
TE
AM
FL
Y

Team-Fly®

Game
Development and

Production

Erik Bethke

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Bethke, Erik.
Game development and production / by Erik Bethke.

p. cm.
ISBN 1-55622-951-8
1. Computer games--Design. 2. Computer games--Programming.
3. Project management. I. Title.
QA76.76.C672 B47 2002
794.8'1526--dc21 2002153470

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-951-8

10 9 8 7 6 5 4 3 2 1
0301

Product names mentioned are used for identification purposes only and may be trademarks of their respective
companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing,
Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Foreword . xvii
Preface . xix
Acknowledgments . xxi

Part I—Introduction to Game Development

Chapter 1 What Does This Book Cover? 3
How to Make a Game. 3
First Have a Plan . 3
Organize Your Team Effectively . 4
Game Development Is Software Development 4
Where to Turn for Outside Help . 4
How to Ship a Game . 5
Post-Release . 5
Success and the Long Race . 5
How to Use This Book . 6

Chapter 2 Why Make Games? 7
To Share a Dream. 7
Games Teach . 7
Game Genres Satisfy Different Appetites 8

Gambling, Puzzle, and Parlor Games. 8
Military and Sports Simulations. 10
Role-Playing Games . 12

Youth Making Games . 13
On Money . 13
Why Make Games? . 14

Chapter 3 What Makes Game Development Hard? 15
The Importance of Planning . 15
Very Few Titles Are Profitable . 15

500,000 Units to Break Even? 16
Employee Compensation and Royalties 17

What Are the Financial Expectations for Your Game? 17
The Scope of the Game Must Match Financial Parameters . . . 17

Why Your Game Should Profit . 18
Feature Storm . 18
If the Game Is Worth Making, Make It Excellent 19

iii

Excellence in Spades . 19
Game Making Is a Long Race of Many Game Projects 20
A Brief History of Software Development. 21
Overly Long Game Projects Are Disastrous 21

What Late Games Do to the Publisher 22
Our Project Plan Behind Starfleet Command 22

The Vision for Starfleet Command 23
Constraints Give Much Needed Focus. 24
On Bugs Shipped in Starfleet Command. 24
Well-Met Goals Enable Future Successes 25
Strong Game Developers Have Strong Foundations 25
The Tension between Preproduction and Production. 25
The Power of the Console . 26
Why Aren’t All Publishers Using Preproduction?. 27

The Process Is Changing . 27
A Strong Plan Makes Game Development Easy 28
The Gravitational Pull of Feature Creep 28
Task Visibility for Team Motivation and for Progress Tracking . . 29
Use Your Core Competencies and Outsource the Rest 29
A Pitfall of Success—Fan-Requested Features and Changes. . . . 29
The Relentless Pace of Technology 30
The Art of War and Games . 32

Chapter 4 Game Project Survival Test 33
The Game Project Survival Test 33

Game Requirements . 33
Planning. 33
Project Control . 34
Risk Management . 35
Personnel . 35
Calculating Your Project’s Score 35
What Does My Score Mean? 36

Part II—How to Make a Game

Chapter 5 What Is a Game Made Of? 39
The Extended Development Team. 39
Game Production Parts . 39

Design Parts . 39
Where Do Lead Designers Come From? 40
How Do You Nail Down the Game Mechanics? 40
Who Are the Level and Mission Designers?. 40
Story and Dialogue Writers Are Writers for Interactivity. . . 41

Coding Parts . 41
Lead Programmers and Technical Directors. 42
Game Mechanics Programmer 43

iv Contents

3D Graphics Programmer 43
Artificial Intelligence Programmer 43
User Interface Programmer 44
Audio Programmer . 44
Tools Programmer . 44
Mission/Level Editor Programmer. 44
Network, Server, or Client Programmer? 45

Art Parts . 45
Art Director . 46
Concept Artist . 46
2D Artist/Interface Designer 47
3D Modeler . 47
Character Modeler . 47
Texture Artist . 48
Animator/Motion Capture Studio 48
Storyboarder. 49

Audio Parts . 49
Voice-Overs . 49
Sound Effects . 49
Music . 50

Management Parts . 50
Line Producer . 50
Associate Producer . 50
Studio Head/Executive Producer. 51
Producer . 51

Quality Assurance Parts . 52
Publisher QA Parts. 52

QA Lead . 52
Main Team. 53
Multiplayer Team . 53
Fresh Teams . 53
Compatibility Team . 53
Localization Team . 53

Beta Testing . 54
Beta Testers . 54
Beta Testing Program Manager 54

Business Parts. 55
Business Development Parts 55

Business Development Executive 55
Publisher CEO and President 55
Studio Heads . 55
Lawyers . 55

Licensing Parts . 56
Promoting, Buying, and Selling Parts. 56

Sales Executive . 56

Contents v

Sales Force and Retail Purchasing Agents 57
Press Relations Manager . 57
Trade Shows . 57
Other Trade Shows and Events 58
The Marketing of a Game. 59
Hardcore Fans . 59

Manuals and Strategy Guides 60
Manual . 60
Strategy Guide . 60

Manufacturing Parts . 61
Hardware Manufacturer Parts. 61

Console Manufacturers . 61
Hardware Representatives 61

Post-Release Parts . 62

Chapter 6 Business Context First 65
The Project Triangle . 65

Implications of the Project Triangle. 66
Various Games and the Project Triangle 67

Questions for You to Answer . 70
What to Do with These Answers 70

An Ultra-Low Budget Game 70
Fixed Budget, Fixed Deadline 72
High-Profile/High-Quality Projects 73

Walk Away . 74

Chapter 7 Key Design Elements 75
Business Context Shapes Design, or Does Design Shape
the Business Context? . 76
Reconcile the Business Context and Game Idea Early 76

The Effects of a Slipped Game 77
Methods and the Unified Development Process 81

What Is a Development Method? 81
Why Use the Unified Software Development Process? 81
Requirements Capture. 82
Use Cases . 82

Case Studies . 87
Case Study I—Diablo . 87

Use Cases of Diablo . 88
Quick Analysis of the Use Cases of Diablo 89

Case Study II—Gran Turismo 90
Use Cases of Gran Turismo. 92
Quick Analysis of the Use Cases of Gran Turismo 93

The Key Design Elements of Your Game 94
The Battle of the Counterterrorists Games 94

The Key Design Elements of Rainbow Six 95

vi Contents

Are We Playing a Mission or Planning a Mission?. 95
The Key Design Elements of Counter-Strike 96
Most Popular Multiplayer Game 96
Of Intersecting Sets and Elite Forces 97

Some Straight Questions to Ask Yourself 99
What Genre or Genres Does Your Game Feature? 99
Will the Game Be Single-Player, Multiplayer, or Both? 99
What Is the Platform?. 99
What Is Your Target Market? 100
What Major Technologies Are You Using? 100

Now What? . 100

Chapter 8 Game Design Document 101
What Is a Game Design Document and What Does It Do? 101
What About the Proposal Document? 102
When Do You Write the Game Design Document? 103
What Should Go into a Game Design Document? 105

Section One: Defining the Game 106
Articulate What the Game Is as Clearly as Possible 106
Set the Mood . 107

Section Two: Core Gameplay 107
The Main Game View . 108
Core Player Activity . 108
The Controller Diagram . 108
In-Game User Interface . 108

Section Three: Contextual Gameplay 109
Shell Menus . 109
The Nuts and Bolts of Game Mechanics 109
Tutorial Mechanics. 109
Multiplayer Mechanics . 110

Section Four: Talk Story . 111
World Backstory . 112
Character Backgrounds . 112
Level, Mission, and Area Design 113
Cut Scene Descriptions . 114

Section Five: Cover Your Assets 115
2D Sprites or 3D Models 115
Missions, Levels, or Areas 115
Voice . 116
Key Framing and Motion Capture 117
Sound Effects . 121
Music . 121
Special Effects . 125

Stepping Back a Bit . 127

Contents vii

Chapter 9 The Technical Design Document 129
Object-Oriented Design . 129
Purpose of the Technical Design Document 130

Why Have a Software Development Process? 132
The Unified Software Development Process 133

Core Workflows of the Unified Process. 134
Phases of a Workflow in the Unified Process. 134

When Should the Technical Design Document Be Written? . . 135
What Goes into the Technical Design Document?. 136

Requirements Capture . 136
Reverse Engineering . 143
Nonobvious Requirements 143

Requirements Analysis . 144
Class Diagram. 145

Relationships . 146
Drawing “is a” and “has a” Relationships and
Ordinalities . 146
Adding Annotation . 147

Other UML Diagram Types 147
Dynamic Modeling . 148
Architectural Diagrams . 149

Large-Scale Planning and the Evil of a Long Build Time . . . 150
Refactoring . 150
Insulation. 151

Forward and Backward Code Generation with a
Modeling Tool . 154
Testing Plan . 154

Unit Testing and White Box Testing 154
Black Box Testing . 155
Beta Testing . 155
From Use Cases to Test Cases 155

Chapter 10 The Project Plan. 157
What Is the Project Plan? . 157
How Do We Create the Project Plan? 157

Gantt and PERT Charts for Organizing Project Tasks 158
Focusing on the Gantt Chart 160
Using the Technical Design Document 161
Task Granularity and Task Leveling 163
How Long Will That Task Take? 163
Short Time Estimate Possibilities 165
Estimating Research Tasks 165
Task Prioritization . 166
Resource Leveling . 171
Task Dependencies . 172

viii Contents

The Top Ten Risks Document 174
The Non-Zero Chance of Delivery 175

Chapter 11 Task Tracking . 177
Production Begins—Now What? 177
Task Visibility . 177
The Wall . 177
Journals . 179

The Cult of the Yellow Notebook 179
Walk Around . 180
Milestone Orientation Meetings 180

Praise People Publicly . 180
Maintain the Gantt Chart . 181
Update the Risks Chart . 182

Chapter 12 Outsourcing Strategies. 183
Why Outsource? . 183
When to Think About Outsourcing 184
What to Outsource . 185

Do Not Outsource Programming—Exceptions Noted 185
On Outsourcing Art. 186

Movies, Cut Scenes, or Full Motion Video 186
3D Models—Modeling. 187
Animation and Motion Capture 187
User Interface Art . 188

Audio. 188
Music . 188
Sound Effects . 189
Voice-Over . 190

What Else to Outsource . 190

Chapter 13 Shipping Your Game 191
Shipping Is a Phase . 191
How Do You Ship a Great Game? 191
Alpha—Feature Complete . 192

What Is Feature Complete? 192
Additional Content . 192
Feature Trimming . 192

Testing Plan . 193
Publisher QA . 193
Team Testing . 194
Project Leader Testing . 195
Automated Testing . 195
Focus Group Testing . 195
Beta Testing. 196

Open or Closed Beta Test? 196

Contents ix

Manufacturer Testing. 197
Licensor Testing . 198
How Do You Balance a Game? 198

Final Candidate Cycle . 200
Transition, Ship, and Point Release 200

Part III—Game Development

Chapter 14 The Vision Document 205
Write the Vision Document Twice 205
So Is the Vision Document a Proposal? 206
Only 1 Percent Catch the Eye 206

What About the Precious Game Secrets? 207
Visuals . 207
Tactile . 208
What About the Words? . 208
Contact Information . 209

Chapter 15 Requirements Gathering 211
The Flavors of Requirements 211

Creative/License Requirements 211
Technical Requirements . 212
Fiscal and Temporal Requirements 213

Use Case Diagrams . 213

Chapter 16 The Design Document 215
What Does the Game Design Document Do? 215
The Game Design Document as a Process. 216

Game Concept . 216
Brainstorm . 216
Delegate Design . 217
Managing the Design Document 218
60 Seconds of Gameplay. 218
Core Gameplay. 219
The Walkthrough . 220
Asset Lists . 221
Use of Other Games . 222
Menu Design . 222
Game Mechanics Detail . 223
Write the Manual? . 223
Concept Sketches and Art Style Guide 224
On Completeness and Uncertainty 224

Cut Features Even Before Considering the Schedule 224
Maintain the Game Design Document 225

On Fulfilled Expectations . 225

x Contents

TE
AM
FL
Y

Team-Fly®

Chapter 17 Unified Modeling Language Survival Guide . . . 227
Use Cases Deliver Requirements. 227
Class Diagrams Are the Keystone of Design. 228
Detailed Syntax of the Class Diagram 230

Associations . 231
Attributes . 232
Operations. 232

Forward and Reverse Engineering of the Class Diagram 233
The Other Seven Diagrams of UML 238

Static Diagrams . 238
Dynamic Diagrams . 240

Chapter 18 Technical Design 245
Nominate Functional Leads . 245
Synthesize Use Cases and Nonvisible Requirements 247

Start with the Use Cases . 247
Casual, Frequent Design Review 247

Nonvisible Requirements . 247
Measure Twice, Cut Once . 249
Specify Tools, Languages, and Processes 250
Goals for the Architecture . 251
Identify Areas of Likely Change 252

The Quality Assurance Plan. 252
Defect Tracking . 252

Defect Tracking Software 253
The Testing Plan . 253

How Many Bugs Are Left to Find? 254
Defect Pooling . 254
Defect Seeding . 255
Political Resistance . 255
Automated Testing. 256
Beta Testing . 256
When to Release the Game 257

Chapter 19 Time Estimates 259
Two Ways to Estimate a Task . 260

Time Boxing . 260
Task Estimating. 261

Art . 261
Design . 261
Programming. 262

Each Shall Estimate Thy Own Tasks 264
Save Your Plans and Compare 264

Making the Plan . 264

Contents xi

Chapter 20 Putting It All Together into a Plan 265
Let’s Create a Schedule for FishFood! 266

Create a New Project File . 266
What Is a PERT/Gantt Chart Anyway? 266
Start Entering Tasks . 268
Tasks Are Performed by Resources 269
Where Does All of This Task Information Come From? 269
Organizing Tasks . 270
Task Granularity . 270
How to Account for Vacation and Sick Time 271
Remember Odd Tasks . 271
Time Leveling in Project . 271
Let it Jell . 273
How to Distribute the Schedule to the Team 273

Chapter 21 Measuring Progress 275
On Leadership . 275

Know What Your Goal Is at All Times 275
Set Goals, Not Hours . 277

Task Tracking . 278
Only Visible Tasks Are Completed 279

The Daily Journal . 279
The Wall . 282

Team Meetings . 285
Of Leaves and Gutters . 286

Chapter 22 Controlling Feature Creep 287
Great Games Satisfy Player Expectations 287

Feature Creep Occurs During Design 288
Primary, Secondary, and Tertiary 288
Feature Walking. 288
Publisher-Suggested Features 289
Push Independent Tasks to the End. 290
Regularly Practice Feature Cutting 290

Chapter 23 Alpha, Beta, Go Final! 293
The Test of Well-Laid Plans . 293

On Alpha. 294
On to Beta . 294
The Finale . 295

Chapter 24 Point Releases vs. Patches 299
Software Complexity and the Fragility of Computers 299
How About Those Console Games—They Don’t Patch!? . . . 301
Online Games—the Perpetual Beta? 302
Point Release as a Sugarcoated Term for Patch. 302
Fan Requests . 303

xii Contents

The Publisher-Developer Post-Release Relationship 303
Tools for Creating Patches . 304
User Extensibility—The Magical Patch 305

Chapter 25 Garage Development Spans the Internet 307
Silver Creek Entertainment. 307

Part IV—Game Development Resource Guide

Chapter 26 Getting a Job in the Game Industry 313
Who Is Trying to Get into Games? 313
You Want Me to Do What? Oh, I Would Rather Do This 314
Hours of the Game Industry . 314
You Did Not Scare Me—I Love Games AND I Want In! 315
How to Get a Job as a Programmer 316
Artists and Their Portfolios . 317
How Do I Become a Tester? . 318
I Have a Great Idea for a Game—I Want to Be a Designer!. . . . 318
So You Want to Be a Producer 318
Go to GDC—Free! . 319
What About Those Recruiters? 320
Resumes, Demo Reels, and the Interview 320

Honesty vs. Modesty . 320

Chapter 27 Starting a Game Development Company 323
Find a Path . 324
I Have a Plan; Now How Do I Get Started? 324
Rounding Out Your Development Team 325
Where to Locate Your Game Company 326
Lawyer and Accountant . 328
Deciding on the Type of Company 329

Non-Corporation . 329
Corporation . 330
Taxes . 331
Buy-Sell Agreements. 331

Insurance . 332
Workman’s Compensation . 332
Liability Insurance . 332

Employee Compensation Programs 332
Medical/Dental/Optical/IRA 334
401K/IRA/Retirement Benefits 335
Project Bonuses . 335
Milestone Bonuses . 335
Royalties. 335
Stock Options . 335

Trademarks and URLs . 336
War Chests . 336

Contents xiii

Chapter 28 Outsourcing Music 339
Music for Games . 339

When to Think About Music 339
Music Formats . 340
What Is Better Than MIDI? 341
Digitized Sound Formats . 342

How Do You Break Down the Music Bid? 343
Score Music for Triggered Events 344
Exploration and Ambient Music 344
Chase/Battle/Hunting Music 345
Jump Lists . 345
Menu Music . 345
How Many Minutes Do You Really Need? 345
Live Performance? . 346

Chapter 29 Outsourcing Voice 353
Interview with Chris Borders . 353
Voice-Over Script for the Orc Peon from Warcraft III 360

Chapter 30 Outsourcing Sound Effects 363
Interview with Adam Levenson. 363

Chapter 31 Outsourcing Writing 369
Computer Game Writing . 369

Know Your Game; Know Your Business 369
Brevity is Bliss . 370
Speak the Speech I Pray You. 370
On Dialogue Trees . 371
Use Story as a Reward . 371
The 80 Percent Stereotype Rule. 371
Hint, Hint, and Hint . 372
Expect Schizophrenia. 372
If You Have Time in a Bottle, Don’t Uncork It 373

Chapter 32 Outsourcing Cinematics and Models 375
Interview with Mark Gambiano 376

Chapter 33 Outsourcing Motion Capture and Animation . . . 381
Animation in Games . 381

Key Framing . 381
Motion Capture . 382

How Does Motion Capture Work? 382
Cleaning up the Motion Data 383

Planning Your Motion Capture Shoot 384
Best Use of Motion Capture 384

xiv Contents

Chapter 34 Fan-Generated Material. 387
Game Development with Your Fans 387

Design Critique . 387
Levels and Missions . 388
3D Models. 390
Other Potential Activities to Outsource. 390
Legal Matters When Working with Fans 390

Appendix A Suggested Reading 395
Project Management. 395
Game Industry . 396
Software Development . 398

Appendix B The Art Institute of California—
Orange County 401

Background. 401
Game Art & Design Bachelor of Science Program 402

Index . 405

Contents xv

This page inten tion ally left blank

Foreword

It is a great honor to write a foreword for a book on game production, as this is a
subject that is very close to our hearts. We have played a very small part in help-
ing Erik with this book—he has accomplished a Herculean task in a relatively
short period of time. We believe this book will serve as an excellent foundation
for mastering the art of game production.

A multitude of books have been written on the specific disciplines of art, pro-
gramming, and design for games, but few, if any, have ever tackled game
production as a topic. Perhaps this is because there isn’t a standardized way of
referring to production in a manner similar to programming and art. Programming
is done in C and C++ and usually follows standards that have been carefully
crafted over many years. Art uses both traditional media and a narrow range of
digital art tools, such as 3D Studio Max and Maya, and is often practiced by indi-
viduals with formal art training at their disposal. Perhaps game design is most
similar to game production in that, until recently, there haven’t been formal pro-
grams in game design, and it is somewhat of an “arcane art” that could be realized
in any potential medium. At the current time there aren’t any formal training pro-
grams for game production, though there are various courses available in project
management. Project management doesn’t fully encompass the skills needed to
manage game development, but it does provide some. Appropriately, this book
includes elements of project management, engineering discipline (a tribute to
Erik’s engineering background), and a lot of common sense (an essential ingredi-
ent in game production).

Erik explained that his goal with this book was to fully realize the discipline
of game production in a formal, yet widely appealing treatment. We were quite
impressed with his ambition, as we’ve learned over the years (via our work on
games like Baldur’s Gate, MDK2, Neverwinter Nights, and Star Wars: Knights of
the Old Republic) that game production is a huge area. Erik further explained that
he was going to provide additional information on topics such as outsourcing and
detailed production frameworks. During our review of the manuscript, we learned
a number of things that we’re going to be able to apply to development at
BioWare. We’re also more excited than ever in seeing the final work with all of
the graphs, diagrams, and illustrations accompanying the text.

xvii

In conclusion we believe you, the reader and presumed game producer or
game developer, will learn a great deal by reading this book. Its contents cover a
wide range of topics and contain pearls of knowledge that will be of value to not
only new game producers but also to experienced game developers. Read and
enjoy!

Dr. Greg Zeschuk and Dr. Ray Muzyka
Joint CEOs and co-executive producers, BioWare Corp.

xviii Foreword

Preface

Who Is This Book For?

This is a book about the making of digital interactive entertainment software—
games! Specifically, this book is for people who want to lead the making of games:
programmers, designers, art directors, producers (executive, associate, line,
internal development, external development), project managers, or leaders on
any type of entertainment software.

� Are you a talented individual working on a mod to your favorite commercial
game who needs to understand how a game is put together?

� Are you working with a small team across the Internet on a total conversion
like Day of Defeat that will grip gameplayers and game developers alike—but
are wondering how to motivate your team members and articulate your
vision for your total conversion?

� Are you running your first game, with six or more developers working on
your game?

� Have you been at work for a few months, and everything felt great at the
beginning, but now you are wondering if you are on time?

� Are you just starting your second game project and determined to plan it
right this time?

� Are you a successful executive producer who is now responsible for oversee-
ing several projects and want to know how you can get more clarity on your
project’s success?

� Are you an external developer and want to know how you can best manage
risks and meet your milestones?

� Is your project late?

� Are you a member of a game development team and have a vested interest in
the success of this game?

� Are you thinking of joining the industry as a producer and need a producer’s
handbook?

The point is there are many different types of people responsible and accountable
for the production of a game project.

xix

This book gives you specific tools for the management of your game, meth-
ods to create a project plan and track tasks, an overview of outsourcing parts of
your project, and philosophical tools to help you solve abstract production
problems.

The author’s personal experience producing the hit series Starfleet Com-
mand and other projects, as well as extensive interviews with many other
producers in the game industry, backs up this advice with real-world experience.

Games are incredible products of creativity requiring art, science, humor, and
music—a true blend of the mind. Managing this effort presents the producer with
many challenges, some specific and some vague. While this book will answer
many specific questions and give guidance in some of the general ideas, the tough
calls are still yours.

xx Preface

TE
AM
FL
Y

Team-Fly®

Acknowledgments

I have been very fortunate in the writing of this book and I was able to lean on
quite a number of folks from the game development community to answer ques-
tions and supply material for this book. I would especially like to thank the
following individuals: Chip Moshner, Jarrod Phillips, Jason Rubin, Kevin Cloud,
Ken Levine, James Masters, Lorne Lanning, David Perry, Nate Skinner, Nigel
Chanter, Steve Perkins, Chris Taylor, Trish Wright, Beth Drummond, and John
Carmack.

I would like to thank Chris Borders for his lengthy interview on voice in
games; Adam Levenson and Tommy Tallarico for their interviews on sound
effects and music; and Scott Bennie for his generous response on writing.

I would like to thank Steve McConnell for writing all of his books on software
project management.

I would like to thank all of the employees of Taldren who entrust in me every
day the responsibility to lead the team.

At Wordware I gratefully thank Jim Hill for the opportunity to write this book
and I also thank Wes Beckwith for being a wonderful development editor and so
supportive of writing this book. I also would like to thank Beth Kohler and Dianne
Stultz for the amazing editing job they performed.

A most outstanding thank you to Greg Zeschuk and Ray Muzyka who have
given so generously of their time and minds to make this book a much better
book.

My two dear partners, Sean Dumas and Zachary Drummond, are due my
heartfelt thanks for all of their support and just plain kicking ass every day.

And finally, I dedicate this book to my wife, Kai-wen, and my son, Kyle, who
is younger than this book.

xxi

This page inten tion ally left blank

Part I > > > > > > > > > > > > > > > > >

Introduction to

Game Development

This page inten tion ally left blank

Chapter 1 > > > > > > > > > > > > > > > >

What Does This

Book Cover?

How to Make a Game

Fairly audacious heading, huh? There
are a lot of books out there that are
introductions to C++ or Direct3D, or
discuss the construction of a real-time
strategy game. What these books do
not cover is which development meth-
odologies you should employ in
creating your game and how to be
smart about outsourcing portions of it.

This book is not a vague list of
good ideas and suggestions; rather it
gets down and dirty and discusses
failed and successful project manage-
ment techniques from my own
experience as well as the experience of
a multitude of other development
studios.

First Have a Plan

Games that have a poor development
methodology (or none at all) take much
longer than they should, run over bud-
get, and tend to be unreasonably buggy.
The majority of commercial games fail
to turn a profit.

Figuring out what your game needs
to do is called “requirements capture.”
This book will show you how to use
formalized methods such as the Unified
Modeling Language’s use case dia-
grams to quickly collect your require-
ments and communicate them

effectively to your team and other pro-
ject stakeholders.

Even if you are working on a solo
project, you must still take your game’s
project planning seriously. A mere
demo of your capabilities to show a pro-
spective employer would be created
with higher quality and with more
speed if you follow the techniques pre-
sented here.

These are just the earliest ele-
ments of an entire game project
production methodology that is devel-
oped throughout this book.

Chapter 1: What Does This Book Cover? 3

Organize Your Team Effectively

Once you have a plan in hand, full game
production commences. This is the
most exciting time for a game project.
Literally every day new features will
come online, and on a healthy project,
the team will feed itself with new
energy to propel forward. This book
discusses how to create task visibility
so everyone knows what he or she
needs to do and how far along the rest
are in their tasks.

Controlling feature creep, reaching
alpha, and freezing new features are
critical to finishing your game. All of
the mega-hits in our industry kept their

feature sets narrow and the polish
deep. I will point this out again: The
mega-hits such as Doom, Warcraft,
Myst, Gran Turismo, Mario64, and The
Sims are not small games; rather their
feature set is small but polished to a
superior degree. This book will show
you how to get a grip on your features.

If you think about it, teams with
one developer must use their time
even more effectively than a fat 30-
person production. All the methods of
creating achievable tasks, measuring
progress, and controlling features are
even more critical for very small teams.

Game Development Is Software Development

Games are certainly special; however,
a point I will be making repeatedly
throughout this book is that game
development is software development.
Games are software with art, audio, and
gameplay. Financial planning software
is software that is specialized for finan-
cial transactions and planning, expert
systems are software with artificial
intelligence, and cockpit instrumenta-
tion is software dedicated to flying an

aircraft. Too often game developers
hold themselves apart from formal soft-
ware development and production
methods with the false rationalization
that games are an art, not a science.
Game developers need to master their
production methods so that they can
produce their games in an organized,
repeatable manner—a rigorous manner
that creates great games on budget and
on time.

Where to Turn for Outside Help

The game industry is maturing rapidly.
With this growth, outside vendors that
are experts in the fields of cinematics,
character modeling, motion capture,
sound effects, voice-over, language
localization, quality assurance, market-
ing, and music composition have pro-
duced mature, cost-effective solutions
for the largest to the smallest team.

Do you know how many moves you
need to capture for your game or how

much they will cost? Do you need to
record in high fidelity 120 frames per
second, or will buying a library of stock
moves be the best solution? I will show
you how to specify what you need and
give you an idea of how the bid will
break down in costs. Interviews by
major vendors in these areas will high-
light major gotchas where projects
went afoul and explain how to avoid
them.

4 Chapter 1: What Does This Book Cover?

How to Ship a Game

So you have finished your game, eh?
You’ve coded it all up and played
through it a bunch, and your friends like
it, but how do you know when it is
ready to ship? I will show you how to
track bugs, prioritize your bugs effec-
tively, task your bugs, and review your
final candidates for readiness.

All game projects can benefit from
beta testing. I will show you how to

effectively solicit help from beta test-
ers. Respect them and you will be
repaid in help beyond measure. Let
your beta testers lie fallow or fail to act
meaningfully on their suggestions and
your game will suffer. Beta testers are
project stakeholders too; you must
communicate with them effectively,
explain to them your decisions, and
show strength of leadership.

Post-Release

After a game ships you will often have
a responsibility and an opportunity to
support your game. This is especially
true for the PC game market where it
is possible to patch bugs, fine-tune the
balance, and add new features or con-
tent. The new content can take the
form of free downloads or larger pack-
ages that can be sold as expansions to
your game. These are the straightfor-
ward tasks; true mega-hits transcend
the status of just a game to play
through and become a hobby. Enabling
players to modify the game through the
creation of new levels, new modules,
new missions, or even total conver-
sions keeps your game alive far beyond
the life expectancy of a game without

user-extensible elements. Pioneered to
great success, id Software’s Doom and
Quake series coined the term level

designer as an occupation. Arguably, the
greatest strength of Chris Taylor’s
Total Annihilation was its aggressive
design for user modification. Chapter 9
discusses the technical design, and it is
here, in the earliest stages of architec-
ture for your game, that you must plan
for user modification. Waiting until the
end of your project is not a valid
method for adding user-extensibility to
your game.

Fan communication is critical to
long-term success; set up an Internet
message board for your fans to trade
ideas, tips, gripes, rants, stories, chal-
lenges, and new content.

Success and the Long Race

The deeper message I am presenting in
this book is that successful game mak-
ing is a long race rather than a sprint to
fast cash. Any attempt to take a short-
cut for poor motives will manifest itself
in a sickly, failed game project. Take
your time to figure out the context of

your game project. Discover why you
are making this game. What is the
vision? What are your true profit goals?
Are they reasonable? What should you
accomplish in this game? Where does
this game you are making fit into a
chain of game projects?

Chapter 1: What Does This Book Cover? 5

How to Use This Book

I suggest you first lightly skim through
the entire book cover to cover to get a
cursory exposure to formalized game
development.

Parts I and II discuss the chal-
lenges of game development
thoroughly and introduce you to effec-
tive methods of game development to
use on your project.

The early chapters of Part III
should be read thoroughly at the begin-
ning of your game project to create a
detailed project plan that will give your
project the best start possible.

Part IV is a resource guide to get-
ting outside help on your project. This
material should be reviewed carefully in

the second half of your preproduction
phase to flesh out your production plan.

Part III should remain handy during
production to help with organizing your
team, wrestling with Microsoft Project,
Unified Modeling Language, Excel, and
other tools for measuring progress, and
for controlling the scope of your
project.

Review the later chapters of Part
III as production reaches alpha and it is
time to figure out how to ship your
game.

The methods presented in this
book have been boiled down in a dis-
tilled format in the Game Project
Survival Test included in Chapter 4.

6 Chapter 1: What Does This Book Cover?

Chapter 2 > > > > > > > > > > > > > > > >

Why Make Games?

To Share a Dream

Creative people love to share their
dreams, thoughts, and worlds. Artists
want to show you the world, musicians
want you to feel the world, program-
mers want you to experience the world,
and game designers want you to be
there.

Games are deeply rewarding
because they appeal on so many differ-
ent levels: They are stories to be
caught up in, action sequences to live,
stunning visuals to experience, and
they challenge our minds by exploring
our strategy and tactical skills. Games
hold the unique position, of all the

different entertainment mediums, of
having the most interactivity with the
audience. This is a very special quality;
it makes the player the most important
part of the story—the hero. Novels are
interactive with the reader, as no two
readers will visualize a narrative in the
same way. Music is interactive for the
rhythm, mood, and inspiration to dance
that it charges humans with. Games are
very special—only in a game can a
player try different actions, experience
different outcomes, and explore a
model of a world.

Games Teach

Games and stories are deep elements
of human culture. Peek-a-boo and its
more sophisticated cousin
hide-and-seek teach the ele-
ments of hunting prey and
evading predators. The oldest
complete game set discovered so
far is the Royal Game of Ur, an
ancient Sumerian game dating
back to 2500 B.C. The rules for
this game are unknown, but the
conjecture is that it was a betting
game about moving a piece
around a track of squares, per-
haps as a very early predecessor

to backgammon. Wei-Ch’i, or Go, can
be traced back by one legend to 2200

Chapter 2: Why Make Games? 7

The Royal Game of Ur with permission from James Masters

B.C. China where Emperor Shun sup-
posedly used the game to train his son
for assuming leadership of the state.
Chess has a rich history throughout the
Middle Ages, the Renaissance, and
through to modern times as the most
celebrated game of strategic thinking.

Longer histories of games are
available; the point I am making here is
that games have held an intimate role
in our intellectual growth from the ear-
liest ages. We modern game makers are
carrying on an honorable, historic role.

Game Genres Satisfy Different Appetites

Electronic games are usually
described by their genre—strat-
egy, adventure, role-playing,
action, and simulation. These
genres are a direct reflection of
the source material for the game.
Military and sports simulations;
gambling, parlor, and puzzle
games; storytelling; toys; and
children’s games comprise some
of the major branches of influ-
ence for the creation of
electronic games.

Modern computer games
have a rich history; some of the
earliest games (1970s) were text
adventure games such as Adven-
ture, crude arcade games like
Pong, and a little later, multi-
player games such as NetTrek.
These early games explored sto-
rytelling, strategy, tactics, and
the player’s hand-eye coordina-
tion. The sophistication of these
games was, of course, limited by
technology—a limit that is con-
stantly being pushed back.

Gambling, Puzzle, and ParlorGambling, Puzzle, and Parlor

Games

Games evolved from elegant board
games full of culture to a wide variety
of wagering games involving dice or

cards. Games like Parcheesi and Scrab-
ble took solid form during the 1800s
and early 1900s. Parcheesi is the father
of board games and requires the players

8 Chapter 2: Why Make Games?

Background and influences on modern game genres

TE
AM
FL
Y

Team-Fly®

to navigate their tokens around the
board like Monopoly and Candy Land.
These games themselves have been
directly ported as electronic games, but
it is the fast-paced puzzle games like
Tetris that have developed new ground
in this genre.

As I type these words, over
110,000 people are playing straightfor-
ward conversions of the classic card and
board games online at Microsoft MSN
Gaming Zone (http://zone.msn.com/ql.asp).
These games have entertained families
and friends throughout the ages and
teach deduction, probability, and social
skills. The folks at Silver Creek

Entertainment (http://www.silvercrk.com)
have taken the concept of spades and
hearts and have crafted the finest ver-
sions of these games, complete with a
rich set of features for social interaction
including chat, ratings, and blasting
your opponents with fireballs.

One of the coolest parlors (in my
opinion) happening right now is the
Internet Chess Club (http://www.chess-

club.com) with over 1,000 players
currently connected and 26 Grand Mas-
ters and International Masters playing
online. The ICC boasts an impressive
chat system, automated tournaments,
over 30 flavors of chess, anytime con-
trol, and impressive library and game
examination features. Automated chess
courses are broadcast throughout the
day, and many titled players turn their
mastery into cash by teaching chess
using the shekel—the unit of currency
on the ICC. It is an exciting place
where you have the choice of watching
GMs and IMs or playing in tourna-
ments around the clock. Instead of
dusty annotated chess columns in the
newspaper, try some three-minute blitz
action with the best players in the
world.

Chapter 2: Why Make Games? 9

A partial listing of games and gamers on Microsoft’s
Gaming Zone

A dwarf and a fireball from Silver Creek Entertainment’s
Hardwood Spades

Military and Sports SimulationsMilitary and Sports Simulations

Games have long been providing simu-
lations of real-life experiences that
many of us do not get to experience in
daily life. There are simulations for
white-water kayaking, racing minivans
at night on the streets of Tokyo, fantas-
tic-looking detailed professional football
simulations, skateboarding simulators,
star fighter sims; in short, any sport,
military action, or transportation
method is a good candidate for an elec-
tronic simulation.

Flight simulators have been the
staple of computer simulations since
the early ’80s. Microsoft enjoys the #1
spot with Microsoft Flight Simulator,
which they release new versions of
every even-numbered year—the latest
being FS 2002 (http://www.microsoft.com/

games/fs2002). Microsoft Flight Simulator
has a huge following including hun-
dreds of virtual airlines and air traffic
controllers, and half a dozen or so
books are available for Flight Simulator.

Austin Meyer of Laminar Research
is the author of the most realistic and
user-extensible flight simulator, X-
Plane (http:// www.x-plane.com). Aside from

the obligatory features of
impressive 3D plane graph-
ics, great looking scenery,
and a realistic flight model,
the truly impressive features
of X-Plane involve its
expandability. Hundreds of
planes and other features
created by devoted fans are
available for X-Plane, includ-
ing real-time weather that is
downloaded to your computer
while flying! The author put
his time into creating the first
simulation of what it would
be like to fly on Mars: real

flight with the gravity, air density, and
inertia models of flight on Mars.

Through the ’70s and ’80s Avalon
Hill produced a vast array of detailed
military board games that covered all
aspects of war making from the Bronze
Age to the Jet Age. Avalon Hill’s crown-
ing achievement is perhaps the most
detailed board game ever created:
Advanced Squad Leader (ASL). ASL is
also the most detailed squad-level mili-
tary board game simulation ever

10 Chapter 2: Why Make Games?

Various windows of the Blitz interface to the Internet Chess Club

A screen shot collage from X-Plane

developed. Countless modules expand
the game and the rules to take into
account the differences of individual
operations in World War II. There are
zillions of rules (and errata!) for every-
thing from ammo types to night combat
rules. Military buffs have been playing
war games for hundreds of years, but
the developments that led to ASL car-
ried forward into electronic gaming.
Currently there is a rage going on
about WWII squad games such as
Microsoft’s Close Combat and Cor-
nered Rat’s World War II: Online. The
most hardcore of them all is Combat
Mission: Barbarossa to Berlin by Bat-
tlefront.com.

My company, Taldren, was founded
on the success of our team’s Starfleet
Command game, which is a 3D real-
time interpretation of the rule set of
Star Fleet Battles from Amarillo
Design Bureau. Star Fleet Battles is a
detailed simulation of starship naval
combat based on the Star Trek televi-
sion show and was created by Steven
Cole. The board game translated well
into a real-time 3D strategy game in
part because the pen and paper board
game itself broke the turns of the game
into 32 “impulses” of partial turns to
achieve a serviceable form of real-time

simulation. The game itself
was usually played as a sce-
nario re-enacting a
“historical” battle between
star empires of the Star
Trek universe. The game
was so detailed in its
mechanics a simple
cruiser-on-cruiser skirmish
could take two to fours
hours to resolve, and a fleet
action such as a base
assault was a project for

the entire weekend and a bucket of caf-
feine. We developed the Starfleet
Command series that draws upon this
rich heritage and delivers a compelling
career in one of eight star empires or
pirate cartels. As the players get caught
up in epic struggles between the star
empires, they earn prestige points for
successful completion of their missions,
which can be used to repair their ships,
buy supplies, and upgrade to heavier
class starships. This electronic game
blends a television show telling the
story of exploring the galaxy with the
detail of a war game.

Chapter 2: Why Make Games? 11

A screen shot from the real-time weather display for X-Plane

Virtual airlines from X-Plane

Car racing has been a staple of
games from the days of Monaco GP
and Pole Position in the arcade to the
state-of-the-art Gran Turismo 3 by
Sony. Gran Turismo 3 features hun-
dreds of hours of gameplay, the most
realistic driving physics model, and
graphics so compelling you can feel the
sunlight filtered through the pine trees.

Electronic Arts, the largest soft-
ware company in the games business,
sells about $3 billion in games a year.
Electronic Arts is both publisher and
developer of countless games dating
back to the early ’80s. EA has done
very well across all platforms and all
genres; however, it is the simulation of
sports—professional sports—that is
EA’s cash cow. Madden NFL Football
(http://madden2002.ea.com) has been pub-
lished for years and has been released
on every major platform including the
PC, PlayStation, PlayStation 2, N64,
Game Boy Color, GameCube, and Xbox.

