more importantly, these textures can benefit from
hardware-assisted blending between these frames. At run-time, rather than selecting
an integral frame based on the viewing angle we compute a w texture coordinate that
will linearly blend between the two nearest frames in the volume. If we are rendering
several imposters of the same type, we benefit by avoiding a texture state change that
would be required if each frame were a discrete 2D texture. We may further benefit
from 3D texture compression techniques.

The MIP mapping capabilities of the hardware can also help us blend between
multiple artist-rendered representations as the distance increases, avoiding noise and
aliasing that may become apparent when a higher-resolution imposter is used at
smaller screen sizes. Perhaps the greatest advantage of using offline-rendered sprites
is simply the ability to manually touch up the images before they are used in the game.
Filtering and processing the image using more sophisticated offline tools allows the
artist to directly control the final look of the imposter on screen.

6.6.2 Render-to-Texture

By rendering a relatively low LOD version of a model to an off-screen texture, we can
utilize the same hardware processing that would normally be used to generate the
screen image to dynamically create a stand-in image that can be reused, at lower cost,
for some number of frames. This method has the ability to generate an image of the
model without restricting viewing angle or animation data. It also uses less memory,
since we do not devote storage space to any stand-in sprites that are not actively in
use. Both video game and computer hardware are moving toward a unified memory
model in which the hardware can render equally efficiently to either a visible frame
or an off-screen texture.

This type of dynamically rendered stand-in can only improve performance if the
resulting image is used over a number of frames. We can further hide discontinu-
ities that result from updating the texture imposter by gradually blending in new
images over the older ones using one of two techniques. In the first, we use a set of
two textures to represent the imposter during transition, rendering the new image
to alternative frames in a round-robin fashion. During the transition, we render our
image by blending between the two stored images using common hardware multitex-
ture blend modes. A similar alternative is to use an alpha-blend mode when updating

Team LRN

6.6 Imposters 179

a single texture imposter so that some of the previous content remains. This method
is less effective overall but takes up about half as much memory. The round-robin
method can also avoid a potential performance penalty on some hardware systems
that occurs if a rendered texture image is used immediately after being updated. The
hardware might require a complete flush of the rendering pipeline to ensure the im-
age is complete. By adding a one-frame delay between rendering a new imposter and
the start of the blend, we can effectively eliminate this possible block. In both cases,
because video game platforms have an excess of pixel fill rate, we can afford to blend
several passes of stand-in images without impacting performance.

6.6.3 Geometric Imposters

Replacing 3D geometry with a flat textured imposter is not the only viable option for
high-end 3D hardware. Often replacing a complex, articulated skeletal model with
a simple rigid mesh is a better alternative. Using this scheme, the entire model and
skeleton are discarded and replaced by a static 3D model based on a single matrix.
This is advantageous mainly because it avoids the costs associated with setting the
bone matrices and deforming the object skin. When processing normal character
meshes, the hardware is able to store a fixed number of matrices simultaneously
for processing. Depending on the size of this matrix list, a complex model may
have its faces separated into multiple batches. Each time this matrix set needs to
be changed, the hardware must process the changes and possibly flush or stall its
processing pipelines. In most cases, this cache is too small for single-batch processing
of a complex character model, where the total bone count routinely exceeds the
hardware limits.

By removing the character bones and thereby freezing the model skeleton in a
specific pose, the entire model can be stored relative to a single bone or matrix. In
most cases, the vertex processing for this type of rigid positioning is the fastest path in
the hardware pipeline, and allows for the most efficient batching of geometry. It also
means that when rendering a large collection of similar objects only a single matrix
needs to be updated for each instance rendered, and thus bus bandwidth is further
reduced.

This type of geometric imposter has several advantages over a texture solution.
The object will render a realistic silhouette regardless of viewing angle without storing
multiple versions—even from above and below, which are particularly challenging
situations for textured billboards. A geometric imposter is also superior when dealing
with real-time lighting. A geometric shape can accurately receive directional lighting
from its environment, whereas a flat texture would rely on less accurate methods to
simulate this lighting. The main shortcoming is in dealing with complex animations,
and even in this case it is certainly no worse than a texture-based solution. Additional
memory could be used to store multiple “poses” for the rigid model, just as the
textured imposter can store multiple frames as a sequence of “flip-book” frames.

Team LRN

180 Chapter 6 Gaming Optimizations

6.7 Selection and Metrics

Various methods for selecting LOD are presented elsewhere in this text, and for the
most part these apply equally well to interactive gaming as they do to other disciplines
(see Figure 6.8). There are a few unique metrics we can apply to interactive games
based on a game’s knowledge of the situation of the game or scene, which is an
advantage other disciplines do not have. The basic strategies for LOD selection are
discussed in depth in Chapter 4, but this section revisits some of these ideas with an
emphasis on the gaming environment.

6.7.1 Distance Selection

Most LOD selection algorithms are based primarily on the distance between the
viewer and the object being viewed. In a real-time environment there are a few
additional considerations when calculating this distance. First, it is important to base
the LOD selection primarily on the true 3D distance between viewer and object,
rather than on the screen depth of the object. It is common in a 3D game for the
viewer to pivot (yaw) around a fixed view position rapidly. LOD selection based on
screen depth might trigger detail-level changes during such a pan, resulting in visual
artifacts more likely to be noticed by the player.

It is also advisable to build in some hysteresis (Section 4.1.4), using tolerance fac-
tors to avoid changing LOD in response to small changes in viewer distance. Certain
games may attach the camera to a moving model or add an explicit “idle” motion to
avoid an entirely static screen. These small changes should not trigger repeated LOD
changes. Anytime the player is effectively inactive, the LOD should try to avoid mak-
ing any visible changes, since the lack of overall motion gives us less opportunity to
make changes that would go unnoticed by an active player.

6.7.2 Game-Specific Metrics

Another simple example is the differentiation between interactive play and noninter-
active or “cut-scene” mode. The primary difference between these two modes of play
is whether or not the player is actively controlling the camera or player in the scene,
or if the player is passively watching a prescripted sequence of events rendered in real
time. Maintaining a steady 60-Hz or 30-Hz frame rate is critical for a positive user
experience during interactive sequences, particularly when the player is directly con-
trolling the camera view. Rapid user-controlled camera motions at low frame rates
have even been found to cause motion sickness in players. However, users are accus-
tomed to viewing passive or noninteractive sequences at frame rates as low as 24 Hz,
the frame rate used for film movies. Since the game engine knows when it is present-
ing scripted or noninteractive content, it can choose to devote available processing
or bandwidth to displaying more complex geometry or shaders, while allowing the
frame rate to drop to lower levels than it would normally target.

Team LRN

6.7 Selection and Metrics 181

Decreasing Detail Metric

Model Geometry

Shader Complexity

Dynamic Lighting

Vertex Shader Complexity

Effects/Priority

Maximum model
detail

Minimum model
detail

Imposter

Full shader Simplified
shader

Base
texture only

Solid fill

4 lights 2 point
lights

1 point/1
directional

Directional
only

Ambient
only

4-weight
blending

2-weight
blending

Rigid skin Rigid
imposter

Full shadow Drop
shadow

No shadow Cull model

Figure 6.8 A range of potential detail metrics for games.

Another game-specific consideration for LOD is the identification of active (or
“targeted”) objects in a scene. Depending on the type of game, players commonly
interact with only a subset of the objects on screen at a given time. The player may
fight one enemy at a time in a combat game, or control only the quarterback during
a football play. In cases such as these, the game has a concrete indication of where the
user’s attention is most likely to be focused, and can bias the selection of LOD based
on the likely attentiveness of the viewer.

6.7.3 LOD Blending

For games, the metric for which we optimize is quite simply user perception. Our goal
is to spend our rendering and CPU budgets on those things the player is focusing his
or her attention on, while taking shortcuts to fill the remainder of the screen with
convincing supporting elements. One important goal of any game LOD scheme is to
avoid distracting the player’s focus away from the center of interactivity. The most
common cause of visual distraction is an abrupt change in the rendered screen image

Team LRN

182 Chapter 6 Gaming Optimizations

that occurs during a less active period of the game. Making abrupt changes in detail
on visible objects is a common cause of such a change.

One straightforward method to avoid this sort of discontinuity blends gradually
to a new representation of a geometry or shader. As described in Chapter 4, this
blending can take one of two forms. In its simplest form, we can render two ver-
sions of the geometry, gradually cross-fading the alpha values between the two levels.
Obviously during this transition we are actually rendering more geometry than ei-
ther detail level alone, which would tend to work against our goal of decreasing the
rendering costs. Fortunately, we need to blend over only a small number of frames to
avoid drawing attention to the changeover. We can also exploit some efficiencies when
drawing the same geometry multiple times with only incremental topology changes,
mainly by avoiding costly hardware state changes such as texture, vertex source, or
blend modes.

Geomorphing is a more complex method that involves geometrically blending
between two detail levels rather than image-space blending of their resulting images.
As with alpha blending, geomorphing temporarily increases the rendering expense
during the transition period. In this case, rather than rendering two versions of the
geometry, we continue to render the more complex version of the geometry, but
we gradually blend the underlying vertex positions between their original and final
locations. It is straightforward to program an optimized vertex program or shader
to algorithmically blend between two sets of vertex inputs using hardware resources,
but it does mean temporarily using a considerably more complex processing path.
This method also limits the types of changes we can make between detail levels, and
requires us to either create or store a special version of our vertex data to represent the
“target” geometry of the blend—one that contains multiple copies of identical vertex
entries that represent the destination of blended vertices collapsed by the detail-level
transition. This is necessary because typical hardware cannot accept vertex data in
random-access or indexed formats. Each atomic processing input, in this case the
“start” and “end” vertex positions for the blend, must be streamed to our hardware
in tandem, according to our higher-detail index list.

Once blending is initiated, it can proceed based on either time or continuing
change in other selection metrics (mainly distance). Although time-based blends
have some advantages, such as a guaranteed maximum duration, they can lead to
some perceptible errors if the viewer stops moving during such a blend. In that case,
a blend may continue for some time after the motion of the scene stops, causing a
visible change that can draw the player’s attention. It is preferable to base the blend
progress on factors that will stop changing if the viewer stops moving, although it
might result in the system pausing in mid-blend occasionally.

6.8 Conclusions

The techniques described in this chapter are merely specific applications of those
introduced earlier in this text. The important lesson to be learned here is how a par-

Team LRN

6.8 Conclusions 183

ticular set of restrictions and performance characteristics, like those unique to game
development, can affect the selection of techniques and the particular application of
those techniques. In particular, game platforms provide an interesting case study be-
cause they are very constrained in some ways—most notably in regard to memory
and processing power—and surprisingly capable in other ways, such as pixel pro-
cessing power and the ability to implement “down to the metal” access to rendering.

Games are also an interesting case study for LOD because they are affected at
so many levels by the concept. Games routinely use billboards and imposters as a
first-tier rendering type. Games use polygon-reduction techniques to render not only
distant objects, but also shadow projections and volumes for special effects up close.
Games must deal with an ever-changing and often unpredictable rendering load
while simultaneously being more closely bound to a constant refresh rate than any
other commercial graphics application.

It is also worth noting that game developers are notoriously practical engineers
when it comes to new techniques. Game programmers are often slow to adopt new
research, preferring instead to wait until the techniques “trickle down” and become
more proven and turnkey. The fact that, despite all this, game developers are often on
the cutting edge of LOD research shows the importance of LOD to that industry as a
whole.

The future of LOD in games promises substantial changes. The next generation of
hardware will likely introduce increased support for some curved-surface primitives,
perhaps using aspects of subdivision surfaces in its hardware pathways. It also seems
likely that the processing power available to process vertex data in more complex ways
will continue to increase exponentially. Growing adoption of higher resolutions will
impact video games, as ATSC resolutions gradually replace NTSC standards to tip
the balance between pixel and vertex throughput. All of these changes will affect how
game developers select and implement their detail management systems.

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
Terrain Level

of Detail

In this chapter we deal with the topic of level of detail for terrain visualization.
This is a specialized area of LOD, but also one that goes back a long way and has

received a large amount of interest. It is of particular importance to realistic flight
simulators or terrain-based computer games, as well as to geographic information
systems (GISs) and military mission planning applications. In fact, early flight simu-
lators were some of the first systems to use LOD in any practical sense [Vince 93; Yan
85]. For example, in his extensive survey of the early flight simulator field, Schachter
discussed the need to optimize the number of graphics primitives representing a
scene, and states that it was common to display objects in lower detail as they ap-
peared further away [Schachter 81]. Within the GIS field, the topic of generalization
has similarly received a lot of interest and is essentially the same thing as LOD (i.e.,
the simplification of map information at different map scales [Weibel 98]).

185

Team LRN

186 Chapter 7 Terrain Level of Detail

Figure 7.1 Screen shot of the Grand Canyon with debug view—using the Digital Dawn Graphics
Toolkit, now incorporated into the Crystal Space portal engine. Courtesy of Alex
Pfaffe.

7.1 Introduction

A large volume of early work in terrain simplification was done as far back as the late
1970s, and continued through the 1980s and 1990s (e.g., Fowler and Little [Fowler
79], DeFloriani et al. [DeFloriani 83], and Scarlatos and Pavlidis [Scarlatos 92],
among many others). Heckbert and Garland provided an excellent review of these
early developments in their SIGGRAPH ’97 course [Heckbert 97], and a number of
further articles contain useful reviews (e.g., Cohen-Or and Levanoni [Cohen-Or 96],
DeFloriani et al. [DeFloriani 96], and Youbing et al. [Youbing 01]). In this chapter,
we will concentrate on those more recent techniques—focusing on real-time view-
dependent solutions—that are of practical value to game developers or to software
engineers concerned with accurate visualization of massive, potentially distributed
terrain models, such as that shown in Figure 7.1.

Team LRN

7.2 Multiresolution Techniques for Terrain 187

In some ways terrain is a much easier case to deal with than arbitrary 3D models
because the geometry is more constrained, normally consisting of uniform grids of
height values. This allows for more specialized and potentially simpler algorithms.
However, terrain data also bring some added complications. For example, because
of its continuous nature, it is possible to have a large amount of terrain visible at
any point, and for this to recede far into the distance. This makes view-dependent
LOD techniques of critical importance for any real-time system. Furthermore, terrain
meshes can be extremely dense, requiring paging techniques to be implemented
so that they can be viewed on common desktop configurations. As an illustration
of this latter point, the U.S. Geological Survey (USGS) publishes the GTOPO30
elevation data set at 30-arc-second resolution (roughly 1 kilometer at the equator).
This translates to a height grid of 43,200 × 21,600 = 933 million points, and around
1.8 billion triangles over the entire planet. If that does not sound too vast, there
is the NASA Earth Observing System (EOS) satellite ASTER, among others, which
can gather 30-m resolution elevation data derived from 15-m near-infrared stereo
imagery!

7.2 Multiresolution Techniques for Terrain

We begin this chapter by taking a look at some of the principal variables a developer
faces when implementing a terrain LOD algorithm. The bulk of the chapter is devoted
to discussions of a few specific techniques that have proved the most valuable over re-
cent years. Following this, we introduce some background on geographic coordinate
systems and file formats to help designers interested in producing geographically ac-
curate simulations. Finally, we point out some useful resources on the Web that relate
to terrain LOD.

7.2.1 Top Down and Bottom Up

One of the major differentiators of terrain LOD algorithms, as with more general
LOD techniques, is whether they are top-down or bottom-up in their approach to
the simplification problem. These approaches were discussed in Chapter 2, but we
will reprise the essentials here as they relate to terrain. In a top-down algorithm, we
normally begin with two or four triangles for the entire region and then progressively
add new triangles until the desired resolution is achieved. These techniques are also
referred to as subdivision or refinement methods. In contrast, a bottom-up algorithm
begins with the highest-resolution mesh and iteratively removes vertices from the
triangulation until the desired level of simplification is gained. These techniques can
also be referred to as decimation or simplification methods. Figure 7.2 illustrates
these two approaches to terrain simplification. Bottom-up approaches tend to be able
to find the minimal number of triangles required for a given accuracy. However, they
necessitate the entire model being available at the first step and therefore have higher
memory and computational demands.

Team LRN

188 Chapter 7 Terrain Level of Detail

Top-down

Bottom-up

Figure 7.2 Terrain simplification algorithms normally fit into one of the two categories top down
or bottom up.

It is worth making an explicit distinction between the preparation-time and run-
time sense of bottom-up versus top-down. Bottom-up approaches are almost always
used during the initial offline hierarchy construction. However, at run-time, a top-
down approach might be favored because, for example, it offers support for view
culling. Most interactive bottom-up solutions are usually hybrid in practice, often
combined with a top-down quadtree block framework (described later in the chap-
ter). Furthermore, a few systems perform incremental coarsening or refining of the
terrain at each frame to take advantage of frame-to-frame coherency. As such, these
systems cannot strictly be classified as exclusively top-down or bottom-up.

7.2.2 Regular Grids and TINs

Another important distinction between terrain LOD algorithms is the structure used
to represent the terrain. Two major approaches in this regard are the use of regular
gridded height fields and triangulated irregular networks (TINs). Regular (or uni-
form) grids use an array of height values at regularly spaced x and y coordinates,
whereas TINs allow variable spacing between vertices. Figure 7.3 illustrates these two
approaches, showing a regular grid of 65 × 65 (equals 4,225) height values and a 512-
vertex TIN representation with the same accuracy.

TINs can generally approximate a surface to a required accuracy with fewer poly-
gons than other schemes. For example, they allow large flat regions to be represented
with a coarse sampling, while reserving higher sampling for more bumpy regions.
Regular grids, in comparison, tend to be far less optimal than TINs because the same
resolution is used across the entire terrain, at flat places as well as high-curvature
regions. TINs also offer great flexibility in the range and accuracy of features that

Team LRN

7.2 Multiresolution Techniques for Terrain 189

(a) (b)

Figure 7.3 (a) A regular grid terrain representation, and (b) a TIN representation [Garland 95].
Copyright © 1995 Carnegie Mellon University.

can be modeled, such as maxima, minima, saddle points, ridges, valleys, coastlines,
overhangs, and caves. However, regular grids offer the advantages that they are sim-
ple to store and manipulate. For example, finding the elevation at any point is a
simple matter of bilinearly interpolating the four nearest neighbor points. They are
easily integrated with raster databases and file formats, such as the DEM,1 DTED,
and GeoTIFF file formats. In addition, they require less storage for the same num-
ber of points because only an array of z values needs to be stored rather than full (x,
y, z) coordinates. Furthermore, TINs make implementing related functions (such as
view culling, terrain following, collision detection, and dynamic deformations) more
complex because of the lack of a simple overarching spatial organization. Also, the
applicability of TINs to run-time view-dependent LOD is less efficient than regular
gridded systems. For these reasons, many contemporary terrain LOD systems favor
regular grids over TINs.

It is worth noting that a number of hybrid schemes have been proposed that try
to gain the best of both worlds—most notably by using a hierarchical triangulation
based on a regular grid. For example, Evans et al. used a representation they call right
triangular irregular networks (RTINs), in which a binary tree data structure is used to
impose a spatial structure on a triangle mesh. They state that this provides a compact
representation similar to a gridded approach yet supports the nonuniform sampling

1. Regular grids are sometimes referred to generically as DEMs, or digital elevation models.
This term is more normally used to describe the specific elevation data product from the USGS.

Team LRN

190 Chapter 7 Terrain Level of Detail

feature of TINs [Evans 97]. A further alternative representation scheme was proposed
by Gross et al., who used a wavelet transform of gridded data to produce an adaptive
mesh tessellation at near-interactive rates [Gross 95].

7.2.3 Quadtrees and Bintrees

To implement view-dependent LOD for a regular grid structure, we must be able to
represent different parts of the grid at different resolutions. This implies a hierarchical
representation in which we can gradually refine further detail to different parts of
the grid. There are a number of options available for achieving this multiresolution
representation. The most common two are the quadtree [Herzen 87] [Samet 92] and
the binary triangle tree [Duchaineau 97] [Pajarola 98] [Gerstner 02]. A quadtree
structure is where a rectangular region is divided uniformly into four quadrants. Each
of these quadrants can then be successively divided into four smaller regions, and so
on (see Figure 7.4(a–d)). Quadtrees have been used for a number of terrain LOD
systems (e.g., Röttger et al. [Röttger 98], Leclerc and Lau [Leclerc 94], and Falby et al.
[Falby 93]). Note that you can still employ a quadtree structure and use triangles
as your primitives. You would simply decompose each rectangle into two or more
triangles. In fact, a number of different triangulation schemes could be implemented
independent of the use of quadtrees or bintrees.

A binary triangle tree structure (bintritree, BTT, or simply bintree) works the
same way as a quadtree, but instead of segmenting a rectangle into four it segments
a triangle into two halves (note that this is the same as the term RTIN introduced by
Evans et al. [Evans 97]). The root triangle is normally defined to be a right-isosceles
triangle (i.e., two of the three sides are equal and they join at a 90-degree angle),
and the subdivision is performed by splitting this along the edge formed between
its apex vertex and the midpoint of its base edge (see Figure 7.4(e–h)). Note that
another, more general, term that can be used to describe a bintree is a kd-tree. A
kd-tree is a binary tree that recursively subdivides a space such that a k-dimensional
kd-tree divides a k-dimensional space with a (k − 1)-dimensional plane [Ögren 00].
Systems that have implemented binary triangle tree techniques include Lindstrom
et al. [Lindstrom 96] and Duchaineau et al. [Duchaineau 97]. One of the big advan-
tages of bintrees is that they make it easy to avoid cracks and T-junctions (see the
next section for more details). Bintrees also exhibit the useful feature that triangles
are never more than one resolution level away from their neighbors (this is not true
for quadtrees, which often require extra care to preserve this condition). Seumas Mc-
Nally wrote an excellent piece on bintrees for GameDev.net. In that article he presents
psuedo code for splitting a triangle in a binary triangle tree while avoiding cracks
and T-junctions. The psuedo code follows, including some minor optimizations that
have been reported recently [Ögren 00]. In this code, the left and right neighbors
point to the triangles on the left and right with the hypotenuse down, and the bot-
tom neighbor is the triangle that meets the hypotenuse. Figure 7.5 illustrates the split
progression.

Team LRN

7.2 Multiresolution Techniques for Terrain 191

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4 Images (a–d) illustrate the recursive refinement of a square-shaped quad-
tree structure, and (e–h) illustrate the recursive refinement of a binary triangle tree.

Split(BinTri *tri) {
if tri->BottomNeighbor is valid {

if tri->BottomNeighbor->BottomNeighbor != tri {
Split(tri->BottomNeighbor)

}
Split2(tri)
Split2(tri->BottomNeighbor)
tri->LeftChild->RightNeighbor = tri->BottomNeighbor->RightChild
tri->RightChild->LeftNeighbor = tri->BottomNeighbor->LeftChild
tri->BottomNeighbor->LeftChild->RightNeighbor = tri->RightChild
tri->BottomNeighbor->RightChild->LeftNeighbor = tri->LeftChild

} else {
Split2(tri)
tri->LeftChild->RightNeighbor = 0;
tri->RightChild->LeftNeighbor = 0;

}
}

Split2(tri) {

Team LRN

192 Chapter 7 Terrain Level of Detail

E

D

A

C B

Figure 7.5 The subdivision progression for Seumas McNally’s bintree tessellation code. The root
triangle is A, with a right child B, and a left child C. C has a right child D, and a left
child E.

tri->LeftChild = AllocateBinTri();
tri->RightChild = AllocateBinTri();
tri->LeftChild->LeftNeighbor = tri->RightChild
tri->RightChild->RightNeighbor = tri->LeftChild
tri->LeftChild->BottomNeighbor = tri->LeftNeighbor
if tri->LeftNeighbor is valid {

if tri->LeftNeighbor->BottomNeighbor == tri {
tri->LeftNeighbor->BottomNeighbor = tri->LeftChild

} else {
tri->LeftNeighbor->RightNeighbor = tri->LeftChild

}
}
tri->RightChild->BottomNeighbor = tri->RightNeighbor
if tri->RightNeighbor is valid {

if tri->RightNeighbor->BottomNeighbor == tri {
tri->RightNeighbor->BottomNeighbor = tri->RightChild

} else {
tri->RightNeighbor->LeftNeighbor = tri->RightChild

}
}
tri->LeftChild->LeftChild = 0
tri->LeftChild->RightChild = 0
tri->RightChild->LeftChild = 0
tri->RightChild->RightChild = 0

}

Team LRN

7.2 Multiresolution Techniques for Terrain 193

Cracks T-junctions

(a) (b)

Figure 7.6 (a) Cracks and (b) T-junctions can occur where a mesh changes from one level of
refinement to another [Youbing 01].

7.2.4 Tears, Cracks, and T-Junctions

A common problem when dealing with terrain LOD (particularly when dealing with
quadtree- or block-based approaches) occurs when adjacent triangles exist at dif-
ferent levels of detail. In this situation, it is possible to introduce cracks along the
edge, where the higher LOD introduces an extra vertex that does not lie on the lower
LOD edge. When rendered, these cracks can cause holes in the terrain, allowing the
background to peak through. Another undesirable artifact is the T-junction. This is
caused when the vertex from a higher LOD triangle does not share a vertex in the ad-
jacent lower LOD triangle. This can result in bleeding tears in the terrain due to small
floating-point rounding differences, and visible lighting and interpolation differences
across such edges. Figure 7.6 illustrates both of these cases.

There are a number of ways of dealing with cracks. Some of the more common
solutions are described in the following.

The triangles around the crack are recursively split to produce a continuous
surface. This will often introduce additional triangles into the mesh but produces
a pleasing and continuous result. This approach is often used in bintree-based
systems. For example, the ROAM algorithm adopts this solution, along with other
systems [Duchaineau 97] [Lindstrom 96]. Figure 7.7 gives an example of this
technique. Psuedo code to perform this type of recursive splitting was introduced
in the previous section.

The extra vertex in the higher LOD mesh has its height modified so that it lies
on the edge of the adjacent lower LOD mesh. This does not affect the number
of triangles or vertices in the model, but it introduces a potentially visible error
into the terrain surface unless care is taken that the vertex shift occurs below
the accuracy threshold. This method essentially implies introducing a T-junction
into the model, which is generally considered harmful to the continuity of the

Team LRN

194 Chapter 7 Terrain Level of Detail

(a) (b)

Figure 7.7 Eliminating cracks and T-junctions via recursive splitting. The triangle split in
(a) highlighted by the dotted line would introduce a T-junction at the indicated
point. The mesh in (b) shows the result of recursive splitting to avoid this situation
[Evans 97].

mesh, although some systems have used this approach due to its simplicity and
compactness [Youbing 01]. A similar solution that avoids the T-junction is to
simply skip the center vertex on the higher LOD mesh [Röttger 98].

An equivalent operation to the previous case is to add an extra vertex to the edge
of the lower LOD mesh and assign it the same location as the extra vertex in the
higher LOD mesh. This produces a more faithful terrain surface, but at the cost
of introducing an extra vertex. A further refinement of this approach is to shift
both of the boundary vertices to the average of their two elevations [Leclerc 94].

A common tool for managing extremely large terrain data sets is to segment
them into a number of blocks, or tiles, so that these might be paged into main
memory as needed. A simple solution to avoid tears between blocks is to prevent
simplification of vertices that lie on the boundary of a block [Hoppe 98a].

A new triangle is inserted between the two meshes to plug up the gap. Although
this results in a continuous mesh, the fill polygons lie in a plane perpendicular to
the surface and hence can introduce unnatural-looking short cliffs. This solution
also has the disadvantage of using extra polygons to represent the mesh. This
solution was implemented by De Haemer and Zyda at the Naval Postgraduate
School [De Haemer 91].

7.2.5 Paging, Streaming, and Out of Core

One highly desirable feature of a terrain LOD algorithm is to be able to operate
out-of-core; that is, to be able to browse terrain data sets that exceed the size of
the available main memory. By adding the capability to page terrain in and out of

Team LRN

7.2 Multiresolution Techniques for Terrain 195

main memory, it becomes possible to allow streaming of data over the Internet. A
number of solutions have been devised for these problems, varying in sophistication
and flexibility.

One very simple approach to out-of-core operation was proposed by Lindstrom
and Pascucci. Their approach was to optimize the layout of terrain data on disk to
improve its spatial coherence. Then the operating system functions for mapping part
of the computer’s logical address space to a specific disk file were used to implicitly
page the data from disk [Lindstrom 01a]. Under UNIX, this means using the mmap()
function; under Windows the MapViewofFile() API call can be used. This approach
has the advantage of leaving all of the data paging control to the operating system,
which is presumably already robust and efficient. The major design issues to be ad-
dressed, therefore, reduce to determining a way to store the raw data that minimizes
disk paging events and devising an efficient mechanism to compute the location of a
desired vertex element on disk. Their solution achieved good data locality by storing
the data in a coarse-to-fine order, where vertices geometrically close are stored close
together on disk using an interleaved quadtree structure. Hoppe introduced a simi-
lar scheme to this using the Windows operating system’s virtual memory functions,
VirtualAlloc() and VirtualFree(), to page blocks of terrain in and out of physical
memory [Hoppe 98a]. This approach requires care to commit any pages that might
be accessed, but Hoppe’s explicit use of blocks makes this very manageable.

A more explicit terrain paging system was developed by Falby et al. as part of
the NPSNET simulator at the Naval Postgraduate School [Falby 93]. NPSNET used a
50-km x 50-km terrain model of Fort Hunter-Liggett, California, at 125-m resolu-
tion. The entire grid was downsampled to 250-, 500-, and 1,000-m resolutions, and
each of these levels were segmented into 1-km x 1-km chunks, or tiles. This scheme
is often referred to as a tiled pyramid [Rosenfeld 84]. The total pyramid size was
147 MB, and a heap-sorted quadtree data structure was used to access the tiles. A
dynamic terrain-paging algorithm was implemented so that at any one time only a
16-km x 16-km area was resident in main memory. As the user moved around, files
corresponding to a 16-km x 1-km strip of terrain were consecutively read into main
memory and the opposite 16-km x 1-km strip freed. This design is illustrated in Fig-
ure 7.8.

Davis et al. at the Georgia Institute of Technology presented a solution for real-
time visualization of out-of-core collections of 3D objects, applying this to both
global terrain and the objects that reside on it [Davis 99]. Their solution involved
the use of a forest of quadtrees covering the entire earth. Then, at a certain point,
the buildings and other objects switched to use a nonquadtree discrete LOD scheme.
The VGIS (virtual geographic information system) real-time visual simulation system
was extended for this work. VGIS is a multithreaded application with an object server
thread that loads pages from disk, and an object manager thread that decides which
cells should be loaded [Lindstrom 97]. Davis et al. report that their system can scale
to browsing tens to hundreds of gigabytes of data [Davis 99].

The OpenGL Performer library provides support for paging of terrain geome-
try via its active surface definition (ASD) feature [Silicon Graphics 00b]. This is also

Team LRN

196 Chapter 7 Terrain Level of Detail

Field of view

1000 meter square serving
as center square

Dynamic 16 x 16 kilometer
active area in main memory

Terrain area extending to
50 kilometers

Terrain area extending
to 50 kilometers

1200 x 1200 meter bounding
box containing driven vehicle

Figure 7.8 The terrain-paging architecture used in the NPSNET simulator [Falby 93].

implemented using tiles of data paged into memory on demand. A further improve-
ment ASD provides is the use of multiresolution tiles so that smaller, high-resolution
tiles can be paged in near the viewer, and larger, more coarse data can be paged in
for distant regions. This offers a more efficient solution than employing a single tile
size, because often a terrain mesh can extend far into the distance, where it obviously
requires less detail to be loaded. ASD uses a coarse-to-fine loading order such that
the low-resolution tiles are loaded first so that coarse data are always available. This
behavior means that when traveling rapidly over a surface, the high-resolution mesh
may not have time to load completely, but you still get a coarse representation of the
terrain.

All of the techniques described so far deal with paging terrain data from local disk
only. Lindstrom and Pascucci’s solution, along with Hoppe’s, would not scale to pag-
ing data over a wide-area network such as the Internet, whereas the system described
by Falby et al. could conceivably be extended to read data over a socket instead of just
local disk. However, one system that has already implemented this level of capability
is SRI International’s TerraVision system. Dating back to 1992, TerraVision was de-
signed from the bottom up to browse massive terrain data sets over the Web [Leclerc
94] [Reddy 99]. It used a tiled pyramid approach to store chunks of elevation and tex-

Team LRN

7.2 Multiresolution Techniques for Terrain 197

128 pixels 128 pixels 128
pixels

(a) (b)

Figure 7.9 A tiled pyramid of an image data set showing (a) four different resolution levels and
(b) how this structure can be used to produce a view-dependent image [Reddy 99].
Copyright © 1999 IEEE.

ture data over a range of resolutions (see Figure 7.9). A quadtree structure was used
to provide coarse LOD management, where the leaf nodes of the quadtree are only
allocated as needed so that truly massive terrain models can be accommodated. The
system exploits frame coherence, extensive tile caching, and texture-caching man-
agement, as well as predictive tile prefetching based on a simple linear extrapolation
of the user’s position. An important feature of TerraVision is that it was designed
to cope with the inherent delays and unpredictable nature of networks. Tiles are re-
quested in a coarse-to-fine manner so that low-resolution data are always available
while the higher-resolution tiles are being streamed over the Web. In addition, the
rendering and navigation threads were separated from the tile-requesting and tile-
reading threads, meaning that the system does not hang while waiting for detail to
appear. TerraVision is available for UNIX and Windows platforms at www.tvgeo.com,
and the Open Source tools for creating and reading the tile pyramid data sets are
available at www.tsmApi.com.

Also worthy of note is the recent GeoVRML work, which is currently being stan-
dardized through ISO (International Organization for Standardization) as part of

Team LRN

198 Chapter 7 Terrain Level of Detail

an amendment to the Virtual Reality Modeling Language (VRML) specification.
GeoVRML provides a number of extensions for plain VRML97 to support geographic
applications. It includes the GeoLOD node, which provides a simple quadtree LOD
capability for terrains. Here, up to four children scenes are dynamically loaded, based
on the distance from the viewer [Reddy 00]. An Open Source Java implementation is
available from the GeoVRML Working Group web site at www.geovrml.org.

7.2.6 Texture-Mapping Issues

It is worth taking the time to talk explicitly about texture-mapping issues for terrain.
The LOD literature often passes over texturing issues in order to focus on the manage-
ment of the terrain geometry. However, there are some extremely important topics to
deal with in terms of texturing the terrain skin. In this section, we deal with the issues
of managing large texture maps for terrain and how these can be displayed to the user
in a realistic manner.

Paging of Large Textures

Supporting paging of texture imagery is at least as important as paging of geometry,
given the potentially massive sizes of satellite and aerial images and the often limited
amount of texture memory available on contemporary graphics cards. A common
way to page large texture maps is to cut the texture into small tiles and then simply
load the subset of texture tiles needed at any time. This was illustrated in Figure 7.9.

The simple solution is to cut the image into tiles that are of a power of 2 (e.g., 64,
128, or 512 pixels on side). This approach maps well to the use of texture memory
because this memory is normally always a power of 2 in size (e.g., 2,048 by 2,048
pixels). The main disadvantage of this approach is that visible seams can appear
when interpolation is used to smooth out textures. This is caused at the edge of
texture maps, where no information is available for neighboring textures. It can also
be exacerbated by the wraparound behavior of the interpolation, where the first
pixel color is used to influence the color of the last pixel in a tile row. This can
be significantly reduced by using the texture-clamping features of the graphics API.
However, even this does not completely solve the problem, because ultimately the
system does not know the color of the next pixel at the end of a tile row. Another
solution, therefore, is to still use a power of 2 tile size but to include a single pixel of
redundancy on all sides of the texture.

Jonathan Blow, in a 1998 Game Developer article, described many of the low-
level concerns of producing a texture-caching system [Blow 98]. He described the
basic functions of a texture cache and surveyed a number of commercial game sys-
tems on their texture cache designs, including Golgotha, Crystal Space, Hyper3D,

Team LRN

7.2 Multiresolution Techniques for Terrain 199

Descent 3, KAGE, and Wulfram. Blow also talked about various optimizations that
can be implemented to improve the performance of a texture cache, including
prefetching textures, using compressed textures, and performing occlusion culling.

Hardware Support for Large Textures

On the topic of texture paging, some graphics systems provide hardware support for
paging large texture maps from disk. One such example is the clip mapping support
introduced in Open Performer 2.1 for SGI InfiniteReality (IR) workstations [Tanner
98]. This is a patented algorithm that extends the notion of mipmapping to allow the
size of each texture level to be clipped to a maximum size in the s, t, and r dimensions,
with images caches used to represent levels that exceed this limit. As the user moves
around, the clip region is updated incrementally over a high-speed bus so that the
new pixels are loaded while the newly invalidated ones are unloaded. No shifting
of the old pixels is needed because the clip region coordinates wraparound to the
opposite side.

It is worth noting that at least one group has successfully simulated clip mapping
in software using multiple textures. For example, the company Intrinsic Graphics has
implemented clip mapping, which they claim works on any OpenGL graphics card.

Another hardware technique that may prove useful in managing large texture
maps is texture compression. This is a technique in which texture maps can be com-
pressed and therefore use less texture memory on the graphics card. The benefit is
of course that more or larger textures can be used. However, the image quality is
often adversely affected. Furthermore, current support for texture compression is not
ubiquitous (with a number of competing standards), which makes this technique less
tenable in the short term.

Detail Textures

Often satellite imagery does not provide sufficient resolution when you are browsing
terrain close to the ground. Most publicly available imagery will provide up to 1-m
resolution, although some half-meter-resolution satellites are now being launched.
However, often we may have to use texture imagery of much lower resolution. This
can result in overly blurred surfaces when the viewpoint is close to the ground.
One common solution is to blend high-frequency geotypical features, such as grass
or sand, with the geospecific satellite or aerial imagery. This is often implemented
using a bitmap mask to specify areas covered with different geotypical ground types.
Then the geotypical texture needs to be alpha blended with the geospecific texture,
normally using a distance-based function so that the detail texture is faded into and
out of use. For more depth on detail textures, see Peter Hajba’s May 2001 article “The
Power of the High Pass Filter”at Gamasutra.com.

Team LRN

200 Chapter 7 Terrain Level of Detail

7.3 Catalog of Useful Terrain Algorithms

Having described many of the fundamental concepts of terrain LOD, we now describe
a number of the most popular algorithms presented in recent years. In this coverage,
we try to include those techniques that are of high practical value in real systems
or gaming engines. We introduce these in chronological order, as many of the most
recent and sophisticated techniques are built upon work in earlier systems.

7.3.1 Continuous LOD for Height Fields

One of the first real-time continuous LOD algorithms for terrain grids was the early
work of Lindstrom et al. This algorithm used a regular grid representation and em-
ployed a user-controllable screen-space error threshold to control the degree of sim-
plification [Lindstrom 96]. The algorithm is conceptually bottom-up, starting with
the entire model at its highest resolution and then progressively simplifying triangles
until the desired accuracy is reached. However, in practice, the mesh is broken up into
rectangular blocks and a top-down coarse-grained simplification is first performed
on these blocks, followed by a per-vertex simplification within the blocks. Bottom-up
recursion happens when a vertex changes from active to inactive (and vice versa), at
which point forced splits and merges occur. Frame-to-frame coherence is supported
by maintaining an active cut of blocks and by visiting vertices only when they could
possibly change state between consecutive frames. Cracks are eliminated between ad-
jacent nodes through the use of a binary vertex tree that maintains the dependence
between vertices. Although gaps between blocks of different levels of detail were not
corrected directly, the authors suggest that adjacent blocks should share vertices on
their boundaries.

The simplification scheme devised by Lindstrom et al. involved a vertex removal
approach in which a pair of triangles is reduced to a single triangle. This involved
identifying a common vertex between a triangle pair, such as that shown in Figure
7.10. Here, the two original triangles are �ABD and �BCD. These are merged into
a single triangle �ACD by removing vertex B. The decision on when to perform this
merge was based on a measure of the screen-space error between the two surfaces.
That is, the vertical distance, δ, between vertex B and the center of line segment AC
was computed, and then this segment was projected into screen space to discover the
maximum perceived error. If this error was smaller than a given pixel threshold, τ ,
the triangle simplification could proceed.

The authors also presented a compact data storage structure in which each vertex
had associated with it a 16-bit elevation value, an 8-bit compressed δ value, and
7 bits of state. The vertical distance, δ, was compressed using nonlinear mapping to
represent values between 0 and 65535 in only 8 bits, with greater precision around
the lower end of the range. The formula used is as follows.

c−1(x) = �(x + 1)1+x2/2552 − 1�

Team LRN

7.3 Catalog of Useful Terrain Algorithms 201

D

B

C

A

Figure 7.10 Illustrating Lindstrom et al.’s simplification scheme [Lindstrom 96].

Lindstrom et al. presented detailed psuedo code for their implementation and
tested this with a 2-m resolution terrain model of the Hunter–Liggett U.S. Army base
in California covering 8 × 8 km and containing 32 million polygons (see Figure 7.11).
Their system produced a consistent 20-Hz frame rate on a two-processor SGI Onyx
RealityEngine2, offering polygon reduction factors between 2 times (when τ = 0) and
over 6,000 times (when τ = 8) that of the original data. Using an image-based metric,
they calculated that at an error threshold of τ = 1 pixels, their algorithm produced
only a 2.61% error, in total pixels, from the unsimplified case.

Lindstrom et al.’s algorithm has been implemented in a number of terrain and
game systems, including the VGIS (virtual geographic information system) at Geor-
gia Tech. This is a cross-platform multithreaded system that supports visualization
of terrain, along with database-driven GIS raster layers, buildings, vehicles, and other
features [Koller 95]. Torgeir Lilleskog also produced an implementation of this terrain
algorithm at the Norwegian University of Science and Technology. The Virtual Ter-
rain Project (VTP), www.vterrain.org, also provides a source code implementation of
Lindstrom et al.’s algorithm (referred to as LKTerrain), although the quadtree block
mechanism is not implemented and a pure top-down solution was used. Finally,
Thatcher Ulrich wrote a Gamasutra article on the terrain algorithm he developed for
the game Soul Ride. This was loosely based on Lindstrom et al.’s algorithm, but was
augmented in a number of ways, including the use of an adaptive quadtree, a different
error metric, and a top-down approach. Ulrich reports that the original screen-space
geometric error was not optimal because it ignored texture perspective and depth-
buffering errors. Instead, he developed a 3D world-space error proportional to the
view distance. This was calculated as follows, where (dx, dy, dz) is the world-space
length of the vector between the viewpoint and the vertex, δ is the vertex error, and

Team LRN

202 Chapter 7 Terrain Level of Detail

(a) (b)

Figure 7.11 Terrain surface tessellations for Lindstrom et al.’s system, where (a) corresponds
to a projected geometric error threshold of one pixel and (b) corresponds to an
error threshold of four pixels [Lindstrom 96]. Copyright © 1996 Association for
Computing Machinery, Inc.

threshold is a distance threshold constant (in contrast to the common use of an error
threshold).

vertex enabled = δ∗threshold < max(|dx|, |dy|, |dy|)

7.3.2 The ROAM Algorithm

A year after Lindstrom et al.’s continuous LOD algorithm was published, Duchaineau
et al. of Los Alamos and Lawrence Livermore National Laboratories published the
ROAM algorithm [Duchaineau 97]. This has proved to be an extremely popular
algorithm, particularly among game developers; it has been implemented for the
Tread Marks, Genesis3D, and Crystal Space engines, among others. ROAM (real-
time optimally adapting meshes) uses an incremental priority-based approach with
a binary triangle tree structure. A continuous mesh is produced using this structure
by applying a series of split and merge operations on triangle pairs that share their
hypotenuses, referred to as diamonds (see Figure 7.12).

The ROAM algorithm uses two priority queues to drive split and merge opera-
tions. One queue maintains a priority-ordered list of triangle splits so that refining the
terrain simply means repeatedly splitting the highest-priority triangle on the queue.
The second queue maintains a priority-ordered list of triangle merge operations to
simplify the terrain. This allows ROAM to take advantage of frame coherence (i.e., to
pick up from the previous frames triangulation and incrementally add or remove tri-

Team LRN

7.3 Catalog of Useful Terrain Algorithms 203

A1 A2

B1 B2

A

B

Merge

Split

Figure 7.12 The split and merge operations on a binary triangle tree used by the ROAM algo-
rithm.

angles). Duchaineau et al. also note that splits and merges can be performed smoothly
by geomorphing the vertex positions during the changes.

The priority of splits and merges in the two queues was determined using a
number of error metrics. The principal metric was a screen-based geometric error
that provides a guaranteed bound on the error. This was done using a hierarchy of
bounding volumes, called wedgies, around each triangle (similar to the notion of
simplification envelopes). A wedgie covers the (x, y) extent of a triangle and extends
over a height range z − eT through z + eT , where z is the height of the triangle at each
point and eT is the wedgie thickness, all in world-space coordinates. A preprocessing
step is performed to calculate appropriate wedgies that are tightly nested throughout
the triangle hierarchy, thus providing a guaranteed error bound (see Figure 7.13).
At run-time, each triangle’s wedgie is projected into screen space and the bound is
defined as the maximum length of the projected thickness segments for all points
in the triangle (note that under the perspective projection, the maximum projected
thickness may not necessarily occur at one of the triangle vertices). This bound
is used to form queue priorities, and could potentially incorporate a number of
other metrics, such as backface detail reduction, silhouette preservation, and specular
highlight preservation.

The ROAM algorithm includes a number of other interesting features and op-
timizations, including an incremental mechanism to build triangle strips. Modern
graphics processing units often provide significant performance gains when trian-
gles are organized into strips. In the original ROAM algorithm, strip lengths of four
to five triangles were favored. These strips were incrementally adjusted as triangles
were split or merged. The authors report a significant frame time improvement of
72 ms per frame by using triangle strips. Another intriguing feature that was sup-
ported was line-of-site (LOS) based refinement. In this case the triangulation is made

Team LRN

204 Chapter 7 Terrain Level of Detail

v

Figure 7.13 Illustrating nested ROAM wedgies for the 1D case, along with the dependents of
vertex v [Duchaineau 97]. Copyright © 1997 IEEE.

more accurate along a specified line of sight so that correct visibility and occlusion
determinations can be made. This is particularly useful for military mission planners
and ground-based aircraft testing using synthetic sensor stimulation. Another opti-
mization defers the computation of triangle priorities until they potentially affect a
split or merge decision. The authors report that this priority recomputation deferral
saved them 38 ms per frame. Finally, the ROAM algorithm can also work toward an
exact specified triangle count, as well as support fixed frame rate constraints.

Duchaineau et al. tested their implementation with a USGS 1-degree DEM for
Northern New Mexico (about 1,200 × 1,200 postings at 3-arc-second, or roughly
90-m, resolution). They report that on a R10000 Indigo2 workstation they achieved
3,000 triangles within a rate time of 30 ms (5 ms for view-frustum culling, 5 ms for
priority queue calculation, 5 ms for split/merge operations, and 15 ms to output the
triangle strips). In terms of frame coherence, the authors found that on average less
than 3% of triangles changed between frames. Figure 7.14 shows an example of a
ROAM-simplified mesh. Extensive implementation nodes and source code have been
made available by the authors at www.cognigraph.com/ROAM_homepage/.

Team LRN

7.3 Catalog of Useful Terrain Algorithms 205

(a)

(b)

Figure 7.14 (a) Example of a ROAM-simplified terrain with the visible mesh edges overlaid. (b) A
bird’s-eye view of the terrain, where light regions are inside the view frustum, gray
are partly inside, and dark regions are outside the view [Duchaineau 97]. Copyright
© 1997 IEEE.

Team LRN

206 Chapter 7 Terrain Level of Detail

The original ROAM algorithm has been improved or modified by a number of re-
searchers and game developers. For example, one simplification sometimes used by
game developers is to discard the frame coherence feature, resulting in a “split-only
ROAM” implementation (such as that described by Bryan Turner in his Gamasu-
tra.com article “Real-Time Dynamic Level of Detail Terrain Rendering with ROAM”).
The Virtual Terrain Project (VTP) provides source code for a split-only ROAM im-
plementation, referred to as SMTerrain (for Seumas McNally). This is available at
http://vterrain.org/Implementation/Libs/smterrain.html.

One noteworthy improvement of the original algorithm was provided by
Jonathan Blow at the GDC 2000 conference [Blow 00a]. Blow found that the original
ROAM algorithm does not perform well for densely sampled data, and attributed
this to the large number of premature recalculations of wedgie priorities that can
occur in a well-tesselated high-detail terrain. Blow noted that both Lindstrom and
Duchaineau used screen-space error metrics that compressed the 3D geometric error
down to a 1D scalar value. Instead, Blow advocated using the full three dimensions
of the source data to perform LOD computations and building a hierarchy of 3D iso-
surfaces to contain all vertices within a certain error bound. (It should be noted that
this is simply another way to look at the error function and that Lindstrom et al. also
illustrated their error function as a 3D isosurface.) For simplicity, Blow chose spheres
as the isosurface primitive, such that each wedgie was represented by a sphere in 3D
space. When the viewpoint intersects with the sphere, the wedgie is split, and when
the viewpoint leaves a sphere, the wedge is merged. To optimize this process, a hier-
archy of nested spheres was used and the algorithm only descends into nodes when
the viewpoint intersects a sphere. In addition, spheres could be clustered at any level
by introducing extra bounding volumes to provide further resilience to large terrain
models (see Figure 7.15). Blow noted that this new error metric produced extremely
efficient split and merge determinations for high-detail terrain in cases for which the
original ROAM algorithm would stutter visibly. For example, at 640 × 480 resolution
with a 3-pixel error threshold, Blow’s approach produced a tessellation with 65% less
triangles than their ROAM implementation [Blow 00b].

Finally, although the original ROAM work states that the algorithm supports
dynamic terrain, such as mudslides and explosion craters, this was not explored
extensively in the original paper. However, Yefei He’s Ph.D. work produced a system
called DEXTER for dynamic terrain visualization based on ROAM [He 00]. Figure
7.16 shows screen shots of this system using a real-time, off-road ground vehicle
simulation in which the vehicle deforms the soft ground it drives over, leaving tracks
behind it.