Role-Playing GamesRole-Playing Games

No discussion of game making could be
complete without discussing storytell-
ing. Sitting around a fire and spinning a
tale is one of the oldest forms of enter-
tainment. Shamans acted out roles as
gods, animals, and warriors to explain
our world, teach us history, and to fuel
our imaginations after the sun went
down. With the advent of writing,
authors could now tell stories across
time—longer, deeper stories than a sin-
gle dry throat could repeat. J.R.R.
Tolkien’s Lord of the Rings trilogy: Here
we drank wine with nearly immortal
elves, fought epic battles with orcs, and
saved the world from ultimate evil
through careful use of a ring. Science
fiction and fantasy exploded in the

second half of the twentieth century to
become the dominant market of fiction.

Reading a novel is wonderful, but
would it not be better to slay the
dragon yourself and take the loot home
to your castle? In the early ’70s, Gary
Gygax created Dungeons and Dragons
and showed us how to slay the dragon.
Dungeons and Dragons was very spe-
cial because you did not compete
against the other players; rather you
acted or role-played a character in a fan-
tasy world. You wrote a backstory for
your elven ranger, what motivated him,
why he must slay the orcs of the Fell
Lands. You then joined up with the
characters of your friends and role-
played through an adventure run by
your Dungeon Master, or referee.

Dungeons and Dragons has been
played by virtually everyone in the
game industry, and it is a keystone of
the role-playing game genre. Text
adventures such as Zork and graphic
adventures such as the King’s Quest
series gave us choices for how the
story would turn out. As capabilities
expanded, breakthrough games such as
Bard’s Tale, written by the infant Inter-
play and published by Electronic Arts,
were later followed up by important
games like the Ultima and Wizardry
series. Role-playing games took a brief
slumber in the early ’80s when first-
person shooters dominated the PC
market, and the format of the computer
RPG remained fairly stale in the early
’90s. Starting around 1997 role-playing
games made a big comeback in the
form of three hugely important games:
Baldur’s Gate developed by BioWare,
Diablo developed by Blizzard, and
Ultima Online developed by Origin.
Baldur’s Gate brought us a gorgeous
game with intuitive controls and

12 Chapter 2: Why Make Games?

mechanics and lavish production values
that brought the Dungeons and
Dragons world of the Forgotten Realms
to life. Diablo stunned the game indus-
try with the simple and addictive game-
play of the tight user interface and
online multiplayer dungeon hacking.
Ultima Online was the first commer-
cially viable massively multiplayer
role-playing game. I spent probably 80
hours of my life there, mining virtual
iron ore to get ahead in a virtual econ-
omy where I paid a real $10 a month for
the privilege of exploring my mining
fantasies.

Looking back to pen and paper
role-playing games and fantasy fiction, I
am excited to see the future of role-
playing games with the release of
Neverwinter Nights developed by

BioWare, where the tools of game mas-
tering are part of the game. Scores of
players will participate together in
user-created adventures online. These
online role-playing games are fantastic
in scope compared to the multi-user
Dungeons available on Unix systems on
the Internet, but the story experience
is just as compelling. I look forward to
seeing the massively multiplayer vir-
tual reality games as depicted in Tad
Williams’ Otherland fiction series,
where we become true avatars. Gas
Powered Games’ release of Dungeon
Siege, building on the groundbreaking
immediacy of Diablo, will be the slick-
est action/RPG today with breathtaking
3D graphics and strong online
multiplayer matchmaking that will sat-
isfy the dungeoneer in all of us.

Youth Making Games

You have to have the bug to make
games. The talent usually begins at a
young age. Like countless other game
developers who made goofy games on
early computers, I had a Commodore
Vic20 and C64 on which I created text
adventure games and crude bitmap
graphic maze adventures. In fourth
grade I produced a fairly elaborate
board game series that involved adven-
turing through a hostile, medieval
fantasy world with various characters
very similar to the Talisman board

game. In eighth grade my friend Elliott
Einbinder and I created a wireframe,
first-person maze game; you used the
keyboard to navigate through the maze.
A most embarrassing flaw was in our
maze game: We could not figure out
how to prevent the player from cheat-
ing and walking through the walls! We
kept asking our computer science
teacher how we could query the video
display to find out if we drew a wall. We
had no concept of a world model and a
display model!

On Money

In this whole discussion I have not
talked about the money to be made in
making games. Game making is both an
art and a science. If you are honest with
yourself, your team, the customer, and
to the game, you will make a great

game. In all art forms, excellence is
always truth.

Honesty, truth, and clarity are all
interrelated, and they are important not
because of moral standards; they are
important because only with the

Chapter 2: Why Make Games? 13

ruthless pursuit of a clean, tight game
can you hope to make a great game.

The rest of this book will focus on
how to get maximum value for your
development dollars with outsourcing,
how to decide which features to cut,
and how to track your tasks; all these
activities are heavily involved with

money. That being said, look deeper
and understand that I am helping you
realize the true goals for your game
project and to reach these goals as effi-
ciently as possible.

Great games sell just fine, and the
money will come naturally enough;
focus on making a great game.

Why Make Games?

You should make games because you
love to. Making a game should be a
great source of creative release for you.
You love to see people enthralled by
your game, playing it over and over,
totally immersed in the world and the

challenges you have crafted for their
enjoyment. You should make games if
there is something fun you can visual-
ize in your mind, something fun you
would like to experience, and you want
to share that experience with others.

14 Chapter 2: Why Make Games?

Chapter 3 > > > > > > > > > > > > > > > >

What Makes Game

Development Hard?

The Importance of Planning

What does it take to make great games?
Brilliantly optimized graphics code?
Stunning sound effects, clever artificial
intelligence routines, lush artwork, or
simply irresistible gameplay? Well, you
need all of that of course, with game-
play one of the most important factors.
However, behind the scenes you are
going to need a trail guide and a map to
get there.

You might be working alone on a
great mod to a commercial game, or
you might be working with an artist on
a cool online card game, or you might
be the director of development at

Blizzard. The size of your project or
your role does not matter; you still
need a plan to create your game.

Why must you have a plan? With
the smallest of projects the plan will
likely be to get a prototype of the game
going as soon as possible and then just
iterating and playing with the game
until it is done. This method works well
if the game you are making is a hobby
project, or your company is funded by a
seemingly unlimited supply of someone
else’s money and you are not holding
yourself financially accountable.

Very Few Titles Are Profitable

Many people do not realize how few
games are profitable. In 2001 over
3,000 games were released for the PC
platform; it is likely only 100 or so of
those titles turned a profit, and of those
only the top 50 made significant money
for the developers and publishers.

In 2000 an established developer in
North America would likely receive
between $1 million and $3 million in
advances paid out over 12 to 36 months
for the development of a game. The
typical publisher will spend between
$250,000 and $1.5 million in marketing

Chapter 3: What Makes Game Development Hard? 15

The darkened boxes represent the number of
successful games published each year.

and sales development (“sales develop-
ment” is the euphemistic term for the
money the publisher must spend to get
the game actually on the shelf at the
retailer and well positioned). The box,
CDs, maps, manual, and other materials
in the box cost between $1.50 and
$4.00 collectively. The royalties an
established developer could expect
vary widely, from 10 to 30 percent,
depending on many factors including
how much of the financial risk the
developer is assuming and the types of
deductions to the wholesale price. Let’s
take a look at what these numbers
mean for a game that has an average
retail price of $35 over the life of sales
in the first 12 to 24 months after
release. Table 1 summarizes the finan-
cial assumptions behind this
hypothetical project.

Table 1—PC Game Project Financial Basics

Average Retail Price $35.00

Wholesale Price $21.00

Developer Advance $1,500,000

Developer Royalty 15%

Table 2—Game Project Payoffs at Various Sales
Targets

Units Royalty Less Advance

10,000 $ 31,500 $ (1,468,500)

30,000 $ 94,500 $ (1,405,500)

100,000 $ 315,000 $ (1,185,000)

200,000 $ 630,000 $ (870,000)

300,000 $ 945,000 $ (555,000)

500,000 $ 1,575,000 $ 75,000

1,000,000 $ 3,150,000 $ 1,650,000

2,000,000 $ 6,300,000 $ 4,800,000

500,000 Units to Break Even?500,000 Units to Break Even?

Take a long hard look at Table 2. Notice
that not until 500,000 units have been
sold does the developer see a royalty
check. This is a $75,000 check that is
likely to be issued to you between 9
and 18 months after release of the title.
The conclusion from this is that royal-
ties alone will not feed you and your
team post-release. “No problem,” you
think, “my title will sell millions!”
Unfortunately, even good games don’t
always sell many units. As an example,
the excellent developer Raven sold a
little over 30,000 units of the strong
game Hexen II. Messiah, the long-
anticipated edgy first-person shooter,
saw fewer than 10,000 units sold in its
first three months (most games make
the large bulk of their sales in the first
90 days of release). Fallout 1 enjoyed a
loyal fan following and strong critical
reviews and sold a little more than
120,000 units in its first year. The
author’s Starfleet Command 1 sold over
350,000 units its first year without
counting the Gold Edition and the Neu-
tral Zone expansion. However, the
sequel, Starfleet Command 2, has sold
120,000 units in its first six months of
release. Sure, Diablo II from Blizzard
enjoyed over 2 million units of orders
on day one of release, and The Sims
has been in the top 3 of PC Data for
almost a year and a half. These titles
have clearly made a ton of money. In
fact, those orders that Blizzard had for
Diablo II on day 1 had a value that
exceeds the market capitalization of

16 Chapter 3: What Makes Game Development Hard?

Interplay Entertainment1—a publisher
with a rich publishing history spanning
over 15 years.

Employee Compensation andEmployee Compensation and

Royalties

Table 2 has other implications. Many
development houses share royalties
they receive with their employees by
some fraction. Many developers go
even further and offset the often
too-low salaries paid in the highly

competitive game business with overly
optimistic promises of future royalty
payments. These promises are mean-
ingless in many cases: After the
employees crunch through develop-
ment and release and even during
post-release, supporting the fans, these
expectations of monetary rewards for
their labor turn out to be false. Then
these employees turn from energetic,
highly productive creative developers
to disenfranchised employees looking
for a new job.

What Are the Financial Expectations

for Your Game?

A recurring theme throughout this
book is managing expectations of all
project stakeholders through high-
quality communication that is clear and
honest. That is why I am presenting
this sobering information so early in
this book. You must be clear about why
you are creating your game. Do you
expect to make a profit? Are you
depending on the royalties (or direct
sales in the case of software sold as
shareware or by other direct sales
methods) to support yourself and your
development staff? Is this project only a
hobby and any money it produces a
happy bonus? Is a publisher funding the
project or do you have an investor
backing your project?

Knowing your financial expecta-
tions—not your hopes and dreams—for
your game project is critical to achiev-
ing success. Establishing these expec-
tations will determine the scope of the
project. With the scope of the project in
mind, an estimation of the number of

developers required to create the game
and how long it will take is established.
This estimate should then be compared
to the financial goals one more time to
establish a baseline for cost, time, and
scope.

The Scope of the Game MustThe Scope of the Game Must

Match Financial ParametersMatch Financial Parameters

Most game projects fail to meet their
financial expectations because the
developers fail to articulate clearly and
honestly what the implications of their
expectations are. This is such an obvi-
ous statement, but virtually every
game project I know of suffers from a
disparity between what the expecta-
tions are for the project and the
resources and time allocated to the pro-
ject. Some of the very well-endowed
developers such as Blizzard, BioWare,
and id are famous for the “When it’s
done” mantra. There is little doubt that
a project from Blizzard, BioWare, or id
will be of the highest quality and most

Chapter 3: What Makes Game Development Hard? 17

1 This statement sounded a lot more impressive when I wrote it in the summer of 2001; as of October 2002
Interplay has been delisted from NASDAQ.

undoubtedly be very profitable. How-
ever, Blizzard, BioWare, and id also
have a large amount of working capital
on hand and have dedicated that work-
ing capital to making killer games.

If you do not have an unlimited
supply of working capital on hand, then
I strongly suggest you take on a differ-
ent mantra than “When it’s done.”
Most likely you have a budget of both

time and money to work with, so what
you need to do is figure out what is the
“best” game you can make within bud-
get. Remember, id founders once
created games for $6 an hour for a
long-forgotten publisher, SoftDisk, and
Blizzard once worked as a developer for
Interplay. There are steppingstones on
the way to greatness; too many devel-
opers try to take the gaming world by
storm in one ambitious step.

Why Your Game Should Profit

Part II, How to Make a Game, will show
how we take these baselines and
develop a project plan and then execute
the development of a game project.
Beyond just running a single game pro-
ject, I will discuss how your game
project should fit into a greater plan of
growth for yourself, your company,
and/or your team. The dot-com era has
distorted many people’s expectations of
what it takes to make a business. Too
many dot-coms were based on business
plans about gaining “mind share” or
“market presence,” or were just plain
hype. Many overnight millionaires
were made, so this style of business
creation certainly worked for some, but
for the vast majority of dot-coms, bank-
ruptcy and bust was the end. These
dot-coms failed to create a product or
service that people would actually pay
money for and be able to deliver it in
such a manner that they could make a

profit. Making a profit is not an evil
thing to do for a bunch of creative game
developers. Making a profit enables you
to store up capital to handle the period
of time between projects. A capital
reserve allows you to respond more
gracefully to project slippage due to
unexpected turnover or other

unforeseen events. Profit allows you
more tactical and strategic maneuver-
ing room for your game company. This
store of capital enables you to make
more ambitious games in the future,
retain employees, hire new talent, and
make capital improvements to your
workplace for greater efficiency. Too
many game developers pour their heart
and soul into game projects that have
no real likelihood of making a profit.

Maybe you do not care about profit.
Maybe it is of secondary or even ter-
tiary importance to you. I still urge you
to run your game project with the rigor
and the earnestness of a small business
that needs to deliver on expectations,
on budget, and on time.

Following are two unprofitable
attitudes when approaching game
development.

Feature StormFeature Storm

Attitude #1: “Hey! What about quality?
You are leaving me cold here, Erik. My
game is going to rock; it is going to be
massively multiplayer, with magic, mar-
tial arts, and small arms combat. I am
going to have vehicles, and you can go
to any planet you want and even fly a
starship to get there! Erik, you dork, of

18 Chapter 3: What Makes Game Development Hard?

TE
AM
FL
Y

Team-Fly®

course my game is going to make a ton
of money; people are going to lay down
$10 a month to play it, and I will port it
over to the PS2 and Xbox and pick up
the juicy console money too. Sheesh!
Making a profit, that is going to be a
side effect of my vision, Erik. I do not
need to worry about that!”

What is wrong with attitude #1 is
that the designer has not looked into
the costs for developing every feature
under the sun. There is a reason why
Warcraft is a tight game about manag-
ing humans and orcs gathering stone,
gold, and wood. There is a reason why
Quake is a tight game about first-per-
son combat. Creating a game that
people want to play means fully deliver-

ing on every expectation you create in
your game design. If your game design
has martial arts combat, then your fans
will want a very playable martial arts
simulation. If you also have starfighters
to pilot in your game, your game better
be competitive with FreeSpace 2 in its

execution of starfighter combat. Other-
wise you will end up creating a bunch of
open expectations that you will not be
able to fulfill. The market will crush
you for creating unmet hype.

If the Game Is Worth Making, MakeIf the Game Is Worth Making, Make

It ExcellentIt Excellent

Attitude #2: “I am just making a little
spades game to get my feet wet. I am
never going to show it to anyone, and
no one is going to play it, so who cares
if I make a profit?”

The problem with attitude #2 is
that it ignores the strong wisdom that
says if something is worth doing, it is
worth doing well. A weak demonstra-
tion of your programming skills will
demonstrate that you are a weak pro-
grammer. An incomplete game design
document will demonstrate that you
make incomplete designs. Art that does
not appear competitive shows that you
do not have the artistic talent to
compete.

Excellence in Spades

Take a look at Hardwood Spades from
Silver Creek Entertainment (http:www.sil-

vercrk.com). This is by far the most pol-
ished execution of spades the world has
ever seen. A core team of just three
developers has put out an incredible
series of classic card games, where the
quality of the executed games is way
over the top. They have added a ton of
small, tight features and improvements
to the playing of spades such as casting
a fireball or a shower of flowers at
another player. This spades game is
multiplayer and is played 24x7 on serv-
ers hosted by these folks. They do not
take advance money from a publisher

but sell their games direct to the con-
sumer online. They have slowly built
up a following over the years and are
now quietly selling hundreds of units a
month for each of their titles. I have the
utmost respect for these folks. They
had a vision for creating the highest
quality classic card games on the planet
and have executed that dream step-by-
step, building up their capital, fan base,
and quality level as they went. Notice
that they did not pitch the idea of the
world’s most gorgeous card games for
$2 million up front to a publisher and
then go find an artist, programmer,
game designer, and fan base. Instead,

Chapter 3: What Makes Game Development Hard? 19

they released their first game, Hard-
wood Solitaire, in 1997, which had
moderate success and enabled them to
build upon this experience. I have no
idea what their future plans are, but
notice that they have built up a strong
collection of popular titles and a

successful brand, and are now in the
powerful position of continuing to build
up their brand and products, licensing
their products for a distribution deal, or
perhaps selling themselves in whole to
a larger company to lock in a strong
return on their years of investment.

Game Making Is a Long Race

of Many Game Projects

Investing over time is what it takes to
make it big in the game industry. It is a
very long race in a very small world; do
not burn any bridges, and try to make
as many friends as possible along the
way.

Some of you may be familiar with
the games I have produced—the Star-
fleet Command series. Some of you
might say, “Hey, Erik, didn’t SFC1 and
SFC2 have a bit too many bugs? How
do you account for that? Oh, and didn’t
SFC2 not ship with a functional
Dynaverse 2, the hyped, massively
multiplayer-lite metagame? If you are
so wise, Erik, explain what happened.”

No problem, hang on a moment and
listen to what I have to say.

This is a book wrought from my

experience and the experience of other

developers—experience of both success

and failure.
What I have to share with you in

this book is not wisdom I received in
college, nor did my boss train me when
I first led a game project. This is
hands-on, face-the-challenges-as-you-
go advice. Much of what I have learned

has come from taking the time to ana-
lyze what happened and discussions
with my teammates and other game
developers to figure out what went
wrong and how we could have done
better. In many ways this book repre-
sents a field manual of essential game
production that I would have appreci-
ated reading when I started leading
game projects. Throughout this book I
will discuss the Starfleet Command
series and the decisions I have made
along the way as a producer. You will
be able to run shotgun and role-play an
armchair executive producer!

There are books out there that will
attempt to teach you to design and pro-
gram a real-time strategy game or write
the rasterizer for a software first-per-
son shooter. You can also find books
telling you how to design and architect
your game, and some books have made
strong efforts as a resource guide for
finding sources of art, music, and code.
However, these books do not address
how to make a game.

20 Chapter 3: What Makes Game Development Hard?

A Brief History of Software Development

How to make a game, I believe, is the
most elusive question in the game
industry. In fact, the software industry
at large is relatively open and up-front
about how immature the software engi-
neering processes are as a whole. Take
a look at After the Gold Rush by Steve
McConnell for an excellent discussion
of the much-needed maturation in the
software industry. Much development
in the software engineering community
is going into improving the process of
how we go about making software.
During the ’60s and ’70s great strides
were made in increasing the strength of
the programming languages from For-
tran and COBOL to C. During the ’80s
the microcomputer created tremendous
improvements in the programming
workplace. Each developer could have

his own workstation where he edited,
ran, and debugged code. During the late
’80s and early ’90s the leading edge of
the software development community
got charged with the efficacy of object-
oriented programming and the large-
project strength of C++. Improve-
ments continued with integrated
editors, debuggers, and profilers. Opti-
mizing compilers have almost made
assembly programming obsolete, and
visual interface layout tools have made
programming rather pleasant for busi-
ness applications. With all of these
fantastic improvements to the software
development process, software project
budgets have only gotten larger and
have only slipped by longer amounts of
time and by greater numbers.

Overly Long Game Projects Are Disastrous

Take a look at Table 3 listing game pro-
jects, how long they took to release,
and the outcome.

This table is a Who’s Who of games
that have run horribly over budget, and
only two games on that list have made
significant money: The Sims and
Baldur’s Gate. The best-selling game
on the list, The Sims, has made and is
continuing to make a huge fortune for
Electronic Arts. Why is it that The
Sims has made the most money on that
list? Because Electronic Arts was very
fortunate that no one else (that state-
ment is worth repeating) no one in the
entire PC game industry of some 3,000
titles a year for five years in a row has
released a title even remotely competi-
tive to The Sims, filling a vastly

Table 3—Long Game Projects

Stonekeep 1 5 years of
development

Weak sales

Daikatana 4 years of
development,
fantastic cost
overruns

Weak sales

Messiah 5 years of
development

Weak sales

Max Payne 5 years of
development

Just released

The Sims 5 years of
development

Amazing sales

Baldur’s Gate 3+ years of
development

Very strong
sales

Duke Nukem
Forever

5+ years of
development

Yet to be
released

Stonekeep 2 5 years of
development

Project
cancelled

Ultima Online 2 4 years of
development

Project
cancelled

Chapter 3: What Makes Game Development Hard? 21

underserved market of women who are
consumers waiting for games to be
designed for them. And with the right
title EA can make tons of money due to
its marketing and sales strength; this
cannot be underestimated.

Also note that Maxis released
something like ten games in the sims
genre and only two of these, SimCity
and The Sims, have generated great
returns over ten years. The rest of the
sim-type games were relatively poor
sellers. This is something that seems
to be forgotten by a lot of people—that
Will Wright has been experimenting
with this type of game for ten+ years
before hitting a home run with The
Sims.

Max Payne has just been released,
and we need a little time to see how the
market will respond to this adventure
shooter with amazing graphics (I expect
this game to do well). The other suc-
cessful title on the list, Baldur’s Gate,
had a number of delays and develop-
ment extensions but ultimately was
still successful: The Baldur’s Gate
series (BG with its expansion pack and
sequel/expansion pack) has sold nearly
4 million units worldwide. It came at
the right time for role-playing games
and was a quality title with a strong
license (Advanced Dungeons and
Dragons) behind it.

As for the rest of the titles, they
were simply too-little too-late titles
that had to compete against stronger
games that were produced faster and
for less money. Or in the case of
Stonekeep 2 and Ultima Online 2, there
were millions of dollars of game devel-
opment and even the hype of game
magazine covers that the publishers
had to walk away from when the games
were cancelled!

What Late Games Do to PublishersWhat Late Games Do to Publishers

When projects run over, even by less
than three years, they hurt the industry
at large. Consumers are tired of being
frustrated by overly hyped games that
are late. The publishers are constantly
attempting to make realistic financial
projections to manage their cash flow
and maintain investor confidence. With
poor cash flow or low investor confi-
dence, a publisher is often forced into
publishing more titles. More titles
mean each receives less attention at
every stage of development. This in
turn weakens the publisher more, as
titles begin to ship before they are
ready in order to fill gaps in the quarter.
This creates a vicious feedback cycle
that pressures the publisher to publish
even more titles.

Our Project Plan Behind Starfleet Command

Interplay was impressed with our quick
execution of Caesars Palace W95 while
working for another developer, and
after doing various contracting and
working on our own demo of a game,
we joined Interplay in the summer of
1998. Interplay presented me with

running Starfleet Command and the
opportunity to work with Sean, Zach,
and other folks I had worked with
before. We jumped at the opportunity
to work on a big title at a big publisher.
When we got into it, we realized that
Interplay was a big company with many

22 Chapter 3: What Makes Game Development Hard?

different games in production. Our sis-
ter project, Klingon Academy, was
making impressive success in the dam-
age effects of its 3D engine and its cine-
matic cut scenes. Starfleet Command,
on the other hand, was considered a
niche game appealing only to the most
hardcore of game players—fans of Star
Fleet Battles. This turned out to be a
great advantage on several different
levels at the same time. The
first benefit is that Brian
Fargo, the founder and CEO of
the company, left the project’s
vision entirely in my hands
while Klingon Academy
received more of Interplay’s
attention. The other benefit
was of course the built-in base
of Star Fleet Battles fans who
had waited 20 years for a com-
puterized version of their
favorite, ultra-detailed naval
starship simulation set in the
original series’ Star Trek

universe.

The Vision for Starfleet CommandThe Vision for Starfleet Command

Starfleet Command was my first big
title to manage; I was very excited and
determined to do a good job. I wanted

to earn Interplay’s respect so that they
would trust us enough to fund a future
game concept of ours. SFC itself was an
exciting title for us to work on, but for
every game project you must know
why you are doing it. For Starfleet
Command our goal was to create the
most faithful, highest fidelity modeling
of naval starship combat set in the Star

Trek universe. We were not trying to
make a Star Trek game, we were not
trying to make a 3D game, and we were
not trying to make a real-time strategy
game like StarCraft. As we worked on
our vision statement, we developed the
term real-time tactical to describe our
gameplay. Our game was all about tacti-
cal starship combat. We did not send
teams down to planets, we did not have
the player act as a courier and carry
goods across the galaxy, and we did not
allow the scavenging of enemy vessels
to build a Frankenstein ship. No,
instead you were a naval officer in one

of six star empires carrying out combat
missions on behalf of your empire.

Over 1,000 starships were modeled
in our game, with over 100 missions to
test your tactics and strategy. The
player role-played a captain enjoying a

Chapter 3: What Makes Game Development Hard? 23

The vessel library screen from Starfleet Command

Starfleet Command

career of over 30 years in the service of
his empire. That was what Starfleet

Command was about, that was our goal,
and we delivered on that.

Constraints Give Much Needed Focus

Starfleet Command went on to be a
stunning success. The press at the time
was stunned to see a Star Trek game
that was actually fun. The secret to our
success was following our vision. We
had no budget for fancy movies to tell a
story, so we did not try to create a
game with a linear story line that

depended on movies. Instead we devel-
oped a random mission/campaign
generator with linear story missions
embedded like raisins in pudding. You
must look at every constraint on your
project as an opportunity to focus your
game on its key features.

On Bugs Shipped in Starfleet Command

High-quality games with ultra-low bug
counts like Quake and Diablo sell very
well. However, Quake and Diablo sell
strongly for quite a few good reasons
working together. We had a fixed
timeline; in fact, the Starfleet Com-
mand project was already late before I
took it over. After reviewing where the
project was for two months, I decided
on a delivery date of summer 1999
given a lot of extra programming and
art resources. Interplay granted the
resources but in turn needed the date
to be unmoving. We had a project with a
flexible feature set but a fixed timeline.
We essentially put too many features in
the game and coded too late into the
production process. We were still cod-
ing heavily two weeks from final master
and worked on the first patch all the
way through manufacturing. We fixed
so many bugs in the last three months
of development that we honestly
thought we had a game with a fairly low
bug count and a ton of features. After a
week of it being on the street, I devel-
oped a new realization of how high a

quality standard software must have in
order to work on anyone’s computer, in
any manner the user could come up
with. We did have to ship with known
bugs though, and the consumers had to
deal with those too. We were fast with
the patches, and altogether the public
enjoyed a game that was original and
fun to play. Starfleet Command went on
to sell over 350,000 units in its first
year, and at that time at Interplay, SFC
was the second most successful title,
behind Baldur’s Gate developed by
BioWare. Also it is a fact that there are
more bugs inherent to games with
more complex systems; for example,
SFC is much more complex and
detailed than Quake and therefore
needs additional QA attention. Role-
playing games like BG are also more
complicated and required additional QA
time and completely different QA pro-
cesses. Treating all games in an identi-
cal manner from a QA perspective is
just plain wrong (but it happens all the
time).

24 Chapter 3: What Makes Game Development Hard?

Well-Met Goals Enable Future Successes

Based on the success of Starfleet Com-
mand, Interplay’s management was
very receptive to our pitch to do
Starfleet Command 2 as a wholly

independent developer. See Chapter
27 to see how we set up as Taldren
and how we structured our company
for the development of Starfleet
Command 2.

Strong Game Developers Have Strong

Foundations

The above figure chronicles just a few
of the most successful and influential

games over the years.

The Tension between Preproduction and

Production

Bridges for the most part stoically sup-
port their loads across their spans.
Dams rarely burst, flooding entire cit-
ies. Why do civil engineering projects
seem to be routinely successful when
software engineering projects

routinely go over budget, take too
long, and generally underperform or
are just buggy? The difference is in
process and methodologies. Per-
forming something complex that
requires the efforts of many skilled

Chapter 3: What Makes Game Development Hard? 25

A small chronicle of great games

humans over an extended period of
time necessitates breaking up the
large, complex task into a series of
small, achievable, measurable tasks.
Ideally, figuring out what you are doing
should come before you do it; the game
industry term for this phase of work is
preproduction, or the vision or design
phase. We have a name for it sure
enough, but too many projects violate
their preproduction phases and move
straight to production. Twenty years
ago preproduction would have been a
sketch of the game screen on a napkin
and a couple of experimental routines
to get the idea straight. Ten years ago
preproduction was largely about the art
of the proposed game. Now prepro-
duction is usually a playable demo.

True preproduction would be the
distillation of all the game’s require-
ments, an analysis stage to determine
the implications of these requirements,
a culling stage to meet the business
parameters, and a detailed game, art,
audio, and technical design to detail the
requirements. Preproduction would
still not be done, however, for these
detailed game, art, audio, and technical
designs would uncover new details
about the project requiring another
revision of the feature set to meet the
business requirements.

Any risky areas of the project need
to be explicitly called out, and alterna-
tive plans need to be formulated to get

around these risks. Finally the plan
needs to be presented to all stake-
holders including the development
team, the publisher, and the marketing,
press relations, and sales forces.

Games are big productions, and
successful games require the full effort
of many individuals spanning many
companies. In my opinion, preproduc-
tion is the most important stage of the
project. I would like to see the day
when a project spends a full 25 to 40
percent of its overall prerelease time in
preproduction. During production there
should be relatively few surprises. The
developers should be able to work eight
hours a day, take vacations, and pick up
their children from school. Instead, the
industry responds to the intense com-
petition by compressing preproduction
into the shortest period of time possi-
ble. There is no hype, celebration,
visibility, or honor in the game industry
as a whole for preproduction. In my
opinion, everyone would make a lot
more money if instead of 3,000 game
projects being launched a year, 4,000 or
5,000 game projects could receive two
to nine months of preproduction and get

cancelled, and only the top 400 to 800
would get produced and released. Pub-
lishers’ net revenues would be five to
ten times higher if their hit projects
were not bogged down by four to ten
failed projects.

The Power of the Console

The console side of the business does
manage itself a lot stronger than the PC
world in this regard. The answer lies in
the hardware vendors; they do not
allow a title to be released unless they

approve. A console title must be pre-
sented to the hardware vendor several
times along the way and can be sent
back for revision or altogether cancel-
led by the hardware vendor with no

26 Chapter 3: What Makes Game Development Hard?

recourse for the publisher except to
work harder. This added rigor in the
console world allows far fewer titles to

be produced, but the net revenues
across all console titles are reported to
be seven times more profitable.

Why Aren’t All Publishers Using Preproduction?

If preproduction is so compelling, why
isn’t every publisher using it? Actually
publishers have a twist on this process,
called green-light meetings. Some pro-
jects have only one at the beginning of
a project; other companies have a
series of green-light meetings acting as
gates that the project must pass
through. However, these meetings are
just meetings. There are a bunch of
executives with too much work to do
trying to figure out if they should can-
cel a project or not. To help them make
a positive decision, the developers, pro-
ducers, and executive producers at the
publishing house spend a lot of devel-
opment energy making bits of software
and art that hopefully make a striking
impression on the executive’s mind.
This is accurately enough called “eye
candy.”

JARGON: A green-light meeting is a
meeting at which a body of decision
makers at the publisher decide whether
or not to publish a game.

Instead of one of these green-light
meetings, I think each game project
should undergo a green-light mini-
phase where each portion of the pro-
ject, such as art, game design, and
technical, present their detailed plan on
how to get their job done to one or
more experts in that field. It should be
the composite findings of these experts
that is shown to the executives. It could
be that diagrams, charts, concept
sketches, and even demonstrations of

eye candy are appropriate, but the eye
candy should be presented in the con-
text of an overall production plan. If this
level of rigor were followed, we would
all be making stronger games resulting
in much stronger sales and much saner
schedules. Unfortunately the experts
you would need to employ would have
to be so skilled that they would most
likely be art directors or technical
directors, or running their own devel-
opment company. The usual process is
that game projects are ignored by the
executives in the early stages when
there are other more pressing fires to
be put out, or the executives tend to
focus on what they see in the form of
eye candy.

The Process Is ChangingThe Process Is Changing

The game development process is one
of the hotter topics that publishers now
look for in a developer. Microsoft, for
instance, sends a solid team of experts
down to a prospective developer and
interviews the house for a day or two.
Microsoft also appears to be the pub-
lisher that respects preproduction the
most by giving each project at least two
or three months of real, funded
preproduction. The actual presentation
to the executives of the preproduction
is more of a team affair involving the
developer, the producers, as well as
early reports of something called
usability.

Having far less development
resources to tap than Microsoft, Eidos

Chapter 3: What Makes Game Development Hard? 27

calls upon the heads of their various
studios to pass judgment at the green-
light meeting. Each of these studio
heads has a strong development back-
ground and his or her gut reactions are
fairly good divining rods of a game’s

success when you only have 20 min-
utes to review a title.

Look for more publishers changing
their project review process as they try
to cull their failing projects before
release, and ideally, early in production.

A Strong Plan Makes Game Development Easy

This is not a chapter of gloom and
doom; rather this chapter points out the
larger pitfalls in game development.
The whole book is dedicated to taking a
proactive, forward-looking approach to
game development. Chapters 8 and 9
detail the role of the game design and
technical design documents. Chapter 10
discusses how the game design and
technical design documents are synthe-
sized into a project plan. Chapter 17
delves deeper into the rigor that should
be put into preproduction with an intro-
duction to Unified Modeling Language
in the form of use cases and how they
are used to perform your requirements
capture.

Chapter 16 discusses how critical
the game design document is in shaping
the team’s vision for the game. If
everyone knows what the game is sup-
posed to be like, they will make it a lot
faster and better. Chapter 16 presents
specific steps you should take when

constructing your game design docu-
ment; other leaders in the game
industry will discuss what material they
think is critical in the game design
document.

Technical design is presented in
Chapter 18, a thick chapter with a lot
of discussion of large project object-
oriented technical design. Unified
Modeling Language is revisited here to
see how it is used to model the soft-
ware from different views, such as
static views of deployment, packages
and class diagrams, and the dynamic
views of activity and sequence
diagrams.

Developing accurate time esti-
mates is addressed in Chapter 19,
including classic questions such as how
much to pad or whether one should one
pad at all.

Wrestling all of this data together
into a digestible project plan is dis-
cussed in Chapter 20.

The Gravitational Pull of Feature Creep

Even if you have the best-constructed
production plan this industry has ever
seen, your project still needs to be
organized. Do not think that production
is the time to go get your plan profes-
sionally printed and sent to all of your

friends while you work on getting your
A licenses in Gran Turismo 3. Rather,
production is the time to put your plan
to work; Chapter 22 tells you how to
get a grip on feature creep.

28 Chapter 3: What Makes Game Development Hard?

TE
AM
FL
Y

Team-Fly®

Task Visibility for Team Motivation and for

Progress Tracking

Task visibility is my passion. There is a
deep satisfaction I get as a producer
when I know my team members know
their own tasks and the tasks that the
others have to do. When each person is
humming along, tearing through the
project with the utmost confidence in
his or her team members, it seems like
anything and everything can be done.
As the leader of a team or a subteam,
your job is to monitor this well-being.
Too many times a project’s Gantt chart

(discussed in Chapters 10 and 20) is
posted on a wall and updated only once
a month. Task visibility means a lot
more than the manager keeping track
of progress and reporting to the execu-
tive management. The development
team is the most important customer to
report the project’s progress. Chapter
10 gives an introduction to task track-
ing, while Chapter 21 provides detailed
task management techniques from vari-
ous top studios.

Use Your Core Competencies and Outsource

the Rest

A large portion of this book is an
in-depth guide to outsourcing parts of
your development from cinematics and
motion capture to music and sound
effects. Figuring out what you should
outsource is discussed in Chapter 12.

Chapter 12 introduces outsourcing, and
Chapters 28 through 33 give specific
advice on where to get your out-
sourcing done and how to do business
with these vendors.

A Pitfall of Success—Fan-Requested Features

and Changes

Ironically, making a hit game brings
with it the challenges of meeting a fan
base with an insatiable appetite for
more, bigger, faster, and cooler fea-
tures. Endless debates discussing your
game balancing skills and astonishing
acts of generosity from your most dedi-
cated fans will test the depth of your
commitment to your game, which is
now their game. Mastering the
post-release fan relationship is a lot

more than issuing a patch and crawling
back into your cave of creativity. Now
that your game has enjoyed success, it
is time to open your shop door, so to
speak, and take your relationship with
the fans to a deeper level that will carry
forward to your next title. Chapter 24
discusses the issues involved in this
relationship and some specific advice
from successful game developers.

Chapter 3: What Makes Game Development Hard? 29

The Relentless Pace of Technology

Game making is a creative art form that
competes with other media such as
novels, television, movies, and music.
While technology has had dramatic
effects on how music is recorded, how
film is taped, how television is deliv-
ered, and even how a novel is typed,
none of these other art forms have to
compete with technology to nearly the
pace game making does.

Movies are probably the closest art
form in scope, cost, and high-level pro-
duction methods. That being said,
camera technology stays stable for 20
years at a stretch, lights are lights, and
microphones are microphones. Right
now the movie industry is looking at
using digital film, but again, this is tech-
nology that has been in regular use for
20 or more years.

In the past 25 years that electronic
games have been a consumer enter-
tainment medium, they have gone
through nearly countless technological
evolutions including text adventures,
2D graphic adventures, turn-based
strategy games, 3D action games,
smooth-scrolling 3D action games,
ray-casting engines, binary space-
partition engines, and I could go on and
on listing the different game engines
that have been created.

Each new game must develop its
own tools first and then create its con-
tent. Future add-on and expansion
packs will often use the same engine,
and in some cases the sequel will use a
modified version of the prior game. It
has become increasingly common in the
last five years to license whole game
engines such as Quake and Unreal to
act as the foundation engine to build a
game. A game requires not only a solid

design but also a completed engine and
tool path prior to entering the imple-
mentation or production phase;
otherwise the inevitable result seems
to be redoing work over and over,
which is demoralizing, expensive, and a
waste of time.

This shifting engine technology is
not seen in any other consumer soft-
ware product. There is no consumer
operating system, word processor, or
spreadsheet that has required the com-
puting power of the last five or ten
years of Intel’s advances to the x86 line
of chips. It is games that drive our vora-
cious appetites for more RAM to hold
our textures, gigabytes of hard drive
space to hold our gigabyte installs, and
the fastest CPU on the planet to simu-
late our fantasy worlds.

The dark side of this technological
advance on the PC side of the game
business is that we do not know what
hardware the consumers will have
before they install and run our soft-
ware. We do not know if they have 64
MB of RAM, 128 MB, or just 32 MB of
main memory. We do not know if they
have a 3D accelerator card with 8 MB
of RAM, 32, 64, or no 3D card at all! We
do not know if they will have enough
space to install our game in its full
glory, so we have multiple install
options. We do not know if their graph-
ics card chipset will support the subset
of features we want for our game. We
do not even know how fast the target
CPU is. In fact we do not even know
what operating system they will be run-
ning our game on. Sure it will be a
Windows variant, but there must be big
differences between Windows 95, Win-
dows 98, Windows NT, Windows 2000,

30 Chapter 3: What Makes Game Development Hard?

Windows ME, and Windows XP or
Microsoft would not have put thou-
sands of man-years into these operating
systems. These operating systems
have major differences on critical low-
level functionality like how memory is
accessed and protected, how timers are
created, what their resolution is, and
the efficiency of storing and retrieving
data from the hard drive. There are
people out there playing Starfleet Com-
mand 1 with the graphics options
turned low on laptops with only a
Pentium 90 MHz and no 3D card, and
there are also folks out there with a
Pentium IV 1.7 GHz with a GeForce 3
card that has 64 MB of memory just on
the card. Depending on which metric
you use, the Pentium IV 1.7 GHz is
nearly twenty times more powerful than
the Pentium 90. This is called Moore’s
Law, stating that the computing power
of computers doubles every 18 months.