7.3.3 Real-Time Generation of Continuous LOD

In 1998, Röttger et al. extended the earlier continuous LOD work of Lindstrom et al.
Instead of adopting a bottom-up approach, they chose a top-down strategy, noting
that this meant their algorithm needed to visit only a fraction of the entire data set at

Team LRN

7.3 Catalog of Useful Terrain Algorithms 207

(a) (b)

Figure 7.15 Image (a) shows the hierarchy of nested isosurfaces used by Blow’s adaptation of the
ROAM algorithm, and (b) shows an example clustering of isosurfaces using extra
bounding volumes [Blow 00b].

(a) (b)

Figure 7.16 Real-time dynamic terrain produced by the DEXTER system, where (a) illustrates the
simplified terrain mesh that has been deformed, and (b) shows the resulting rendered
image [He 00].

Team LRN

208 Chapter 7 Terrain Level of Detail

each frame, but that this also made the addition of features such as silhouette testing
problematic because these would require analysis of the entire data set [Röttger 98].
They used a quadtree data structure rather than a binary triangle tree, and dealt
with tears between adjacent levels of the quadtree by skipping the center vertex of
the higher-resolution edge. To simplify this solution, Röttger et al. implemented
a bottom-up process from the smallest existing block to guarantee that the level
difference between adjacent blocks did not exceed 1. They also introduced a new error
metric that took into consideration the distance from the viewer and the roughness
of the terrain in world space. Their metric can be written as follows.

f = l

d · C · max(c · d2, 1)

Here, l is the distance to the viewpoint (Manhattan distance was used for efficiency),
d is the edge length of a quadtree block, C is a configurable quality parameter that
determines the minimum global resolution (a value of 8 was found to provide good
visual results), and c specifies the desired global resolution that can be adjusted
per frame to maintain a fixed frame rate. The quantity d2 incorporates the surface
roughness criteria by representing the largest error delta value at six points in the
quadtree: the four edge midpoints and the two diagonal midpoints. An upper bound
on this component was computed by taking the maximum of these six absolute delta
values.

An important feature of Röttger et al.’s system is its direct support for geomor-
phing of vertices to smooth the transition between levels of detail. This was imple-
mented by introducing a blending function, b = 2(1 − f), clamped to the range [0,1]
to morph vertices linearly between two levels of detail. Extra care was taken to avoid
cracks that could occur during geomorphing due to adjacent blocks having different
blending functions. This was done by using the minimum blending value for edges
that were shared between quadtree blocks. The authors state that they were able to
associate a single blending value and d2-value with each vertex using only one extra
byte of storage. Their implementation was evaluated on an SGI Maximum Impact
using a terrain model of a region in Yukon Territory, Canada. The c value was dy-
namically chosen to maintain a frame rate of 25 Hz, which produced roughly 1,600
triangle fans and 15,000 vertices per frame (see Figure 7.17).

7.3.4 View-Dependent Progressive Meshes for Terrain

Hugues Hoppe of Microsoft Research introduced Progressive Meshes (PMs). Hoppe’s
original algorithm provided a way to incrementally add or remove triangles from an
arbitrary mesh [Hoppe 96]. He later extended this work to support view-dependent
refinements, naming this View Dependent Progressive Meshes (VDPMs) [Hoppe 97],
and then applied this technique to the problem of terrain visualization [Hoppe 98a].

Team LRN

7.3 Catalog of Useful Terrain Algorithms 209

(a) (b)

Figure 7.17 Textured and wireframe images of Röttger et al.’s continuous LOD algorithm for
(a) Kluane National Park south of Haines Junction in Yukon Territory, Canada, and
(b) the islands of Hawaii. Courtesy of Stefan Roettger.

In terms of terrain algorithms, VDPMs provide a TIN-based framework instead
of the typical regular grid framework. This can provide more optimal approxima-
tions because the triangulation is not constrained to produce gridded results, and
can potentially handle more complex terrain features such as caves and overhangs.
Hoppe cites work stating that the VDPM approach can provide 50 to 75% fewer tri-
angles compared to an equivalent bintree scheme [Lilleskog 98]. More recently, others
have reported that regular gridded ROAM implementations offer higher performance
than Hoppe’s TIN-based approach [Ögren 00]. One further criticism leveled against
the application of progressive meshes to terrain is that due to its global optimiza-
tion approach it becomes difficult to support real-time deformable meshes such as
dynamically changing terrain.

Hoppe’s algorithm functions out of core by portioning the model into blocks
and then recursively simplifying and combining the blocks (see Figure 7.18). Virtual
memory is allocated for the entire terrain structure, and the Windows API calls
VirtualAlloc() and VirtualFree() were used to page different blocks to and from
physical memory. In his test data set of 4,097 × 2,049 vertices, Hoppe partitioned
this grid into 8 × 4 blocks of 513 × 513 vertices. Tears between adjacent blocks are
handled by not allowing simplification of those vertices that lie on a block boundary
(except for the special case of the top-level single block that has no neighbors).
This constraint can produce larger triangle counts. However, Hoppe performed a
preprocess in which blocks were hierarchically merged and then resimplified at each

Team LRN

210 Chapter 7 Terrain Level of Detail

Apply bottom-up recursion

Partition
mesh

Presimplify
blocks

Presimplify blocks
and save ecols

Stitch blocks into
larger blocks

Simplify
top-level block

ecolA

ecolS

ecolB

Figure 7.18 Hoppe’s hierarchical block-based simplification, performed in a preprocessing step
[Hoppe 98a]. Copyright © 1998 IEEE.

step so that the actual polygon increase was small. Hoppe states that a non–block-
based scheme only produced 0.8% fewer active faces.

Another noteworthy feature of this system is its elegant support for real-time gen-
eration of geomorphs to produce temporally smooth vertex splits and edge collapses.
This capability was described in Section 5.3, so we will not replicate that discussion
here. The error metric used in the VDPM system was a screen-space criterion that
explicitly incorporated geomorph refinements that occur over gtime frames. Because
these geomorphs will complete their transition a few frames into the future, Hoppe
estimates the viewer’s position by the time the geomorph completes. A simple linear
extrapolation of the viewer’s position was implemented by using the current per-
frame velocity, �e. Hoppe’s final metric was a simplified version of Lindstrom et al.’s
that can be written as

δv > k(v − e · �e where k = 2τ tan
φ

2

where δv is the neighborhood’s residual error (i.e., the vertex’s delta value), e can
either be the current viewpoint or the anticipated viewpoint gtime frames into the fu-
ture, �e is the viewing direction, v is the vertex in world space, τ is the screen-space er-
ror threshold, and φ is the field-of-view angle. Hoppe notes that in a view-dependent
TIN-based scheme it is not sufficient to measure the maximal vertical deviation by
only looking at the original grid points because larger errors can occur between grid
points. He therefore introduced a solution to precompute the maximum height devi-
ation between the regular triangulation of grid points and the open neighborhood of

Team LRN

7.3 Catalog of Useful Terrain Algorithms 211

(a) (b)

Figure 7.19 Screen shot from Hoppe’s Grand Canyon model using his VDPM scheme in which
the screen-space error tolerance is 2.1 pixels for a 720 × 510 window. The active
mesh has 12,154 faces and 6,096 vertices. The two images show (a) a texture-mapped
version of the terrain and (b) the underlying triangle mesh [Hoppe 98a]. Copyright
© 1998 IEEE.

each edge collapse. Hoppe also notes that the VDPM framework can produce long,
thin triangles that are often considered bad for LOD rendering, but that he observed
no such rendering artifacts. The test data set used to evaluate this system was a large
model of the Grand Canyon (see Figure 7.19). The model was partitioned into blocks,
and these were simplified in a preprocessing step to produce a mesh of 732,722 ver-
tices. At run-time, Hoppe obtained a constant frame rate of 30 Hz by adapting the
error tolerance τ from 1.7 to 3.3 pixels to maintain an active triangle count of 12,000.
This was done on an SGI Onyx Infinite Reality system. Similarly, fixed frame rates
of 60 Hz and 72 Hz were achieved by enforcing triangle counts of 5,000 and 4,000,
respectively.

7.3.5 Multitriangulation

Leila De Floriani and Enrico Puppo of the Geometry Modeling and Computer
Graphics group at the University of Genova have made substantial contributions
to the literature in regard to terrain simplification. Their recent work has been fo-
cused on their notion of multitriangulation, or MT [Puppo 98], which was inspired
by previous work on pyramidal and hierarchical terrain models [DeFloriani 89] [De-
Floriani 95]. This is essentially an extremely general TIN-based approach, in which
an initial TIN is progressively refined or simplified through a series of local updates,
such as adding or removing vertices from the mesh and then retriangulating. A de-
pendency relationship is built between all local updates such that C2 depends on C1
if some of C1’s triangles are removed by introducing C2. This dependency relation-

Team LRN

212 Chapter 7 Terrain Level of Detail

Modules MT-Generators MT-Clients Query Params

Kernel MT-Manager

Disk MT

Figure 7.20 The VARIANT system architecture, segmented into a physical disk layer, a system
kernel, and an outer layer of extensible modules [DeFloriani 00].

ship can be represented as a directed acyclic graph (DAG) and provides a way to
enforce the creation of continuous meshes, by ensuring that all parents of each node
are included in any solution. The MT framework has been implemented as a freely
available object-orientated C++ library [Magillo 99], and is provided on the com-
panion Web site. This library lets you plug in different generation and simplification
libraries, meaning that the MT can be independent of the technique used to build it.

More recently, the MT framework was used to develop the VARIANT (Variable
Resolution Interactive Analysis of Terrain) system [DeFloriani 00]. The main pur-
pose of VARIANT was to provide an extensible multiresolution terrain system with
support for various terrain analysis and processing capabilities, such as visibility de-
terminations, computation of elevation along a path, contour map extraction, and
viewshed analysis. Figure 7.20 presents the architecture of VARIANT, illustrating the
system’s extensibility model, in which a number of modules are built on top of a core
kernel. The kernel, or MT manager, includes basic MT construction, query, and I/O
functions. The extensible modules can be MT generators that incrementally mod-
ify a TIN through a sequence of local updates, MT clients that perform basic spatial
queries or operations, or query parameter modules that customize the generic query
operations within the kernel for specific spatial queries (such as point-based, line-
based, circle-based, or wedge-based queries).

In terms of terrain LOD functions, the VARIANT system supports the definition
of a region of interest (ROI) through a focus function that can be applied to each
triangle and return either true or false. The use of the wedge-based query module as
a focus function effectively provides the capability to perform view-frustum culling.
An LOD threshold can also be defined, implemented as a function applied to each
triangle that returns true only if its level of detail is considered sufficient. The LOD
threshold function is particularly flexible and can depend on a number of properties,
such as a triangle’s position, size, shape, elevation approximation error, and slope
approximation error. These generic functions provide the capability to perform the

Team LRN

7.3 Catalog of Useful Terrain Algorithms 213

(a) (b) (c)

Figure 7.21 Examples of different types of TINs extracted from an MT using the VARIANT
system where (a) shows view-frustum culling, (b) shows the result of a rectangular
subset query, and (c) shows higher resolution in relation to a polyline [DeFloriani
00]. Copyright © 2000 Kluwer Academic Publishers.

usual view-frustum culling and distance-based LOD operations that we are familiar
with by now, but they also allow for more general capabilities, such as returning
a rectangular subset of the terrain at full resolution or producing a TIN in which
resolution is high only in the proximity of a polyline (see Figure 7.21). De Floriani et
al. report that the VARIANT implementation offered interactive frame rates (more
than 10 Hz) on PC-based hardware in 2000.

There are a number of further features of particular note in the VARIANT system.
First, the MT manager provides three different algorithms for extracting a TIN from
an MT. Those algorithms are static (each query is solved independently of any pre-
vious queries), dynamic (each query is solved by updating the solution of a previous
query), and local (suitable for queries on a restricted subset of the MT). In effect, the
dynamic algorithm provides a frame coherence feature, using the mesh from the pre-
vious frame as a starting point for the current frame. The authors also note that they
have already developed a technique to page part of a large MT from disk as needed for
solving any given local query [Magillo 00], thus effectively providing an out-of-core
capability.

7.3.6 Visualization of Large Terrains Made Easy

At Visualization 2001, Lindstrom and Pascucci presented a new terrain LOD ap-
proach they claim is simple, easy to implement, memory efficient, and independent

Team LRN

214 Chapter 7 Terrain Level of Detail

(a) (b) (c) (d)

Figure 7.22 The longest-edge bisection scheme adopted by Lindstrom and Pascucci, among oth-
ers. The arrows in (a–d) designate parent–child relationships [Lindstrom 01a]. Copy-
right © 2001 IEEE.

of the particular error metric used [Lindstrom 01a]. This work draws on many of
the preceding terrain techniques to produce a regular, gridded top-down framework
for performing out-of-core view-dependent refinement of large terrain surfaces (see
Figure 7.22). Their system provides support for fast hierarchical view culling, trian-
gle stripping, and optional decoupling of the refinement and rendering tasks into two
separate threads. Their approach to out-of-core operation organizes the data on disk
to optimize coherency and then uses the operating system’s memory-mapping func-
tionality to page parts of the model into physical memory space. This has the benefit
that the inner rendering loops are as fast as if the data were in memory, and no extra
logic is needed to explicitly page in new data. This approach is described in greater
detail in Section 7.2.5.

Similar to other view-dependent algorithms we have described, Lindstrom and
Pascucci’s refinement algorithm recursively subdivided each triangle using longest-
edge bisection. This produces right-triangulated irregular network meshes [Evans
97], also known as restricted quadtree triangulations or bintrees. Their algorithm
guarantees that a continuous mesh is formed, with no cracks, by enforcing a nest-
ing of error metric terms and hence implicitly forcing parent vertices in the hierarchy
to be introduced before their children. They use nested spheres for this, similar in
some ways to those used by Blow, as previously described [Blow 00b]. They high-
light a number of drawbacks with this concept, such as up-front fixing of the er-
ror threshold, dependence on a distance-based error metric, potential introduction
of cracks in the mesh, and the need to introduce further clustering of spheres for
large sphere forests. They therefore produced a modified approach that avoids many
of these undesirable features. Using this nested bounding sphere approach, Lind-
strom and Pascucci’s framework could accommodate a number of object-space and
screen-space error metrics—the important factor being that the position or extent

Team LRN

7.3 Catalog of Useful Terrain Algorithms 215

(a) (b)

Figure 7.23 The Puget Sound model used by Lindstrom and Pascucci. The error thresholds and
triangle counts in each case are (a) τ = 2 pixels, 79,382 triangles, and (b) τ = 4 pixels,
25,100 triangles [Lindstrom 01a]. Copyright © 2001 IEEE.

of any error must be able to be used to update the appropriate bounding sphere
dimensions.

The authors test their system on three architectures: a two-processor 800-MHz
Pentium III PC with NVIDIA GeForce2 graphics card (900 MB RAM), a two-
processor 300-MHz R12000 SGI Octane with Solid Impact graphics (900-MB RAM),
and a monstrous 48-processor 250-MHz R10000 SGI Onyx2 with InfiniteReality2
graphics (15.5 GB RAM). A 16,385 × 16,385 vertex data set of the Puget Sound area
in Washington State was used to evaluate the implementations, totaling 5 GB of disk
space (Figure 7.23). They reported sustained frame rates of 60 Hz with 40,000 ren-
dered triangles, and compared this to Hoppe’s results of only 8,000 triangles at the
same frame rate. Their results also showed an obvious advantage to performing view
culling, and a significant advantage obtained through their use of multithreading to
decouple the refinement and rendering threads under their multiprocessor platforms
(reducing the rendering time between 63% and 88% for a 2816-frame flyover). Fi-
nally, in terms of triangle stripping, they observed an average ratio of 1.56 triangle
strip vertices per nondegenerate triangle. This was compared to the non–triangle-
stripping case of three vertices per triangle.

Lindstrom and Pascucci state that their algorithm can be implemented in as little as
a few dozen lines of C code. They expect to release the source code for their implemen-
tation by early 2002. The authors have also provided some supplemental notes on their
approach at www.gvu.gatech.edu/people/peter.lindstrom/papers/visualization2001a/.

Team LRN

Table 7.1 Summary of the major terrain LOD algorithms presented in this chapter (Continued)

Memory Cost
Top-down / Data Frame per Height
Bottom-up Structures Coherence Value Tear Handling Geomorphs? Out of core?

Lindstrom et
al. (1996)

Per-frame
incremen-
tal blocks
followed by
bottom-up
split and
merges

Regular grid-
ded bin-
tree within
quadtree
blocks

Yes, via an
active cut of
blocks and
smart vertex
visiting

Range from
6 to 28 bytes;
32-bit data
structure
shown

Implicit
remeshing
within blocks;
no handling
between
blocks

Possible
but not
implemented

No

Duchaineau et
al. (1997)

Per-frame
incremental
via dual-queue
up-down
scheme

Regular grid-
ded bintree

Yes, via dual
split and
merge queues

Crystal-
Space/DDG
uses height
value plus 3
bytes, plus
12 bytes per
drawn vertex

Implicit
remeshing

Yes No

Rötter et al.
(1998)

Top-down Regular grid-
ded quadtree

None reported Height value
plus 1 byte

Skip cen-
ter vertex
of higher-
resolution
quadtree level

Yes No

Team LRN

Table 7.1 Continued

Memory Cost
Top-down / Data Frame per Height
Bottom-up Structures Coherence Value Tear Handling Geomorphs? Out of core?

Hoppe (1998) Per-frame
incremental
with blocks

TIN-based
within
quadtree
blocks

Yes 48 bytes Vertices on
block edges
not simplified

Yes Yes, via
Virtual-
Alloc()

DeFloriani
et al. (2000)

Top-down or
bottom-up

TIN-based Yes, with
“dynamic”
TIN extraction

MT mesh 4
times larger
than single
resolution
model

Implicitly
introduce
dependent
DAG nodes
first

Not reported Yes

Lindstrom
and Pascucci
(2001)

Top-down Regular, grid-
ded bintree

None reported 20 bytes for the
5 floats (x, y, z,
error, radius)

Implicitly in-
troduce parent
vertices before
children’s

Authors have
implemented
geomorphing
since the
article first
appeared

Yes, via mmap()

Team LRN

218 Chapter 7 Terrain Level of Detail

7.4 Georeferencing Issues

This section is not strictly related to the simplification of terrains but does address
the important area of how to represent terrain models accurately in terms of the real
world. This involves the process of georeferencing; that is, assigning a precise geo-
graphic location (such as a latitude/longitude) to each vertex of a surface. Doing
this can have a number of benefits such as incorporating the correct degree of cur-
vature for the earth, correctly integrating multiple data sets into a single model, and
accurately representing the co-location of disparate data sets. Figure 7.24 shows an
example of real elevation data that have been mapped to a round-earth model.

The reader not well versed in cartographic theory may well be surprised at just
how complex the issue of georeferencing is. Most people will be familiar with latitude
and longitude. However, the situation is substantially more complex than simply
dividing the earth into lines of latitude and longitude. There are issues of earth
ellipsoid dimensions, local datums, and geoids to consider. Ignoring these issues
can result in errors in the location of points on the order of hundreds of meters or
more. On top of that, there are many different coordinate systems in common use
today, not just latitude/longitude, and each one has its own particular advantages
and disadvantages.

This section explores these issues. However, our treatment is necessarily relatively
cursory, and therefore the interested reader is referred to a number of other useful
resources. The bible on geographic coordinate systems is Snyder’s map projections
USGS handbook [Snyder 87]. Further detailed resources that are good references
include the U.S. Army Corps of Engineers’ Handbook for Transformation of Datums,
Projections, Grids and Common Coordinate Systems [TEC 96] and Paul Birkel’s report
on the SEDRIS spatial reference system [Birkel 97]. The GeoVRML specification
describes the integration of most of these factors into a real-time 3D graphics system
[Reddy 00]. Finally, there is work underway to produce an ISO specification for a
spatial reference model that should become the authoritative resource on this topic.
It is expected this will be approved by early 2004. Its full designation is ISO/IEC
18026:200x Information technology—Computer graphics and image processing—
Spatial reference model (SRM).

7.4.1 Ellipsoids

The earth is commonly approximated as a sphere for visualization purposes. For
example, Gerstner used a spherical mapping of global terrain data to produce a
hierarchical triangulation over the unit sphere [Gerstner 02]. He also showed how
to compensate for pole singularities by using an error indicator that related the area
of the planar triangle to the area of the spherical triangle varying with latitude (see
Figure 7.25).

Despite this approximation, the earth is not in fact a sphere. The earth can
best be modeled geometrically using an ellipsoid of rotation, also known as an

Team LRN

(a) (b)

(c) (d)

(e) (f)

Figure 7.24 The USGS Gtopo30 global elevation data set mapped to a spherical model of the earth
at several resolutions (a) and (b) show a low resolution version of a globe model.
(c) and (d) show the same model at a higher resolution. (e) and (f) show a high-
resolution mesh for a region closer to the earth surface [Gerstner 02]. Copyright ©
2002 Kluwer Academic Publishers.

Team LRN

220 Chapter 7 Terrain Level of Detail

(a) (b)

Figure 7.25 Compensating for pole singularities in a spherical mapping, where (a) shows a uni-
form sampling of latitude and longitude, and (b) incorporates an error indicator to
vary sampling rate with latitude [Gerstner 02]. Copyright © 2002 Kluwer Academic
Publishers.

oblate spheroid. Such an ellipsoid is traditionally specified by two of three variables:
the semimajor axis (a), the semiminor axis (b), and the inverse flattening [1/f =
a/(a − b)]. See Figure 7.26.

Over the past 200 years, as our surveying techniques have gradually improved,
many different reference ellipsoids have been formulated, each defining slightly dif-
ferent values for these variables. Table 7.2 presents a small selection of common ellip-
soids and their dimensions. These are taken from the SEDRIS spatial reference model
[Birkel 97]. The current U.S. Department of Defense standard is defined by the World
Geodetic System 1984 (WGS84) such that a = 6378137.0 m and b = 6356752.3142 m.

7.4.2 Geoids

The earth is, however, not a perfect ellipsoid. In regard to the surface of the earth,
from which terrain elevations are taken, we find that the earth is actually a fairly
bumpy surface referred to as the geoid. The geoid is the physically measurable surface
corresponding to mean sea level and is related to the earth’s gravitational field. This
complex, undulating surface varies marginally from the ellipsoid over a range of
roughly 100 m across the planet. Figure 7.27 illustrates the relationship between
the earth’s ellipsoid, the geoid, and undulation of the terrain. Normally, any digital

Team LRN

7.4 Georeferencing Issues 221

a

b

Equator

Figure 7.26 The earth represented as an ellipsoid of rotation, where (a) is the semi-major axis and
(b) is the semi-minor axis of the ellipsoid. Copyright © 1999 IEEE.

Table 7.2 Definitions for a number of common earth ellipsoids

Ellipsoid Name Semimajor Inverse
Axis (meters) Flattening (F−1)

Airy 1830 6377563.396 299.3249646

Modified Airy 6377340.189 299.3249646

Australian National 6378160 298.25

Clarke 1866 6378206.4 294.9786982

Clarke 1880 6379249.145 293.465

Helmert 1906 6378200 298.3

Hough 1960 6378270 297

International 1924 6378388 297

Geodetic Reference System 1980 (GRS 80) 6378137 298.257222101

South American 1969 6378160 298.25

WGS 72 6378135 298.26

WGS 84 6378137 298.257223563

Team LRN

222 Chapter 7 Terrain Level of Detail

Terrain surface

Geoid

Ellipsoid

Figure 7.27 The relationships among the geoid, ellipsoid, and terrain undulation. Copyright ©
1999 IEEE.

elevation data are given relative to the geoid; that is, relative to mean sea level, not
the ellipsoid. Once again, there are several slightly different geoid standards (such
as GEOID90, OSU89B, and WGS84), although the WGS84 is becoming a popular
choice in recent years.

7.4.3 Datums

A geodetic datum specifies a local or global reference coordinate system for defining
points on the earth, and can be refined to the horizontal datum and the vertical
datum. The horizontal datum specifies the size and shape of the earth, and the origin
and orientation of the coordinate system used to localize points on the earth’s surface.
It is typically specified by a reference point on the planet, the azimuth of a line
from that point, and a reference ellipsoid. There are literally hundreds of horizontal
datums in common usage. Practically all of these are local in their extent, such as the
Ordnance Survey Great Britain 1936 datum or the Australian Geodetic 1984 datum.
However, the WGS84 defines a global datum generally accepted as the most accurate
definition now in use. The vertical datum is the surface from which all elevation
values are measured. This is typically taken as mean sea level—that is, the geoid.
Ignoring the datum information when displaying geospatial data can cause positional
errors in the order of tens to hundreds of feet.

7.4.4 Coordinate Systems

In general, real-time 3D graphics systems use a right-handed, Cartesian coordinate
system to model all objects in 3D space. In terms of georeferencing, this coordinate

Team LRN

7.4 Georeferencing Issues 223

system is most similar to a geocentric coordinate system, in which all locations are
specified in units of meters as an (x, y, z) offset from the center of the planet.
However, these coordinates tend to be large and can often exceed the accuracy of
single-precision floating point values. Since typical single-precision floating point
formats have only 23 bits of mantissa, a single-precision coordinate can be accurate
to only one part in 8 million (223 − 1); or about 6 or 7 decimal digits of precision,
depending on the actual value. Since the equatorial radius of the earth is 6,378,137
m (under the WGS84 ellipsoid), it is not possible to achieve resolutions better than
around 0.8 m using single-precision floating point numbers (6,378,137/8,388,607 =
0.8). Below this threshold, various floating point rounding artifacts will occur, such
as vertices coalescing and camera jitter. Any terrain visualization system that wishes
to deal with global data down to meter accuracy and beyond must therefore address
this issue [Reddy 00] [Lindstrom 97].

A further complication is that cartographic data are not normally represented
in a geocentric coordinate system. Instead, most georeferenced data are provided
in some geodetic or projective coordinate system. A geodetic (or geographic) co-
ordinate system is related to the ellipsoid used to model the earth (e.g., the lat-
itude/longitude system). A projective coordinate system employs a projection of
the ellipsoid onto some simple surface, such as a cone or cylinder; as, for exam-
ple, the Lambert Conformal Conic (LCC) or the Universal Transverse Mercator
(UTM) projections, respectively. Therefore, it will normally be necessary to con-
vert from these other coordinate systems into a geocentric representation. The
SEDRIS Conversions API provides C source code to perform these transformations at
www.sedris.org/.

UTM in particular is an extremely common projective coordinate system and
is commonly used by the U.S. military and USGS. It is defined by the projection
of the earth ellipsoid onto a cylinder tangent to a central meridian. The UTM sys-
tem is split up into 60 zones, each six degrees wide. Locations are measured with
a (easting, northing) coordinate in units of meters. The center of each zone has an
easting of 500,000. In the northern hemisphere, the equator marks a northing of
zero and increases northward, whereas in the southern hemisphere the equator rep-
resents a northing of 10 million and decreases southward. Distortion of scale, dis-
tance, direction, and area increase away from the central meridian, and the UTM
projection itself is only valid over the latitude range 80 degrees south to 84 de-
grees north. At the poles, the Polar Stereographic projection is often used instead
of UTM.

The reason so many different coordinate systems exist is because each was de-
signed for slightly different applications and offers particular advantages and restric-
tions. For example, some projections can represent only small-scale regions, whereas
others are conformal (they preserve angles and have the same scale in every direc-
tion), and still others equal area (projected area corresponds to the earth’s physical
area over the entire projection). Figure 7.28 illustrates some contemporary coordi-
nate systems.

Team LRN

224 Chapter 7 Terrain Level of Detail

(a) (b)

(c)

Figure 7.28 Examples of projective coordinate systems. (a) Orthographic projection, used for
perspective views of the earth, moon, and other planets; (b) Mercator projection,
used for navigation or maps of equatorial regions; (c) and Lambert Conformal Conic,
used by the USGS for topographic maps [Snyder 87].

Team LRN

7.5 Geospatial File Formats 225

7.5 Geospatial File Formats

Terrain data are commonly distributed as regular height grids using any of a num-
ber of geospatial file formats. Most readers will be aware of common raster image
file formats, such as GIF and JPEG, but may not know much about the available
geospatial formats. We therefore take a few moments to introduce a few of these and
describe their uses. A geospatial format will normally require a number of capabil-
ities over and above those of a simple image format. First, elevation values must be
represented to the required level of accuracy. For example, we may want to repre-
sent the height of Mt. Everest, at somewhere over 8,850 m, to meter resolution. Using
an 8-bit integer format would be insufficient for this purpose because it can only
represent a range of 256 values. We therefore want to be able to store at least 32-bit
floating-point numbers, or perhaps 16-bit or 32-bit integers with appropriate scale
and offset parameters, to gain submeter accuracy. Second, a geospatial file format
will normally include some geographic metadata, such as the coordinate system of
the data, the ellipsoid, the lower-left coordinate or bounding box, a time stamp, and
so on. Finally, if any data compression is supported, a lossless scheme will normally
be favored, because otherwise we lose the accuracy of the original height data. Given
these points, the following are explanations of a few of the more common geospatial
formats.

DEM/STDS: The USGS digital elevation model (DEM) format is an ASCII rep-
resentation of elevation values in a raster form. DEMs are sold in 7.5-minute,
15-minute, 30-minute, and 1-degree units [USGS 98]. The 7.5-minute DEMs
provide a ground resolution of 30 m and are specified in UTM coordinates. The
USGS has mapped much of the United States and provides all of these data in
DEM format. More recently, the USGS has moved to a new, more complex, file
format called the spatial data transfer standard (STDS), which supports vector
as well as raster spatial data, along with attributes, metadata, and a data quality
report. See http://gisdata.usgs.net/.

DTED: The digital terrain elevation data (DTED) format was developed by the
U.S. National Imagery and Mapping Agency (NIMA). As with USGS DEMs, there
are a number of different flavors of DTED. DTED Level 0 is publicly available
data at 30-arc-second postings (approximately 1 km). DTED Level 1 is the basic
medium-resolution elevation data source for all military activities with 3-arc-
second postings (approximately 100 m). DTED Levels 2 through 5 provide even
higher levels of military resolution, roughly 30-m, 10-m, 3-m, and 1-m resolu-
tion, respectively. See www.nima.mil/.

GeoTIFF: The GeoTIFF format is an interchange format for georeferenced raster
imagery based on the tagged image file format (TIFF). It defines a number of
additional tags for the TIFF format to describe the geographic resolution, extent,
and coordinate system of the imagery. TIFF was chosen as the base format because
it can handle large 32-bit values with lossless compression and because the data

Team LRN

226 Chapter 7 Terrain Level of Detail

can optionally be stored as tiles. A public domain library, called libgeotiff, is
available for creating software that can read and write GeoTIFF files.

BT: The binary terrain format was developed by Ben Discoe as part of the Virtual
Terrain Project (VTP). BT files are simple, compact files that use a file name
extension of .bt. The 256-byte header sequence includes the grid dimensions, the
data type (floating point or integer), the projection (lat/long or UTM), and the
bounding box in geographic coordinates. See www.vterrain.org/.

GeoVRML: The GeoVRML file format was specifically designed to support precise
geospatial applications within the framework of a real-time 3D graphics system.
It is essentially an extension of the ISO standard Virtual Reality Modeling Lan-
guage [VRML 97], with 10 new nodes added to allow the specification of coor-
dinates with respect to geographic coordinate systems such as lat/long and UTM
[Reddy 00]. The nodes are implemented in Java and released as Open Source from
www.geovrml.org/.

For more details on these and other geospatial file formats, see www.remotesensing.
org/. This includes format specifications, documentation, and software. A similarly
excellent resource for Open Source GIS products and data is available from the
FreeGIS project at www.freegis.org/.

7.6 Terrain Data on the Web

So, you’ve read through this chapter and have a great idea for a new terrain LOD
algorithm that improves on all of the existing solutions, but you need to show your
algorithm off with some cool data. So where do you get that great data? To help you
in your search, the following list provides a sampling of resources on the Web for
digital elevation data or imagery. These links were live and current at the time of
publication. However, the URLs may change over time. In addition to this list, some
example terrain data are also included on the companion Web site.

USGS Landsat 7: A NASA/USGS satellite used to acquire remotely sensed images
of the Earth’s land surface and surrounding coastal regions.
landsat7.usgs.gov/
landsat.gsfc.nasa.gov/

Bay Area Regional Database (BARD): A collection of USGS digital data for the
San Francisco Bay area.
bard.wr.usgs.gov/

USGS Geographic Data Download: The USGS portal for downloading DEM, DLG,
and other digital data.
http://edc.usgs.gov/doc/edchome/ndcdb/ndcdb.html

Team LRN

7.6 Terrain Data on the Web 227

GTOPO30: The USGS global digital elevation model DEM with a horizontal grid
spacing of 30 arc seconds (approximately 1 km).
http://edcdaac.usgs.gov/gtopo30/gtopo30.html

National Imagery and Mapping Agency (NIMA): The U.S. government organiza-
tion tasked with providing timely and accurate imagery and geospatial informa-
tion to support national security objectives.
http://www.nima.mil/

Earth Info: NIMA’s public imagery portal.
http://www.earth-info.org/

National Ocean Service (NOS) MapFinder: A portal for images and data from a
number of U.S. National Ocean Service (NOS) offices.
http://mapindex.nos.noaa.gov/

Tiger Map Server: A mapping engine that uses 1998 TIGER/Line data and 1990
Decennial Census data.
http://tiger.census.gov/cgi-bin/mapbrowse-tbl

Virtual Terrain Project (VTP): A superb resource managed by Ben Discoe,
with the goal to foster the creation of tools for easily constructing any part of
the real world in interactive, 3D digital form. The Web site includes Open Source
software for all stages of the terrain production process, including free, public
implementations of several of the LOD algorithms mentioned in this
chapter.
www.vterrain.org/

GlobeXplorer: A provider of satellite images and aerial photography, mostly used
in a business-to-business model; for example, with MapQuest and AOL. They
boast the world’s largest commercial collection of aerial images.
www.globexplorer.com/

Digital Globe: A company that sells commercial satellite imagery from its Quick-
bird satellite.
www.digitalglobe.com

Space Imaging: A company that sells commercial satellite imagery from its
IKONOS satellite, the world’s first one-meter resolution commercial imaging
satellite.
www.spaceimaging.com/

FreeGIS.org: This site is dedicated to Open Source GIS solutions and contains a
list of freely available systems and geodata.
www.freegis.org/geo-data.en.html

Large Models Web Page at GVU: Contains the Grand Canyon terrain data Hoppe
used for his view-dependent progressive meshes work, as well as the Puget Sound
model used by Lindstrom.
www.cc.gatech.edu/projects/large_models/

Team LRN

228 Chapter 7 Terrain Level of Detail

Note that the original source of the Puget Sound data is the following.
http://duff.geology.washington.edu/data/raster/tenmeter/bil10/

Bob Crispen’s VRML FAQ: The Virtual Reality Modeling Language (VRML) Fre-
quently Asked Questions (FAQ) contains an entry on finding VRML models and
textures on the web.
http://home.hiwaay.net/~crispen/vrmlworks/models.html

7.7 Conclusions

This chapter has dealt with the sizeable subtopic of terrain simplification. We began
by covering some of the basic concepts, such as top-down versus bottom-up algo-
rithms; regular, gridded data versus triangulated irregular networks (TINs); various
hierarchical structures, such as quadtrees and bintrees; dealing with tears between
adjacent patches at different resolutions; out-of-core operation; and streaming over
the Web. We could not hope to cover every solution that has been developed to date,
but instead surveyed a few of the more influential and practical solutions. In this re-
gard, we focused on key solutions that provide real-time, view-dependent support,
presenting detailed descriptions of each implementation. This survey included the
initial work of Lindstrom et al., the ROAM algorithm developed by Duchaineau et al.,
Röttger et al.’s continuous LOD work, Hoppe’s terrain-specific view-dependent pro-
gressive meshes (VDPM) approach, the multi-triangulation work of De Floriani and
Puppo, and finally the recent large-scale terrain work of Lindstrom and Pascucci.
Table 7.1 provided a concise summary of these approaches in terms of the concepts
just mentioned. We then concluded with some auxiliary discussion of geographic co-
ordinate systems, an important topic when considering the development of a terrain
visualization system that is highly accurate in real-world terms.

Team LRN

Part III

Advanced
Issues

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
Perceptual

Issues

In this chapter we return to level of detail management, or the question of when
to switch between different representations for a model. Since the resulting rep-

resentations, be they characters in a video game or components in a CAD system,
are ultimately presented to the user visually, we must consider the impact of LOD
management on the visual system. In particular, reducing the detail of an object too
aggressively will produce a noticeable visual change in the image. Such a change may
be merely distracting, but in the worst case could impact the user’s ability to perform
some task, or their sense of presence in a virtual environment. To understand the ef-
fect of modulating an object’s LOD, we need to understand how the changes made
to a model will be perceived by the user, which in turn requires some understanding
of the function, efficacy, and limitations of the human visual system. This chapter
presents some basic principles of visual perception and describes two examples of
systems that manage LOD according to these principles.

231

Team LRN

232 Chapter 8 Perceptual Issues

8.1 Motivation

Specific reasons LOD researchers and developers should educate themselves about
visual perception include the following.

Maximize rendering resources: If we can predict what detail users can perceive, we
can remove imperceptible details, and thus save the computational resources that
would have been otherwise wasted rendering unnecessary refinements.

Minimize popping effects: Popping effects are caused by a visually noticeable
switch in a model’s LOD. However, if we remove only those details we predict
are imperceptible to the user, the user should not experience these distracting ef-
fects. This in turn would obviate the need for techniques from Chapter 4, such as
alpha blending, geomorphing, and considering hysteresis during LOD selection.

Principled best-effort LOD: Of course, often removing just imperceptible details
will still not achieve the desired frame rate, forcing the system to reduce detail
further while accepting that the effect may be perceptible. In this case, we would
like to use principles of visual perception to guide our choice of LODs so as to
minimize the perceptibility of the resulting simplification.

Orthogonal framework: We have described many potential criteria for selecting
LODs, and for guiding simplification when creating LODs. Researchers and de-
velopers have generally employed ad hoc heuristics or user-tunable parameters
to drive these tasks to for example, balance the importance of geometric fidelity
during simplification against preservation of appearance-related attributes, such
as color, normals, and texture coordinates [Garland 98] [Erikson 99] [Hoppe
99b], or to trade off the importance of screen-space size with other LOD selection
factors such as eccentricity [Funkhouser 93b]. Grounding our choices in a prin-
cipled perceptual model offers the promise of an orthogonal framework for LOD
in which the importance of various factors proceeds naturally from the model.

The next section introduces some prior work on incorporating perceptual factors
into LOD systems. We then delve into the visual system, giving a brief overview of
the system from eyeball to visual cortex, with particular emphasis on applying this
knowledge to LOD. Finally, we describe some recent systems based directly on models
of visual perception.

8.2 Some Perceptually Motivated LOD Criteria

The simplest and most common criteria used to modulate the LOD of an object are
undoubtedly its distance from the viewpoint, or (closely related) its projected size on
the display device. The following describe some other LOD criteria researchers have
proposed, motivated by the behavior and limitations of our visual system.

Team LRN

8.2 Some Perceptually Motivated LOD Criteria 233

Eccentricity: An object’s LOD is based on its angular distance from the center of
the user’s gaze, simplifying objects in the user’s peripheral vision more aggres-
sively than objects under direct scrutiny.

Velocity: An object’s LOD is based on its velocity across the user’s visual field,
simplifying objects moving quickly across the user’s gaze more aggressively than
slow-moving or still objects.

Depth of field: In stereo or binocular rendering, an object’s LOD is related to the
distance at which the user’s eyes are converged, simplifying more aggressively
those objects that are visually blurred because the user’s gaze is focused at a
different depth.

Several computer graphics researchers have proposed systems that take advantage
of the fundamental observation that we can perceive less detail in the peripheral field
and in moving objects. As far back as 1976, Clark suggested that objects could be
simplified further toward the periphery of the field of view, and also that the detail
of moving objects could be inversely related to their speeds [Clark 76]. Subsequently,
Blake developed metrics to predict the most perceptually appropriate level of detail
under circumstances such as the relative motion of objects with respect to the viewer
[Blake 89]. More recently, Levoy and Whitaker developed a volume-rendering appli-
cation that followed the user’s gaze and smoothly varied the resolution of the display
accordingly [Levoy 90]. Perceptually based models have also been developed to ac-
celerate global illumination algorithms for realistic image synthesis [Myszkowski 01]
[Ramasubramanian 99] [Bolin 98]. These frameworks are very sophisticated, but re-
quire many seconds or minutes to operate. In subsequent sections we concentrate on
those solutions that relate to LOD for real-time polygonal systems.

8.2.1 Eccentricity Level of Detail

Eccentricity LOD selects an object’s representation based on the degree to which it ex-
ists in the visual periphery, where our ability to perceive detail is reduced. Funkhouser
and Séquin incorporated a provision for eccentricity LOD into their architectural
walkthrough of Soda Hall (see Figure 8.1) [Funkhouser 93b]. They made the simpli-
fying assumption that the user was always looking at the center of the screen, and let
the distance of each object from the screen center influence the detail used to repre-
sent that object. The actual relationship between object detail and display eccentricity
was controlled manually using a slider.

In concurrent and similar work, Hitchner and McGreevy produced a generalized
model of LOD for the NASA Ames Virtual Planetary Exploration (VPE) testbed
[Hitchner 93]. Their system modeled object interest (a measure of the importance
of the object to the user) according to a number of factors, including an eccentricity
factor:

interest = γstatic/distance

Team LRN

234 Chapter 8 Perceptual Issues

Figure 8.1 Images of Funkhouser’s architectural walk-through system showing the relative bene-
fit of objects where the focus (eccentricity) factor is set to (a) 1.0 and (b) 0.01. Darker
grayscales represent higher benefit values [Funkhouser 93a].

Here, distance to the user’s gaze is measured in 2D screen coordinates and γstatic
is an arbitrary scaling factor. Similarly, Ohshima et al. developed a head-tracked
desktop system that could degrade the LOD of objects in the periphery [Ohshima
96]. They modeled the decline of visual acuity with eccentricity using the exponential
relationship

f (θ) =
{

1 when 0 ≤ θ ≤ a

exp
(
− θ−a

c1

)
when a < θ

where θ is the angular distance between the center of the object to the user’s gaze
fixation, α is the angle from the center of the object to the edge nearest the user’s gaze,
and c1 is an arbitrary scaling factor that the authors simply report they instantiated
to 6.2 degrees.

All of the previously discussed systems use eccentricity to affect LOD selection,
reducing the resolution of peripheral objects, but none carefully examined the per-
ceptual effect of this reduced resolution. In related research, however, Watson et al.
performed a user study to evaluate the perceptual effect of degraded peripheral reso-
lution in head-mounted displays (HMDs) [Watson 95]. Subjects were given a simple
search task that required locating and identifying a single target object. The degraded
peripheral resolution was implemented by dividing the display into two regions, with
a high-detail inset blended into a coarse background field (see Figure 9.8). The inset
was always located at the center of the display device. For a number of inset sizes and
resolutions, they reported that user performance was not significantly affected by the
degraded peripheral display, and concluded that eccentricity LOD should provide a

Team LRN

8.2 Some Perceptually Motivated LOD Criteria 235

useful optimization tool. Though this study varied display resolution rather than ge-
ometric LOD resolution, it remains a promising result.

It is worth noting that view-dependent LOD schemes have an advantage over
view-independent schemes when accounting for eccentricity, since resolution can be
varied across an object. With view-independent LOD, a large object spanning much
of the field of view can exist at only one level of detail, which must therefore be chosen
conservatively. For example, if the user’s gaze rests on any part of the object, the
entire object must be treated as if it were under direct scrutiny, and will probably
be rendered at the highest level of detail. A view-dependent LOD scheme can render
in high detail where necessary, and smoothly degrade detail away from the center of
gaze.

8.2.2 Velocity Level of Detail

Velocity LOD selects an object’s representation based on its velocity relative to the
user’s gaze. Again, lacking a suitable eye- or head-tracking technology, some re-
searchers have approximated this with the velocity of an object across the display
device. Properly implemented, velocity LOD should automatically support situations
with complex motion flows. For example, if the user’s gaze tracks an object moving
across a stationary background, the object should be rendered in high detail, whereas
the background is simplified. However, if the user’s gaze stays fixed on the back-
ground, the system should simplify the moving object while preserving the detail of
background objects.

Funkhouser and Séquin incorporated a velocity term into their architectural
walkthrough, reducing the LOD of objects by an amount proportional to the ratio
of the object’s apparent speed to its average polygon size (their simple but efficient
approximation of the spatial detail in an object). Hitchner and McGreevy account for
object velocity in their VPE system, similarly to object eccentricity, as

interest = γdynamic/velocity

where velocity is an estimate of visual field velocity, measured by taking the difference
between an object’s position in consecutive frames, and γdynamic is another arbitrary
scaling factor. Ohshima et al. modeled the decline of visual acuity with velocity using
the following equation:

g(�φ) =
{

1 − �φ
c2

when 0 ≤ �φ ≤ c2

0 when c2 < �φ

Here, �φ represents the angular distance traveled by the object. The c2 term, intended
to model saccadic suppression (see Section 8.4.5), is an arbitrary scaling factor instan-
tiated to 180 deg/s. See Figure 8.2.

Team LRN

236 Chapter 8 Perceptual Issues

Figure 8.2 Screen shot of Ohshima et al.’s gaze-directed adaptive rendering system, showing
reduced detail in the periphery. Courtesy of Hiroyuki Yamamoto.

8.2.3 Depth-of-Field Level of Detail

Depth-of-field LOD selects an object’s representation by comparing its distance from
the user to the distance at which the user’s eyes are currently converged. Human
binocular vision trains both eyes on an object in order to focus it clearly, a synchro-
nized action known as a vergence eye movement. The projection of a verged object on
our two retinas is fused by the visual system into a single perceptual image. The depth
range over which objects appear fused is called Panum’s fusional area (Figure 8.3); ob-
jects out of this range project to a double image and appear blurred. Ohshima et al.
suggest reducing the level of detail of objects that lie outside Panum’s fusional area.
They use the following formula:

h(�φ) =
{

1 where 0 ≤ �φ ≤ b

exp
(
−�φ−b

c3

)
where b < �φ

Team LRN

8.2 Some Perceptually Motivated LOD Criteria 237

Object A

Object B

Fixation point

Left eye Right eye

Panum’s fusional area

Figure 8.3 Illustrating the depth of field of two objects. Object A lies within Panum’s fusional
area and is perceived in focus, whereas object B is blurred [Ohshima 96].

Here, �φ = |φ − φ0|, where φ0 is the angle of convergence for the fixation point, φ

is the angle toward the object, b is the threshold width of the fusional area (assigned
the value 0 degrees), and c3 is a scaling parameter (assigned 0.62 degrees).

Of course, depth of field LOD is most appropriate for stereoscopic displays in
which separate images are presented to the user’s left and right eyes. Also worth
noting is that the perceived blurring of out-of-focus objects is due to two phenom-
ena: vergence eye movements and accommodation, or focusing by changing the focal
length of the lens. One problem with most stereoscopic displays is that though the
user’s eyes may verge according to the distance of the virtual object they must still fo-
cus to the plane of the display, which is normally at a fixed focal distance [Ware 99].
This produces a conflict between the vergence and focus mechanisms in the eye that
can cause eyestrain in users [Wann 95] [Mon-Williams 98]. Ohshima et al.’s depth-of-
field LOD may have some merit in this regard, since we can fuse blurred images more
readily than sharp ones. Although reducing LOD is not strictly the same as blurring,
it can remove high-frequency components and hence may help to abate the vergence-
focus problem.

8.2.4 Applicability of Gaze-Directed Techniques

All three of the previously examined criteria may be classed as gaze-directed tech-
niques, since they rely on knowledge of the user’s gaze to direct LOD selection.

Team LRN

238 Chapter 8 Perceptual Issues

Gaze-directed rendering is a powerful concept with some clear limitations. Without
a suitable eye-tracking system, researchers have generally assumed that the user will
be looking toward the center of the display, and thus objects will be degraded in rela-
tion to their displacement from this point. This approximation is often unsatisfactory.
For example, the eye is drawn toward motion, and tends to track moving objects (a
visual process called smooth pursuit). Clearly, calculating a tracked object’s velocity
with respect to a fixed point is exactly the wrong thing to do in this case.

Accurately monitoring the user’s gaze requires tracking the eye, but eye tracking
is still emerging as a commodity technology. Some current systems are fast enough,
accurate enough, robust enough, and posses low enough latency for gaze-directed
rendering, but no existing eye tracker meets all of these needs at once in an inexpen-
sive package. It seems likely that eye-tracking technology will improve, eliminating
these limitations. However, even without eye tracking, gaze-directed rendering may
still be a viable option. When allowed free range of head motion, user gaze is almost
always restricted to ±15 degrees of head direction [Bahill 75] [Barnes 79]. We can
thus substitute head direction for eccentricity simply by subtracting a 15-degree error
term.

For multiscreen wide-angle displays, such as video wall or CAVE systems, head-
tracked gaze-directed rendering may be a very attractive option. Obviously, multiple
viewers can reduce the impact of gaze-directed rendering, since viewers might ex-
amine different parts of the display at once. One could handle multiple viewers by
calculating worst-case eccentricity, velocity, and so on for each object. For exam-
ple, the worst-case eccentricity of an object is the minimum distance to any viewer’s
gaze direction. Such a scenario increases the demand on the eye-tracking system
and limits the degree of simplification possible. In a multiscreen wide-angle dis-
play scenario, however, most of the scene will still be outside any viewer’s point of
focus and therefore still eligible for aggressive simplification. Even with head track-
ing, which forces a more conservative estimate of eccentricity, gaze-directed render-
ing might prove a powerful technique for managing rendering complexity in such
situations.