With all of these unknowns, we
need to create a game that will run sub-
stantially well and deliver the same
play experience on the greatest number
of machines out there. This is where
minimum requirements and clever use
of scalability in performance-intensive
features such as graphics and artificial
intelligence comes to play. Hardcore
games typically have the most aggres-
sive schedule for culling older
machines from the minimum require-
ments. This, however, cuts into sales
for mass-market games, and a delicate
balance exists between pushing the
edge of the performance bar in order to
gain exposure and adoption by the hard-
core players, and planning for broad
sales by supporting as many older sys-
tems as possible. Games that are strong
examples of this are The Sims, Star-
Craft, and Baldur’s Gate I and II, which

work on quite low-end systems. Much
of their success in the mass market
may relate to the fact that people with
lower end systems can still play them.

The final challenge in the fast pace
of technological change is that your
requirements will often change mid-
project or very late in your project.
With less than six weeks to go on
Starfleet Command 1, I was informed
that Interplay signed a ten-product
agreement to support AMD’s 3DNow
chip set. With little time left before
code freeze, we were forced to optimize
just a handful of low-level vector and
matrix routines to take advantage of the
3DNow feature set.

The console market is considerably
different. When you make a game for
the PlayStation 2 you know exactly how
fast it will be, how much video RAM
you will have, and every other detail of
the console at the time of producing the
game. (Except when a developer is
working on a game for a console that
has not been released yet to the public.
In the case of Taldren, we are working
on an Xbox game, and I get packages
from Microsoft every so often with a
revision to the software running the
box. At larger intervals the hardware
itself changes.) This factor, combined
with much more stringent QA from the
console manufacturers themselves,
makes console games practically
bug-free in comparison to PC games.

Console developers have a strate-
gic advantage in that their platform is
known and immutable, but also a disad-
vantage in that their platform may be
supplanted by new consoles such as the
recently released GameCube/Xbox,
which technologically are far superior
to the PS2. The console developers
must then go through an awkward

Chapter 3: What Makes Game Development Hard? 31

stage of trying to prove to the publish-
ers that they are capable of developing
on the new console platform.

The only way to deal with these
technological changes is to plan for
them. You need to build profiling and
diagnostic tools straight into your game
so that you can understand how it is
performing under various game condi-
tions. You need to allow time in your

schedule to support the odd piece of
software or hardware that is strategi-
cally important to your publisher. You
will also need to develop your mini-
mum requirements as early in your
schedule as possible. The sooner you
set the goal of meeting a specific mini-
mum requirement, the closer you will
be to actually achieving that goal.

The Art of War and Games

Around 500 B.C. Sun Tzu Wu spelled
out five essential points to follow for
victory in battle:
1. He will win who knows when to

fight and when not to fight.
2. He will win who knows how to

handle both superior and inferior
forces.

3. He will win whose army is ani-
mated by the same spirit
throughout all the ranks.

4. He will win who, prepared himself,
waits to take the enemy
unprepared.

5. He will win who has military capac-
ity and is not interfered with by his
sovereign.

“Victory lies in the knowledge of these
five points.” Sun Tzu

Only after writing the first draft of
this chapter did I pick up my copy of
The Art of War and flip through it.
Notice how well this advice that is over
2,500 years old neatly describes the
fundamental challenges of game

development. Preproduction was so
valued by Sun Tzu that he felt point #1
was insufficient and added point #4
with the admonishment of not hyping
your game too early. Point #2 suc-
cinctly reminds you to create a game in
response to the financial parameters of
your game project. Point #3 clearly
supports strong task visibility and a
production plan signed off by the whole
team. And I see point #5 as the
combination of building your game
development experience and not being
forced to follow inefficient production
methods due to inexperience on the
part of the publisher.

32 Chapter 3: What Makes Game Development Hard?

Sun Tzu’s five essential points in Chinese

Chapter 4 > > > > > > > > > > > > > > > >

Game Project

Survival Test

This test is an adaptation of the soft-
ware project survival test that can be
found in Steve McConnell’s Software

Project Survival Guide. The idea behind
this test is to quickly get a rough guide
to the overall preparedness of yourself

and your team for the game project at
hand. I suggest taking the test at the
beginning, middle, and end of each of
your projects as a reminder of good
practices.

The Game Project Survival Test

As you read through the questions
below, score 3 points if you are comfort-
able answering yes, score 2 points if
you feel your team is partially address-
ing the question but more work could
be done, and score 1 point if you really
want to say yes, but it would be a lie. If
the question is referring to something
that occurs mid-project, answer the
question according to your current
plans.

Game RequirementsGame Requirements

___ 1. Is there a clear, unambiguous
vision statement for the game?

___ 2. Do all team members believe
that this vision is realistic?

___ 3. Does the project have a rea-
sonable expectation of being
profitable for both the pub-
lisher and the developer?

___ 4. Has the core gameplay and
user interface of the game
been fleshed out so that every-
one clearly understands what
the game is and why it is fun?

___ 5. Do the team members think
the game will be fun?

Planning

___ 6. Does the game have a detailed,
written game design document?

___ 7. Does the game have a detailed,
written technical design
document?

___ 8. Does the game have a detailed,
written art production plan?

___ 9. Do you have a detailed, inte-
grated project schedule that
lists all of the tasks that need
to be performed, and have the
dependencies between various
team members been indicated?

Chapter 4: Game Project Survival Test 33

___ 10. Does your project schedule
include tasks like press tours?
E3? The Game Developers
Conference? Installer? Auto-
patcher? Submission to hard-
ware manufacturer approval?

___ 11. Were the schedule and the
budget for the game officially
updated and discussed
between the publisher and the
developer at the end of the lat-
est milestone—even if to say,
“Yes, everything is on track”?

___ 12. Are the features of the game
tagged with core, secondary,
and tertiary levels of priority
to facilitate feature trimming if
necessary to maintain the
schedule?

___ 13. Does the game have a written
quality assurance plan? Does it
handle beta testers? In-house
testing? Automated test
suites?

___ 14. Does the game have a detailed
milestone plan? Does it clearly
describe what will be delivered
and reviewable at each
milestone?

___ 15. Does the schedule allow
enough time for balance, tun-
ing, and tweaking of features to
ensure that it is fun?

___ 16. Does the schedule account for
sick days, holidays, and vaca-
tion time? Are the developers
tasked at less than 100 per-
cent? Are the leads tasked at
less than 75 or 50 percent
depending on their responsibil-
ity sets?

___ 17. Has the game design, technical
design, art production plan, QA
plan, and all of the rest of the

composite game development
team signed off on the plan?

Project ControlProject Control

___ 18. Does the game have a single
executive—the project leader
or lead designer or producer?
Whatever you call the job at
your shop, has this person
been given full authority,
responsibility, and accountabil-
ity for the success of this
game? And is the person
enthusiastically embracing this
authority, responsibility, and
accountability?

___ 19. Does this project leader have
the right workload? Does she
have the adequate amount of
time to perform at her highest
level of project management?

___ 20. Have the milestones been laid
out with clear, measurable
deliverables that can easily be
quantified as done or not done?

___ 21. Are the milestones being
delivered to the publisher in
such a manner as to make it
easy for them to review the
milestones and measure the
progress of the project for
themselves?

___ 22. Do the developers have access
to an anonymous communica-
tion channel where they can
report problems without fear?

___ 23. Does the game project plan
have a written plan for control-
ling feature creep in the game?

___ 24. Does the game project have a
clearly defined method of how
changes will be reviewed by
development team leads such
as the art and technical
directors?

34 Chapter 4: Game Project Survival Test

___ 25. Are all of the game design,
technical design, schedule, art
production, QA, and all other
planning materials easily
accessible to all development
team members? Are they
encouraged to read the
material?

___ 26. Is all source code under ver-
sion control software?

___ 27. Are all of the binary assets
such as textures, models,
music files, and sound effects
also stored under version con-
trol software?

___ 28. Do all of the team members
have the tools to do the job
such as workstations, PS2 and
Xbox development kits, 3D
Studio Max or Maya seats, bug
tracking software, and schedul-
ing software?

Risk ManagementRisk Management

___ 29. Does the game project have a
written risks document with
possible solutions?

___ 30. Is this risks document updated
at the completion of every
milestone?

___ 31. Does the game project have a
risks officer who is encouraged
to scout ahead for risks on the
project?

___ 32. If the project is using subcon-
tractors, is there a written plan
for how to manage the subcon-
tractors? For each subcontrac-
tor is there a single member
of the development team who
is responsible for that subcon-
tractor?

Personnel

___ 33. Does the game development
team have all of the expertise
needed to complete the game?

___ 34. Does the game development
team have a management team
that is experienced with man-
aging game development? In
other words, are the develop-
ers able to concentrate on
developing rather than worry-
ing about the state of their
game development shop?

___ 35. Does the game have a lead
programmer who is capable of
leading the programmers of
the team to making a kick-ass
game?

___ 36. Are there enough developers
to do all of the work?

___ 37. Do all of the development
team members get along with
each other?

___ 38. Is each team member commit-
ted to staying with the game
until it successfully ships?

Calculating Your Project’s ScoreCalculating Your Project’s Score

___ Subtotal: Add the points above
(ranges from 38 to 114).

___ Development team size factor:
If your game project has fewer
than nine full-time developers,
including all artists, program-
mers, designers, QA, and audio
people, use 1.5. If your team
has fewer than 19 full-time
developers, use 1.2.

___ Grand total: Multiply your subto-
tal by the team size factor.

Chapter 4: Game Project Survival Test 35

What Does My Score Mean?What Does My Score Mean?

Scores: 102+ AAA—Your game has
every possible resource, tool, and plan
it will take to make a hit game on time
and on budget.

Scores: 91-101 AA—Your game
is being managed on a level much
higher than the industry norm and is
most likely to be a successful project
with only a minor amount of difficulty in
schedule or budget. Anticipate cost and
schedule overruns of at most 5 to 10
percent above baseline.

Scores: 68-90 A—Your game is
being managed better than the average
game project. Significant challenges
will pop up from time to time; however,
you stand a strong chance of mastering
these challenges. Anticipate cost and
schedule overruns limited to 25 per-
cent above the baseline amount.

Scores: 45-67 B—This is about
the typical level of management a game
project is provided with. This game will
certainly face significant challenges at
some point. The project will be run

with unnecessary risk, frustration, and
stress. Some degree of team burnout
will occur. Anticipate some turnover at
the end of the project. It is without
question that the project will be over
budget and will take considerably lon-
ger than planned at the start of the
project. Anticipate cost overruns
between 50 and 100 percent of the
baseline planned.

Scores below 45 C—Games with
these scores are at high risk of being
cancelled by the publisher due to poor
progress visibility, feature creep, and
cost overruns. Only a team without
financial concerns will be able to plow
through these challenges without being
cancelled. These types of projects
always result in developer burnout, and
some turnover will occur at the end of
the project and to some degree in the
middle of the project. These projects
are advised to get serious planning and
management happening immediately or
be cancelled and save the industry from
one more crappy game.

36 Chapter 4: Game Project Survival Test

Part II > > > > > > > > > > > > > > > >

How to Make a

Game

This page inten tion ally left blank

TE
AM
FL
Y

Team-Fly®

Chapter 5 > > > > > > > > > > > > > > > >

What Is a Game

Made Of?

The Extended Development Team

Before you tear off into preproduction
of your game, I want to show you all
the parts that go into a game. Whether
your background is art, programming,
design, marketing, or sales, you will
tend to view a game project as a
medium of art, software with game
design, a game design in motion, or a
product to be marketed or sold. The big
picture of game development involves a
team effort of many individuals span-
ning dozens of professions all across

our industry and spilling into other
industries. When you see what it takes
to make a modern commercial game, I
hope you get a more balanced view of
the various roles to be played to carry
out a hit game.

That Lever 2000 soap commercial
is bouncing around my head right now
with its silly jingle of all your 2,000
parts. So, following that jingle, let’s
take a look at all of the parts of a game.

Game Production Parts

Surely a game project is all about pro-
ducing a great game. If not for the
developers, there would be no product
to sell! I am biased as I am a developer,
and so yes, I do think game develop-
ment is the most critical component of
a successful electronic entertainment
product. However, the developers hold
a sacred trust given to them by the rest
of the project stakeholders that they
will be able to develop a compelling and
competitive game, on budget and on

time. This is a sacred trust that has
been violated more times than it has
been honored. We developers must
perform to the best of our ability to
deliver the strongest game on time and
on budget.

Design PartsDesign Parts

1. Lead Designers/Visionary
2. Game Mechanics
3. Level/Mission Designers
4. Story and Dialogue Writers

Chapter 5: What Is a Game Made Of? 39

Where Do Lead Designers Come

From?

We have to design a game first and
foremost. Some games have a key
visionary who has been kicking around
an idea for a long time; others are more
of a collaborative process with a leader.
There is probably no single more diffi-
cult task in the industry than being able
to create an original game of your own
design and see it through to commer-
cial release (only a nitpicker would
point out that seeing your game
become a mega-hit would be harder).
Each game has its own story of how it
got to be funded and made. However, it
is usually the publisher or the studio
head of a successful game development
company that has finally arranged for all
the business points to be in place in
order to kick off their game.

If the publisher suggests the game
concept, then the developer will supply
the lead designer. Often the founder of
a game development company will act
as a lead designer on the project.

The lead designer’s job is to coor-
dinate the design staff in the effort to
create timely, thorough, compelling
game design specifications that the rest

of the team can readily use and is
readily understood by the game’s pub-
lisher and other key stakeholders. The
lead designer is not responsible for
designing the whole game; rather it is
the lead designer’s role to be a director
and sculpt not only what goes into a
game, but also what does not belong
and should be cut. (In practice, the lead
designer also picks up any design tasks
that the rest of the team is not able to
do.)

How Do You Nail Down the Game

Mechanics?

Each game usually has a lead game
mechanics designer. This person often
has a game programming background,
as programmers are the ones most
likely to implement the game mechan-
ics in the code. This person receives
direction from the lead designer, solicits
engineering feasibility from the pro-
gramming staff, and confers with the
mission or level designers to find out
their requirements. Depending on the
type of game, the game mechanics
designer often plays with Excel, trying
to achieve a rough balance to the game
and simulating portions of the game to
get an idea of how some of their
mechanics will play both for single
player and multiplayer.

Who Are the Level and Mission

Designers?

Some games have levels, others have
missions, and quite a few have neither.
Whatever game you have, it can almost
always be broken down into a series of
smaller challenges, puzzles, levels, or
missions for the player to complete.
Level and mission designers are some-
times programmers writing scripting
code for a mission. Sometimes these

40 Chapter 5: What Is a Game Made Of?

The flavors of game designers

designers are artists laying out tiles of a
map and designing triggers, and some-
times they work in pure text,
describing to others how the game
should be laid out.

Story and Dialogue Writers Are

Writers for Interactivity

Writing a compelling narrative that is
formatted for the high degree of
interactivity found in games is a wholly
different skill than writing the narrative
of a short story or novel or a motion
picture screenplay. A writer for games
needs to spend a lot of time with the
lead designer for direction on where to
take the story arc, and he or she needs
to spend even more time with the mis-
sion and story writers to determine
what is possible and not possible to do
in the scripting language, map editor, or
level building tool.

Writing natural sounding language
for characters is not the same as just
listening to people talk and writing it
down; it is a talent for having an ear
that sets the right rhythm of tone and
balance for their characters to speak in
a fantasy world in a believable manner.

I am discussing design roles that
people will play, not saying that each
project will literally divide its design
tasks into discrete people; in other
words, designers will cross over back
and forth through these roles.

Coding PartsCoding Parts

I detailed game designers first, as the
designers define the spirit of the game;
however, I have often been caught say-
ing the ultimate designers on a project
are the programmers and the artists.
The designers can write documents and
create specifications until they turn
blue, but the game will not be anything

other than what the programmers and
artists create. I am not trying to cast
programmers as an uncooperative
bunch; I am a programmer myself.
What I am trying to say is that the pro-
grammers and artists are very special
people and often need to be convinced
of the designer’s vision. Most often the
final implementation is a blend of the
designers’, programmers’, and artists’
collective vision.

The programmers’ roles are to
obviously create the code: the 3D
engine, the networking library, art
asset converter, and such, to realize the
vision for the game. Games are often
late, over budget, or buggy as I men-
tioned earlier. Games are hardly ever
late two months while they wait for the
tile artist to get her act together, and
games are hardly ever late by a month
because the audio guys have not mas-
tered your sounds yet. It is a rare
project that is delayed due to sheer
asset production deficiencies, and even
when that occurs the programmers are
not idle. Why? Because electronic
games boil down to just code—code
with art, code with sound, code with
gameplay, yes, but it is still just code.
Even with code being the main deliver-
able, why does it always have to be
late? This is an issue that is larger than
the game industry. In Steve
McConnell’s Rapid Development, he
writes that 50 to 90 percent of general
software engineering projects are sig-
nificantly late. Software engineering
projects, in general, are chronically fail-
ing. The reason for this is that we game
developers are part of a larger indus-
try—software development—that is in
turn an immature branch of the engi-
neering discipline. The processes in
specifying software, the processes for

Chapter 5: What Is a Game Made Of? 41

creating software, and the processes for
testing software and even establishing
skill levels in programmers have yet to
be established! You have to be a
licensed engineer to pilot a ship for
commercial transport, to build a bridge
or a skyscraper, or even analyze the
soil on a hill for a single-family dwell-
ing. In fact, in California and in most
states you must have a license to cut
someone’s hair. No one needs a license
to write code.

The idea of licensing game pro-
grammers may seem, at first, ridicu-
lously out of place in the game industry.
The lifeblood, the very soul of the
industry is founded on clever people
dropping out of whatever they were
doing before and putting their heart and
soul into creating a fun game. Why do I
advocate the clearly un-fun part of get-
ting a license to write code?

Imagine a future of game develop-
ment where each game project has a
licensed software engineer as the lead
programmer or technical director (with
the license administered much like a
professional engineering license). With
this type of person a very important
safety structure has been put into
place. Someone is responsible for the
technical soundness of a project, and
not only is her name and reputation on
the line for this project, but her license
to operate as a professional engineer
could be revoked if she is shown to be
manifestly negligent in her role as a
technical director. I know I am way out
on my own here with this opinion, but I
really think this would protect not just
the programming staff from unreason-
able schedules, but the publishers

themselves. They could lay down some
outline of a feature set, quality level,
budget, and timeline and say go make

the game, but it would be so much
stronger if they had to have the signa-
ture of the lead programmer (a licensed
software engineer) to sign off on the
project before the project could con-
tinue past preproduction and into
production.

Microsoft employs a version of this
method where Microsoft employees
have to sign off on a developer for tech-
nical, artistic, design, and project
management competence before any
funding of the team can commence.

Well, enough of my diatribe on the
merits of licensing programmers, let’s
go see what they actually do on a
project.

Lead Programmers and Technical

Directors

The lead programmer has traditionally
been the most experienced program-
mer on the team (from the 1970s
through the 1980s, he or she could
have been the only programmer). The
lead programmer usually takes on the
programming tasks that are the most
challenging of the project. The quintes-
sential examples of lead programmers
are John Carmack of id and Tim Swee-
ney of Epic. These guys are usually the
heroes of the projects, and many teams
are structured around the lead
programmer.

Some games tend to have a large
programming staff, such as the mas-
sively multiplayer game Ultima Online
or EverQuest, or the single-player/
multiplayer game Neverwinter Nights
with over 25 programmers. These large
projects typically employ a technical
director that oversees the program-
mers and reports directly to the project
manager. The technical director title
implies much less coding being

42 Chapter 5: What Is a Game Made Of?

performed by the individual and more
management of programmers and code
creation. Sometimes smaller projects
employ a technical director when the
lead programmer is handling a tricky
part of the project she does not care for
or has no time for, or is otherwise not
suitable for project management.
Another model is to have a series of
“assistant leads” who are all responsi-
ble for different aspects of a program-
ming task—i.e., functional leads—who
each in turn manage a few program-
mers and who ultimately report to the
lead programmer. This is the model at
BioWare and at Taldren.

The lead programmer is like the
queen in chess; she might be your most
productive programmer on the project,
but you must use her time wisely. Tech-
nical directors, on the other hand, act as
scouts on behalf of the programming
staff, looking ahead, lining up depend-
encies between programmers, and
coordinating the development of the
software.

The rest of the programming posi-
tions I describe below are not necessar-
ily distinct humans on every project;
rather they are common programming
roles that most projects have. A lot of
projects, for example, have the 3D
graphics programmer and the lead pro-
grammer be one and the same, or the
game mechanics and user interface pro-
grammer could be the same person.

Game Mechanics Programmer

The game mechanics programmer is
the one who converts the “real meat
and potatoes” of the game design into
playable code. This person usually
models the physics of the game world,
how objects such as weapons and

potions work, and how the protagonists
and antagonists function.

The game mechanics programmer
can usually be seen near one of the pro-
ject’s designers, debating the merits of
the designer’s weapon mechanics and
such. The game mechanics position is
usually a mid-level programming job
that ambitious scripters and mission
programmers often grow into.

The great thing about being the
game mechanics programmer is you are
the one who really puts the game into
the game. You are the first one to see a
lightning bolt strike the ogre, the first
to see a tank shell a building, and the
first to see the health pack heal the
character. This is a fun job.

3D Graphics Programmer

The 3D graphics programmer is one of
the most highly respected positions in
the industry. 3D graphics programmers
must have a strong comfort level in
mathematics including calculus, vector
and matrix math, trigonometry, and
algebra. The 3D graphics programmers
enjoy seeing their work come vividly
into being in lush 3D graphics, immers-
ing the player in environments they can
only dream about.

Artificial Intelligence Programmer

The demands on the artificial intelli-
gence programmer vary from game to
game and from genre to genre. Steven
Polge, now working with Epic, has writ-
ten some truly impressive bits of AI
code such as the Reaper bot. Also, the
AI programmers are usually the folks
who have the proper skills to write
scripting languages and other tools
used by the designers.

Chapter 5: What Is a Game Made Of? 43

User Interface Programmer

The user interface programmer is the
person who has the tricky job of devel-
oping the software that bridges the
game mechanics of the fantasy world
with a slick implementation of the user
interface through the controls, in-game
panels, and HUD elements, as well as
the shell or navigational menus. The UI
programmer is the expert on the UI
library and usually maintains it by
extending its functionality. The UI pro-
grammer position is one that is likely to
have been gained through experience in
the industry. UI programming is often
hard to get precisely right and is often
underappreciated.

Audio Programmer

The audio programmer is the person
who codes up the 3D sound effects, the
voice-over tag system, and the music
playback system. Often this position is
a light position due to strong, widely
used audio libraries available such as
the Miles Sound System from RAD
Tools.

Tools Programmer

Michael Abrash once told me that id
spends greater than 50 percent of its
programming resources creating tools.
This is a significant statement. Most
game companies do not commit this
level of programming resources to their
games. BioWare has a large tools
department as well, over ten people,
who make tools for all of BioWare’s
games. They have found this saves a lot
of time and rework by designers and
artists. The fact that id is arguably the
most successful developer ever, with
many mega-hits of their own as well as
a prosperous licensing program that

includes other mega-hits such as
Half-Life, seems to say that every pro-
grammer on the project should be a
tools programmer half of the time.

Most teams do not have full-time
tools programmers, although if the
team is part of a larger house, there
might be a tools department. Still,
every solid game company builds up its
own toolset over time to get graphics
on the screen, get audio out the speak-
ers, and get the characters in the game
to have interesting behavior.

A game development organization
should have short-term and long-term
tools production goals. I suggest a
Gantt chart produced in MS Project be
printed out and hung on a wall to indi-
cate the internal tools development in
your organization. This visibility will
help everyone see how the tools are
integral to the growth of your team and
how things are planned to get better in
the future.

Mission/Level Editor Programmer

The mission editor programmer is just
one of the tools positions; however, for
many games with a mission or level
editor, the editor will be released to the
public with the game’s release.
Developing a mission editor or level
editor that is robust and easy to use is
the work of creating another piece of
commercial software. The UnrealEd
level editor for the creation of Unreal
Tournament levels by Epic is a fine
example of a 3D solid constructive
geometry modeling and scripting tool
that is extremely powerful, robust, and
easy to use by both industry profes-
sionals and by fans who want to make
new content for their favorite games.
Some development houses organize a
world-building tool as part of the main

44 Chapter 5: What Is a Game Made Of?

game team, and others put this work in
the tools group if they were rigorous in
the technical design of the world editor
to make it truly useful for other game
projects.

Network, Server, or Client

Programmer?

The network programmer writes the
low-level and application-level code to
get games running between a small
number of players using modems, a
local area network, or across the
Internet. In the past the network pro-
grammer had to master a variety of
protocols such as IPX, and serial and
modem protocols. Modern games are
now run almost exclusively on TCP/IP
and UDP, the networking protocols of
the Internet.

The multiplayer architecture of
games can be broken down into two
main structures: peer-to-peer and
client-server.

Peer-to-peer structures have all of
the player machines simulating their
own copy of the game and use a variety
of algorithms to keep the states on the
different computers as close as possi-
ble. The peer-to-peer machines all talk
directly to every other computer in the
network. The bandwidth required to
service this model of game grows expo-
nentially with each added player. That
is an unfortunate side effect as you try
to handle more players.

The client-server structure divides
up the computing of game simulation
into a server, which handles the actual
simulation, and the client, which is the
viewer, or browser, of the world events.
There are several benefits to this struc-
ture, including the fact that the band-
width requirement grows only linearly
with the number of players, and the

game can also be protected from quite a
few forms of cheating by having it run
on a trusted and secure server.
(Remember, in a peer-to-peer game
each machine is running its own copy of
the world and has authority on some
portion of the world. This authority can
easily be abused by running a rogue
version in the peer-to-peer network.)

Why are not all games client-
server? Arguably they all should be;
however, depending on the game, the
client-server architecture is much more
complex and requires divorcing the
simulation and the presentation along
much stricter object-oriented lines.
Today’s massively multiplayer games
are a prime example of the complexity
of client-server games. Literally dozens
of machines, running a score or more
instances of servers, carry out different
operations such as player authentica-
tion, version checking, cheat detection,
game simulation, chat hosting, database
transactions, and more. Peer-to-peer
games are much more similar to tradi-
tional single-player games with the
exception of the games periodically
making corrections to be more in line
with each other’s view of the world.

Art PartsArt Parts

The artists of an electronic game may
wear a host of different titles just like
the programmers. Games used to have
a single artist drawing the character
sprites and the world backdrops for
these electronic heroes to carry out
their missions. In the earliest days the
programmer, designer, and artist were
one and the same person. Starting in
the mid-’80s small teams of artists,
usually no more than three, would work
on a project. Starting in the early ’90s
game projects grew substantially in

Chapter 5: What Is a Game Made Of? 45

their art requirements and budgets.
Famous examples of these are Wing
Commander IV by Origin, where over
$10 million was spent by Chris Roberts
on chasing the dream of the fabled
movie-in-a-game; Mario64, rumored to
have a budget of over $20 million; and
finally the Japanese epics in the Final
Fantasy series and Shenmue, which
have had gargantuan budgets.

Artists are now differentiated by
their skill sets. It is interesting to know
that many artists can build 3D models
of the most arcane objects quite accu-
rately and swiftly without being able to
sketch them. The domain of the artist
now covers a wide enough area that
you will need to plan your art team
carefully to be sure you have enough
bandwidth of skill and talent across
your art requirements.

Art Director

The art director is the manager for the
art team, scouting ahead to be sure that
project dependencies are taken care of
ahead of time and that the artists pro-
duce their art assets on time for the
rest of the game project. The other,
arguably more important role is to look
at every art asset as it is being con-
structed to be sure it is consistent in
quality and theme with the rest of the
game.

The art director job should be
given to the artist with the most indus-
try experience, tempered with people
skills, and the person who best enjoys
the entire team’s respect.

Concept Artist

The concept artist is gathering visibil-
ity. In the past a few sketches would
convey the look of the major characters

and locations, and the game was off into
production. Now with project budgets
10 and 20 times larger than in 1995, the
stakes are much larger and the penalty
for getting the art wrong is often fatal
to a project. This is where the concept
artist saves the day. High-quality
black-and-white drawings are often
colorized (color comp) to accurately
convey to the art director, the pro-
ducer, and the major project stake-
holders what the look of an art asset
will be before it is created. For exam-
ple, on our Starfleet Command series,
we needed to create a black-and-white
sketch for each and every proposed
ship model we wanted to introduce into
our Star Trek game. These
black-and-white sketches first made
the rounds of the team to be sure we
liked them, then the sketch went on to
Interplay’s upper management, then on
to Paramount’s interactive licensing
director, and on to even Rick Berman,
the producer of the Star Trek television
show and movies now at Paramount.
Only when we received approval from
all these folks did we start to colorize
the sketch and start the approval pro-
cess once again for the colorized
sketch. Once this was approved, we
were permitted to actually begin work
on an art asset that would make it into
the game. (The resulting 3D model
would of course need to make this
same approval-seeking trip.)

This approval process is even more
stringent at LucasArts on Star Wars

properties, and Japanese games are
very much oriented around the concept
artist, such as Yoshitaka, best known in
the game industry for his work on the
Final Fantasy series.

46 Chapter 5: What Is a Game Made Of?

2D Artist/Interface Designer

The 2D artist is an expert in classical
sketching and painting. These artists
are capable of painting backdrops, cre-
ating character portraits, and creating
tiles and sprites for use in non-3D
game engines. These artists used to
use Deluxe Paint in the golden age of
game development and have now
moved on to Photoshop, Illustrator, and
other packages.

Even in a 3D game, the 2D artist is
an incredibly versatile and important
member of the team, producing high-
res artwork for ads and marketing, and
helping to create assets for a promo-
tional web site, install graphics, and
countless more elements of 2D art.

The interface designer usually is
an expert 2D artist with a strong sense
of functional aesthetics. This artist will
make just navigating your game’s
menus an exciting and fun activity. The
interface designer is a key team mem-
ber; be sure you have one, or don’t
make your game. Sometimes designers
and programmers with strong visual
design skills can successfully fill this
role. This area of art is the most closely
tied to your game—the game design,
the game mechanics, and the look of
the game. And these areas see the
most change of any art asset. For these
reasons, I strongly recommend against
outsourcing your interface design art
assets—get the best person you can
and work with him full time.

3D Modeler

The 3D modeler was the highlight of
the show around 1994-1997. At this
time artists with experience in the
industry were almost invariably 2D
artists who were clever or stubborn

enough to get their 2D visions articu-
lated into a painfully small set of pixels
using tools such as Deluxe Paint on the
Amiga and later the PC. These artists
on the whole were not prepared to han-
dle the technical requirements of
operating a 3D modeling package.
Instead, a strange hybrid program-
mer-artist with a fascination for things
3D was required to operate the early
arcane 3D packages. These artists were
also in prime demand in the movie
industry, and the scale of wages paid
there made it very difficult for the game
companies to recruit them over to
games. In these years game projects
had to train their 2D Deluxe Paint art-
ists slowly to use early versions of
LightWave and other technical 3D
packages.

Over time the packages got much
stronger and easier to use. College
courses now teach 3D Studio Max, and
in general people have had time to
learn how to use the 3D modeling pack-
ages. 3D modelers are still highly
respected members of any game team,
but it is more balanced now with the
other key art positions.

Character Modeler

The character modeler is a specialized
breed of 3D modeler. Some strong 3D
artists are competent at making
mechanical things such as spaceships,
tanks, and architecture, while others
seem to lean towards the organics of
characters. Low-poly character model-
ers have a special understanding of how
the detail of the character will come to
life in the texture stage to make the
most economical use of their polygon
budget.

Chapter 5: What Is a Game Made Of? 47

Texture Artist

The texture artist, like the concept art-
ist, is now a highly visible element of
your art team. Games are almost
always constructed out of polygons
with textures on them. The sophistica-
tion of the modeling packages is so
strong now, the texture phase of creat-
ing a 3D object is usually estimated at
three to four times longer than the
actual building of the model. The tex-
ture artist is a 2D artist who can “skin”
an object in his mind and create a com-
pelling set of textures to “paint” that
skin on the 3D model.

Animator/Motion Capture Studio

Animation comes in two broadly differ-
ent categories: character/animal/mon-
ster animation and everything else.
Rotating antennas, windmills, and radar
dishes are good examples of the every-
thing else category. Animating a wind-
mill is an almost trivial task for an artist
on your team, while animating the snarl
on a goblin’s face is an entirely different
task.

JARGON: Key framing is the technique
of using a 3D modeling package to set
key frames to have the engine interpo-
late between.

JARGON: Motion capture is using a
special matrix camera to record the
movements of a real human actor wear-
ing a motion capture suit that has funny
reflective balls attached to it. Most pro-
jects that use motion capture also use
key framing for part of their animation
duties.

To animate a character, two different
solutions are at your disposal: key

framing and motion capture. Key fram-
ing is the older, more established
method of animating your characters.
Key framing excels at animating car-
toon characters and monsters and for
extreme movements—motions that are
impossible to capture with a human
actor. Animating by key framing is an
entirely different skill set from 3D
modeling, texturing, or sketching. If
your project will involve characters that
need to be animated, be sure your team
has enough competent animators to get
the job done; animation can be a slow
art.

Motion capture is the buzzword—
this is the state of the art. Humans
move with very subtle grace; studying
a motion-captured movement will
reveal how much the whole body
moves during the walk or the swing of
a bat. Motion capture’s largest draw-
back would have to be cost in both
dollars and time spent massaging the
data into usable form. This field is con-
stantly improving, and there are half a
dozen competitors in the field. In Chap-
ter 33 I will show you in depth what
you need to know about motion capture
including how to get a successful bid.

There is quite a bit of technical
drudgery involved in smoothing out all
of the details of the character’s model
and animations—dealing with the skel-
eton, motion capture data, prop bones,
and a host of tiny, necessary details.
Some studios divide this work between
the modelers and the animators
depending on the nature of the task,
and other studios like BioWare have
dedicated folks called character riggers
who handle these types of tasks.

48 Chapter 5: What Is a Game Made Of?

TE
AM
FL
Y

Team-Fly®

Storyboarder

If your game is to have any movies or
cinematic sequences, it is important
that your team have a storyboard artist.
The storyboard artist will be able to
design and articulate the scenes in a
sequence for internal and external
review before committing to costly live
action or resource-intensive computer-
generated sequences. Show the movies
to the publisher, show them to the
team, and work it all out ahead of time
through simple boxes and captions.
Most storyboarders are accomplished
concept artists but not necessarily.

Audio PartsAudio Parts

Audio assets come in three main fla-
vors: sound effects, music, and voice-
over. In the beginning there were only
crude sound effects performing buzzes,
beeps, and whistles. We now have full
Dolby 5.1 3D sound. Music has come a
long way from clever timing of beeps to
compositions by film composers per-
formed by 50-piece live orchestras. And
voice acting is now an art form per-
formed by stars like Patrick Stewart
and contracted under the authority of
the Screen Actors Guild.

Voice-Overs

Voices in a game really bring it to life.
Compelling voice acting reinforces
every other element of interactivity
by having the actors speak to your
character. The tutorials for Starfleet
Command went from being a dry intro-
duction to our gameplay to being the
most compelling Star Trek moment I
ever experienced with George Takei
performing Admiral Sulu teaching me
to command a starship. I remember

when Origin’s Strike Commander was
released for $50, but an additional
speech pack was available for $20 more.
That is a testament to wacky product
strategies as well as a testament to the
compelling depth voice adds to a game.

The only way to get good voice
work done is to work with an experi-
enced voice-over director. A good
director will know immediately where
to secure the talent, the studio time,
and the engineer, and get you the post-
processed audio in a format you need.
In Chapter 29 I will guide you through
the process of getting high-quality
voice into your game. The pleasant sur-
prise of voice work is that it is probably
the coolest element you can add to your
game for the money, and it is essential
in many role-playing games, which are
dialog and VO intensive.

Sound Effects

Sound effect engineers are wizards at
listening to one sound and finding
clever ways to stretch it, compress it,
twist it, and come up with precisely the
sound you need. Sometimes they will
Foley—that is, record your sound effect
from the actual object generating the
sound. Sometimes the sound engineer
will record some other sound and then
twist it around just for your game.

Sound effects are an excellent tar-
get for outsourcing as only the larger
developers with three or more concur-
rent projects can keep a sound effects
crew productively working. Chapter 30
contains an interview with a sound
engineer so you can see what it will
take to get strong sounds into your
game.

Chapter 5: What Is a Game Made Of? 49

Music

Some games spend a lot of effort on
music, and it really gets the emotional
hooks into the player when the music is
first-rate. Music is probably the most
popular and oldest art form worldwide.
Nearly any emotion can be invoked
with compelling music. There are two
options: synthesized music and music
that is performed live. We spent nearly
$100,000 on the score and 30-piece
orchestra performance for Starfleet
Command 2. The music was very spe-
cial; all of the sounds are richer and
fuller bodied when performed by
humans versus a synthesized chip.
That being said, a single musician can
create extremely strong music with a
professional synthesizer and software.
Chapter 28 will discuss outsourcing
music in detail and give you plenty of
leads to be sure your game has the
emotional impact of high-quality music.

Management PartsManagement Parts

Management of a game project is the
most critical component in my experi-
ence. In recent private email with other
studio heads in the industry, the con-
sensus was that a developer is limited
in number of teams not by program-
mers or artists, but by quality produc-
ers/project managers. That being said,
the management of a game project is
often shared by a group of individuals
with different responsibility sets.

Line Producer

The line producer coordinates count-
less small tasks that one by one are not
very challenging, but taken as a whole
is a daunting amount of work that
needs to get done every day. If a project
lacks a line producer, the efficacy of

every team member will be compro-
mised by a little distraction at a time.
The line producer will often supply the
team with food when the hours are
forced and late; will get design docu-
ments printed and sent overnight; and
will often coordinate getting builds out
to the publisher and to beta testers.
The line is a critical function that
should be filled by a line producer,
instead of your art director on Mon-
days, your 3D graphics programmer on
Tuesdays, and so on.

JARGON: Builds and revs refer to
interim functional versions of the game
distributed for testing to internal and
external testers.

Associate Producer

The associate producer is found on
larger projects in a single team com-
pany, and all ompanies with multiple
teams need an associate producer. Pub-
lishers also structure themselves with
an executive producer managing a
group of titles and an associate pro-
ducer on each title performing day-to-
day management. The associate pro-
ducers have an interesting combination
of a lot of responsibility and little
authority. The associate producer is the
understudy of the executive producer.
The business negotiations, contracting,
and human resource decisions will be
carried out by the executive producer,
but in almost every other aspect of the
game project the associate producer
will have a strong contribution to make.
The associate producers are often bur-
dened with the dreary task of updating
the schedule and reporting on task
tracking. The associate also helps com-
munication between all team members
and is usually the strongest advocate

50 Chapter 5: What Is a Game Made Of?

for the game. In truth, each studio has
its own name for the hierarchy of man-
agers in the organization such as assis-
tant producers, senior group producers,
and project planners.

Studio Head/Executive Producer

The studio head at a game developer
and the executive producer at the pub-
lisher each have the same fundamental
job on a game project: be responsible
for planning and executing the project
in a profit-producing manner.

Studio heads are almost always the
founders of their own companies, those
who have risen through the ranks and
are industry veterans and who have
paid their dues and made money for
their publishers in the past. In the case
of Valve, Gabe Newell brought lots of
project management experience from
13 years of creating software such as
Microsoft Windows. Studio heads run
small companies—game development
shops—and have to simultaneously be
game designers who are passionate
about their games, software managers
who respect technology, and business-
men who are savvy enough to get a
good publishing deal. Some developers
such as id and Epic have divided the
role of the studio head into a more prac-
tical split of one person running the
business and another acting as the pro-
ject leader for the game.