In the absence of eye or head tracking, it may still be possible to make an informed
decision at where the user is looking in a scene. For example, human attention tends
to be drawn to bright colors (especially red), movement, objects entering a scene,
the foreground, faces, the point where other characters are looking, the center of
patterns that can be constructed from geometric shapes in the scene (such as tree
branches), familiar characters or characters that stand out in color or behavior, and so
on. Obviously, this will not always be exact, but it may provide a tenable low-impact
solution for some applications. For example, Yee et al. presented a computational
model of visual attention to predict the important regions in an image for cases
when eye tracking is unavailable [Yee 01]. Another approach is when the application
can direct attention to certain objects. For example, Kosara et al. demonstrated a
visualization system using selective blur to visually recede certain objects and direct
users’ attention to others, such as those chessmen that immediately threaten a user’s
pieces in a game of chess [Kosara 02].

Team LRN

8.3 Introduction to Vision 239

8.2.5 The Need for Better Perceptual Models

A common thread throughout the perceptually motivated approaches described thus
far is the use of ad hoc heuristics and scaling factors to incorporate perceptual cri-
teria. The simple, arbitrary relationships developed empirically by researchers such
as Funkhouser and Séquin, Hitchner and McGreevey, and Ohshima et al. achieved
the notional goal of reducing LOD according to eccentricity, velocity, and depth of
field, but were not founded on principled models of visual perception. The resulting
degradation is thus unlikely to be optimal with regard to user perception, especially
across a range of models, situations, and applications. This was reinforced by Watson
et al., who stated they had no way to predict either the optimal LOD to display or
the extent to which LOD could be degraded in the periphery [Watson 95]. Also miss-
ing from the early work described so far are results to assess the effectiveness of the
various criteria, in isolation and in combination. In general, the evaluation of LOD
effectiveness is a difficult problem, especially since it is very application dependent.
For example, Funkhouser and Séquin evaluated their system using an architectural
walkthrough comprising almost entirely static objects. Here, the velocity of objects is
entirely due to user motion, which could affect the usefulness of velocity LOD.

We argue that modulating the LOD of an object based on its perceptual content
first requires a principled perceptual model. The first step in developing such a model
is to understand the fundamentals of the human visual system, including how it
is designed and how it is believed to function. We now describe the anatomy and
physiology of the visual system, providing a foundation for the subsequent higher-
level perceptual material.

8.3 Introduction to Vision

We begin our treatment of the visual system with a brief overview of the anatomy and
physiology of the eye and the vision-related parts of the brain.

8.3.1 The Visual System

The visual system can be divided into three major processing sites (see Figure 8.4).
These are the eyes (which act as the input to the visual system), the visual pathways
(which transport and organize the visual information), and the visual cortex (the
section within the brain that enables visual perception). We describe the eye and
visual cortex in the subsequent sections, but the visual pathways contribute little to
the vision process as we are interested in it, so we do not consider them further. We
then follow with a discussion of the spatial resolution of the visual system, and how
this varies systematically under a number of circumstances.

Team LRN

240 Chapter 8 Perceptual Issues

Optic chiasm

Optic nerve

Right
eye

Left
eye

Eyes Visual
cortex

Superior colliculus

Lateral geniculate nucleusOptic tract

Visual pathway

Figure 8.4 Plan view of the brain showing the extents of the three major sites of processing in
the human visual system.

8.3.2 The Eye

The eye is our window onto the external world, an approximately spherical orb
around 24 mm in diameter. The inner vitreous chamber is enclosed by three layers of
tissue. These are the sclera, the choroid, and the retina (see Figure 8.5). The function
of these layers is described in the following.

The sclera is the outermost layer of the eye. It is a white, fibrous tunic that serves
to protect the eyeball. On average, the sclera is about 1 mm thick and consists of a
dense mosaic of interwoven fibers that creates a strong, tough wall. This becomes
transparent toward the front of the eye, where it forms a small bulge known as
the cornea. It is through the cornea that light enters the eye.

The choroid is the dark, vascular tunic that forms the middle layer of the eye. It
is about 0.2 mm thick on average and provides oxygen, vitamin A, and various
other nutrients for the retina via a mesh of capillaries. The dark pigmentation of

Team LRN

8.3 Introduction to Vision 241

Sclera

Cornea

Pupil

Lens

Iris

Ciliary body

Optic nerve

Fovea

Retina

Choroid

Figure 8.5 Cross-section of a human eye illustrating its major layers and structures [Reddy 97].

the choroid also serves to absorb scattered light in much the same way as the black
interior of a camera.

The retina is the virtually transparent innermost layer of the eye. It is a very thin
tissue consisting of a collection of photoreceptors (which detect the incoming light
impulses) and a network of neurons, which process these impulses. The output
of these neurons form the optic nerve, which transmits the optic data to the brain.

Of the three previously cited layers, the retina, where light is first detected and
processed, is clearly the most pertinent to our discussion.

The Retina

Light enters the eye through the transparent cornea, is focused by the lens, and passes
through the vitreous chamber before reaching the retina at the back of the eye. Within
the retina itself, light must pass through a number of layers of neurons before finally
reaching the photoreceptor cells. These are responsible for converting the incident
light energy into neural signals that are then filtered back through the network of
neurons, consisting of the collector cells and the retinal ganglion cells. The axons of the
retinal ganglion cells form the optic nerve, which transports the neural signals to the

Team LRN

242 Chapter 8 Perceptual Issues

Retinal ganglion
Cell axons

Retinal
ganglion

cells

Collector
cells

Photoreceptor
cells

Bruch’s
membrane

Choroid

Light

To the
optic nerve

Figure 8.6 A cross-section of the retina, showing the various layers of photoreceptors and neu-
rons that detect and filter incoming light [Sekuler 94]. Note that light must travel
through several layers of cells before reaching the photoreceptors [Reddy 97].

visual cortex via the visual pathway. Figure 8.6 illustrates the elements involved in this
process.

The rods and the cones form the two principal classes of photoreceptor cells in
the eye. Rods provide high sensitivity in dim light, whereas cones offer high visual
acuity in bright light. This duplex arrangement enables humans to see in a wide
range of lighting conditions. Both receptor types contain a number of light-sensitive

Team LRN

8.3 Introduction to Vision 243

= ON Response

= OFF Response

Figure 8.7 Representation of an ON-center retinal ganglion cell. Light falling in the ON-response
region causes an increase in cell activity, whereas light falling in the OFF-response
region causes a decrease in cell activity [Reddy 97].

molecules, called photopigments. Each of these consists of a large protein, called opsin,
and a vitamin A derivative known as retinal. When light strikes the photopigment,
it initiates a reaction (occurring in less than one millisecond) that results in the
molecule splitting and the subsequent generation of an electric current.

The electrical signals generated in the photoreceptors are transmitted synaptically
through the collector cells (incorporating the horizontal, bipolar, and amacrine cells)
and the retinal ganglion cells. Each eye has 100 to 200 million rods and 7 to 8 million
cones, but only about 1 million retinal ganglion cells [Ferwerda 01]. Thus the neural
network reduces the retinal image into a more concise and manageable representa-
tion before it ever leaves the retina, extracting the relevant features of the image that
are of particular interest. So which features of the retinal image are relevant? To an-
swer this question we must examine the visual stimuli that evoke a response from the
retinal ganglion cells.

The Retinal Ganglion Cells

The inputs of the retinal ganglion cells are arranged in an antagonistic, concentric
pattern consisting of a center and a surround region. The ganglion cell is continually
emitting a background signal. However, when light strikes the photoreceptors in one
region, this stimulates an increased response from the retinal ganglion cell (a so-
called ON response). Whereas light falling on the other region will generate a reduced
response, or OFF response. This arrangement is illustrated in Figure 8.7. If the center
region is stimulated by an ON response, the retinal ganglion cell is referred to as an

Team LRN

244 Chapter 8 Perceptual Issues

(a) (b)

(e)

(c)

(d) (f)

Figure 8.8 Various stimulus arrangements for a single ON-center retinal ganglion cell. Cells
(a–c) all generate an equally weak (background) response, whereas cells (d–f) gen-
erate a positive response, with cells (e) and (f) responding equivalently [Reddy 97].

ON-center cell. Conversely, if the center region is stimulated by an OFF response, the
cell is referred to as an OFF-center cell.

The outputs from the ON-response and OFF-response regions are summed to
form the net response of the retinal ganglion cell. This means the same luminance
presented across the cell will elicit a weak response because of the antagonistic re-
action between the center and surround regions. However, if an ON-response region
receives light when the corresponding OFF-response region does not, this differential
will cause a strong response. An illustration of this operation is presented in Fig-
ure 8.8.

Following from the previous observations, we can define the following charac-
teristics of retinal ganglion cells (and hence the first stage of processing, which is
performed on the retinal image).

Retinal ganglion cells are sensitive to edges. They produce a marked response only
when there is a contrast gradient across its receptive field (the area of the retina the
ganglion cell receives input from).

A light stimulus that falls outside the cell’s receptive field will have no effect on
the cell’s response.

Team LRN

8.3 Introduction to Vision 245

The size of the cell’s receptive field defines the size of the light stimulus it is
maximally sensitive to.

The orientation of a stimulus does not affect the cell’s response (because the
center and surround regions are circular).

8.3.3 The Visual Cortex

The visual cortex (also referred to as the striate cortex, Area 17, and V1) is the ma-
jor center of vision. It is located in the occipital lobe, toward the rear of the brain.
As in the retina, the cells of the visual cortex have a receptive field that restricts the
sensitivity of the cell to a certain region. The cortical cells respond maximally to gra-
dients of luminance across their receptive fields, rather than to ambient illumination
levels. However, unlike the retinal cells, they are also selective on the orientation of a
stimulus and the direction of moving stimuli [Blakemore 69].

We can classify the cortical cells into simple cells (which are orientation selective
to stationary or slow-moving stimuli) and complex cells, which respond maximally to
moving stimuli of a particular orientation [Hubel 62]. This sensitivity to orientation
means the receptive fields of cortical cells are not concentrically circular, as in the
retina. For example, the receptive field of a simple cell is an elongated shape with
discrete excitatory (ON-response) and inhibitory (OFF-response) zones. Figure 8.9
illustrates some examples of how these zones are arranged in order to achieve their
orientation-selective nature. For example, Figure 8.9(b) will be maximally sensitive
to a vertical edge and least sensitive to a horizontal edge. In general, a deviation of
about 15 degrees from a cell’s preferred orientation is enough to render a feature
undetectable to that cell [Sekuler 94].

Complex cells are also sensitive to the orientation of a contrast gradient. However,
the position of the edge within its receptive field is not as important as it is for simple
cells. Edges of the preferred orientation can be detected anywhere within the cell’s
receptive field. In addition, complex cells respond strongly to the presence of a rapidly
moving edge. Often this response is selective for a particular direction of movement
through the cell’s receptive field.

8.3.4 Sensitivity to Visual Detail

Knowing the basic physiology of the human visual system, we can take a more de-
tailed look at the implications of this design and their effect on the degree of spatial
detail we can perceive.

Spatial Resolution

The size of a cell’s receptive field determines the size of stimulus to which it is opti-
mally sensitive. Throughout all three of the vision processing sites we find collections

Team LRN

246 Chapter 8 Perceptual Issues

= Excitatory zone

= Inhibitory zone

(a) (b)

(c) (d)

Figure 8.9 (a–d) Example receptive field layouts of four simple cortical cells, illustrating the
orientation-selective nature of these cells [Reddy 97].

of cells that exhibit a range of receptive field sizes, thus providing sensitivity to a range
of stimulus sizes. Clearly, the smallest receptive field size ultimately determines the
limit of resolution of the human visual system. For example, the spacing and pool-
ing of photoreceptors in the retina (which form the inputs to the ganglion cells) will
impose the primary limit on how much detail we can perceive. In the most densely
packed region of the retina, photoreceptors subtend around 0.5 minutes of visual arc,
or solid angle, on the retinal surface. Not surprisingly, therefore, we find that the eye
can detect detail down to a size of about 0.5 minute of arc [Humphreys 89].

We refer to measures of visual arc frequently throughout this chapter. It is there-
fore useful to determine the size of a degree of visual arc. One way to define this is that
1 cm at a 57-cm distance subtends 1 degree of arc. This leads to a rough rule (quite
literally a “rule of thumb”): one degree is roughly the apparent width of your thumb
at arm’s length. Remember, 1 degree = 60 minutes of arc.

Variation Across the Retina

The eye’s sensitivity to the size of a stimulus is not uniform across the entire retina.
Instead, we find that a very small part of the retina, known as the fovea, has the ability
to resolve the smallest features (see Figure 8.5). However, this ability degrades in
proportion to retinal eccentricity (angular distance from the center of the retina) such
that in the peripheral field the retina has very poor discrimination of fine detail. Our
ability to resolve detail is greatest within the central foveal region, which subtends
approximately 5.2 degrees of arc [Zeki 93]. Visual acuity drops off significantly, but

Team LRN

8.3 Introduction to Vision 247

smoothly, toward the periphery, with about a 35-fold difference between the fovea
and the periphery [Nakayama 90]. Within the fovea, there is an even smaller region,
known as the foveola, that forms the flat pit of the fovea, and subtends only about
1.4 degrees. The foveola contains no rods and is believed to be instrumental in our
highly developed analytical skills, such as reading.

This phenomenon means that whenever we wish to focus our attention onto an
object we must perform a combination of head and eye rotations so that the light
reflected from that object is projected onto the foveae of our retinas. This ensures that
we see the object in the highest detail. The peripheral regions of the retina, though
less sensitive to visual detail, are more sensitive to movement. This provides humans
with a highly adapted balance between acuity and motion sensitivity.

Many physiological features of the visual system vary with retinal eccentricity.
These include the following.

The concentration of cells varies dramatically across the retina. From a total of
about 1 million ganglion cells in each eye, about 100,000 of these are located in
the fovea [Ferwerda 01].

The receptive field size of retinal ganglion cells increases linearly with eccentricity
[Kelly 84]. This is because the degree of photoreceptor pooling for ganglion cells
varies with eccentricity. The 1:1 correspondence between cones and ganglion cells
at the fovea increases to 7:1 in the periphery [Cowan 85].

The visual cortex devotes most of its processing power to the foveal region of the
retina. Drasdo estimates that 80% of all cortical cells are devoted to the central 10
degrees of the visual field [Drasdo 77].

Temporal Sensitivity

The human vision system can resolve less detail in a moving object than in an object
stabilized on the fovea. The result is the familiar sensation of objects blurring as
they move past our point of fixation, or as we pan our head to fixate on another
target. Murphy has proposed that the eye’s inability to track rapidly moving targets
accurately may cause this blurring effect by causing a slippage in the retinal image
[Murphy 78]. However, the more recent studies of Tyler [Tyler 85] suggest that the
photoreceptors themselves limit our sensitivity to temporal detail [Nakayama 90].
The process of detecting motion implies an integration of a moving object’s stimulus
energy over time, and this integration process may destroy the visual information for
precise features.

8.3.5 The Multichannel Model

The most widely accepted contemporary theory of spatial vision is that of the mul-
tichannel model. Developed from the work of Enroth-Cugell and Robson [Enroth-
Cugell 66] and Campbell [Campbell 68], this theory essentially proposes that the

Team LRN

248 Chapter 8 Perceptual Issues

visual system processes the retinal image simultaneously at several different spatial
scales.

Most naturally occurring scenes contain visual information at a number of dif-
ferent scales. For example, in the case of a forest, the outline of all trees provides a
coarse degree of detail. We could then focus on each tree individually, or we could
concentrate on the finer detail of the leaves on a single tree. The multichannel model
suggests that the visual system extracts all of these different scales of information in a
scene simultaneously, and that these are later combined by the higher vision processes
to assemble our final percept for the particular scene.

This theory agrees with our knowledge of the neural design of the human visual
system. As we have seen, the size of a neuron’s receptive field defines the size of
stimulus to which it is maximally sensitive. Each stage of early vision comprises cells
with a wide range of receptive field sizes, and thus able to detect a wide range of detail.
In this respect, we can define a channel as simply a class of neurons with a certain
receptive field size.

It is also believed that the various components of vision—form, color, movement,
and depth—are transmitted independently via separate channels to the visual cortex
[Livingstone 88]. This behavior helps to describe one of the intriguing dualities of the
human visual system—a fine-detail system sensitive to color, and a motion system
sensitive to luminance changes but less sensitive to visual detail.

Experts disagree on precisely how many channels exist within the visual system
[Heeley 91] [Caelli 85] [Harvey 81] [Wilson 79], but the major point is that the mul-
tichannel model predicts that information is analyzed independently by a number of
parallel channels, each of which is tuned to a particular level of detail.

8.4 Measuring Visual Sensitivity

8.4.1 Contrast Gratings and Spatial Frequency

A large body of perceptual psychology literature focuses on the perceptibility of vi-
sual stimuli. The simplest relation established in this literature is Weber’s law, which
predicts the minimum detectable difference in luminance between a test spot on a
uniform visual field. Weber’s law states that at daylight levels the threshold differ-
ence in luminance increases linearly with background luminance. Interesting scenes
are not uniform, however, but contain complex frequency content. Outside a small
frequency range, the threshold sensitivity predicted by Weber’s law drops off sig-
nificantly. Since the pioneering work of Schade [Schade 56], the most common
experimental device for examining the limits of vision has been the contrast grat-
ing. This is a regular pattern in which intensity varies sinusoidally between two
extreme luminance values, Lmax and Lmin (see Figure 8.10). Two principle inde-

Team LRN

8.4 Measuring Visual Sensitivity 249

(a) (b)

Figure 8.10 An illustration of two contrast gratings displaying: (a) a low and (b) higher spatial
frequency. The curve below each of the gratings shows the sinusoidal nature of the
intensity distribution. If grating (a) was positioned to occupy 1 degree of visual arc,
it would have a spatial frequency of 4 c/deg [Reddy 97].

pendent factors affect the perceptibility of a contrast grating: its contrast and spa-
tial frequency. Contrast grating studies use Michaelson contrast, defined as (Lmax −
Lmin)/(Lmax + Lmin) and ranging from 0.0 to 1.0, and define spatial frequency as
the number of cycles per degree of visual arc. For example, a high spatial frequency
implies a short distance between bars, and hence represents a stimulus of high
detail.

For a number of different contrast gratings, the limits of human vision can be
investigated and recorded in terms of these two parameters. This is normally done
by allowing the subject to vary the contrast of a grating until it is deemed to be
at threshold. That is, they can no longer resolve discrete bars [Lamming 91a]. Vi-
sion researchers have amassed a great deal of empirical evidence about the ability
of the visual system to discern detail through contrast grating studies. For example,
Fergus Campbell and colleagues studied how our ability to resolve detail varies in re-
lation to the orientation of a contrast grating [Campbell 66b], whereas others have
examined how perceptibility of a contrast grating varies with its velocity across the
retina [Kelly 79], its eccentricity [Rovamo 79], the level of background illumination
[Kelly 75], and the phase of the grating, which turns out to have no effect for a single
grating [Lamming 91b].

Team LRN

250 Chapter 8 Perceptual Issues

8.4.2 The Contrast Sensitivity Function

The contrast sensitivity function or CSF plots contrast sensitivity against spatial fre-
quency, and so describes the range of perceptible contrast gratings. The CSF is
essentially a graph of the results from a series of contrast grating tests. It illustrates
the threshold of vision for a single or averaged observer at a number of spatial fre-
quencies. Since the region below the CSF curve represents combinations of spatial
frequency and contrast that were perceptible to the subject, the CSF is said to describe
a subject’s window of visibility.

Contrast sensitivity is usually defined as the reciprocal of the threshold contrast,
which is the level of contrast above which a particular stimulus becomes perceptible.
For example, a low threshold contrast implies that the stimulus is perceptible, even
when its contrast is low, whereas a high threshold contrast implies that a stimulus
must contain high contrast before it becomes perceptible.

Figure 8.11 shows a typical CSF curve. Notice that according to this CSF, contrast
sensitivity (and thus the ability to resolve detail) peaks about 3 c/deg, and drops off
after this peak until no further detail can be resolved. For example (based on the CSF
in Figure 8.11), if we presented the subject with a stimulus of 100 c/deg, they would
simply not be able to see it; such a stimulus would be invisible to the eye.

The curve in Figure 8.11 is for static detail presented at the observer’s fovea.
It is produced using the general formula proposed by Mannos and Sakrison and
later adopted by Rushmeier et al., among others [Mannos 74] [Rushmeier 95]. This
formula can be represented as follows, where α represents spatial frequency in cycles
per degree, and A(α) represents Michelson contrast.

A(α) = 2.6(0.0192 + 0.144α)e−(0.144α)1.1
(8.1)

If we look at the corresponding curves for moving gratings or eccentric gratings,
we find that the CSF shifts toward the y axis in both cases [Nakayama 90] [Koen-
derink 78b]. Effectively, this means that we can perceive fewer high spatial frequen-
cies, and thus less high detail, under these situations.

Given a mathematical equation to represent the shape of the CSF under various
conditions, we can compute the highest spatial frequency an observer should be
able to see. This provides us with a metric (spatial frequency) and model (contrast
sensitivity) to predict the degree of detail the user of a computer graphics system can
see.

8.4.3 An Aside: Visual Acuity

We have seen that our ability to resolve spatial detail is dependent on the contrast
and relative size (spatial frequency) of a stimulus. This is most accurately represented
using the measure of contrast sensitivity. Another common measure of our spatial
resolution is visual acuity. Visual acuity is a measure of the smallest detail a person can

Team LRN

8.4 Measuring Visual Sensitivity 251

C
on

tr
as

t

Spatial Frequency (c/deg)

Invisible

Visible

0.1

0.001

0.01

0.1

1

1 10 100

Figure 8.11 An example contrast sensitivity function for static detail produced using Equation
8.1. This represents the size sensitivity of the human visual system in relation to
the contrast of the stimulus. The four contrast gratings illustrate the combination
of contrast and spatial frequency at certain points in the space.

resolve. It is only a measure of size and does not take into consideration the contrast of
a target. Visual acuity is therefore normally assessed under optimal illumination con-
ditions (e.g., black letters on a white background under bright lighting). Generally,
contrast sensitivity is a more powerful measure for the following reasons.

1. Of the two, contrast sensitivity provides a more complete model because it takes
into consideration the contrast of a stimulus, whereas visual acuity is simply a
measure of the smallest resolvable size under ideal illumination conditions.

2. The literature pertaining to contrast sensitivity is more extensive than that for
visual acuity. The latter remains a measure of static detail viewed under foveal
conditions, whereas much research has investigated effects such as motion and
eccentricity on contrast sensitivity.

3. Visual acuity tends to be described in more computationally qualitative terms
than contrast sensitivity. The most common measure of visual acuity is the Snellen
fraction, named after the Dutch doctor, Hermann Snellen, who introduced the

Team LRN

252 Chapter 8 Perceptual Issues

C
on

tr
as

t

Spatial Frequency (c/deg)

Invisible

Visible

0.1

0.001

0.01

0.1

1

1 10 100

Visual
acuity

threshold

Figure 8.12 A portrayal of how visual acuity can be described in terms of spatial frequency given
a subject’s contrast sensitivity function.

technique. A Snellen fraction of 20/n is defined as the acuity at which two objects,
which subtend 1 minute of arc at n feet, can be perceived as separate at 20 feet
[Tipton 84]. Therefore, a person with 20/20 vision is classed as normal, and a
person with 20/40 vision can only see a stimulus from 20 feet that a normal
person can see from 40 feet. In terms of visual arc, 20/20 vision corresponds to
recognizing letters that are 5 minutes of arc [Helman 93].

Note, however, that given an observer’s contrast sensitivity we can derive their
visual acuity in terms of spatial frequency. This is simply the upper limit of detection;
that is, the rightmost point where the CSF meets the x axis. Figure 8.12 illustrates this
relationship.

8.4.4 Applicability of the CSF Model

We have described the contrast sensitivity function, which provides a simple model
of low-level human vision. Later we will describe some systems that apply this model
to the LOD process. First, however, we should consider the applicability of the CSF to

Team LRN

8.4 Measuring Visual Sensitivity 253

(a) (b) (c) (d)

? ? ? ?

Figure 8.13 How does a simple 1D harmonic contrast grating relate to (a) square-wave gratings,
(b) complex gratings, (c) gratings of different periodicity, and (d) 2D gratings [Reddy
97]?

computer-generated imagery. After all, the simple contrast gratings used in CSF ex-
periments bear little resemblance to the images displayed by a 3D computer graphics
system. Reddy reviews some of the issues in the use of contrast gratings (also illus-
trated in Figure 8.13), and argues why the CSF model might reasonably be extended
to more complete images [Reddy 97].

Modulation: A contrast grating presents a sine-wave distribution of intensity.
However, computer-generated images rarely contain perfectly harmonic features.
For example, a simple flat-shaded object would present a square-wave distribu-
tion of intensity across the display. We must therefore consider the applicability
of a sine-wave grating to square-wave (and other) gratings.

Beyond the frequency of peak sensitivity, the modulation of a grating has
no significant effect on the visibility of that grating. For example, Campbell and
Robson found that a square-wave grating is indistinguishable from a sine-wave
grating until the third harmonic reaches its own threshold [Campbell 68]. In
other words, for the upper regions of the CSF we can analyze a stimulus by re-
ferring only to its fundamental harmonic component [Lamming 91b]. Further,
the highest perceptible frequency is unaffected by the modulation of a grating.
That is, visual acuity is the same in all cases [Campbell 68]. Note, however, that
a model based on contrast sensitivity (rather than visual acuity) may need to ad-
dress this issue for frequencies below the peak, and otherwise may underestimate
the correct threshold. Campbell and Robson provide theoretical curves for differ-
ent waveform modulations.

Team LRN

254 Chapter 8 Perceptual Issues

Complexity: Most computer-generated images involve complex changes of in-
tensity across the display, but a contrast grating is a simple harmonic pattern.
However, we can consider the visibility of a complex intensity waveform in terms
of the simple harmonic case.

Campbell and Robson found that the appearance of a compound grating
is characterized by the independent contributions from each of the harmonic
components. Their results showed that if a compound grating is displayed such
that some of its high-frequency components are below threshold, these features
will not be perceptible in the compound grating and can be removed without
any perceivable change being made to the grating. This finding was one of the
major contributing results in the development of the current multichannel model
of visual perception. Its implication for our purposes is that the visibility of the
component detail in a complex image can be assessed independently in terms of
the simple CSF threshold data.

Periodicity: A contrast grating is a periodic sine-wave pattern, normally contain-
ing several complete cycles of contrast. However, in applying a perceptual model
to computer-generated imagery we will often be concerned with the visibility of
an aperiodic region of detail. Can periodicity affect the visibility of a particular
spatial frequency? Yes. Coltman showed that the number of cycles in a sine-wave
pattern can have a substantial effect on contrast sensitivity [Coltman 60]. This
work was later reexamined by Nachmias, who was concerned with the visibility
of square-wave patterns at low spatial frequencies (below 10 c/deg) [Nachmias
68]. He found a consistent 60% reduction in sensitivity for single-cycle patterns
compared to full gratings. At lower frequencies, then, our sensitivity is reduced
for aperiodic gratings. However, our visual acuity is extended for aperiodic ver-
sus full gratings. The implication for our work is that the standard CSF data,
acquired using extended contrast gratings, may underestimate the sensitivity of
a user to detail on a computer screen. Features in a computer-generated image
will often represent a half-cycle stimulus; that is, a single peak (or trough) in in-
tensity with respect to the surrounding region. However, [Campbell 69] suggest
that the visibility of an aperiodic pattern can theoretically be predicted from that
of a sinusoidal grating, and that a simple linear relationship may exist.

Dimension: A contrast grating varies over only one dimension, but images are
obviously 2D. We must therefore investigate how to describe features of a 2D
image in terms of spatial frequency.

Spatial frequency, as we have defined it so far, is an inherently 1D measure.
It describes the intensity variation over a single cross-section of a display. To
describe a 2D feature using this measure, we introduce an orientation parameter
for each frequency. A 2D feature is then described by the set of spatial frequencies
at all angles (0 to 180 degrees). For example, consider a long, thin object such as
a street lamppost. Such an object is considerably taller than it is wide. This object
would therefore have a very low vertical frequency (i.e., long vertical distance)
and a comparatively high horizontal frequency (i.e., short horizontal distance).

Team LRN

8.4 Measuring Visual Sensitivity 255

Chromaticity: Our discussion of the limits of perception has focused on lumi-
nance, but clearly computer-generated imagery often includes color. We must
therefore ask whether we lose any accuracy by employing achromatic threshold
data to our task, and whether we should consider applying color contrast data
instead.

We know that the achromatic channel is more effective than the chromatic
channels for processing shape [Mullen 85], motion [Anstis 83], and stereoscopic
depth [Gregory 77]. For example, Campbell and Gubisch [Campbell 66a] identi-
fied the upper spatial limit of the luminance channel as roughly 60 c/deg; whereas
Mullen [Mullen 85] found that the red/green upper limit is only about 12 c/deg.
This means the achromatic channel can resolve substantially smaller features than
the chromatic channels. Thus, although color is clearly an important element of
suprathreshold vision [Cavanagh 91], the evidence suggests that ignoring chro-
matic effects and focusing on luminance is a reasonable approximation, especially
when focusing on questions of threshold vision, such as when the user can per-
ceive certain details?

8.4.5 Other Perceptual Phenomena

It is important to remember that the CSF model previously described is just that:
a model. Human vision is hardly a simple and predictable machine; it is a highly
complex, highly nonlinear, imperfectly understood system. The CSF gives us a tool
to estimate the perceptibility of visual features, and thus to estimate the ability to
distinguish different levels of detail, but it is far from a perfect model of the visual
system. Many factors affect our ability to perceive detail, and indeed everybody’s
visual system is slightly different. In the following sections, we enumerate some of
the many factors that affect our perception.

Factors Affecting Visibility

There are many factors beyond eccentricity and velocity that can affect our ability to
perceive detail. These are normally dealt with in the vision sciences by introducing the
concept of a standard observer. This is simply a notional “average” human for whom
we can develop general models of perception, normally under optimal conditions.

For example, our contrast sensitivity model pertains only to a standard observer
defined as a healthy adult with good vision viewing under good lighting conditions.
We justify the notion of a standard observer by noting that most individuals tend to
have a visual performance close to this ideal, and that our model reflects a best-case
scenario in which perceptibility is nearly maximized. If we use this model to predict
visibility in less optimal viewing situations, we will tend to make conservative choices
that preserve more detail than necessary.

Team LRN

256 Chapter 8 Perceptual Issues

The following are factors that can affect a user’s visual perception. We classify
these as environmental (related to the state of the environment the user occupies) or
individual (related to the state of the user’s specific visual system) considerations.

Environmental Considerations

Background illumination: The background light intensity used to illuminate a
stimulus can substantially affect its visibility. Kelly presents theoretically derived
contrast sensitivity functions for an observer under a range of background il-
luminations [Kelly 75]. These show a degradation of sensitivity in dim lighting
conditions. For example, at 3 log cd/m2 illumination, our visual acuity limit is
about 50 c/deg. However, at −3.3 log cd/m2 it is as low as 2 c/deg. This is equiv-
alent to a drop in visual acuity from 20/10 to 20/300 [Ferwerda 01]. In many
applications (e.g., flight simulators) the display environment can be predicted,
and the displayed images can be optimized in terms of the user’s visual adaptation
to this surrounding environment.

Light adaptation: The human eye is sensitive to light intensity over a remarkable
range. This is due to the range of photoreceptors in the retina, as well as optical
factors such as pupil dilation. Sekuler and Blake offer this example: when entering
a dark theater from daylight conditions, your light sensitivity can improve by a
factor of about 100,000 [Sekuler 94]. The level of an observer’s light adaptation
is controlled by the degree of retinal illumination via a feedback system causing a
chemical adaptation of photoreceptors. Different photoreceptors take different
lengths of time to adapt to a new light intensity. For example, the full dark
adaptation period is about 40 minutes for rods, but only about 10 minutes for
cones.

Stimulus duration: Stimulus duration has an effect on the contrast sensitivity
function. The normal band-pass shape of the CSF occurs at moderate durations
of 500 ms, whereas a low pass behavior is found at short durations of 20 ms.
Intermediate durations of 50 ms produce a broadly tuned band-pass shape and a
shift in the peak toward low spatial frequencies.

Display factors: Since we view computer graphics imagery on a display device,
the brightness, contrast, color gamut, and gamma settings of that display will
affect the appearance of any stimuli. Clearly the most sophisticated model of
human perception is limited by display accuracy, and any attempt to exactly
predict perceptibility will be foiled without careful photometric calibration of the
display. Fortunately, an approximate estimate of display characteristics (such as
the gamma curve) suffices for our purpose, which is simply to guide LOD with a
principled perceptual model.

Interaction of other senses: Recent findings have hinted toward complex inter-
actions between the senses. For example, an auditory illusion was reported in
Nature magazine in which sound affected visual perception under certain cir-
cumstances. Subjects were found to incorrectly count a small number of visual

Team LRN

8.4 Measuring Visual Sensitivity 257

stimuli when accompanied by a short beep [Shams 00]. We also know that sound
feedback is important for improved perception of virtual events, such as at the
point when two virtual objects collide [Astheimer 93].

Individual Considerations

Age: Contrast sensitivity varies as a function of age. For example, an infant’s CSF
is significantly displaced from an adult’s CSF, so that infants see only large, high-
contrast objects [Banks 82]. Owsley investigated the contrast sensitivity of adults
over a range of ages (20 to 80 years). They found that contrast sensitivity degrades
notably over this range. An 80-year-old person, for example, cannot perceive
many of the high spatial frequencies perceptible to a 20-year-old [Owsley 83].

Color vision: Color is not perceived equally by everyone. Many people, for exam-
ple, suffer from color blindness of one type or another. For example, nearly 10%
of men have red–green color deficiency [Gregory 90], although this is extremely
rare in women [Hurvich 81].

Stereoscopic vision: A surprisingly large percentage of the population cannot per-
ceive depth stereoscopically. That is, they cannot perceive depth as a result of the
disparity between the images from each eye. It has been estimated that as many
as 1 in 10 people suffer from stereoblindness.

Lens aberrations: Defective vision can result from an eye’s inability to accommo-
date, or adjust the focal length of its lens in order to project a fixated object exactly
onto the retina. For example, the lens of a person with myopic vision will cause
light to converge at a point before the retina. This can cause distortions or blur-
ring of an image, often requiring corrective spectacles.

Emotional state: The emotional state of the observer affects the dilation of their
pupils. Since a smaller pupil size reduces the light that can reach the retina,
emotional state can cause a drop in the observer’s visual acuity [Campbell 65].

Experience: Gregory suggests that our perception of objects may be influenced by
a priori knowledge and past experience [Gregory 90]. For example, he speculates
that common objects such as oranges and lemons develop a richer and more
natural color once they have been recognized as such.

The following sections address certain specific features and anomalies of our
visual system, and their impact on our ability to perceive detail.

Hyperacuity

The term hyperacuity refers to the paradoxical phenomenon in which certain stimuli
can be perceived that are smaller than the size of a single photoreceptor cell. Photore-
ceptors in the fovea subtend about 25 to 30 seconds of arc (which corresponds to a
maximum spatial frequency of about 60 c/deg). However, it has been shown that it

Team LRN

258 Chapter 8 Perceptual Issues

Photoreceptors

In
te

ns
ity

1

x

Figure 8.14 Hyperacuity provides highly sensitive position, or phase, discrimination but no
greater ability to resolve fine detail.

is possible to discriminate the non–co-linearity of two thick, abutting lines to a res-
olution of 2 to 5 seconds of arc (referred to as vernier acuity). This effect plays an
important role in the visibility of aliasing artifacts in computer images. The question
therefore arises: need we account for hyperacuity in a perceptual model for guiding
LOD?

It is believed that hyperacuity is caused by differences in the mean distribution
of light sampled over a number of photoreceptors [Morgan 91]. The effect there-
fore depends upon the large spatial spread over which two adjacent features extend.
Therefore, any isolated feature smaller than a single receptor will still remain unde-
tectable (see Figure 8.14). Thus, hyperacuity gives us a higher positional accuracy
between adjacent features (discrimination), but it does not increase the fundamental
resolution limit of our visual system (detection).

Since our model predicts the detection of features, deciding whether the user can
resolve an entire feature, it is largely unaffected by hyperacuity. It is also worth noting
that hyperacuity applies chiefly to low-velocity targets at the fovea. For example,
Levi et al. [Levi 85] and Schor and Badcock [Schor 85] report that hyperacuity
performance degrades rapidly with eccentricity; in fact, more rapidly than contrast
sensitivity. Although hyperacuity is an interesting feature of the visual system, it does
not invalidate the applicability of the CSF-based model described thus far.

Team LRN

8.4 Measuring Visual Sensitivity 259

Center of vision

Blind spot

Pupil

Retina

Optic nerveLeft Right

Figure 8.15 The blind spots for both eyes.

The Blind Spot

Another interesting feature of the visual system is the blind spot, an area of the retina
where all of the axons of the retinal ganglion cells meet to form the optic nerve (see
Figure 8.5). There are no photoreceptors in this region, so we cannot detect any light
that falls on the blind spot. Furthermore, the angular size of the blind spot is quite
large, about 5 degrees [Andrews 91]. This therefore raises the question: could we
reduce the detail of objects that fall onto a user’s blind spot?

Unfortunately, the answer is “no” under normal stereoscopic vision. The blind
spots for both eyes are in different regions of our visual hemisphere (see Figure 8.15).
Therefore, any part of a scene within one eye’s blind spot will be visible to the other
eye. For applications that render a separate image for each eye—such as virtual reality
using head-mounted displays or stereo video projection—reducing detail in the blind
spot is conceptually possible, but still seems hardly worthwhile. For example, when
using discrete LOD, an entire object would have to project onto the blind spot before
we could degrade its detail or remove it from the scene.

Saccades

A saccade is a rapid movement of the eye to fixate a target onto the fovea (the name
comes from the French verb saccader, which means “to jerk”). Saccades can occur at
velocities of up to 800 deg/s and last for many milliseconds. (A good rule of thumb for

Team LRN

260 Chapter 8 Perceptual Issues

the duration of a saccade in milliseconds is 20 plus twice the angular distance traveled
(e.g., a 10-degree saccade will last about 40 ms [Robinson 64]). Interestingly, during
a saccade we do not experience blurred vision, even though our eyes are moving at
very high velocities. This implies we do not perceive detail during a saccade. The
term saccadic suppression is used to describe this phenomenon. Sekuler and Blake
summarize a number of the reasons that have been postulated for this effect [Sekuler
94].

Temporal threshold: We know that certain stimuli become invisible to the eye
when they exceed a particular velocity. Perhaps therefore we cannot perceive
detail during a saccade simply because the retinal image is moving too fast for
our visual system to detect it.

Masking: A large, intense stimulus can affect the visibility of a smaller, dim stim-
ulus if they are presented in the same spatial location closely in time. This effect
has been suggested as a reason for saccadic suppression; that is, masking occurs
when the eye fixates immediately before and after a saccade.

Stimulus uncertainty: We know that stimuli are more difficult to see if the observer
is uncertain of their spatial location. Therefore, if the visual system does not have
access to the exact eye position during a saccade, the observer may be unable to
correctly resolve the retinal images.

Early 1994 saw a discussion on the USENET newsgroup sci.virtual-worlds about
the possibility of reducing the detail in a scene during a saccade, on the assumption
that the visual system might be unable to detect this change. However, the full benefits
are unclear, as is the extent to which we should reduce detail. Our visual system does
not “shut down” during a saccade. Gross changes in luminance, such as replacing a
scene with a black backdrop, are still noticeable during a saccade.

Ohshima et al. have experimented with this phenomenon, building a system that
takes advantage of saccadic suppression [Ohshima 96]. In their approach, the ren-
dering process is simply suspended as the angular velocity of a user’s gaze movement
exceeds 180 deg/s. However, they do not offer any comment on how visually effective
this was, or why they chose the value of 180 deg/s. Despite the work of Ohshima et al.,
we still lack compelling evidence that LOD systems can effectively exploit saccadic
suppression.

Visual Masking

Visual masking describes the perceptual phenomenon that the presence of one visual
pattern can affect the visibility of another pattern. For example, a large adjacent
stimulus (in time or space) can raise the threshold of a smaller stimulus, meaning
that the smaller stimulus must be more intense to be visible. In terms of computer
graphics, this means that visual texture can mask small details or aliasing artifacts
in an image. For example, Bolin and Meyer illustrated this effect with Figure 8.16,

Team LRN

8.4 Measuring Visual Sensitivity 261

Figure 8.16 Illustrating visual masking of quantization effects by visual texture [Bolin 95]. Copy-
right © 1995 Association for Computing Machinery, Inc.

in which quantization banding is less apparent on the rough surface than on the
smooth surface [Bolin 95]. Similarly, a strongly textured object may be simplified
more aggressively than the same object flat-shaded, an effect well known to LOD
practitioners.

Visual masking can facilitate detection of stimuli under certain conditions (in
particular, when the masking pattern exactly aligns with the stimulus pattern), but
generally visual masking increases the detection threshold of stimuli, making them
more difficult to see. Therefore, a naive perceptual model that does not incorporate
visual masking effects will generally only overcompensate for masked features, con-
servatively estimating some features to be perceptible when in fact they are masked.
We do not ignore visual masking effects for lack of knowledge on how to model them.
For example, Ferwerda et al. have described a visual masking model for computer
graphics [Ferwerda 97]. Their model predicts how changes in the contrast, spatial

Team LRN

262 Chapter 8 Perceptual Issues

Contrast

Spatial
frequency

Orientation

Tessellation

Figure 8.17 Applying Ferwerda et al.’s masking model to predict how texture masking affects the
visibility of shading artifacts in a tessellated model. Values of �R less than 1.0 indicate
a result imperceptible from a nontessellated model [Ferwerda 97]. Copyright © 1997
Association for Computing Machinery, Inc.

frequency, and orientation of a texture pattern alter the masking effect (see Figure
8.17). Unfortunately, current models of visual masking remain too computationally
expensive to use in run-time management of LOD. This is an important area for fu-
ture research, and interested readers may want to refer to Ferwerda [Ferwerda 01] for
further discussion of masking issues.

Temporal Thresholds

So far we have considered only the spatial aspects of vision for LOD, but many tem-
poral perceptual issues arise when switching between different representations of

Team LRN

8.4 Measuring Visual Sensitivity 263

a model. The human visual system is sensitive to motion, particularly in the pe-
ripheral field where the motion-sensitive rods dominate. This may have developed
as an evolutionary need to quickly detect prey (or predators!) moving around us.
In any case, we are highly adapted to detect flicker (flicker sensitivity) in our pe-
ripheral field, and we possess a reflex reaction to turn toward any such sharp vi-
sual changes. Related to this is an individual’s critical fusion (or flicker) frequency
(CFF), the highest frequency at which the flicker in a light source can be detected.
At frequencies above the CFF, the light source appears to be steady and continu-
ous. For example, fluorescent lights are designed to flicker at 120 Hz, well above
the typical CFF, so that the light is perceived as continuous. A related temporal
effect is visual persistence, in which events tend to blur in time according to the
temporal impulse response function. Also note that visual masking can occur in
time, with the temporal proximity of a large feature making a smaller feature less
perceptible.

All of this raises issues for LOD because the switch between two different levels
of detail may be noticeable, even when we predict the actual spatial change to be
imperceptible. Unfortunately, there has been much less relevant research done on
temporal sensitivity and it is not yet clear how important or relevant this effect
is for LOD, or how we can effectively model it in our computer systems. Given a
practical formula relating changes in spatial frequency and contrast over different
time periods, we could build this into our model and predict whether a sudden switch
might be visible, or perhaps guide an alpha-blend or geomorph between models to
make the transition imperceptible. At the moment, however, we have no principled
way to evaluate the benefit of these techniques, and this is certainly an important area
for future research.

8.4.6 Further Reading

We have tried to provide some background on the most relevant foundations of
perceptual psychology, with a focus on describing a simple model applicable to man-
aging level of detail. Clearly a single chapter can only scratch the surface of vision
science and perceptual psychology, or even the topic of perceptual models in com-
puter graphics. The interested reader can refer to a number of other reviews and
resources for further reading; we mention a few of them here. James Ferwerda’s ar-
ticle “Elements of Early Vision for Computer Graphics” provides an excellent review
for computer graphics developers and offers another perspective on many of the
topics introduced here [Ferwerda 01]. Colin Ware’s book on information visualiza-
tion provides an essential resource on perceptual issues for data visualization [Ware
99]. Other noteworthy books on the subject of perception include that of Robert
Sekuler and Randolph Blake (Perception [Sek 94]), Brian Wandell (Foundations of Vi-
sion [Wandell 95]), and Stephen Palmer (Vision Science: Photons to Phenomenology
[Palmer 99]).

Team LRN

264 Chapter 8 Perceptual Issues

8.5 Managing LOD Through Visual Complexity

We have described a model of contrast sensitivity that can be applied to a computer
graphics system. To optimize spatial detail using such a model requires a rendering
system that can estimate a scene’s perceptual content and quantify the efficacy of an
observer’s perception. Together, these two facilities enable the rendering system to
judge which details a user can perceive in a computer-generated scene. For our CSF-
based model, we therefore require the following:

1. An efficient mathematical formulation to predict the contrast sensitivity of a
standard observer under various visual conditions (e.g., variable velocity and
eccentricity)

2. A mechanism to concisely describe an LOD in terms of its component spatial
frequencies (c/deg)

For example, Figure 8.18 shows three different levels of detail for a single die
model. In each case we have calculated the spatial frequency content of the LOD for
the viewpoint shown, with regions of high frequency (and thus high detail) to the
right. The vertical axis denotes the number of features in the image with a particular
spatial frequency. In the case of the lowest LOD, the graph contains only three low
spatial frequencies. These represent the three visible faces of the die, which are the
only features at that level. In the medium LOD, the three low spatial frequencies
are joined by a batch of higher spatial frequencies, which represent the spots on the
die. Finally, the highest LOD includes the same trends as the other two instances,
but also adds some even higher spatial frequencies induced by the added detail of
curvature at the edges of the die. The key observation: if this die were presented to a
user in a situation in which they could only perceive frequencies below 0.01 c/pixel,
we could select the lowest LOD model (Figure 8.18(c)) and the user would be unable
to perceive any change.

To reiterate, the two major tasks underlying a perceptually based LOD system are
evaluating the user’s limit of vision under different visual circumstances and calcu-
lating the spatial frequency component of LOD features. We can take two principal
approaches to computing the user’s limit of vision. The following section presents
a mathematical equation for visual acuity that can take into account the peripheral
extent and velocity of a feature. This generic model describes an average adult with
good vision, and is easily computable in real time. An alternative approach builds a
model of a given user’s visual performance using a series of psychophysical tests, in-
terpolating this model at run-time. Sen et al. proposed such a model using a set of
experimentally acquired acuity data [Sen 95]. To be most accurate, however, the tests
should be done on a per-user basis, and should be performed immediately before the
simulation so that the same environmental lighting conditions and user adaptation
states are effective.

The second task requires evaluating the perceptual content of a model at each
frame in terms of spatial frequency. Many simplification systems base their measure

Team LRN

8.6 Modeling Contrast Sensitivity 265

of

 fe
at

ur
es

0.002 0.02 0.10.20.5
0

1

2

3

4

0.002 0.02 0.10.20.5
0

1

2

3

4

0.002 0.02 0.10.20.5
0

1

2

3

4

(a) (b) (c)

Figure 8.18 (a–c) An example spatial-frequency analysis of three LODs, showing screen-relative
spatial frequency in units of c/pixel [Reddy 97].

of perceived detail on the geometry of an object, essentially calculating the pro-
jected screen-space extent of an object or feature to determine its spatial frequency
[Funkhouser 93b] [Ohshima 96] [Luebke 01]. This has the benefit of being well de-
fined and computable at run-time, but may not incorporate effects such as texture
mapping or lighting conditions. On the other hand, some researchers have proposed
systems that use an image-based analysis of the rendered image in preprocess [Reddy
97] [Lindstrom 00b]. This has the advantage of acting on the actual stimuli presented
to the user’s visual system, but can be computationally expensive to calculate and can
potentially miss features, since a limited number of viewpoints must be chosen to
render and analyze. Chapter 9 deals more with this issue of assessing the spatial com-
plexity of objects.

8.6 Modeling Contrast Sensitivity

As we have seen, the CSF predicts the ability of the human visual system to resolve
a stimulus based on its spatial frequency and contrast. However, these curves are
produced by interpolating tabulated values obtained through empirical studies. To
usefully incorporate these results into a computer graphics system, we may prefer

Team LRN

266 Chapter 8 Perceptual Issues

to find a mathematical model to describe the shape of the human CSF. Donald H.
Kelly developed a conceptual model to describe the spatial frequency characteristics
of retinal receptive fields at high luminance levels, and showed that this can be used to
model the sine-wave sensitivity of the visual system [Kelly 75]. Kelly defines the fol-
lowing abstract formula for contrast sensitivity, where α represents spatial frequency
in cycles per degree (recall that contrast sensitivity is the reciprocal of threshold con-
trast).

F(α) = α2e−α (8.2)

With suitable scaling factors, this general equation can be used to model the shape
of the CSF under various viewing conditions. We have already seen Mannos and
Sakrison’s model for static, foveal detail in Equation 8.1, which follows this general
formula. Here we examine how to incorporate the effects of velocity and eccentricity.

8.6.1 Incorporating Velocity into the Model

The surface produced by mapping the CSF over a range of velocities is called the
spatiotemporal threshold surface. This has been investigated by a number of vision
researchers over the years. The model presented here is based on one developed at
SRI International by Kelly. It is worth noting, however, that Burr and Ross conducted
similar experiments to those of Kelly, and that their principal results correlate almost
exactly with his [Burr 82].

Kelly made extensive studies of the spatiotemporal surface under conditions of
stabilized vision, using a noncontact method of accurately stabilizing the retinal im-
age to enable measurements without the artifacts introduced by uncontrolled eye
movements [Kelly 79]. The resulting data indicated that the shape of the CSF remains
essentially constant for velocities above 0.1 deg/s, and only undergoes translation
with increased velocity. Kelly subsequently extended Equation 8.2 to model, as fol-
lows, the spatiotemporal threshold surface for velocities above 0.1 deg/s, where v
represents velocity measured in units of deg/s, and α represents spatial frequency in
units of c/deg.

G(α, v) = (6.1 + 7.3| log10(v/3)3|)vα2e−2α(v+2)/45.9

However, Reddy notes that he was unable to reproduce the empirical data Kelly (and
others) presents using this formula [Reddy 97]. He modified Equation 8.8, as follows,
to more accurately model his findings.

G(α, v) = (250.1 + 299.3| log10(v/3)3|)vα210−5.5α(v+2)/45.9 (8.3)

It is worth noting that Wilson and Manjeshwar’s more recent studies lend credence to
Reddy’s reformulation of Kelly’s equation [Wilson 99]. α in Equation 8.3 is plotted in

Team LRN

8.6 Modeling Contrast Sensitivity 267

Spatial frequency (c/deg)

0.01

0.1

0.1 1 10
1

Th
re

sh
ol

d
co

nt
ra

st

0
0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60
Velocity (deg/s)

Sp
at

ia
l f

re
q

ue
nc

y
(c

/d
eg

)

(b)(a)

Figure 8.19 (a) Contrast sensitivity functions for velocities of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32,
64, and 128 deg/s (from right to left), calculated using Equation 8.3. (b) The highest
perceptible spatial frequency (visual acuity) for a range of velocities; that is, the upper
point of intersection with the x axis for each of the curves in (a). The data points
represent calculated intersection points, with the curve illustrating the interpolated
relationship [Reddy 97].

Figure 8.19(a) for a number of velocities. From this we can observe that the effect of
velocity on the CSF is to push the curve further toward the y axis for higher velocities.
This matches what we expect. That is, we can see less high detail with increasing
velocity. Figure 8.19(b) portrays this relationship more clearly by plotting the highest
perceptible spatial frequency for a range of velocities.

8.6.2 Incorporating Eccentricity into the Model

Contrast sensitivity declines with increasing eccentricity. However, the general shape
of the spatiotemporal surface is consistent across the visual field [Virsu 82] [Koen-
derink 78a] [Kelly 84]. This implies that we can predict the contrast sensitivity for
any region of the retina by simply scaling the foveal response with a factor based on
eccentricity.

Rovamo and Virsu confirmed this when they showed that visual acuity can
be accurately predicted for any eccentricity by applying a constant scaling factor

Team LRN

268 Chapter 8 Perceptual Issues

Eccentricity (deg)

0.01

0.1

1

C
or

tic
al

 m
ag

ni
fic

at
io

n
ra

tio

0 20 40 60 80 100

Mi(E)
Mt(E)
Ms(E)
Mn(E)

Figure 8.20 A graph of Equations 8.4 through 8.7, which define the cortical magnification factor,
M, for each cardinal half-meridian of the retina [Reddy 97].

[Rovamo 79], referred to as the cortical magnification factor (M) (see Figure 8.20).
To incorporate eccentricity into our model of spatiotemporal contrast sensitivity, we
simply need to apply this cortical magnification factor to Equation 8.3.

However, M is not dependent simply on the radial distance from the fovea, be-
cause the eye’s peripheral sensitivity is not circularly symmetric [Regan 83]. For ex-
ample, there are marked asymmetries between the nasal and temporal retina beyond
20 degrees [Sutter 91]. Taking this into consideration, Rovamo and Virsu produced
the following four equations to characterize M for each principal half-meridian of the
retina.

Nasal: MN = M0/(1 + 0.33E + 0.00007E3) 0 ≤ E ≤ 60 deg (8.4)

Superior: MS = M0/(1 + 0.42E + 0.00012E3) 0 ≤ E ≤ 45 deg (8.5)

Temporal: MT = M0/(1 + 0.29E + 0.0000012E3) 0 ≤ E ≤ 80 deg (8.6)

Inferior: MI = M0/(1 + 0.42E + 0.000055E3) 0 ≤ E ≤ 60 deg (8.7)

Here, M0 is the value of magnification for the most central point in the fovea. We
can simply instantiate M0 = 1 because we are treating this as a scaling factor. A
sophisticated system might take into account the relevant region of the retina that is
being considered and apply the appropriate value of M for that region. Alternatively,
to simplify the relationship, we could exclusively use the most sensitive region’s M,

Team LRN

8.6 Modeling Contrast Sensitivity 269

with the knowledge that the other regions will not exceed this sensitivity; that is,
Equation 8.6 (MT). Furthermore, it would be reasonable to ignore the cubic term
in Equation 8.6. This only becomes significant at large eccentricities; and even when
E = 100 degrees, there would only be roughly a 1% error [Watson 83] [Kelly 84] [Tyler
85]. We can therefore define the cortical magnification factor for our purposes as

M(E) = 1/(1 + 0.29E). (8.8)

Incorporating this equation into our model for contrast sensitivity gives

H(α, v, E) = G(α, v)M(E) = G(α, v)/(1 + 0.29E).

8.6.3 Modeling Visual Acuity

Given a model of contrast sensitivity, we can describe visual acuity in terms of spatial
frequency by calculating the high-frequency limit (i.e., the rightmost point in our
graphs where the CSF intersects the x axis). Beyond this point, detail is imperceptible
regardless of the stimulus contrast. Figure 8.19(b) illustrates this notion by plotting
the velocity of a stimulus against the highest spatial frequency perceptible at that
velocity. As this figure shows, visual acuity drops precipitously as a stimulus moves
with greater velocity, up to about 10 deg/s, and then begins to level off asymptotically.
This implies solving the equation H(α, v, E) = 1 in terms of α (i.e., finding the spatial
frequency when a grating becomes imperceptible at the highest contrast of 1.0, and at
the specified velocity and eccentricity). Reddy presents the following such model for
visual acuity, based on the previously cited work and various psychophysical studies
[Reddy 97] [Reddy 01]:

G(v) =

60.0 where v ≤ 0.825 deg/s

57.69 − 27.78 log10(v) where 118.3 ≥ v > 0.825 deg/s

0.1 where v > 118.3 deg/s

M(e) =
{

1.0 where e ≤ 5.79 deg

7.49/(0.3e + 1)2 where e > 5.79 deg

H(v, e) = G(v)M(e)

(8.9)

8.6.4 Incorporating the Display into the Model

Clearly the resolution of the display device will limit the detail that can be presented
to the user’s visual system. In essence, we want to take the minimum of the eye’s
contrast sensitivity function and the display’s modulation transfer function (a mea-
sure of the faithfulness and clarity with which the display reproduces the detail in the
graphics signal). If dealing only with visual acuity, we can calculate the highest spatial

Team LRN

270 Chapter 8 Perceptual Issues

frequency (smallest detail) the device can display without aliasing (known in signal
processing as the Nyquist limit) and use this to threshold all spatial frequency values.
In effect, this highest spatial frequency is dictated by the visual arc subtended by a
single pixel. We thus augment our model of visual acuity in Equation 8.9 to account
for the maximum spatial frequency of the display, ξ (c/deg):

H ′(v, e) =
{

ξ where ξ ≤ H(v, e)

H(v, e) where ξ > H(v, e)

Note that for antialiased or supersampled images the Nyquist limit is a function not
of pixel density but sample density. In other words, detail smaller than a pixel may
still contribute to the final image.

A simple way to calculate the value of ξ for a display is to calculate the highest
spatial frequency of a single pixel. For example, if we know that the display has a
field of view of 70 x 40 degrees, and the screen resolution is 1,280 x 1,024 pixels,
we know that each pixel subtends roughly 0.0547 x 0.0391 degrees. The smallest
single complete contrast cycle occupies 2 pixels (a light pixel and then a dark pixel).
Therefore, we must halve these angular values to get numbers in units of cycles per
degree (i.e., the horizontal and vertical spatial frequencies of a single pixel are 0.0273
x 0.0195 c/deg). We could therefore choose the highest of these two frequencies as the
display’s highest spatial frequency (i.e., ξ = 0.0273 c/deg).

8.6.5 Visualizing the Effect of the Perceptual Model

With the previously cited models of visual perception taken from the vision literature,
we now have mathematical models to assess how much detail a user might perceive
under a number of circumstances, but what do these models mean in practice? How
much detail do these models predict that we can safely remove from a scene?

Reddy produced a visualization of how much detail we can actually perceive un-
der various circumstances by removing detail in a bitmapped image that our model
predicts to be imperceptible [Reddy 01]. The visualization calculates the highest per-
ceptible spatial frequency at each pixel according to its velocity and distance from the
fovea. It then blurs that pixel using a Gaussian filter with a kernel size equivalent to
the threshold frequency. The resulting image illustrates the degree of detail actually
perceptible to the human eye. The visualization code is included on the companion
Web site and is publicly available at www.martinreddy.net/percept/.

Figure 8.21 applies this visualization to an image of a koala bear [Reddy 01].
Reddy assumed that this image occupies just over half the viewer’s visual field, at
150 x 100 degrees. Figure 8.21(a) shows the original image for reference. In Figure
8.21(b), the periphery of the image is degraded according to Equation 8.8, with the
user’s gaze centered on the koala’s nose. Figure 8.21(c) adds the effect of a 50-deg/s
velocity component.

Team LRN

(a)

(b)

(c)

Figure 8.21 The effect of combining eccentricity and velocity perceptual optimizations on an
image. Image (a) is the original image, (b) includes eccentricity-based blurring, and
(c) includes both eccentricity- and velocity-based blurring (50 deg/s) [Reddy 01].
Copyright ©2001 IEEE.

Team LRN

272 Chapter 8 Perceptual Issues

This example shows a noticeable peripheral degradation effect on the detail of the
scene, removing subtle nuances of the tree bark and the finer detail of the leaves in the
far edges of the image. However, only when we also incorporate the effect of velocity
do we see truly drastic reductions in detail that could be usefully taken advantage of
in a 3D graphics system. For example, in Figure 8.21(c) we could drastically degrade,
or possibly completely remove, many of the leaves and branches around the edges of
the scene.

8.7 Example Implementations

This final section of the chapter examines some recent LOD systems incorporating
perceptual factors, based on models of visual perception such as those presented in
this chapter.

8.7.1 Perceptually Modulated LOD

Reddy was the first to develop a LOD system based directly on a principled model
of visual perception [Reddy 97] [Reddy 98]. The models described in this book de-
rive largely from his work. His implementation, based on a discrete LOD approach,
assessed the spatial frequencies in each LOD using a simple image-based metric on
images rendered offline from a sphere of cameras, similar to the algorithm detailed
in Section 5.4. Reddy used “just noticeable difference” models to extract all perceptu-
ally atomic features, taking their pixel extents and the display field of view to evaluate
the spatial frequency of each of these features. At run-time, these precomputed fre-
quencies were interpolated at each frame to give an estimate of spatial frequency for
a specific object orientation. Using Equation 8.9 to model visual acuity, the system
selected the highest resolution LOD such that the spatial change it would induce is
below the user’s threshold frequency for the specific velocity and eccentricity.

Reddy performed a number of psychophysical studies to evaluate the ability of
the perceptual models to predict imperceptible details. Using two-alternative forced
choice (2AFC) methods, 20 subjects each performed 64 trials testing whether they
could perceive various simple stimuli at different sizes, eccentricities, and velocities.
The results confirmed the model’s ability to predict perceptibility of features. The col-
lected psychophysical data were used to refine the perceptual models and ultimately
led to Equation 8.9.

Reddy also performed task performance studies to compare the benefit of the
perceptual LOD system versus a system without LOD. Users were navigated through
an environment of randomly positioned objects, with their gaze direction offset from
their heading direction. The users had to determine whether they were heading to the
left or right of the gaze direction, a task that gets easier with larger angular differences.
Reddy found that the perceptually based LOD system substantially improved the
subjects’ ability to perform the task, allowing them to resolve gaze/heading angles
three times smaller and decreasing their time to make a choice by a factor of 1.67.

Team LRN

8.7 Example Implementations 273

(a) (b)

Number of objects

5

10

15

20

25

30

35

40
Fr

am
e

ra
te

 (
H

z)

0
200 400 600 800 1000

LOD filtered
Unfiltered

1

2

3

4

A
ve

ra
ge

 o
bj

ec
t

LO
D

Number of objects
200 400 600 800 1000

Size, Ecc & Vel
Ecc & Vel

Figure 8.22 (a) Average frame rate for Reddy’s system under normal unfiltered conditions (the
broken line) and when perceptual LOD optimizations were employed (the solid line).
(b) Comparison of average LOD during a trial with and without size optimizations,
where 1 is the lowest resolution model [Reddy 97].

These improvements result from the increase in frame rate. Using LOD increased
the system frame rate by up to a factor of 5 (see Figure 8.22(a)). Reddy investi-
gated this improvement factor further to examine the extent to which each of the
perceptual components—size, velocity, and eccentricity—contributed to the over-
all improvement in frame rate. He found that using eccentricity or velocity on their
own was unprofitable, whereas combining the effect of both of these provided a far
greater improvement. Nevertheless, the size component was by far the dominant fac-
tor in reducing detail, contributing 90 to 95% of the reduction in the scenario tested
(see Figure 8.22(b)). Reddy conjectured that a gaze-directed view-dependent system
would provide greater opportunity for the perceptual model to improve the frame
rate.

8.7.2 Imperceptible Gaze-Directed Simplification

Luebke et al. developed a view-dependent LOD system augmented with the CSF
perceptual model presented in this chapter [Luebke 01]. They extended their view-
dependent simplification framework [Luebke 97] to evaluate vertex merge operations
according to the worst-case contrast and spatial frequency the merge could induce

Team LRN

274 Chapter 8 Perceptual Issues

Figure 8.23 The Stanford Bunny model, rendered from the same viewpoint with different gaze
points. The original model contains 69,591 polygons; the simplified versions contain
34,321 polygons (right) and 11,726 polygons (left). At a field of view of 46 degrees,
these simplifications were imperceptible [Luebke 00a]. Copyright ©2000 University
of Virginia.

in the final image. Merge operations were only performed when the resulting image
was predicted to be indistinguishable from the original. In addition, their system
incorporated a silhouette test to account for the high contrast at object silhouettes.
As a result, their algorithm preserved silhouettes, providing more detail around the
edges of object. This is a desirable attribute in an LOD system, since the human
visual system deduces much about an object’s shape from its silhouette. Luebke et al.
also presented a budget-based mode in which simplifications were ordered according
to the distance at which they would become perceptible, allowing perceptual best-
effort rendering to a polygon budget. Another interesting aspect of their work was
the optional incorporation of an eye tracker to provide gaze-directed rendering.

The authors performed 2AFC user studies to verify the imperceptibility of the
resulting simplifications. These experiments provided encouraging indicators of the
potential of gaze-directed rendering (see Figure 8.23). They also report that the fine
granularity of view-dependent simplification seems to greatly improve on previous
results by Ohshima and by Reddy [Ohshima 96] [Reddy 97]. However, they also
report that the overall rendering speedup they experienced was less than they believe
to be possible. In practice, the LODs created by their system were overly conservative,
and could often be reduced by a factor of 2 to 3 while remaining imperceptible. They
cite the need for improved perceptual models and more accurate methods to evaluate
spatial frequency and contrast in view-dependent LOD.

In other work, Luebke applied the same perceptually driven framework to a
completely different rendering paradigm: the point-based rendering system QSplat

Team LRN

8.7 Example Implementations 275

(a) (b)

Figure 8.24 Image (a) shows Qsplat’s high-quality rendering, and image (b) shows a perceptually
driven Qsplat. In the latter case, the user’s gaze is resting on Lucy’s torch. Splats drawn
in blue have been simplified [Luebke 00b]. Copyright ©2000 University of Virginia.
Stanford 3-D Scanning Repository.

[Rusinkiewicz 00]. Their preliminary results were encouraging. Although QSplat’s
standard high-quality mode refines the model until each sample is no larger than a
pixel, Luebke reports that they were often able to use much larger sample sizes (several
pixels across) imperceptibly because of locally low contrast (see Figure 8.24).

8.7.3 Perceptually Optimized 3D Graphics

Reddy revisited his earlier perceptual LOD system in more recent work, describing a
view-dependent level-of-detail system for rendering dense terrain meshes using these
perceptual models [Reddy 01]. This system refines the terrain at each frame, starting
with a single polygon that extends across the entire area. If this polygon was deter-
mined to be perceptible to the user, the polygon was broken up into four quadrants
and the visibility of each of these smaller polygons was recursively checked. The vis-
ibility of a polygon was determined by projecting each of its four vertices into screen
coordinates and then transforming these into an extent in units of degrees. Using the
eccentricity (degrees), velocity (deg/s), and angular extent of a pixel (degrees), Reddy
calculated in pixels the maximum stimulus size that should be perceptible to the user.

Team LRN

276 Chapter 8 Perceptual Issues

Figure 8.25 Reddy’s view-dependent perceptual terrain rendering system with eccentricity opti-
mizations at velocities of 0, 30, 60, and 90 deg/s, respectively [Reddy 01]. Copyright
©2001 IEEE.

If the computed extent of the polygon is smaller than this size, the polygon is assumed
to be imperceptible and no further refinement occurs.

To evaluate this system, Reddy used a large terrain model of Yosemite Valley,
California (1.1 million triangles). For a number of fly throughs of this model, Reddy
recorded the average number of triangles per frame and the average time to render
each frame. The average angular velocity, measured with respect to the center of the
screen, was 50 deg/s. Figure 8.25 shows wireframe renderings of the terrain model

Team LRN

8.8 Conclusions 277

Table 8.1 Comparative performance of the various perceptual optimizations in Reddy’s per-
ceptually based view-dependent LOD system.

Optimizations Employed Average # Average
Triangles Frame

Size Eccentricity Velocity View Cull Per Frame Time (ms)

No No No No 1,116,720 7,127

No No No Yes 449,828 2,517

Yes No No Yes 59,980 920

Yes Yes No Yes 40,684 650

Yes No Yes Yes 60,850 953

Yes Yes Yes Yes 8,964 161

using the perceptual model to reduce the number of polygons imperceptibly. In
the first of these, we see the effect of applying the eccentricity component of our
perceptual model, and in the subsequent screen shots we see the added effect of
applying global velocities of 30, 60, and 90 deg/s.

Table 8.1 summarizes the results from experiments using different components of
the perceptual model. Employing the perceptually based optimizations significantly
improved the frame rate of the system. Rendering the full terrain mesh with no op-
timizations averaged 7,127 ms, whereas applying the viewport culling optimization
reduced this by roughly 60%. In terms of our perceptual model, the screen-space size
component generated a large increase in performance, improving frame time by a
factor of 2.7 over just viewport culling. Adding the eccentricity component to the
size-based optimization produced a further 1.4 times improvement, whereas com-
bining velocity and size was not significantly different from using the size criterion
alone. However, it is significant to note that combining both velocity and eccentric-
ity with the size component achieves a drastic improvement in frame time: 15 times
that of simple viewport culling, and 5.7 times that of the traditional combination of
viewport culling and size-based LOD.

8.8 Conclusions

This chapter has surveyed the workings of the human visual system and has described
the contrast sensitivity function, or CSF, a simple model of low-level vision. This model
predicts the ability to resolve spatial detail according to stimulus spatial frequency
and contrast. We have focused on questions appropriate to an LOD system. How
much detail can the user perceive? How much detail do we need to display to the
user? What other environmental and individual factors can affect perception, and
what perceptual factors are not accounted for by this model? We have summarized

Team LRN

278 Chapter 8 Perceptual Issues

research on perceptually motivated LOD, including criteria such as eccentricity (a
measure of the degree to which an object exists in the user’s peripheral field), and
velocity (a measure of the apparent speed of an object across the user’s retina). We
have also mentioned less-studied criteria such as depth-of-field–based LOD. Using
this information, LOD researchers have attempted to measure 3D models in terms of
their spatial frequency content, and have applied models of the CSF to decide when
certain features should be imperceptible to the user. The most difficult task appears to
be measuring or estimating spatial frequencies and contrast within a model. Further
research is clearly needed in this area. In the following chapter we will examine this
issue from a different angle, considering how to assess the visual fidelity of a computer
graphics image.

Team LRN

1 2 3 4 5 6 7 8 9 10
Measuring Visual

Fidelity

Visual fidelity is a fundamental concern in LOD. In simplification, the goal is
often to reduce model size while preserving visual fidelity. In run-time LOD,

the goal is typically to maintain interactivity while minimizing reductions in visual
fidelity. How can visual fidelity be measured? This chapter focuses on this question.
In fact, measuring visual fidelity is of importance in many fields related to LOD,
including computer graphics, image processing, image compression, and perceptual
psychology.

We begin with a review of experimental measures of visual fidelity. The experi-
mental measures set the context for our survey of automatic measures of visual fi-
delity, which attempt to predict experimental results. Our survey includes measures
for static and dynamic imagery, and the 3D models themselves. Measures of dynamic
image fidelity are already used in run-time LOD systems, and 3D measures are used
for model simplification and in the new field of shape indexing. We conclude with
a review of the effectiveness of automatic fidelity measures, and find that even very
simple measures work surprisingly well.

279

Team LRN

280 Chapter 9 Measuring Visual Fidelity

9.1 Why Measure Fidelity?

When is a simplification algorithm successful? For many applications, successful sim-
plifications reduce complexity while preserving appearance. A similar definition of
success might be adopted for a run-time LOD algorithm. In both cases, the algo-
rithms must define some sort of automatic measure of visual fidelity, which they
attempt to maximize as they reduce model size or preserve interactivity. We will call
such a measure a LooksLike() function.

Most simplification and run-time LOD algorithms use very simple LooksLike()
functions, many of which are distance measures and were reviewed in Chapter 3.
These error metrics were never intended to be accurate models of visual fidelity,
but work fairly well in practice. Still, better LooksLike() functions could be defined,
particularly for textured models and preservation of silhouettes and shadows. This
chapter reviews many of these proposed improved LooksLike() functions.

9.2 Experimental Measures

This section provides a review of several experimental measures of visual fidelity that
are used to probe the perceptual behavior we wish to model. Some LOD researchers
have begun using these experimental measures to answer basic questions about LOD
technology. We will consider this research in Section 9.6.

Each of the measures we review here probes different sorts of perceptual behavior.
In Chapter 8, we reviewed low-level perceptual behavior, involving early processes
of the human visual system. High-level perception enables identification of what an
object is. For a more complete review of experimental methods and measures in
perception, see Elmes et al. [Elmes 92]. Throughout this section, we show figures
relating experimental measures to visual fidelity. We will discuss the experimental
details surrounding these figures in a later section of this chapter.

9.2.1 Search Performance

How long does it take a person to find a certain object in an image? Certainly this is
fairly directly related to how well that person can see—for example, if the person has
forgotten her glasses, it will probably take her longer to find her keys. Measures of
search performance rely on this relationship.

In search tasks [Scott 93], a viewer must indicate whether or not a target object is
present (and often where it is as well). Like most task measures, search performance
has two components: time and accuracy. Time measures the time elapsed between
the moment the search began, and the moment it ended. Accuracy measures whether
a present target was correctly located, or an absent target correctly determined to

Team LRN

9.2 Experimental Measures 281

Size of high detail region (%)

5

6

7
Se

ar
ch

 t
im

e
(s

ec
)

4
0 20 40 60 80 100

Fine
Medium
Coarse

Size of high detail region (%)

100

A
cc

ur
ac

y
(%

)

0

20

40

60

80

0 20 40 60 80 100

Fine
Medium
Coarse

Figure 9.1 Search performance used to measure human response to visual fidelity, as described
in [Watson 97d]. (a) shows search time and (b) show search accuracy. A normal,
high-detail display was compared to displays with high-detail regions surrounded by
low-detail peripheries of various sizes and resolutions. Here, targets were absent.

be missing. If a viewer claims a present target is missing, the trial is termed a false
negative. If the viewer claims an absent target is present, it is termed a false positive.

Generally speaking, good fidelity should allow both low search times and high
search accuracy. The faster the search is performed, the lower the resulting accuracy.
Searches for present targets are almost always faster than searches for absent targets,
since determination of absence requires an exhaustive search of the entire display or
scene. We show a typical set of time and accuracy results in Figure 9.1. Here, most of
the effect of visual fidelity is captured in the time measure.

While search performance responds strongly to visual fidelity—and it certainly is
part of “looking” at something—for some purposes it may be inappropriate. It is not
a direct measure of the perceptibility of a fidelity manipulation; rather it quantifies
fidelity’s impact on a basic, demanding visual task. In many applications such as
games, the perceptibility of a fidelity change can be more important than its impact
on task or game play.

9.2.2 Naming Times

The naming time measure moves closer from task to perception by asking people to
name verbally what they see, and then measuring the amount of time it takes them
to do it. There is no “task” per se other than identification.

Team LRN

282 Chapter 9 Measuring Visual Fidelity

Percentage simplification

1100

1000

900

800

1100

1000

900

800

N
am

in
g

tim
e

(m
s)

None 50 80 None 50 80

Qslim Vclust

Animals

Artifacts

Figure 9.2 Naming times used to measure human response to visual fidelity, as described in
Watson et al. [Watson 01]. Naming times increase as fidelity worsens. The two simpli-
fication algorithms compared here are QSlim by Garland and Heckbert, and Vclust,
or vertex clustering by Rossignac and Borrel.

The resulting measure is the time elapsed from the moment an image or object is
displayed, until the moment it is correctly verbalized. Because accuracy in naming
can be difficult to quantify, it is removed as a factor through the exclusive use of
objects that are easily named (e.g., no strange machine widgets). Any experimental
trials with incorrectly named objects are discarded. This is usually less than 5% of
the total number of trials. Since people typically name objects in less than a second,
experimenters must use a voice-terminated timer.

Research shows as image fidelity declines, objects in that image become harder
to name, and naming time increases, as shown in Figure 9.2. Naturally there are
other influences on naming time, and this figure shows one of them: people name
animals more slowly than manufactured artifacts. Current theory holds that this is
due to the structural similarity of animals as a class, which requires additional work
to disambiguate them [Humphreys 88].

In addition to object type, many other factors can influence naming. Two of par-
ticular interest to LOD and graphics researchers are structural similarity and view-
point [Jolicoeur 85] [Palmer 81] [Bartram 76] [Humphreys 95]. Others of less inter-
est include familiarity with the named object, the frequency of the name’s appearance
in print, and the number of names commonly in use for the object [Humphreys 88]
[Vitkovitch 95].

Naming is a direct probe of perception’s outcome. In some sense, it measures
the time required to complete the process of perception, from the moment an ob-
ject is perceived until it is identified (and vocalized). It also has the advantage of

Team LRN

9.2 Experimental Measures 283

Percentage simplification

5

4

3

Ra
te

d
si

m
ila

rit
y

to
 s

ta
nd

ar
d

m
od

el

50 80

Animals

Vclust
Qslim

Artifacts

Figure 9.3 Subjective ratings used to measure human response to visual fidelity, as described in
Watson et al. [Watson 01]. Ratings decrease as fidelity worsens.

being subconscious, with most naming times well under a second. Nevertheless, for
applications focusing on control of the visible effect of a fidelity manipulation, the
inclusion of later stages of visual processing, such as structural comparison and nam-
ing, may not be appropriate.

9.2.3 Subjective Ratings

Another way of asking people to judge the visual fidelity of an image is to simply ask
them to give a number to the “amount” of fidelity they see. Experience in psychology
has shown that people responding to surveys make only limited use of available
resolution in ratings (using, for example, only 7 of 10 possible values). Experimenters
therefore typically allow at most seven different rating responses. This reduces overall
response variability and limits variability due to differences among the rating schemes
used by viewers. Figure 9.3 shows the results of a study relating viewer ratings to
fidelity manipulations.

Team LRN

284 Chapter 9 Measuring Visual Fidelity

Presentation format is particularly important when using subjective ratings as an
experimental measure. If there is an original or standard image, should it be shown
to the viewer along with the low-fidelity version? If so, should the standard and
the low-fidelity image be present in the same frame, or separated in time by some
delay? With a standard, viewers can perform a purely visual comparison, emphasizing
visual differences. Without one, viewers must rely on their own mental standard,
and the comparison becomes more cognitive. Presentation of standards with delay
likely strikes a compromise between these two extremes, with increasing delay causing
increased reliance on the mental standard as the memory of the standard image
decays. Interestingly, in typical LOD applications users will never see high- and low-
fidelity versions of displayed imagery side by side; any comparisons must rely on
memory.

Ratings have the advantage of being extremely easy for experimenters to collect
and for viewers to produce. They are always suspect, however, because they are a con-
scious sampling of a subconscious perceptual process. (It usually takes viewers at least
a few seconds to produce a rating.) Certain viewers may attach special importance to
color, while others may emphasize the fidelity of only a particular part of an image.
Even worse, these viewer criteria may change over time. This can introduce a great
deal of noise into the ratings. Extracting real meaning from the results typically re-
quires very careful instructions to viewers, and the use of a large number of viewers
to wash out individual differences in rating strategies.

9.2.4 Threshold Testing

Threshold testing is the experimental search for the limits of perception, that is,
thresholds beyond which a certain stimulus cannot be seen. In the case of visual
fidelity, this “stimulus” would be a visible difference in an approximated image.
Experimenters repeatedly ask viewers to indicate the presence or absence of such a
difference.

In the widely used method of limits, the experimental search becomes quite
literal. Whenever the viewer sees a difference, the experimenter reduces the size of
the actual difference in the next trial. Whenever the viewer sees no difference, the size
of the difference is raised. The search halts when the threshold has been alternatively
raised and lowered several times, and the threshold difference is set using a weighted
average of the last few difference values. Figure 9.4 diagrams an interleaved staircase
approach to the method.

Threshold testing need not only be applied to find the difference between visible
and invisible. Through repetitive application, it can be used to find just noticeable
differences (JNDs), the amount of increase in the difference necessary to make the
increase itself visible.

Threshold testing is certainly an excellent technique for determining when some-
thing can or cannot be seen. However, when image change is visible, even JNDs don’t
tell the entire story—for example, visual differences in a display affect the viewer’s

Team LRN

9.2 Experimental Measures 285

Time

Pe
rc

ep
tu

al
va

ria
bl

e
Threshold

Figure 9.4 An interleaved staircase method for finding thresholds. The two differences are repet-
itively reduced and raised until they cross one another several times.

higher-level perceptual processes, including the ability to identify an object and find
others like it.

9.2.5 Comparing Experimental Measures

The differences among these measures parallel the differences among perceptual psy-
chologists. Psychophysicists are “bottom up,” meaning that they focus on the low-
level details of visual processing, starting at the cornea and moving through the retina
to the early stages of the visual cortex. They prefer threshold tests and very abstract,
basic stimuli (e.g., the gratings reviewed in the previous chapter) that have little re-
semblance to the real world. They may periodically resort to ratings. The critique of
pyschophysical research and its measures typically centers on external validity, or the
extent to which the research has meaning outside of the lab.

Cognitive perceptual psychologists are “top down,” and focus on the high-level
cognitive abstractions of visual perception. Search performance, naming time, and
subjective ratings are commonly used by cognitive psychologists, and their stimuli
are usually recognizable real-world objects or scenes. Critiques of cognitive percep-
tual research often center on internal validity, or the extent to which experimental
inferences are justified, given the many factors that can influence high-level cognitive
task performance.

In fact, research shows that these perceptual fields ignore one another at their
peril. Neuroscience confirms definitively that there are “feed-forward” links in the

Team LRN

286 Chapter 9 Measuring Visual Fidelity

brain from the centers of higher cognition to the centers of lower-level visual process-
ing [Haenny 88]. Experiments also show that higher-level cognitive processes such as
attention can have large effects on perceptibility [Suzuki 01].

The measures most appropriate for direct use or for modeling in automatic mea-
sures will depend on application context. If the focus is the perceptibility of fidelity
manipulations in LOD, thresholds and ratings are likely most appropriate. Certainly
if the change in an image cannot be perceived, it will not affect the user at all. But
what if the limitations of a system mean that fidelity changes will always be visible? In
this case, or if the focus is game play or task performance, a more cognitive approach
using search and naming times may be preferred.

9.3 Automatic Measures for Static Imagery

Performing experiments can be a difficult and arduous process, requiring careful ex-
perimental design, extensive recruitment and screening of participants, performance
of the experiment itself over several days, and finally extensive data analysis. While
such experimentation is feasible for those fairly infrequent occasions where different
simplification or run-time LOD techniques are being compared, accurate automatic
predictors of the experimental results would certainly save time. Of course, any ex-
perimentation during the execution of an LOD algorithm is out of the question—
algorithms require a LooksLike() function.

In the fields of image processing, compression, and half-toning, researchers have
been confronting issues of visual fidelity for decades. This section is indebted to the
review of automatic measures of visual fidelity put forward by Ahumada [Ahumada
93], and to the distillation of these methods described by Andrew Watson [Watson
00a].

What defines the ideal automatic measure of visual fidelity? The usual algorithmic
criteria apply. Certainly such a measure must be accurate, in that it reliably predicts
the results of experimental measures of fidelity. At the same time, the measure must
be fast, and ideally so easy to compute that it may be used in real time. Finally, the
measure must be simple, that is, easily implemented by a designer or developer in his
or her system.

9.3.1 Digital Measures

Digital measures of visual fidelity in imagery rely solely on processing of the images
in their digital form. The most widespread such measure is root mean squared error
(RMS error) [Girod 93], briefly touched on in Section 5.4. In monochrome images,
each pixel is represented by a single number indicating luminance. When comparing
an original image O and a simplified image S, RMS error is

Erms = (�(Oxy − Sxy)
2)1/2

Team LRN

9.3 Automatic Measures for Static Imagery 287

where Oxy and Sxy are pixels from the original and simplified images. This is some-
times generalized to a Minkowski sum:

Erms = (�(Oxy − Sxy)
n)1/n

When n = 2, the sum measures Euclidean distance; when it approaches infinity, it
becomes a maximum function. As n grows larger, the Minkowski sum gradually
increases the effect and importance of local differences in the image.

Digital measures such as RMS error are certainly fast and simple. However, while
the error they report increases roughly in proportion to the reduction in fidelity, they
differ from the human visual system in their response to visual differences in many
respects. For example, if one draws a line across the middle of an image to reduce
its fidelity, RMS error will respond only weakly to a very obvious visual artifact. On
the other hand, if one decreases luminance by a few steps at every pixel, RMS error
responds very strongly to a manipulation that is hardly perceptible.

9.3.2 Single-Channel Measures

In the effort to make automatic measure response more like human visual response, a
number of researchers have developed measures that model a few early components
of the visual system. In this respect they pay particular attention to the results and
methods of psychophysical researchers of perception (see Chapter 8). Most of these
measures include one or more of the steps in Figure 9.5, or transformations much
like them.

The first step, conversion to contrast, converts the original and simplified images’
arrays of luminance values into descriptions of local luminance change. In its simplest
form, if L is the average luminance value of the pixels in an image, the image pixel Ixy
is converted into contrast Cxy with the formula

Cxy = (Ixy − L)/L.

The spatial contrast-sensitivity function (CSF) filter converts the resulting contrast
images into spatial frequencies using a Fourier transform, applies a filter based on
the contrast sensitivity function (see Section 8.4.2), and converts the result back into
the spatial domain with an inverse Fourier transform. The outcome is two contrast
images modulated for the response of the visual system to contrast of varying spatial
frequencies. In the final differencing stage, a Minkowski sum is used to summarize
the difference between the images. Typical values for n in the sum’s exponents are 2
and 4.

By adding the conversion to contrast and CSF filter stages, single-channel mea-
sures of fidelity incorporate some early behavior of the human visual system and,
hopefully, improve accuracy. The conversion to contrast is simple enough, but CSF

Team LRN

288 Chapter 9 Measuring Visual Fidelity

Input images

Visual
difference

Conversion to
contrast

Spatial CSF
filter

Differencing

Figure 9.5 The typical transformations employed by single-channel measures of visual fidelity.

filtering requires significant computation. As a result, single-channel automatic mea-
sures are impossible to use in interactive settings, and difficult to incorporate into
simplification algorithms, which must frequently evaluate the effects of their fidelity
manipulations.

9.3.3 Multi-Channel Measures

As discussed in Section 8.3, pyschophysical research suggests that the brain splits the
retinal image into several channels, each sensitive to different ranges of spatial fre-
quency and orientation. In a further effort to improve the accuracy of their automatic
measures, researchers in image compression and processing have incorporated this
model into their automatic visual-fidelity measures.

The measures accommodate the multichannel model with a channel splitting
stage, which divides each of the two output images from the single-channel measure’s
spatial CSF filter into a 2D array of images (Figure 9.6). To produce each pair of
array images, the input pair are convolved with a band-pass filter. Each array filter
is sensitive to a different range of spatial frequency and orientation.

Many automatic measures then add one additional contrast masking stage (see
Section 8.4), which models the inhibitory effect on response that stimulus in one

Team LRN

9.3 Automatic Measures for Static Imagery 289

CSF filtered
images

Visual
difference

Channel
splitting

Contrast
masking

Differencing

... ...

... ...

Figure 9.6 The typical transformations employed by multichannel measures of visual fidelity.

spatial channel has on neighboring channels. This has the effect of raising the detec-
tion thresholds (and reducing visible differences) in each spatial channel. In the final
differencing stage, each input pixel pair in a multichannel measure is represented by
one pair of coefficients for each frequency and orientation channel. The difference be-
tween corresponding coefficients is found and summed in this stage, most commonly
with the use of a Minkowski sum.

Multichannel measures improve modeling of the human visual system at great
computational expense. Most have at least ten channels, and some approach 100
channels—increasing computation by one or two orders of magnitude. As faithful-
ness to existing models of visual perception grows, the challenge of implementing
these automatic measures grows as well.

9.3.4 Evaluating Measure Accuracy

Does all of this accuracy in modeling bring accuracy in prediction of experimental
measures? Available evidence suggests that it does, but that the point of diminishing
returns, at least in applied settings such as LOD, may already have been reached with
single channel models.

Team LRN

290 Chapter 9 Measuring Visual Fidelity

Rohaly et al. [Rohaly 95] [Rohaly 97] measured the visibility of military targets in
natural backgrounds using subjective ratings. They compared these results to three
automatic visual-fidelity measures: one digital measure, one single-channel measure,
and one multichannel measure (without contrast masking). As input images, they
used the background without the target and the background with the target. The
multichannel measure was the best predictor, followed by the digital and then the
single-channel models. None of the measures reduced prediction error to insignifi-
cant levels. However, when corrected by a global contrast-masking factor, the digital
and single-channel measures reduced prediction error to insignificant levels, with the
digital measure (in RMS form, n = 2) performing best. In the case of the digital mea-
sure, the contrast factor reduced to dividing the RMS error by the standard deviation
of the background image.

Struck by the powerful combination of accuracy, speed, and simplicity promised
by these results, Ahamada and Beard [Ahumada 98] followed up this work by adding
locality in masking to the digital measure. Without this addition, the global contrast-
masking correction might not work well when comparing images that differ greatly
in spatial frequency content at each image location. The resulting measure is slower
than RMS error but is still completely digital, never requiring a Fourier transform to
move into the frequency domain. To our knowledge this measure has not yet been
compared to any experimental measures.

Recently the image compression and processing communities gathered to per-
form a comprehensive evaluation of their automatic measures, dubbed “Modelfest”
[A. Watson 00a]. They formed a standard testbed of very basic stimuli (consist-
ing primarily of gratings and similar psychophysical stimuli), and then used ex-
perimental threshold measures to find the contrast at which each stimuli became
visible against a gray background. They compared these results to five automatic
measures. Three were single channel measures with differences calculated using
Minkowski sums. In one of these measures, n was selected by using a best fit to
the data, while in the other two single channel measures, n was set to 2 and to
infinity. The fourth automatic measure was a fairly standard multichannel mea-
sure without masking, while the fifth performed the channel split with a sim-
pler, discrete cosine transform (DCT), which is widely used in image and video
compression.

The outcome of Modelfest tells a similar story to the Rohaly et al. results. The
single-channel model with the Minkowski exponent of infinity (a maximum contrast
operator) was a poor predictor. While none of the other four automatic measures re-
duced prediction error to insignificant levels, they were all still useful, with remaining
error only slightly higher than that in the Rohaly et al. study. The standard multi-
channel measure was only slightly better than the best-fit, single-channel and DCT
measures, with the single channel n = 2 measure the least reliable of the useful auto-
matic measures. Once again, this time with basic stimuli and threshold experimental
measures, lightweight single-channel automatic measures compared well in accuracy
with computationally complex multichannel measures.

Team LRN

9.4 Automatic Measures for Run-Time LOD 291

9.3.5 Applications in Graphics

In computer graphics, a number of researchers have applied automatic measures of
visual fidelity to guide adaptive, photorealistic image-generation algorithms such as
path tracers [Bolin 98] [Ramasubramanian 99] [Volevich 00]. A good review of this
work can be found in [McNamara 01]. In a sense, the approach here is the reverse of
image compression: rather than removing the pixel with least importance, the image-
generation algorithms would like to add the pixel of most importance. Since the
standard or ideal image is not available (it is being rendered), rendering is guided by
evaluating the difference between two bounding error images, with rendering prior-
ity directed toward those regions where current error is most perceptible. Rendering
halts when improvements fall below a certain threshold.

All of these researchers used variations of the multichannel automatic measures
described by Daly [Daly 93] and Lubin [Lubin 93]. Bolin and Meyer [Bolin 98] in
particular, enhanced Lubin’s measure to add sensitivity to color, and improved its
speed with the use of a wavelet transform at the channel-splitting stage. Although
these image-generation researchers all achieved good results, none of them described
any comparisons of multichannel to simpler digital or single-channel measures for
guiding rendering (although Bolin and Meyer have built a renderer that uses a simpler
measure [Bolin 95]). If the results of the evaluations of measure accuracy described
above are any indication, use of simpler measures might improve rendering speed at
little cost to image quality.

9.4 Automatic Measures for Run-Time LOD

Run-time LOD takes place in highly interactive, real-time applications. What sorts of
automatic measures might successfully be employed in environments like these? Un-
fortunately, while it certainly provides inspiration and guidance, the image processing
and compression community is only beginning to address temporal issues.

A. Watson [Watson 98a] and Daly [Daly 98] have discussed video compression
quality. Their efforts to date have focused on Kelly’s work in spatiotemporal con-
trast, discussed in Section 8.6. Myszkowski et al. [Myszkowski 99] [Myszkowski 01]
have used Daly’s modification of Kelly’s relation of contrast sensitivity to velocity to
guide rendering of globally illuminated animation sequences. Objects that are rel-
atively still are rendered in high quality, with objects in motion rendered only well
enough to achieve an accurately blurry appearance. Yee et al. [Yee 01] add a unique
attentional component to the fidelity predictor in their animation renderer, reducing
rendering time by an additional factor of 2 or 3. This component makes a view-
independent prediction of visual importance based on a bottom-up model. (The
authors acknowledge that they ignore significant top-down influences on attention.)
There has been very little evaluation of these animation fidelity predictors, though

Team LRN

292 Chapter 9 Measuring Visual Fidelity

one study [VQEG 01] found that they did not perform much better than weighted
MSE at predicting observer ratings.

9.4.1 Fidelity Measurement for Run-Time LOD

Yet the challenges faced by LOD researchers are different and perhaps greater than
those faced by researchers in video compression and animation. While accuracy re-
quirements are just as stringent, images must be rendered and their fidelity evaluated
in a fraction of a second. Unlike animation, improving visual fidelity reduces tem-
poral detail, which directly impacts the user or viewer (see Chapter 10). Because the
system is interactive, it is difficult for systems to extract and anticipate patterns of
change such as velocity vectors. There is still a great deal of research required if effec-
tive, real-time fidelity management is to become a reality.

While the rendering bottleneck in photorealistic image generators is lighting,
polygons are the bottleneck in most interactive applications using LOD. Error in-
troduced by eliminating polygons is precomputed in a view-independent manner,
typically by building a detail hierarchy and measuring or estimating the maximum
distance between the approximate and original surfaces (see Chapter 3). At run-time,
these view-independent errors are projected into the image plane, with perspective-
making errors in the foreground particularly important. These projected errors are
usually themselves summarized with their maximum.

This standard LOD fidelity measure illustrates the paramount importance of real-
time performance in interactive applications. Most of the error calculation in this
measure is precomputed. The only calculations made at run-time are a very coarse,
distance-based approximation of a visual difference image (Figure 9.7), summarized
with the maximum difference. This prerendered error field is much faster to calculate
than even RMS error, since it is sparsely sampled and does not calculate any lighting
or color. The tradeoff is poor accuracy, primarily in the failure to sample color and
contrast at all, but also in the extremely local emphasis of maximums used both in
the detail hierarchy and error field.

9.4.2 Contrast Sensitivity in Run-Time LOD

Luebke and Hallen [Luebke 01] have proposed an improvement over the standard fi-
delity measure that maintains real-time performance, but also samples achromatic
contrast. Contrast is precomputed with the assumptions that the environment is
static (except for the viewer), and all lighting is Lambertian. Like distance, error in
contrast is accumulated in the detail hierarchy by taking the maximum at each hier-
archy node. At run-time, maximum distance error is projected into the image plane
with matching maximum contrast error. A simple calculation converts the distance
into a spatial frequency. The new spatial frequency/contrast pair is modulated with an

Team LRN

9.4 Automatic Measures for Run-Time LOD 293

Figure 9.7 A sparsely sampled error field used in run-time LOD, with circles representing uncer-
tainty about vertex location. Most circles are omitted here for clarity of illustration.
The underlying bunny shows the eventually rendered approximation.

eccentricity-adjusted, contrast sensitivity function to determine local visibility. The
error field is converted into a visibility field.

In essence, what Luebke and Hallen have built is an approximate single-channel
fidelity measure, enhanced for interactive display with eccentricity-based compo-
nents. This is certainly a great improvement over the standard LOD fidelity measure.
But even putting aside the limitations in color and lighting, there is likely still room
for improvement.

First, the measure emphasizes local rather than global differences by using max-
imum contrast in the detail hierarchy and visibility field. This works well when
the maximum contrast is never visible. However, when the demand for interactiv-
ity forces the use of visible LOD fidelity approximations, measure accuracy likely
declines—witness the very poor performance of the maximizing single-channel oper-
ator in the Modelfest study. It may be possible to improve suprathreshold accuracy
by using lower-exponent Minkowski operators both in the hierarchy and in the im-
age. In addition, contrast calculation may suffer from the failure of the measure to
calculate contrast relative to mean luminance in the current view. It should be a

Team LRN

294 Chapter 9 Measuring Visual Fidelity

simple matter to calculate this mean luminance, and it may even be possible to make
contrast calculation more local with a coarse tiling of the visibility field.

Both the standard LOD fidelity measure and Luebke’s measure, with their press-
ing real-time constraints, ignore the effects of occlusion, contrast with the back-
ground, and color and texture maps. It may be possible to capture at least the low-
frequency components of these effects if a complete but extremely low-detail, coarse
resolution version of the current image could be prerendered. Then, much like adap-
tive image generation, a similarly coarse error field might be combined with the
prerendered image to generate two bounding images, and these could be compared
using a very simple automatic measure. The resulting visibility information might
then be added somehow into the more finely sampled error or visibility fields.

9.5 Automatic Measures for Simplification

Unlike run-time LOD, simplification happens in three dimensions, without prior
knowledge of the way the simplified model will be viewed. At the same time, the
goal is often to preserve the appearance of the model as much as possible. How can
visual fidelity be measured in settings like these? This is a particularly interesting
challenge that is also beginning to interest researchers in creating and indexing 3D
model databases [Osada 01] [Hilaga 01] [Princeton 01].

We have already reviewed the primarily distance-based measures most commonly
used to guide 3D simplification in Section 3.3. Metro [Cignoni 98b] is a tool that
implements many of these metrics, but is designed strictly for post-hoc compar-
isons of simplified models and more indirectly, simplification algorithms. Somewhat
surprisingly, given their simplicity, these distance-based measures have proven fairly
effective. However, as Li et al. [Li 01] describe, the measures often overlook high-level
semantic boundaries on models (e.g., the front of an animal is perceptually more
meaningful than the back). This concern led them to develop their semiautomatic
simplification tool.

If the viewpoint is not known, one approach to measuring visual fidelity is to
sample image fidelity at many viewpoints. We have already seen this approach, used
by both Reddy [Reddy 97] and Lindstrom and Turk [Lindstrom 00b]. Reddy precom-
puted these samples for run-time LOD, while Lindstrom and Turk performed them
during simplification in a very intensive computational process. Providing more ev-
idence that a point of diminishing returns in fidelity measure accuracy has been
reached, Lindstrom and Turk found a simple RMS error measure to be just as ef-
fective as the much more complex multichannel measure by Bolin and Meyer [Bolin
98]. Naturally, this view sampling approach breaks down quickly if the model be-
ing simplified is not an object but a complex environment, such as the power plant
pictured in Figure 1.1(a).

In the long run, it may prove more effective to perform these types of 3D fidelity
comparisons in a 3D cognitive space, rather than an approximated 2D retinal space.

Team LRN

9.6 Evaluation of LOD Techniques and Measures 295

Cognitive researchers of high-level perception have long proposed a 3D structural
comparison phase in object recognition [Biederman 87]. The basic idea is that after
a viewed 3D structure has been extracted from the retinal image, it is compared to a
3D memory to identify the object itself. Clearly, much interesting research remains
to be done on this topic.

9.6 Evaluation of LOD Techniques and Measures

Using comparisons to experimental measures, many researchers have evaluated LOD
techniques or automatic measures for LOD. These results suggest possible avenues
for future LOD research, and provide indications about how the techniques and
measures might best be employed. Examples of this work include Rushmeier et al.
[Rushmeier 00], who used subjective ratings to confirm that simplifications in model
geometry were not perceptible when hidden with textures with appropriate spatial-
frequency content, and Reddy, who used threshold testing on a direction-sensitivity
task to confirm that his run-time LOD system was effective (see Section 8.7). In this
section, we focus on two research efforts by Watson et al.

9.6.1 Search with Low Fidelity Peripheries

In a series of studies, Watson et al. [Watson 97a] [Watson 97c] [Watson 97d] used
search times to examine the feasibility and methods of perceptible fidelity reductions
in the periphery of head-tracked displays. They approximated the effect of geomet-
ric LOD in the periphery using texture magnification (Figure 9.8), stretching low
resolution imagery across a higher resolution peripheral display. They found that
meaningful reductions in peripheral fidelity were possible without harming search
performance: time or accuracy (Figure 9.1). In an extension of previous psychophysi-
cal research, they also found that for the purposes of peripheral display, head tracking
was equivalent to eye tracking with an error of 15 degrees, in both the horizontal and
the vertical dimensions.