The business development execu-
tive at the publisher often supplies the

executive producer on the publishing
side with a game project and game
developer lead. The executive pro-
ducer’s job is to then complete the
evaluation of the developer and project
to determine its suitability for produc-
tion. If the executive producer is
confident the project should go forward,
he will negotiate the key terms with
the developer and work to help the pro-
ject meet its first internal green-light or
assessment milestone. If the project
passes, then the executive producer’s
job is to oversee the project’s progress
through the reports generated by the
associate producers and by looking
over builds of the project in progress.
The executive producer is often called
upon to maintain the relationship with
any licenses and is sometimes involved
in contracting external vendors. The
executive producer is the person most
visible inside the publishing company
for the game’s success, while the press
and the fans tend to focus on the game
developer.

Producer

As a game development studio grows
into two teams or larger, the role of the
producer becomes critical to the effec-
tive execution of the studio’s projects.
The producer is the person who will
manage the project at a larger develop-
ment studio, allowing the studio
head/executive producer to concentrate
on strategic company issues.

Chapter 5: What Is a Game Made Of? 51

Quality Assurance Parts

Quality assurance (QA) is another criti-
cal component of game development.
The single best way to test your game
is of course to play it and play it until it
is solid and as much fun as you know
how to make it. The problem with this
method is that it will take a very long
time for a single person to play through
a game in its entirety (which may not
even be possible), and a single person
will make errors and have a bias.

The industry has yet to come up
with a unified testing method that is
known as the best practice employed
widely. Instead each developer and pub-
lisher and indeed each game project
tends to have its own QA process.
Microsoft appears to be the organiza-
tion that exerts the most effort in a
rigorous QA process.

Most small developers do not have
a full-time QA staff, as they would only
see useful work roughly half of a pro-
ject’s lifetime. Larger, multiteam
development companies can often gain-
fully employ a full-time QA staff. For
example, BioWare employs a full-time
QA department of over ten people,
which supplements the even larger QA
teams at their publishers, reducing the
errors sent to the publishers to speed
up development and saving the devel-
opers themselves from having to test
their own stuff, instead allowing them
to focus on finishing new content/fea-
tures. Smaller developers often
cross-train the line producer and asso-
ciate producer to be the first line of QA
with a backup of team-wide testing
days.

Publisher QA PartsPublisher QA Parts

All high-profile commercial games
receive a considerable amount of pro-
fessional testing by the publisher’s
internal QA department. This depart-
ment follows the guidelines set by the
publisher’s management and works as
efficiently as possible to report defects
in content and quality to the developer
prior to commercial release. Most com-
mercially released games have antici-
pated release dates that are difficult to
postpone in the case of a late project or
a particularly buggy one. These internal
QA teams are trained to report the
severity of the defect and generally cre-
ate high-quality bug reports that have
items prioritized for the development
team’s attention.

QA Lead

The QA lead is the person who leads
the efforts of the QA staff. The QA lead
is always a former tester who showed
promise of superior skill in organization
and communication. The QA lead coor-
dinates getting new builds or revs of
the game in progress.

The QA lead also proofreads all
reported defects from her team and dis-
cards duplicate and erroneous reports
and often rejects reports back to the
reporting tester, requesting clarification
and/or testing. The QA lead is almost
always an aspiring game designer or
producer and often includes extensive
commentary on the game’s content in
order to gain visibility for possible
promotion. This is because most pub-
lishers have an outdated, poor concept

52 Chapter 5: What Is a Game Made Of?

of the QA staff and treat them as low-
skilled, low-paid workers, leaving those
workers with little choice for a career
in QA. Instead they are actively trying
to strike out into development or some
other role in the game industry. A nota-
ble exception to this is Microsoft,
which seeks out folks with college
degrees and pays well for its QA
positions.

Main Team

The main QA team is the team that will
monitor the game’s progress from the
time the game is initially submitted to
QA through release and often into
post-release. The main QA team will go
through stages of varying productivity
in direct relation to the development
team’s ability to respond to the bug
reports in a timely fashion. This team is
generally referred to as the QA team
even though there are many other
potential testers of the game. The main
QA team will often rotate in fresh team
members as a natural process of other
games finishing and employee turnover.

Multiplayer Team

Games with significant multiplayer
gameplay often have a QA team dedi-
cated to testing this functionality. This
is more common with PC games, as
console games tend to have much more
limited multiplayer gameplay. The
multiplayer team is used to be sure all
of the modem, LAN, Internet, and
matching options are thoroughly tested.
Bugs associated with multiplayer code
are often more difficult to track down
and report; this allows testing of the
single-player campaigns and missions
to continue on in parallel. In the same
manner, individual members of both the

multiplayer team and main team are
specialists in a particular portion of the
game such as a chapter or character
class or playable race.

Fresh Teams

The problem with having dedicated
main teams and multiplayer teams who
look at the same game from three
months to a year is that their ability to
discern fundamental problems with
gameplay and usability are compro-
mised fairly quickly as they learn the
game and lose the critical insight of a
new player. It is still important to have
efficient teams who know what the
game is and what the last reported set
of bugs were so they can quickly turn
around a bug report to the development
team. However, fresh teams are often
introduced to a game the closer it
comes to shipping, depending on QA
resources available internally to the
publisher.

Compatibility Team

The compatibility team is often a dedi-
cated team of QA members who happily
rebuild computers all day while testing
the major functionality of your game.
These guys have very little work to do
on a console! The compatibility team
usually has a standardized checklist of
hardware and operating systems the
publisher considers commercially
important to support.

Localization Team

Also, all big games are localized into
various markets, and native speakers of
these languages will be employed to
QA both the accuracy and the quality of
the localization of the game.

Chapter 5: What Is a Game Made Of? 53

Beta TestingBeta Testing

Beta testing is testing performed by
unpaid volunteer fans who want a first
peek at an upcoming title and who are
excited by the opportunity to improve a
game before its release. At first many
publishers were apprehensive that a
beta version of the game would become
widely pirated and steal sales from the
release version of the game. Or in the
case of weaker titles, many publishers
consider it a shrewd strategy to avoid
the beta testing stage. Perhaps the
most successful beta testing programs
are run by id; examples of these are
Doom and Quake Test. These first-
person shooters had multiplayer
gameplay and no single-player mis-
sions. Even with only three or so maps
to play test, these “tests” by id pro-
duced more hours of fun and gameplay
than most games ever achieve in their
final release. I personally played sev-
eral hundred hours of Quake Test
before Quake was released—sniff—
thank you, id!

Bottom line, if you want to make a
great game, run a beta test and fix your
game until beta testing proves you are
ready for release. In recent years the
advent of the massively multiplayer
game has required extensive beta test-
ing. These massively multiplayer
games require hundreds if not thou-
sands of concurrent players to analyze
how the server will respond to the
stresses of full release. These thou-
sands of beta testers are also required
to smooth out the authentication,
account management, and game bal-
ance to avoid having paying subscribers
complete the beta testing period. The
sheer costs of these games and the

limited rigor employed to date on beta
testing programs still results in the
pressure to release these games to the
public and endure two to six months of
painful post-release beta testing that
strains the faith of your hardcore,
early-adopting fans.

Beta Testers

The beta testers are almost always the
fans who showed up on your message
board when you first opened up shop.
They often have beta testing experi-
ence or have heard about beta pro-
grams and will sometimes be quite
proactive in their effort to secure a seat
in your beta testing program. The num-
ber one rule with beta testers is to
communicate with them; failure to do
so only creates an expectation in the
beta tester’s heart that they are part of
the development team, only to find out
that their voices are unheard.

Beta Testing Program Manager

To facilitate this communication with
the beta testers, one of the develop-
ment team members—often the
associate or line producer—takes on
the role of beta testing program man-
ager. This is a very stressful job. The
time period that beta testing takes
place is during the final months of a
project when everything must come
together. The beta testers are anxious
to see their reported defects fixed in
the very next version of the game and
are quite vocal about new features they
want and how they want the game to be
balanced. In Chapter 23 I will discuss
the mechanisms and techniques the
beta testing program director should
employ for a successful beta test.

54 Chapter 5: What Is a Game Made Of?

Business Parts

Making games is big business.
Depending on how you look at the
numbers, the console game market
(hardware and software) along with the
PC game market generates more reve-
nue than the box-office receipts of all of
Hollywood’s films annually.

There are a lot of different busi-
ness executives who are involved in a
game project; here I will present the
major roles.

Business Development PartsBusiness Development Parts

Business Development Executive

The business development executive is
casually called the “biz dev.”

JARGON: “Biz dev” is the short name
given to the business development
executive at a publishing company.

When developers go around pitching
games to publishers, they first need to
get the approval of the publisher’s busi-
ness development executive before the
game is sent to a green-light
committee.

The biz dev person keeps a close
eye on what is going on in the industry
and is the first to know about games in
development that are looking for a pub-
lishing deal. The biz dev person often
negotiates the key terms of a game
publishing contract.

Publisher CEO and President

A chief executive is responsible for all
aspects of the game publishing corpora-
tion. Very often this individual has ten
to twenty years in the game industry
and has a well-developed instinct for
making great games (not infallible

though). Making sure that your game is
visible and impressive to this key exec-
utive at green-light meetings ensures
the highest level of support the organi-
zation can bring to bear for your game.

Studio Heads

Founders, lead programmers, visionar-
ies, game makers, CEOs, presidents,
head coaches—whatever you call them,
studio heads are the chief decision mak-
ers at a game development house.
Studio heads generally have five to fif-
teen years of experience in the game
industry and at least one hit title under
their belt where they held a strong lead
role. Studio heads most commonly
come from programming and design
backgrounds, although there are some
medical doctors of considerable renown
running BioWare. Artists are the major-
ity shareowner at id, and Gabe Newell
of Valve had an extensive background of
software development at Microsoft.

Studio heads decide the fundamen-
tal structure and working environment
for their studios based on past experi-
ence. The studio head is intimately
involved when a game project is start-
ing up and is usually the salesperson
pitching the game to the publishers.
Studio heads are generally the most
qualified team leaders in their organiza-
tion and spend a lot of their time
training new producers to run teams
and subteams.

Lawyers

Both the publisher and the developer
need the best lawyers they can afford.
Each contract is unique, and while a

Chapter 5: What Is a Game Made Of? 55

publisher’s contract is the fruit of many
painful relationships, the developer
should be patient and exercise great
care in negotiating terms. This is some-
thing you do not want to try on your
own.

WARNING: Do not negotiate a publish-
ing contract without the aid of a lawyer
who has strong experience in electronic
entertainment publishing contracts.

Lawyers are actually good people who
help you understand clearly what a
contract is and is not saying. Under-
standing what you are agreeing to
before you sign a contract is a funda-
mental safety mechanism for both the
developer and the publisher. In Chapter
27 I provide a list of law firms who are
used by different studios.

Licensing PartsLicensing Parts

Many games are based on licenses such
as comic books, novels, movies, and
sports stars. In turn, games themselves
are licensed to create strategy guides,
action figures, T-shirts, and movies.
Publishers may have their biz dev exec-
utive manage the licensing of a game,
or they may have a full-time staff mem-
ber for routine licenses such as
strategy guides.

Promoting, Buying, and SellingPromoting, Buying, and Selling

Parts

Sales? Is that not the job of the teenage
clerk at the local Electronics Boutique?
Well, yes of course, but well before a
gamer walks into a computer game
store, a sales force has made the larger
sale of the game to the buyer agent of
the retailer.

The decision on the retail buyer’s
part of how many units of the game title
to order on release depends on how hot

the title appears to be, the wholesale
price, and the influence of any number
of incentive programs that have been
negotiated between the publisher’s
sales force and the retailer’s buying
force well before the game’s release.

Sales Executive

Each publisher has a top executive in
charge of sales. This person has a lot of
influence on the ultimate sales of a
game. The executive in charge of sales
has a budget that goes by several differ-
ent euphemistic phrases such as
“marketing development funds”; this
budget is spent to buy shelf space at
retail. This is a pretty strange concept
to people who are unfamiliar with the
industry—that the publisher not only
needs to absorb the risk of funding the
development of the game and its pack-
aging and marketing, but also must
completely absolve the retailer from
any risk. Selling games is a consign-
ment business.

The retailer will put the product up
on the shelves, and if it does not sell
quickly enough, the retailer simply
sends the product back and gets its
money back. Retailers take maximum
advantage of this relationship when a
highly anticipated game is released by
ordering as many units as the publisher
will deliver. It sounds great when you
have an order of 200,000 units from
CompUSA for your game, but if your
game fails to meet expectations,
CompUSA will not hesitate a moment
to send 160,000 units back to you—all
marked up with their price tags—and
simply order more later. Those 40,000
units you sold at CompUSA effectively
had the packaging and shipping costs of
200,000 units, which wipes out much of

56 Chapter 5: What Is a Game Made Of?

the margin from those 40,000 units that
did sell.

A careful study of some publishers’
financial reports to the SEC will show
periodic “write-offs” and “one-time
charges.” There can be a whole variety
of reasons why a business is forced to
report a loss on their books, but in the
case of game publishers it is often mas-
sive quantities of returned games that
they have accumulated for as many
quarters as they could get away with. It
is not unheard of to see six to ten quar-
ters of accumulated returned product
discharged as a write-off. Keep in mind
that during those six to ten quarters
this product was accounted for as reve-
nue. This practice is not sustainable,
and the stronger publishers do not do
this. A strong sales executive should
work closely with the publisher’s chief
financial officer to manage what is
called “sell-in” to the retailers with
the goal of having the highest “sell-
through” to “sell-in” ratio.

JARGON: Sell-in is the number of units
the retailers order or buy.
Sell-through is the good stuff; this is the
measure of how many units of your
game were sold through to consumers
—a true sale.

Sales Force and Retail Purchasing

Agents

Under the direction of the sales execu-
tive, the publisher’s sales staff meets
periodically with the retail purchasing
agents, each of whom represents a dif-
ferent retail chain. Prior to calling on
the buying agents, a publisher will
often host an internal sales meeting to
communicate their product’s selling
points to the sales force. These meet-
ings can sometimes be fairly lavish
with, for example, large ice sculptures

and Klingon impersonators to get the
sales staff pumped up and primed to
handle the buying agents.

Press Relations Manager

The press relations manager will over-
see how the game is communicated to
the press. For large titles, this is a
nearly full-time job, and a quality PR
manager should be split across as few
titles as possible—one to three titles at
most. The PR manager will field all
press inquiries, as well as inquiries by
those claiming to be press. The PR
manager will strategize and plan how
the details of your game will be
released to the press.

JARGON: Buzz—what the press, fans,
and industry are saying about a particu-
lar title.

If PR has a solid date on when the game
will ship, then PR can create a solid
plan for ramping up the buzz in a
steady, ever-increasing volume to peak
just as the title is released. Releasing
too many of your game’s goodies too
early will provide you with little to say
later in the project, and interest in your
title will sputter and fade before it is
released. On the other hand, if you do
not release enough information on your
game to grab press and fan attention, it
may be difficult to maintain the support
of the executives at the publisher and
other project stakeholders.

Trade Shows

The Electronic Entertainment Expo, or
E3, is the largest show in North Amer-
ica for publishers to get their products
implanted in the agents’ minds. E3 is a
vast show with tens of thousands of
attendees strolling through hundreds of
displays ranging from mini amusement

Chapter 5: What Is a Game Made Of? 57

parks from the likes of Nintendo to a
folding desk and some business cards
from discount CD duplicators. Thou-
sands of products will be on display and
scores of tricks are used to try to get
your attention, from the obligatory
booth babes to breath mints that are
rolled out like cellophane. E3 is a
cacophony of sound effects, lights,
noise, and people. For all of this energy
E3 is the largest news reporting event
in the game industry and next to the
retail buyers, the game press is the
second most important contingent of
VIPs to grace the floor. These folks
have conspicuous press ribbons dan-
gling from their badge so you know
when not to speak candidly (handy).

Like anything competitive, the
press at E3 is out to get more viewers
and readers. The larger the market
share, the more their business will
grow. Years ago the press were trying
to figure out how to arrange their time
more efficiently for those precious
three days of E3; they wanted to be
sure they looked at every hot game. It
would be a minor tragedy if a compet-
ing magazine or site were to report on a
major title that you failed to see at the
show. So the publishers and the press
put together a schedule of viewings and
demonstrations for all of the large
press. That might sound innocent
enough, but if you think about it for a
moment, you will realize that all of the
major press walks into the show with a
schedule of titles filling all of the
required genres and platforms priori-
tized in order of importance. Of course
this journalist will still walk the floor,
but it will be between appointments or
at the end of the show. This makes it
really tough for the little games trying

to break out, as they are not even on
the list to be seen.

The Internet game sites have
another pressure—real-time reporting.
To keep up, all of the major game sites
need to have nearly live coverage of the
show in an effort to bring the show to
the fans and of course to gain more
viewers. Real-time reporting is hard for
several reasons, not the least of which
is that you need to have something to
say. Here again, publishers and the
press will work together to give the
press an E3 package a couple of weeks
before the show. This package always
contains the best screen shots, plenty
of quotable material, and occasionally a
playable preview build of the game. The
better journalists look at this material
as just more information; the less rigor-
ous journalists (or those with very little
time) have been known to lift the
majority of the quotable material and
publish that in lieu of an original opin-
ion on the game.

Other Trade Shows and Events

E3 is important and dominant no doubt;
however, it is hard to get your message
across to the buyers, press, and fans
when there are 3,000 other titles. Pub-
lishers have been creative about how to
handle this problem; they hold their
own shows in one form or another. For
example, Activision hosts its own show
in Europe between E3 and ECTS (the
major show in Europe) to be sure
awareness is implanted before and
more effectively than the ECTS show.

Interplay hosted a very cool event
for three of the Star Trek games (one of
which was Starfleet Command) on the
Paramount Studios lot. Press from
around the world came to view three

58 Chapter 5: What Is a Game Made Of?

TE
AM
FL
Y

Team-Fly®

games hosted by George Takei. The
trailers for all three games were shown
in the posh Paramount screening the-
ater, and a fine lunch was served where
the press mingled with the developers
for an extended Q&A period after the
press had a couple of hours to play the
games. It was a relaxed but focused
event that gave those three games
ample time with the press.

The Marketing of a Game

As you can see there is a lot of sales
and promoting of a game behind the
curtains, but what about the ads—the
traditional form of selling a product? Of
course games have ads; take a look at
your favorite game magazine and it
seems like half of the pages are full-
page ads. And the online sites have
banners, navigational bar headings, and
a myriad of advertising terms for the
various bits of electronic click-mes.

Like the press relations manager,
the marketing director for a game
should not be spread too thin across
many different games. The marketing
manager will work with the producer
and development team to craft the
game’s image in all of its various forms:
print ads, banner ads, and the
all-important box.

Just like press coverage, it is
important not to create too much hype
for the game and then fail to deliver on
time. Publishers are getting much more
savvy and are scheduling their market-
ing campaigns to kick off only when the
ship date is known with confidence.

The marketing manager will also
be responsible for getting your game
shown at smaller venues such as the
GenCon game convention held in Mil-
waukee. The marketing manager will

coordinate strongly with the press
manager and sometimes supervises the
press activities. Sometimes it is consid-
ered a peer position, and in some places
the same person is overloaded with
both jobs. In particular, the marketing
and press managers will be working
closely with any playable demos that
are to be released, making sure they
are cover-mounted on the game maga-
zine CDs and that the retail stores
carry a supply of demos in a display.

Hardcore Fans

It is commonly known that hardcore
fans and the word-of-mouth sales they
generate is the largest factor in the
number of games you will sell. Hard-
core fans are eager to check up on the
progress of their favorite game at the
developer’s web site, interact in the
forums, and beta test. If they like the
game, they can be responsible for not
just the sale of the box they buy for
themselves, but for the six or eight
boxes that they have convinced their
LAN party to play with. Or in the case
of console games, the hardcore early
adopters get the game first and invite
people over to play. I have met fans
who have sold ten, twenty, and more
titles just for their passion of the game.
Hardcore fans are always looking for
the best in games; they also have a
bunch of friends the industry calls
casual gamers and mass-market
gamers. These casual and mass-market
gamers ask for recommendations from
the hardcore gamers. The hardcore
gamers will in turn recommend the
titles they feel comfortable with. This
is just common sense, but what it
means is that Blizzard’s Diablo was
perfectly poised to capitalize on the

Chapter 5: What Is a Game Made Of? 59

streamlined interpretation of the com-
puter role-playing game genre where
just light taps on the left mouse button
looted catacombs and vanquished ele-
mental evil. Valve’s Half-Life laid a
heavy story on top of the first-person
shooter genre dominated by id (in fact
they licensed id’s Quake engine) to pro-
duce a mega-hit. And depending on how
you measure it, Half-Life and its free,
fan-created mods Counter-Strike and
Day of Defeat are the most popular
online games. These games are simply
the most approachable, solid, and just
plain fun games you can buy. If you
want your game to sell, study how nar-
row the feature sets of Mario64,
Half-Life, and Diablo really are, and
how well and deep these few features
are executed.

Manuals and Strategy GuidesManuals and Strategy Guides

Games need to have a manual, and if
the game is considered a potential hit,
then no doubt a strategy guide will be
produced for the title.

Manual

How the manual gets written varies
from publisher to publisher and from
game to game. The most common
method is to use an experienced con-
tract manual writer. This person
receives a copy of the game about four
to six months before release and inter-
acts with a member of the development
team while writing to create the most
accurate manual possible before a game
ships. Another common method is for
developers to create the manual given
that they are the most familiar with the
game’s functionality. The biggest chal-
lenge in creating a manual is that rarely
does one have the luxury of waiting

until all features have been frozen and
all stats in the game have been bal-
anced. This results in almost all
manuals being vague in some areas and
fairly narrow in the scope of just pro-
viding use of the controls of the game,
rather than how to play the game. Now
enters the strategy guide.

Strategy Guide

The strategy guide fills a niche role in
the game industry, providing detailed
stats, walk-throughs, strategy, and tac-
tics to complete a game. Writers of
strategy guides have various stories,
but it is not as simple a job as playing
your favorite game and writing up all
the nifty hints and secrets. What really
happens is that the publisher of the
game and the publisher of the guide
work together to get builds of the game
to the strategy guide author as early as
practical in the project. Essentially, the
guide author is a beta tester too; this
makes the job of writing the definitive
guide more challenging as the stats,
missions, puzzles, and various parts of
the game are still in flux. For instance,
even the ultra-high-profile game Gran
Turismo 3 (GT3) for the PS2 contains
many discrepancies in the pricing of
various upgrades between the U.S. ver-
sion of the game and the U.S. strategy
guide. GT3 shipped in Japan well ahead
of the U.S. version and as such there
was a little more time to produce an
accurate guide. Despite this there were
still discrepancies.

For our own Starfleet Command:
Orion Pirates, the strategy guide writer
of SFC2, Dennis Green, returned to
write the most thorough guide possible.
His project came under stress when we
at Taldren overlooked some of his

60 Chapter 5: What Is a Game Made Of?

requests for information during the
final push. Unfortunately, after we were
able to catch up and provide him with
the information he needed, several
strong chapters of the book had to be
cut to reduce paper costs for the guide.
It is a tough market to make money
when work already created has to be
cut.

Manufacturing PartsManufacturing Parts

I am astonished at how quickly a PC
game can reach the store shelves. Do
you know how fast a publisher can take
the final gold master from the hands of
the QA lead and deliver a shrink-
wrapped retail box in an Electronics
Boutique shop in the local mall? Five
days. That is right, in five days a
30-cent recordable CD from the local
OfficeMax can be turned into $70 mil-
lion of merchandise on store shelves in
the form of Diablo II. This is perhaps
the quickest a game can reach the store
shelves and usually only occurs at a fis-
cal quarter end for the publisher—most
especially Q4 for the holiday shopping
season!

To accomplish this a publisher has
an operations manager who keeps his
eyes peeled looking for the strongest
vendors for CD duplication, manual
printing, box printing, and assembly.
This is quite a job, and normally they
would like to see about 20 to 30 days
to get the job done, so as to not have
to pay for express drop shipments
between the vendors. But when the
end of the quarter is rearing its ugly
face, the operations manager saves the
day. Toward the two-thirds mark of your
schedule, meet with the operations
manager to nail down the firm dates for
when they need everything—final box,

final manual, and final posters and other
goodies in the box. This is definitely an
area of the project where it repays you
in spades to be proactive and find out
the due dates for these deliverables
ahead of time.

Hardware Manufacturer PartsHardware Manufacturer Parts

Console Manufacturers

The console manufacturers assign a
producer to oversee the development
of each of the titles for the platform.
The console manufacturer retains broad
editorial approval rights for the game,
and it is very important to follow their
feedback to receive your ultimate
approval for the gold master.

Hardware Representatives

Some of the coolest people to work
with in the industry are the hardware
vendors like SoundBlaster and
NVIDIA. These folks are motivated to
be sure that not only does your game
work on their hardware but also that
your game takes advantage of all of the
features of their latest cards. What that
means to a PC developer is a bunch of
free hardware such as sound cards,
video cards, joysticks, and speakers for
use of the development team to test the
hardware. These folks are best
approached at their booths at the Game
Developers Conference (www.gdconf.com).
Tell them your story, where you are
working, and what game you are work-
ing on, and if they feel that you are for
real, you can get test hardware. Please
do not abuse this if you are not making
a commercial game and will not be
making a genuine test of the hardware,
as it will only make those resources
harder to come by for the rest of us.

Chapter 5: What Is a Game Made Of? 61

Post-Release Parts

Releasing a successful game to retail
will be one of the most difficult things
you accomplish in your professional
career. After all of the cleverness it will
take to get your project funded, staffed,
and real; after all of the dedication to
the craft during production; and after all
of the blood, sweat, and tears it will
take to drive a game through the final
candidate cycle, you will find the day
after you signed off on the gold master
one of the most pure days in your
career with no task that must be done
now. Instead, you and the rest of the
team will most likely disappear and
rediscover what your family looks like
and decide to talk with them—and
sleep. After this much-needed rest is
completed, is it time to dream up a new
game? No, it is time for post-release.

Post-release involves patches,
updates, answering questions on the
forums, helping customer service field
questions on the phone support lines,
and combating cheating. For massively

multiplayer games, these issues are
much more serious as you are billing
for a monthly service instead of a
one-time purchase of a product. In fact
massively multiplayer games have
whole development teams called the
“live teams” to maintain the software,
add new content, act as gamemasters,
and in general keep the product fresh
and alive in the hands of gamers.

Having a bunch of fans is a very
good thing; that is the whole reason for
your work. However, a bunch of fans
require a substantial amount of interac-
tion and communication. At Taldren
about six of the employees have taken
the initiative to read our forums on a
regular basis to field questions and
moderate the forums.

Chapter 24 discusses the issues of
post-release in detail with guidance
from several studios on how to most
effectively support the fans of your
game.

62 Chapter 5: What Is a Game Made Of?

Chapter 5: What Is a Game Made Of? 63

This page inten tion ally left blank

Chapter 6 > > > > > > > > > > > > > > > >

Business Context

First

The first project sin that people commit
is to dive right in and start designing
their game, or worse, to start program-
ming. Every project, from the largest
massively multiplayer games with
development budgets over $8 million to
total conversions done by some hard-
core fans, needs to be positioned within
an appropriate business context. Even
if you have no plan to make money off
the game, or it is not a business ven-
ture, it is still critically important to
identify why you are making the game
and what the goals are for your game.

The Project Triangle

A useful device for analyzing the goals
of your project is to create a triangle
and label the points of the triangle as
follows: (1) On Budget, (2) On Time,
and (3) High-Quality/Feature Rich. It is
a business law of software development
projects (and just about any other type
of project) that you can achieve two out
of three of these goals on any project,
but you cannot achieve all three. Fail-
ure to understand that you can only
have two out of three of these proper-
ties will result in a game that misses
not just one goal, but also two or three

Chapter 6: Business Context First 65

Where the business parameters lie on the project life
cycle

of these goals! See the diagram below
for a visual aid to this example:

Implications of the Project TriangleImplications of the Project Triangle

Each line on the triangle is a relation-
ship between two of the goals. Each
line should be responsibly labeled with
the negative consequence of your deci-
sion. This triangle states that every
well-managed project will exhibit one of
three negative behaviors: being late,
being over budget, or sacrificing quality.
This sounds pessimistic, but it is true.
Once again for impact: Well-managed
projects will be late, cost too much, or
be of low quality; less well-managed
projects will exhibit two negatives;
poorly managed projects will feature all
three failures.

There are many different software
development strategies on the market
such as Iterative, Waterfall, Extreme,
Unified, and others. None of these
development methodologies are a
magic potion. You will still be faced with
the question of how to best manage
your particular project and its chal-
lenges. Instead, each of these
methodologies will have strategies and
suggestions for managing costs, time,
and features. However, it will come
down to the business context of the
game and how you manage your project
to decide which two goals you will meet
and which one you work to control and
manage.

� On Budget and On Time—means
you must accept sacrifice of quality

� High Quality and On Budget—
means you must accept a late game

� High Quality and On Time—means
you must accept extra spending

66 Chapter 6: Business Context First

The Project Triangle—pick two out of three goals

A project where being on budget and on time is
more important than quality

A project where being on budget and having high
quality is more important than timeliness

A project where being on time and having high
quality is more important than cost

Various Games and the ProjectVarious Games and the Project

Triangle

1. The Sims series: High Quality
2. Diablo series: High Quality and On

Budget
3. Quake series: High Quality and On

Budget
4. Ultima Online series: High Quality
5. Starfleet Command series: On

Budget and On Time
6. Baldur’s Gate: High Quality and On

Budget
7. Klingon Academy: no goals satis-

factorily achieved

How is the triangle related to success?
The Sims is probably the highest gross-
ing PC game in history, being at #1 in
the charts for close to two years punc-
tuated by a few brief weeks off to allow
a major release to have its day. The
Sims was notoriously late at over five
years and also over budget. Why did
The Sims succeed when it achieved

only one goal instead of two goals? The
Sims met a huge unfulfilled demand to
play god to simulated people doing ordi-
nary things; this has enormous appeal
to consumers and gamers of all ages,
especially women. The designers of
The Sims knew that above all they had
to get the simulation right. If The Sims
was boring or lame, people would be
turned off and not play. So they crafted
and crafted the behavior of The Sims
almost to exclusion of any other fea-
tures, considering the relatively mod-
est effort spent on the graphics. No one
had modeled people before quite like
this, and in the early days of the project
there was only modest support for it, as
other games at Electronic Arts were
given more resources. Thus the
designers of The Sims did the right
thing and recognized the business
parameters of their project and focused
on what would really matter—the
behavior in The Sims. Sure, if they’d
had stronger corporate backing early
on, they could have staffed up and per-
haps sped up the research and develop-
ment phase to under a year and then
just another year to create the whole
game. This would have been ultimately
more lucrative for Electronic Arts, as
they would have made this ungodly
amount of money earlier and would
have had made the team available to do
the expansions to The Sims that much
quicker. Looking back at game projects
from afar, it is easy to be an armchair
executive producer and say what you
would have done better, but truthfully
in the early developmental stages of
The Sims there probably was not all
that much to see, and so it would be dif-
ficult for executive management to
understand this game and get behind it.

Chapter 6: Business Context First 67

Various games and where they fit on the Project
Triangle

The Diablo series has been a fan-
tastic hit for Blizzard and is the stan-
dard and envy of the PC game industry
to measure against. Blizzard first
achieved outstanding financial success
with Warcraft II, which built upon the
classic real-time strategy gameplay of
Warcraft I and polished it to a tight and
smooth production that is the earmark
of a Blizzard production. Blizzard’s
model for making mega-hits is to set
aside a large budget of money, have a
large staff (Blizzard reportedly has
about 200 full-time staff for a publisher
of two concurrent titles), and take as
long as it takes to make the game per-
fect. Blizzard knows they have a repu-
tation for the highest quality games
available, and each release they pro-
duce is an opportunity to damage that
hard-earned reputation. The Blizzard
label is probably the single most lucra-
tive publisher brand in the industry. It
is a common joke in the industry that if
Blizzard ever needed cash in a hurry,
they could print a box called StarCraft
II or Diablo III and just ship a million
empty boxes just for the pre-orders!
This total focus on quality has of course
repaid Blizzard (and its owners) hand-
somely. So Blizzard’s answer to the tri-
angle is to bypass being on time and
focus on quality and, to a lesser extent,
budget. I just took a peek at Blizzard’s
web site and noticed that in their
description of one of the programming
positions is a willingness to work long
hours; apparently Blizzard games take
as long as they need to as long as
everyone is pushing hard.

The statement of working over-
time as a requirement of the job at
Blizzard is a pretty clear indication that
they too are worried about getting their
games done in some sort of timely

fashion. The point of this triangle is not
to figure out which one of the triangle
goals you are going to abandon wildly
and throw out the window; the point is
to identify in what part of the triangle
you enjoy the most flexibility. Knowing
where you are flexible will keep your
project from breaking.

Starfleet Command (SFC) is shown
in the figure as on time and on budget.
What this means is that quality was the
most flexible aspect of the project
whereas on time and on budget were
not flexible. SFC was produced inter-
nally at Interplay during a time of great
expectations with the impact of going
public and the beginnings of tight fiscal
policy. Interplay had many games in
production at that time including three

other Star Trek games—Klingon Acad-
emy, New Worlds, and the Secret of
Vulcan Fury. Of all the Star Trek games
in production, SFC was considered the
underdog as our game focused on the
real-time tactical simulation of naval
starships based on the gameplay of a
20-year-old board game called Star
Fleet Battles. Klingon Academy was a
sexy 3D space shooter featuring over
110 minutes of live footage with star
talent like Christopher Plummer. The
Secret of Vulcan Fury amounted to tak-
ing the player back to the original
series with fully digitized and animated
faces of Kirk, Spock, and Bones. New
Worlds focused on capitalizing on the
real-time strategy genre and impress-
ing the eye with ground troops of the
Star Trek universe rendered in breath-
taking 3D detail.

We had a trick up our sleeve with
Starfleet Command—a completely
unfair advantage really. Our game, as I
said, was based on simulating naval
combat in space between majestic

68 Chapter 6: Business Context First

TE
AM
FL
Y

Team-Fly®

starships of the Star Trek universe.
That is practically half of what the show
is about if you think about it—photons
and disrupters—just watch Star Trek

II: The Wrath of Khan. We knew what
we had and decided to make the best
real-time tactical starship simulation
we could. Along the way we broke new
ground with real-time tactical warfare,
and after we released SFC other titles
like Dominion Wars and Bridge Com-
mander attempted to find their own
path down the naval starship simula-
tion. With the fixed budget and the
requirement to ship on time, our atten-
tion was focused on what would make
the game: the real-time tactical combat.

To create a foundation for our
gameplay we licensed the mechanics of
the hit board game Star Fleet Battles.
Here we had a coherent set of game-
play mechanics that were play tested
and improved over the years. However,
these were gameplay mechanics for a
hex grid, pen and paper game, not the
game mechanics for a commercial game
of the late 1990s. Glossing over the
hours and hours of design discussions,
we settled on an interface where the
player sees a third-person 3D view of
his starship traveling on an invisible
plane, battling with an astonishing array
of controls for the operation of the
whole warship—the electronic warfare,
the shuttles, tractors, transporters,
marines, heavy weapons, engineer-
ing—bringing all of these systems to
bear against the enemy starship in dark
skies. This purity of concept was a god-
send. I listed SFC as on time and on
budget. Yes we were a little buggy
when released, but we made a quiet hit
game in a market where so many have
failed—we made SFC.

Quake and Diablo have a lot in
common; both games are produced by
development houses with the strongest
reputations, both companies have a
“when it is ready” policy for shipping
their games, and finally both companies
have paid their dues.

The real interesting question is not
when Blizzard and id ship their games,
but how they got where they are today.
How did they arrange to make their
first hit game so that they could have a
pile of money to use for their future
games? Blizzard was kind enough to
produce a recounting of their first ten
years in the business in early 2001. The
page is no longer posted at their site,
and that is a shame. However, the his-
tory of Blizzard started with the name
Silicone and Synapse. They, like all
developers, started out doing work
under contract for other publishers. It
is ironic that Blizzard is now eclipsing
Interplay, the publisher it worked for
when it started in the industry. Blizzard
was able to create Warcraft with the
help of the Davidsons, who had an
uncanny amount of wisdom to invest in
a pre-Warcraft Blizzard.

The history of id Software is also
about ten years long, where John
Carmack and crew developed the plat-
form game Commander Keen featuring
a football helmet-wearing child protago-
nist. It was Castle Wolfenstein 3-D
published by Apogee that blew every-
one away with its riveting 3D action
and launched id into stardom to go on to
create Doom I and II, Quake I, II, and
III, and to be the engine behind dozens
of other hit titles.

These folks did not get lucky; they
are creatively brilliant, have consider-
able business savvy, and have worked
hard consistently for the last ten years

Chapter 6: Business Context First 69

through an ever-changing set of param-
eters involved in making games. What
you need to do as the producer of your
game is to think hard, very hard, and
articulate on paper what the business
parameters are for the game you are
making. These parameters—these

restrictions and requirements—are not
sources of angst to rebel fruitlessly
against. Rather they should act as foci
for your game’s creation; they should
act as genuine opportunities to shape a
successful vision for your game project.

Questions for You to Answer

Here are some straightforward ques-
tions; your mission is to take some
time, grab a piece of paper, and write
down the answers.

� What are you trying to accomplish
with this game?

� When must you complete this
game project?

� How much money do you have to
produce it?

� Who do you have to get the job
done?

What to Do with These AnswersWhat to Do with These Answers

An Ultra-Low Budget Game

If you are funding the project yourself
with your free time and hobby money,
you have a very distinct limit on how
much money you can afford to spend on
this project. The goals for your project
should be correspondingly low. After
performing your preproduction as out-
lined in Chapters 6 through 10 with
detailed information in Chapters 14
through 20, your project should amount
to no more than 500 to 1,000 hours of
work per person to finish your project
in a year. A way to partially solve your
budget problem is to share your project
with others: friends, family, and even
folks across the Internet. Coordinating
a group of volunteers to work together
on a game project is very challenging,
and their creators abandon the

overwhelming majority of these pro-
jects. However, id Software used
essentially this method to escape their
stay at Softdisk. Chapter 25 contains an
interview with one of the founders of
Sliver Creek Entertainment, whose
first game began as a weekend project.

The goal for this type of project for
the creators is most often to do the pro-
ject for fun and to act as a compelling
demonstration of their abilities to land a
full-time position in the game industry.
There are two principal paths to take:
Make a small game or produce a modifi-
cation to an existing commercial game
(called a mod).

JARGON: Mod is the name for a game
that is made from the engine and assets
of another game.

Ambitious mods that offer extensive
changes are often called total conver-
sions. Making a small game and making
a mod are two different sorts of pro-
jects; each has its own challenges, and
you will learn different things by
accomplishing them.

Many people might think that cre-
ating a demo of a simple real-time
strategy (RTS) game that has incom-
plete AI, poor art, and no sound could
still represent your passion for creating
a large, commercial RTS. Yes, you
might get your passion across, but in
my opinion it would not be the best

70 Chapter 6: Business Context First

demonstration. Just like consumers of
games, we do not want to have ten fea-
tures shoddily executed. Instead we
would rather see just three or four pol-
ished features that are shippable. It is
not interesting to know how long it will
take you to implement feature X, rather
it is much more compelling to know
how long it will take you to drive fea-
ture X to shipping quality. The folks at
Silver Creek Entertainment have taken
this to heart and have produced the
most excellent card games: Hardwood
Spades, Hardwood Hearts, and Hard-
wood Solitaire. These folks have taken
the very simple feature sets of these
classic card games and have added gor-
geous 2D graphics, flawless online
multiplayer format, and clever added
features such as customizing your ava-
tar’s look and tossing fireballs at your
opponents. Silver Creek started with an
artist passionate about quality for his
card games and two other developers;
they now are running their own devel-
opment company and are hosting their
own online games without funding from
a publisher. This is a significant accom-
plishment, for these folks have
achieved what many developers aspire
to—self-funded games; and they have
done it in an area of high risk—online
games.

This is such an excellent model—
driving a few features to perfection—
that the folks at Silver Creek are not
sending out their resumes and seeking
a job working for someone else in the
industry; instead, their hobby project
was developed in a product with real
value to thousands of players.

To be successful with this model
you need to find a game concept that is
simple but playable and would require a
minimum of engineering to get it

functional. This would leave the bal-
ance of your time to create lush polish
to that feature set.

Creating a mod of a commercial
game is another way to work with an
ultra-low budget. Principally, two guys,
Cliffe and Minh Le, created the phe-
nomenally successful mod to Half-Life
called Counter-Strike (CS) with some
textures created by three other guys.
They started with the Half-Life engine,
which is in turn a variation of the
Quake engine. Half-Life itself is a
mega-hit from Valve Software that taps
into the underserved market of players
looking for a compelling story to
engross them as they enjoy the action
of the first-person shooter genre.
Starting with a commercial hit game
has the same compelling marketing
potential for your mod as it does for a
publisher’s sequel to a hit game. The
Half-Life engine was eminently amend-
able to user modification, to the point
where even the menus of the game
support choosing a custom game type.
The CS project was created by an expe-
rienced team that had worked together
on Action Quake 2 and other mod pro-
jects before, so a single mod project
was just the first step for these guys. It
was their third project that really blew
everyone away including Valve. This
team, due to its experience and reputa-
tion on previous mod projects, received
unprecedented support from Valve
including design feedback, technical
support, and even project financing.

Counter-Strike perfectly illustrates
a project that is on budget and is of very
high quality, but the time side of the tri-
angle had to be as flexible as they
come. CS was released in the summer
of 1999 as beta 1, and it took nearly two
years for it to proceed through four

Chapter 6: Business Context First 71

more major releases and ship as an
expansion to Half-Life in retail.

Fixed Budget, Fixed Deadline

I am most familiar with projects with
these sorts of parameters, as all of my
shipping titles have had these parame-
ters. I have worked on one professional
title that had a ridiculously low budget,
PlanetNET, that never shipped. At
Taldren we are now working on several
game concepts that have a variety of
business parameters to fulfill different
roles for the future of Taldren. But fixed
budget, fixed deadline games are what
my reputation is built on. To make
these projects work you must walk
backwards from your shipping date and
determine your beta and alpha dates.
This will give you a gross amount of
time available for your production and
preproduction phases. I am a strong
supporter of preproduction and feel that
any project worth doing should spend
about 15 to 35 percent of the total
development time in preproduction.
This will give you a crude estimate of
the man-months you have available for
production. This is your budget for
man-months.

Now with your man-month budget
in hand it is time to sketch out the fea-
ture set of your project. Break down
your list of features into three piles:
primary features, secondary features,
and tertiary features. This section dis-
cusses how to identify your core
features and put the secondary and ter-
tiary features into other piles. You must
then create a project plan that clears
away all of the dependencies and risks
and supports the primary features.
Chapter 10 outlines the project plan,
while Chapter 20 drills down to details.

During production on these titles
you will find yourself shifting secondary
tasks to tertiary and primary to second-
ary when you are low on time and
popping the secondary and tertiary
tasks up when you have available time.
It is vitally important to your produc-
tion team that you do not make all
features must-do items that you reluc-
tantly cross off as reality presents itself.
People perform badly when under the
cloud of being failures; for the sake of
your team and your game, set them up
to succeed by prioritizing your features
into these three different categories. In
fact, your team members will cruise
through their primary tasks so much
more confidently that they will develop
their features at the fastest rate possi-
ble. Feeling like winners and making
progress only enables them to get
excited and want to knock off the sec-
ondary and tertiary items. Perhaps the
most compelling reason to separate
your features into these three piles is
that all features inherently have a prior-
ity, and you will make choices during
production. But it is only through for-
mally acknowledging these priorities
and writing them up in your plan that
you will derive all of the planning bene-
fits of knowing what you really must
get done.

AXIOM: All games inherently have pri-
mary, secondary, and tertiary features;
the wise developer will embrace these
prioritized features lists and turn them
into an asset.

Chapters 11 and 21 discuss specific
techniques for measuring progress and
task completion that enable the highest
quality workflows.

72 Chapter 6: Business Context First

High-Profile/High-Quality Projects

For the high-profile, mega-hit titles
from well-established houses like
Blizzard, id, Verant, and BioWare, a
different set of challenges present
themselves—all of them revolving
around an industry and fan base with a
high set of expectations for these great
developers’ next titles. This means that
quality must be so high that each
release sets new high water marks for
the industry to try to achieve.

To understand better what goes
into a mega-hit game, it is a great idea
to look under the hood of a mega-hit
and start pulling on the hoses and
unbolting the pieces and looking to see
how things fit together. I call this pro-
cess creating a reverse design docu-
ment after the technique of reverse
engineering. Chapter 8 gives you an
idea of the steps you should take when
writing a reverse design document. For
myself I wanted to see what went into
the construction of Diablo, so I spent 27
pages of text detailing to myself how
characters grew, how big the isometric
tiles were, how the palette was laid out,
how the inventory system worked, the
user-interface, and all of the other parts
that went into the production of Diablo,
including the manual and box design.
What I discovered astonished me:
Diablo is actually a very simple game
with a small set of features. This hit me
like an epiphany. Now when I walk
through E3 or flip through a game mag-
azine I quickly project a mini-reverse
design document in my mind for these
games to get an idea of how complex
they are. This led me to formulate
Erik’s Axiom 13 of Game Design.

AXIOM 13: As the complexity of a game
increases, its likelihood of commercial
success decreases at a geometrical
rate.

I highly encourage you to create a
reverse design document for your
favorite mega-hit whether it be Quake,
The Sims, Total Annihilation, or
another title. What you will find is that
these games all have a clean, tightened
feature set that is polished to a degree
that their competitors have not been
able to achieve. In fact, Michael Abrash
decided to join id Software for many
good reasons, but one of the reasons he
chose to join the Quake team was
because early in the project John
Carmack wanted to put in a portal tech-
nology that would allow players to
seamlessly jump from one Quake map
to another in an extremely compelling
version of action cyberspace. This fea-
ture was cut from production and in fact
has yet to ship in a Quake game. This
again is a reflection of the theme of
concentrating on executing your fea-
tures well.

But without knowing better I
would have thought these very suc-
cessful developers would give no
thought to adding features to their pro-
jects—heck, they don’t even have to be
late. They could just hire teams and
subteams to get these features done,
right? No is the simple answer. The
difference between a strong developer
and a weak developer on your team is
not just a linear difference in work out-
put; it can literally be a tenfold, hun-
dred-fold, or more difference in
productivity. In fact for the networking
code in Quake, John Carmack hired a
programmer whose whole career was

Chapter 6: Business Context First 73

in creating networking code. For some
reason this did not work out well for
Quake, and the programmer moved on.
In two months time John Carmack
came up to speed on the issues
involved in networked games and pro-
duced a solid networking layer that was
only 2,000 lines long and, as usual for
John Carmack, set a new standard for
multiplayer Internet gaming perfor-
mance. From the time The Mythical

Man-Month was written by Frederick
Brooks, the idea that you could simply
add up programmers like cantaloupe in
your grocery cart has been under
attack. Surprisingly, many people will
attempt to add pressure to your project
by asking you to hire more folks and
get more done—or much more com-
monly get it done for a specified quar-
ter. You certainly can get useful work

done by hiring crack independent con-
tractors and extra staff, but it is not a
magic bullet. You need to organize and
manage this extra talent. Adding addi-
tional staff requires more administra-
tive overhead, and there is a critical
threshold of number of staff in an area
on a project beyond which you get
diminishing and ultimately negative
returns on work, even if the people on
the project are competent. This is prob-
ably due to the increasingly complex
communication required between a
large number of people on a project as
it grows in team size.

These mega-hit developers have
learned they cannot grow their teams
to indefinite sizes and still produce
clean, compelling hits. For this reason
the features in these games are limited
to roughly what their current team can
produce.

Walk Away

Ultra-low budget projects should be
simple games polished to a high degree
or perhaps a port of an existing game
engine into a new and compelling
format.

Fixed budget, fixed deadline

projects should organize their features
into primary, secondary, and tertiary
piles and create their project plan in a
manner that most supports the comple-
tion of the primary feature sets.

High-profile/high-quality pro-

jects concentrate their best develop-
ment team on a clean, tight set of
features that they will execute to a
quality level everyone else in the
industry will then struggle to match.
This will usually result in creating a
barrier of entry that will place your
organization ahead of the competition,
and like compound interest you should
be able to reap the result for years to
come.

74 Chapter 6: Business Context First

Chapter 7 > > > > > > > > > > > > > > > >

Key Design Elements

All games start as an idea, something
like “Wouldn’t it be cool to be a space
marine and blow up zombies on
Phobos” or “Wouldn’t it be cool to be a
pilot in a starfighter involved in an epic
struggle to overcome the oppression of
a star empire gone bad” or “Wouldn’t it
be cool to drive modified street cars on
Tokyo streets at night.” These idea
sparks are often the source of long con-
versations between developers late into
the night at the studio. Another poten-
tial starting point for a game is a
licensed property; i.e., “make a
RPG/RTS/action game using XXX
license.” (Fans may want to play that
license specifically. Major licenses
include Star Trek, Star Wars, D&D,
WWF, Lord of the Rings, and Harry
Potter.)

Chapter 6 discussed getting your
business goals and parameters settled
for your project before you start formal
design and development of your game.
This chapter discusses how to use the
structure your business context and
your game ideas provide and how to
turn them into a game concept worthy
of fleshing out into a game design
document.

Chapter 7: Key Design Elements 75

Where the key design elements lie in the project’s
lifetime

Business Context Shapes Design, or Does

Design Shape the Business Context?

First of all, I am not asserting that hav-
ing your business context in hand will
act as a magical tool that will turn any
game idea into a well-thought-out game
concept. It is only an important aid to
assess the requirements that your game
idea is implying. Some game ideas
(such as the faithful recreation of Mid-
dle Earth where the whole world is
modeled with strong AI, 3D graphics
capable of great indoor and terrain ren-
dering, where an unlimited number of
players can join in together on both
sides of epic conflict between good and
evil) cannot be reconciled with the
business parameters of two artists and
a programmer looking to break into the
industry, who have six months of living
expenses available to them on their col-
lective credit cards. That Middle Earth
concept is an example of a game that
will dictate the business parameters. If
we take the business parameters of two
artists and a programmer, they might
want to recreate an arcade classic on

the Nintendo Game Boy Color or
Advance, use it to secure their first
deal, and then move on to more ambi-
tious projects.

For many game projects there is a
middle ground where the business
parameters and the game idea go back
and forth and refine each other. Perhaps
the developer pitches a massively
multiplayer game to a publisher who is
wary of the costs and risks behind mas-
sively multiplayer. From these talks it
is quite possible the developer will end
up creating a game that exploits a
license the publisher has rights to and
features a much more modest
multiplayer feature set. This is not an
acceptance of a mediocre plan; rather it
is a mature development of the idea
into a viable concept. A viable concept
is a game that people with capital
believe will be seen through to comple-
tion, with a high probability of favorable
reception in the market to overcome
the inherit risk in game making.

Reconcile the Business Context and Game

Idea Early

This process of refining the game idea
and business context is the earliest
stage of a game project. All projects
reconcile their business contexts and
the game idea at some point. Tragically,
for too many projects this reconciliation
only occurs after the project manifests
itself by underperforming, usually by
missing milestone dates. Some projects
have a painful reassessment where
senior management allocates more
funds and grins and bears it. For other

projects, senior management interprets
this late reconciliation as an unpleasant
surprise presented by an immature
development team and consequently
cancels the project.

Allocating more funds and time to a
project is a common occurrence, and
because it is commonplace, too many
developers think it does no harm to
themselves and no significant harm to
the publisher. That is fallacy; when a
publisher is forced to spend additional

76 Chapter 7: Key Design Elements

dollars and push back the release of the
title, there are many negative impacts.

First of all, the publisher must
extend additional money to the devel-
oper. This is an obvious point, but it
means that these funds are unavailable
towards the development of another
title with another developer or (worse
for this title) funds may be drawn from
the marketing budget to pay for this
overage.

The second impact is that the pub-
lisher has to delay when they will be
able to start recouping their investment
and see a profit that they can put to
work in future games.

The third problem is that the
marketing effort is deflated as the
awareness for the game is now ill-
timed, and it will be difficult for the
game cover that marketing was able to
secure for your game last quarter to
have real value 18 months later. Right
or wrong, the developer is the vendor
and the publisher is the customer, and
the adage that the customer is always
right holds firm in this case, with the
developer being tarnished by the repu-
tation of poor estimating capability.

Another reason to avoid going back
for extra money and time from your
publisher is that the business deal will
never improve. A loss of royalty points
is common; sometimes you will see a
shifting of intellectual property rights.
In the extreme sometimes the devel-
oper agrees to an assignment of equity
in the project to the publisher. In the
case of shifting equity to the publisher,
the developer is strongly advised to get
full value for that equity; no matter how
small an equity stake the publisher
takes, it will make all other publishers
avoid doing business with the

compromised developer for fear of a
conflict of interest and confidentiality
concerns.

The developer is also losing time
by going over his time budget, and
spending more time on a project with
the business deal worsening is not a
good goal.

The final reason to avoid a late rec-
onciliation of the business context and
game idea is to prevent team members
from becoming disillusioned and mov-
ing on to another company.

At Taldren we have released
Starfleet Command, Starfleet Com-
mand: Gold, Starfleet Command:
Neutral Zone, Starfleet Command 2:
Empires at War, and Starfleet Com-
mand: Orion Pirates in less than two
years. At the same time we gathered
more fans and have always produced a
profit for our publisher. Many of our
employees are loyal to Taldren because
of the steady pace of release; they
know their work will be released and
not wasted.

The Effects of a Slipped Game

1. Less working capital for the
publisher.

2. The total advance is tied up longer
than expected.

3. Marketing dollars are often wasted
as the hype bugle is blown too
soon.

4. The developer’s reputation almost
always suffers.

5. The business deal never improves
for the developer.

6. The developer loses the opportu-
nity to work on other titles.

7. Team members are in danger of
becoming disillusioned, and the
team may suffer uncomfortable
turnover.

Chapter 7: Key Design Elements 77

Ion Storm has to be the most infamous
example of the consequences for late
reconciliation of the business context
and the game idea. Ion Storm was
founded around John Romero, who is
credited with the design of Doom—per-
haps the greatest PC game ever. The
UK-based Eidos was flush with cash,
and John Romero left id just as Quake
was entering its final stages towards
release. Eidos needed to put the sur-
plus capital from the Tomb Raider
series to work, as all businesses must
do. Tomb Raider was so successful that
Eidos needed to get into a number of
games, but established top developers
were already booked, so Eidos would
need to go with a less established
development house. The idea of taking
advantage of the designer behind Doom
and creating a new development house
is not a bad idea; in fact it is a good idea.
Experience, a built-in fan base, and a
great story for the media would create
an environment that would be condu-
cive to game development, one would
think.

Ion Storm was founded with the
vision statement that design is king.
Even this is not a bad idea; treated
properly this would mean that Ion
Storm would capitalize on its core
strength—game design embodied by
John Romero—and take advantage of
existing game engines. Looking at how
Ion Storm interpreted their vision
statement would reveal where Eidos
made their mistake. Ion Storm used the
vision statement, design is king, to
treat game development as a pure art
form and lost respect for a strong
development process. Ion Storm’s mar-
quee project Daikatana suffered all of
the ills described above. Whole engine
retooling caused massive delays and

required Eidos to double the already
overgenerous advance of $13 million to
$26 million to keep Ion Storm’s three
projects rolling.

Daikatana did not just lose face in
the game press, it became the material
for much derision, and even the local
Texas newspapers saw the poor man-
agement at Ion Storm as a good story
for a series of columns. Ion Storm not
only suffered crippling turnover, but
some employees helped feed the nega-
tive press storm by leaking to the press
ugly internal email. John Romero was
forced to hand over the company to
Eidos, and their games shipped to little
success. Ion Storm’s Dallas office has
been closed by Eidos to what amounts
to a large write-off of Lara Croft earn-
ings and a reputation for Eidos to
overcome. In fact the quieter Ion Storm
Austin studio run by Warren Spector,
which shipped the critically acclaimed
Deus Ex, is now looking for a shiny
new name to operate under to distance
that studio from the ill-fated Dallas
studio.

The sad thing is that John Romero
really can design games; just play
Doom any day and you will see how
amazing a game it was and still is. And
Eidos turned on the cash to set up the
game for greatness. It is just heart-
breaking, really, to think about the
potential of Ion Storm and to see it fall
for lack of rigorous development
methods.

What can be worse than either
pumping more money into a late project
or canceling a project? Shipping it. It
should never be done, but almost every
large publisher has shipped a game well
before it was finished. I don’t mean just
with bugs; I mean before critical parts
of the game were complete.

78 Chapter 7: Key Design Elements

TE
AM
FL
Y

Team-Fly®

Descent to Undermountain from
Interplay is a classic example of a game
that was shipped too early. The idea
behind Descent to Undermountain was
to take advantage of two key assets of
Interplay: the Advanced Dungeons and
Dragons license and the mega-hit
Descent. Management at Interplay
decided it would be a snap to plop down
some fantasy environments, characters,
and monsters to bash. Management
decided the Descent game engine
would be ready for immediate develop-
ment into another title. Most publish-
ers do not have a strong technical
director available for code review. Yet at
the same time many publishers also
negotiate the terms of the publishing
deals to either own the software engine

behind the game or have a license to
the software engine. Descent to
Undermountain was a case where the
revenue opportunity was so large as to
prevent an objective review of what it
would take to get the game done. The
original business parameters for this
title called for a budget of only six
months of four developers’ time. No
established development house was
chosen to do the job; rather an ambi-
tious independent contractor program-
mer stepped up, and various artists at
Interplay contributed to the project. No
project manager was allocated. Let me
share with you what Gamespot thought
of the results of this game after it
slipped to three years and six times the

original budget:

From Gamespot review of Descent to Undermountain:

But somewhere along the line something went horribly wrong, and now
gamers are asking themselves two questions. The first arose merely out of
befuddlement: How could the company that produced Fallout also be
responsible for one of the lousiest games to come down the pike in quite a
while? The second, though, addresses a much more serious issue: Why did
Interplay ship the thing when it wasn't even close to being the sort of cut-
ting-edge product the hype machine had led us to believe it would be?
…There's probably no way to learn the answer to the first question,
but—thanks to some very frank members of the Descent to Undermountain
team—the answer to the second is now common knowledge. The game
went out when it was scheduled to go out (in time for a Christmas release)
even though it wasn't ready. That's not just me speculating; that's precisely
what a member of the DTU team stated in a recent post on Usenet.

When a project is three years in the
making and six times the original bud-
get, there is tremendous pressure to
just ship the game. At the time, Inter-
play was receiving a huge amount of
attention for Descent to Undermoun-
tain; everyone wanted a truly 3D
dungeon romp. (Dungeon Siege, the
first really 3D dungeon romping game,
and BioWare’s Neverwinter Nights,

which is a more detailed 3D implemen-
tation of D&D, weren’t released until
2002.) Interplay thought at the time
that with all the hype, maybe, just
maybe, the early sales in the first few
weeks would be large enough to recoup
a significant portion of the costs. It was
also Christmas time when 40 percent
or more of our sales as an industry hap-
pen. Interplay had three choices:

Chapter 7: Key Design Elements 79

1. Ship it now.
2. Cancel the project altogether.

(Remember lost money really is
lost, and it is best not to chase it.)

3. Find a real AAA development
house and start over with a new
large budget and two years more of
development time. (Really the

same thing as canceling the
project.)

Unfortunately for Interplay at the time,
canceling the project or starting over
with a new developer appeared to be
more expensive than shipping the title.
Let us see what Gamespot thought of
this decision to ship the game:

From Gamespot review of Descent to Undermountain:

The lesson to be learned should be obvious: If you're gonna ride the hype
machine, you'd better deliver the goods. Sadly, DTU doesn't even come
close—and the worst part is that sometime over the next year or so we'll
probably see this same story played out all over again.

So what have we learned today? That pushing a product out the door
before it's ready makes loyal customers angry; that game developers should
keep at least one eye on what's going on in terms of technology when work-
ing on a new game; and that if you buy Descent to Undermountain after
reading this, you get what you deserve.

Descent to Undermountain shipped in a
condition that was far below the indus-
try standards of the time, Diablo and
Quake II. The hype behind this game
also crushed it. It is just possible that if
Interplay had developed this title qui-
etly, hard-core fans of AD&D and/or
Descent might have bought 20,000 cop-
ies and been patient for a patch or two.
I am not saying this is a great idea, but
it is better than a hype storm. This is a
poor way of doing business; the game
industry shows time and time again
that the mega-hits are just games that
offer straightforward gameplay with
strong production values. Wacky or
niche games or poor craftsmanship are
not rewarded. Just make a few quality
titles and you will spend a lot less
money in development, and your indi-
vidual titles will have more capital to
work with.

Descent to Undermountain was a
perfect case where the game idea and
the business parameters were in con-
flict. If Interplay wanted a title in six
months and had only a modest budget
to accomplish it with, then Interplay
should have commissioned the develop-
ers of Descent, Parallax, to create a
cool expansion pack for Descent and
they should have contented themselves
with the sales of an expansion pack.
Perhaps it was perceived that with
Descent II already in development at
the time, it would have been competing
for sales. The other option was for
Interplay to allocate the funds they
were to later plow into Stonekeep II
and hire a top developer to create a 3D
dungeon romp of quality. Stonekeep II
would later go into production for five
years and then be cancelled. You must
create a game that is compatible with
your business context or fail.

80 Chapter 7: Key Design Elements

Methods and the Unified Development Process

Microsoft, the most successful software
development organization on the
planet, sells a lot of games. Microsoft is
perhaps best known for its Flight Simu-
lator franchise, but MS now owns
Ensemble (Age of Empires franchise),
Bungie (Halo and Myth, formerly the
premier Macintosh development
house), FASA Interactive, and Digital
Anvil (the former Chris Roberts com-
pany working on Freelancer), as well as
being the publisher for a host of exter-
nally developed titles such as Dungeon
Siege. Microsoft is a large organization
with many layers of development pro-
cedures that other publishers do not
employ. The first thing Microsoft does
when evaluating a developer is to send
a small team of game development
leads comprised of production, design,
programming, and art to evaluate the
strength of the team. A large part of
this evaluation is to also evaluate the
developer’s methods to determine if
they are compatible with Microsoft’s
and if these methods give Microsoft
confidence that the developer has
thought through their project and will
deliver a great game, on budget and on
time. Development methods must be
good things judging by Microsoft’s
success.

What Is a Development Method?What Is a Development Method?

meth·od noun—A means or manner
of procedure, especially a regular and
systematic way of accomplishing
something.

We do want systematic game
development; this whole book is dedi-
cated to the presentation of various
game development methods. System-
atic and repeatable methods allow us to

retain what worked and improve upon
what did not work well. The alternative
to using a method is employing ad hoc
techniques over and over again and
being successful only by good fortune. I
rather like to make my own luck, thank
you very much. The first method we
need to nail down is how to reconcile
your game idea and business parame-
ters. I advocate using a comfortable
subset of the Unified Software Devel-
opment Process developed by the three
amigos Ivar Jacobson, Grady Booch,
and James Rumbaugh.

Why Use the Unified SoftwareWhy Use the Unified Software

Development Process?Development Process?

The simple reason is that the Unified
Process is quickly becoming the soft-
ware industry standard. The Unified
Process has a long legacy dating back to
at least 1967; at this time Ivar Jacobson
worked for the telecom giant Ericsson.
Jacobson had a radical idea for the
design of the next generation telephone
switching equipment at the time, a
method we would now call component-

based development. For this project
Ericsson modeled the whole switch
system and subsystems as intercon-
nected blocks. The relationships
between these blocks was then articu-
lated and revised. The dynamic pro-
cesses of the switch were identified and
modeled. Every message passing back
and forth from each object was included
in this model. This software architec-
ture and object message compilation
was probably the best technical design
document of the time. This was a radi-
cal concept because software custom-
ers at the time were not accustomed to
seeing a blueprint of the software

Chapter 7: Key Design Elements 81

before the software engineering began.
This method was not chosen on a
whim; rather it met the demand that
the software be robust enough for the
telephone switching equipment to
remain operating while receiving
upgrades and patches to the software
components of the switch in real-time.

I will skip the middle part of the
history behind the Unified Process; the
point is that 35 years ago a repeatable
method of creating great software was
developed, and despite this, most soft-
ware organizations have weak
methodology.

The Unified Modeling Language
is the standardized text and visual lan-
guage for the articulation of software
design supporting the Unified Process.
Beyond the development of Ivar
Jacobson, Grady Booch, and James
Rumbaugh, UML enjoyed broad sup-
port and major companies such as IBM,
HP, and Microsoft joined in the devel-
opment and standardization of UML.

Requirements CaptureRequirements Capture

The purpose of a software development
process is to take the user’s require-
ments and transform them into a func-
tional software system. That transform
stage is what we game developers are
doing when we make games. We take
the vision of the gameplay—how it
should play—and turn that into a fin-
ished game.

JARGON: Requirements capture—
articulating the requirements the func-
tional software must satisfy, such as to
be fun or to run at 30 frames per
second.

What is the first step in the develop-
ment process? Figuring out what we
are supposed to do. There is a neat for-
malized term for this: requirements
capture. Requirements capture is
something you have already started.
Those business constraints from Chap-
ter 6 are some of the requirements the
software must satisfy. How do we
methodically discover the rest of our
game’s requirements? The short
answer is that there is no quick, magi-
cal method to sit down and write up in a
single sitting all of the requirements
your game must fulfill. Wait, don’t go
away, I am still going to show you how
to do it; it just involves several iterative
steps.

Use CasesUse Cases

First, if you have not already done this,
write down your game idea on a single
sheet of paper. Write two or three sen-
tences that describe your game in the
center of the piece of paper. Now in no
particular order write down the major
functionality of the game in an outward,
radial manner from the game idea in the
center. The larger, chunkier aspects of
the game should be close to the center
and the detailed ideas farther away. For
example if you are designing a role-

82 Chapter 7: Key Design Elements

The role of a development process

playing game, you have characters;
write that down. Characters have stats;
write that down. Characters have
names; creating the characters’ names
is a feature. What you are doing is
brainstorming the gross feature set of
your game. This particular method of
putting the game idea down at the cen-
ter of the page is good to get you

started if you have not put a lot of effort
into your game design document yet.
The immediate goal is to identify all of
the core activities the player can per-
form in your game. Each of these core
activities is composed of many individ-
ual actions the player performs. Each of
these actions is called a use case in the
Unified Modeling Language.

Chapter 7: Key Design Elements 83

Brainstorming features

JARGON: Use case—an interaction
between an actor and the software sys-
tem. A fully articulated use case is
composed of both text describing a
sequence of actions and a graphical
diagram showing the relationship of this
particular use case with others in the
system.

Collecting these use cases and writing
them down will drive our process to
identify the requirements of our soft-
ware. The software requirements will
then help us develop the architecture
for our software. The use cases repre-
sent function, and the architecture
represents form. The Unified Process
is called use case driven because it is
the effort to capture our use cases that
drives the development. All of our
future efforts in the construction of our
software are to further the realization
of these use cases into a functioning
software system. Now, what exactly
does a use case look like?

It turns out one of the fundamental ten-
ants of UML is that the language shall
be extensible, flexible, and ultimately
serve only to aid the process of distill-
ing and communicating the system
requirements. This ATM transaction
diagram uses only three UML symbols:
the oval use case, the stick figure actor,

and the relationship line. The stick
figure is called an actor. Actors repre-
sented by a stick figure are most often
users of your software, or players of
your game, who are interacting with
the game. It is better to use the
abstract term “actor” so you will see
all of the external users of your game
system such as the single-player
player, the multiplayer player, the sys-
tem administrator, and the database
server of your online component. After
identifying your actors, the use cases
will flow rapidly. The use cases are the
unique interactions between the actors
and the software system (game). The
use cases are represented by a simple
oval with an active verb phrase such as
“withdraw cash” or “analyze risk.”

JARGON: An actor is a user, either
human or another external system, that
is interacting with the system under
analysis.

JARGON: A relationship is a line drawn
between actors and use cases, some-
times with extra notation that further
describes the type of relationship, such
as <<extends>> and <<uses>>.

The level of articulated rigor in a dia-
gram should be reasonably proportional
to your needs. For example, if it is
important to describe the relationship
line in better detail, use a one-word
descriptor between the less than and
greater than symbols. Common exam-
ples are the relationship descriptor of
<<extends>>, <<uses>>, where
extends would communicate that a par-
ticular use case is really a special case
of a simpler base use case, and uses

would indicate that a particular use case
employs another use case as part of its
action.

84 Chapter 7: Key Design Elements

A simple use case diagram featuring the use of an
automatic teller machine

Display System

Display maze

Display characters and their animation

Display score

Display high score

Display credits

View movie (Ms. Pac-Man)

Player Input

Insert coin

Push coin return

Choose single player or multiplayer

Move up, down, left, or right

Chapter 7: Key Design Elements 85

The use cases of Pac-Man that are related to
displaying and viewing

The use cases of Pac-Man related to player input

I shall now plop Pac-Man down on
the cold steel of our examining table.
Cutting the skin of a clean, tight,

mega-hit game, let us take a look at the
innards of Pac-Man and see some of
these use cases in action:

Game Object Interaction

Wall collision

Eat dot

Eat power-up dot

Eat fruit

Eat ghost, send ghost to center of box

Pac-Man dies

Miscellaneous

Receive extra man

Enter initials

We can also take a higher-level view of
Pac-Man and combine these low-level
use case diagrams into a generalized
use case view of the software package
as a whole. See the diagram to the
right.

86 Chapter 7: Key Design Elements

The game object interaction use cases of Pac-Man

Miscellaneous use cases for Pac-Man

The combined use cases of Pac-Man

Now you have a good tool for
breaking your game idea down into
visual parts that describe the required
functionality. This is very important,
because when your game exists only
as an idea expressed in a half-dozen
sentences, it is difficult to see the com-
plexity of your proposed game and
reconcile it with your business con-
straints. Looking at the UML diagrams
for Pac-Man, we confirm our under-
standing that this is a very simple
game. Looking over the diagrams I can

see only four roles: a programmer for
the 2D display system, a programmer
for the game mechanics, an artist, and
some audio. This of course is a very
small game, and a solid Pac-Man clone
could happen inside a weekend for a
two- to four-person team.

This process of understanding how
something else was put together has a
fancy name—reverse engineering. I
highly encourage you to perform some
reverse engineering on other games
that you are familiar with. We continue
with some sketches from other games.

Case Studies

It is now time to apply these tools to
modern games that are of greater com-
plexity than Pac-Man. Each of the
following two games, Diablo and Gran
Turismo 3, has enjoyed legendary mar-
ketplace success, and each has spawned
a lucrative franchise of sequels, expan-
sions, and licensed products. Is there a
common thread between these games?
Did the developers in each case just get
lucky, or were the developers just
extraordinarily brilliant? I honestly do
not know how much luck was involved,
but someone with a lot of intelligence,
skill, and time honed these two game
concepts into production plans that
have succeeded far beyond the industry
standard. I can show you the elegance
in the design of these games, illustrat-
ing how, looking back, these were
mega-hits from their conception.

Case Study I—DiabloCase Study I—Diablo

Diablo is a computer role-playing game
for the PC developed by Blizzard
North, originally an independent devel-
oper of another name bought by
Blizzard during the development of
Diablo. Diablo featured the killing of
hordes of monsters like skeletons, wan-
dering around in a dungeon, gathering
gold, and collecting magic items all in
the quest to vanquish ultimate evil—all
straightforward fun stuff. The key

concept behind Diablo was to make the
user interface priority #1, not the
story, not the size of the game, not the
number of different character types, not
customized character appearance, not a
rich role-playing game mechanics set;
no, the focus was the user interface.
Indeed, the mouse controls were a
stunning left-click on monsters to
attack, left-click on chests to open, and
right-click to cast a spell. The interface
itself was appealing to look at with
large glass spheres that held blue and
red liquids representing remaining life
and mana (energy to cast spells).

Shortly I will more carefully break
down the use cases of Diablo; but there
is a tremendous amount of courage and
insight behind the user interface design
of Diablo. In the summer of 1995 I was
up late one night with a bunch of other
game developers talking about games
we could make. I remember we sug-
gested just a simple variant of Gauntlet,
the arcade classic where you just went
around bashing monsters, collecting
gold, and powering up. I remember how
we all laughed at the time and said
there was no way it could be viable. No
publisher would see the game as fea-
ture-rich enough to fund. Perhaps as a
bit of forgotten shareware, but no way it
could be a commercial game. At that
time RPGs such as Bethesda’s Elder

Chapter 7: Key Design Elements 87

Display System

Terrain: Draw floors.

Terrain: Draw isometric walls.

Terrain: Color cycling special effects for water
and lava (tiles do not animate).

Terrain: Ghost walls when a character is located
behind the wall.

Characters: Render and animate characters (2D
sprites composed from 3D rendered models).

Game Objects: Colored outlines for interactive
objects such as treasure chests, magical rings,
monsters, and non-player characters in the town
center.

Spell Effects: Display any one of a couple of
dozen spell effects with dazzling animations and
cool sound effects.

Menus: Display menu choices.

Movies: Display the intro and exit movies to the
player.

Audio: Hear sound effects.

Audio: Hear music.

Audio: Hear voice-overs.

Game Object Interaction

Move Player Character: Left-click to move the
player character.

Left-click Object Interaction: Interpret the left-click
on an object automatically by object type to mean
open a chest, attack an enemy, or move the player
to a location as above.

Load Level: When the player directs their
character into special trigger areas on a map
level, load the target map level.

88 Chapter 7: Key Design Elements

The view related use cases of Diablo

The game object interaction use cases of Diablo

Scrolls series were vast worlds with
hundreds of NPCs, dozens of cities,
hundreds of locations, actual weather,
and time of day. Imagine making a game
that left out all of these features and
just concentrated on a tight interface
and high production values—that was
Diablo.

Use Cases of Diablo

Diablo is a simple game, a polished
game with strong production values
such as superb voice-overs and movies,
but we will see that Diablo is a simple
game behind the features. I will cover
the major features and elements of the
game; I do not propose to create an
exhaustive reverse design document in
this chapter.

TE
AM
FL
Y

Team-Fly®

Right-click Object Interaction: If the character
has a spell bound to their ranged action, cast a
spell at this location on the map or on this
character (this could be either an offensive spell
on an enemy or an aid spell on an ally). Otherwise
if this character has a bow, fire an arrow at the
character indicated.

Character Management

Name Character: Small feature for user
customization to allow the player to bond with
their character.

View Character Stats: View attributes, health,
experience points.

Allocate Character Attribute Growth Points: When
the character achieves the next experience allow
the player to choose where they want the growth
points to be allocated, choosing from strength,
dexterity, intelligence, and constitution.

Inventory: Display the character’s inventory in a
“paper-doll” fashion with sockets for the
backpack, belt, helmet, hands, pants, boots, and
tunic locations.

Inventory: Allow the player to shuffle objects
about in their backpack to “make room” for new
treasure and to abandon lesser treasure in favor
of higher prized treasure. Validate the placement
of inventory items based on their type. For
example, healing potions can be carried in the
backpack or in the belt pouch but not in the
helmet slot.

Quick Analysis of the Use Cases of

Diablo

Looking over the use cases of Diablo
you will notice that I have partitioned
Diablo into three subsystems: Display
System, Game Objects, and Character
Management. Below is a short discus-
sion of these systems.

The display system is just a 2D
isometric engine that is capable of ren-
dering animating 2D sprites (quite
probably used for both the characters
and the spell effects). This graphics
technology was hardly groundbreaking
in 1997; isometric engines have been
around since Q-bert in the arcade. The

game also uses a 256-color palette inci-
dentally. There is no question that the
graphics in Diablo look strong; the art
direction was strong and led to a con-
sistent look that was foreboding and
well supported the theme of the game.

Chapter 7: Key Design Elements 89

The character transaction use cases of Diablo

The aggregate use cases of Diablo

Touching on character manage-
ment for a moment, the display system
is called upon to also render menus
such as the menus of the town shop-
keepers who have stayed behind after
the arrival of demonic forces to make a
profit selling adventuring gear to the
player’s character and the inventory,
spell, and character management
menus. These again are just menus,
displaying customized fonts, buttons,
icons, and cool negative space textures.

The characters in the game ani-
mate well due to the aggressive use of
3D rendering to produce the 2D frames
from which to composite the 2D
sprites. This technology is not new
either; our example Pac-Man uses just
a few frames from open mouth to
closed mouth to animate our hero, and
the Wing Commander series used an
array of images (about eight to sixteen
individual images) from all angles
around the starfighter to produce its
“3D” starfighter game. The plan for
Diablo was to again use established
technology but take it to a quality level
never before seen in games by using
over 5,000 frames of animation for just
the three main protagonist characters.
This dedication to visual fidelity repre-
sents a lot of confidence in staying with
established technology but taking it to
a very high level of quality. I know of
another game I will not mention by
name that became severely distracted
with the pursuit of volumetrically pro-
jected pixels, known as voxels, for the
rendering and animation of their char-
acters. This distraction helped to
cripple this title.

The game object interaction sys-
tem runs the heart of the game. This is
a game of hack and slash and loot gath-
ering. The context of this hack-and-

slash has something to do with a crystal
in somebody’s head, demons from hell,
a butcher, and dead townsfolk—plenty
of motivation to keep our player charac-
ter hacking away at the monsters in the
game. The game object interaction han-
dles the combat, spell casting, opening
doors and chests, triggering traps, and
level changes. Notice that my use cases
above do not have any detail on how
combat, spell casting, or the opening of
doors and chests works. Those are
detailed use cases that would be cov-
ered in the design document; this chap-
ter is focusing on the key design
elements of the game in the effort to be
sure we have the correct scope for our
game.

My use of UML’s use case notation
has been purposely slim with the use of
just the simple table format of major
user interactions and a few diagrams to
show the relationship of these interac-
tions with each other. In later chapters I
will discuss more advanced use cases
as we progress through the game
design and head into technical design.

Case Study II—Gran TurismoCase Study II—Gran Turismo

The Gran Turismo series for the
PlayStation and PlayStation 2 platforms
published by Sony is all about racing
cars. Every conceivable subgenre of
racing has been explored over the years
as well as many sequels offering the
latest technical wizardry for themes
already visited. Racing cars have been a
staple of video games since the days of
the Atari 2600 with Night Driver, where
the road and terrain are a solid field of
black demarked thoughtfully with some
magenta lane markers. Nighttime rac-
ing has continued to evolve to Tokyo
Street Racer on the PS2 and Project
Gotham on the Xbox. Racing games

90 Chapter 7: Key Design Elements

deliver an experience that almost
everyone wants to do—race cars. Some
want to race at night, some off road,
some want to race taxis, some want to
run over pedestrians, but hey, there is
a racing game for everyone.

What is it about Gran Turismo that
makes it a mega-hit? Was it luck? Was
it a large budget? Or was there some
sort of planning and direction behind
Gran Turismo? I am presenting a case
for thoughtful planning.

Gran Turismo’s (GT) vision state-
ment was most likely something like
“The best racing simulator on any plat-
form.” To back up that vision statement
we need to look into what it would
mean to be the “best racing simulator.”
The best is so encompassing in its
superlative that Sony set out to domi-
nate all other racing games. Hmm, that
is a tall order. The first step is to pick
the type of racing Sony would model. In
the end, Sony chose to model a variety
of racing from raw amateur racing of
minivans to world-class events featur-
ing million-dollar racing machines
achieving the highest form of automo-
tive engineering.

So, at first glance it would appear
that Sony violated the design guideline
of focusing on one game and a tight set
of features and doing them well. How-
ever, if we take a look at how they
presented these various classes of rac-
ing to the player, we will see that it was
a seamless presentation of gameplay
from the lowliest of minivans to the
Suzuki Escudo.