Finally, in an interesting demonstration of the importance of higher-level, task-
related fidelity measures, Watson et al.’s results indicated that the need for supra-
threshold detail actually increased as search targets moved farther into the periphery
(Figure 9.9). Since visual search depends so heavily on the visual periphery, the
elimination of any otherwise visible detail proved harmful to search performance.

9.6.2 Visual Fidelity Measures and Simplification

In another series of studies, B. Watson et al. [Watson 00] [Watson 01] studied the re-
lationship of experimental and automatic measures of visual fidelity in the context of

Team LRN

296 Chapter 9 Measuring Visual Fidelity

Figure 9.8 Display with reduced fidelity in the periphery as used in [Watson 97d].

Detail (horizontal pixels)

Detail vs. Eccentricity

%
 C

or
re

ct

0
10 20 30 40

20

40

60

80

100 30 degs

20 degs

Figure 9.9 Search accuracy as peripheral fidelity and target eccentricity vary. Peripheral fidelity
is measured horizontally in the number of pixels across a wide field-of-view display.
Search accuracy for targets located at 30 degrees of eccentricity is more, not less,
sensitive to peripheral detail.

model simplification. They began by simplifying a suite of 3D models using the QS-
lim implementation of quadric error metrics [Garland 97] and the vertex-clustering
algorithm by Rossignac and Borrel [Rossignac 93] (see Sections 5.1 and 5.3). Figure
9.10 illustrates the fidelity of the resulting LODs. Each model was simplified to two
levels. The effect of these fidelity reductions was evaluated with both naming times

Team LRN

9.6 Evaluation of LOD Techniques and Measures 297

Figure 9.10 The sandal model with half of its polygons removed. Left, as simplified by QSlim;
right, as simplified by the Rossignac algorithm.

(Figure 9.2) and subjective ratings (Figure 9.3). These experimental data are available
as a testbed [Watson 02a].

According to both experimental measures, QSlim was better at preserving visual
fidelity than Rossignac’s algorithm. This is not surprising, considering the greater
sophistication and processing time used by the QSlim algorithm. Garland [Garland
99] has shown a relationship between his 3D fidelity measure and curvature. Since
Rossignac and Borrel’s algorithm has no such relationship, these results may be an
indication that curvature-based, 3D automatic fidelity measures are more effective.

Both experimental measures also confirmed the widely held belief that simplifi-
cation algorithms show their mettle during aggressive simplification. When the algo-
rithms removed 80% of the model polygons, both measures indicated a much greater
difference between the algorithms than when the algorithms removed only half the
polygons. The naming time and subjective rating measures were affected differently
by object type (animal versus artifact), with viewers consistently needing more time
to name animals, while the effect of object type on ratings depended on the simplifi-
cation algorithm. This shows one of the differences between these two measures, and
suggests simplification algorithms that specialize in models of a certain type.

The study then continued by applying several automatic fidelity measures to the
same images and models viewed by the study’s participants. These included RMS er-
ror and the multichannel measure by Bolin and Meyer [Bolin 98], as well as the mean
and maximum 3D distance and volume difference components from Metro. The vol-
ume difference measure correlated very poorly with both experimental measures.
Other automatic measures all correlated well to experimental ratings, particularly
both image measures and the 3D mean-distance measure. Correlations to naming
times, however, were particularly weak.

Team LRN

298 Chapter 9 Measuring Visual Fidelity

This part of the study provides yet more evidence that multichannel measures
may be overkill, with RMS error performing just as well, if not a bit better, than the
multichannel Bolin-and-Meyer measure. We are also confronted with the different
natures of the naming time measure and the rating measure. Why are naming times
modeled poorly?

The authors propose two possible explanations: a “distillation effect” and degree
of comparison. The first explanation is suggested by the puzzling fact that the naming
time of some models actually dropped as simplification increased—certainly this is
not predicted by the automatic measures. Perhaps the simplification algorithms are
performing much like caricature artists for these models, distilling the essence of
the object from the model and making it easier for viewers to identify. If such an
effect could be isolated and quantified, it might be harnessed for very effective use in
simplification and even 3D fidelity measurement.

Naming times, unlike ratings, are produced by viewers after looking at one ob-
ject in isolation. In this study, ratings were produced by viewing two models side by
side. Could it be that ratings allowed a much more primitive sort of visual compari-
son, whereas naming times probed a much more cognitive and complete perceptual
process? If so, this might explain the weak correlations of automatic measures to nam-
ing times, since the automatic measures are extremely comparative. Confirmation
of this conjecture could be quite important, since comparative, side-by-side viewing
almost never happens in typical applications. In early reports of a follow-up study,
when the authors reduced ease of comparison in ratings by introducing delay between
the display of the two compared images, correlations between automatic measures
and ratings did indeed decline.

9.7 Conclusions

In this chapter we addressed the measurement of visual fidelity, a fundamental con-
cern in LOD and a number of related fields. We began with a review of experimen-
tal measures of fidelity. Many of these measures are in use by LOD researchers as
they attempt to validate improvements in simplification methods and run-time LOD
management. Automatic measures of visual fidelity strive to predict the results of ex-
perimental measures. Measures for comparing single static images are widely used in
computer graphics and image processing, and have been applied to simplification,
enabling good preservation of appearance with textured models. Automatic fidelity
measures for dynamic real-time environments are simpler, but are beginning to ap-
proach the complexity of some static measures. Finally, measures of 3D fidelity enable
view-independent simplification, and although largely distance based, have proven to
be fairly effective for nontextured models.

The latest automatic fidelity measures are quite complex and slow, involving mul-
tiple contrast and frequency-based transformations. Fortunately for LOD, although
several evaluations of these measures have shown that they bring improvements in

Team LRN

9.7 Conclusions 299

accuracy, these improvements seem marginal at best. Simpler and faster digital or
single-channel measures work quite well.

Does LOD in fact need improved automatic fidelity measures, that is, a better
LooksLike() function? We believe it does. In simplification, these measures would
enable more effective simplification of models mapped with textures, normals, or
other attributes, and in particular would help determine how to weigh the relative
importance of such attributes. In run-time LOD management, the need for improved
automatic measures is still clearer. Improved measures would enable sensitivity to
textures, color differences, dynamic changes in lighting and shadows, edges due to
occlusion and self-occlusion, and more principled suprathreshold approximation.
The challenge of run-time LOD, however, is that all this must be accomplished in
real time!

Team LRN

Team LRN

1 2 3 4 5 6 7 8 9 10
Temporal Detail

This chapter focuses on measuring an application’s interactivity and how to make
it more interactive. We begin with a discussion of methods for characterizing

the interactivity or temporal performance of a system, including frame rate as well
as other measures such as system latency or lag. We then examine techniques for
increasing application interactivity, including LOD, parallelization, prediction, and
rendering optimization. The primary reason developers concern themselves with
temporal detail is its strong relationship to user performance and satisfaction, and we
next investigate that relationship in detail. Unfortunately, there are only a few studies
that have directly examined the visual/temporal tradeoff. We review those studies,
and conclude by summarizing the implications for developers working in applied
settings, such as the surprising indifference of users to constant frame rates.

10.1 Introduction

Although LOD researchers have always been motivated by the need to achieve tempo-
ral control of their applications, the mass of their work focuses on achieving precise

301

Team LRN

302 Chapter 10 Temporal Detail

Frame rate
(Hz)

Visual detail
(pixels)

Time

(a)

Frame rate
(Hz)

Visual detail
(pixels)

Time

(b)

Figure 10.1 The visual/temporal tradeoff. (a) emphasized temporal detail. (b) emphasized visual
detail.

visual control. Users of LOD technology are generally left with two options (Figure
10.1): guaranteeing visual accuracy (e.g., within n pixels) and leaving interactivity
uncertain, or guaranteeing interactivity (e.g., 60 Hz or greater frame rates) and leav-
ing visual error unconstrained. Most commercial interactive applications emphasize
interactivity or temporal detail, with visual quality reduced as needed to guarantee
frame rates of 60 Hz or more. In light of this fact, the sparseness of LOD research
dedicated to temporal control is particularly puzzling.

In this chapter, we hope to begin remedying this situation. We start by describing
temporal detail itself and listing methods for measuring and controlling it. With this
background, we then survey the research studying the relationship between tempo-
ral detail and user performance. Surprisingly, there has been little work exploring the
three-way relationship of temporal detail, visual detail, and usability (the TVU rela-
tionship). We conclude by addressing several applied questions in the context of our
research survey.

10.2 Measuring Temporal Detail

Temporal detail is most commonly measured with frame rate, the number of frames
rendered per second (measured in hertz [Hz]). Since frame rate is almost never
constant in interactive settings, reported frame rate usually represents some sort
of average. As we shall see, variation in frame rate can also be informative. Frame
rate has an inverse relationship to frame time, the time it takes to display a single
frame (measured in ms, Figure 10.2). Frame time is probably the more useful of the
two measures, since it has a more intuitive relationship to the passage of time, and
therefore human task performance. For example, if the current frame rate is 10 Hz, a
10-Hz improvement moves frame time from 100 milliseconds (ms) to 50 ms, which

Team LRN

10.2 Measuring Temporal Detail 303

0
0

50

100

150

200

10 20 30 40 50 60
Frame rate (Hz)

Fr
am

e
tim

e
(m

s)

Figure 10.2 The inverse relationship between frame rate and frame time.

can impact human performance significantly. On the other hand, if the current frame
rate is 50 Hz, the same 10-Hz improvement changes frame times from 20 ms to 16.67
ms, and if there is any impact on human performance, it will certainly be minimal.

10.2.1 Frame Rate and Refresh Rate

Frame rate should not be confused with refresh rate, or the rate at which the graphics
hardware displays the contents of the frame buffer. In most current graphic systems,
there are two display cycles: the frame rendering cycle of the application and the un-
derlying screen refresh cycle of its display hardware. Since the refresh cycle occupies
a lower-level subsystem, refresh rates are constant and unaffected by rendering load.
Single-buffered systems have only one frame buffer that usually contains two partial
frames: one partially rendered frame and the remaining portion of the frame being
overwritten. Because the boundary between the partial frames looks like a rip in the
image, this artifact is called tearing (Figure 10.3).

Double buffering uses two frame buffers to reduce tearing. New frames are ren-
dered in the back buffer while the previous frame contained in the front buffer is
displayed. When the new frame is complete, the buffers are swapped and the new
frame is displayed. Even in this case, tearing still results if the swap occurs in the mid-
dle of a refresh cycle. To finally eliminate tearing, most current graphics cards also
use frame locking, which synchronizes buffer swaps and the refresh cycle by halting
rendering after the new frame is complete, forcing a wait until the next refresh cycle
begins.

The use of frame locking is dominant in today’s interactive systems. In such
systems, refresh rates have a great effect on frame rates. First, the frame rate will never
be higher than the refresh rate. Second, frame rates are generally decreased by the

Team LRN

304 Chapter 10 Temporal Detail

Frame n

Frame n – 1

Figure 10.3 Tearing results when there is only one frame buffer or when rendering and refresh
cycles are unsynchronized, resulting in simultaneous display of two partial frames.

Time

Renderer

Image generation Image generation

Display Display refresh

Vertical retrace

Display refresh

Vertical retrace

Figure 10.4 In frame-locked systems, frame rate is decreased by the display refresh subsystem.
Here the first rendered frame is lengthened to one refresh time, the second to two
refresh times.

constant temporal sampling rate of the refresh cycle. For example, a frame that takes
1.1 refresh times to render will not display until the next refresh, and so will have a
frame time equal to two refresh times (Figure 10.4). (Refresh time is the inverse of
refresh rate.) Effectively, any one frame time will be an integer multiple of the refresh
time. Note that similar relationships do not hold for mean frame time or rate, since
they summarize many frame samples over time.

What does the frame rendering cycle do when it has completed its frame, but
the refresh cycle is still rendering the previous frame? In frame-locked systems, the
unfortunate answer is: nothing. The rendering cycle is blocked until the current
refresh cycle is completed and frame buffers can be swapped. This troubling fact
has led to the development of some triple-buffered systems (Figure 10.5) [3dfx 98]

Team LRN

10.2 Measuring Temporal Detail 305

Time

Renderer

Display

Double
buffering

Triple
buffering

Renderer

Display

Render buffer 2

Render buffer 2 Render buffer 1Render buffer 3

Idle IdleRender buffer 1

Display buffer 1 Display buffer 2 Display buffer 2

Display buffer 1 Display buffer 2 Display buffer 2

Figure 10.5 Triple buffering can be used to avoid blocking the rendering cycle until the refresh
cycle completes.

[McCabe 98]. In these systems, frame rate is improved by using a third frame buffer
to avoid blocking the rendering cycle. When the current frame is completely rendered
in the back buffer, rendering of the next frame begins immediately in the third buffer.
When the refresh cycle completes, the back buffer becomes the front buffer and the
current frame is displayed by the refresh cycle. The third buffer becomes the back
buffer and rendering of the next frame continues there. The front buffer becomes the
third buffer, ready for use when the next frame is completed in the back buffer.

10.2.2 System Latency and Responsiveness

While frame rate measures image continuity, delay or system latency measures the
age of a displayed input sample, or how current it is. For example, if the user is
controlling motion with a mouse, system latency describes how long ago the user’s
hand was actually in the currently displayed position. System latency includes the
time required for the input sample to move through the input subsystem to the
rendering subsystem, to be rendered there, and to eventually be displayed on the
screen (Figure 10.6). Constant variation in frame time and input gathering ensure
that system latency is also very variable. In this text, system latency does not include
the additional aging of the sample that occurs while the sample is displayed, although
this certainly has some effect on user performance.

Team LRN

306 Chapter 10 Temporal Detail

Input

System latency

Input
sample

Display
output

Renderer

Frame time

Figure 10.6 System latency measures the time from input sample to eventual display, and includes
at least some of frame time.

While frame rate is not affected by system latency, it can have a great effect on
system latency. Thus, a system with poor latencies might have high or low frame rates.
But a system with poor frame rates will most likely also have poor latencies. In most
systems, system latency includes all of the frame time, since input is used to define
the viewing transformation. However, this need not always be the case: input might
be sampled only after some animation computation, or sampling of particularly
crucial input might be delayed until very late in the rendering cycle. Techniques like
these (often called late sampling) do not improve frame rate, but can significantly
reduce system latency. Triple buffering generally improves frame rate, and therefore
reduces latency. However, when triple buffering does not improve the frame rate,
it can actually increase latency by sampling input earlier. This occurs whenever the
rendering cycle is able to render both the next and the following frames within a single
refresh cycle (Figure 10.7).

System latency is not the end of the temporal detail story. System responsiveness,
the time from user action to system response, is often more meaningful. System re-
sponsiveness includes system latency, as well as the additional sampling delay between
a user’s action (or input event) and the sampling of that action (Figure 10.8). For ex-
ample, a user might be using the mouse to rotate the view to the left, see something
of interest, and then change direction to rotate the view to the right. This change
in direction is a particularly important input event, one that should be displayed as
quickly as possible. While most input subsystems sample very frequently, only one of
these samples is used per frame—the rest are discarded. In effect, in most systems the
input sampling rate is the frame rate. Since user action is not synchronized with sys-
tem sampling, on average the system will sample that action after half a frame time (at
most one frame time), and respond to it after the additional delay caused by system
latency. Variation in system responsiveness is even higher than variation in system la-
tency, since responsiveness includes the additional random delay between user action
and sampling.

Team LRN

10.2 Measuring Temporal Detail 307

Render b1 Idle Render b2 IdleRender b2 Idle

Render b2Render b2 Render b3 Idle

Time

Renderer

Display

Double
buffering

Triple
buffering

Renderer

Display

Display buffer 1 Display buffer 2 Display buffer 1

Display buffer 1 Display buffer 2 Display buffer 3

Render b2 Idle Idle

Figure 10.7 When triple buffering does not improve frame rate, it renders both the next and
following frames, and then blocks. This process samples input earlier than necessary,
and increases system latency.

Input

System latency

System responsiveness

Input
sample

User
action

Display
output

Renderer

User

Frame time

Figure 10.8 System responsiveness measures the time from user action to eventual display, and
includes system latency as well as the additional sampling delay.

10.2.3 Two Example Systems

Consider two fairly simple example systems. The first is a typical desktop system with
double buffering and only a mouse for input (Figure 10.9). The mouse defines the
rendered view. Assuming that the mouse introduces no delay [MacKenzie 93], at a

Team LRN

308 Chapter 10 Temporal Detail

400

350

300

250

200

150

100

50

0
0 10 20 30 40 50 60

Frame rate

m
s

Frame time
Latency
Mean SR
Worst SR
Worst SR + aging

Figure 10.9 Temporal detail in a double-buffered system with a mouse and no input delay. With
an excellent 60-Hz frame rate, mean system responsiveness (SR) is 25 ms, a level that
can already be perceived. SR worsens rapidly below 30 Hz.

60-Hz frame rate system latency will equal one frame time, or 16.67 ms. The system
will respond to an input event within 25 ms on average, and within 33.33 ms at most.
Additional aging during display of the frame (certainly users cannot respond at the
moment of display) brings response time to 50 ms. As we shall see, 40-ms delays can
harm user performance, and even 15-ms delays are detectable. As frame rates drop,
system responsiveness climbs, particularly below 30 Hz. LOD managers of systems
similar to this one should focus on improving frame rates.

Our second example is a head-tracked virtual reality system with double buffering
and monoscopic display (Figure 10.10). Typical tracking-input delay in such systems
is 100 ms. Even at a 60-Hz frame rate, the increased input delay raises mean system
responsiveness to 125 ms. Input delay dominates temporal detail until frame rates
drop below 20 Hz. LOD managers of systems with significant input delay like this
one should focus on reducing that delay when frame rates are above 20 Hz. Things
would become particularly challenging with stereoscopic display—frame rates are
halved!

Real-world systems can become much more complex than these examples, us-
ing multiple input devices, such as mice, tracking devices, and voice input, and
multiple output devices such as visual, audio, and tactile displays. In systems such
as these, each display device has its own display rate (for visual display, this is the
frame rate), and each path from input to output (I/O path) has its own associ-
ated latency and responsiveness. Such systems pose a significant challenge to LOD
managers.

Team LRN

10.3 Controlling Temporal Detail 309

400

350

300

250

200

150

100

50

0
0 10 20 30 40 50 60

Frame rate

m
s

Frame time
Latency
Mean SR
Worst SR
Worst SR + aging

Figure 10.10 Temporal detail in a double-buffered system with 100-ms input delay. Even at a 60-
Hz frame rate, mean system responsiveness (SR) is 125 ms, a level that can harm user
performance. Input delay dominates frame time effects above 20 Hz.

10.3 Controlling Temporal Detail

How can temporal LOD be controlled? Familiarity with these control methods is
of paramount importance for application designers. This familiarity will also prove
crucial in our study of experiments examining the relationship between temporal
detail and human task performance. In this section, we examine those methods. To
illustrate them, we will continue using the simple, single I/O-path example systems
we described above.

Temporal detail is controlled by reducing or increasing processing times and
sampling frequency at various points in an interactive graphics system. We identify
three types of points and so three matching types of temporal manipulation: frame-
only, latency-only, and frame-latency manipulation. We will call manipulations that
improve temporal detail speedups, and those that reduce temporal detail overhead.

10.3.1 Frame-Only Manipulation

Frame-only (FO) manipulation affects frame rate, but not system latency. Typically
this involves a change in the amount of calculation made in the rendering sub-
system before input is sampled (Figure 10.11). Since it does not affect latency, FO

Team LRN

310 Chapter 10 Temporal Detail

Input

System latency

System responsiveness

Input
sample

User
action

Display
output

Delay change here

Renderer

User

Frame time

Figure 10.11 Frame-only manipulation affects frame rate, but not system latency. Manipulations
are made by changing the amount of calculation made in the rendering system before
input is sampled.

manipulation affects system responsiveness only mildly: sampling delay changes on
average by half the FO manipulation’s frame time change.

Frame-only manipulations will be most effective in systems performing a signif-
icant amount of simulation, such as animation and collision detection. Simulation
is usually only loosely dependent on user input, and may therefore be performed
before input is sampled. Such systems can benefit greatly from schemes that allow
rendering of the current frame and simulation of the next to be performed in paral-
lel (Figure 10.12). Care must be taken to avoid synchronization delays, and to match
the simulated time to the sampled input time. Similar improvements can be achieved
with approaches that use approximation to reduce simulation time. Current research
[Carlson 97] [O’Sullivan 01] investigates when and how such approximations in mo-
tion and behavior (“animation LOD”) can be perceived.

10.3.2 Latency-Only Manipulation

Latency-only (LO) manipulation affects system latency, but not frame rate. Manipu-
lations of this sort are made in the input subsystem, rather than the rendering sub-
system (Figure 10.13). System responsiveness changes directly in response to the LO
manipulation’s system latency.

Latency-only manipulations include filtering, prediction, and late sampling. Fil-
tering of input is typically implemented to smooth a noisy input stream, and is im-
plemented in most 3D tracking hardware. This smoothing can certainly be valuable;
however, the calculation required for filtering also increases system latency, and the

Team LRN

10.3 Controlling Temporal Detail 311

Time

Renderer Animate Render RenderAnimate

Get input

Get input

Get input

Renderer

Animator

Sequential
animation

Parallel
animation

Get input

Animate Animate

Get input

Render Render

Animate

Figure 10.12 Parallelizing simulation to achieve a frame-only speedup.

Input

System latency

System responsiveness

Input
sample

User
action

Display
output

Delay change here

Renderer

User

Frame time

Figure 10.13 Latency-only manipulation affects system latency, but not frame rate. Manipulations
are made by changing the amount of calculation made in the input subsystem.

blending of new input with old reduces effective system responsiveness. When sys-
tem responsiveness is poor, consider using a simpler filtering scheme with a briefer
sample history or eliminating filtering altogether.

Prediction [Azuma 94] [Liang 91] is closely related to filtering, and not only
smoothes an input stream, but also predicts future values of that stream. If the
prediction is accurate, latency is reduced and temporal detail improved, and thus,

Team LRN

312 Chapter 10 Temporal Detail

Time

Renderer Animate

Animate

Render RenderAnimate

Get input

Get input

Get input

Renderer

Early
sampling

Late
samplingRender Animate

Get input

Render

Figure 10.14 Late sampling moves computation from after to before the input is sampled to
achieve a latency-only speedup.

the major shortcoming of filtering is overcome. As prediction is extended further into
the future, the accuracy of prediction begins to drop, and temporal detail once again
worsens. However, an appropriately tuned prediction system can be a very effective
tool for improving temporal detail. Unlike filtering, prediction can be very useful
even in typical gaming or PC systems, which normally use only mice or joysticks for
input.

Late sampling reorganizes computation to perform it before input is sampled.
In moving computation from a frame-latency to a frame-only context, frame rate
remains constant while system latency and responsiveness improve a latency-only
speedup (Figure 10.14). The advantage of late sampling is clear if the reorganized
computation has no dependence on input. In situations where there is a limited
dependence, it may be possible to segment the computation into input-dependent
and input-independent portions. For example, collisions between a game’s nonplayer
objects might be simulated before input, and collisions between the player and those
objects added after input. Some [e.g., Ware 94] have proposed rendering relatively
still objects in a scene based on an initial sample of input (possibly coupled with
prediction), and rendering more active or user-controlled portions of the scene after
a more current sample. The potential disadvantage of this approach is the temporal
incoherence that might result from the display in a single frame of two or more input
samples.

10.3.3 Frame-Latency Manipulation

Frame-latency (FL) manipulation changes both frame rate and system latency. These
manipulations are made in the rendering subsystem after input is sampled, chang-
ing frame time and the length of the I/O path (Figure 10.15). System responsiveness
changes on average by 1.5 times the FL manipulation. This SR change has two com-
ponents: system latency changes directly in response to the manipulation while sam-
pling delay changes by half the manipulation on average.

Team LRN

10.3 Controlling Temporal Detail 313

Input

System latency

System responsiveness

Input
sample

User
action

Display
output

Renderer

User

Frame time

Delay change here

Figure 10.15 Frame-latency manipulation affects both system latency and frame rate. Manipula-
tions are made by changing the amount of calculation made in the rendering subsys-
tem, after input has been sampled.

Frame-latency manipulations include level of detail, the primary focus of this
text. LOD reduces rendering computation after the input is sampled, improving
frame rate, system latency, and system responsiveness. This reduction in computation
often comes at the expense of reduced visual detail, a cost that LOD tries to minimize.
In systems that manage the rendering computation very actively (e.g., continuous or
view-dependent LOD), it proves beneficial to separate management from rendering
and to parallelize them (Figure 10.16).

Any other optimization or speedup of rendering itself is a frame-latency ma-
nipulation. These include improved hardware for input or rendering, parallelization
[Humphreys 01], triangle stripping [Evans 96], vertex caching [Hoppe 99a] [Bo-
gomjakov 01], texture caching, vertex arrays [Angel 00], frustum culling, and occlu-
sion culling [Luebke 95] [Greene 93]. Since none of these alternative frame-latency
speedups introduce visual approximations, they should all be considered for use be-
fore LOD is implemented.

10.3.4 Comparing and Using Manipulations

Each of these manipulations varies in its impact on temporal detail. The same reduc-
tion in processing time can have drastically different effects on temporal detail. Table
10.1 tabulates these relationships. Each 1-ms speedup in an FO manipulation results
in a 1-ms reduction in frame time and an average improvement of 0.5 ms in system
responsiveness, without affecting latency. The same millisecond of added speed as an

Team LRN

314 Chapter 10 Temporal Detail

Time

Renderer
LOD

management
Render

LOD
management

Render

Get input Get input

Sequential
LOD

Parallel
LOD

Renderer Render

Get input

LOD
LOD

management
LOD

management
LOD

management

Render

Get input Get input

Figure 10.16 LOD reduces computation after input is sampled by using visual approximation,
achieving a frame-latency speedup. Here this speedup is improved by parallelizing
the management process.

Table 10.1 Summarizing the effects of temporal manipulations of 1 ms on tempo-
ral detail. Frame-latency speedups will be most effective. Differences
among larger manipulations will be of identical scale.

Manipulation Frame Time Latency System Responsiveness

Frame only (FO) 1 ms 0 ms 0.5 ms

Latency only (LO) 0 ms 1 ms 1.0 ms

Frame latency (FL) 1 ms 1 ms 1.5 ms

LO manipulation results in 1-ms improvements in latency and responsiveness, with-
out improving frame time. Finally, each 1-ms speedup as an FL manipulation results
in 1-ms improvements in frame time and latency and an average 1.5-ms improve-
ment in responsiveness.

When improving interactivity in applications, FL speedups are most effective,
since they affect temporal detail by all measures and have the largest impact on system
responsiveness. LO speedups are typically the next best bet, since they have the next
largest impact on system responsiveness. FO speedups are generally least effective,
unless user tasks are particularly sensitive to frame time (see below). Conversely, if an
application requires additional overhead (e.g., animation or rendering), FO overhead
is likely the least harmful, LO overhead is the next preferred option, and FL overhead
should be added only if absolutely necessary.

Team LRN

10.4 Temporal Detail and User Performance 315

We should add that many of the manipulations reviewed here introduce tradeoffs.
For example, LOD trades visual for temporal detail, and filtering speedups trade
input smoothness for temporal detail. When improving interactivity, begin with
speedups without such tradeoffs. The rendering optimizations discussed above—
frustum culling, triangle strips, and so on—are good examples of such speedups, and
as FL speedups they are particularly effective. Late sampling is another example of a
speedup without an associated tradeoff.

10.4 Temporal Detail and User Performance

Generally, more temporal detail is better. But with LOD, more temporal detail means
less visual detail. When is temporal detail particularly important and more appro-
priately emphasized at the expense of visual detail? In this section, we address this
surprisingly complicated question. Humans are extremely complex “systems,” and
despite centuries of study by psychologists, physiologists, and biologists, only their
most basic behaviors and abilities have been modeled with any success. Because this
question addresses human satisfaction and task performance, our answers will some-
times be more qualitative than quantitative. Nevertheless, we will strive to be as spe-
cific as possible, giving designers of interactive systems a good understanding of the
possibilities and tradeoffs they face.

10.4.1 Perceptual Limits

The human perceptual system does have certain limits beyond which additional tem-
poral detail is imperceptible and pointless. The most important, already mentioned
in Chapter 8, is the critical fusion frequency (CFF), beyond which a blinking display
(such as the scanned display of your computer monitor) looks continuous. The ex-
act value of this frequency varies from person to person, but for most a frequency of
70 Hz suffices. For this reason, many interactive system designers ensure that their
frame rate is maximized and equal to their hardware’s refresh rate (typically also set
to roughly 70 Hz).

But as we have already explained, frame rate does not measure all aspects of tem-
poral detail: system latency and responsiveness are also very important. It is very pos-
sible, for example, to have high frame rates and poor responsiveness. Unfortunately
for designers of interactive systems, human sensitivity to latency and responsiveness
is very high. Regan et al. have reported that even latencies of 15 ms were perceivable
in their head-tracked display [Regan 99]. Wickens has reported that responsiveness
of 40 ms consistently harmed task performance [Wickens 86].

Given all this, we can safely say that perceptual limits are of little help with
temporal detail. Refresh rates in most displays cap frame rate at levels just above the
CFF, and users quickly perceive drops in frame rate below those caps. Even when
frame rates are close to maximum at 60 Hz, responsiveness is already perceivable at

Team LRN

316 Chapter 10 Temporal Detail

Plan Act Evaluate

Figure 10.17 In closed-loop tasks, users require frequent feedback, closing the feedback loop. With
poor system responsiveness, users take longer to finish tasks.

Plan Act

Figure 10.18 In open-loop tasks, users require little feedback, leaving the feedback loop open.

25 ms and quickly affects user performance as it worsens. System designers will have
to find guidance for the temporal detail compromise elsewhere.

10.4.2 Open- and Closed-Loop Tasks

Human factors researchers have identified two basic types of manual tasks [Wickens
00]. Closed-loop tasks require users to form a plan, act, evaluate the results of their
action, and repeat. These tasks are called closed loop because they close a feedback
loop (Figure 10.17). In the real world, closed-loop tasks include driving and watering
a garden with a hose. In computer interfaces, they include drawing a straight line with
a mouse and steering through a 3D interactive environment.

Open-loop tasks require little or no feedback, and leave the feedback loop “open”
(Figure 10.18). These tasks are typically highly practiced and require little attention
from the person performing them. Real-world open-loop tasks include assembly line
work, pitching, and gymnastics. In computer interfaces, they include typing and
moving the mouse pointer to large, well-known icons or buttons.

In fact, these two types of tasks form the ends of a continuum [Wickens 00]
spanned by increasing reliance on feedback. Most open-loop tasks were initially
closed loop until they were well practiced by the people performing them. Many prac-
ticed activities involve both open- and closed-loop behavior. For example, catching a
ball involves an initial closed-loop tracking phase, during which the player follows the
ball visually and moves to where she predicts it will arrive. As the ball nears the player,
visual tracking becomes impossible and the task is completely open loop. Often the
feedback continuum corresponds with task difficulty. In computer interfaces, plac-
ing the mouse pointer over a large icon is rather simple, enabling very open-loop
behavior with little reliance on feedback. If difficulty is increased by making the icon

Team LRN

10.4 Temporal Detail and User Performance 317

Evaluate Plan Act
Wait for
response

Error
estimate

System responds in display with
resulting current state, new target state

Estimated
input

Actual
input

Figure 10.19 Users can be thought of as components in closed-loop dynamic systems.

quite small, several minute adjustments of the mouse are required and reliance on
feedback is increased—the task becomes closed loop.

Tasks that are primarily open loop have little sensitivity to temporal detail; display
of any sort is largely irrelevant to performance of these tasks. However, closed-loop
tasks are profoundly impacted by temporal detail. Tasks that fall in the middle of the
open- and closed-loop task continuum are sensitive to temporal detail to the extent
that they are closed loop and dependent on feedback. Human factors researchers have
long recognized this and have been studying the relationship between temporal detail
and closed-loop task performance for decades, particularly in the setting of aviation
control. We will briefly review this work here; however, readers interested in details
should consult Wickens [Wickens 86] [Wickens 00], to whom we are indebted for
our review.

10.4.3 Closed-Loop Tasks as Dynamic Control Systems

In manual control theory, human factors researchers treat users performing closed-
loop tasks as part of a dynamic control system of the sort so often created by engi-
neers. These systems attempt to maintain a certain target state in the face of external
disturbances, and perhaps changes in the target state itself. One example of such a sys-
tem is a device for maintaining a certain temperature in a building. In each iteration,
the system compares the target and actual states to derive current error. It then at-
tempts to reduce that error with some sort of actuator. The effect of the system action
is then fed back into the system for the next iteration. When humans are part of such
systems, their role is to compare the displayed target and actual state to derive error,
and through a provided user interface to effect a correction (Figure 10.19). In a racing
simulator, for instance, the human compares the desired road position to the actual
position and attempts to compensate for the difference by turning the steering wheel.

Team LRN

318 Chapter 10 Temporal Detail

Time

Sharp left

Sharp right

St
ee

rin
g

an
gl

e

b

b

a

a

Start/finish
line

Figure 10.20 Change in target and current system state as time-varying signals with frequen-
cies. Here, target state is defined by a simple race track. Target steering angle is in
black, current steering angle in gray. The region from turn a to turn b requires high-
frequency control.

In both system and manual control theory, target and current state are analyzed
as time-varying signals with component frequencies. We shall call these two signals
the target and output signals. In a racing simulator, a low-frequency target signal
would correspond to a relatively straight track, while a high-frequency signal would
correspond to a very twisty, challenging track (Figure 10.20).

When is control successful? Of several criteria, the most obvious is error: suc-
cessful control stays as close to target state as possible. Another measure of successful
control might be the extent to which system activity is minimized, since activity so
often corresponds to resource consumption. (Most drivers adopt this measure when
their fuel gauge approaches empty.) In manual control, success might also mean
minimizing human activity, since the human element of a system is often most sus-
ceptible to fatigue. Perhaps the most basic measure of successful control is stability, or
whether the system is able to reliably track target state without oscillating wildly, or
even worse, completely diverging from it. Minimization of error and system or hu-

Team LRN

10.4 Temporal Detail and User Performance 319

Time

A
m

p
lit

ud
e

100 ms

Figure 10.21 Phase lag in a manual control system. As frequency of the target signal increases,
phase lag also increases, even though system responsiveness remains constant at
100 ms.

man activity is only possible when stability is achieved. We will define stability more
precisely shortly.

10.4.4 Designing for Successful Dynamic Control

Designers of interactive systems can tune a wide range of elements in their system.
The first of these is temporal detail, the focus of this chapter. In manual control,
system responsiveness is the preferred measure of temporal detail, since it directly
represents the time between a user action and the resulting system response in dis-
play. Manual control theorists often relate system responsiveness to task with phase
lag, which measures system responsiveness in terms of the degrees of phase angle it
introduces between the time-varying target and current system states. Figure 10.21
illustrates phase lag in a system with a sinusoidally varying target state and system
responsiveness of 100 ms. Note that even when system responsiveness remains con-
stant, phase lag can vary as the frequency of the target signal changes.

Interactive system designers can also tune their user interface controls, which can
be zero, first, or second order, depending on their response to user input. Zero-order
controls map input values to output values. Common zero-order controls are mice,
door knobs, and volume dials. First-order controls map input values to the rate of
output change. Well-known first-order controls include joysticks and steering wheels.
We illustrate both of these types of control in Figure 10.22. Second-order controls
map input values to the acceleration of change in output. Second-order controls are
fairly rare, but examples include the thrust controls in spacecraft and in the classic
video game Asteroids. Controls of any order can also have varying amounts of gain,
the ratio of output over input, which amplifies (or dampens) user input. Many radios
have one high- and one low-gain tuning dial, allowing both coarse and fine tuning. In

Team LRN

320 Chapter 10 Temporal Detail

cm cm/sec

+1 0

–1

+1 0

–1

Figure 10.22 Zero- and first-order control in a Pong game. With the zero-order dial, turn 5 degrees
and the Pong paddle will move 1 cm and halt. The same turn on the first-order dial
will move the Pong paddle 1 cm after one second—and the paddle will keep moving
at a constant velocity of 1 cm per second.

many windowed computer interfaces, users can zoom into or out of their document,
effectively decreasing or increasing the gain of mouse motion relative to the elements
of the document.

In manual control, systems become unstable when phase lag is over 180 degrees
and gain is greater than 1. Why these particular values for phase lag and gain? For
an intuitive understanding, consider a driving system in which these conditions are
fulfilled. The driver sees that the car is headed off the road to the left and steers
rightward to correct. However, by the time this correction is implemented, the road
has veered to the left, and the rightward correction has worsened a rightward steering
error! Making matters worse, because gain is greater than one, error is amplified
rather than dampened.

By manipulating phase lag, designers can improve the stability and interactivity
of their systems. We have already explored at length the various manipulations that
can improve responsiveness and reduce phase lag. But what if these manipulations
have already been fully exploited? Fortunately, designers can achieve stability with
other approaches. Some of these approaches might be preferable to temporal detail
manipulations with associated tradeoffs, such as the visual approximations of LOD.

With control alteration, designers tune the user interface controls to achieve sta-
bility. To begin, designers might reduce the order of user interface control, such as by
switching from a second- to a first-order control. Higher-order controls are less re-
sponsive and increase phase lag (zero-order control has no associated lag). Designers
might also reduce gain, enabling stable control even when phase lag is larger than 180
degrees. Both of these alterations may have other implications for usability. For ex-
ample, zero-order control is usually inappropriate for vehicles, and controls with low
gain can increase error and make the system seem sluggish. Designers should evaluate
these tradeoffs carefully.

Team LRN

10.4 Temporal Detail and User Performance 321

cm/sec

+1 0

–1

Figure 10.23 Compensating for delay with predictive display. The gray paddle shows the expected
position of the actual paddle in 100 ms.

Tasks themselves are also often under designer control. In task alteration, phase
lag is reduced by reducing task difficulty, usually by reducing required accuracy or
speed. Such alterations effectively eliminate high frequency components from the
target signal that users must track. For example, in a virtual walk-through, speed in
movement might be reduced, and in a shooting game, the size of the target might be
increased. Alternatively, the designer might give the user control of these variables—
in our example, by giving the user control of navigation speed or of the weapon used.
Designers might also reduce randomness and enable repetition, allowing practice to
turn a closed-loop task into an open-loop task.

Finally, display alteration cannot make theoretically unstable systems stable, but
can make nearly unstable systems easier to use. Previewing display forecasts future
target state, making prediction and early reaction simpler in the face of phase lags.
A common example of previewing display is the view of the track ahead in racing
games, or (giving an even earlier preview) the inset map of the track that such
games often include. Predictive display forecasts output state, making use of the same
prediction technology reviewed in Section 10.3. However, rather than returning the
prediction directly as input, the system displays a more aggressive prediction in the
frame. The display of the prediction does not directly affect control, and makes
it clear that the prediction is uncertain. Predictive interfaces are most common in
applications requiring flying or steering, such as flight simulators, and often take the
form of tunnels or rings in the current view. In our simple Pong example (Figure
10.23), we might show a ghostly paddle that indicates its expected position in 100 ms.

10.4.5 Temporal Detail and Complex Tasks

Manual control theory provides a sound theoretical framework for thinking about
the relationships among temporal detail, tasks, and user performance, clarifying
many of the tradeoffs facing designers of interactive systems. However, it can often

Team LRN

322 Chapter 10 Temporal Detail

be difficult to apply in practice. As the theorists themselves acknowledge [Wickens
86] [Wickens 00], the theory suffers from approximating users as simple linear-
system components, ignoring, for example, the perceptual thresholds so prevalent
in the human visual system. Real-world tasks have many transient elements that are
difficult to represent in the frequency domain, and as we have already discussed, may
be partially open loop in nature. Manual control theory also says little about frame
rates—of paramount importance here—and tradeoffs in visual detail.

We therefore review research on the relationship between temporal detail and
user performance in common interactive tasks. From a manual control perspec-
tive, even these common tasks can be complex, containing open- and closed-loop
elements, multiple target frequencies, and transient behavior. Many of the stud-
ies we will review have examined the effects of different frame rate means and
standard deviations, which are of particular importance to designers of interactive
systems.

Research on the human effects of temporal detail has focused on three basic types
of tasks: catching, placement, and tracking. We have already discussed catching, which
contains an initial, closed-loop, visual tracking phase and a final, predictive, open-
loop phase. Shooting or intercepting a moving target are common catching tasks.
According to manual control theory, the initial visual tracking phase should only
be mildly sensitive to temporal detail, while the final phase should be completely
insensitive to it. Catching should be particularly sensitive to changes in frame rate,
since these might reduce the number of samples provided for prediction.

Watson et al. [Watson 97a] [Watson 97b] [Watson 98b] and Richard et al.
[Richard 96] are the only researchers who have studied catching. Both examined
these tasks in 3D virtual-reality displays using FL manipulation. Users caught the
target more quickly as responsiveness improved, but catch times stopped dropping
after SR improved to 290 ms (Figure 10.24). According to Watson et al., variation
in SR made catching more difficult, but only when standard deviations were at least
85 ms. When this was true, low-frequency variations in SR increased catch times, and
high-frequency variations did not. Users were particularly sensitive to variation when
mean SR was poor (above 290 ms).

In placement tasks, users move something from one location to another. As they
move, they refine the direction and speed of their motion so that they arrive at the
correct location. Clicking on an icon and picking up or putting down an object are
both placement tasks. As a task that depends heavily on feedback and involves less
prediction, placement should be extremely sensitive to responsiveness, regardless
of the type of temporal manipulation (FL, FO, or LO) that produced it. Naturally,
smaller targets should increase difficulty, adding higher frequencies to the target
signal and increasing sensitivity to temporal detail.

Bryson [Bryson 93] and MacKenzie and Ware [MacKenzie 93] studied placement
in 2D environments. Bryson compared FO to LO manipulations and found that they
had similar effects on user performance. Performance continued improving even as
system responsiveness reached its best levels. MacKenzie and Ware found similar
effects, with placement performance improving even when system responsiveness
reached 25 ms. In both studies, increasing the difficulty of the placement increased
temporal detail effects.

Team LRN

10.4 Temporal Detail and User Performance 323

Mean responsiveness (ms)

C
at

ch
 t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

50 60 70 80 90 100 110 120 130

sdSR: 50 ms

sdSR: 65 ms

sdSR: 85 ms

Figure 10.24 The effect of temporal detail on catching times. Here FL manipulation was used to
control temporal detail mean and variation. Catching performance improved until
mean system responsiveness fell below 290 ms (at a frame time of 85 ms). Variation in
responsiveness only affected catching performance at the worst mean responsiveness
when it reached a standard deviation of 85 ms (frame time 35 ms).

Watson [Watson 97a] [Watson 97b] [Watson 98b] [Watson 99] and Ware and
Balakrishnan [Ware 94] examined placement in 3D environments. Once again, im-
provements in temporal detail always brought matching improvements in placement
performance. Ware and Balakrishnan found no difference among FL, LO, or FO
manipulation. When Watson et al. increased placement difficulty, users required im-
proved temporal detail to maintain placement performance (Figure 10.25). Similar to
their catching results, they also found that standard deviations in system responsive-
ness above 85 ms made placement harder, particularly when the frequency of frame
time variation was low. In this case, variation had its largest effect when mean respon-
siveness was already good (not poor, as in catching). This may indicate that users are
stressed not by transient changes in sampling rate, but rather in responsiveness itself.

We have already discussed tracking at length in our review of manual control
theory. However, it is interesting to examine tracking in more complex settings,
including systems with changes in frame rate. Tharp [Tharp 92] and Bryson [Bryson
93] probed the tracking and temporal detail relationship in two small studies—Tharp
in 3D and Bryson in 2D—and obtained strikingly similar results. Both compared
FO to LO manipulation, and found that user-tracking performance continued to
improve through the best levels of system responsiveness (50 ms). FO manipulation
had a greater effect than LO manipulation. As the difficulty of the tracking task

Team LRN

324 Chapter 10 Temporal Detail

ID

Pl
ac

em
en

t
se

cs

0

1

2

3

4

1.5 3.17 4.83 6.5

215 ms
245 ms
275 ms
315 ms
345 ms

Figure 10.25 The effect of temporal detail (FL) and difficulty (ID) on placement times. Larger
ID values indicate increased difficulty. The five curves represent user performance
at different levels of mean responsiveness. Improving responsiveness becomes more
important as difficulty increases.

was increased, temporal detail became more important to users. Park and Kenyon
[Park 99] used a larger study to examine the effects of FL manipulation on tracking in
3D. Tracking performance improved dramatically as mean responsiveness improved.
Large, transient variations in responsiveness also had a harmful effect. Difficulty
increased the harmful effects on user performance of both mean responsiveness and
responsiveness variation.

Overall, the predictions of manual control theory hold up well to this examina-
tion of temporal detail effects in more applied and less controlled contexts. In partic-
ular, the more closed loop the task, the more sensitive it is to temporal detail, with
catching least sensitive and tracking most sensitive. Within task type, as difficulty in-
creases, so does user sensitivity to temporal detail. Manual control theory does not
have much to say about frame rates outside of their relationship to responsiveness,
but some studies here supported the notion that tasks with a significant element of
prediction were especially sensitive to temporal detail changes that adjust frame rates
(FL or FO manipulation). More clearly, the studies show that only extreme (standard
deviation of 85 ms or more) variation in temporal detail can affect user performance.

10.5 Trading Off Temporal and Visual Detail

Rendering is a tradeoff between visual and temporal quality (Figure 10.1). On the
one hand, an application can have great-looking imagery, but low frame rates. On the

Team LRN

10.5 Trading Off Temporal and Visual Detail 325

Visual detail

Usability

Temporal detail

Figure 10.26 TVU space. Application designers must maximize usability by making the best possi-
ble tradeoff between visual and temporal detail, finding a surface of optimal usability.

other hand, an application can emphasize high frame rates, resulting in poor image
quality. What is the proper balance between visual and temporal detail? The research
we have reviewed in this chapter says a great deal about when temporal detail is or
is not important to users, providing a good clue as to when it should or should not
be sacrificed to improve visual detail. But what if both visual and temporal detail are
important? What is the three-way relationship—we’ll call it the TVU relationship—
among temporal detail, visual detail, and user performance (Figure 10.26)?

Unfortunately, research on the TVU relationship is extremely sparse. Perceptual
science is largely unconcerned with delay, since it is extremely uncommon in the nat-
ural world. This makes perceptual research relating to visual detail extremely difficult
for system designers to apply. The field of teleoperation studies control of remotely
located robots, and has always dealt with delays in robot–operator communication
[Sheridan 63]. However, typical teleoperation delays were until recently well over
a second, and experience with those delays is not very relevant in today’s interac-
tive graphics systems. In one of the few studies to examine the TVU relationship,
Ranadive [Ranadive 79] studied teleoperation of an underwater robot as frame rate,
spatial resolution, and luminance resolution were varied. He found that successful
control was closely related to the amount of information (bits) displayed per sec-
ond, regardless of whether this information was temporal, spatial, or chromatic. The
study was performed under conditions of extreme delay, in a very static underwater
environment.

In early and promising work, Meruvia [Meruvia 00] has proposed IO differencing
to quantify temporal detail in visual terms, enabling direct comparison of temporal
and visual detail. As described in further work by Watson et al. [Watson 02b], sys-
tems could then minimize the sum of the error introduced by temporal and visual
approximation, thereby presumably maximizing user performance. To quantify tem-
poral detail visually, the system measures the difference between the current display
state, and current input state as it would be represented in display. For example, if the
mouse moves the view from left to right, the current mouse value will specify a view

Team LRN

326 Chapter 10 Temporal Detail

t

s

Figure 10.27 IO differencing to manage the tradeoff of visual and temporal detail. The full-detail
model positioned according to latest input is silhouetted at the lower right. Rendering
that model (silhouetted upper left) introduces a temporal error t . Rendering a coarse
approximation (shown in polygonal form) introduces spatial error s, but eliminates
t . In this case temporal error is dominant—we should render the coarse model.

that is different from the currently displayed view. The larger the difference between
those views, the larger the IO difference. Systems implementing this approach would
use less visual detail whenever temporal error (the IO difference) exceeds visual error
(Figure 10.27). The net effect would increased frame rates and coarser visual detail
when the user is in motion, decreased frame rates and finer visual detail when the
user is relatively still. In a simple rotation task, Meruvia and Watson found that man-
aging LOD with IO differencing improved user performance.

10.6 A Practical Summarization

In this section, we attempt to distill all the detail in this chapter into practical advice
for designers of interactive systems. Where this is not possible, we attempt to identify
the research that might make it possible. Our approach is to consider a series of
questions that might be posed by a typical designer. We should note that most of
our answers are based on studies of user performance—not user satisfaction, which
might be particularly important in entertainment applications.

How can temporal detail be measured? The three main measures of temporal detail
are frame rate, system latency, and system responsiveness.

Team LRN

10.6 A Practical Summarization 327

Time

Fr
am

e
ra

te

Time

Fr
am

e
ra

te

or

Figure 10.28 How much temporal detail is enough? For example, should mean frame rate always
be high, or may it sometimes be low?

How can temporal detail be improved? The three types of manipulations that
may be made are frame-only manipulation (including simulation parallelization);
latency-only manipulation (including late sampling); and frame-latency manipula-
tion (including rendering optimizations and LOD). Although any improvement in
temporal detail is beneficial, frame-latency manipulation has the largest impact on
system responsiveness, and so is most effective. Some manipulations are only possi-
ble with tradeoffs—for example, using LOD means making compromises in visual
detail.

What can be done if temporal detail cannot be improved? Control alteration reduces
control order or gain. Task alteration lowers the peak frequencies of the target signal,
usually through reducing task accuracy and speed requirements. Display alteration
uses previewing or prediction to forecast target or output state.

How is task related to temporal detail? According to manual control theory, tasks
demanding high-frequency control are more sensitive to temporal detail. Experimen-
tal work in more applied, high-bandwidth task settings confirms this. Ultimately, as
phase lag climbs past 180 degrees with gain over one, the manual control system for
performing the task becomes completely unstable.

How much temporal detail is enough (Figure 10.28)? If the user’s task is largely
open loop, it is quite possible to have enough temporal detail, as the ceilings in user
performance reached in Watson et al. [Watson 98b] and Richard et al. [Richard 96]
show. In this case, designers using LOD might emphasize visual detail with some
justification. If the task is instead largely closed loop, and especially when difficulty
is high, it is extremely difficult to have enough temporal detail. Studies performed to
date show that user performance is harmed even when responsiveness is 40 ms, and
delays of 15 ms are perceivable. This is less than one 60-Hz frame time!

How important is temporal detail constancy (Figure 10.29)? Not very. Studies show
that standard deviations of up to 85 ms in system responsiveness can be tolerated
without harming user performance. Designers therefore need not necessarily go to
great lengths to maintain constancy in temporal detail. More specifically, in tasks that
emphasize prediction, fairly large variations in frame rate can harm user performance

Team LRN

328 Chapter 10 Temporal Detail

Time

Fr
am

e
ra

te

Time

Fr
am

e
ra

te

or

Figure 10.29 How important is temporal detail constancy? For example, should frame rate stan-
dard deviation always be small, or may it sometimes be large?

Time

Fr
am

e
ra

te

Time

Fr
am

e
ra

te
or

Figure 10.30 Are patterns of change in temporal detail important? For example, when frame rate
mean and variation are unchanged, can the pattern of the variation affect users?

when frame rate is already low. Users are already stressed by sample sparseness, and
adding variability to the rate at which samples arrive makes prediction harder. In
tasks that emphasize feedback, fairly large variations in responsiveness can harm
user performance when responsiveness is already good. In cases like these, transient
increases in the normally brief time before users receive feedback seem particularly
harmful.

Is the pattern of change in temporal detail important (Figure 10.30)? This a very
minor concern, according to current evidence. System designers might simply choose
to ignore it. Patterns of temporal change have no effect until the amplitude of that
change harms performance. Patterns have a limited effect when they are fairly low
in frequency or are transient in nature, that is, when the patterns are fairly easily
perceived by the user. However, these conclusions should be confirmed in further
research.

How important is frame rate outside of its impact on responsiveness? Research shows
conclusively that responsiveness has a stronger relationship to user performance than
frame rate (aside from the frame rate’s own impact on responsiveness). More research

Team LRN

10.7 Conclusions 329

is certainly required, but there are indications that frame rate is particularly impor-
tant in applications requiring significant amounts of prediction. In entertainment,
conventional wisdom places great emphasis on high frame rates, perhaps because
high frame rates may be required to ensure a pleasing temporal continuity.

Which is more important, visual or temporal detail? No reliable answers to this
question currently exist. One promising avenue of research is IO differencing, which
intuitively emphasizes temporal detail when input is changing rapidly, and visual
detail when input is static.

10.7 Conclusions

With the conclusion of this chapter, you have now reached the end of the book.
Congratulations! We hope that you have found this book to be an illuminating read
and a worthy investment of your time. If you have read the book cover to cover and
are still hungry for more material, you may want to look at the companion Web site,
www.lodbook.com, to find software, models, and links to additional resources. We
have designed this Web site to act as an up-to-date portal for information relating
to this book.

Team LRN

Team LRN

Glossary of Terms

accommodation: The faculty of changing the focal length of the eye’s lens. This
is done to bring a new object into focus, normally in coordination with vergence eye
movements.

active surface definition (ASD): The name of the terrain level of detail
and morphing feature provided by the OpenGL Performer package from Silicon
Graphics Inc.

Advanced Television Systems Committee (ATSC): Defines a re-
placement standard for NTSC that includes digital encoding using MPEG-2, multiple
resolutions, and refresh rates, including higher resolutions referred to as HDTV.

alpha blending: An image-based technique for blending between two differ-
ent levels of detail where transparency is used to fade between the two representa-
tions. Within the fade region, one model is faded into view while the other model is
faded out. See geomorphs.

anisotropic LOD: Refers to the use of a range of resolution levels across a
single object. This term is therefore equivalent to continuous or view-dependent LOD.

ASD: See active surface definition.

ATSC: See Advanced Television Systems Committee.

attribute error: Simplification error other than geometric error, including
possibly color error, normal error, and texture error.

automatic fidelity measure: An algorithm for predicting the results of
an experimental visual fidelity measure. See Chapter 9 for a detailed discussion of
automatic and experimental fidelity measures.

backface simplification: A view-dependent LOD technique that elimi-
nates polygons facing away from the viewer. This technique assumes that such poly-
gons are not visible, and therefore only applies to closed meshes that have a definite
“inside” and “outside.” Backface simplification is distinct from backface culling , which
rejects backfacing polygons on a per-face basis. Backface simplification can accelerate
backface culling, since fewer individual polygons need be considered.

bijection: A continuous, one-to-one, and onto mapping. A bijection preserves
local neighborhoods. When you map an entire neighborhood of surface points

331

Team LRN

332 Glossary of Terms

through a bijection, the resulting points still form a neighborhood on the destination
surface, and there is no tearing, folding, and so on.

billboard: A type of dynamic geometry often used in games where an object
is given position and dimension, but its rotation is changed dynamically, usually to
make it directly face the viewer. The generic term billboard refers to these objects
that rotate automatically in one, two, or all three axes. Also sometimes referred to as
sprites.

bintree: A space decomposition method that recursively partitions the under-
lying space into equal halves. Also, a hierarchical structure is often used by terrain
LOD systems, such as the ROAM algorithm. That is, the terrain grid is represented
using triangles and these are recursively refined using a longest-edge bisection. See
also quadtree and octree.

blind spot: The area of the retina, generally assumed to be around 5 degrees,
where all of the axons of the retinal ganglion cells meet to form the optic nerve. There
are no photoreceptor cells in this region, so we cannot detect any light that falls on the
blind spot.

CFF: See critical fusion frequency.

closed loop task: A user task with a tightly closed, feedback loop that re-
quires frequent iterations of a basic “plan, act, and evaluate” subtask sequence. Typ-
ical closed-loop tasks include driving, controlling motion in a computer game, and
clicking on a small or infrequently used menu item. Closed-loop tasks are particularly
sensitive to temporal detail, especially to system responsiveness.

collector cells: The group of cells in the retina that lie between the pho-
toreceptor cells and retinal ganglion cells. These include the horizontal, bipolar, and
amacrine cells. These cells filter the light inputs detected by the photoreceptors such
that there are around 120 to 130 million photoreceptors but around only 1 million
ganglion cells.

computer game: A game designed for a general-purpose personal computer.
Distinct from video game, which targets a hardware platform specifically designed
for gaming on a television screen.

conservative error bound: An upper limit on the potential error of a
simplified surface (or, equivalently, a lower limit on its possible quality). This allows
us to know something useful even if we cannot measure it exactly. “Conservative” has
positive connotations in terms of providing a guarantee, but it can also have negative
connotations. A bound that is overly conservative may not be useful since it always
reports much higher error than is actually present.

continuous LOD: A level-of-detail scheme where surface detail is varied con-
tinuously, allowing an object to be represented over many levels of detail. This may
also imply view-dependent LOD, although this is not necessary, as in the case of pro-
gressively streaming a series of discrete detail levels for an object to the display.

Team LRN

Glossary of Terms 333

contrast: The difference in light intensity between an object and its immediate
surroundings.

contrast grating: A pattern of alternating light and dark bars generated by
varying contrast sinusoidally across the display. Used to measure a subject’s contrast
sensitivity.

contrast sensitivity: A measure of an observer’s sensitivity to spatial detail
in terms of its contrast. Defined as the reciprocal of threshold contrast.

contrast sensitivity function (CSF): A curve that records an ob-
server’s ability to resolve detail in terms of contrast and spatial frequency.

cortical magnification factor: Describes the drop-off in retinal sensi-
tivity out toward the peripheral field. This factor is often given the label M. It has
been shown that M2 is directly proportional to the density of receptive fields of retinal
ganglion cells.

cost estimation: A simplification strategy to reduce the total work performed
by sometimes replacing an accurate, but expensive computation with a less accurate
but faster variant. This requires some care to still produce good simplifications.

critical fusion frequency (CFF): The frame rate at which a sequentially
presented series of images appears continuous, or is perceptually fused. Measured
in hertz (Hz). For most people, the CFF is roughly 70 Hz. Some speculate that the
CFF in the visual periphery is even higher. The term critical flicker frequency is used
synonymously.

CSF: See contrast sensitivity function.

decimation: See polygonal simplification.

degenerate face: A polygonal face (typically a triangle) whose corners have
been collapsed together by simplification operations. Such a triangle has degenerated
to a single point or line segment with no area, and can thus can be removed without
affecting the rendered image.

Delaunay triangulation: A triangulation scheme that maximizes the min-
imal angle of all triangles. Constrained Delaunay triangulation forces the triangula-
tion to include a specified set of edges. Conforming Delaunay triangulation extends
constrained Delaunay triangulation by adding vertices where necessary to guarantee
the Delaunay property.

delay: A general term referring to either system latency or system reponsiveness.

DEM: See digital elevation model.

digital elevation model (DEM): This term has come to mean any regular
grid of elevation values. The term DEM is more specifically applied to the digital
elevation products produced by the U.S. Geological Survey. See also triangulated
irregular network.

Team LRN

334 Glossary of Terms

Direct Memory Access (DMA): A scheme often used in graphics or video
game hardware that allows a dedicated processor or device to access system memory
without intervention from the other parts of the system, particularly the main CPU.
Optimizing data movement using DMA is a key optimization for many platforms.

discrete LOD: An LOD scheme where several discrete versions are created
for a complex object at various levels of detail. The system then selects the most
appropriate representation to display for an object at each frame. This is also referred
to as static or traditional LOD.

DMA: See direct memory access.

double buffering: The use of two buffers, labeled “front” and “back” to rep-
resent the displayed image. The front buffer contains the currently displayed image;
each new frame is rendered in the back buffer while the previous frame contained in
the front buffer is being displayed. When the new frame is complete, the buffers are
swapped. With frame locking , double-buffered systems can avoid tearing.

eccentricity: Angular deviation from the center of the retina, often taken as
the fovea.

edge collapse: A mesh simplification technique where the edge of a polygon
is collapsed to a single “average” vertex, whose location and attributes are typically
chosen to minimize the resulting error in the mesh. After the edge collapse, the local
neighborhood of the mesh is retriangulated and the now-degenerate triangles that
shared the edge are removed.

error field: In the standard LOD fidelity measure, the set of projected dis-
tances resulting from simplification error.

error metric: A self-consistent mathematical framework for evaluating how
similar one polygonal model is to another.

external validity: The extent to which an experimental manipulation has
meaning outside the lab (in the real world). Highly controlled experiments can cause
one to question external validity.

false negative: In a perceptual experiment, a viewer claims that a present
object is missing.

false positive: In a perceptual experiment, a viewer claims that a missing
object is present.

field of view: The solid angular region that is visible to the eye.

fill rate: See pixel fill rate.

first-order control: A control that translates each input value into one
output velocity. First-order controls include steering wheels (that map input to an-
gular velocity) and joysticks. See also zero-order control.

floating-cell clustering: A refinement to Rossignac and Borrel’s uni-
form-grid clustering scheme. Proposed by Low and Tan [Low 97] and based on a

Team LRN

Glossary of Terms 335

greedy cell collapse, floating cell clustering iteratively collapses the cell centered at the
most important vertex. See Section 5.1.6.

FL: See frame-latency manipulation.

FO: See frame-only manipulation.

FOV: See field of view.

fovea: The region of the retina most sensitive to detail.

frame: A complete image in an animated sequence. For example, cinematic film
uses 24 frames per second. Every element of a frame represents the same moment in
time.

frame locking: Synchronizing double buffering with the display refresh rate. If
double-buffered swaps are not synchronized with the refresh cycle, swaps can occur
in the midst of a screen refresh, resulting in tearing. Frame locking implements this
synchronization, effectively blocking rendering until the next refresh cycle begins.

frame-latency (FL) manipulation: A system manipulation that affects
both frame rate and system latency. On average, system responsiveness changes by
1.5 times the FL change. LOD is a typical method for performing FL manipulation.

frame-only (FO) manipulation: A system manipulation that affects frame
rate, but not system latency. On average, system responsiveness improves or worsens
by half the FO manipulation. A typical manipulation changes animation calculation
made before input is sampled.

frame rate: The number of complete images or frames displayed per second by
an interactive graphics application. Measured in hertz (Hz). Frame rate is primarily
a measure of image continuity.

frame time: The duration, or time of display, for one frame. Frame time is the
inverse of frame rate. Measured in milliseconds (ms).

frame-to-frame coherence: Coherence during an interactive or animated
rendering sequence. Many algorithms take advantage of the fact that changes from
frame to frame are usually small in an interactive application.

frameless rendering: A rendering technique that displays each new pixel
as it is calculated, rather than waiting for the entire screen to be rendered. To make
this effect more visually pleasing, the pixels are updated in a pseudo-random order.

gain: A measure of the amplification (or damping) of user input. If O is the output
of the control device and I is the input to it, gain is O/I. Gain greater than 1 amplifies
input, and gain less than 1 damps (attenuates) input. Gain is often measured in deci-
bels (dB), with positive values corresponding to amplification, and negative values to
damping.

gaze-directed LOD: Describes the class of techniques that select among level-
of-detail representations for an object by exploiting knowledge of the user’s gaze, such

Team LRN

336 Glossary of Terms

as gaze direction, the velocity of features across the user’s retinae, and ocular vergence
(see vergence eye movement).

generalization: In the field of geographic information systems (GIS), the
simplification of map information at different scales. It is analogous to the term level
of detail in the computer graphics field.

genus: Characterizes the topology of a surface, in effect providing a count of the
number of holes in an closed manifold. For example, a sphere and a cube have a genus
of zero, while a doughnut and a coffee cup have a genus of one.

geometric compression: A technique for reducing the storage requirements
of a complex surface by compressing the surface representation, such as compressing
the list of its vertices and/or polygons. This can also be done in a multiresolution
fashion to facilitate the progressive streaming of compressed models.

geometric error: Deviation of a simplified surface from the more accurate
original surface due to a reduction in the number of (x,y,z) spatial coordinates used
to represent the surface.

geometric simplification: See polygonal simplification.

geomorphs: A geometry-based technique for blending between two different
levels of detail by smoothly interpolating the positions of vertices in one resolution
level into the positions of vertices in the subsequent resolution level. See alpha blend-
ing.

global illumination: A class of rendering techniques that calculate surface
illumination, taking into account interaction among the objects and surfaces in the
scene. These algorithms can account for various intersurface lighting effects such as
shadows, color bleeding, reflection, and sometimes refraction and caustics. Included
are ray tracing, path tracing, and radiosity techniques.

global topology: In LOD, the structure of a connected polygonal mesh. The
global topology defines the genus, or number of holes, of the mesh surface.

greedy algorithm: An algorithm that always takes the best immediate or local
solution to resolve a problem, that is, it assumes that the path to the best globally
optimal solution can be found through a series of locally optimal steps. In terms of
simplification, this normally means that some quality measure is used to decide the
next operation that will have the least impact on the model. Greedy algorithms are
usually quicker but they may not always result in the globally optimal solution.

guaranteed error bound: See conservative bound.

Gaussian sphere: The natural space in which to express normal vectors. Each
point on the surface of a unit sphere may be interpreted as a unit-length vector from
the origin to that point. Distance between two of these normal vectors can be thought
of as the arc length required to walk on the sphere from one to the other.

half-edge collapse: An edge collapse in which one endpoint of the edge is
collapsed into the other endpoint, rather than collapsing both endpoints into a newly

Team LRN

Glossary of Terms 337

created “average” vertex. Since this removes one vertex of the edge from the mesh
but retains the other, half-edge collapse can be considered a restricted form of vertex
removal.

Hausdorff distance: The maximum of minimum distances between two
point sets. In other words, given two sets of points, each point finds its closest neigh-
bor in the other set, and we record the largest separation between these closest neigh-
bors. This is a form of maximum distance between two points sets, and we can apply
it to polygon meshes as well as a way to describe their object-space error.

hierarchical LOD: An LOD scheme in which multiple small adjacent objects
in a scene may be replaced with a larger representative object that may in turn be
combined with other representative objects and replaced by a still larger LOD. This
allows scenes with large numbers of small objects to be drastically simplified into
simple fused objects.

high-level perception: The processing at the later stages of the human vi-
sual system. Often called “top-down” perception. High-level perception is concerned
with how known objects are recognized. The focus of research by cognitive perceptual
psychologists. See also low-level perception.

hyperacuity: The paradoxical phenomenon in which certain visual stimuli can
be perceived that are smaller than the size of a single photoreceptor cell. Vernier acuity
is one such example of hyperacuity.

hysteresis: In the context of LOD, a degree of lag introduced into the switching
between levels of detail. Hysteresis is used to avoid the scintillating effect of objects
continually switching at the threshold distance.

image-driven simplification: A technique for generating LODs based on
rendered imagery. Multiple images are rendered for all candidate edge collapses and
an image-based comparison evaluates the resulting error, which is then used to pri-
oritize the edge collapse in a greedy simplification process. See Section 5.5.

imposters: See texture map imposters.

internal validity: The extent to which the conclusions drawn based on a
lab experiment are justified. Uncontrolled experimental variables can cause one to
question internal validity.

IO differencing: An early approach to managing the tradeoff between tempo-
ral and visual detail. Temporal detail is measured visually by comparing the currently
displayed view to the view that would result according to current input, producing
the IO difference. This difference is then summed with the error introduced by LOD
techniques. An IO differencing system minimizes this summed error.

I/O path: A system path from an input device to eventual display. Many measures
of temporal detail include the time required for input to travel along an I/O path.
Complex systems may have multiple I/O paths.

Team LRN

338 Glossary of Terms

isosurface: In volume data sets, the surface defined as all points at which the
value stored in the volume equals a particular value. For example, the bone–tissue
interface in a medical CT scan can be expressed as an isosurface at a given density.

isotropic LOD: Refers to the use of the same resolution level across a whole
object. This term is therefore equivalent to view-independent LOD.

just noticeable difference (JND): In a perceptual experiment, the level
of difference between two stimuli that viewers can reliably sense. JNDs will vary as
other variables, such as display luminance, are changed.

knapsack problem: An optimization problem similar to trying to fill a con-
tainer of limited capacity with an optimal selection of items so as to maximize the
value of the selected items. In the context of LOD management, the container is the
allotted rendering budget, and the items are the LODs chosen to represent each ob-
ject.

kernel: The region inside a planar polygon that has an unobstructed view of the
entire polygon boundary. These points must lie on the correct side of every polygon
edge (more precisely, of the line containing every polygon edge). If we place a vertex
inside this kernel, we can connect it to every polygon boundary vertex to create a
non–self-intersecting triangulation of the polygon.

latency-only (LO) manipulation: A system manipulation that affects
system latency, but not frame rate. System responsiveness changes directly in response
to the LO change. A typical manipulation adjusts filtering in the input subsystem.

late sampling: A latency-only manipulation that moves computation from
after the input sample to before it. By moving computation from an FL to an FO
context, latency and system responsiveness are reduced, while frame rate is unchanged.

lazy evaluation: A simplification strategy to reduce the total work performed
by putting off computations until they are truly necessary. This is a useful strategy
when some of the work is redundant and does not contribute to improved results.

level of detail: The real-time 3D computer graphics technique in which
a complex object is represented at different resolutions and the most appropriate
representation chosen in real time in order to create a tradeoff between image fidelity
and frame rate. This term is often used interchangeably to refer to both the graphics
technique and a single representation of an object.

local topology: In LOD, the connectivity of a mesh feature (face, edge, or
vertex) with its immediate neighborhood.

LOD: See level of detail.

low-level perception: The processing in the early stages of the human vi-
sual system. Often called “bottom-up” perception. Low-level perception begins with
the signal from the retina. The focus of research by psychophysicists. See also high-
level perception.

Team LRN

Glossary of Terms 339

manifold: A surface for which each edge belongs to exactly two faces. Topologi-
cally, a manifold is everywhere equivalent to a disc. Every vertex in a manifold triangle
mesh is adjacent to a single connected ring of triangles. A manifold with boundary is
a surface where each edge belongs to one or two faces.

mapping distance: The 3D distance between two surfaces measured with re-
spect to some well-behaved, bijective mapping function. The mapping function de-
termines which points on one surface correspond to which points on another surface;
we can then measure distances between corresponding points. These distances are al-
ways at least as large as the Hausdorff distance, but the mappings may better capture
the notion that these meshes are surfaces rather than arbitrary collections of points.

marching cubes: A technique for generating polygonal isosurfaces from volu-
metric data. Proposed by Lorensen and Cline [Lorenson 87], this fast local algorithm
has become a de facto standard for this task.

merge tree: A term used by Xia and Varshney [Xia 96] to describe their vertex
hierarchy structure for view-dependent LOD. Merge trees are created by an indepen-
dent high-level simplification framework (see Section 2.4) using edge collapses, and
thus form a balanced binary tree.

mesh simplification: See polygonal simplification.

MIP-mapping: A simple texture filtering technique widely supported by graphics
hardware. Represents textures using an image pyramid in which each cell is typically
the unweighted average of the four corresponding cells in the next finer level of the
pyramid.

multichannel model: A widely accepted contemporary theory of spatial vi-
sion which proposes that the human visual system processes images simultaneously
at different spatial scales, referred to as channels.

National Television Standards Committee (NTSC): Refers to
both the body and the specification it drew up in 1953 that defines the current stan-
dard for television transmission and display. The standard defines a display with 525
lines of resolution and an interlaced refresh rate of 60 Hz.

normal cone: A bounding volume in the space of normal vectors that may
be used to solve such problems as silhouette and backface detection. Given a set of
normal vectors, a normal cone is a cone guaranteed to contain every vector in the
set, while preferably remaining as small as possible. The cone is typically defined by a
central axis and an angular extent.

normal map: An image analogous to a texture map, except that the pixels repre-
sent a surface’s normal vectors rather than its colors. The red, green, and blue chan-
nels may encode the x, y, and z normal components. We can then shade the surface
using these normals rather than using triangle- or vertex-based normals.

NTSC: See National Television Standards Committee.

Team LRN

340 Glossary of Terms

object-space error: A quantity measured in the 3D object space indicating
how far off a simplified model is from its original representation. It may be a scalar,
such as the length of some 3D-error vector, a higher-order representation such as a
collection of vectors that represents the movement of selected points on the simplified
surface, or a volume that lies between the original and simplified representations. See
also screen-space error.

occlusion culling: A class of computer graphics algorithms aimed at quickly
discarding geometry that cannot be seen because of intervening objects. In scenes
with high-depth complexity, such as architectural walk-throughs, the vast portion of
the model cannot be seen from any given viewpoint and can be culled away by these
algorithms. This class of algorithms accelerates rendering, complementing level-of-
detail approaches: each technique eliminates geometry that the other could not.

octree: A simple hierarchical space-subdivision scheme in which the bounding
box of an object or scene is recursively subdivided into eight equally sized octants,
which may in turn be subdivided.

offset surface: A new surface generated by displacing all points of some
original surface by some distance along individual normal vectors.

open loop tasks: User tasks that require little or no feedback, leaving the
feedback loop “open”—the opposite of the closed-loop task. Such tasks are typically
highly practiced, and require little attention. Tasks that are predominantly open loop
include typing, shoe tying, baseball pitching, and clicking on large or well-known
menu choices. These tasks are less sensitive to temporal detail, but if they require
prediction (often during motion), they can be sensitive to frame rate and system
latency.

optic nerve: Transports the neural signals from the retina to the visual cortex
in the brain. In the retina, the fibers of the optic nerve are formed by the axons of the
retinal ganglion cells.

optimization: A process for adjusting some variables to seek a state that min-
imizes or maximizes some objective function. For LOD, we may wish to minimize
simplification error.

output signal: In manual control theory, the changes in system state over time,
treated as a signal with many component frequencies. A high-frequency output signal
corresponds to rapid, high-speed changes in user control of the system.

out-of-core simplification: A mesh simplification technique capable of
simplifying meshes too large to fit into main memory. Such techniques typically
require careful memory management with parts of the model paged in and out of
main memory as required.

overdraw: A measure of scene complexity often applied to games that measures
how many times, on average, each screen pixel is drawn to achieve the final displayed
image. More overdraw capability allows more complex effects in the scene, but re-
quires a greater pixel fill rate to achieve an acceptable frame rate.

Team LRN

Glossary of Terms 341

Panum’s fusional area: The depth range over which objects appear to be
fused by the eye for any given point of vergence (see vergence eye movement). Objects
outside of this range appear blurred.

parallel LOD: A level-of-detail technique where the task of computing the
set of polygons to display is partitioned into independent chunks and processed on
multiple physical processors at the same time.

parametric distance: A mapping distance for which the mapping function
is parameterized. This often occurs in the context of texture mapping, where a 2D
texture domain is mapped to a surface, allowing color images and other data to be
mapped to the surface. If the original and simplified surfaces both maintain texture
coordinates, we can use these coordinates to tell us which points on the surfaces
correspond to each other.

path tracing: A very high-quality, very computationally expensive global illu-
mination technique that extends ray tracing to allow rendering of diffuse surface-to-
surface reflections.

phase lag: A term from manual control theory that relates system responsiveness
to task. For a given frequency of the target signal, phase lag is the number of degrees
of phase that poor system responsiveness introduces between the target and output
system signals.

photoreceptor cells: The cells in the retina of the eye that detect light.
There are two different classes of photoreceptors: around 120 million to 130 million
rods that are achromatic and sensitive to motion, and around 5 million to 8 million
cones that provide color sensitivity. Rods tend to be used for night (scotopic) vision,
while cones are used in day (photopic) vision.

pixel fill-rate: The maximum rate at which the graphics hardware can write
to the framebuffer. Expensive pixel-shading operations (e.g., blending between four
textures, bump mapping, etc.) reduce the pixel fill rate, often dramatically. If pixel
fill rate is the bottleneck in graphics performance, reducing the number of polygons
using LOD will not help, since the simpler polygonal models will cover roughly the
same number of pixels.

pixel shader: Defines the processing applied to a rendered pixel before it
reaches the frame buffer. A pixel shader generally involves one or more texture
lookups, interpolation of vertex properties, and possibly a read-modify-write of the
existing frame buffer contents. Pixel shaders are generally hardware specific and are
defined as either a set of state switches or pseudo code interpreted by the specific
rendering engine.

PM: See progressive meshes.

polygonal simplification: The general term used to describe the action of
taking an original set of polygons and producing a second set of polygons that is less
complex, that is, contains fewer polygons and/or vertices.

Team LRN

342 Glossary of Terms

popping effect: The noticeable flicker that can occur when the graphics system
switches between different levels of detail.

previewing display: A display that forecasts target state, enabling users to
more effectively compensate for poor system responsiveness. Common examples
include the view of the road ahead in racing games and horizons in flight simulators.

predictive display: A display that forecasts system state, enabling users to
more effectively compensate for poor system responsiveness. Many flight simulators
using this technique display the expected position of the aircraft over the current
view.

progressive LOD transmission: The act of progressively transmitting
a large model over the Web. The client receives an initial coarse model and then a
stream of updates that add further refinement at each step.

progressive meshes (PM): A highly influential continuous LOD method
introduced by Hugues Hoppe and based on edge collapse operations. Constructed
using a greedy high-level simplification framework, progressive meshes were later
extended by Hoppe to view-dependent progressive meshes.

pyramid: A multiresolution data structure in which a regular grid of data points
is represented at a number of levels of detail, where each level is downsampled to half
the resolution of the previous one, that is, one quarter the number of vertices. Image
pyramids are often used to summarize and filter properties of images.

QSplat: A view-dependent rendering system by Rusinkiewicz and Levoy, based
on splats rather than polygons and designed for interactive visualization of massive
models.

quadric error metric: A technique for evaluating the error introduced dur-
ing simplification that uses the sum of squared distances among vertices of a sim-
plified mesh and the polygons of the original mesh. The quadric can be represented,
stored, and accumulated efficiently as a symmetric 4 × 4 matrix.

quadtree: A hierarchical tree structure having four branches that is often used
to generate multiresolution terrain meshes. This is normally implemented as a grid
structure where each cell can be recursively split into four quadrants. See also bintree
and octree.

radiosity: A global illumination technique that explicitly models radiative trans-
fer among surfaces as a system of equations to be solved. Radiosity assumes a simplis-
tic, diffuse-only lighting model, but unlike other global illumination algorithms (e.g.,
ray tracing or path tracing) produces a 3D model instead of an image as final output.

refresh cycle time: The time between display refresh events. Refresh cycle
time is the inverse of refresh rate.

refresh rate: The rate at which the display screen is refreshed, measured in Hz.
In most graphics systems, display refresh is accomplished in a hardware subsystem.
Refresh rates are therefore constant and independent of frame rate.

Team LRN

Glossary of Terms 343

retessellation: The process of recalculating the set of polygons over a sur-
face.

retinal ganglion cells: The output neurons that encode and transmit
information from the eye to the brain. The inputs to these cells come from the
photoreceptor cells via the collector cells. Retinal ganglion cells are organized with
circular receptive fields that are classed as either on-center or off-center.

retriangulation: The process of recalculating the set of triangles over a sur-
face. Delaunay triangulation, which minimizes the maximum angle of the triangles
created, is one popular technique for calculating the set of triangles over a surface.

rigid mesh: In game programming, a mesh that does not require any complex
skinning; all the mesh vertices are transformed by a single matrix or bone (see skinned
mesh). These meshes are normally useful to represent rigid and inanimate objects. A
rigid mesh is generally the fastest type of mesh to render.

ROAM: Real-time Optimally Adapting Meshes, a view-dependent level of detail
technique specialized for terrain grids.

root mean squared error (RMS): A common automatic image fidelity
measure, based on the root of the summed pixel by pixel squared differences: Erms =
(�(Oxy − Sxy)

2)1/2, where Oxy and Sxy are pixels from the original and simplified
images.

saccade: A rapid movement of the eye which is made in order to fixate a target
onto the fovea.

saccadic suppression: The effect that the visual system seems to shut down
to some degree during reflex rapid-eye movements known as saccades. That is, even
though our point of fixation moves at very high velocities during a saccade, we do
not experience blurred vision.

sampling delay: The delay between the completion of a significant user action
or input event, and its subsequent sampling by the system. Since input is effectively
sampled at the frame rate, sampling delay is equal to half of the frame time on average.

screen–space error: A quantity measured in the 2D screen space indicating
how far off a simplified model is from its original representation. Convenient units
might be pixels, millimeters, and so on. The screen-space error might tell you how
many millimeters off an object’s silhouette appears on the screen. Some applications
balance the tessellation of an entire scene by maintaining a roughly uniform screen-
space error for all objects. See also object-space error.

second order control: A control that translates each input value into one
output acceleration. Second-order controls are not common, but include control of
spacecraft and the thrust control in the video game Asteroids.

silhouette preservation: A technique that allocates higher resolution
around the visual silhouette of a model. Motivated by the high perceptual importance

Team LRN

344 Glossary of Terms

of silhouettes in human vision, silhouette preservation implies a view-dependent
LOD algorithm.

single buffering: The use of only one frame buffer to represent the displayed
image. Such systems exhibit tearing as new frames overwrite previous frames.

skinned mesh: A mesh in which each component vertex is potentially trans-
formed by a different matrix, resulting in final triangles that will deform as these
matrices are changed or animated. These transforming matrices are often referred
to as the “bones” of the mesh. If each vertex can be transformed by the blended result
of multiple matrices, then the skinning is referred to as weighted. These techniques
are used to give models a more natural appearance.

spatial frequency: A measure of the degree of spatial detail that the eye can
perceive. This is normally given in units of cycles per degree of visual arc (c/deg).

spatiotemporal threshold surface: The surface that describes the
sensitivity of an observer to stimuli of varying spatial and temporal characteristics.

stability: The ability of a dynamic control system—manual or otherwise—to
reliably match current system state to target state without wild oscillations or diverg-
ing completely from the target state. In control theory, systems are unstable whenever
phase lag is over 180 degrees and gain is greater than 1.

standard image: In a visual fidelity comparison, the original image or unsim-
plified model.

standard LOD fidelity measure: The widely spread run-time LOD mea-
sure that projects precomputed distances resulting from simplification error into the
image plane, and finds their maximum.

system latency (or lag): The age of the currently displayed frame, or
alternatively the amount of time it takes for an input sample to be displayed in
a frame. In systems with more than one I/O path, there will be multiple system
latencies. Measured in milliseconds (ms).

system responsiveness: The time from the moment a user action (such as a
change in direction) is executed, until that action is displayed. System responsiveness
includes system latency as well as an additional delay between the completion of the
user action and the moment it is sampled. Measured in milliseconds (ms).

target signal: In manual control theory, the changes in target state over time,
treated as a signal with many component frequencies. A high-frequency target signal
corresponds to a challenging task that requires rapid, high-speed user input.

tearing: The display of two (or more) partial frames at the same time. Typically,
one partially complete newer frame is displayed above a now incomplete older frame.
The visual (also temporal) boundary between them looks like a “tear” in the image.
Tearing is a symptom of single buffering, or systems without frame locking.

Team LRN

Glossary of Terms 345

temporal detail: Interactivity, or the temporal information presented to the
user in an interactive graphics application. This might be measured using frame rate,
system latency, or system responsiveness.

tessellation: The process of subdividing a surface into a mesh of polygons,
often triangles or quadrilaterals.

texture map imposters: A level-of-detail technique where a number of
polygons in a scene are replaced with a simple texture-mapped primitive that rep-
resents a rendering of those polygons from a particular viewpoint. Sprites, decal
textures, and lightmaps are also examples of imposters. Also referred to as a stand-in.

texture seam: An edge or series of edges of an otherwise continuous mesh
where the texture coordinates for the edge vertices are different among the faces that
share that edge. A texture seam is necessary when creating a complex mesh using a
composited texture, where multiple parts of the image are positioned nonspatially on
a single texture to improve efficient use of memory. This practice is very common in
game situations.

threshold contrast: The minimum contrast required to see a target.

TIN: See triangulated irregular network.

T-junction: A generally undesirable topological feature where a vertex from a
higher LOD triangle lies on the edge of a lower LOD triangle but does not share one of
its vertices. This can cause bleeding tears to appear in the mesh due to small floating-
point rounding differences.

topology: See local topology and global topology.

traditional LOD: See view-independent LOD.

triangulated irregular network (TIN): A surface representation,
often used for topographic elevation data, that uses a tessellation of nonoverlapping
triangles where the vertices of the triangles can be spaced irregularly over the surface.
See also digital elevation model.

triple buffering: The use of a third frame buffer to improve frame rates. Af-
ter rendering in the second buffer is complete, double-buffered, frame-locked systems
are blocked until the next refresh cycle begins. Triple-buffered systems can begin ren-
dering in the third buffer, avoiding idle time.

triangulation: A technique to reduce one or more n-sided polygons into a set
of three-sided polygons, that is, triangles.

TVU relationship: The relationship among temporal detail (T), visual detail
(V), and their effect on application usability (U). Across platforms and for a fixed
task, this would theoretically form a surface; the LOD management system should
find the point of maximum usability on this surface.

VDPM: See view dependent progressive meshes.

Team LRN

346 Glossary of Terms

vergence eye movement: The synchronized movement of both eyes to focus
on an object at a particular depth. This can either be a convergence or a divergence
movement depending upon whether the two eyes rotate toward or away from each
other. This process, along with accommodation, allows us to focus sharply on a given
object.

vernier acuity: A form of hyperacuity where it is possible to discriminate the
noncolinearity of two thick abutting lines to a resolution of 2 to 5 seconds of arc. This
occurs despite the fact that our photoreceptor cells subtend around 25 to 30 seconds
or arc.

vertex clustering: A simplification technique in which a single vertex is cho-
sen to represent a group of vertices, normally chosen as the average of all locations. A
vertex-clustering operation is a generalization of an edge collapse.

vertex decimation: An LOD-generation, algorithm-based vertex removal by
Schroeder et al., fast and fairly robust in practice. We discuss decimation in detail in
Section 5.2.

vertex hierarchy: A data structure used by view-dependent LOD algorithms.
A hierarchy of vertex-merge operations encodes a partial ordering of the local simpli-
fication operations applied during preprocessing. View-dependent LOD applies these
operations according to view-dependent criteria at runtime, tailoring simplification
on the fly to the particular viewing parameters. Vertex hierarchies are described in
detail in Section 4.3.2.

vertex removal: A local mesh simplification operator that removes a vertex and
its associated triangles, then retriangulates the resulting hole. In a manifold mesh, a
vertex removal operation will reduce the triangle count by two.

vertex split: A technique to refine a coarser mesh into a more detailed repre-
sentation by replacing a single vertex with two vertices and thus adding new polygons
to the mesh. This can be considered the inverse of an edge collapse.

vertex shader: The type of processing applied to source vertex data to trans-
form, project, clip, light, or otherwise prepare the data for on-screen display. De-
pending on the platform, vertex shaders might be represented as explicit assembly-
language code, a selectable “mode” switch or switches, or a vendor-designed pseudo
code that controls the vertex-processing unit.

vertex tree: The term used by Luebke and Erikson [Luebke 97] to describe their
vertex hierarchy structure for view-dependent LOD. In their algorithm, vertex trees
are created by an independent high-level simplification framework using cell collapse
operations in an octree, so nodes in the vertex tree have at most eight children. Vertices
at the top of the vertex tree represent the coarsest resolution.

vertical refresh rate: See refresh rate.

vertical retrace: See refresh cycle time.

Team LRN

Glossary of Terms 347

video game: Refers to hardware or software specifically designed for fixed-
function, low-cost hardware connected to a standard television display. Distinct from
computer game, used here to refer to games designed for personal computers.

view-dependence tree: The term used by El-Sana and Varshney [El-Sana
99a, 99b] to describe their vertex hierarchy structure for view-dependent LOD. View-
dependence trees consist of a binary vertex hierarchy created from edge collapse
and vertex-pair collapse operations applied by a interleaved high-level simplification
framework.

view-dependent LOD: A level-of-detail scheme in which surface detail is var-
ied dynamically, retessellating objects on the fly relative to the user’s viewpoint, and
continuously, allowing a single object to span multiple levels of detail.

view-dependent progressive meshes (VDPM): The term used by
Hoppe [97] to describe his vertex hierarchy structure for view-dependent LOD.
VDPM extend Hoppe’s progressive mesh structure, a binary hierarchy of edge col-
lapse operations created by a greedy high-level simplification framework (see Section
2.4).

view-frustum culling: A graphics acceleration technique based on quickly
discarding portions of the scene that lie outside the user’s field of view.

view-independent LOD: See discrete LOD.

visual acuity: A measure of the smallest detail that an observer can resolve
under ideal illumination conditions.

visual detail: The visual information presented to the user in an interactive
graphics application. This might be measured in a number of ways, including poly-
gon count and spatial accuracy in pixels.

visual masking: The perceptual phenomenon that the presence of one visual
pattern can affect the visibility of another pattern. For example, a large adjacent stim-
ulus (in time or space) can cause the threshold of a smaller stimulus to be increased,
that is, the smaller stimulus needs to be more intense for it to be visible.

volume texture: A texture that contains three dimensions of pixel informa-
tion. The format for a volume texture is generally similar to an array of standard 2D
textures, but often the hardware can perform texture-filtering operations in this third
access. Can be useful when constructing animated textures, multiview imposters, or
certain types of lighting and effects.

Weber’s law: States that the change in a stimulus intensity that will be just no-
ticeable is a function of the percentage change in stimulus intensity, not the absolute
change in stimulus intensity, that is, the larger the stimulus, the larger the change
required for a difference to be perceived.

zero-order control: A control that translates each input value to one output
value. Zero-order controls include sliding controls of light level and slider bars in
windowed user interfaces. See also first-order control.

Team LRN

Team LRN

References

Glide 3.0 Programming Guide. 3dfx Interactive, Inc., San Jose, CA.
www.bme.jhu.edu/resources/whitaker/doc/Glide3/glide3pgm.pdf. 1998.

Ahumada, A. Computational Image Quality Metrics: A Review. SID Digest. vol. 24.
pp. 305–308. 1993.

Ahumada, A and B Beard. A Simple Vision Model for Inhomogeneous Image Quality
Assessment. Society for Information Display International Symposium Digest of
Technical Papers. pp. 40.1. 1998.

Airey, J M, J H Rohlf, and Frederick P Brooks, Jr. Towards Image Realism with
Interactive Update Rates in Complex Virtual Building Environments. Proceedings
of 1990 Symposium on Interactive 3D Graphics. pp. 41–50. 1990.

Akeley, K, P Haeberli, and D Burns. tomesh.c: (C Program). In SGI Developer’s
Toolbox. CD-ROM. Silicon Graphics, Inc. 1990.

Aliaga, D, J Cohen, A Wilson, E Baker, H Zhang, C Erikson, K Hoff, T Hudson,
W Stuerzlinger, R Bastos, M Whitton, F Brooks, and D Manocha. MMR: An
Interactive Massive Model Rendering System Using Geometric and Image-Based
Acceleration. Proceedings of 1999 Symposium on Interactive 3D Graphics. pp. 199–
206, 237. 1999.

Andrews, P R and F W Campbell. Images at the Blind Spot. Nature. vol. 353(6342).
pp. 308. 1991.

Angel, E. Vertex Arrays. In: Interactive Computer Graphics: A Top-Down Approach
with OpenGL. Addison-Wesley, Reading, MA. pp. 158–160. 2000.

Anstis, S M and P Cavanagh. A Minimum Motion Technique for Judging Equilu-
minance in Colour Vision. In: J D Mollon and L T Sharpe, eds. Colour Vision:
Physiology and Psychophysics. Academic Press, London. pp. 156–166. 1983.

Astheimer, P. What You See Is What You Hear: Acoustics Applied in Virtual Worlds.
Proceedings of IEEE 1993 Symposium on Research Frontiers in Virtual Reality.
pp. 100–107. 1993.

Astheimer, P and M-L Pöche. Level-of-Detail Generation and Its Application in
Virtual Reality. Proceedings of VRST ’94. pp. 299–309. 1994.

Azuma, R and G Bishop. Improving Static and Dynamic Registration in an Optical
See-Through HMD. Proceedings of SIGGRAPH 94. pp. 197–204. 1994.

349

Team LRN

350 References

Bahill, A T, D Adler, and L Stark. Most Naturally Occurring Human Saccades Have
Magnitudes of 15 Degrees or Less. Investigative Ophthalmology. vol. 14. pp. 468–
469. 1975.

Bajaj, C and M-S Kim. Generation of Configuration Space Obstacles: The Case of a
Moving Sphere. IEEE Journal of Robotics and Automation. vol. 4(1). pp. 94–99.
1988.

Bajaj, C and D Schikore. Error-Bounded Reduction of Triangle Meshes with
Multivariate Data. SPIE. vol. 2656. pp. 34–45. 1996.

Bajaj, C, F Bernardini, and G Xu. Reconstructing Surfaces and Functions on Surfaces
from Unorganized 3D Data. Algorithmica. vol. 19. pp. 243–261. 1997.

Bajaj, C, V Pascucci, and G Zhuang. Progressive Compression and Transmission of
Arbitrary Triangular Meshes. Proceedings of IEEE Visualization ’99. pp. 307–316.
1999.

Banks, M S. The Development of Spatial and Temporal Contrast Sensitivity. Current
Eye Research. vol. 2. pp. 191–198. 1982.

Barnes, G. Vestibulo-Ocular Function During Coordinated Head and Eye Move-
ments to Acquire Visual Targets. Journal of Physiology. vol. 287. pp. 127–147.
1979.

Bartram, D. Levels of Coding in Picture-Picture Comparison Tasks. Memory and
Cognition. vol. 4. pp. 592–602. 1976.

Biederman, I. Recognition-by-Components: A Theory of Human Image Under-
standing. Psychological Review. vol. 94. pp. 115–147. 1987.

Birkel, P A. SEDRIS Geospatial Reference Model. SEDRIS Document Set. 1997.

Blake, E H. Complexity in Natural Scenes: A Viewer Centered Metric for Computing
Adaptive Detail. Ph.D. Thesis. Queen Mary College, London University. 1989.

Blakemore, C and F W Campbell. On the Existence of Neurones in the Human Visual
System Selectively Sensitive to the Orientation and Size of Retinal Images. Journal
of Physiology. vol. 203. pp. 237–260. 1969.

Blow, J. Implementing a Texture Caching System. Game Developer Magazine. pp. 46–
56. 1998.

Blow, J. Terrain Rendering at High Levels of Detail. Proceedings of Game Developers
Conference 2000. 2000.

Blow, J. Terrain Rendering Research for Games. Course Notes for SIGGRAPH 2000
Course #39. 2000.

Bogomjakov, A and C Gotsman. Universal Rendering Sequences for Transparent
Vertex Caching of Progressive Meshes. Proceedings of Graphics Interface 2001.
pp. 81–90. 2001.

Bolin, M R and G W Meyer. A Frequency Based Ray Tracer. Proceedings of SIGGRAPH
95. pp. 409–418. 1995.

Team LRN

References 351

Bolin, M and G Meyer. A Perceptually Based Adaptive Sampling Algorithm. Proceed-
ings of SIGGRAPH 98. pp. 299–309. 1998.

Brodsky, D and B Watson. Model Simplification Through Refinement. Proceedings of
Graphics Interface 2000. pp. 221–228. 2000.

Bryson, S. Implementing Virtual Reality. SIGGRAPH 93 Course #43 Notes. ACM
SIGGRAPH 1993. pp. 16.1–16.12. 1993.

Burr, D C and J Ross. Contrast Sensitivity at High Velocities. Vision Research. vol. 22.
pp. 479–484. 1982.

Caelli, T M and G Moraglia. On the Detection of Gabor Signals and Discriminations
of Gabor Textures. Vision Research. vol. 25. pp. 671–684. 1985.

Campbell, F W and D G Green. Optical and Retinal Factors Affecting Visual
Resolution. Journal of Physiology. vol. 181. pp. 576–593. 1965.

Campbell, F W and R W Gubisch. Optical Quality of the Human Eye. Journal of
Physiology. vol. 186. pp. 558–578. 1966.

Campbell, F W, J J Hulikowski, and J Levinson. The Effect of Orientation on the
Visual Resolution of Gratings. Journal of Physiology. vol. 187. pp. 427–436. 1966.

Campbell, F W and J G Robson. Application of Fourier Analysis to the Visibility of
Gratings. Journal of Physiology. vol. 197. pp. 551–566. 1968.

Campbell, F W, R H S Carpenter, and J Z Levinson. Visibility of Aperiodic Patterns
Compared with that of Sinusoidal Gratings. Journal of Physiology. vol. 204.
pp. 283–209. 1969.

Carlson, D and J Hodgins. Simulation Levels of Detail for Real-time Animation.
Proceedings of Graphics Interface ’97. pp. 1–8. 1997.

Carmo, M do. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood
Cliffs, NJ. 1976.

Catmull, E E. A Subdivision Algorithm for Computer Display of Curved Surfaces. Ph.D.
Thesis. Department of Computer Science. University of Utah, Salt Lake City,
Utah. 1974.

Cavanagh, P. Vision at Equiluminance. In: J R Cronly-Dillon, ed. Vision and Visual
Dysfunction: Limits of Vision. CRC Press, Boca Raton, FL. pp. 234–250. 1991.

Chazelle, B. An Optimal Algorithm for Intersecting Three-Dimensional Convex
Polyhedra. SIAM Journal of Computing. vol. 21(4). pp. 671–696. 1992.

Choudhury, P and B Watson. Fully Adaptive Simplification of Massive Meshes.
Technical Report. Department of Computer Science, Northwestern University,
Evanston, IL.
www.cs.northwestern.edu/~watsonb/school/docs/vmrsimp.tr.pdf. 2000.

Chrislip, C A and J F Ehlert Jr. Level of Detail Models for Dismounted Infantry in
NPSNET-IV.8.1.Master’s Thesis. Naval Postgraduate School, Monterey, CA. 1995.

Team LRN

352 References

Cignoni, P, C Montani, and R Scopigno. A Comparison of Mesh Simplification
Algorithms. Computers & Graphics. vol. 22(1). pp. 37–54. 1998.

Cignoni, P, C Rocchini, and R Scopigno. Metro: Measuring Error on Simplified
Surfaces. Computer Graphics Forum. vol. 17(2). pp. 167–174. 1998.

Clark, J H. Hierarchical Geometric Models for Visible Surface Algorithms. Commu-
nications of the ACM. vol. 19(10). pp. 547–554. 1976.

Cohen, J, A Varshney, D Manocha, G Turk, H Weber, P Agarwal, F Brooks, and
W Wright. Simplification Envelopes. Proceedings of SIGGRAPH 96. pp. 119–128.
1996.

Cohen, J, D Manocha, and M Olano. Simplifying Polygonal Models Using Successive
Mappings. Proceedings of IEEE Visualization ’97. pp. 395–402. 1997.

Cohen, J, M Olano, and D Manocha. Appearance-Preserving Simplification. Proceed-
ings of SIGGRAPH 98. pp. 115–122. 1998.

Cohen, J D. Appearance-Preserving Simplification of Polygonal Models. Ph.D. Thesis.
Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC. 1998.

Cohen, J D, D G Aliaga, and W Zhang. Hybrid Simplification: Combining Multi-
Resolution Polygon and Point Rendering. Proceedings of IEEE Visualization 2001.
pp. 37–44, 539. 2001.

Cohen-Or, D and Y Levanoni. Temporal Continuity of Levels of Detail in Delaunay
Triangulated Terrain. Proceedings of IEEE Visualization ’96. pp. 37–42. 1996.

Coltman, J W and A E Anderson. Noise Limitations to Resolving Power in Electronic
Imaging. Proceedings of the Institute of Radio Engineers. vol. 48. pp. 858–865. 1960.

Cosman, A and R Schumacker. System Strategies to Optimize CIG Image Content.
Proceedings of 1981 Image II Conference. pp. 463–480. 1981.

Cowan, W B and C Ware. Elementary Colour coding. SIGGRAPH 1985 Course #3
Notes: Colour Perception. pp. 55–95. 1985.