When you load up the simulation
mode of Gran Turismo for the first time
(it doesn’t matter which version), you
are given a small amount of credits to
purchase your first racecar. Taking a
look at the various car manufacturers,

the player has only a couple of choices
in the beginning of the game. After
spending all his cash, the player then
sets out to race some beginner races to
build up a supply of cash so he can mod-
ify his car. The car modification game-
play is the hidden weapon of Gran
Turismo. Here players can ogle new
tires, polished ports, oversized turbos,
and a host of other modifications to
their car. The exhaust improvement
conveniently enough has the highest
bang for the buck and will most likely
be the first purchase for any player.
Here the player bonds with his car, and
all the cool parts available drive the
player to go back to the track and keep
racing. This context for the racing is
compelling. It is the same inven-
tory/party growth dynamic from a
role-playing game like Diablo—a most
compelling feature.

This racing around a track and
modifying the car goes on and on
throughout the whole game. What
changes are the events, the tracks, the
competition, and most importantly, the
car the player is racing. Gran Turismo
features hundreds of cars, dozens of
tracks, and scores of events. The
events are classified into licenses from
Beginner to International A. Players
can always find a race and almost
always can earn some cash to make
forward progress on acquiring new
goodies for their car. This car modifica-
tion meta-game is what ties all of Gran
Turismo together and presents to the
player a world where they can start
with a modest real-world car, and
through racing, modifications, and
licensing they too can be an interna-
tional racecar driver. This is the
brilliant vision behind Gran Turismo—
it slowly builds up to the super cars,

Chapter 7: Key Design Elements 91

Car Driving Controls

Press the Gas Pedal

Use the Normal Brakes

Turn the Car Left or Right

Shift the Gears Up or Down

Use the Emergency Brakes

Display and Audio System

Render the Track, Terrain, and Sky

Render the Cars

Render the Special Effects

Play Sound Effects and Music

92 Chapter 7: Key Design Elements

The player input use cases of Gran Turismo 3

The display and audio use cases of Gran Turismo 3

and all along the way the player is
hooked and believes in the world and
knows why he is playing this game.

Later in the series Gran Turismo
added rally racing. This additional mode
of racing was also seamlessly inte-
grated into the core game. Indeed, the
player’s rally racing cars just need to
change the tires to racing slicks and
they would often do well in the pave-
ment events. In classic arcade fashion,
new tracks would only be revealed to
the player after completing a racing
series or a licensing program. The rally
events in the later GT series upheld
that tradition with their own set of rally
tracks to unveil. The Gran Turismo
series is the greatest of the racing
games because it fully delivered on the
gameplay that is central to racing and
takes players from knowing nothing

about racing cars to being able to carry
on an extended conversation about gear
ratios and coil-overs.

I justified Gran Turismo’s success
without ever mentioning that the game
has always boasted the most realistic
physics model for its racing, the most
gorgeous graphics, and a complete
aural experience second to none. All of
these technical features are of course
critically important to an electronic
game; however, it is the key features of
a game that will lead to success and
enable the project to fully realize the
efforts of the whole game development
team.

Use Cases of Gran Turismo

Here are the key features of Gran
Turismo 3 distilled into some use cases
for review:

Shell Activity Menus

Access Buy Car

Access Garage

Access Wash Car/Oil Change

Access Race Car

Access Modify Car

Access Licensing Tests

Modify Car

Browse Major Systems: Engine, Transmission,
Aerodynamics, etc.

Review Individual Item: Read the stats of this
item and see how it would look on the car if it is
an external add-on or what the change to weight
and power would be if it is a performance item.

Purchase Item: Buy the specified upgrade part.

Install Item: Have the newly purchased item. This
especially makes sense for the purchase of tires;
it is useful to the player to be able to choose from
a suite of tires.

Quick Analysis of the Use Cases of

Gran Turismo

Again, this chapter is not discussing
how to complete a detailed design doc-
ument, so I have only covered the
higher-level functions of Gran Turismo.
But in two areas, driving the car and
modifying the car, I drilled down to the
individual interactive activities the

player has to play with. Driving the car
and modifying the car is the game;
everything else is in context of these
two activities.

Gran Turismo is successful largely
due to a clear vision and plan for the
game. It was perfectly designed to cap-
ture the largest segment of the market
who would enjoy racing games. In fact
my father and his best friend went out
and purchased PlayStations after play-
ing Gran Turismo 1 at my house and
went on to compete with actual cash
prizes for virtual driving seasons.
These two men in the over-50 demo-
graphic were not hard-core gamers;
they were mass-market consumers
who bought the PlayStation just to play
Gran Turismo. That is a true hit.

Chapter 7: Key Design Elements 93

The shell menu use cases of Gran Turismo 3

The modify car use cases of Gran Turismo 3

The use cases of Gran Turismo from five miles up

The Key Design Elements of YourThe Key Design Elements of Your

Game

I am sure you are now comfortable with
this light introduction to UML use
cases. They are hardly more than a
table of actions and a simple diagram
composed of a stick figure and bubbles
of action. Now I want you to think about
the interactions of your game and write
down its use cases.

The methodical way of discovering
your use cases is to focus on the core
activity of your game and write down all
the things the player does in the core of
your game. Work your way outward,
writing down the other activities you
have planned for your game, such as
buying gear, building a house, research-
ing flame throwers, learning a new
spell. Keep working outward until you
can’t think of anything you missed. At
this stage we are looking for the major
activities, so don’t think about how
many buttons the save menu will have,
just what are the big interactions
between the player and the game.

Then sort these activities into
groups based on similar functionality as
I have done with Diablo and Gran
Turismo. Finally sketch out the use
case diagram complete with the player
actor and your use cases. It is useful to
create diagrams for each group of activ-
ity. You have now articulated your
gameplay in both an easy-to-read text
format and graphical format. These use
cases will be the basis of refinement for
the game design and technical design
stages. However, in this chapter we are
looking for key design elements. Exam-
ine your groups of activities and look
hard for a set of activities that stand out
as potentially unnecessary to the core
of your game. Are there parts of your

game design that are distracting in
complexity? Are these parts only fun to
a hard-core set of fans? Are these fea-
tures hidden from the novice player?
Can they be cut altogether?

Take a look at your design; are you
sure you are only making one game? I
think a lot of the projects that slip by
years make the mistake of trying to fold
more than one game into a single game
project. You do not need to make more
than one game to be competitive. Just
make a small set of features that are
inherently fun, make those tight, and
take the production values as high as
possible. This is how a hit is made.

The Battle of the CounterterroristsThe Battle of the Counterterrorists

Games

There are two games that neatly make
the point I am discussing in this chap-
ter, nailing the right key design ele-
ments. These two games are Rainbow
Six and Counter-Strike. Both of these
games feature special operations type
protagonists working as a team to
defeat terrorists and other modern day
bad guys. An experienced development
team produced one of these games with
a full development staff for an estab-
lished publisher. The other game was
developed principally by two fans who
have had experience making mods with
modest financial backing of a develop-
ment house.

Both of these games are successes
and I would be proud to have been a
team member in any capacity on either
of these two projects. That being said,
Counter-Strike clobbered Rainbow Six.
Counter-Strike is the mod produced by
a small staff of fans working part-time,
while Rainbow Six is a full game with
many man-years of effort. If game
development is so hard, how could

94 Chapter 7: Key Design Elements

these fans have done so well compared
to the pros?

While poor technical execution
will never make a hit game, the answer
to this question lies again in the key
design elements of Counter-Strike
versus Rainbow Six.

The Key Design Elements of

Rainbow Six

Rainbow Six was the earlier of the two
games; to some degree this can never
be a fair comparison, as the Counter-
Strike mod team had Rainbow Six avail-
able to experiment with and to refine.
Rainbow Six was designed for single-
player play, and while it did have multi-
player mode, the game was much more
playable in its single-player mode.
Rainbow Six featured an extensive
campaign structure where you managed
the team members of your elite special
forces. This team management would
appear to be at first glance quite fun
and supportive of the context of playing
the missions of Rainbow Six, much like
Gran Turismo, and that might be true.
However, the Rainbow Six team added
another context layer to the game: mis-
sion planning. Here the player planned
out the mission to such a degree that
they could tell their team members
when to throw the flash grenades and
which doors to break down and which
to sneak through. After the planning
stage was complete, the game acted
somewhat like the blend of a movie and
a game experience. The movie experi-
ence came in where your AI team-
mates, whom you gave instructions to
prior to mission start, would follow
your orders and have whatever success
might befall them; the game part was
that you still had interactive control
over your character.

Are We Playing a Mission or

Planning a Mission?

I think the preplanning of the missions
is what prevented Rainbow Six from
taking off to a higher level of success.
The problem with such a detailed mod-
eling of the preplanning stage is that it
was cumbersome in three ways: First,
the player already had context for the
missions through the campaign struc-
ture and the team management feature
sets; second, it was cumbersome due to
the user interface of the preplanning. It
was like having to act as some kind of
game scripter, programming your team-
mates. And finally it was cumbersome;
each time you died or otherwise failed
on your mission, the player would
break out of the cool, immersive action
of the mission and be forced to calculate
new scripting paths for their AI team-
mates. All of these awkward bits leaked
out throughout the game-playing expe-
rience, leaving me wondering if the
designers of the game ever came to
agreement about whether the game
was about playing the mission or play-
ing the premission planning.

RAY SPEAKS: I totally agree. I recall
being very irritated with how difficult it
was to equip your party, choose your
party, plan out your party’s actions etc.
There was no learning curve; instead
you were dumped into an equipping-
your-character simulation, which,
fundamentally, was not the game I had
thought I was purchasing. This created
a perception/reality gap for the con-
sumer that made people not want to
play the game.

Chapter 7: Key Design Elements 95

The Key Design Elements of

Counter-Strike

Counter-Strike was designed to have
only a multiplayer mode; not even a
training simulation against bots like
Quake III was available. Counter-
Strike’s brilliance is much like Diablo’s
in its courage to strip away game fea-
tures and polish the core game until it
is humming with game shine. For years
in first-person shooters, when you died
you instantly respawned to frag again.
This is of course a load of fun, as one
could easily spend a few hundred hours
blowing away your friends before you
get bored. But eventually people did
get a little burnt out on straight death
match, and a desire for something more
manifested itself. These explorations
for more came in the way of mods for
Quake and Unreal that had different vic-
tory conditions for winning such as
capture the flag. The team that pro-
duced Counter-Strike took the idea of
a mod with context to the next level
(that, by the way, is an overly worn
phrase in the industry, but it sure is
handy).

The next level of gameplay in a
first-person shooter was to wrap an
economy about the fragging of the
game through credits one earned by
winning missions and getting frags.
This economy would enable the player
to buy larger and more capable weap-
ons, armor, and grenades, which in turn
would enable him to perform even
better and potentially get even cooler
equipment. This feature combined with
the idea of a death where the player had
to sit out the rest of the turn really
helped to focus the player on the harsh-
ness of the Counter-Strike world and
put some good tension back into the

game. Players would carry their credit
balance forward each time the mission
was over, and the frag counting would
continue. Thus, Counter-Strike was
designed in the beginning to be a
replacement for the endless multi-
player fragging and instead be a much
more compelling way of playing
extended multiplayer first-person
shooter action. All of this was accom-
plished by the thinnest of user inter-
faces, on top of Half-Life’s version of
the Quake engine.

In my opinion the Counter-Strike
team really understood the gameplay
experience they wanted to deliver—
the most visceral counterterrorist
gameplay experience, period. In the
case of the Rainbow Six team, I think
they were handicapped by the source
material from Tom Clancy’s Rainbow

Six in choosing to model the extensive
preplanning stage of a mission. That
stage is no doubt realistic and the larger
portion of the job in a real counter-
terrorist mission, but it just gets in the
way of having fun hunting terrorists.
And we are in the profession of deliver-
ing fun, not realism. Realism should
only be used to create fun, not detract
from it.

Most Popular Multiplayer Game

It is interesting to see that Counter-
Strike is the most popular multiplayer
gameplayed online, with anywhere from
25,000 to 60,000 simultaneous players.
One could say that Half-Life itself was a
mega-hit with over two million copies
sold, whereas Rainbow Six was a more
modest success, and use that argument
to explain why Counter-Strike is the
more popular counterterrorist game.
However, that argument fails when you
realize people do not play games they

96 Chapter 7: Key Design Elements

do not want to play. Sure, marketing
can help a game get off the ground to
some extent, but the games business is
still dominated by word-of-mouth sales
where one fan recommends the title to
another. The big titles that receive
large marketing budgets are also fun
and playable games that enjoy strong
word-of-mouth sales. Unlike the movie
business, an aggressive marketing cam-
paign cannot save your bacon. There is
a long-standing tradition of going to bad
movies just to see how bad they are;
this does not happen with games.
Games are too expensive at about $50;
no one is inclined to buy a game just to
see how bad it is. However, a bad
movie has a couple of chances. First of
all, just seeing what mischief with tod-
dlers Arnold Schwarzenegger has
gotten himself into complete with some
buttered popcorn, a fountain soda, your
friend’s company, and a walk about the
mall is a good entertainment value.
This movie will go onto DVD, VHS,
rental, cable, then prime-time TV, and
eventually the USA channel—plenty of
ways for a non-hit movie to recoup and
make a small amount of money for the
studio.

The 50,000 people playing Coun-
ter-Strike online is even more impres-
sive when you think about the ratio of
people playing the multiplayer portion
of a game relative to the single-player
portion. It has been casually measured
across a number of games, excluding
the massively multiplayer online role-
playing games, that only about 5 to 15
percent of the purchasers of a game will
go on to play it in its multiplayer for-
mat. Thus Counter-Strike was much
more successful than Rainbow Six, and
it was working with only 5 to 15 per-
cent of the counterterrorist market.

Of Intersecting Sets and Elite Forces

A second-tier game will sell its most
copies in the first few weeks when the
early adopters who have kept on top of
all the previews will buy the game.
During this time period the online
reviews are written up. To my surprise
it appears that strong reviews cannot
sell a game either. The most excellent
Elite Force (not anywhere close to
being a second-tier game) developed by
Raven received the most stellar press
reviews one could ask for, including
game of the year from most publica-
tions. Built on the Quake engine and
developed by a top developer, it had
lavish press coverage generating plenty
of awareness before the release of the
title. The title was reasonably on time
and reasonably bug-free. The team
behind the game was so into the game,
they produced a free expansion pack.
Elite Force was firmly expected to be a
major hit inside of Activision. I do not
know the actual numbers on the inter-
nal return-on-investment worksheets,
but I have heard they were expecting
700,000 to 1,000,000 units in the first
year worldwide. Elite Force went on to
do about one-third of those numbers.
Why? Why did Elite Force not succeed
when not a single person at Raven,
Activision, or the press could have set
the game up better for success? Is it
bad luck? Is the gaming public so
fickle?

I have a theory why Elite Force
failed to meet Activision’s expectations.
First of all, the game did sell well at
approximately 300,000 units generating
a gross revenue of $15 million. That is
enough money to make a living for all
involved and keep at it. However, I
think it is the expectations that were at

Chapter 7: Key Design Elements 97

fault; I don’t think the game could ever
hope to sell more units than it did. Sure
a truly immense advertising campaign
with television commercials played 20
times a day on all channels and appear-
ances of the game on all of the late-
night talk shows would have sold
maybe 100,000 to 200,000 more copies,
but Activision would have had to pay
for each copy they were selling. My
theory is that when you are experi-
menting with genre crossing and blend-
ing, be sure you are creating a union
between the two or more sets of play-
ers you are marketing to, and not creat-
ing the intersection between these
markets.

RAY SPEAKS: This certainly is an art
form, but I think it can be done; it’s just
difficult. Creating the correct impression
on the fans of both genres and making
the parts that don’t appeal to the other
genre’s fans at all times accessible is
probably the hardest thing to implement,
but this is critical to achieving main-
stream success through selling to a few
hard-core genres in a cross-genre
game.

The two markets for Elite Force were
the Star Trek gamers and the first-
person shooter gamers. Activision has
been working hard for years trying to
find a breakaway hit for the Star Trek
license they paid so dearly for, and
teaming up with world class developer
Raven and using the fabulous Quake
engine should produce a lavish 3D-
game with production values far and
above any that a Star Trek gamer has
seen before. And for the first-person
shooters who are tired of blowing mon-
sters up in worlds freshly created with
little or no backstory, Elite Force
offered the Star Trek universe, which
consumers have had exposure to for

over 25 years. Sounds wonderful, so
why did this game not sell a million
copies or more? Warcraft II was just a
sequel to a game of orcs and humans
gathering rocks and trees and banging
on each other. That sold millions of
copies; why shouldn’t Elite Force sell a
million? The reason is in the key
design elements themselves; the very
strategy used to make a hit—a cross
between Star Trek and first-person
shooters—is what held Elite Force
back.

Let us first take a look at Elite
Force from the perspective of a Star
Trek gamer. Star Trek is about a
starship named Enterprise exploring the
galaxy on romantic adventures that are
solved through cleverness, diplomacy,
or the gunboat diplomacy that the
Enterprise can deliver with photons and
phasers. The Star Trek gamer is look-
ing to live the experience depicted in
the television episodes and movies.
These episodes feature fantastic sci-
ence, starship combat, and exploring
various social themes in a futuristic
context. Star Trek does feature combat
between individuals in the form of the
hand-held phaser, a device that you just
point and shoot to disable or to disinte-
grate. This weapon reveals an utter
disdain for prowess of personal martial
skill; this hand phaser is almost a nerd
fantasy where they can get back at
every childhood bully by just pointing
their garage door opener—and bzzt!—
no more enemies. The Star Trek gamer
is not looking for a first-person shooter;
there is nothing in the Star Trek uni-
verse backstory that leaves the player
wanting to explore a shooter. The most
successful Star Trek games have been
the adventure games 25th Anniversary
and Judgment Rites, as well as the

98 Chapter 7: Key Design Elements

TE
AM
FL
Y

Team-Fly®

starship games of Starfleet Command,
Starfleet Academy, and Armada.

From the first-person shooter per-
spective, an FPS player traditionally
looked for the technically impressive
and challenging games such as the
Quake and Unreal series. However,
after the release of the story-rich
Half-Life, the industry realized that the
FPS crowd would love to have a good
reason to exercise their martial prow-
ess. The creepy world of Half-Life is a
good reason, the pulse-pounding excite-
ment of World War II through Day of
Defeat is a great reason, and hunting
terrorists with a submachine is always
great fun. But again the Star Trek uni-
verse lacks any compelling imagery of

personal combat. Sure, Kirk would slug
it out with the occasional alien, and
Spock could put someone to sleep by
pinching them; either way, Star Trek

lacks that visceral appeal.
Star Wars, on the other hand, has a

glorious tradition of martial combat on
the personal scale through the use of
light sabers. This style of combat was
indeed a strong success with the Jedi
Knight series from LucasArts. Finally,
let me repeat, Elite Force was not an
unsuccessful game; it was a great
game, very well produced. And missing
the expectations set for it is not a
reflection on the execution of Elite
Force, but rather a reflection on the key
design concepts of the game.

Some Straight Questions to Ask Yourself

The case studies I presented intro-
duced use cases from the Unified
Modeling Language and illustrated
what I mean by determining the key
design elements of your game.

I ask you to pause just a moment
before you wield your scalpel and slice
off the most extraneous bits of your
game design. I would like you to first
get a bit more material down on a sec-
ond sheet of paper to consider while
you review your key design elements.

What Genre or Genres Does Your

Game Feature?

First, what is your game’s genre, such
as adventure, role-playing game (RPG),
real-time strategy (RTS), real-time tac-
tical (RTT), action, first-person shooter
(FPS), puzzle, sports, or some other
genre?

Or is it a blend of genres?

Write down your game’s genre or
genre blend, and why.

Will the Game Be Single-Player,

Multiplayer, or Both?

Does your game play well as a single-
player game but perhaps not make
much sense as a multiplayer game? Or
is it the other way around where it
takes real humans to play against to
make it fun? Or is it reasonably fun
either way?

Write down single-player, multi-
player, or both, and why.

What Is the Platform?

Which platform are you targeting: PC,
handheld, Xbox, PlayStation 2, or
GameCube?

Write down the platform or plat-
forms you are targeting, and why.

Chapter 7: Key Design Elements 99

What Is Your Target Market?

Is this a game anyone could enjoy? Or
is it targeted for the core game market
of males 18 to 45 years of age? Are you
targeting women as well as men?
Children? What is the violence level in
your game? The language? Sexual
content?

Write down your target market,
and why.

What Major Technologies Are You

Using?

Is your game to be 2D or 3D in its fun-
damental presentation? Will it use a
commercial engine? Is there something
special about the physics? Perhaps you
envision cell-shaded rendering of char-
acters or the scene.

Write down the major bits of tech-
nology you will employ in your game,
and why.

Now What?

Notice I did not give any opinions or
suggestions on how to answer those
questions or which answers I thought
you might choose. It is not my place to
tell you that a cell-shaded 3D RPG
would be the next big thing on the
Game Boy Advance. No, the answer to
the questions above need to come from
your heart, that place of inner vision
where you can see and play your game
in your mind’s eye. That gameplay in
your mind—I want you to write that
down. This is your game. If you told me
your game concept, I could offer sug-
gestions and opinions, but they would
be just that—opinions and suggestions.
For this game of yours to be a success
you must be able to have a strong
vision for how your game will play.

Now find a table someplace com-
fortable and put in front of you the

notes you have taken on game concept,
business context, and the feature ques-
tions asked above. Then I want you to
put this book aside and just keep visual-
izing your game. Get up and take a
walk, get something to eat, and come
back to your table of notes. Now, start
slicing out the parts of your game fea-
ture brainstorm that are not actually
central to your game design. Before
you invest in creating a hundred-page
game design document and develop a
total technical design, you should figure
out what you are making. The game
design and technical design stages are a
lot of work; be courageous and kill the
features that are superfluous before
you spend any more effort on them.

All of the great games have a small
feature set that is well polished. Make
your game great.

100 Chapter 7: Key Design Elements

Chapter 8 > > > > > > > > > > > > > > > >

Game Design

Document

What Is a Game Design

Document and What

Does It Do?

When one says “Look it up in the
design document,” folks are generally
referring to the game design document.
This is the fun document that details all
of the characters, the levels, the game
mechanics, the views, the menus, and
so on—in short, the game. The game
design document for most designers is
great fun; here they get to flesh out
their vision with muscles and sinew on
top of the skeleton of the game concept
that it was before. By no means am I
saying it is easy to create a complete
design document. Creating a finished
design document is so difficult I have
never been able to finish one of my
own, nor have I seen anyone else finish
his or her design documents. With my
two latest projects, Starfleet Command:
The Next Generation for Activision and
Black9, I am certainly taking the design
efforts to our highest levels, and I see
the results paying off with faster and
stronger production.

The game design document is part
of a suite of documents that specify the
game you are creating. All of these

Chapter 8: Game Design Document 101

Where the game design document lies in the project
life cycle

documents I collectively call the pro-
duction plan:

� Concept/Vision/Proposal
Document

� Game Design Document

� Art Design Document

� Technical Design Document

� Project Schedule

� Software Testing Plan

� Risk Mitigation Plan

The purpose of creating all of these
documents is to know what we are
going to do. To figure out what we are

going to do, we need to do a bunch of
thinking. Writing down what we have
thought about in the form of diagrams
and notes forces us to drive the quality
and quantity of thinking to the required
level for making a production plan.
Knowing what we are going to do will
help us answer a great deal more plan-
ning questions: Who is going to do
them? How long will it take? What
needs to be done prior to getting that
done? What features do we need to cut
to give us time to do that? What are the
risks in this project? This is all the
most basic stuff to kick off a software
development project to reassure each
other we know what we are doing, and
incidentally most good publishers
require this planning. This chapter will
focus on the game design portion of the
production plan.

There are several good books on
the market that discuss game design in
particular. This book aims to cover new
ground by discussing game production
and development as a whole of which
game design is a subtask in this greater
effort. What I will not do is design your
game for you. I will not be offering
opinions on whether your game should
be multiplayer or 3D or online or all
three. I have neither the inclination nor
the hubris to make a book offering such
suggestions. I am merely presenting a
rigorous and systematic approach to
game design you might apply to your
own creative vision.

What About the Proposal Document?

An observant reader will notice that I
have omitted a formal discussion of
what should go into your proposal
document, which you would show pub-
lishers in order to receive funding. A

few years ago established developers
could write up five to ten pages of game
vision and accompany it with some
sketches and likely receive funding if a
publisher believed in the concept. As

102 Chapter 8: Game Design Document

The components of the production plan

time passes, the competition gets
stronger and the games themselves are
larger in scope and require deeper tal-
ent and skill to execute competitively.
The publishers are now expecting to
see a playable prototype of your game
demonstrating all the talents your team
is bringing to the table from program-
ming, art, and design to sound and
animation.

I am not suggesting that you will
not need a vision document or a pro-
posal to pass around; you will need one
to sell your game after you have a play-
able prototype to demonstrate. The
downside of this trend is that the devel-
opment house has to shoulder a larger
portion of the financial risk of the pro-
ject by performing the early financing
for the project. This in turn leads to

only the stronger, more willful develop-
ers being able to develop original
content—the holy grail of all develop-
ers across the land.

I am suggesting specifically that
you go ahead and create the first draft
of your game design document before

you create your proposal. There are a
few reasons for this: First you still
don’t really know your game, so if you
take the time to create a first draft of
your game design document, you will
create a much stronger vision docu-
ment and proposal. When you take the
game concept in your mind and first try
to lay out a proposal, you will find a
need to use vague language in parts (or
just outright guesses) to describe your
game. But if you have your game
design document in your hands, you
will be able to write a tight proposal.

When Do You Write the Game Design

Document?

You should write your first draft of the
game design document immediately
after narrowing down your key design
concepts from the preceding chapter.
However, as I will show you, the game
design document is a large undertaking
itself in the breadth of topics to be
detailed.

You might be reading this book
from a variety of different perspectives:
as a producer or project leader or hold-
ing some other position in the industry
or looking to get into the industry. If
you already have a team of folks to
work on this game with you, I encour-
age you to distribute and delegate
portions of the game design document
to your team. This is somewhat contro-
versial, and I am sure a good many of
my peers would disagree and feel more

comfortable with a strong designer at
the helm of the ship articulating the
game’s design from a single, focused
mind. I do agree that you need to have
a visionary who has ultimate ownership
of the game’s design and who holds
executive control, but I advocate judi-
ciously distributing some of the more
modular, more straightforward tasks to
other team members. Or at least pro-
vide textual or visual sketches and
allow others to elaborate on your
designs. The reason for this delegation
is twofold: One, creating a game design
document is so much work that it is
natural to break the job up across multi-
ple people to get the work done more
rapidly and with higher quality. My
other justification for this delegation is
that this is one of the effective ways

Chapter 8: Game Design Document 103

you can build a strongly bound, effec-
tive team for your project. They will
not be able to disengage from the pro-
ject easily if it is their ideas and plans
that make up the project.

To delegate design tasks well, be sure
to take the time to clearly describe to
your teammates what topics you need
them to design and provide a style
guide or template that you require the
work delivered under. This is important

because many of your team members
may be new to game design or lack the
creative initiative that your designer
self has. After all, that is why you are
leading the production plan. If you lay
out what they need to write up, specify
what diagrams they need to create and
what their text needs to discuss, and
provide a template, they will not feel
frustrated but will feel empowered in
contributing to the project in the early
stages. This will help them understand
that their role is important and create a
feeling of project stakeholder in the
team member.

Again, I have never seen a com-
pleted design document, and one of the
reasons is that game design documents
need to be maintained through the
course of production. With every game
developer wishing they had just
another few weeks to add this bit of
polish to their games, it would be logi-
cal to think that every game design
document could have added a bit more
detail here or clarification there. In the
end, you should measure the complete-
ness of your game design document by
how well the team was led by the game
design. How much confusion or lost
work was created by a lack of detail or
clarity in the document? How much
reworking of the gameplay had to be
performed in the course of production
due to ill-thought-out designs? These
are the questions you should ask your-
self in the postpartum stage of your
game’s cycle.

Take the time to review your game
design document at the beginning of
each milestone to be sure your devel-
opers have ready the most accurate and
up-to-date reflection of the game’s
design before they commence that

104 Chapter 8: Game Design Document

Game design activity is always happening.

milestone’s work. Also look farther into
the future to document design changes
so that your developers do not lay the

groundwork for elements of the game
no longer needed even if they are
beyond the current milestone.

What Should Go into a Game Design Document?

Game design documents are more akin
to business plans than blueprints for a
building or a mechanical engineering
diagram in that the industry has devel-
oped no standardized formal
requirements for a game design docu-
ment. This is part of the lack of
development discipline and rigor that is
pervasive throughout the software
industry. Games used to be so much
smaller in scope and complexity that it
was much simpler to document the
game design, so no great amount of for-
malism was required. The movie
industry has settled down to such a
degree that there are hundreds of uni-
versities and colleges that offer specific
courses on how to write a movie script.
The game industry grosses more reve-
nue than Hollywood does at the box
office, yet just a few pioneering univer-
sities and colleges are offering classes
on game programming and art for new
media. I know of no class that teaches
game design. Thus, we are just too
young an industry and our technology
is changing too rapidly for us to settle
on the requirements of a game design
document. Another complication is that
all of us get our starts on smaller pro-
jects or conversion work where the
demand for a detailed design document
is substantially lower, robbing us of an
opportunity to grow our game design
skills before we reach the Big Project.

What am I going to do about this
lack of a game design document

standard? I am sharing my game design
requirements as well as providing
information from other development
houses illustrating what we are doing in
the field and what we are looking for in
a game design document.

The game design document should
describe to all the team members the
functional requirements of the features
they are implementing for the project.
The ideal game design document is
complete and has seen revisions to fix
gameplay and add clarity. In theory the
game developers should be able to take
their copy of the game design docu-
ment and run with it. In practice it is
very difficult to create a document that
strong.

Chapter 8: Game Design Document 105

A happy, productive game developer backed up with
strong designs

Section One: Defining the GameSection One: Defining the Game

I will discuss the content of the game
design document by using sections; the
order of the sections was chosen to
lead the reader from general informa-
tion concerning the project at large
towards the details of the project that
are specific to only certain members of
the development team.

Articulate What the Game Is as

Clearly as Possible

I remember reading the postmortem of
Tropico in Game Developer magazine. I
really appreciate reading postmortems
of game projects, and I am always
grateful to the developers who have
the courage to document what they
did wrong and what they did right. The
most amazing thing I read in the
Tropico design document is that after a
year of development the team came to
the shocking realization that there were
about half a dozen different visions of
Tropico being developed by various
team members. Each team member
was implementing his or her own
version of the project! I was first
shocked to hear that something like
that could happen; I was then shocked
to read that the team had the courage
to document it and share it with the
industry. Then I thought about it more
carefully, and I realized that every game
project has the potential to splinter off
into separate projects and that many
other projects have suffered from the
same lack of central vision. I believe
this is why so many developers advo-
cate a strong lead designer who dictates
all decisions from art to dialogue to
placement of buttons on the screen.
Experienced developers have been
burned by design-by-committee too

many times to tolerate their time being
frittered away, and they demand a
strong and clear vision for the game.

Every game design document
should have a section at the front that
clearly describes to the reader what the
game is. It should be written so clearly
and succinctly that it does not leave any
vagueness in the reader’s mind what
the game is about. It should describe
the world, the gameplay, and what moti-
vates the player. Following are a couple
of examples.

Pac-Man: An arcade game featuring
a single joystick for controls where the
player directs the protagonist, Pac-Man,
to clear levels of mazes of dots by eat-
ing these dots. The enemies of our
hero are four cute pastel-colored ghosts
that will eat our hero unless our hero is
under the influence of the big power-up
dot.

Doom: A first-person shooter
played on the PC platform, where the
player controls a space marine in a 3D
environment against a horde of bizarre
monsters. The player has a config-
urable set of controls taking advantage
of the keyboard, mouse, or joystick.
The gameplay is action based with no
strategic or role-playing elements;
instead the game depends on bleeding
edge technology providing a rush of
adrenaline through its aggressive atten-
tion to carnage. Single-player mode will
provide three episodes of missions
against an increasingly horrible cast of
monsters and scary settings; the
multiplayer mode will feature an
unprecedented level of player-to-player
combat.

From my own experience I know
there are many personalities in the
game business; some personalities
belong to wonderful human beings you

106 Chapter 8: Game Design Document

want to spend a bunch of time with;
other personalities are less inviting. I
think a lot of projects suffer when the
leaders of the projects choose to prac-
tice conflict avoidance. I would hazard a
bet that members of the Tropico team
sensed they were working towards dif-
ferent goals yet decided not to rock the
boat either in an effort to create a more
pleasant workplace or to selfishly give
their own version of the game more
time to grow (perhaps to a level of com-
mitment where it could not be cut
back). This is an area I find particularly
hard to manage. I think my teammates
would be surprised to hear me say that.
They would probably say I lead the
team well and with strength. However,
I must confess there are only a few
things in life I like to do less than to cut
off the design direction of one of my
team members. This is because while I
believe a game project needs executive
direction, I also believe the best games
are made when everyone’s energies are
woven into a stronger whole than any
individual can deliver. Therefore my
advice is to take the time to write up
exactly what your game is and present
it to your team members as early as
possible. If you know one of your team
members despises real-time strategy
games, but you are committed to creat-
ing a real-time strategy game, no good
can come out of misleading him—tell
the truth straight up. He will either do
his best to create the best real-time
strategy game he can or move on to
another project that fits his interest.
But by no means would it be a good
idea to keep investing in a team mem-
ber making role-playing features that
you cannot use. When it comes time to
cut those features out, you will have a

genuinely pissed off person and a con-
fused team.

Set the Mood

When the game is so clinically des-
cribed as I advocate above, often the
soul of the game is lost in the transla-
tion. Many games are role-playing
games set in a fantasy world. This does
not mean that Ultima, Bard’s Tale,
Baldur’s Gate, and Pool Radiance are
the same game. I like to see a short
piece of fiction at the opening of a game
design document to quickly give me
the feel for this world, to put me in the
mood. The intro movie in a released
game has the same function: to intro-
duce the player to what sort of
challenges the game holds.

Some games do not lend them-
selves well to a fiction treatment, such
as the abstract puzzle and classic arcade
games of Pac-Man, Frogger, and Tetris.
Even so, a snippet of words from an
auto-racing television commentary
intermixed with entries in a racecar
drivers’ journal discussing the upgrades
he has performed on his car and how
desperately he needs to win this race to
pay his debts would quickly draw me
into the world of Gran Turismo.

Section Two: Core GameplaySection Two: Core Gameplay

Now we move quickly from general
statements about the game to direct
comments about the core gameplay. We
want to fix in the reader’s mind the
vision and feel for the gameplay early
on so that when he digests the rest of
the document it will be in relation to
the core gameplay and create a tighter
understanding of the game design.

Chapter 8: Game Design Document 107

The Main Game View

Some games have only one view of the
game; others have several view modes
or even different levels of gameplay
with different views. This chapter in
the game design document needs to
define the main game view of the
game. Is it a 3D view? 2D? Isometric?
If it is isometric, what is the scale of
the tiles and characters? If it is a 3D
view, what kind of 3D view? Is it an
interior engine type game, or do you
require exterior environments? If it is
an exterior engine, how far does the
view need to extend? Is it primarily
rendering hills and trees or is it render-
ing a racetrack or a city? Make a few
sketches of the view, or even better get
an artist on your team to make a
full-color mockup of the view.

MUST DO!—The main game view of
the project must be in every game
design document and quickly convey to
the reader what the game will look like.

Core Player Activity

What does the player do in this game?
What is the key interaction? Pilot a
starship? Drive a racecar? Organize an
army? Maneuver a character through a
3D space? This is where you detail the
key interactions between the player
and the game. Together with the main
view from above the reader will
develop a strong understanding of the
game you are creating.

This is an excellent place to use
the UML use case diagrams introduced
in the previous chapter to document
the interactions between the player and
the game. Create the UML diagrams
that organize these interactions in a
graphical manner for easy digestion on
the reader’s part.

The Controller Diagram

A critical diagram to create is the con-
troller diagram. This diagram shows at
a glance how the game inputs are
mapped to a game pad controller or a
keyboard.

In-Game User Interface

Working outward from the view and the
core activities, what are the other user
interface items visible on the main dis-
play? Health? Time? Mana? Distance to
target? Radar? Map? Now is the time to
detail the rest of these user interface
items to be found on the main display.
Take the time to create a diagram or
mockup for each of these display items
and update your use case hierarchy to
track these interactions (even if they
are a non-interactive display, the player
uses these items by viewing them).

108 Chapter 8: Game Design Document

The controller layout for Taldren’s upcoming game
Black9

An early preproduction view of the Black9 main
interface

TE
AM
FL
Y

Team-Fly®

Section Three: ContextualSection Three: Contextual

Gameplay

This will be a fairly meaty section. In
this part of the game design document
you will detail all the rest of the game
mechanics that were too deep to dis-
cuss in the core gameplay section.

Shell Menus

Most games on both the consoles and
the PC have shell menus for creating
characters, upgrading cars, reviewing
inventory, selecting spells, viewing how
many stars or crystals have been col-
lected, and so on. Now is the time to
create a mockup of the shell menus
complete with all the displays and but-
tons. We have found it particularly
useful to create UML use case text and
diagrams for all the shell menu activi-
ties the player can go through. It is also
important to create a menu flow map
showing the relationship between all
the menus—how the player may navi-
gate between the activities in the game.

The Nuts and Bolts of Game

Mechanics

Now is the time to talk about how much
horsepower that engine will develop,
how many marines that transporter can
transport simultaneously, how many
charges are in your magic wands, how
fast the characters move. Detail every-
thing you can of the game mechanics. I
find it useful to pretend I am creating a
pen and paper role-playing game or
board game complete with all the
details. Of course all these elements
will need to be tweaked and balanced in
the future; however, every time I drive
down to this level of detail I learn more
about my game at the higher levels of
abstraction and go back and adjust ele-
ments of the higher design. This
section should be replete with spread-
sheets, charts, and diagrams.

Tutorial Mechanics

Almost all big games have integrated
interactive tutorials in the game. Some

Chapter 8: Game Design Document 109

The menu flow
for Black9

of these tutorials are explicitly tutori-
als, others are billed as licenses as in
Gran Turismo, and other games simply
create very easy levels for the begin-
ning of the game like in Mario64. For
Starfleet Command: The Next Genera-
tion, we modeled the tutorials around
the education an officer in Starfleet
would receive while going through
Starfleet Academy. Discuss your phi-
losophy when approaching the tutorial
content, discuss what you want the
player to learn here, and discuss what
activities you will employ to reinforce
what the player is taught to make for a
smooth transition into actual gameplay.
In Baldur’s Gate, BioWare had the
player character start out in a safe town
where all of the NPCs acted partly as
an interactive in-game manual and also
related backstory to the players to get
them into the world. How are you going
to introduce your player to the game?

Consciously decide what controls
and game mechanics you are going to
directly cover in your tutorials and
what material you are leaving for the
player to learn over time as they mas-
ter the game. Keep in mind the goal of
the tutorial is not to teach everything in
the game; rather the purpose of the
tutorial is to get the player into playing
the game successfully and without frus-
tration as quickly as possible.

Multiplayer Mechanics

Will your game have a multiplayer com-
ponent? If so, what flavor? Will you
support LAN play for PC games in the
office or home LAN environment? Per-
haps you will feature online matching
via GameSpy or Microsoft’s Gaming
Zone. If your game is a massively
multiplayer role-playing game, then of

course you have a multiplayer feature
set to document.

If you did not cover your multi-
player menus in the shell menu section,
then this is the perfect place to detail
the activity flow between the menus.
Write down the functionality of each of
the buttons and describe the player’s
choices. Also detail the technical
requirements of the multiplayer feature
set that the technical design will need
to address. How many players will your
game support? Are these players simul-
taneous, concurrent players as in a
Quake game? Or are the players resid-
ing in a hybrid system like Starfleet
Command’s online campaign that is
capable of supporting hundreds of
simultaneous players where the battles
are played out in smaller sessions of up
to six players each?