Daly, S. The Visible Differences Predictor: An Algorithm for the Assessment of
Image Fidelity. In: A Watson, ed. Digital Images and Human Vision. MIT Press,
Cambridge, MA. pp. 179–206. 1993.

Daly, S. Engineering Observations from Spatiovelocity and Spatiotemporal Visual
Models. Proceedings of Human Vision and Electronic Imaging III, SPIE 3299.
pp. 180–191. 1998.

Davis, D, W Ribarsky, T Y Jiang, N Faust, and S Ho. Real-Time Visualization
of Scalably Large Collections of Heterogeneous Objects. Proceedings of IEEE
Visualization ’99. pp. 437–440. 1999.

De Haemer, M, Jr and M J Zyda. Simplification of Objects Rendered by Polygonal
Approximations. Computers & Graphics. vol. 15(2). pp. 175–184. 1991.

Deering, M. Geometry Compression. Proceedings of SIGGRAPH 95. pp. 13–20. 1995.

Team LRN

References 353

DeFloriani, L, B Falcidieno, and C Pien-Ovi. A Delaunay-Based Method for Surface
Approximation. Proceedings of Eurographics ’83. pp. 333–350. 1983.

DeFloriani, L. A Pyramidal Data Structure for Triangle-Based Surface Description.
IEEE Computer Graphics and Applications. vol. 9(2). pp. 67–78. 1989.

DeFloriani, L and E Puppo. Hierarchical Triangulation for Multiresolution Surface
Description. ACM Transactions on Graphics. vol. 14(4). pp. 363–411. 1995.

DeFloriani, L, L Marzano, and E Puppo. Multiresolution Models for Topographic
Surface Description. The Visual Computer. vol. 12(7). pp. 317–345. 1996.

DeFloriani, L, P Magillo, and E Puppo. Building and Traversing a Surface at Variable
Resolution. Proceedings of IEEE Visualization ’97. pp. 103–110. 1997.

DeFloriani, L, P Magillo, and E Puppo. Efficient Implementation of Multi-
Triangulations. Proceedings of IEEE Visualization ’98. pp. 43–50. 1998.

DeFloriani, L, P Magillo, and E Puppo. VARIANT: A System for Terrain Modeling at
Variable Resolution. GeoInformatica. vol. 4(3). pp. 287–315. 2000.

DeFloriani, L and P Magillo. Multiresolution Mesh Representation: Models and Data
Structures. In: M Floater, A Iske, and E Qwak, eds., Principles of Multiresolution
Geometric Modeling. Springer-Verlag, Berlin, New York. 2002.

Standards for Digital Elevation Models. Technical Report. US Department of the
Interior, US Geological Survey, National Mapping Division, Reston, VA. January
1998.

Deussen, O, P Hanrahan, B Lintermann, R Mech, M Pharr, and P Prusinkiewics.
Realistic Modeling and Rendering of Plant Ecosystems. Proceedings of SIGGRAPH
98. pp. 275–286. 1998.

Dörrie, H. Euler’s Problem of Polygon Division. In: 100 Great Problems of Elementary
Mathematics: Their History and Solutions. Dover, NY. pp. 21–27. 1965.

Drasdo, N. The Neural Representation of Visual Space. Nature. vol. 266. pp. 554–556.
1977.

Duchaineau, M, M Wolinsky, D E Sigeti, M C Miller, C Aldrich, and M B Mineev-
Weinstein. ROAMing Terrain: Real-Time Optimally Adapting Meshes. Proceed-
ings of IEEE Visualization ’97. pp. 81–88. 1997.

Dumont, R, F Pellacini, and J A Ferwerda. A Perceptually-Based Texture Caching
Algorithm for Hardware-Based Rendering. Proceedings of 2001 Eurographics
Workshop on Rendering. pp. 249–256. 2001.

Eck, M, T DeRose, T Duchamp, H Hoppe, M Lounsbery, and W Stuetzle. Multireso-
lution Analysis of Arbitrary Meshes. Proceedings of SIGGRAPH 95. pp. 173–182.
1995.

Edelsbrunner, H, D Kirkpatrick, and R Seidel. On the Shape of a Set of Points in the
Plane. IEEE Transactions on Information Theory. vol. 29. pp. 551–559. 1983.

Team LRN

354 References

Edelsbrunner, H and E Mucke. Three-Dimensional Alpha Shapes. ACM Transactions
on Graphics. vol. 13. pp. 43–72. 1994.

Edelsbrunner, H, D Letscher, and A Zomorodian. Topological Persistence and
Simplification. Proceedings of 41st Annual IEEE Symposium on Foundations of
Computer Science. pp. 454–463. 2000.

Edelsbrunner, H. Geometry and Topology for Mesh Generation. Cambridge University
Press, Cambridge, New York. 2001.

Edelsbrunner, H and A Zomorodian. Computing Linking Numbers in a Filtration.
In: Algorithms in Bioinformatics (LNCS 2149). Springer, Berlin, New York.
pp. 112–127. 2001.

Elmes, D, B Kantowitz, and H Roediger III. Research Methods in Psychology. West
Publishing Company, St Paul, MN. 1992.

El-Sana, J and A Varshney. Topology Simplification for Polygonal Virtual Environ-
ments. IEEE Transactions on Visualization and Computer Graphics. vol. 4(2).
pp. 133–144. 1998.

El-Sana, J and A Varshney. Generalized View-Dependent Simplification. Computer
Graphics Forum. vol. 18(3). pp. 83–94. 1999.

El-Sana, J and A Varshney. View-Dependent Topology Simplification. Proceedings of
Virtual Environments ’99. 1999.

El-Sana, J, F Evans, A Kalaiah, A Varshney, S Skiena, and E Azanli. Efficiently
Computing and Updating Triangle Strips for Real-Time Rendering. Computer-
Aided Design. vol. 32(13). pp. 753–772. 2000.

El-Sana, J, N Sokolovsky, C Silva. Integrating Occlusion Culling with View-
Dependent Rendering, Proceedings IEEE Visualization 2001. pp. 371–378. 2001.

El-Sana J, O Hadar. Motion-Based View-Dependent Rendering. To be published in
Computer and Graphics (June). 2002.

Enroth-Cugell, C and J G Robson. The Contrast Sensitivity of Retinal Ganglion Cells
of the Cat. Journal of Physiology. vol. 187. pp. 517–552. 1966.

Erikson, C and D Manocha. GAPS: General and Automatic Polygonal Simplification.
Proceedings of 1999 ACM Symposium on Interactive 3D Graphics. pp. 79–88. 1999.

Erikson, C. Hierarchical Levels of Detail to Accelerate the Rendering of Large Static and
Dynamic Polygonal Environments. Ph.D. Thesis. University of North Carolina at
Chapel Hill, Chapel Hill, NC. 2000.

Evans, F, S Skiena, and A Varshney. Optimizing Triangle Strips for Fast Rendering.
Proceedings of IEEE Visualization ’96. pp. 319–326. 1996.

Evans, W, D Kirkpatrick, and G Townsend. Right Triangular Irregular Networks. Tech-
nical Report 97–09. Department of Computer Science, University of Arizona,
Tucson. 1997.

Team LRN

References 355

Falby, J S, M J Zyda, D R Pratt, and R L Mackey. NPSNET: Hierarchical Data
Structures for Real-Time Three-Dimensional Visual Simulation. Computers and
Graphics. vol. 17(1). pp. 65–69. 1993.

Ferwerda, J A, S Pattanaik, P Shirley, and D P Greenberg. A Model of Visual masking
for Computer Graphics. Proceedings of SIGGRAPH 97. pp. 143–152. 1997.

Ferwerda, J A. Elements of Early Vision for Computer Graphics. IEEE Computer
Graphics and Applications. vol. 21(5). pp. 22–33. 2001.

Fournier, A and D Y Montuno. Triangulating Simple Polygons and Equivalent
Problems. ACM Transactions on Graphics. vol. 3. pp. 153–174. 1984.

Fowler, R J and J J Little. Automatic Extraction of Irregular Network Digital Terrain
Models. Proceedings of SIGGRAPH 79. pp. 199–207. 1979.

Funkhouser, T A. Database and Display Algorithms for Interactive Visualization of
Architectural Models. Ph.D. Thesis. University of California at Berkeley, Berkeley,
CA. 1993.

Funkhouser, T A and C H Séquin. Adaptive Display Algorithm for Interactive Frame
Rates During Visualization of Complex Virtual Environments. Proceedings of
SIGGRAPH 93. pp. 247–254. 1993.

Garland, M and P S Heckbert. Fast Polygonal Approximation of Terrains and Height
Fields. Technical Report CMU-CS-95–181. School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA. 1995.

Garland, M and P Heckbert. Surface Simplification Using Quadric Error Metrics.
Proceedings of SIGGRAPH 97. pp. 209–216. 1997.

Garland, M and P Heckbert. Simplifying Surfaces with Color and Texture Using
Quadric Error Metrics. Proceedings of IEEE Visualization ’98. pp. 263–270. 1998.

Garland, M. Quadric-Based Polygonal Surface Simplification. Ph.D. Thesis. Carnegie
Mellon University, Pittsburgh, PA. 1999.

Garland, M, A Willmott, and P S Heckbert. Hierarchical Face Clustering on Polygonal
Surfaces. Proceedings of 2001 ACM Symposium on Interactive 3D Graphics. pp. 49–
58. 2001.

Gerstner, T. Multiresolution Visualization and Compression of Global Topographic
Data. To be published in GeoInformatica. 2002.

Gieng, T S, B Hamann, K L Joy, G L Schussman, and I J Trotts. Constructing Hi-
erarchies for Triangle Meshes. IEEE Transactions on Visualization and Computer
Graphics. vol. 4(2). pp. 145–161. 1998.

Girod, B. What’s Wrong with Mean-Squared Error? In: A Watson, ed. Digital Images
and Human Vision. MIT Press, Cambridge, MA. pp. 207–220. 1993.

Gobbetti, E and E Bouvier. Time-Critical Multiresolution Scene Rendering. Proceed-
ings of IEEE Visualization ’99. pp. 123–130. 1999.

Team LRN

356 References

Greene, N, M Kass, and G Miller. Hierarchical Z-Buffer Visibility. Proceedings of
SIGGRAPH 92. pp. 319–326. 1992.

Gregory, R L. Vision with Isoluminant Colour Contrast: 1. A Projection Technique
and Observations. Perception. vol. 6. pp. 113–119. 1977.

Gregory, R L. Eye and Brain: The Psychology of Seeing. 4th ed. Weidenfeld and
Nicolson, London. 1990.

Gross, M, R Gatti, and O Staadt. Fast Multiresolution Surface Meshing. Proceedings
of IEEE Visualization ’95. pp. 135–142. 1995.

Guéziec, A. Surface Simplification with Variable Tolerance. Proceedings of Second
Annual International Symposium on Medical Robotics and Computer Assisted
Surgery (MRCAS ’95). pp. 132–139. 1995.

Guéziec, A, F Lazarus, G Taubin, and W Horn. Simplifical Maps for Progressive
Transmission of Polygonal Surfaces. Proceedings of VRML 98: Third Symposium
on the Virtual Reality Modeling Language. pp. 25–31, 131. 1998.

Guéziec, A. Locally Toleranced Surface Simplification. IEEE Transactions on Visual-
ization and Computer Graphics. vol. 5(2). pp. 168–189. 1999.

Guéziec, A, G Taubin, B Horn, and F Lazarus. A Framework for Streaming Geometry
in VRML. IEEE Computer Graphics and Applications. vol. 19(2). 1999.

Haenny, P, J Maunsell, and P Schiller. State Dependent Activity in Monkey Visual
Cortex: II. Retinal and Extraretinal Factors in V4. Experimental Brain Research.
vol. 69. pp. 245–259. 1988.

Hamann, B. A Data Reduction Scheme for Triangulated Surfaces. Computer Aided
Geometric Design. vol. 11. pp. 197–214. 1994.

Harvey, L O and M J Gervais. Internal Representation of Visual Texture as the Basis
for the Judgement of Similarity. Journal of Experimental Psychology: Human
Perception Performance. vol. 7(4). pp. 741–753. 1981.

Hawkes, R, S Rushton, and M Smyth. Update Rates and Fidelity in Virtual En-
vironments. Virtual Reality: Research, Development, and Application. vol. 1(2).
pp. 99–108. 1995.

He, T, L Hong, A Varshney, and S Wang. Controlled Topology Simplification. IEEE
Transactions on Visualization and Computer Graphics. vol. 2(2). pp. 171–184.
1996.

He, Y. Real-Time Dynamic Terrain Visualization for Ground Vehicle Simulation. Ph.D.
Thesis. Department of Computer Science, University of Iowa, Iowa City. 2000.

Heckbert, P and M Garland. Survey of Polygonal Simplification Algorithms.
SIGGRAPH 97 Course Notes. 1997.

Heeley, D. Spatial Frequency Difference Thresholds Depend on Stimulus Area.
Spatial Vision. vol. 5(3). pp. 205–217. 1991.

Team LRN

References 357

Helman, J. Designing Virtual Reality Systems to Meet Physio- and Psychological
Requirements. SIGGRAPH 93 Course Number 23: Applied Virtual Reality. 1993.

Helman, J. Designing Real-Time 3D Graphics for Entertainment. SIGGRAPH 96
Course #33. 1996.

Herzen, B and A Barr. Accurate Triangulations of Deformed, Intersecting Surfaces.
Proceedings of SIGGRAPH 87. pp. 103–110. 1987.

Hilaga, M, Y Shinagawa, T Kohmura, and T L Kunii. Topology Matching for Fully
Automatic Similarity Estimation of 3D Shapes. Proceedings of SIGGRAPH 2001.
pp. 203–212. 2001.

Hinker, P and C Hansen. Geometric Optimization. Proceedings of IEEE Visualization
’93. pp. 189–195. 1993.

Hitchner, L E and M W McGreevy. Methods for User-Based Reduction of Model
Complexity for Virtual Planetary Exploration. Proceedings of the SPIE, The
International Society for Optical Engineering. vol. 1913. pp. 622–636. 1993.

Holloway, R L Viper: A Quasi-Real-Time Virtual-Worlds Application. Technical
Report No. TR-92–004. Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill, NC. 1991.

Hoppe, H, T DeRose, T Duchamp, J McDonald, and W Stuetzle. Mesh Optimization.
Proceedings of SIGGRAPH 93. pp. 19–26. 1993.

Hoppe, H. Progressive Meshes. Proceedings of SIGGRAPH 96. pp. 99–108. 1996.

Hoppe, H. View-Dependent Refinement of Progressive Meshes. Proceedings of
SIGGRAPH 97. pp. 189–198. 1997.

Hoppe, H. Smooth View-Dependent Level-of-Detail control and its Application to
Terrain Rendering. Proceedings of IEEE Visualization ’98. pp. 35–42. 1998.

Hoppe, H. Efficient Implementation of Progressive Meshes. Computers & Graphics.
vol. 22(1). pp. 27–36. 1998.

Hoppe, H. Optimization of Mesh Locality for Transparent Vertex Caching. Proceed-
ings of SIGGRAPH 99. pp. 269–276. 1999.

Hoppe, H H. New Quadric Metric for Simplifying Meshes with Appearance At-
tributes. Proceedings of IEEE Visualization ’99. pp. 59–66. 1999.

Hubel, D and T Wiesel. Receptive Fields, Binocular Interaction, and Functional
Architecture in the Cat’s Visual Cortex. Journal of Physiology. vol. 160. pp. 106–
154. 1962.

Humphreys, G, M Riddoch, and P Quinlin. Cascade Processes in Picture Identifica-
tion. Cognitive Neuropsychology. vol. 5. pp. 67–103. 1988.

Humphreys, G W and V Bruce. Visual Cognition: Computational, Experimental and
Neuropsychological Perspectives. Lawrence Erlbaum Associates, Hove, UK. 1989.

Team LRN

358 References

Humphreys, G, C Lamote, and T Lloyd-Jones. An Interactive Activation Approach to
Object Processing: Effects of Structural Similarity, Name Frequency, and Task in
Normality and Pathology. Memory. vol. 3. pp. 535–586. 1995.

Humphreys, G, M Eldridge, Buck, G Stoll, M Everett, and P Hanrahan. WireGL: A
Scalable Graphics System for Clusters. Proceedings of SIGGRAPH 2001. pp. 129–
140. 2001.

Hurvich, L M. Color Vision. Sinauer Associates, Sunderland, MA. 1981.

Jain, A. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs,
NJ. 1989.

Johnson, D and E Cohen. Spatialized Normal Cone Hierarchies. 2001 Symposium on
Interactive 3D Graphics. pp. 129–134. 2001.

Jolicoeur, P. The Time to Name Disoriented Natural Objects. Memory and Cognition.
vol. 13. pp. 289–303. 1985.

Jolliffe, I. Principal Component Analysis. Springer-Verlag, New York. 1986.

Kalvin, A D and R H Taylor. Superfaces: Polygonal Mesh Simplification with Bounded
Error. IEEE Computer Graphics and Applications. vol. 16(3). pp. 64–77. 1996.

Kelly, D H. Spatial Frequency Selectivity in the Retina. Vision Research. vol. 15.
pp. 665–672. 1975.

Kelly, D H. Motion and Vision. II. Stabilized Spatio-Temporal Threshold Surface.
Journal of the Optical Society of America. vol. 69(10). pp. 1340–1349. 1979.

Kelly, D H. Retinal Inhomogenity: I. Spatiotemporal Contrast Sensitivity. Journal of
the Optical Society of America. vol. A1(1). pp. 107–113. 1984.

King, Y. Floating-Point Tricks: Improving Performance with IEEE Floating Point. In:
M DeLoura, ed. Games Programming Gems 2. Charles River Media, Hingham,
MA. pp. 167–181. 2001.

Klein, R and J Krämer. Multiresolution Representations for Surface Meshes. Proceed-
ings of Spring Conference on Computer Graphics 1997. pp. 57–66. 1997.

Koenderink, J J, M A Bouman, A E B de Mesquita, and S Slappendel. Perimetry
of Contrast Detection Thresholds of Moving Spatial Sine Wave Patterns. I. The
Near Peripheral Visual Field (Eccentricity 0°–8°). Journal of the Optical Society of
America. vol. 68(6). pp. 845–849. 1978.

Koenderink, J J, M A Bouman, A E B de Mesquita, and S Slappendel. Perimetry of
Contrast Detection Thresholds of Moving Spatial Sine Wave Patterns. II. The
Far Peripheral Visual Field (Eccentricity 0°–50°). Journal of the Optical Society of
America. vol. 68(6). pp. 850–854 .1978.

Koller, D, P Lindstrom, W Ribarsky, L F Hodges, N Faust, and G Turner. Virtual GIS:
A Real-Time 3D Geographic Information System. Proceedings of Visualization
’95. pp. 94–100. 1995.

Team LRN

References 359

Kosara, R, S Miksch, and H Hauser. Focus+Context Taken Literally. IEEE Computer
Graphics and Applications. vol. 22(1). pp. 22–29. 2002.

Lamming, D. On the Limits of Visual Detection. In: J R Cronly-Dillon, ed. Vision and
Visual Dysfunction: Limits of Vision. CRC Press, Boca Raton, FL. pp. 6–14. 1991.

Lamming, D. Spatial Frequency Channels. In J R Cronly-Dillon, ed. Vision and Visual
Dysfunction: Limits of Vision. CRC Press, Boca Raton, FL. pp. 97–105. 1991.

Leclerc, Y G and S Q Lau. TerraVision: A Terrain Visualization System. Technical
Report 540. SRI International, Menlo Park, CA. April 1994.

Lee, A, H Moreton, and H Hoppe. Displaced Subdivision Surfaces. Proceedings of
SIGGRAPH 2000. 2000.

Levi, D M, S A Klein, and A P Aitsebaomo. Vernier Acuity, Crowding and Cortical
Magnification. Vision Research. vol. 25. pp. 963–971. 1985.

Levoy, M and R Whitaker. Gaze-Directed Volume Rendering. Proceedings of 1990
Symposium on Interactive 3D Graphics. pp. 217–223. 1990.

Levoy, M, K Pulli, B Curless, S Rusinkiewics, D Koller, L Pereira, M Ginzton,
S Anderson, J Davis, J Gensberg, J Shade, and D Fulk. The Digital Michelangelo
Project: 3D Scanning of Large Statues. Proceedings of SIGGRAPH 2000. pp. 131–
144. 2000.

Li, G and B Watson. Semiautomatic Simplification. Proceedings of 2001 ACM
Symposium on Interactive 3D Graphics. pp. 43–48. 2001.

Liang, J, C Shaw, and M Green. On Temporal-Spatial Realism in the Virtual Reality
Environment. Proceedings of 1991 ACM Conference on User Interface Software and
Technology. pp. 19–25. 1991.

Lilleskog, T. Continuous Level of Detail. Master’s Thesis. Department of Computer
Science, Norwegian University of Science and Technology, Trondheim, Norway.
1998.

Lindstrom, P, D Koller, L F Hodges, W Ribarsky, N Faust, and G Turner. Level-of-
Detail Management for Real-Time Rendering of Phototextured Terrain. Technical
Report TR95–06. Graphics, Visualization and Usability Centre, Georgia Institute
of Technology, Atlanta, GA. 1995.

Lindstrom, P, D Koller, W Ribarsky, L F Hodges, N Faust, and G Turner. Real-Time,
Continuous Level of Detail Rendering of Height Fields. Proceedings of SIGGRAPH
96. pp. 109–118. 1996.

Lindstrom, P, D Koller, W Ribarsky, L F Hodges, A Op den Bosch, and N Faust.
An Integrated Global GIS and Simulation System. Technical Report Number GIT-
GVU-97–07. Georgia Institute of Technology, Atlanta, GA. March 1997.

Lindstrom, P and G Turk. Fast and Memory Efficient Polygonal Simplification.
Proceedings of IEEE Visualization ’98. pp. 279–286. 1998.

Team LRN

360 References

Lindstrom, P and G Turk. Evaluation of Memoryless Simplification. IEEE Transac-
tions on Visualization and Computer Graphics. vol. 5(2). pp. 98–115. 1999.

Lindstrom, P. Out-of-Core Simplification of Large Polygonal Models. Proceedings of
SIGGRAPH 2000. pp. 259–262. 2000.

Lindstrom, P and G Turk. Image-Driven Simplification. ACM Transactions on
Graphics. vol. 19(3). pp. 204–241. 2000.

Lindstrom, P and V Pascucci. Visualization of Large Terrains Made Easy. Proceedings
of IEEE Visualization 2001. pp. 363–370, and 574. 2001.

Lindstrom, P and C Silva. A Memory Insensitive Technique for Large Model
Simplification. Proceedings of IEEE Visualization 2001. pp. 121–126. 2001.

Livingstone, M S. Art, Illusion and the Visual System. Scientific American. vol. 258(1).
pp. 68–75. 1988.

Lorensen, W E and H E Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. Proceedings of SIGGRAPH 87. pp. 163–169. 1987.

Lorensen, W. Marching Through the Visible Man. Proceedings of IEEE Visualization
’95. pp. 368–373, 476. 1995.

Lounsbery, M. Multiresolution Analysis for Surfaces of Arbitrary Topology Type. Ph.D.
Thesis. Department of Computer Science, University of Washington, Seattle, WA.
1994.

Low, K and T Tan. Model Simplification Using Vertex-Clustering. Proceedings of 1997
Symposium on Interactive 3D Graphics. April 27–30, pp. 75–81, 188. 1997.

Lubin, J. A Visual Discrimination Model for Imaging System Design and Evaluation.
In: E Peli, ed. Vision Models for Target Detection and Recognition. World Scientific
1993. pp. 245–283. 1993.

Luebke, D and C Georges. Portals and Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets. 1995 ACM Symposium on Interactive 3D Graphics. pp. 105–106. 1995.

Luebke, D and C Erikson. View-Dependent Simplification of Arbitrary Polygonal
Environments. Proceedings of SIGGRAPH 97. pp. 199–208. 1997.

Luebke, D, B Hallen, D Newfield, and B Watson. Perceptually Driven Simplification
Using Gaze-Directed Rendering. Technical Report CS-2000-04. University of
Virginia, Charlottesville, VA. 2000.

Luebke, D, B Hallen. Perceptually Driven Interactive Rendering. Technical Report
CS-2001-01. University of Virginia, Charlottesville, VA. 2001.

Luebke, D, J Cohen, B Watson, M Reddy, and A Varshney. Advanced Issues in Level
of Detail. Course #41, SIGGRAPH 2000. 2000.

Luebke, D. A Developer’s Survey of Polygonal Simplification Algorithms. IEEE
Computer Graphics and Applications. vol. 32(13). pp. 753–772. 2000.

Team LRN

References 361

Luebke, D and B Hallen. Perceptually Driven Simplification for Interactive Render-
ing. Proceedings of 2001 Eurographics Rendering Workshop. pp. 223–234. 2001.

Maciel, P W C and P Shirley. Visual Navigation of Large Environments Using
Textured Clusters. Proceedings of 1995 Symposium on Interactive 3D Graphics.
pp. 95–102. 1995.

MacKenzie, S and C Ware. Lag as a Determinant of Human Performance in
Interactive Systems. Proceedings of 1993 INTERCHI Conference on Human Factors
in Computing Systems. pp. 488–493. 1993.

Magillo, P. Spatial Operations on Multiresolution Cell Complexes. Ph.D. Thesis.
Department of Computer and Information Sciences, University of Genova,
Genova, Italy. 1999.

Magillo, P and V Bertocci. Managing Large Terrain Data Sets with a Multiresolution
Structure. Proceedings of International Workshop on Advanced Spatial Data
Management (2000). 2000.

Mannos, J L and D J Sakrison. The Effects of a Visual Fidelity Criterion on the
Encoding of Images. IEEE Transactions on Information Theory.vol. 20(4). pp. 525–
535. 1974.

Mason, A and E H Blake. Automatic Hierarchical Level of Detail Optimization in
Computer Animation. Computer Graphics Forum. vol. 16(3). pp. 191–199. 1997.

McCabe, D and J Brothers. DirectX 6 Texture Map Compression. Game Developer
Magazine. pp. 42–46. 1998.

McNamara, A. Visual Perception in Realistic Image Synthesis. Computer Graphics
Forum. vol. 20(4). pp. 211–224. 2001.

Meruvia, O. Level of Detail Selection and Interactivity. Master’s Thesis. Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada. 2000.

Miliano, V. Unreality: Application of a 3D Game Engine to Enhance the Design,
Visualization and Presentation of Commercial Real Estate. Proceedings of 1999
International Conference on Virtual Systems and MultiMedia (VSMM ’99).
pp. 508–513. 1999.

Mon-Williams, M and J P Wann. Binocular Virtual Reality Displays: When Problems
Do and Don’t Occur. Human Factors. vol. 40(1). pp. 42–49. 1998.

Morgan, M J. Hyperacuity. In: D Regan, ed. Spatial Vision. CRC Press, Boca Raton,
FL. pp. 87–110. 1991.

Mullen, K T. The Contrast Sensitivity of Human Color Vision to Red-Green and
Blue-Yellow Chromatic Gratins. Journal of Physiology. vol. 359. pp. 381–400.
1985.

Muller, D and F Preparata. Finding the Intersection of Two Convex Polyhedra.
Theoretical Computer Science. vol. 7. pp. 217–236. 1978.

Team LRN

362 References

Murphy, B J. Pattern Thresholds for Moving and Stationary Gratings During Smooth
Eye Movement. Vision Research. vol. 18. pp. 521–530. 1978.

Myszkowski, K, P Rokita, and T Tawara. Perceptually-Informed Accelerated Ren-
dering of High-Quality Walkthrough Sequences. Proceedings of Eurographics
Rendering Workshop 1999. pp. 5–18. 1999.

Myszkowski, K, T Tawara, H Akamine, and H-P Seidel. Perception-Based Global
Illumination, Rendering, and Animation. SIGGRAPH 2001. pp. 221–230. 2001.

Nachmias. Visual Resolution of Two-Bar Patterns and Square-Wave Gratings. Journal
of the Optical Society of America. vol. 58(1). pp. 9–13. 1968.

Nakayama, K. Properties of Early Motion Processing: Implications for the Sensing of
Egomotion. In: R Warren and A H Wertheim, eds. The Perception and Control of
Self Motion. Lawrence Erlbaum, Hillsdale, NJ. pp. 69–80. 1990.

Narkhede, A and D Manocha. Fast Polygon Triangulation Based on Seidel’s Algo-
rithm. In: A W Paeth, ed. Graphics Gems V. AP Professional, Boston. pp. 394–397.
1995.

Nooruddin, F and G Turk. Simplification and Repair of Polygonal Models Using
Volumetric Techniques. Technical Report GIT-GVU-99–37. Georgia Institute of
Technology, Atlanta, GA. 1999.

Ögren, A. Continuous Level of Detail in Real-Time Terrain Rendering. Master’s Thesis.
Department of Computing Science, University of Umeå, Umeå, Sweden. 2000.

Ohshima, T, H Yamamoto, and H Tamura. Gaze-Directed Adaptive Rendering for
Interacting with Virtual Space. Proceedings of 1996 IEEE Virtual Reality Annual
International Symposium. pp. 103–110. 1996.

O’Rourke, Joseph. Computational Geometry in C. Cambridge University Press,
Cambridge, New York. 1994.

Osada, R, T Funkhouser, B Chazelle, and D Dobkin. Matching 3D Models with
Shape Distributions. Proceedings of Shape Modeling International 2001. pp. 154-
166. 2001.

O’Sullivan, C and J Dingliana. Collisions and Perception. ACM Transactions on
Graphics. vol. 20(3). pp. 151–168. 2001.

Owsley, C J, R Sekuler, and D Siemsen. Contrast Sensitivity Throughout Adulthood.
Vision Research. vol. 23. pp. 689–699. 1983.

Pajarola, R. Large Scale Terrain Visualization Using the Restricted Quadtree Triangu-
lation. Proceedings of IEEE Visualization ’98. pp. 19–26. 1998.

Palmer, S, E Rosch, and P Chase. Canonical Perspective and the Perception of Objects.
Proceedings of Attention & Performance IX. pp. 135–151. 1981.

Palmer, S E. Vision Science: Photons to Phenomenology. MIT Press, Cambridge, MA.
1999.

Team LRN

References 363

Park, K and R Kenyon. Effects of Network Characteristics on Human Performance
in a Collaborative Virtual Environment. Proceedings of 1999 IEEE Virtual Reality.
pp. 104–111. 1999.

OpenGL Performer Getting Started Guide. Technical Report Document Number 007-
3560-002. Silicon Graphics, Inc. 2000.

OpenGL Performer Programmer’s Guide. Technical Report Document Number 007-
1680-070. Silicon Graphics, Inc. 2000.

Popovic, J and H Hoppe. Progressive Simplicial Complexes. Proceedings of SIG-
GRAPH 97. pp. 217–224. 1997.

Workshop on Shape-Based Retrieval and Analysis of 3D Models. Princeton University
and NEC Research Institute, Princeton, NJ. 2001.

Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communications of
the ACM. vol. 33(6). pp. 668–676. 1990.

Puppo, E. Variable Resolution Triangulations. Computation Geometry. vol. 11(3–4).
pp. 219–238. 1998.

Ramasubramanian, M, S N Pattanaik, and D P Greenberg. A Perceptually Based
Physical Error Metric for Realistic Image Synthesis. Proceedings of SIGGRAPH 99.
pp. 73–82. 1999.

Ranadive, V. Video Resolution, Frame Rate, and Gray Scale Tradeoffs Under Limited
Bandwidth for Undersea Teleoperation. Master’s Thesis. Massachusetts Institute of
Technology, Cambridge, MA. 1979.

Reddy, M. Perceptually Modulated Level of Detail for Virtual Environments. Ph.D.
Thesis. CST-134-97. University of Edinburgh, Edinburgh, Scotland. 1997.

Reddy, M. Specification and Evaluation of Level of Detail Selection Criteria. Virtual
Reality: Research, Development and Application. vol. 3(2). pp. 132–143. 1998.

Reddy, M, Y G Leclerc, L Iverson, and N Bletter. TeraVision II: Visualizing Massive
Terrain Databases in VRML. IEEE Computer Graphics and Applications.vol. 19(2).
pp. 30–38. 1999.

Reddy, M, L Iverson, and Y G Leclerc. Under the Hood of GeoVRML 1.0. Proceedings
of Web3D-VRML 2000: The Fifth Symposium on the Virtual Reality Modeling
Language. pp. 23–28. 2000.

Reddy, M. Perceptually Optimized 3D Graphics. IEEE Computer Graphics and
Applications. vol. 21(5). pp. 68–75. 2001.

Regan, D and K I Beverley. Visual Field Described by Contrast Sensitivity, By Acuity
and by Relative Sensitivity to Different Orientations. Investigative Ophthalmology
and Visual Science. vol. 24. pp. 754–759. 1983.

Regan, M, G Miller, S Rubin, and C Kogelnik. A Real-Time Low-Latency Light-Field
Renderer. Proceedings of SIGGRAPH 99. pp. 287–290. 1999.

Team LRN

364 References

Richard, P, G Birebent, P Coiffent, G Burdea, D Gomez, and N Langrana. Effect
of Frame Rate and Force Feedback on Virtual Object Manipulation. Presence.
vol. 5(1). pp. 95–108. 1996.

Rigiroli, P, P Campadelli, A Pedotti, and N A Borghese. Mesh Refinement with Color
Attributes. Computers & Graphics. vol. 25(3). pp. 449–461. 2001.

Ritter, J. A Fast Approximation to 3D Euclidean Distance. In: A S Glassner, ed.
Graphics Gems. Academic Press, Boston. pp. 432–433. 1990.

Robinson, D A. The Mechanics of Human Saccadic Eye Movements. Journal of
Physiology. vol. 180. pp. 569–590. 1964.

Rohaly, A, A Ahumada, and A Watson. A Comparison of Image Quality Models
and Metrics Predicting Object Detection. In: J Morreale, ed. SID International
Symposium Digest of Technical Papers. Society for Information Display, Santa
Ana, CA. pp. 45–48. 1995.

Rohaly, A, A Ahumada, and A Watson. Object Detection in Natural Backgrounds
Predicted by Discrimination Performance and Models. Vision Research. vol. 37.
pp. 3225–3235. 1997.

Ronfard, R and J Rossignac. Full-Range Approximation of Triangulated Polyhedra.
Computer Graphics Forum. vol. 15(3). pp. 67–76, 462. 1996.

Rosenfeld, A. Multiresolution Image Processing and Analysis. Springer-Verlag, Berlin.
1984.

Rossignac, J and P Borrel. Multi-Resolution 3D Approximations for Rendering Complex
Scenes. Technical Report RC 17687-77951. IBM Research Division, T J Watson
Research Center, Yorktown Heights, NY. 1992. Also in: Modeling in Computer
Graphics: Methods and Applications. Springer-Verlag, Berlin, New York. pp. 455–
465. 1993.

Röttger, S, W Heidrich, P Slussallek, and H-P Seidel. Real-Time Generation of
Continuous Levels of Detail for Height Fields. Proceedings of 1998 International
Conference in Central Europe on Computer Graphics and Visualization. pp. 315–
322. 1998.

Rovamo, J and V Virsu. An Estimation and Application of the Human Cortical
Magnification Factor. Experimental Brain Research. vol. 37. pp. 495–510. 1979.

Rushmeier, H, G Ward, C Piatko, P Sanders, and B Rust. Comparing Real and
Synthetic Images: Some Ideas About Metrics. Proceedings of 6th Eurographics
Workshop on Rendering (1995). pp. 82–91. 1995.

Rushmeier, H, B Rogowitz, and C Piatko. Perceptual Issues in Substituting Texture for
Geometry. Proceedings of Human Vision and Electronic Imaging V, SPIE. vol. 3959.
pp. 372–383. 2000.

Rusinkiewicz, S and M Levoy. QSplat: A Multiresolution Point Rendering System for
Large Meshes. Proceedings of SIGGRAPH 2000. pp. 343–352. 2000.

Team LRN

References 365

Samet, H. Applications of Spatial Data Structures: Computer Graphics, Image Process-
ing, and GIS. Addison-Wesley, Reading, MA. 1989.

Samet, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA. 1989.

Samet, H and R Sivan. Algorithms for Constructing Quadtree Surface Maps. 5th
International Symposium on Spatial Data Handling (1992). pp. 361–370. 1992.

Sander, P V, X Gu, S J Gortler, H Hoppe, and J Snyder. Silhouette Clipping.
Proceedings of SIGGRAPH 2000. pp. 23–28. 2000.

Sander, P V, J Snyder, S J Gortler, and H Hoppe. Texture Mapping Progressive Meshes.
Proceedings of SIGGRAPH 2001. pp. 409–416. 2001.

Scarlatos, L and T Pavlidis. Hierarchical Triangulation Using Cartographic Coher-
ence. CVGIP: Graphical Models and Image Processing. vol. 54(2). pp. 147–161.
1992.

Schachter, B J. Computer Image Generation for Flight Simulation. IEEE Computer
Graphics and Applications. vol. 1. pp. 29–68. 1981.

Schade, O H. Optical and Photoelectric Analog of the Eye. Journal of the Optical
Society of America. vol. 46. pp. 721–739. 1956.

Schor, C M and D R Badcock. A Comparison of Stereo and Vernier Acuity with
Spatial Channels as a Function of Distance from Fixation. Vision Research. vol. 25.
pp. 1113–1119. 1985.

Schroeder, W J, J A Zarge, and W E Lorensen. Decimation of Triangle Meshes.
Proceedings of SIGGRAPH 92. pp. 65–70. 1992.

Schroeder, W. A Topology-Modifying Progressive Decimation Algorithm. Proceed-
ings of IEEE Visualization ’97. pp. 205–212. 1997.

Schroeder, W, K Martin, and W Lorensen. The Visualization Toolkit. 2nd ed. Prentice
Hall PTR, Upper Saddle River, NJ. 1998.

Scott, D. Visual Search in Modern Human–Computer Interfaces. Behaviour &
Information Technology. vol. 12(3). pp. 174–189. 1993.

Seidel, R. A. Simple and Fast Incremental Randomized Algorithm for Computing
Trapezoidal Decompositions and for Triangulating Polygons. Computational
Geometry: Theory and Applications. vol. 1(1). pp. 51–64. 1991.

Sekuler, R and R Blake. Perception. 3rd ed. McGraw-Hill, New York. 1994.

Sen, R, R B Yates, and N A Thacker. Virtual Reality Based on Cost/Benefit Analysis.
Proceedings of FIVE ’95 Conference. pp. 213–221. 1995.

Shaffer, E and M Garland. Efficient Adaptive Simplification of Massive Meshes.
Proceedings of IEEE Visualization 2001. pp. 127–134, 551. 2001.

Shams, L, Y Kamitani, and S Shimojo. What You See Is What You Hear. Nature.
vol. 408(6814). pp. 788. 2000.

Team LRN

366 References

Sheridan, T and W Ferrell. Remote Manipulative Control with Transmission Delay.
IEEE Transactions on Human Factors in Electronics. vol. 4. pp. 25–29. 1963.

Shirman, L A and S S Abi-Ezzi. The Cone of Normals Technique for Fast Processing
of Curved Patches. Proceedings of Eurographics ’93. pp. 261–272. 1993.

Sloane, N J A and S Ploufe. The Encyclopedia of Integer Sequences. Academic Press,
San Diego, CA. pp. 587. 1995.

Snyder, J P. Map Projections: A Working Manual. Professional Paper 1395. US
Geological Survey, US Government Printing Office, Washington, DC. 1987.

Sutter, E E and D Tran. The Field Topography of ERG Components in Man. I. The
Photopic Luminance Response. Vision Research. vol. 32(3). pp. 433–446. 1991.

Suzuki, S. Attention-Dependent Brief Adaptation to Contour Orientation: A High-
Level Aftereffect for Convexity? Vision Reseasrch. vol. 41(28). pp. 3883–3902.
2001.

Tanner, C C, C J Migdal, and M T Jones. The Clipmap: A Virtual Mipmap. Proceedings
of SIGGRAPH 98. pp. 151–158. 1998.

TEC. Handbook for Transformation of Datums, Projections, Grids and Common
Coordinate Systems. Technical Report TEC-SR-7. US Army Corps of Engineers,
Topographic Engineering Center, Alexandria, VA. January 1996.

Tharp, G, A Liu, L French, and L Stark. Timing Considerations of Helmet Mounted
Display Performance. Human Vision, Visual Processing, and Digital Displays III,
SPIE. vol. 1666. pp. 570–576. 1992.

Tipton, D A. A Review of Vision Physiology. Aviation, Space and Environmental
Medicine. vol. 55(2). pp. 145–149. 1984.

Turk, G. Re-Tiling Polygonal Surfaces. Proceedings of SIGGRAPH 92. pp. 55–64. 1992.

Tyler, C W. Analysis of Visual Modulation Sensitivity. II. Peripheral Retina and the
Role of Photoreceptor Dimensions. Journal of the Optical Society of America.
vol. A2(3). pp. 393–398. 1985.

Uliano, K, R Kennedy, and E Lambert. Asynchronous Visual Delays and the
Development of Simulator Sickness. Proceedings of Human Factors Society, 30th
Annual Meeting (1986). pp. 422–426. 1986.

Varshney, A. Hierarchical Geometric Approximations. Ph.D. Thesis. Department of
Computer Science. University of North Carolina at Chapel Hill, Chapel Hill, NC.
1994.

Varshney, A, F P Brooks Jr, and W V Wright. Computation of Smooth Molecular
Surfaces. IEEE Computer Graphics and Applications. vol. 14(5). pp. 19–25. 1994.

Vince, J. Virtual Reality Techniques in Flight Simulation. In: R A Earnshaw, M A
Gigante, and H Jones, eds. Virtual Reality Systems. Academic Press. 1993.

Virsu, V, J Rovamo, P Laurinen, and R Näsänen. Temporal Contrast Sensitivity and
Cortical Magnification. Vision Research. vol. 33. pp. 1211–1217. 1982.

Team LRN

References 367

Vitkovitch, M and L Tyrell. Sources of Name Disagreement in Object Naming.
Quarterly Journal of Experimental Psychology. vol. 48A. pp. 822–848. 1995.

Volevich, V, K Myszkowski, A Khodulev, and E Kopylov. Using the Visual Difference
Predictor to Improve Performance of Progressive Global Illumination Computa-
tion. ACM Transactions on Graphics. vol. 19(2). pp. 122–161. 2000.

Final Report from the Video Quality Experts Group on the Validation of Objective
Models of Video Quality Assessment. http://ftp.crc.ca/test/crc/vqeg/Final_Report_
April00.doc. 2001.

The Virtual Reality Modeling Language. Technical Report International Standard
ISO/IEC 14772-1:1997. 1997.

Wandell, B. Foundations of Vision. Sinauer Associates, Sunderland, MA. 1995.

Wang, S and A Kaufman. Volume Sampled Voxelization of Geometric Primitives.
Proceedings of Visualization ’93. pp. 78–84. 1993.

Wann, J P, S K Rushton, and M Mon-Williams. Natural Problems for Stereo-
scopic Depth Perception in Virtual Environments. Vision Research. vol. 35(19).
pp. 2731–2736. 1995.

Ware, C and R Balakrishnan. Reaching for Objects in VR Displays: Lag and Frame
Rate. ACM Transactions on Computer–Human Interaction. vol. 1(4). pp. 331–357.
1994.

Ware, C. Information Visualization: Perception for Design. Morgan Kaufmann, San
Francisco. 1999.

Watson, A. Detection and Recognition of Simple Spatial Forms. In: O J Braddick and
A C Sleigh, eds. Physical and Biological Processing of Images. Springer-Verlag, New
York. pp. 100–114. 1983.

Watson, A. Visual Detection of Spatial Contrast Patterns: Evaluation of Five Simple
Models. Optics Express. vol. 6(1). pp. 12–33. 2000.

Watson, A. Toward a Perceptual Video Quality Metric. Proceedings of Human Vision
and Electronic Imaging III, SPIE. vol. 3299. pp. 139–147. 1998.

Watson, B, N Walker, and L F Hodges. A User Study Evaluating Level of Detail
Degradation in the Periphery of Head-Mounted Displays. Proceedings of FIVE ’95
Conference. pp. 203–212. 1995.

Watson, B. Level of Detail Management. Ph.D. Thesis. College of Computing, Georgia
Institute of Technology, Atlanta, GA. 1997.

Watson, B, V Spaulding, N Walker, and W R Ribarsky. Evaluation of the Effects of
Frame Time Variation on VR Task Performance. Proceedings of 1997 IEEE Virtual
Reality Annual International Symposium. pp. 38–44. 1997.

Watson, B, N Walker, and L Hodges. Managing Level of Detail Through Head-
Tracked Peripheral Degradation: A Model and Resulting Design Principles.
Proceedings of ACM Virtual Reality Software Technology ’97. pp. 59–64. 1997.

Team LRN

368 References

Watson, B, N Walker, L Hodges, and A Worden. Managing Level of Detail Through
Peripheral Degradation: Effects on Search Performance with a Head-Mounted
Display. ACM Transactions on Computer–Human Interaction. vol. 4(4). pp. 323–
346. 1997.

Watson, B, N Walker, W Ribarsky, and V Spaulding. Effects of Variation in System
Responsiveness on User Performance in Virtual Environments. Human Factors
(Special Section on Virtual Environments). vol. 40(3). pp. 403–414. 1998.

Watson, B, N Walker, W Ribarsky, and V Spaulding. Managing Temporal Detail in
Virtual Environments: Relating System Responsiveness to Feedback. Proceedings
of ACM CHI 99 Extended Abstracts. pp. 280–281. 1999.

Watson, B, A Friedman, and A McGaffey. Using Naming Time to Evaluate Quality
Predictors for Model Simplification. Proceedings of ACM CHI 2000. pp. 113–120.
2000.

Watson, B, A Friedman, and A McGaffey. Measuring and Predicting Visual Fidelity.
Proceedings of SIGGRAPH 2001. pp. 213–220. 2001.

Watson, B. Visual Fidelity Testbed. Northwestern University, Evanston, IL. 2002.
http://www.cs.northwestern.edu/~watsonb/school/projects/fidelity

Watson, B, D Luebke, C Wooley, C Albrecht-Buehler, and A Dayal. Breaking the
Frame: A New Approach to Temporal Sampling. Technical Report CS-2002-03.
University of Virginia, Charlottesville, VA. 2002.

Weibel, R and C B Jones. Special Issue on Automated Map Generalization. GeoInfor-
matica. vol. 2(4). 1998.

Wernecke, J. The Inventor Mentor: Programming Object-Oriented 3D Graphics with
Open Inventor(TM), Release 2. Addison-Wesley, Reading, MA. 1993.

Wickens, C. The Effects of Control Dynamics on Performance. In: K Boff, L Kauf-
mann, and J Thomas, eds. Handbook of Perception and Performance, Volume II.
Wiley, New York. pp. 39.1–39.60. 1986.

Wickens, C and J Hollands. Manual Control. In: Engineering Psychology and Human
Performance. 3rd ed. Prentice Hall, Upper Saddle River, NJ. 2000.

Wilson, H R and J R Bergen. A Four Mechanism Model for Threshold Spatial Vision.
Vision Research. vol. 19. pp. 19–32. 1979.

Wilson, D L and R M Manjeshwar. Role of Phase Information and Eye Pursuit in the
Detection of Moving Objects in Noise. Journal of the Optical Society of America,
A. vol. 16(3). pp. 669–678. 1999.

Wood, Z and I Guskov. Topological Noise Removal. Proceedings of Graphics Interface
2001. pp. 19–26. 2001.

Xia, J C and A Varshney. Dynamic View-Dependent Simplification for Polygonal
Models. Proceedings of IEEE Visualization ’96. pp. 327–334. 1996.

Team LRN

References 369

Xia, J C, J El-Sana, and A Varshney. Adaptive Real-Time Level-of-Detail–Based Ren-
dering for Polygonal Models. IEEE Transactions on Visualization and Computer
Graphics. vol. 3(2). pp. 171–183. 1997.

Xiang, X, M Held, and J S B Mitchell. Fast and Effective Stripification of Polygonal
Surface Models. Proceedings of 1999 Symposium on Interactive 3D Graphics.
pp. 71–78, 224. 1999.

Yan, J K. Advances in Computer Generated Imagery for Flight Simulation. IEEE
Computer Graphics and Applications. vol. 5. pp. 37–51. 1985.

Yee, H, S Pattanaik, and D P Greenberg. Spatiotemporal Sensitivity and Visual
Attention for Efficient Rendering of Dynamic Environments. ACM Transactions
on Graphics. vol. 20(1). pp. 39–65. 2001.

Youbing, Z, Z Ji, S Jiaoying, and P Zhigeng. A Fast Algorithm for Large-Scale Terrain
Walkthrough. Proceedings of CAD/Graphics 2001. 2001.

Zeki, S. A Vision of the Brain. Blackwell Scientific Publications, Oxford, Boston. 1993.

Zhang, H and K E Hoff III. Fast Backface Culling Using Normal Masks. Proceedings
of 1997 ACM Symposium on Interactive 3D Graphics. pp. 103–106. 1997.