Create diagrams documenting
these activity flows. Will your game
support the historic modes of multi-
player such as serial, modem-to-
modem, or even hot seat?

With the latest generation of con-
soles starting with SEGA’s Dreamcast
and on through Sony’s PS2 and Micro-
soft’s Xbox, the game designer now
needs to consider online multiplayer
gaming for their console games. On the
console side, multiplayer games have
often used multiple controllers. Will
your console game have multiplayer
gameplay? Will you split the screen?
Will you hot seat between players?

Many game designers put off
describing their multiplayer gameplay
until later in the project. This has led to
disastrous delays, poor gameplay and
game balance, and outright bugginess.
This procrastination in multiplayer
game design is fairly widespread and
carries down the line, with the

110 Chapter 8: Game Design Document

technical design stage often postponing
a serious discussion of the multiplayer
engineering requirements. Sometimes
these delays are so manifest, games
have resorted to the outright out-
sourcing of the multiplayer project.
Examples of this are Interplay’s
Klingon Academy and id’s Return to
Castle Wolfenstein, where Grey Matter
develops the single-player game and
another developer will come along
behind and implement the multiplayer
aspect of the game. I am highly skepti-
cal of outsourced game creation in a
piecemeal fashion. The only reason
people delay thinking about their
multiplayer feature set is because it is
hard. But being hard is not a good
enough reason for putting it off!

Section Four: Talk StorySection Four: Talk Story

This section of the game design docu-
ment calls for the game designer to
elaborate on the world they have cre-
ated. Many game developers would
really rather work on this part of the
game design document than discuss the
mundane buttons on the multiplayer
screens. The reason I have pushed this
section back as far as I did is because I
feel the game design document should
serve the team rather than the
designer. So I started with setting the
mood and quickly followed with captur-
ing the key requirements of the game.
Now let’s roll out the graph paper, char-
acter sheets, and scripts for the cut
scenes!

Chapter 8: Game Design Document 111

The menu flow diagram for Starfleet Command 3

World Backstory

Detail your world; what is the relevant
history of the world? Draw a map of the
world the player will explore. Use cool
maps for fantasy games such as
Baldur’s Gate and Ultima Online, but
also include ship blueprints for games
like System Shock 2, or the oceans of
the world for a naval simulation. The
depth of this section is highly depend-
ent on the genre of your game. id
Software is very proud that their Doom
and Quake series of games have no
need for such frills as a backstory!
Ultima Online and Baldur’s Gate each
draw upon decades of development for
their world’s backstory.

A game such as Gran Turismo
would only need the lightest treatment
of a backstory where the racing events,
the tracks, and the manufacturers of
cars would be enumerated to flesh out
the scope of the world’s backstory.

Character Backgrounds

The character background section is
also game dependent. All games have
characters; it is just the concept of
what a character might be that is
stretched a bit in some genres. For
example, role-playing games, action-
adventure, and platformers would all
have a section that is quite straightfor-
ward in its representation of charac-
ters, with sketches of how they look
and text describing their behavior and
attitude in the game. Include all of the
game mechanics stats that correspond
to this character such as attributes and
inventory. Include references to where
in the game the character will be found
and indicate what type of character this
is: protagonist, playable, non-player,
antagonist, or boss monster.

In the case of Gran Turismo I
would argue that the individual cars are
the characters, especially unique cars
like the Suzuki Escudo. Here the stats
behind the cars and the history of the
creation serve as the backstory. In a
real-time strategy game each of the
individual combat units is a character to
be detailed. For a real-time tactical
game like Starfleet Command: The
Next Generation, we actually have
three different classes of “characters”
that are quite different from each other,
but all need to be detailed. These three
character types are the classic charac-
ters to be found in the story, the ships
the player will command or interact
with, and the ship officers that the
player will recruit and train in the
course of their career.

112 Chapter 8: Game Design Document

A fan-made map of Britannia from the Ultima series

Level, Mission, and Area Design

This is my favorite part of writing a
game design document. I love examin-
ing and reading maps! Most likely your
game is broken down into levels, mis-
sions, areas, tracks, episodes, decks of
a ship, or some other manner of loca-
tion partition. In abstract games like
Lemmings, the levels are single
screens of challenge for the Lemmings;
for Gran Turismo it is the different
tracks of course; for Doom it is bizarre
and frightening levels that the design-
ers come up with in a backstory after
they have made them.

To document a level you have to
take into account what sort of game
you are making and how it is broken up.
For classic role-playing games, large-
scale fantasy maps of the countryside
with detailed blueprints scaled to ten-
foot corridors serve very well. For 3D
games, whether platformer, shooter, or

action-adventure, it can be very chal-
lenging for the designer to specify the
level in detail. The reason is that the
designer may be a good designer but
terrible in the use of a 3D CAD tool
such as UnrealEdit or WorldEdit. Often
these types of games employ a lead
designer who is good with these tools
and can articulate her visions directly
in the tools. For the developer without
these skills, very detailed writing as
found in a narrative supplemented with
sketches will often serve to give the
level designer a strong description to
work with.

Be sure to give good detail: Talk
about the colors, the textures, the
lighting, what the sky looks like. What
are the sounds that are present in this
area? What are the characters? Detail
each trick, trap, challenge, or feature in
your level design. On your first few
passes through here, just make notes to
yourself to follow up later and add more
detail in the next pass.

This is the time to explain your
campaign structure; show a flow dia-
gram that relates your areas to each
other. Is it linear? That is, can the

Chapter 8: Game Design Document 113

A character concept for Black9

A view of a level in production for Black9

player proceed through your levels
along only one path like the increas-
ingly challenging levels of Lemmings,
or can the player wander about without
any direct purpose as in Ultima Online?
Be sure to diagram this flow.

Declare the purpose of the area; is
it a key hub area that the player will
visit often or is it a bonus area or is it a
part of the user interface such as the
difficulty selection of Quake I? Discuss
how this level may be reused like the
reversing of tracks in Gran Turismo or
going back for six stars in each of the
worlds of Mario64.

Cut Scene Descriptions

If your movie will employ cut scenes,
then write the scripts for these cut
scenes. While the game industry has no
standard format for the description of a
cut scene, there are two important
components: a storyboard and a script.

The storyboard is a key frame-by-
frame visual design of the cut scenes
that reads much like a comic strip. This
is a critical design document for both
communicating with the artists who
will create the level and for achieving
buy-in from the project stakeholders.

The script should follow standard
movie script formatting guidelines. See
the following script excerpt for an
example of how to format your script
for voice-over (VO) and off-stage (OS)
voice work.

With this section complete, no
reader should have any large questions
or vagueness about the world and cast
of characters in your game design. The
reader should also have a strong under-
standing of what challenges the players
will face as they proceed through the
game structure.

114 Chapter 8: Game Design Document

INT. MISSION BRIEFING ROOM (GENESIS HQ-LAX)
Set in the mission briefing room of the Genesis Operations Headquarters in the LAX spaceport metroplex. The mission
briefing is a short cinematic sequence performed in letterbox format using the in-game Matinee feature of the Unreal
engine. The briefing room has four characters: the player character, the Genesis Operations Chief, and two other contract
Genesis agents, one large, physically powerful male and one slim female.

GENESIS OPERATIONS CHIEF (VO)
We have a very serious development with our secure AI labs on the moon. We have had no communication
from the base personnel in 36 hours. While the computer network seems to be functional, we have lost access
to the data arrays—somebody has changed the authorization code. Fly-bys show no actual damage to the
structures and we have sent two regular patrols from Luna II—they have failed to report in after reaching the
lab.

(beat)
It appears that The Tea-Drinking Society is getting desperate now that we are so close to our goal; they must
have launched an assault on the lab and taken physical control—now they’re busy downloading all of our
hard-earned work.

Your mission is to reclaim our labs and eliminate any hostiles that may be present.

You have two support operatives this time.

The Chief gestures towards a slim female in black super-hero spandex

GENESIS OPERATIONS CHIEF (VO)
Cassandra will provide you with infiltration and electronic hacking services. Her job is to get the team in there
as quietly as possible. The goal is to catch The Tea-Drinking Society in the act, get it on film, and eliminate the
suspected TDS agents before they are able to return to their masters with the fruits of our lab work!

Nodding towards a bulky male human with obviously large guns

Section Five: Cover Your AssetsSection Five: Cover Your Assets

This section’s format really is particular
to your game’s genre and method of
construction. This last point is so
important I would recommend not
creating asset lists until you are mostly
through the technical design stage. You
should certainly jot down the assets
that come to mind in each section at
the end of your first pass on the game
design document; however, your tech-
nical design document might reveal
that on the platform of your choice and
with your particular set of require-
ments, you are limited to the creation
of just 20 character models rather than
the 100 your initial design called for. Or
you might find that the technical format
and specification of your assets goes
through some bit of exploration during
the elaboration of your game in the
technical design stage. Nevertheless,
here are some categories of assets you
should list in your game design docu-
ment. These lists will come in handy
when creating the production plan,
which should be created after the tech-
nical design stage has been mostly
completed.

2D Sprites or 3D Models

Whatever your technology, no doubt
your game features moving bits of

eye-pleasing pixels. Write up the list
of such assets in a spreadsheet and
include columns for attributes that are
specific to your game’s design and
technical requirements.

Missions, Levels, or Areas

List the missions, levels, or areas to be
created for your game. Indicate game-
specific parameters such as size, prior-
ity, or placement in a hierarchy of
locales.

Chapter 8: Game Design Document 115

A character model in production from Black9

GENESIS OPERATIONS CHIEF (VO)
Rojak is a heavy weapons specialist. He’ll back you up in a firefight and ensure that anything hostile becomes
a detail of history in short order.

The Chief points towards the player character

GENESIS OPERATIONS CHIEF (VO)
As our most celebrated agent, you’re in charge. Make contact after you’ve landed and entered the base.

PLAYER CHARACTER (VO)
“Thank you, sir. We will not let you down.”

Cinematic fades to black, the sound of rocket engines throttle up out of the darkness…

A snippet of a design document of Black9 featuring a cinematic sequence

The city of Baldur’s Gate

Voice

It will be way too early to document
this section in the early phases of game
design; however, strong description of
the voice actors required can certainly

be detailed early in the project. As pro-
duction rolls along, maintain this
section to prevent a panic workload
when it comes time to record the voice.

116 Chapter 8: Game Design Document

Command 190: Basic Controls

Setting: The Neversail NCC-0001 at Treasure Island, San Francisco, Earth

� Helm

� Target

� Phaser Fire (somehow have plenty of phasers to fire)

� Destroy Cargo Boxes

Title: Command 190: Basic Controls

Briefing: This simulation will cover the basic controls of a starship.

Setting Text 1: Aboard the Neversail NCC-0001

Setting Text 2: Starfleet Academy, Home Fleet

Setting Text 3: Treasure Island, San Francisco, Earth

{The Neversail NCC-0001 is a police frigate armed with only Phaser-3s}

{The screen is already set in full screen mode}

{There is no terrain, only a beautiful backdrop}

{The player’s ship is already in motion at a speed of 10}

{The player’s ship is already at Red Alert}

{VOICE TALENT: FED-INSTRUCTOR-EARTH: Scotty? Not Sulu – we will save him for later tutorials.}

FED-INSTRUCTOR-EARTH: “Lieutenant, welcome to Starfleet Command school. To earn the rank of Lieutenant Com-
mander, you must pass both Command 190: Basic Controls and Command 290: Intermediate Helm Controls. Let’s get
started.”

FED-INSTRUCTOR-EARTH: “The basics of starship control are very simple, yet require a lot of training and practice to
master. Let’s begin with basic helm control aboard a small police vessel, the USS Neversail.”

FED-INSTRUCTOR-EARTH: “To turn the Neversail, use the mouse and left-click on the 3D tactical display. This will
issue a helm command to port or starboard.”

FED-INSTRUCTOR-EARTH: “Left-click on the 3D tactical display in the direction you wish to turn. Your helmsman will
choose the appropriate turn, port or starboard.”

{Wait for the user to turn the ship. Add sarcastic/encouraging comments to the player to hurry them along.}

Sarcastic Comments
FED-INSTRUCTOR-EARTH: “Well Lieutenant, what are you waiting for? A Klingon invasion?”

FED-INSTRUCTOR-EARTH: “Lieutenant, when I give an order I expect it to be obeyed.”
FED-INSTRUCTOR-EARTH: “I don't have all day, Lieutenant.”
FED-INSTRUCTOR-EARTH: “[Sigh]. We are all waiting.”
FED-INSTRUCTOR-EARTH: “Lieutenant, make up your mind before I make it up for you – and give you a failing grade.”

Key Framing and Motion Capture

If your game features human characters
moving about, then you might require
motion capture or you can use key
framing to animate your characters.

List your characters and the required
moves for each character. Maintain this
list during production. See the follow-
ing example.

Chapter 8: Game Design Document 117

Positive Remarks
FED-INSTRUCTOR-EARTH: “Very good, Lieutenant.”

{Add 1 prestige point for each helm command up to 3 points}

FED-INSTRUCTOR-EARTH: “The farther you wish to go from your current heading, the tighter your turn will be.
Starships are massive vessels, even one such as this quaint police cutter. It takes time to maneuver them. Plan your
turns in advance for maximum advantage.”

FED-INSTRUCTOR-EARTH: “Now let’s talk about phasers. I knew that would pique your interest. To familiarize you with
the trustworthy phasers, I have created replicas of standard Federation cargo containers for you to target and destroy.”

FED-INSTRUCTOR-EARTH: “To target a container, point the mouse at the container that you wish to target and
right-click. This will set the cargo container as your current target. Alternatively you may tap the T key to cycle through
all targets in sensor range.”

{Add 1 prestige point for each targeting command up to 3 points}

{Wait for the user to target a container. Add sarcastic/encouraging comments to the player to hurry them along.}

Sarcastic Comments
FED-INSTRUCTOR-EARTH: “C’mon, Lieutenant. It doesn’t take that long to target a container.”

{Default the weapons to 1 at a time firing}

FED-INSTRUCTOR-EARTH: “To fire a Phaser-3 at the selected cargo container, left-click your mouse on the fire button
in the lower left corner of the display. Alternatively, you can tap the Z key to issue a fire command. Either one will direct
gigawatts of ionized superheated particles at your target. Sounds impressive.”
FED-INSTRUCTOR-EARTH: “Now destroy all three targets.”

{Wait for the user to fire upon a container. Add sarcastic/encouraging comments to the player to hurry them along.}

Sarcastic Comments
FED-INSTRUCTOR-EARTH: “What’s keeping you? Most midshipmen enjoy this part of the tutorial.”

Encouraging Comments (when container destroyed)
FED-INSTRUCTOR-EARTH: “There she goes!”

FED-INSTRUCTOR-EARTH: “Good! Starfleet doesn’t approve of mindless destruction, but phasers do have their uses.”

{Add 2 prestige points for each container destroyed up to 6 points}

FED-INSTRUCTOR-EARTH: “Excellent, Lieutenant, you are coming along very well. Perhaps Command 290 will pro-
vide a greater challenge for your abilities.”

A shooting script for Starfleet Command 3

118 Chapter 8: Game Design Document

Sample Shot List

Confidential

Scene# filename performer character concatenated capture
description

client moves description Loop TrackProp

1 "A1-walk-idle" "assassin" (we place a formula here
which "concatenates" all
your detailed info into one
item)

"Assassin looks around,
standing in place."

to be shot for looping
(blending) in post

"rifle"

2 "A1-walk-idle-fire" "assassin" "Assassin fires assault rifle
straight ahead from standing
position."

to be shot for looping
(blending) in post

"rifle"

3 "A1-walk-forward" "assassin" "Assassin walks forward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

4 "A1-walk-forward-fire" "assassin" "Assassin walks forward firing
assault rifle."

to be shot for looping
(blending) in post

"rifle"

5 "A1-walk-backward" "assassin" "Assassin walks backward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

6 "A1-walk-backward-fire" "assassin" "Assassin walks backward
firing assault rifle."

to be shot for looping
(blending) in post

"rifle"

7 "A1-walk-step-left" "assassin" "Assassin sidesteps to the left
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

8 "A1-walk-step-left-fire" "assassin" "Assassin sidesteps to the left
firing assault rifle straight
ahead."

to be shot for looping
(blending) in post

"rifle"

9 "A1-walk-step-right" "assassin" "Assassin sidesteps to the
right carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

10 "A1-walk-step-right-fire" "assassin" "Assassin sidesteps to the
right firing assault rifle
straight ahead."

to be shot for looping
(blending) in post

"rifle"

11 "A1-walk-turn" "assassin" "Assassin turns in place
carrying rifle."

to be shot for looping
(blending) in post

"rifle"

12 "A1-walk-turn-fire" "assassin" "Assassin turns in place firing
rifle."

to be shot for looping
(blending) in post

"rifle"

13 "A1-run-idle" "assassin" "Assassin looks around,
standing in place, heavy
breathing, excited."

to be shot for looping
(blending) in post

"rifle"

14 "A1-run-idle-fire" "assassin" "Assassin fires assault rifle
straight ahead from standing
position, heavy breathing,
excited."

to be shot for looping
(blending) in post

"rifle"

15 "A1-run-forward" "assassin" "Assassin runs forward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

16 "A1-run-forward-fire" "assassin" "Assassin runs forward firing
assault rifle."

to be shot for looping
(blending) in post

"rifle"

17 "A1-run-forward-hurdle" "assassin" "Assassin runs forward
carrying assault rifle, hurdling
low obstacle."

to be shot for looping
(blending) in post

"rifle"

18 "A1-run-forward-hurdle-fire" "assassin" "Assassin runs forward firing
assault rifle, hurdling low
obstacle."

to be shot for looping
(blending) in post

"rifle"

19 "A1-run-backward" "assassin" "Assassin runs backward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

20 "A1-run-backward-fire" "assassin" "Assassin runs backward firing
assault rifle."

to be shot for looping
(blending) in post

"rifle"

21 "A1-run-step-left" "assassin" "Assassin sidesteps quickly to
the left carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

22 "A1-run-step-left-fire" "assassin" "Assassin sidesteps quickly to
the left firing assault rifle
straight ahead."

to be shot for looping
(blending) in post

"rifle"

23 "A1-run-step-right" "assassin" "Assassin sidesteps quickly to
the right carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

24 "A1-run-step-right-fire" "assassin" "Assassin sidesteps quickly to
the right firing assault rifle
straight ahead."

to be shot for looping
(blending) in post

"rifle"

25 "A1-sneak-idle" "assassin" "Assassin looks around
cautiously on balls of feet,
standing in place."

to be shot for looping
(blending) in post

"rifle"

26 "A1-sneak-idle-fire" "assassin" "Assassin fires assault rifle
straight ahead from standing
position."

to be shot for looping
(blending) in post

"rifle"

27 "A1-sneak-forward" "assassin" "Assassin sneaks forward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

28 "A1-sneak-forward-fire" "assassin" "Assassin sneaks forward
firing assault rifle."

to be shot for looping
(blending) in post

"rifle"

TE
AM
FL
Y

Team-Fly®

Chapter 8: Game Design Document 119

29 "A1-sneak-backward" "assassin" "Assassin sneaks backward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

30 "A1-sneak-backward-fire" "assassin" "Assassin sneaks backward
firing assault rifle."

to be shot for looping
(blending) in post

"rifle"

31 "A1-sneak-step-left" "assassin" "Assassin gingerly sidesteps
to the left carrying assault
rifle."

to be shot for looping
(blending) in post

"rifle"

32 "A1-sneak-step-left-fire" "assassin" "Assassin gingerly sidesteps
to the left firing assault rifle
straight ahead."

to be shot for looping
(blending) in post

"rifle"

33 "A1-sneak-step-right" "assassin" "Assassin gingerly sidesteps
to the right carrying assault
rifle."

to be shot for looping
(blending) in post

"rifle"

34 "A1-sneak-step-right-fire" "assassin" "Assassin gingerly sidesteps
to the right firing assault rifle
straight ahead."

to be shot for looping
(blending) in post

"rifle"

35 "A1-sneak-turn" "assassin" "Assassin turns in place with
soft steps carrying rifle."

to be shot for looping
(blending) in post

"rifle"

36 "A1-sneak-turn-fire" "assassin" "Assassin turns in place with
soft steps firing rifle."

to be shot for looping
(blending) in post

"rifle"

37 "A1-crouch-idle" "assassin" "Assassin looks around,
crouching in place."

to be shot for looping
(blending) in post

"rifle"

38 "A1-crouch-idle-fire" "assassin" "Assassin fires assault rifle
straight ahead from crouching
position."

to be shot for looping
(blending) in post

"rifle"

39 "A1-crouch-forward" "assassin" "Assassin walks forward
crouching and carrying assault
rifle."

to be shot for looping
(blending) in post

"rifle"

40 "A1-crouch-forward-fire" "assassin" "Assassin walks forward
crouching and firing assault
rifle."

to be shot for looping
(blending) in post

"rifle"

41 "A1-crouch-backward" "assassin" "Assassin walks backward
crouching and carrying assault
rifle."

to be shot for looping
(blending) in post

"rifle"

42 "A1-crouch-backward-fire" "assassin" "Assassin walks backward
crouching and firing assault
rifle."

to be shot for looping
(blending) in post

"rifle"

43 "A1-crouch-step-left" "assassin" "Assassin sidesteps to the left
crouching and carrying assault
rifle."

to be shot for looping
(blending) in post

"rifle"

44 "A1-crouch-step-left-fire" "assassin" "Assassin sidesteps to the left
crouching and firing assault
rifle straight ahead."

to be shot for looping
(blending) in post

"rifle"

45 "A1-crouch-step-right" "assassin" "Assassin sidesteps to the
right crouching and carrying
assault rifle."

to be shot for looping
(blending) in post

"rifle"

46 "A1-crouch-step-right-fire" "assassin" "Assassin sidesteps to the
right crouching and firing
assault rifle straight ahead."

to be shot for looping
(blending) in post

"rifle"

47 "A1-crouch-turn" "assassin" "Assassin turns in place
crouching and carrying rifle."

to be shot for looping
(blending) in post

"rifle"

48 "A1-crouch-turn-fire" "assassin" "Assassin turns in place
crouching and firing rifle."

to be shot for looping
(blending) in post

"rifle"

49 "A1-jump-standing" "assassin" "Assassin jumps straight up,
carrying rifle."

to be shot for looping
(blending) in post

"rifle"

50 "A1-jump-standing-fire" "assassin" "Assassin jumps straight up,
firing rifle."

to be shot for looping
(blending) in post

"rifle"

51 "A1-jump-forward" "assassin" "Assassin leaps forward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

52 "A1-jump-forward-fire" "assassin" "Assassin leaps forward firing
assault rifle."

to be shot for looping
(blending) in post

"rifle"

53 "A1-jump-backward" "assassin" "Assassin jumps backward
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

54 "A1-jump-backward-fire" "assassin" "Assassin jumps backward
firing assault rifle."

to be shot for looping
(blending) in post

"rifle"

55 "A1-jump-left" "assassin" "Assassin lunges to the left
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

56 "A1-jump-left-fire" "assassin" "Assassin lunges to the left
firing assault rifle straight
ahead."

to be shot for looping
(blending) in post

"rifle"

57 "A1-jump-right" "assassin" "Assassin lunges to the right
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

58 "A1-jump-right-fire" "assassin" "Assassin lunges to the right
firing assault rifle straight
ahead."

to be shot for looping
(blending) in post

"rifle"

120 Chapter 8: Game Design Document

59 "A1-chest-hit" "assassin" "Assassin flinches from shot in
chest while carrying assault
rifle."

to be shot for looping
(blending) in post

"rifle"

60 "A1-chest-hit-fire" "assassin" "Assassin flinches from shot in
chest while firing."

to be shot for looping
(blending) in post

"rifle"

61 "A1-gut-hit" "assassin" "Assassin flinches from shot in
stomach while carrying
assault rifle."

to be shot for looping
(blending) in post

"rifle"

62 "A1-gut-hit-fire" "assassin" "Assassin flinches from shot in
stomach while firing."

to be shot for looping
(blending) in post

"rifle"

63 "A1-left-hit" "assassin" "Assassin flinches from being
shot from the left while
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

64 "A1-left-hit-fire" "assassin" "Assassin flinches from being
shot from the left while firing."

to be shot for looping
(blending) in post

"rifle"

65 "A1-right-hit" "assassin" "Assassin flinches from being
shot from the right while
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

66 "A1-right-hit-fire" "assassin" "Assassin flinches from being
shot from the right while
firing."

to be shot for looping
(blending) in post

"rifle"

67 "A1-knockdown-front" "assassin" "Assassin is knocked down by
force from the front while
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

68 "A1-knockdown-front-fire" "assassin" "Assassin is knocked down by
force from the front while
firing."

to be shot for looping
(blending) in post

"rifle"

69 "A1-knockdown-back" "assassin" "Assassin is knocked down by
force from the back while
carrying assault rifle."

to be shot for looping
(blending) in post

"rifle"

70 "A1-knockdown-back-fire" "assassin" "Assassin is knocked down by
force from the back while
firing."

to be shot for looping
(blending) in post

"rifle"

71 "A1-roll-stand-front" "assassin" "From knocked down from
front position, assassin rolls
up and stands carrying rifle."

blends from
"A1-knockdown-front"

"rifle"

72 "A1-roll-stand-back" "assassin" "From knocked down from
back position, assassin rolls
up and stands carrying rifle."

blends from
"A1-knockdown-back"

"rifle"

73 "A1-activate" "assassin" "Assassin activates a wall
switch."

"rifle"

74 "A1-crouch-tinker-start" "assassin" "Assassin crouches and begins
tinkering with gadgetry."

blends into "A1-tinker" "rifle"

75 "A1-tinker" "assassin" "Assassin tinkers with
gadgetry."

to be shot for looping
(blending) in post

"rifle"

76 "A1-crouch-tinker-stop" "assassin" "Assassin stops tinkering and
stands."

blends from "A1-tinker" "rifle"

77 "A1-use-medkit" "assassin" "Assassin presses small object
to neck, injecting healing
serum."

"rifle"

78 "A1-pickup-table" "assassin" "Assassin picks up an object
from table height."

"rifle"

79 "A1-pickup-floor" "assassin" "Assassin crouches, picks up
an object from the ground,
and stands."

"rifle"

80 "A1-stunned-flash" "assassin" "Assassin covers face with
arm and cowers for 3 - 5
seconds before returning to a
normal stance."

"rifle"

81 "A1-death-falling" "assassin" "Assassin collapses to ground
with some impact."

"rifle"

82 "A1-death-slump" "assassin" "Assassin folds up and slumps
to ground."

"rifle"

83 "A1-death-spasms" "assassin" "Assassin has several violent
spasms before collapsing to
ground."

"rifle"

NOTE

Please refrain from punctuation in your moves description and be as specific and brief as possible.

The list of moves to be motion captured for Black9

Sound Effects

Sound effects are elusive critters to nail
down early in the game design docu-
ment. My best advice is to mentally
walk through the mission/level/area
section of your game design document
and listen to what you hear as you walk
through these areas.

Music

Almost all games feature music; the
only exception I can think of is Quake
III, which opted to allow the player to
play his or her own favorite music. In
this section, list the various tracks you
will require to help set the mood of
your game. Some games employ
sophisticated track blending routines to
go smoothly from tense battle music to
celebratory victory tunes. See the
Black9 audio bid on the following page
for an example.

Chapter 8: Game Design Document 121

Asset Reference Description Maya Slot Reference Animation Name Animation
Notes

Sound Name(keyframe) SFX Notes Attribute Volume Status

5 1

Nevin Combat Custom 14: Time Dilation Slash 1 timeDilationSlash1 SlashSquishDelay1 (5) 5 1

15: Time Dilation Slash 2 timeDilationSlash2 SlashSquishDelay1 (5) 5 1

16: Time Dilation3_ Fierce Slash timeDilationSlash2 SlashSquishDelay1 (5) 5 1

17: Time DilationVictory timeDilationVictory E3 Victory1 SpinSwirl4(3), Landing (17) 5 1

18: TimeDilationTraverse timeDilationTraverse Return Move

19: TimeDilationNormalSpinSlash TimeDilationNewSpinSlash E3 Attack SpinSwirl3 (2),
SlashSquishDelay1(5)

Flangy swipe 5 1

20: TimeDilationNormalSpinSlash2 TimeDilationNewSpinSlash E3 Attack SpinSwirl3 (2),
SlashSquishDelay1(5)

5 1

21: TimeDilationThrustySlash timeDilationThrustySlash E3 Attack SpinSwirl3 (2),
SlashSquishDelay1(5)

5 1

22: TimeDilationChoppyFlipslash timeDilationChoppyFlipSlash Final Attack

23: TimeDilationTransPos2toPos3 TimeDilationTrans_Pos2_
to_Pos3

Start Stretch4b (1), 5 1

24: TimeDilationTransPos2toPos1 timeDilation_Pos2_to_Pos1 Start Stretch4b (1), 5 1

25: TimeDilationTransPos4toPos1 timeDilationTrans_Pos4_to_
Pos1

Start Stretch4b (1), 5 1

26: TimeDilationTransPos4toPos3 timeDilationTrans_Pos4_to_
Pos3

Start Stretch4b (1), 5 2

27: TimeDilationVictory Flip timeDilationVictoryFlip SpinSwirl3 (6), Landing (19) 5 2

1 28: TimeDilationVictory Spin TimeDilationVictory2 SpinSwirl3 (3), SpinSwirl2
(5), HardKnock2 (15)

5

Attack 0: fastSlashCombo1 basicFast1 1 thru 8 * SlashChop (2) Leopard Roar 4,
WB03

Combat 5 3

1: fastSlashCombo2 basicFast1 9 thru 18 * SlashChop (2) 5 3

2: fastSlashCombo3 basicFast1 19 thru 27 * SlashChop (2) 5 3

3: slowSlashCombo1 basicPower1 SlashHard (1) ComboLibrary,
SwipesSwingV6

5 3

4: slowSlashCombo2 basicPower2 SlashHard (1) 5 3

5: slowSlashCombo3 basicPower3 SlashHard (1) 5 Bad Export

The combat sound effects list for the character Nevin from Outrage’s game Alter Echo

122 Chapter 8: Game Design Document

Black9 Audio Bid

IMPORTANT: PLEASE READ ENTIRE DOCUMENT IN ORDER!

Note: The goal of the budget is to come as close to the final product as possible. In a game of this scope it is impossible

to know the exact amount of minutes of music. Both parties understand that these figures could change slightly either

way but that the figures given should be a very good representation of the budget needed.

MUSIC

In-Game Music: There are 3 different “worlds” in Black9. The music styles would be representative of those worlds but
would follow a sci-fi ambient based vibe (refer to CD). Analog pads, percussion, arpeggiatted synth lines and Enya
themed instrumentation will all be used to accomplish our goal. For certain worlds and levels such as China we can
incorporate ethnic Asian instruments such as Tibetan Bowls, Java Gamelans, Korean Gongs, Chinese Cymbals, Japanese
Kotos and Taiko Drums to give it a certain environmental flavor. Music does not need to be triggered at all times during
the game. In fact a lot of the game should be sci-fi environmental location based ambience. “Sci-fi analog action style”
music can be triggered when certain key events in each level happen (i.e., Canyon Chase sled escape). Refer to last 2
songs on audio CD called “Wild 9” and “Hover Bikes”. The use of short (3-5 second) musical stings can also be used
when certain events happen (i.e., pulls important lever to open important door). There are 3 different “worlds” in Black9.
The music styles would be representative of those worlds but would follow an ambient sci-fi feel/vibe.

Mars World:
6 search/ambient songs (@ 1:30 minutes = 9 minutes)
4 chase/battle/vehicle songs (@ 1:30 minutes = 6 minutes)
5 stings (@ 5 seconds = 25 seconds)

Hong Kong World:
6 search/ambient songs (@ 1:30 minutes = 9 minutes)
4 chase/battle songs (@ 1:30 minutes = 6 minutes)
5 stings (@ 5 seconds = 25 seconds)

Moon/Luna World:
4 search/ambient songs (@ 1:30 minutes = 6 minutes)
2 chase/battle songs (@ 1:30 minutes = 3 minutes)
4 stings (@ 5 seconds = 20 seconds)

Total In-Game music: Approximately 40 minutes

Cinematic Music: Story and cinematics play an important role in Black9. The music for the cinematics should be
extremely subtle so that it adds a layer to the dialogue but does not get in its way. There doesn’t have to be music playing
during every cinematic and some of the in-game music could be used as well.

Mars World: 3 songs @ 1 minute = 3 minutes
Hong Kong World: 3 songs @ 1 minute = 3 minutes
Moon/Luna World: 2 songs @ 1 minute = 2 minutes

Total Cinematic music: 8 minutes

Menu Music: There will need to be menu, sub-menu, and credits music. These can be based off of popular motifs we
would be creating for the game. Until actual screen interfaces are created it is hard to visualize the style and tempo.

Chapter 8: Game Design Document 123

Menu/Sub-Menu theme: 2 minutes
Credits music (variation of menu?): 3 minutes

Total Menu music: 5 minutes

Music Totals
In-Game: 40 minutes
Cinematics: 8 minutes
Menus: 5 minutes

TOTAL: 53 minutes (approx.)

53 minutes x $1,000 per minute = $53,000

SOUND DESIGN
Sound design will be the most important audio element in the game.

In-Game SFX: Big and beefy reverbs, amazing weapons, huge deep doors, frightening alarms, etc. Think of the best
sci-fi movie you’ve ever heard… then double it!

The main character will have common sounds that will always need to be loaded in memory (footsteps, weapons,
getting hit, landing from a jump, etc.). There will be other common sounds as well (pause menu, text messaging,
pick-ups, health, etc.) Each of the 16 levels in the game will have unique sound effects for the enemies, vehicles, objects,
surfaces, elements, etc. I would average about 50 unique sounds per level considering some of the enemies and weap-
ons will be reused throughout the game.

Common sfx: 100
Level sfx: 50 X 16 levels = 800 sfx

Environmental/Ambient SFX: Strange room tones, machinery, equipment, and generators no one has ever heard
before, airy and cosmic tones, deep analog sweeps, dark dramatic atmospheres. Each area may have a different “tone”
which when mixed properly gives the sense of travel and exploration. These ambiences should be looping, streamed, and
about 1 minute each in length. In some areas you would only hear the ambiences with no music. These are very impor-
tant! The player will hear these more than they will the music! Ambiences can be reused for multiple areas. If we budget 3
looping ambiences per level we could mix and match just fine.

16 levels X 3 looping 1-minute ambiences = 48 minutes of ambience

Cinematic Sound Design/FX: The cinematics will be in-game based (not FMV) so technically they will be handled
the same as the in-game sfx (SPU based). I would estimate another 10 unique sfx per level to be used in the cinematics.

Cinematic SFX: 10 sfx X 16 levels = 160 sfx

Menu/Sub Menu SFX: Would depend on the look and style of the menus.

Menu SFX = 10 sfx

Sound Design Totals
In-Game: 800 sfx
Environmental: 48 minutes/sfx
Cinematics: 160 sfx
Menus: 10 sfx

TOTAL: 1000 sfx (approx.)

Sound Design = $30,000

124 Chapter 8: Game Design Document

DIALOGUE/V.O.
Because of the sci-fi nature of the game, effects will play an important role in the creation of the voices. All sorts of
robotic, helmet gear, radio, flange/phaser, strange and unique effects will be used in pre- and post-production. Think Star
Wars.

Cinematic Character voices:
Genesis Contact, Player, Aegis, NPC Buyer, First Guard, Genesis Man, Oberon, Black Dragon Master, Genesis Operations
Officer, Fire Elder, Fire Elemental, Piwan, Dr. Tan, Agent Cassandra, Protagonist, Babbage Entity, Elder, Tea-Drinking
Society Operations Officer, TDS Ops, Hashi, Dr. Kellon, Tran, Automated Receptionist, TDS Shuttle Captain, Charles, TDS
Man, Gardener, Zubrin Marine, Zubrin Operations Officer, Lao, Zubrin Man, Zubrin Merc, Civilian, Zubrin Ops, Ambassa-
dor. (35 total)

Enemy voices: There would also have to be enemy character voices recorded. Screams, yells, hits, jumps, dies, etc.

We would need about 15 actors to record 35 characters. Each professional non-sag actor’s price would vary depending
on experience, how many characters, versatility, etc.

These are not one-liners (like Boxing), this is more serious acting. SAG rate for a 4-hour block-out (3 characters
max.) is $612.00. To get non-SAG actors (who are really in SAG) for a buyout usually costs about $750. Some actors will
charge $1000 and others will cost only $500. $750 I feel is a good average for a non-SAG buyout. It should take 3 studio
days to complete the script. In a script of this nature (characters, acting, size, etc.) it is always smart to put a 10% contin-
gency in the budget for call-backs.

Actors: 15 X $750 = $11,250
Studio: 3 days X $1000 = $3,000
Casting Agent: $1,000
Editing,Mastering: $5,000
Contingency (10%): $2,000

Total: $22,250

This is my recommended buget.

GRAND TOTALS:
Music: $53,000
Sound Design: $30,000
V.O.: $22,000

Total: $105,000

Breathe, David… breeeeeathe….. Now count to 10.
Okay good!
Please realize that this is a huge game and there is a ton of audio here. I have given my $1,000 per minute of music

rate (usually $1,200-$1,500) because there is quantity. Same for the sound design; normally for the amount of sounds
required it would be much higher. If you were to go to any company in the industry and ask them for this amount of work
you’ll get prices that are a little lower and some that are much higher.

The prices I cannot come down on. I cannot go lower than $1,000 per minute and I can’t do 1000 sfx for under 30K.
If we needed the budget to be lower we could do the following…

Music:
Please keep in mind that the recommended budget was NOT a wish list. I had to struggle to get the minutes of music to
where it currently is. Notice that each tune is only approximately 1:30. 2 to 3 minutes is usually the norm, but I feel that
because of the ambient style of music we will be using that if I’m tricky with my loops I can get away with 1:30. We could
easily just take the music figure down to about 40 minutes and just deal with it. It does start to take a quality hit as far as
repetitiveness goes (which I am already assuming in the 53 minutes), but it’s not the complete end of the world. New
total: 40 minutes of music.

Special Effects

This is a sort of catchall category that is
specific to your game’s genre and tech-
nical implementation. For example, in
Starfleet Command a list of the weapon
effects, astronomical features, and
other system effects like tractor beams

will need to be created. For a first-
person shooter, enumerate the weapon
effects and explosions. For a plat-
former, write down the magical effects
when the character picks up a power-up
or gathers another star or crystal.

Chapter 8: Game Design Document 125

Sound Design:
The sound design is a tough one because there is no getting around it! The game is big and there are tons of SFX. If
worse came to worst and we really had to squeeze it all together we could unhappily shave an extra 5K off the 30K figure
and use less looping ambiences and reuse in-game sfx for the cinematics. Once again, quality would go down because
of repetitiveness. New total: Approximately 800 sfx.

Dialogue/V.O.:
This one is a little easier but the consequences are greater! We could easily get a bunch of actors @ $500 but I can guar-
antee you that the quality WILL NOT be great. Acceptable, but not great. We could also take out the 10% contingency and
just live with what we get in the sessions. New V.O. total with those changes = $16,500

New Grand Totals:

Music: $40,000
SFX: $25,000
V.O.: $16,500
Total: $81,000

If you are thinking of making this game an A or AAA title, the 100K budget is absolutely necessary. For a B title you can
easily get away with the 80K figure. Anything less and you’re headed for the C title blues.

Let’s discuss once you’ve had a chance to digest it all and talk it over with some people.