Team LRN

Team LRN

Index

2D manifolds. See manifold meshes
2D texture deviation, 79–81

A
accommodation, 237, 331
active surface definition (ASD), 195–196,

331
Advanced Television Systems Committee

(ATSC), 331
aggregating objects by global

simplification, 113–114
alpha blending, 114–116, 176, 331
alpha hull operators, 32–36
amacrine cells, 243
animal identification, 282
anisotropic LOD, 331. See also

continuous LOD
artists, manual processing by, 166
ASD (active surface definition), 195–196,

331
attention components, 291
attribute errors

color. See color, attribute errors
defined, 331
normal vectors, 57–58
progressive mesh method, 71–72
quadrics error metric, 69, 135–136
sources of, 55–56
texture coordinates, 58–59

attributes, image-driven simplification
for, 139–142

automatic fidelity measures. See also
fidelity measures

defined, 331
goals of, 286
run-time LOD, 291–294

simplification, 294–298
static imagery, 286–291

average error, 53–54
average planes, 130
average triangle size, 156–157

B
backface simplification, 331
background illumination, sensitivity to,

256
bijection

defined, 331
distance measurement, 52
texture coordinates, 59

billboards, 176–177, 331–332
binary terrain (BT) format, 226
bintrees

defined, 332
terrain LOD with, 190–192

bipolar cells, 243
blending

alpha blending, 114–116
avoiding in video games, 161
games using, 181–182
geomorphing, 116–118, 182
imposters, 178–179

blind spots, 259, 332
bone matrices, 174, 179
border tubes, 73
bottom-up hierarchy building, 39,

187–188
boundary edge preservation, 68
boundary vertices, 129
bounding spheres, 91
bounding volume error, 73–79
BT (binary terrain) format, 226

371

Team LRN

372 Index

BTT. See bintrees
budget-based simplification techniques

defined, 17
error metrics for, 49
goals of, 20–21
triangle budgets for view-dependent

LODs, 108–109
buffering. See double buffering

C
cascaded simplification, 75
Catalan sequence, 25
cell collapse operators, 24–25, 28
CFF (critical fusion frequency), 263, 315,

333
channels of neurons, 248
channel splitting stage, 288–289
choroid, 240–241
Clark, James, 7
CLOD. See continuous LOD
closed-loop tasks, 316–321, 327, 332
clustering

face, 25–26
floating-cell. See floating-cell

clustering
vertices. See vertex clustering

clusters, RSimp, 136–139
cognitive psychology approach, 285
collapse operators, 21–25, 27
collector cells, 241, 243, 332
collision detection

error metrics for, 48–49
frame-only (FO) manipulation of

temporal detail, 309–310
color

attribute errors, 56–57
grid-based vertex clustering, 63–64
nonlinearity of perception, 57
quadric error metric for, 69, 135–136
sensitivity to, 255

complex cells, visual cortex, 245
complex task issues of temporal detail,

321–324
computer games. See also game

optimization
defined, 152, 332

frame rates, 152–153
instantiations, 153–154
platforms, multiple, 154, 157
throughput, fill-rate vs. triangle-rate,

154–155
cone of normals, 108–109
cones, 242–243
conservative error bounds, 332
continuous LOD

advantages of, 10
defined, 10, 332
degenerate faces, minimizing,

168–169
fixed-frame rate schedulers, 102–103
game optimizations, 166–169
optimized triangle lists with, 168–169
real-time generation of, 206–208
render calls, minimizing, 168
run-time processing, 166–167
simplification operators for games,

166
terrain height fields, 200–202
vertex cache coherence problem,

167–168
vertex decimation with, 131–133
view-dependent. See view-dependent

LODs
contrast

contrast gratings, 248–250, 253–255,
332

contrast masking stage, 288–289
conversion to contrast, 287
CSF, 250, 252–255, 264–265
defined, 332
error metric, 292–293
run-time LOD, sensitivity to, 292–294
sensitivity. See contrast sensitivity;

contrast sensitivity function (CSF)
spatial, 287–288
threshold contrast, 250

contrast gratings, 248–250, 253–255, 332
contrast masking stage, 288–289
contrast sensitivity

contrast gratings, 248–250, 253–255,
332

CSF. See contrast sensitivity function
(CSF)

Team LRN

Index 373

defined, 333
formula, Kelly’s, 266
function formula, 250
Michaelson contrast, 249–250
Weber’s law, 248

contrast sensitivity function (CSF)
applicability of CSF , 252–255
defined, 250, 333
display device issues, 269–270
eccentricity factors, 267–269
formulas, 250, 266
modeling sensitivity, 265–272
spatiotemporal threshold surface,

266–267
view-dependent LODs based on,

273–275
visual acuity, 269
visual complexity and managing

LOD, 264–265
visualizing effect of model, 270–272

control alteration, 320, 327
control systems, 317–321
conversion to contrast, 287
convex polygon triangulation, 146–149
coordinate systems, geographical,

222–224
corneas, 240
corner vertices, 129
cortical magnification factor, 267–268,

333
cost estimation, 42–43, 78, 333
cost functions, 40–43
cracks in terrain, 193–194
critical fusion frequency (CFF), 263, 315,

333
CSF. See contrast sensitivity function

(CSF)

D
datums, geodetic, 222
definition of level of detail, 5–6, 338
degenerate faces, 168–169, 333
degenerate topology, 22–23, 131–132
degenerate triangles, 124, 146
Delaunay triangulation, 333
delay, 305–306, 333

DEMs (digital elevation models), 189,
225, 333

dependencies, mesh, 110–113
depth of field, 233, 236–237
detail metrics table, 181
DEXTER, 206–207
digital elevation models (DEMs), 189,

225, 333
digital terrain elevation data (DTED),

225
dilation, 31–32
discontinuities, vertex representation

of, 158. See also cracks in terrain;
topology

discrete LOD
advantages of, 9–10
artists, manual processing by, 166
defined, 9–10, 333–334
games using, 163–166
manual vs. automated processing,

166
predictive fixed-frame rate schedulers,

99–101
vertex formats, 165

display alteration, 321
display devices

CSF effects on, 269–270
frame rates, fixed, 152–153
interlacing, 156

display lists, 161
distance

color, 56
function, 50
Hausdorff, 50–51
image metrics, 141
mapping, 51–52
normal vectors, 57–58
parametric, 52–53
perceptual, 234
run-time frameworks based on, 88–90
between surfaces, 50
vertex-to-plane, 65

distance-based LOD, 88–90
distance selection, 180
distillation effect, 298
DMA (direct memory access), 333
double buffering, 303, 334

Team LRN

374 Index

DTED (digital terrain elevation data),
225

dynamic control systems, 317–321
dynamic geometry, 161
dynamic terrain

ROAM with, 206
VDPM with, 209

E
eccentricity

blurring due to, 270–271
contrast sensitivity function, effects

on, 267–269
defined, 334
head direction, substituting for, 238
hyperacuity with, 258
retinal, 246

eccentricity LOD, 233–235
edge collapse

defined, 21, 334
foldovers, 22
full-edge collapse, 21
half-edge collapse, 21
image-driven simplification using,

140
image-space metric prioritization of,

81–82
local error method with, 78
operator, 21–23, 27–28
plane mapping algorithm with, 77
progressive mesh algorithm, 70–72
topological degeneration using,

22–23, 131–132
vertex removal, compared to, 27–28

effect scaling, 172
ellipsoids, 218–221
environmental condition-based

frameworks, 94
erosion, 31–32
error field, 334
error metrics

attributes, of. See attribute errors
average error, 53–54
bounding volume approach, 73–79
combining errors, 60
contrast, 292–293

defined, 334
error quadrics. See quadric error

metric
floating cell-based vertex clustering,

65
game optimization, 180–182
geometric error, 50–55
Hausdorff distance, 50–51
hierarchical grid-based vertex

clustering, 64–65
image-space metric, 81–82, 141
incremental error, 60
local error, 77–79
mapping distances, 51–52
maximum error, 53–54
Metro, 72, 297
normal variation, 137
normal vectors, 57–58
quadric error. See quadric error

metric
reasons for measuring, 48–49
ROAM, 203, 206
screen-space error, 54–55
summary, 82–83
supporting planes, maximum

distance, 66
surface-surface distance metrics,

72–81
terrain LOD, 203, 206, 208, 210
texture coordinates, 58–59
total error, 60–61
uniform grid-based vertex clustering,

62–64
VDPM, 210
vertex decimation, 130, 131
vertex-plane distance, 65–69
vertex-surface distance, 69–72
vertex–vertex distance, 61–65

error quadrics. See quadric error metric
error volumes, 78–79
estimating costs method, 42–43
explicit dependencies, 111–112
exporting model data, 157
external validity, 334
eyes, anatomy of

amacrine cells, 243
bipolar cells, 243

Team LRN

Index 375

blind spots, 259
choroid, 240–241
collector cells, 241, 243
cones, 242–243
corneas, 240
foveas, 246–247
horizontal cells, 243
lens aberrations, 257
lenses, 241
opsin, 243
optic nerves, 241–242
photopigments, 243
photoreceptor cells, 241
receptive fields, 244–245, 247–248
retinal, 243
retinal ganglion cells, 241, 243–245
retinas, 241–242, 246–247
rods, 242–243
sclera, 240
visual cortex, 239, 242, 245, 247
visual pathways, 239, 242

eye tracking, 238

F
face clustering. See polygon merging
false negatives, 281, 334
false positives, 281, 334
feature edges, 129
fidelity-based simplification techniques

automatic measures for, 294–298
defined, 17
goals of, 20

fidelity measures
accuracy of measures, 289–290
channel splitting stage, 288–289
comparison of metrics, 285–286
contrast masking stage, 288–289. 290
conversion to contrast, 287
curvature based, 297
defined, 17
differencing stage, 287–288
digital measures, static images,

286–287, 290
evaluation of, 295–298
experimental measures, 280–286
goals of automatic measures, 286

image-generation algorithms using,
291

importance of, 279–280
LOD technique evaluation, 295–298
LooksLike() functions, 280, 299
Modelfest, 290
multichannel measures, 288–290, 298
naming times, 281–283, 296–298
peripheral fidelity, 295
QSlim with, 296–297
RMS error, 286–287, 298
run-time LOD, automatic measures

for, 291–294
search performance, 280–281, 295
semantic boundaries, high-level, 294
simplification, automatic measures

for, 294–298
single-channel measures, 287–288,

290
spatial CSF filters, 287–288
static imagery, automatic measures

of, 286–291
subjective rating systems, 283–284,

297
threshold testing, 284–285
video compression quality, 291
volume difference measure, 297

fields of view, 334. See also eccentricity
file formats

geospatial, 225–226
vertex, 165

fill rates
defined, 334, 341
effect scaling, 172
per-pixel costs, 171
reactive fixed-frame rate scheduler

problems, 97–98
shader LOD, 171–172
vs. triangle rates, 154–155

finding objects. See search performance
finite element analysis, error metrics for,

48–49
first-order controls, 319, 334
fixed-frame rate schedulers

continuous LOD, 102–103
fill rates, 97–98
OpenGL Performer API, 97, 98

Team LRN

376 Index

fixed-frame rate schedulers (continued)
perceptual models with, 103–104
predictive, 98–104
purpose of, 96
reactive, 96–98
view-independent LOD, 99–101

flicker detection, 263
flickering at threshold distance, 93–94
flight simulators

distance-based LOD, 88
history, 7–8
terrain LOD for, 185

floating-cell clustering
advantages of, 125
defined, 334
disadvantages of, 127
error metric, 65
implementing, 125–127
steps in, 125

FO (frame-only) manipulation of
temporal detail, 309–310,
313–315, 335

fogging solutions, 94
foldovers

dependency-based, 110–111
edge-collapse caused, 22
optimizing normals to prevent,

57–58
foveas, 246–247, 335
foveolas, 247
frame-latency (FL) manipulation,

312–313, 335
frameless rendering, 335
frame locking, 303, 335. See also double

buffering
frame-only (FO) manipulation of

temporal detail, 309–310,
313–315, 335

frame rate
buffering. See double buffering; triple

buffering
defined, 335
fixed, schedulers. See fixed-frame rate

schedulers
frame-latency (FL) manipulation,

312–315, 335
frame-only (FO) manipulation

of temporal detail, 309–310,
313–315, 335

importance of, 328–329
noninteractive mode, 180–181
refresh rate, compared to, 303–304
system latency, effect on, 306
temporal detail, relation to, 302

frames, 335. See also frame rate
frame time, 302, 335
frame-to-frame coherence, 100, 329, 335
free-running systems, disadvantages of,

96
full-edge collapses, 21–22, 27–28
fundamental concept of LOD, 5
Funkhouser’s architectural walkthrough

system, 94, 95, 99–101

G
gain, 319–320, 335
Gamecube programmable vertex

processing, 161
game optimization

average triangle size, 156–157
billboards, 176–177
blending, 178–179, 181–182
continuous-discrete hybrids, 168
continuous LOD, 166–169
detail metrics table, 181
difficulties with LOD. See game-

specific LOD difficulties
discrete LOD, 163–166
distance selection, 180
environment considerations, 152–157
error metrics, 180–182
fill rate optimization, 171–172
frame rates, 152–153
geomorphing, 182
higher-order surfaces, 168
importance of, 151
imposters, 175–179
instantiations, multiple, 153–154
lighting LOD, 172
memory limitations, 153
modeling practices, 157–160
nongeometric LOD for games,

171–175

Team LRN

Index 377

noninteractive mode, 180–181
nonstandard geometry, 159–160
object priority, 174–175
platforms, multiple, 154, 157
render calls, minimizing, 168
ROAM, 202–206
shader LOD, 171–172
shadow LOD, 169–170
texture compositing, 159–160
throughput, fill-rate vs. triangle-rate,

154–155
transformation LOD, 174
triangle strips, 162
vertex cache coherence, 162
vertex-processing LOD, 172–174
vertex representation, 157–159

game-specific LOD difficulties
cache coherence, 162
display lists, 161
geometry, 161
modeling practices, 157–160
nonstandard geometry, 159–160
push buffers, 161
texture compositing, 159–160
triangle strips, 162
vector-unit packetization,

162–163
vertex representation, 157–159

ganglion cells. See retinal ganglion cells
Gaussian sphere, 57–58, 336
gaze-directed LOD

CSF with, 273–275
defined, 335
techniques of, 237–238

gaze/heading angles, 272
general geometric replacement operator,

26–27
generalization

defined, 336
GIS, 185

generalized triangle strips, 143
generation, 6
genus

defined, 14, 336
preserving, 15–16

geocentric coordinate system, 223
geodetic datums, 222

geographic coordinate systems. See
georeferencing issues

geoids, 220–222
geometric compression, 336
geometric error

basis of, 50
defined, 336
Hausdorff distance, 50–51
mapping distances, 51–52
maximum vs. average, 53–54
screen-space error, 54–55

geometric imposters, 179
geometric priority, 174–175
geometric simplification, 336
geometry, static vs. dynamic, 161
geomorphing

defined, 116, 336
games using, 182
mesh simplification for, 27
real-time CLOD system with, 208
uses of, 116–118
VDPM with, 210

georeferencing issues
coordinate systems, 222–224
datums, 222
defined, 218
ellipsoids, 218–221
geocentric coordinate system, 223
geodetic coordinate systems, 223
geoids, 220–222
precision of floating point values, 223
UTM projections, 223

geospatial file formats, 225–226
GeoTIFF, 225–226
geotypical features, 199
GeoVRML, 197–198, 226
global illumination, 336
global operators

alpha hull operators, 32–36
defined, 19
low-pass filtering, 29–30
morphological operators, 30–32
purpose of, 28–29
topology, effects on, 28–29
volume processing, 29–32

global simplification, 113–114
global topology, 28–32, 336

Team LRN

378 Index

greedy algorithms
defined, 336
floating cell-based clustering with, 65
queuing, 40–41

grid-based vertex clustering, 62–65
guaranteed error bound, 53

H
half-edge collapses

defined, 21–22, 336–337
games using continuous LOD,

166–167
vertex removal, compared to, 27–28

hardware design issues
average triangle size, 156–157
geometry processing units, 156
lighting, 160–161
memory limitations, 153
pixel-processing units, 156
platforms, multiple, 154, 157
texture support, 199
transformation of geometry, 160–161
video games, 152
view-dependent LODs, 113–114

Hausdorff distance
computation of, 50–51
defined, 337

head-tracked VR system, 308
hierarchical dynamic simplification, 107
hierarchical grid-based vertex clustering,

64–65
hierarchical LOD, 100–101, 337
hierarchy-building algorithms. See

simplification frameworks
higher-order surfaces, 168
high-level perception, 280, 337
history of level of detail, 7–8
horizontal cells, 243
hyperacuity, 257–258, 337
hysteresis

defined, 337
game distance selection with, 180
reactive fixed-frame rate schedulers

using, 97
run-time frameworks based on, 93–94

I
illumination simplification, 8–9. See also

lighting LOD
illusions of scenes, priority selection for,

91–93
image-based LOD imposters, 175–179
image-driven simplification

defined, 337
edge costs, 142
incremental image updates, 142
metrics, image, 141
overview of operation, 140–141
purpose of, 139

image-generation algorithms, 291
image-space metrics

image-driven simplification
algorithm, 141

rendering to measure, 81–82
imperceptible gaze-directed

simplification, 273–275
implicit dependencies, 112–113
imposters, 175–179
incremental error, 60
independent queuing algorithm,

43–44
inner optimization, 39, 48
instantiations

games with multiple, 153–154
geometric imposters, 179

interactive visualization, topological
simplification for, 37

interactivity. See temporal detail
interest, 233–235
interior edge vertices, 129
interlacing, 156
interleaved simplification operators,

44–45
internal validity, 337
Internet access to terrain data, 196–197
IO differencing, 325–326, 337
I/O path, 308–313, 337
isosurface extraction methods

marching cubes algorithm, 29, 32
volume processing with, 29–32

isosurfaces, 338
isotropic LOD. See discrete LOD

Team LRN

Index 379

J
just noticeable differences (JNDs)

defined, 338
finding, 284

K
kd-trees, 190
kernel, 59, 338
knapsack problem, 338

L
latency. See system latency
latency-only (LO) manipulation,

310–312, 338
late sampling, 312, 338
lazy evaluation, 142, 338
lazy queuing algorithm, 41–42
lens, 241
light adaptations, retinal, 256
lighting LOD

complex light type reduction, 172,
175

hardware design issues, 160–161
vertex processing, 172, 175

lighting simplification, 8–9
limit of vision, computing, 264
line-of-site (LOS) based refinement,

203–204
LKTerrain, 200–202
local error simplification algorithm,

77–79
local operators

cell collapse operators, 24–25, 28
comparative advantages of, 27–28
defined, 19
edge collapse, 21–23, 27–28
general geometric replacement

operator, 26–27
polygon merging, 25–26
triangle collapse operators, 24
vertex-pair collapse operators, 23–24
vertex removal operators, 25, 28

local topology, 14–15, 338
longest-edge bisection scheme, 214
LooksLike() functions, 280, 299

LOS (line-of-site) based refinement,
203–204

low-level perception, 280, 338
low-pass filtering, 29–30
luminance channel Y, 141
luminance perception, Weber’s Law,

248–249

M
managing LOD through visual

complexity, 264–265
manifold meshes

advantages of, 15
connectivity, 19–20, 25–26
defined, 15
nonmanifold edge errors, 22–23
nonmanifold meshes, 16
simplification. See mesh

simplification
manifolds, defined, 339
manual control theory, 317–321
mapping distance, 51–52, 339
marching cubes algorithm, 15, 29, 32,

130, 339
masking. See visual masking
massive models, RSimp for simplifying,

139
maximum error, 53–54
mechanical CAD model topological

simplification, 38
memory, physical

games, 153
paging, 194–199
segmentation, 153

merge trees, 107, 339
mesh connectivity, 19–20, 25–26
mesh dependencies, tracking, 110–113
mesh foldovers, 22, 57–58, 110–111
mesh geometry, 19
mesh optimization, 70–72
mesh simplification

alpha hull operators, 32–36
budget-based, 20–21
cell collapse operators, 24–25, 28
collapse operators, 21–25, 27
connectivity, 19–20

Team LRN

380 Index

mesh simplification (continued)
edge collapse operator, 21–23
error measurement. See error metrics
estimating costs method, 42–43
fidelity-based, 20
floating-cell based. See floating-cell

clustering
foldovers, 22, 57–58, 110–111
frameworks, 38–45
games, preferred, 166
general geometric replacement

operator, 26–27
geomorphing with, 27
global operators, 28–38
goals of, 38
greedy queuing algorithm, 40–41
hierarchies of meshes, 38–39
independent queuing algorithm,

43–44
interleaved simplification operators,

44–45
lazy queuing algorithm, 41–42
local operators, 19, 21–28
low-pass filtering, 29–30
mesh geometry, 19
morphological operators, 30–32
nonoptimizing frameworks, 39–40
ordering of simplification, 39
overview, 19–21
progressive mesh algorithm, 70–72
quality of. See error metrics
triangle collapse operators, 24
triangulation preprocessing, 20
vertex clustering algorithms, 62–65
vertex-pair collapse operators, 23–24
vertex removal operators, 25, 28. See

also vertex removal
view-dependent, 104
Visualization ToolKit (VTK), 28
volume processing, 29–32

mesh topology
2D manifolds, 15
defined, 14
genus, 14, 15–16
simplicial complex notation, 14

Metro, 72, 297
Michaelson contrast, 249–250

MIP-mapping, 339
Modelfest, 290
modeling practices, games, 157–160
modulation, visual sensitivity, 253
morphological operators, 30–32
motion sensitivity, 262–263, 266–267
MT. See multitriangulation (MT)
multichannel measures of fidelity,

288–289, 298
multichannel model, 247–248, 254, 339
multiresolution techniques for terrain

bintrees, 190–192
cracks, 193–194
GeoVRML, 197–198
out-of-core browsing, 194–198
paging memory, 194–198
quadtrees, 190–192
regular grids, 188–190
texture mapping issues, 198–199
TINs, 188–190
T-junctions, 193–194
top-down vs. bottom-up approaches,

187–188
multitriangulation (MT)

general geometric replacement
operator, 26–27

terrain LOD system, 211–213

N
naming times, 281–283, 296–298
natural mapping, 62, 78
nongeometric LOD for games, 171–175
nonmanifold edge errors, 22–23
nonmanifold meshes, 16
nonmanifold vertices, 129
normal cones

defined, 339
hierarchical grids using, 64–65
spatialized normal cone hierarchies,

108
normal map, 339
normal masks, 108, 110
normal variation error metric, 137
normal vectors, attribute errors with,

57–58

Team LRN

Index 381

NTSC (National Television Standards
Committee), 339

Nyquist limits, 270

O
object priority, 174–175
object-space error, 54–55, 340
occlusion culling, 340
octrees, 107, 340
offset surface, 340
opacity, alpha blending, 114–116
OpenGL Performer API

alpha blending support, 115
Dynamic Video Resolution (DVR),

97
fixed-frame rate scheduler, 97
large texture support, 199
paging terrain support, 195–196

Open Inventor toolkit, size-based
frameworks, 91

open-loop tasks, 316–317, 327, 340
opsin, 243
optic nerve, 241–242, 340
optimization, definition of, 340
orthogonal frameworks, perceptual

models for, 232
outer optimization, 39, 48
out-of-core simplification, 194–198, 209,

214, 340
output signal, 318, 340
overdraw, 340

P
paging

terrain, 194–198
textures, large, 198–199

Panum’s fusional area, 236, 341
parallel LOD, 341
parametric distance, 52–53, 341
particle effects, 172
path tracing, 291, 341
PCA (principal component analysis), 137
perceptual factor-based frameworks,

94–96
perceptually modulated LOD, 272–273

perceptually optimized 3D graphics,
275–277

perceptual models
advantages of, 231–232
color, 255
content evaluation, 264–265
contrast sensitivity function (CSF),

250, 252–255, 264–265
depth of field, 233, 236–237
distillation effect, 298
eccentricity, 233–235, 238, 267–269
eyes. See eyes, anatomy of
eye tracking, 238
gaze-directed techniques, 237–238
individual human variations, 257
interest, 233–235
limit of vision, computing, 264
motion sensitivity, 262–263, 266–267
multichannel model, 247–248, 254
multiple viewers, 238
need for, 103–104, 231–232
optimized 3D graphics, 275–277
orthogonal frameworks based on, 232
Panum’s fusional area, 236
perceptually modulated LOD,

272–273
peripheral vision. See eccentricity
popping effect, minimizing, 232
rendering resource optimization, 232
retinal variations in sensitivity,

246–247
sensitivity to detail, 245–247
smooth pursuit, 238
spatial frequency, 264–265
spatial resolution, 245–246
standard observers, 255
temporal sensitivity, 247
terrain LOD with, 275–277
velocity, 233, 235
vergence eye movements, 236
vision. See visual system
visual acuity, 269, 272
visual attention model, 238
visualizing effect of, 270–272
visual masking, 260–262
visual sensitivity. See visual sensitivity

measurements

Team LRN

382 Index

perceptual models (continued)
Weber’s Law, 248–249
window of visibility, 250

Performer. See OpenGL Performer API
periodicity, 254
peripheral vision. See eccentricity
phase lag, 319–321, 341
photopigments, 243
photoreceptor cells, 241, 341
pixel fill-rate. See fill rates
pixel shaders, 341
plane mapping algorithm, 75–77
Playstation 2

continuous LOD problems, 168
vector-unit packetization, 162–163

PM (progressive meshes). See progressive
meshes (PM)

polygonal models, 14
polygonal simplification, 341. See also

mesh simplification
polygonal triangulation, 146–149
polygon merging, 25–26
polygon retiling algorithm, 116–117
Pong controls, 320–321
popping effect

blending to avoid. See blending
defined, 342
geomorphing, 116–118
perceptual models, minimizing using,

232
prediction, 311–312
predictive displays, 321, 342
predictive fixed-frame rate schedulers,

98–104
previewing displays, 342
principal component analysis (PCA), 137
priority selection factor, run-time, 91
progressive LOD transmission, 342
progressive meshes (PM)

algorithm with vertex-surface error
metric, 70–72

defined, 342
precursor to VDPMs, 208

protein models, 37
proxy vertices, 106
psychophysical approach, 285

push buffers, 161
pyramids, 342

Q
QSlim algorithm, 32, 296–297
QSplat, 274–275, 342
quadratic forms, 67
quadric error metric

algorithm for use, 133–136
attributes with, 135–136
calculating, 66–69
candidate vertices for algorithm,

134–135
color with, 135–136
computing target vertices, 135
defined, 66–67, 342
fundamental error quadric equation,

134
RSimp, 136–139
surface area measurement with,

133–134
vertex clustering with, 128

quadtrees
defined, 342
out-of-core browsing with, 195, 197
terrain LOD with, 190–192

quality, measuring. See error metrics
quantization of color, 8

R
radiosity, 15, 342
reactive fixed-frame rate schedulers,

96–98
real-time generation of continuous LOD,

206–208
real-time optimally adapting meshes

(ROAM), 202–206, 343
receptive fields, 244–245, 247–248
refinement methods. See top-down

hierarchy building
refresh cycle time, 304, 342
refresh rate, 303–305, 342
region of support, 106
regular grids, terrain, 188–190

Team LRN

Index 383

render calls, minimizing, 168
rendered images for simplification. See

image-driven simplification
rendering

frame-latency (FL) manipulation, 313
hardware for, 160–161
resource optimization, 232
sequential triangle strips, 142–143
shader LOD, 171–172
textures offscreen, 178–179

responsiveness. See system
responsiveness

retesselation, 343. See also tessellation
retinal, 243
retinal eccentricity, 246–247, 268
retinal ganglion cells, 241, 243–245, 343
retinas, 241–242, 246–247, 256, 268
retriangulation, 343. See also

triangulation
right triangular irregular networks

(RTINs), 189–190
rigid mesh, 343
RMS (root mean squared) error,

286–287, 298, 343
ROAM (real-time optimally adapting

meshes), 202–206, 343
rods, 242–243
root mean squared error (RMS). See

RMS (root mean squared) error
Rossignac-Borrel algorithm, 296–297
RSimp, 136–139
RTINs (right triangular irregular

networks), 189–190
run-time frameworks

alpha blending, 114–116
blending, 114–118
distance factors, 88–90
environmental condition factors, 94
fixed-frame rate schedulers, 96–104
geomorphing, 116–118
global simplification, 113–114
hysteresis, 93–94
perceptual factors, 94–96
perceptual models with, 103–104
predictive fixed-frame rate schedulers,

98–104

priority factors, 91–93
reactive fixed-frame rate schedulers,

96–98
selection factors, 88–96
size factors, 90–91
tracking mesh dependencies, 110–113
view-dependent LODs, 104–114

run-time LOD
automatic fidelity measures for,

291–294
contrast sensitivity, 292–294

S
saccades, 259–260, 343
sampling delay, 306, 343
scalability for hardware platforms, 154
scanned models, surface-surface error

metrics for, 72
screen-space error

calculating, 54–55
defined, 343
error metrics for, 49
hierarchical grid-based vertex

clustering, 64–65
texture deviation error metric, 79–81
threshold with view-dependent

LODs, 108
search performance, 280–281
second order controls, 319, 343
segmented memory, 153
Seidel’s triangulation algorithm, 148–150
selection factors, run-time

bounding boxes, 91
distance, 88–90
environmental conditions, 94
hysteresis, 93–94
perceptual factors, 94–96
priority, 91
size, 90–91

semantic-based run-time frameworks,
93, 102

semantic boundaries, high-level, 294
sequential triangle strips, 142–143
shader LOD, 171–172
shading simplification, 8–9

Team LRN

384 Index

shadow LOD
fast methods, 172
game optimization with, 169–170

shared vertex formats, 165
silhouette preservation

CSF based, 274
defined, 343–344
image-drive simplification for, 139
view-dependent LODs using, 108

simple cells, visual cortex, 245
simple vertices, 129
simplicial complex notation, 14
simplification

automatic fidelity measures for,
294–298

error. See error metrics
frameworks. See simplification

frameworks
mesh. See mesh simplification

simplification envelopes
algorithm, 73–75
wedgies, 203, 206

simplification frameworks
classification of, 39
error measures. See error metrics
estimating costs method, 42–43, 78
goals of, 38–39
greedy queuing algorithm, 40–41
independent queuing algorithm,

43–44
inner optimization, 39
interleaved simplification operators,

44–45
lazy queuing algorithm, 41–42
nonoptimizing, 39–40
ordering in, 39
outer optimization, 39

single buffering, 303, 344
single-channel fidelity measures,

287–288
size selection factor, run-time, 90–91
skeletal models, 174, 179
skinned mesh, 179, 344
skip lists, 144
skip strips, 142–147
sliver triangles, 148
smoke, 172–173

smooth pursuit, 238
Snellen fraction, 251–252
spatial contrast-sensitivity function

(CSF) filters, 287–288
spatial data transfer standard (STDS),

225
spatial frequency

assessing, 272
of contrast grating, 249
defined, 344
display devices, calculating for, 270
mechanism to evaluate for LOD,

264–265
spatial CSF filters, 287–288

spatialized normal cone hierarchies, 108
spatial resolution of the visual system,

245–246
spatiotemporal threshold surface,

266–267, 344
spring energy terms, 71
sprites

imposters, 175–179
particle effects, 172

stability, of dynamic control, 318–320,
344

standard image, 344
standard LOD fidelity measure, 344
standard observers, 255, 264
stand-ins. See imposters
static geometry, 161
static imagery, automatic measures of

fidelity, 286–291
STDS (spatial data transfer standard),

225
stereoblindness, 257
stimulus duration factor, 256
storage optimization

geospatial file formats, 225–226
sequential triangle strips, 142–143
spatial coherence of terrain, 195
vertex representation, 8, 157–158

striate cortex. See visual cortex
STRIPE, 143
subdivision methods. See top-down

hierarchy building
subjective fidelity rating systems,

283–284

Team LRN

Index 385

superfaces. See polygon merging
supporting nodes, 106
supporting planes, 66
surfaces, distances between, 50
surface-surface distance metrics

advantages of, 82–83
defined, 72
exhaustive hole-filling approach, 73
plane mapping algorithm, 75–77
simplification envelopes algorithm,

73–75
system latency

defined, 344
frame-latency (FL) manipulation,

312–313
human sensitivity to, 315
latency-only (LO) manipulation,

310–312
temporal detail, effects on, 305–308

system responsiveness
defined, 344
human sensitivity to, 315
importance of, 328–329
temporal detail with, 306–308

T
target signals, 344
task alteration, 321
tearing

defined, 344
refresh rate artifact, 303

teleoperation studies, 325
temporal detail

catching tasks, 322
closed-loop tasks, 316–321, 327
comparison of manipulations,

313–315
complex task issues, 321–324
constancy, 327–328
control alteration, 320, 327
controlling, 309–315
control types, 319
defined, 345
desktop computer systems, 307–308
double buffering, 303
dynamic control systems, 317–321

filtering of input, 310–311
frame-latency (FL) manipulation,

312–315
frame locking, 303
frame-only manipulation, 309–310
frame rate, 302–306, 328–329
frame time, 302–303
guidelines for, 326–329
head-tracked VR system, 308
importance of, 301–302
improving, best practice, 327
IO differencing, 325–326
latency-only (LO) manipulation,

310–312, 314–315
late sampling, 312
measuring, 302–309
open-loop tasks, 316–317, 327
output signals, 318
pattern of change, 328
perceptual limits to, 315–316
placement tasks, 322–323
prediction, 311–312
quality required, 327
refresh rate, 303–305
sampling delay, 306
system latency, 305–308
system responsiveness, 306–308,

328–329
target signals, 318
tasks, 322–324, 327
tearing, 303
tracking tasks, 323–324
triple buffering, 206, 304–305
TVU relationship, 325–326
visual detail, tradeoffs, 315, 324–326

temporal detail, visual detail, usability
relationship. See TVU relationship

temporal sensitivity of vision, 247
temporal thresholds, 262–263
terrain LOD

algorithms, table of, 216–217
bintrees, 190–192
BT format, 226
characteristics of terrains, 187
continuous LOD, 200–202
cracks, 193–194
data storage structures, 200

Team LRN

386 Index

terrain LOD (continued)
DEM format, 225
DEXTER, 206–207
DTED format, 225
dynamic terrain, 206, 209
earth, shape of. See georeferencing

issues
error metrics, 203, 206, 208, 210
file formats, 225–226
flight simulators, 185
georeferencing. See georeferencing

issues
geospatial file formats, 225–226
GeoTIFF format, 225
geotypical features, 199
GeoVRML format, 197–198, 226
history, 185–186
Internet access to data, 196–197
Lindstrom and Pascucci system,

213–215
line-of-site (LOS) based refinement,

203–204
location references. See georeferencing

issues
multiresolution techniques for,

187–199
out-of-core browsing, 194–198, 214
paging systems, 194–198
perceptual model based, 275–277
quadtrees, 190–192
real-time generation of CLOD,

206–208
regular grids, 188–190
ROAM, 202–206
STDS format, 225
TerraVision, 196–197
texture mapping issues, 198–199
tiling, 194–198
TINs, 188–190
T-junctions, 193–194
top-down vs. bottom-up approaches,

187–188
VARIANT, 212–213
VDPMs, 208–211
view-independent LOD for, 10–11
Web sites for data, 226–228

TerraVision, 196–197

tessellation
bintrees, 191–192
defined, 345
mutual, 76–77

texture
2D deviation error metric, 79–81
3D volume, 178
caching systems, 198–199
clip region method, 199
coordinates. See texture coordinates
folding errors, 81
game-specific compositing, 159–160
higher-order surfaces with, 169
imposters using prerendered, 176–177
off-screen, rendering to, 178–179
terrain LOD issues, 198–199

texture coordinates
attribute errors of, 58–59
parameterization for mappings,

80–81
texture map imposters, 345
texture seams, 345
threshold contrast, 250, 345
threshold testing, 284–285
TINs (triangulated irregular networks)

advantages of, 188–190
defined, 345
multitriangulation with, 211
VDPMs with, 209

T-junctions
defined, 15–16, 345
terrain LOD with, 193–194

top-down hierarchy building, 38–39,
187–188, 214

topology
defined, 14
local, 14–15, 338
mesh, 14–16
simplification. See topology

simplification
topology-insensitive algorithms, 17, 124
topology-modifying algorithms, 16–17,

131–133
topology-preserving simplification

algorithms, 15
topology simplification

alpha hull operators on, 32–36

Team LRN

Index 387

desirability of, 37
disadvantages of, 37–38
global operator effects on, 28–29
interleaved simplification operators,

44–45
morphological operators, 30–32
vertex decimation causing, 131–133

topology tolerant algorithms, 15
total error, 60–61
transformation LOD, 174
transparency, alpha blending, 114–116
trapezoidal decomposition, 148–150
triangle budgets of view-dependent

LODs, 108–109
triangle collapse operators, 24
triangle rates vs. fill rates, 154–155
triangle strips

degenerate triangles from, 146
game optimizations, 162
half-edge collapses, 143–144
purpose of, 142
ROAM, 203
sequential, 142–143
view-dependent changes with,

143–144
triangulated irregular networks (TINs).

See TINs (triangulated irregular
networks)

triangulation
algorithms for, 20
average size, 156–157
defined, 345
importance of, 146
Seidel’s algorithm, 148–150

triple buffering, 206, 304–305, 345
TVU relationship, 302, 325–326, 345

U
uniform grid-based vertex clustering,

62–64, 122–125
Unreal game engine

distance-based LOD, 88–89
geormophing feature, 116

UTM (Universal Transverse Mercator)
projections, 223

V
VARIANT (Variable Resolution

Interactive Analysis of Terrain),
212–213

VDPMs (View Dependent Progressive
Meshes), 107, 208–211, 347

vector-unit packetization, 162–163
velocity. See also motion sensitivity

blurring due to, 270–272
CSF with, 266–267
LOD model, 233, 235

vergence eye movements, 236, 346
vernier acuity, 258, 346
vertex cache

coherence, 162
defined, 146
games using, 167–168

vertex clustering
advantages of, 122
defined, 346
degenerate triangles, 124
disadvantages of, 125
error metrics of, 62–65, 128
floating-cell based, 64–65, 125–127,

334
grid application, 123
hierarchical grid-based, 64–65
importance weights, 122–123
massive models with, 127–128
out-of-core simplification, 128
overview, 122
plycrunch, 122, 128
RSimp, 136–139
synthesized representation, 128
topological insensitivity of, 124
uniform grid-based, 62–64, 122–125

vertex decimation
advantages of, 121, 130–131
classification of vertices, 129
criteria for decimation, 130
defined, 346
error metrics, 130, 131
feature edges, 129
history of, 128
overview of operation, 129
topology-modifying continuous

LOD, 131–133

Team LRN

388 Index

vertex decimation (continued)
triangulation step, 130
vertex-split operations with, 131–132
Visualization ToolKit, 128

vertex hierarchies
creation and structure of, 105–106
defined, 346
disadvantages of, 113
global simplification with, 113–114
independent queuing algorithm,

43–44
purpose of, 104–105
skip strip structure, 146–147
tracking mesh dependencies of,

110–113
variations in, 107
view-dependent criteria, 107–109

vertex pair collapse, 23–24, 107
vertex-plane distance error metrics,

65–69
vertex-processing LOD

lighting LOD, 172
transformation LOD, 174

vertex removal
CLOD for height fields, use of, 200
decimation. See vertex decimation
defined, 346
games using, 166
methods for, 28
operation of, 25
plane mapping algorithm with, 75–77
vertex decimation using. See vertex

decimation
without edge sharing, 107

vertex representation in games, 157–159
vertex shading, 346
vertex splitting, 21, 346
vertex-surface distance metrics, 69–72
vertex trees, 346
vertex unification, 107
vertex–vertex error metrics, 61–65, 82
vertices

classification of, 129
hardening, 159

VGIS (virtual geographic information
system), 201

video games. See also game optimization
average triangle size, 156–157
blending, 161
defined, 152, 347
discrete LOD, 163–166
frame rates, 152–153
hardware consideration, 152
imposters, 175–179
instantiations, 153–154
interlacing, 156
memory limitations, 153
rendering optimization hardware,

160–161
throughput, fill-rate vs. triangle-rate,

154–155
vertex cache coherence, 162

view-dependence trees, 347
view-dependent LODs

advantages of, 104
criteria of view dependence, 107–110
CSF perceptual model with, 273–275
defined, 10, 347
disadvantages of, 12, 113
games, disadvantages in, 163
global simplification, 113–114
hardware design issues, 113–114
independent queuing algorithm,

43–44
normal mask technique, 108
overview of, 104–105
run-time frameworks using, 104–114
screen-space error threshold, 108
silhouette tests, 108
skip strips, 142–147
terrains, advantages with, 10–11
tracking mesh dependencies, 110–113
triangle budgets, 108–109
vertex hierarchy, 104–107
view-dependent progressive meshes

(VDPM), 107, 208–211, 347
View Dependent Progressive Meshes

(VDPMs), 107, 208–211, 347
viewer attentiveness, 181
view-frustrum culling, 347
view-independent LOD. See discrete

LOD

Team LRN

Index 389

viewing cones, 108–109
virtual-edge collapse. See vertex pair

collapse
virtual geographic information system

(VGIS), 201
Virtual Terrain Project (VTP), 201, 206,

227
visual acuity

contrast sensitivity compared to,
251–252

defined, 250–251, 347
modeling, 269
perceptually modulated LOD using,

272
periodicity, 254

visual arc, 246
visual attention model, 238
visual cortex, 239, 242, 245, 247
visual detail

defined, 347
temporal detail, tradeoffs, 324–326

Visualization ToolKit (VTK)
vertex decimation, 128
vertex removal operator, 28

visual masking, 260–262, 347
visual pathways, 239, 242
visual persistence, 263
visual sensitivity measurements

age of subject, 257
background illumination, 256
blind spots, 259
chromaticity, 255
color, 255
color blindness, 257
complexity, influence of, 254
contrast gratings, 248–250, 253–255
contrast sensitivity function (CSF),

250, 252–255, 264–265
critical fusion frequency (CFF), 263
dimensionality, 254
display factors, 256
emotional state, effects of, 257
environmental considerations,

256–257
experienced subjects, effects of, 257
flicker detection, 263

hyperacuity, 257–258
individual human variations, 257
lens aberrations, 257
light adaptations, 256
Michaelson contrast, 249–250
modulation, 253
motion sensitivity, 262–263
periodicity, 254
saccades, 259–260
sensual interaction, 256
standard observers, 255
stereoblindness, 257
stimulus duration factor, 256
temporal thresholds, 262–263
threshold contrast, 250
vernier acuity, 258
visual acuity, 250–252
visual masking, 260–262
visual persistence, 263
Weber’s Law, 248–249
window of visibility, 250

visual system
collector cells, 241, 243
eccentricity. See eccentricity
edge sensitivity, 244
eyes, 239–245. See also eyes, anatomy

of
fovea, 246–247
measuring sensitivity. See visual

sensitivity measurements
multichannel model, 247–248, 254
optic nerve, 241–242
orientation selection, 245
photopigments, 243
photoreceptor cells, 241
processing sites, neural, 239–240
receptive fields, 244–245, 247–248
retina, 241–242, 246–247
retinal ganglion cells, 241, 243–245
retinal variations in sensitivity,

246–247
sensitivity to detail, 245–247
spatial resolution, 245–246
temporal sensitivity, 247
visual cortex, 239, 242, 245, 247
visual pathways, 239, 242

Team LRN

390 Index

volume processing, 29–32
volume texture, 347
volumetric grids, 29
voxelizing, 29, 31
VRML (Virtual Reality Modeling

Language), 197–198, 226
VTK. See Visualization ToolKit (VTK)

W
Weber’s Law, 248–249, 347
weighted skinning, 174
window of visibility, 250

X
XBOX

programmable vertex processing, 161
vertex cache coherence, 162, 167–168

Z
zero-order controls, 319, 347

Team LRN

	Cover
	Contents
	Foreword
	Preface
	Coverage and Audience
	Why We Wrote this Book
	Acknowledgments
	About the Web Site

	About the authors
	Part I: Generation
	1 Introduction
	Coverage and Organization
	History
	Simplifications in Computer Graphics
	LOD Frameworks
	Discrete LOD
	Continuous LOD
	View-Dependent LOD
	LOD in Practice

	Polygonal meshes
	Topology

	Fidelity Metrics

	2 Mesh simplification
	Overview
	Fidelity-Based Simplification
	Budget-Based Simplification

	Local Simplification Operators
	Edge Collapse
	Vertex-Pair Collapse
	Triangle Collapse
	Cell Collapse
	Vertex Removal
	Polygon Merging
	General Geometric Replacement
	Comparing the Local Simplification Operators

	Global Simplification Operators
	Volume Processing
	Alpha-Hull-Based Topology Simplifications
	When Is Topology Simplification Desirable?
	When Is Topology Simplification Unacceptable?

	Simplification Frameworks
	Nonoptimizing
	Greedy
	Lazy
	Estimating
	Independent
	Interleaved Simplification Operators

	Conclusions

	3 Simplification error metrics
	Why Measure Error?
	Guide and Improve the Simplification Process
	Know the Quality of the Results
	Know When to Show a Particular LOD
	Balance Quality across a Large Environment

	Key Elements
	Geometric Error
	Attribute Error
	Combining Errors
	Incremental and Total Error

	Range of Approaches
	Vertex–Vertex Distance
	Vertex–Plane Distance
	Vertex–Surface Distance
	Surface–Surface Distance
	Image Metric

	Conclusions

	Part II: Application
	4 Run-time frameworks
	LOD Selection Factors
	Distance
	Size
	Priority
	Hysteresis
	Environmental Conditions
	Perceptual Factors

	Fixed-Frame Rate Schedulers
	Reactive Fixed-Frame Rate
	Predictive Fixed-Frame Rate

	View-Dependent LOD
	Overview
	The Vertex Hierarchy
	Variations on the Vertex Hierarchy
	View-Dependent Criteria
	Tracking Mesh Dependencies
	Global Simplification

	Blending Between Transitions
	Alpha Blending
	Geomorphs

	Conclusions

	5 A catalog of useful algorithms
	Vertex Clustering
	Overview
	Vertex Importance
	Clustering Vertices and Filtering Degenerate Triangles
	Displaying Degenerate Triangles
	Advantages and Disadvantages
	Floating-Cell Clustering
	Simplifying Massive Models

	Vertex Decimation
	Overview
	Classification of Vertices
	Decimation Criteria
	Triangulation
	Advantages and Disadvantages
	Topology-Modifying Continuous LOD

	Quadric Error Metrics
	Overview
	Recap: Measuring Surface Error with Quadrics
	Candidate Vertex Pairs
	Details of the Algorithm
	Accounting for Vertex Attributes

	RSimp: Reverse Simplification
	Overview
	Normal Variation Error Metric
	Cluster Splitting
	Advantages and Disadvantages
	Simplifying Massive Models

	Image-Driven Simplification
	Overview
	Image Metrics
	Evaluating Edge Cost
	Fast Image Updates

	Skip Strips
	An Aside: The Vertex Cache

	Triangulation of Polygonal Models
	Conclusions

	6 Gaming optimizations
	Introduction
	The Game Environment
	Constant Frame Rate
	Very Low Memory
	Multiple Instantiations
	Scalable Platforms
	Fill Rate Versus Triangle Rate
	Average Triangle Size

	Game-Specific Difficulties with LOD
	Modeling Practices
	Hardware Transformation and Lighting
	Static and Dynamic Geometry
	Cache Coherence and Triangle Strips
	Vector Unit Packetization

	Classic LOD Suitability to Games
	Discrete LOD
	Continuous LOD
	Higher-Order Surfaces
	Shadow LOD

	Nongeometric Level of Detail
	Shader LOD
	Vertex-Processing LOD
	Object Priority
	Lighting

	Imposters
	Prerendered Texture Imposters
	Render-to-Texture
	Geometric Imposters

	Selection and Metrics
	Distance Selection
	Game-Specific Metrics
	LOD Blending

	Conclusions

	7 Terrain level of detail
	Introduction
	Multiresolution Techniques for Terrain
	Top Down and Bottom Up
	Regular Grids and TINs
	Quadtrees and Bintrees
	Tears, Cracks, and T-Junctions
	Paging, Streaming, and Out of Core
	Texture-Mapping Issues

	Catalog of Useful Terrain Algorithms
	Continuous LOD for Height Fields
	The ROAM Algorithm
	Real-Time Generation of Continuous LOD
	View-Dependent Progressive Meshes for Terrain
	Multitriangulation
	Visualization of Large Terrains Made Easy

	Georeferencing Issues
	Ellipsoids
	Geoids
	Datums
	Coordinate Systems

	Geospatial File Formats
	Terrain Data on the Web
	Conclusions

	Part III: Advanced Issues
	8 Perceptual issues
	Motivation
	Some Perceptually Motivated LOD Criteria
	Eccentricity Level of Detail
	Velocity Level of Detail
	Depth-of-Field Level of Detail
	Applicability of Gaze-Directed Techniques
	The Need for Better Perceptual Models

	Introduction to Vision
	The Visual System
	The Eye
	The Visual Cortex
	Sensitivity to Visual Detail
	The Multichannel Model

	Measuring Visual Sensitivity
	Contrast Gratings and Spatial Frequency
	The Contrast Sensitivity Function
	An Aside: Visual Acuity
	Applicability of the CSF Model
	Other Perceptual Phenomena
	Further Reading

	Managing LOD Through Visual Complexity
	Modeling Contrast Sensitivity
	Incorporating Velocity into the Model
	Incorporating Eccentricity into the Model
	Modeling Visual Acuity
	Incorporating the Display into the Model
	Visualizing the Effect of the Perceptual Model

	Example Implementations
	Perceptually Modulated LOD
	Imperceptible Gaze-Directed Simplification
	Perceptually Optimized 3D Graphics

	Conclusions

	9 Measuring visual fidelity
	Why Measure Fidelity?
	Experimental Measures
	Search Performance
	Naming Times
	Subjective Ratings
	Threshold Testing
	Comparing Experimental Measures

	Automatic Measures for Static Imagery
	Digital Measures
	Single-Channel Measures
	Multi-Channel Measures
	Evaluating Measure Accuracy
	Applications in Graphics

	Automatic Measures for Run-Time LOD
	Fidelity Measurement for Run-Time LOD
	Contrast Sensitivity in Run-Time LOD

	Automatic Measures for Simplification
	Evaluation of LOD Techniques and Measures
	Search with Low Fidelity Peripheries
	Visual Fidelity Measures and Simplification

	Conclusions

	10 Temporal detail
	Introduction
	Measuring Temporal Detail
	Frame Rate and Refresh Rate
	System Latency and Responsiveness
	Two Example Systems

	Controlling Temporal Detail
	Frame-Only Manipulation
	Latency-Only Manipulation
	Frame-Latency Manipulation
	Comparing and Using Manipulations

	Temporal Detail and User Performance
	Perceptual Limits
	Open- and Closed-Loop Tasks
	Closed-Loop Tasks as Dynamic Control Systems
	Designing for Successful Dynamic Control
	Temporal Detail and Complex Tasks

	Trading Off Temporal and Visual Detail
	A Practical Summarization
	Conclusions

	Glossary
	References
	Index