Thanks,

Tommy

The music requirements for Black9

126 Chapter 8: Game Design Document

WEAPONS AND AMMO

WEAPON Cost AMMO Range Damage R-O-F Magazine
Size

Magazine
Cost

Categorization Weapon Type Illuminati Specialty? Threat
Level

Mission
First
Available

Comments

9mm Pistol $1,000 Bullets 21 10 5 15 $15 Firearms pistol no (global) 1

Shotgun
(sawed off)

$800 Shells 10 15 3 5 $20 Firearms rifle no (global) 1

Shotgun $700 Shells 25 10 3 5 $20 Firearms rifle no (global) 1

Sub-Machine
Gun

$5,000 Bullets 45 8 9 30 $5 Firearms pistol no (global) 1

Sniper Rifle $20,000 high-caliber
rounds

300 25 1 1 $10 Firearms rifle no (global) 4

Silenced Pistol $15,000 Bullets 15 5 5 5 $10 Firearms pistol no (global) 4

Crossbow $5,000 Bolts 60 10 1 1 $5 Special rifle Tea-Drinking Society 7

Crossbow $5,000 Poison-Tipped
Bolts

60 3 1 1 $25 Special rifle Tea-Drinking Society 7

Crossbow $5,000 Explosive-
Tipped Bolts

60 25 1 1 $20 Special rifle Tea-Drinking Society 7

Grappling-
Hook Crossbow

Special rifle Genesis 1 grapple across
open spaces, but
vulnerable to
attack as it
becomes the
equipped
weapon

Magnum Pistol $1,500 high-caliber
rounds

24 15 5 5 $10 Firearms pistol no (global) 4

Suitcase Gun $2,000 Bullets 12 5 1 3 $25 Firearms pistol no (global) 8

Grenade $25 N/A 8 30 1 1 $25 Explosives thrown
explosive

no (global) 1

Flashbang $10 N/A 8 5 1 1 $10 Explosives thrown
explosive

no (global) 4

Mine $50 N/A n/a 50 1 1 $50 Explosives dropped
explosive

no (global) 4

Tripbomb $80 N/A n/a 20 1 1 $80 Explosives mounted
explosive

Zubrin 12

Motion-Sensor
Bomb

$120 N/A n/a 40 1 1 $120 Explosives mounted
explosive

Zubrin 12

Satchel Charge $75 N/A n/a 75 1 1 $75 Explosives dropped
explosive

no (global) 5

MIRV Grenade $150 N/A 8 15 ea 1 6 $150 Explosives thrown
explosive

Zubrin 12 explodes into
smaller
grenades

Detonation
Pack

$100 N/A n/a 100 1 1 $100 Explosives mounted
explosive

Zubrin 12

Flare Grenade $30 N/A 8 3 1 1 $30 Explosives thrown
explosive

Genesis 4 blindness lasts
longer than
flashbang

Rocket
Launcher

$30,000 Rockets, MIRV
Rockets,
Guided Missiles

200 50 2 5 $180 Heavy
Weapons

launcher Zubrin 12

Rail Gun $75,000 high-caliber
rounds

200 60 3 10 $250 Heavy
Weapons

armature Genesis 5

Flamethrower $6,000 fuel 10 40 1 5 $50 Heavy
Weapons

rifle no (global) 5

Grenade
Launcher

$4,000 Grenade Shells,
MIRV Grenade
Shells, Remote
Detonation
Grenade Shells
(aka Pipe
Bombs)

100 30, 15 ea,
30

1 8 $200 Heavy
Weapons

launcher Zubrin 12

Rad Flux Rifle $100,000 none
(recharges)

80 25 5 n/a n/a Heavy
Weapons

rifle Genesis 5

Assault Rifle $10,000 Bullets 90 20 8 30 $50 Firearms rifle no (global) 1

Heavy Machine
Gun

$25,000 Bullets 200 20 10 100 $75 Heavy
Weapons

armature no (global) 5

Katana/
Wakizashi pair

$5,000 N/A 0 30 3 n/a n/a Melee
Weapons

two-handed
melee

no (global) 1

Blit Sword $9,000 N/A 0 40 4 n/a n/a Melee
Weapons

one-handed
melee

Tea-Drinking Society 7 curved blade
conducts energy
from tip to base

Stun Gun
(Tazer)

$500 N/A 0 5 1 n/a n/a Melee
Weapons

one-handed
melee

no (global) 1

Blackjack $100 N/A 0 2 1 n/a n/a Melee
Weapons

one-handed
melee

no (global) 1

Dagger $150 N/A 0 5 1 n/a n/a Melee
Weapons

one-handed
melee

no (global) 1

Blit Dagger $250 N/A 0 6 1 n/a n/a Melee
Weapons

one-handed
melee

Tea-Drinking Society 7 curved blade
conducts energy
from tip to base

Stepping Back a Bit

Looks like a bunch of work, huh? Good,
that is why it is a job being a game
designer and not a hobby. If it seems a
bit daunting to undertake this effort in
writing up your game, I have a sugges-
tion. Practice the skill of game design
by writing up the game design of an
existing game. Go through this entire
rigor on a game that is already success-
ful! It is perfectly reasonable in any
other profession—medicine,

engineering, automotive repair—to
practice the skills involved before mov-
ing on to practicing the profession.
Even novelists can take creative writ-
ing courses and budding scriptwriters
can take scriptwriting courses. So I
think it is perfectly logical that a game
designer should practice writing
detailed game design documents by
analyzing another game designer’s
game.

Chapter 8: Game Design Document 127

WEAPONS AND AMMO

WEAPON Cost AMMO Range Damage R-O-F Magazine
Size

Magazine
Cost

Categorization Weapon Type Illuminati Specialty? Threat
Level

Mission
First
Available

Comments

All Guns are data linked

Manufacturers: Krupp, Sakamoto Designs, KIM – Kim International Munitions, Mossberg, Specialty Defense Systems, SkullCracker

Note: if Illuminati restrictions are too harsh, could be changed so that buying those weapons when in the employ of that Illuminati is cheaper, and outside the employ the weapons must be secured on the black market, and are thus
more expensive. Restrictions can also be tweaked or dropped based on design analysis and QA gameplay feedback.

Note: mission appearances are subject to change after design analysis and QA gameplay feedback.

The weapons and ammo list for Black9

This page inten tion ally left blank

TE
AM
FL
Y

Team-Fly®

Chapter 9 > > > > > > > > > > > > > > > >

The Technical Design

Document

This chapter introduces the technical
design document and the work involved
in putting together the technical plans
for creating your game. As an introduc-
tion, this chapter includes the concepts
in a light overview designed to kick-
start your technical design process;
however, it is Chapter 18 that discusses
the technical design stage in detail.

Object-Oriented Design

Modern electronic games are large
software projects that run from hun-
dreds of thousands of lines of code to
millions of lines of code. Object-
oriented design (OOD) was invented to
cope with large software projects. I am
not going to fill up this book with pages
discussing the pros and cons of object-
oriented design versus procedurally
designed software; there are countless
good books discussing object-oriented
design at your favorite bookstore. I am
already sold on OOD, and I approach
the technical design document using
OOD; I am only concerned here with
the application of OOD and UML to
game construction. There is also a bias
towards C++ as the language for
implementation of the game code.

Chapter 9: The Technical Design Document 129

Where the technical design document lies in the
project life cycle

There are a few other important lan-
guages for creating games such as C
and Java. I will not evangelize for C++
here either. If you are using Java, then
you are probably creating a game with-
out significant performance require-
ments for graphics and are interested in
cross-platform distribution. If you are

using C, then you have probably made
the determination that C++ is not yet
right for your team or have some other
requirement keeping you with C.
Assembly language is of course used
when hand optimizing critical sections
of code and is not relevant from an
architectural or design point of view.

Purpose of the Technical Design Document

The technical design document is the
blueprint for the software engineers on
your team to use in the creation of the
game. The ideal technical design docu-
ment will specify to your developers
not only what needs to be created but
also how it will be implemented. I was
introduced to strong software architec-
ture for the first time in the game
industry when I worked under Jay Lee
at Interna (a game company that has
since joined the mound of defunct game
companies). When I signed up for the
job as a developer at Interna, I was
looking to learn more about C++ and
artificial intelligence.

What Jay Lee did was to use strong
encapsulation of the implementation
details by creating a detailed set of
interfaces for the classes of the whole
game (a massively multiplayer casino
game). Jay labored for two months writ-
ing header files. There was not a bit of
working code at the end of his two
months, just header files. I remember
that the members of the team were a
bit skeptical about this; we thought
while leadership was great and archi-
tecture was probably a good thing,
would it not be better if our best pro-
grammer were writing some code? Well

it turned out that it took three junior
developers just three months to flesh
out the source files as indicated by Jay’s
headers to implement the software Jay
described. It was the fastest any of us
saw software come together.

JARGON: A header file or a .H file is a
file in C or C++ that describes the inter-
face to the software module defined in a
corresponding source file (.C or .CPP
file).

Jay Lee demonstrated very strong soft-
ware architecture; ever since that
experience I have been learning more
about creating software better. The
relationship between software architec-
ture and the technical design document
is that the technical design document is
broader in scope and less detailed than
a software architecture plan. The tech-
nical design document must synthesize
the requirements of the game, develop
a software design, serve as a testing
plan, and also supply the project man-
ager with critical information such as
the required developer roles, depend-
encies between tasks and developers,
and an estimate of how long it will take
to perform each of the tasks assigned to
the developers.

130 Chapter 9: The Technical Design Document

The technical design document has
other customers besides the develop-
ers on your team: The game publishers
are becoming savvier in their technical
evaluation of game developers as the
scope of the projects grows and the
associated risks with the projects
increase. Most likely you will need to
deliver a technical design document as
an early milestone to your publisher.
The problem with a technical design
document is that while most of the
strong publishers are now asking for
them, there are few senior game devel-
opers with the requisite technical
expertise to perform an adequate
review of the developer’s technical
preparations. This lack of technical
review means the technical design doc-
ument will be poorly reviewed and as
such is not a very visible deliverable.
This creates another problem; early in
the project the executive management
is almost always eager to see progress

in a game’s development.
Often they cannot visual-
ize the game the way the
game designers are able to
and are forced to
green-light a project based
on feelings of trust in the
developer. All executive
management teams would
rather replace this trust
with seeing some cool eye
candy on the screen show-
ing that the game is
happily in development
and looks fun. This creates
an unholy tension when

the developer is pressured to not think
about the technical design of the game
much in the early stages and must
instead play catch-up all project long. It
is widely known in the software engi-
neering field that you would much
rather identify and fix a defect in your
software at the design stage than at the
end of the project. Estimates vary, but
the consensus appears to be that it is
fifty times more expensive to fix a bug
at the end of the implementation stage
than at the design stage. Thus, I
encourage you, by whatever means you
can, to take your time on the technical
design phase of your project and work
closely with your publisher or execu-
tive management to make the work of
the technical design stage visible and
reviewed to assure that progress is
occurring on the project. Email me if
you come up with tips on how to get
publishers more excited about the tech-
nical design document.

Chapter 9: The Technical Design Document 131

The conceptual overview of a technical design document

Why Have a Software DevelopmentWhy Have a Software Development

Process?

All development houses have a devel-
opment process even if they do not
consciously go about creating one. A

development process is the method
your team uses to take the game speci-
fications and turn them into a game.
Even the solitary game developer
working on her own private game, iter-
ating each night after working the day

132 Chapter 9: The Technical Design Document

Strong process, poor process—relative efficiencies

The later you identify and fix a bug, the more the cost rises.

job, still has a development process.
This lone developer’s process could be
as informal as writing up a sketch of the
main game interface on a piece of graph
paper and then incrementally building
the game, a new feature every night,
until the game is playable. Some
high-profile game development compa-
nies also use this method.

Steve McConnell’s seminal book
Code Complete is one of the most acces-
sible works discussing in detail soft-
ware development methods and why
organizations resist learning new devel-
opment processes. The problem with
learning a process is that it takes time,
and most organizations are in short
supply of time. They are under great
pressure to get something visible and
running as quickly as possible to reas-
sure management that the project is
well under way (a recurrent theme in
this book, I know). A strong software
development process will emphasize
thinking at the beginning of a project
where a weak development process will
create an even larger burden of wasted
time at the end of the project. In the
most extreme cases of poor process,
the projects find themselves in such a
hole of despair due to poor decisions
made at the beginning of the project
that the project itself is cancelled rather
than throwing everything out and try-
ing again. I am firmly convinced that all
of the games in the industry that are
taking 30 to 60 months to complete are
being performed at development
houses with a poor development pro-
cess, which results in a poor
preproduction.

It is understandable why game
development companies are generally
poor at enforcing a strong software
development process. First of all, most

software companies are poor at the
development process by all accounts;
second, the industry holds creativity
sacred (a good thing, but it can be used
as an excuse to avoid professionalism);
and third, the games themselves are
always becoming larger, faster, and
more complex—about at the rate of
Moore’s Law. The result is that studio
heads or publisher executives who
might have had hands-on experience in
creating a game five years ago now
have a misguided interpretation of the
scope of the project they are responsi-
ble for. Interpreting Moore’s Law
liberally, it would suggest that over five
years a game would be eight times
larger in complexity and scope than an
equivalent title five years before. This
last point I think is significant and
rarely discussed; managers are often
walking around with an impression of
the work to be completed as much
smaller, like when they were creating
games hands-on. They were successful
then, or they would most likely not
have achieved their leadership position.
That means they must have been suc-
cessful with their software development
process and that the penalties back
then were correspondingly smaller. I
think this is a great source of subtle
evil in the game industry.

JARGON: Moore’s Law—computing
power will double every 18 months.

So are you ready to hear about a better
software development process?

The Unified Software DevelopmentThe Unified Software Development

Process

We at Taldren use a modified, light
version of the Unified Software Devel-
opment Process. I will, however, pres-
ent an overview of the full Unified

Chapter 9: The Technical Design Document 133

Software Development Process and
then go back and explain what we do.

The core workflows of the Unified
Process are requirements, analysis,
design, implementation, and test.
Looking over this list of five activities, I
would imagine most people in game
development would be surprised to see
the three preproduction activities:
requirements, analysis, and design. If I
were to interview game development
houses to ask them what core
workflows (after explaining what I
meant by the term) they are using in
their development, they would probably
say design, implement, and test. This is
one of the key fea-
tures of the Unified
Process; it formally
recognizes that
gathering your
requirements is a
different activity
than analyzing the
requirements,
which is in turn a
wholly different
activity than design-
ing your software to
meet your game’s
requirements. If you think back towards
an earlier chapter on gathering your
key business parameters before creat-
ing your game design document, you
will notice that I added a bit of material
from the game development domain to
the requirements capture stage.

Core Workflows of the Unified

Process

1. Requirements
2. Analysis
3. Design
4. Implementation
5. Test

The Unified Process recognizes that a
real-world project cannot crisply com-
plete one workflow and then move to
another workflow. To address this, the
Unified Process is an iterative and
incremental workflow method, where
each stage of the project is driven
through inception, elaboration, construc-

tion, and transition.

Phases of a Workflow in the Unified

Process

1. Inception
2. Elaboration
3. Construction
4. Transition

In the real world you will find yourself
late in the project, perhaps near alpha,
when you realize that your game inven-
tory system is broken and not fun (it
turns out tracking the adventuring gear
to the nearest gram was not a great
idea), so now you need to go back and
design a new inventory system. The
Unified Process would have you stop
and think about your new inventory
system, review your requirements, ana-
lyze what impact the new inventory
system requirements will impose on
the existing game, design the new

134 Chapter 9: The Technical Design Document

The work flow of the Unified Software Development Process

inventory system, implement it, and
test the inventory system.

Perhaps at this point you may be
getting bored and rolling your eyes and
thinking to yourself, “This is just a
bunch of fancy multisyllabic names; of
course I think about my stuff before I
code it.” While it is true that these
terms are just a bunch of jargon, if you
actually consciously name what activity
you are performing, you will have a
much greater awareness of what you
are doing. This awareness will translate
directly into being more purposeful
about collecting your requirements
when the sign over your head says you
are in requirements capture; you will be
a far more effective analyzer of the
requirements when you are not obli-
gated to think about how you are going
to code the rasterizer. Your designs will
be much stronger when you have all of
the requirements and their impact laid
out in front of you.

When Should the Technical DesignWhen Should the Technical Design

Document Be Written?Document Be Written?

The technical design document should
be developed in preproduction along
with the game design document but
perhaps staggered back a bit to allow
the game design document time to
form up. The technical design docu-
ment needs to be developed with a
thorough set of plans and time esti-
mates before the schedule and the
project plan (discussed in the next
chapter) can be completed.

During production it sometimes
becomes necessary to change the
direction of some features in response
to technical research, focus group test-
ing, market research, or an awareness
of a lack of thorough design in the
preproduction stage. In response to any
change in the game, a fast response
mini-technical design stage should be
initiated before any new development
of these changes is undertaken. In
other words, don’t allow your deeply
thought-out technical designs to be

Chapter 9: The Technical Design Document 135

The various models of the Unified Software Development Process

held up like stone tablets that must be
followed. By all means, change your

design during implementation if you
identify a better design.

What Goes into the Technical Design

Document?

Now that I have established that a tech-
nical design and architecture are good
things to have, it is time to define what
goes into the technical design docu-
ment. The technical design document
acts as a plan of attack on the require-
ments of the game: a plan for whom,
when, and how these requirements will
be accomplished. This technical design
document is a miniature project itself
going through several stages: require-

ments capture, requirements analysis,

high-level architecture, mid-level software

design, deployment design, a testing plan,
and a transition plan. Each of these
stages will be chock full of documents,
diagrams, and time estimates to com-
plete the tasks described within.

Requirements

Capture

Requirements capture
is the process of iden-
tifying all the require-
ments the game as a
piece of software must
satisfy to meet the
goals and expectations
for the game. Require-
ments can take a myr-
iad of forms from a
frame rate require-
ment of 60 frames per
second, to fitting on a
single CD, to not tak-
ing more than 80 pro-
grammer-months to complete, to
having very few defects, to having 3D
sound or 10,000 polygon characters, to

being part of the engine development.
The goal is to write down every single
expectation the team, the executive
manager, the designers, and the fans
have for the game. Note that this stage
is named simply requirements capture;
there should be no efforts to cull, prior-
itize, or otherwise analyze the require-
ments and make any decisions. The
goal is to just cast the net as wide and
as far as possible and be very thorough
in collecting all of the fine details. Any
premature efforts to analyze the incom-
ing requirements will bog down the
process and create decisions that are
made on less than the full set of infor-
mation available to make these
decisions.

The requirements capture stage is the
most critical to a successful project and
in many ways is the most difficult. It is

136 Chapter 9: The Technical Design Document

Capturing use cases

difficult to decide when you have identi-
fied all your requirements, and it is also
sometimes difficult to describe them
clearly, such as when you are trying to
push your graphics to the “next level,”
whatever that might be.

Let us tackle it in order of easiest
to most difficult. The easiest require-
ments to capture are the requirements
described in the game design docu-
ment! This document should have a
design for the main game interface, the

shell screens, the game mechanics, the
art design, and the content such as mis-
sions, levels, and puzzles.

The Unified Modeling Language
has the use case diagram, which is
most helpful in the requirements cap-
ture stage. The idea behind the use
case diagram is to note the actors
(users and other discrete systems such
as a CD authentication server) and the
interactions these actors have with the
software system.

Chapter 9: The Technical Design Document 137

The use cases of the officer menu in Starfleet Command 3

138 Chapter 9: The Technical Design Document

The mocked-up officer screen early in production

The nearly final officer screen

TE
AM
FL
Y

Team-Fly®

The above use case diagram is from
Starfleet Command: The Next Genera-
tion. The function of this menu is to act
as a vending machine, “selling” new
officers for the players to use on their
starship and allowing the players to
“sell” back the officers they already
have. The purpose of this diagram was

to collect every single action the player
would have with this menu and arrange
it graphically to aid in the technical
analysis of what needs to be done.
Accompanying this diagram is a regular
document detailing these individual
interactions or use cases.

Chapter 9: The Technical Design Document 139

Officer Menu Use Cases

Displays or Player Views

These are just views; there are no player interactions in these use cases.

View Ship Name

This is a simple text display of the player’s ship’s name.

View Current Prestige

This is a simple text displayer of the player’s current display. Display these prestige points in normal text output color if
they have enough prestige to buy the least expensive officer in the base; if not display this prestige as red text.

View Starbase Name

This is a simple text display of the name of the starbase or location that the player is performing officer selection. In the
case of multiplayer or skirmish games, display the name of the mission type.

View Current Officer Assignments

This is a complex display combining the following elements:

• Officer Name

• Station Name and/or Station Icon

• Officer Trade-In Value

This display displays six such officers; there is no scroll bar.

At all times there is to be an officer displayed here; even when the player transfers out an officer, a flunky ensign with
basic skills throughout will be displayed. We need a long list of potential officer names that is race specific and easy to
add to.

View Officer Profile

This is a complex display combining the following elements A and B:

A. Officer Attributes

• Officer Name

• Officer Intelligence

• Officer Toughness

• Officer Health

• Officer Cost to Buy / Officer Trade-In Value

B. Officer Skills
Each of the skills is broken down into three sub-skills and a display of skill rank. The skill rank should have a header of
skill rank rather than the vague info as depicted in the current interface diagram. The skill rank should be a word
description:

• Basic [Green Text]: A basic understanding of the skill category. The officer can perform the skills in this category,
but with a negative impact on ship performance.

• Trained [Blue Text]: Trained. The officer’s performance has no effect on gameplay and is altogether neutral.

140 Chapter 9: The Technical Design Document

• Skilled [White Text]: Skilled. The officer will impart some slight improvements in game effects to the performance
of ship operations in this skill category.

• Veteran [Yellow Text]: Veteran. The officer will bestow modest improvements to ship performance in this skill
category.

• Expert [Orange Text]: The officer has attained a skill that few others can compare; the gameplay effects are fairly
strong as an officer effect.

• Legendary [Red Text]: The officer has attained a level of skill that is unearthly. They are miracle workers.

Helm Skills

• Thruster Control: Improve acceleration

• Piloting: Turn radius

• Emergency Procedures: High energy turns (HET) breakdown adjustment

Engineering

• Thruster Efficiency: Improves maximum speed

• Warp Technology: Reduces vulnerability time before and after warp

• Inertial Dampener Technology: Reduces the effects (recovery time and regeneration) of breakdown

OPS

• Scanner Technology: Improves the range and effectiveness of the scanner systems

• Cloak Counter Measures: Decreases enemy cloaking effectiveness

• Find Weakness: Finds weak spots in the enemy’s defenses, which in turn increases weapon effectiveness
against targeted ships

Security

• Close Quarters Combat: Increases combat effectiveness of Marines

• Defensive Planning: Increases ships’ natural resistance to raids and boarding

• Fitness Program: Decreases likelihood of officers getting injured, including damage from any assassins

Medical

• Psychology: Sustains crew morale across missions

• First Aid: Increases the likelihood that an officer who is stunned recovers quickly

• Surgery and Recovery: Increases the likelihood severely injured officers survive

Tactical

• Targeting: Increases weapon efficacy

• Troubleshooting: Reduces the effects of weapon degradation due to damage

• Counter Measures Training: Reduces the effectiveness of both natural and artificial ECM

View Available Officers

This is a complex display combining the following elements:

• Officer Name

• Officer Cost to Buy

• Best Officer Sub-Skill

• The Skill Rank in this Sub-Skill

If there are no officers available at this starbase, display this text:

• “No officers available”

• This display is a scrolling display with no limit to the number of entries.

• The cost of the officer should be displayed in red if the player does not have enough prestige to buy the officer.

• The skill rank of the best sub-skill for the officer should be colored by the schedule of colors from the previous
section.

A fundamental tenet of the Unified
Modeling Language (UML) is that you
should never create documents and dia-
grams just for documentation’s sake.
You should use your own judgment on
how much rigor you should apply to the
problem. That is because beyond the
use case diagram, UML offers eight

more diagrams such as the test case, the

activity diagram, the sequence diagram,
the class diagram, the package diagram,
and the deployment diagram. This could
be a bewildering array of diagrams if
you went about every menu with nine
different diagrams and 50 pages of sup-
plemental text. You would quite clearly
never make a game, but you might
make a bureaucrat proud.

Chapter 9: The Technical Design Document 141

Player Activities
Cancel

All transfers in and out and auto-assignments of the player’s officers are thrown out and the officers the player had in
place when entering the menu are restored as well as the prestige the player had at the start. The player is then returned
to the source menu or activity from where they came from.

An “Are you sure?” modal dialog might be a good addition to this choice.

Accept

All transfers of officers in and out of the ship and auto-assignment of officer stations are committed as well as the pres-
tige changes. The shadow copy of the officer assignments from the beginning is thrown out. The player is then returned
to the source menu or activity from where they came from.

An “Are you sure?” modal dialog might be a good addition to this choice.

Transfer Out

The officer that is currently selected on the side of the player’s ship—the crew manifest—is transferred off of the player’s
ship and is placed in the starbase (and is viewable there). When the player transfers an officer out they only receive a K
constant on the trade-in value for the officer. I would like to initially set this value to 1.0 so that the player has no inhibi-
tion on transferring their officers from station to station. However, I would like to be able to change this value later, for
balance or difficulty settings.

It should always be successful to transfer an officer out.

The transfer out button is always available.

If the player selects one of those basic ensigns with no skill, it just disappears into the ether and cannot be effectively
transferred to a new station. This is to prevent the player from transferring out their infinite supply of ensigns and filling
up the starbase.

Transfer In

The transfer in button will take the officer currently selected on the starbase side and swap places with the officer cur-
rently selected on the player’s ship side (effectively performing a transfer out of this officer at the same time).

If the player does not have enough prestige to transfer in the selected officer from the starbase, then the color of the cost
of that officer is red and the transfer in button is not enabled.

Auto Assign

By a simple algorithm the officers on the player’s ship will shuffle about to have the officer with the best skill for each
station. The algorithm should be something like this:

Take an officer and average the officer’s Medical sub-skills to compute an average Medical skill rank; repeat this with all
major skills and all six officers.

Now sort the officers in order of who has the highest major-skill value from largest to smallest.

Whomever is at the top, assign them to the station that corresponds to the skill that has the highest major-skill rank.

Keep going down the list until all six stations are filled.

The use cases of the officer screen

With that cautionary statement
about not going overboard, I think it is
well worth your time to collect all the
use cases that directly involve the
player. Unlike most business applica-
tions, we game makers have the player
perform many interactions, and some
are quite complex. Take the time to
create a use case diagram for each shell
screen. Most of these you will not need
to document much, just some notes
here and there about how many charac-
ters that text entry should take, how
many digits that display should pro-
duce, and so on. It is absolutely
required that you create a menu flow
(my term) diagram to chart the flow
between your shell screens.

The main display of your game,
whether it is an isometric role-playing
game, a starfighter game, or a racing
game, should be where you put in most
of your use case analysis time. Take the
time to mock up the display in Adobe
Photoshop or some other layout tool.
Then carefully hunt and peck for every
interaction and requirement you have
for the main display. I would recom-
mend using a whiteboard or a piece of
graph paper to collect this first pass of
interactions and use cases.

Next, rearrange your use cases to
factor out common functionality or
behavior from your various interactions
and create your use case diagram in a
tool such as Visio. As a last step, adorn

142 Chapter 9: The Technical Design Document

The menu flow diagram for Black9

your use cases that have certain
requirements, like a frame rate of 60
seconds, that are not direct interac-
tions. This can be articulated as a note
on the view main display use case.

To be productive with interactions, do
not attempt to analyze the use cases
into anything that resembles imple-
mentation. At this point you do not care
how the interactions will be handled;
rather you just want to know what the
interactions are.

Reverse Engineering

Now all this is just fine when you are
working from a clean slate, but in this
world of licenses and franchises you
will often find yourself working on a
sequel or port of a previously released
game. Use case diagrams are a valuable
tool for performing reverse engineering,
that is, taking a system that is already
built and working backward to under-
stand how it works. Understanding how
the existing system works is a key step
to successfully taking over someone
else’s code base. Here all of the use
cases are already functional in an exist-
ing game. Your job is to play the game
and take note of every interaction the
player is having with the game and
every requirement expressed in the
previous game and produce use case
diagrams and use case documents to

describe the existing engine. Last year
at Taldren, when I hired Ken Yeast to
take over maintenance programming
for my area of SFC: Empires at War, he
had a little trouble wrapping his mind
around the sequence of events and
interactions involved in the matching of
humans and AIs in the online gameplay
for SFC: EAW. Ken not only came up
to speed with my code in an efficient
manner, but was actually fixing subtle
and complex bugs with the ability to
“see” what is expected of the system.

No matter how hard you look, you
will never uncover all the use cases and
system requirements for your game
project during the technical design por-
tion of preproduction. Don’t worry
about it; anytime you discover a new
use case, just figure out where it is fac-
tored into existing behaviors, if any, and
update the use case diagram and sup-
plemental text.

Nonobvious Requirements

Here are some other nonobvious
requirements that your game may
have:

Design requirements—you want the
game to support user extensibility, such
as a map editor or a scripting language,
or use an existing code base.

Interface requirements—similar to a
design requirement but closer to the
code, such as using OpenGL over
DirectX for portability.

Implementation requirements—
these are unusual coding standards
such as the commerce level of transac-
tions and database storage when
implementing your own billing system
for an online massively multiplayer
game. A simple example is the platform
for your game—PS2, PC, GBA, etc.

Chapter 9: The Technical Design Document 143

An example of adornment

Performance requirements—exam-
ples of these requirements are the
all-important high frame rate or a toler-
ance to a specified level Internet
latency.

Requirements AnalysisRequirements Analysis

The purpose of the requirements analy-
sis stage of the technical design
document is to take the use case model
of the game, which describes the game
in terms of player interaction, and cre-
ate an analysis model of the game in the
highest level of technical design for the
developer. The following table enumer-
ates the purpose of the analysis model.

Use Case Model Analysis Model

Described using the
language of the player

Described using the
language of the game
developer

External view of the
game

Internal view of the
game

External structure by
use cases

Internal structure by
use of stereotypical
classes and packages

Used primarily to build
a contract between the
development team and
the publisher (executive
management, i.e.,
customer) to articulate
what requirements the
game must fulfill

Used by the game
developers to
understand how the
game should be
designed and
implemented

Captures the
functionality of the
game including
nonobvious
requirements

Outlines how to create
the game including a
high-level architecture;
this is the first pass at
formal design

Defines use cases that
are further analyzed
during the rest of the
design through to the
test cases

Defines use case
realizations, each one
the result of the
analysis of a use case

The analysis model is not the name of a
diagram, rather it is the name given to

the collection of diagrams, text, and
designs that lie between the require-
ments capture stage and the deeper
design stage. It will be in the design
stage that you make your final plans for
the construction of the software. In
short, the analysis model is perhaps a
fancy name for your first pass at the
rest of your technical design. You can
create a package diagram recast in the
analysis model, a sequence diagram,
or a collaboration diagram. What you
are seeking to do is iteratively move
towards the deeper, more specific con-
structs. The goal is to avoid creating
bugs and defects in the game’s design
and architecture that could be fixed
now just by rearranging some symbols
in Visio rather than rewriting a tree of
classes near the shipping of your game
due to a subtle bug. You must use your
judgment here to decide how far to
push the analysis model. Getting the
client-server interactions of a mas-
sively multiplayer game is a place I
would feel comfortable taking my time.

Looking over the previous table, it
is clear that no matter what software
development process or lack of one is
employed, you will always end up
analyzing your requirements and imple-
menting the requirements. What is to
be accomplished in the requirements
analysis stage is to pause and take
stock of the use case model and “parse”
it into developer language by taking the
use cases that have been grouped
together by factoring common behavior
and come up with proto-classes and
basic sequences of events. The idea is
to start jelling the technical design
without committing to final class dia-
grams; this will prevent you from
following what may be the wrong path

144 Chapter 9: The Technical Design Document

of implementation. In other words, if
you start producing final class diagrams
in response to the first use case you
see, then you will produce a system
that best answers that first use case. In
any area of the game where you have a
complexity of use cases, all of them
vying for your attention, you should
probably take the time to stop and pro-
duce an analysis model of the aggregate
use cases.

As always, use your judgment;
there will be many times parts of your
game will not require the rigor of an
interim analysis model to be developed
before going ahead and creating your
final technical design. For example, the
menu presenting two buttons to the
players requesting them to choose
between single player and multiplayer
game mode will not require deep
thought, and you should just go ahead
and take the use case diagrams as the
analysis model—with a mockup of the
screen and its place in the menu flow, I
would call it a final design!

Class DiagramClass Diagram

The class diagram describes the static
relationships and roles of the classes
that comprise your game’s software.
The class diagram can be exhaustive
and detail every class and relationship
and be printed out on several hundred
sheets of paper and pasted to a wall (we
have a couple of walls at Taldren serv-
ing this purpose for fun), or your class
diagram could be focused on a narrow
portion of the game such as the classes
driving the AI of the starships in your
game.

The class diagram is the work-
horse of technical design. Most
programmers along the road of object-

oriented design will discover the class
diagram on their own. Either they were
faced with a tangled set of code in a
maintenance job and started scratching
sense out on a graph pad, or perhaps
they are facing a complex new system
they have been tasked to create, and
they want to nail it so they reach for
the whiteboard to consider a few differ-
ent class hierarchies.

As the following diagram shows,
the class diagram is a simple collection
of boxes, each representing a class, and
lines between the boxes showing how
the classes are related to each other.
There are many bits of detail and for-
mal notation we could add to the class
diagram such as descriptors declaring a
method to be public, private, or pro-
tected, and whether a class is a tem-
plate class or whether we are referring
to an instance of a class—an object.
These additional bits of notation are a
part of the UML I will introduce later,
but for the moment let us just consider
the essence of the class diagram:
classes and relationships.

Chapter 9: The Technical Design Document 145

A basic class diagram

Relationships

The class diagram models the static
relationships between the classes. It
does not model any dynamic behavior
of the classes such as when they are
instantiated or destroyed, and it does
not describe the message flow between
the classes. It is the relationships
between the classes that make a class
diagram a picture of value rather than
just a collection of boxes on a piece of
paper. These relationship lines describe
the dependencies between the classes,
and these dependencies define the
architecture of your game. There are
several vocabulary words that are
employed in formal OOD to describe
the relations between classes, however
they are all variations of three possible
relationships. The “is a” relationship is
used when one class is derived from
another class. An example of this is: a
textbook is a child class that “is a”
book. The “has a” relationship denotes
the relationship between a class that
uses another class in its composition.
The textbook class could have a “has a”
relationship with the page class. Very
neat and tidy, eh? Well, I have a loose
end. There is one more relationship
that occurs between classes; it is the
compile time dependency in which one
class uses another class in the imple-
mentation of a method (also known as a
function). Any module that manipulates
strings is quite likely to include the
header file string.h from the Standard
Library. Each type used as a parameter
in a function creates a dependency
between that class and the invoked

type. Drawing every single dependency
relationship between a class and all of
the other types that are employed in
methods of our class under study would
only create a very hairy diagram sport-
ing way too many lines to be useful.
That is why the dependency relation-
ship is a kind of third cousin to the
more important “is a” and “has a”
relationships.

Drawing “is a” and “has a”

Relationships and Ordinalities

The “is a” relationship is denoted by a
line between two classes with an arrow
on one side pointing to the parent class.
The “has a” relationship is just a line.
The “has a” relationship line is often
adorned with the cardinality of the rela-
tionship on either or both sides. An
example: The “has a” relationship
between the textbook and the page

class would have the Arabic numeral
“1” on the side of the textbook and an
asterisk “*” on the side of the page

class. This shows an indeterminate
number of pages contained in the text-

book. It is also quite possible to be
more specific. The relationship
between the die class and the face

class could be adorned with a “1” on
the side of the die class and a “6” on
the side of a face class unless you are
playing third edition Dungeons and
Dragons as I like to do from time to
time; in that case the relationship
between die and face would need that
asterisk back again to account for your
pile of 20-sided, 12-sided, 10-sided,
8-sided, and 4-sided dice.

146 Chapter 9: The Technical Design Document

Adding Annotation

Quite often you will want to add impor-
tant information and details to a class
diagram that is not a class or a relation-
ship but a note. To add a note to
your diagram, simply draw a rect-
angle and dog-ear a corner, then
draw a line to the class, object, or
relationship that you want to clar-
ify. Adding performance require-
ments such as “must render a
steady 30 frames per second to
the 3D view class” is a good
example of a relevant notation.

Other UML Diagram TypesOther UML Diagram Types

The Unified Modeling Language
provides a number of diagrams that
support different areas of technical
design and software architecture. In a
later section I will cover in greater
detail the diagrams I find useful. Here I
will present the briefest of introduc-
tions to the rest of the UML diagram
family.

The class diagram is one of the dia-
grams used to perform structural

modeling. Two other UML diagrams for
structural modeling are the object dia-
gram and the package diagram. The
object diagram is a variation of the
class diagram where the instanced
objects and the relationships between
these instanced objects are the focus of
the diagram. The class that the object
is an instance of is semantically desig-
nated by naming the object box like
this: Goblin: Monster. Important attrib-
utes and values of the object are listed
below a dividing line in the box as seen
in the accompanying diagram.

Package diagrams are used to organize
your class diagrams. Once you have
about a dozen or so classes on a sheet
of paper, they will start to blur together
and lose their meaning. A package dia-
gram looks a lot like a collection of file
folders where the interesting bits of
class are listed inside the file.

Chapter 9: The Technical Design Document 147

Focusing on the difference between “is a” and “has
a” relationships

An example of an object diagram

Dynamic Modeling

Structural modeling is the modeling of
how the software will be constructed
from a static point of view—in short,
the activity you would imagine when
setting out to architect your game.
However, your game also has dynamic
functionality, and UML has diagrams to
handle this activity. Remember flow
charts? UML has polished up the flow
chart and now calls it the activity dia-
gram. The activity diagram models the
logic flow from start states to end
states.

Sometimes a simple state diagram
cannot model the complex message
flow between various objects perform-
ing interesting tasks in your game. For
example, in a client-server game there
is often a complex flow of data going
back and forth from the clients initiat-
ing requests and providing user input
and the server taking all of this infor-
mation in, resolving the game actions,
and sending out packets to cause the
clients to correctly update their

displays. A very useful diagram to
model this detailed, complex behavior
is the UML sequence diagram.

A few more esoteric elements of
dynamic modeling remain behind the
curtains, and I will leave them there for
the time being; see me again in Part III.

148 Chapter 9: The Technical Design Document

An example of a package diagram

An example of an activity diagram

TE
AM
FL
Y

Team-Fly®

Architectural Diagrams

Modern games are becoming large
pieces of software that need to be
designed and orchestrated on a macro
scale. The UML provides component
diagrams to illustrate the relationships
between modules, libraries, dynami-
cally linked libraries, databases, and
other significant chunks of your whole
game’s software composition.

UML also provides a deployment
diagram that appears to be useful only
for massively multiplayer client-server
games. The deployment diagram
describes where all the pieces of the
software are going to reside at run
time.

Chapter 9: The Technical Design Document 149

An example of a sequence diagram

An example of a deployment diagram

For most games, especially console
games, the deployment of the game
software is well understood and a
deployment diagram would only be
another diagram in your technical
design document suitable only for
impressing Dilbert’s boss.

Large-Scale Planning and the EvilLarge-Scale Planning and the Evil

of a Long Build Timeof a Long Build Time

There are a few tricky parts of building
large software projects that all of this
solid planning aims to keep in check.
The largest bugaboo of large projects is
large build times. With computers
already amazingly fast and only getting
faster every month, it is easy to not
care about build times. When your pro-
ject builds and runs in five to fifteen
seconds after making a change to your
code, you never break your concentra-
tion. When the build times grow to
about a minute or two in duration, the
build time might be just long enough
for you to reflect on what you are doing
and perhaps be able to perform useful
thinking. Once build times grow to five
minutes or more, you have a serious
productivity leak. When build times
reach twenty minutes or more, people
will naturally take a walk down the hall
to chat with neighbors, hit the rest-
room, gulp some water, or get invited
out for lunch, and two hours may elapse
before they settle down again at their
workstation.

A full rebuild of any large project
will take a long time, but a small change
to the implementation of a single func-
tion in a file will be a snap for the
compiler to change and the linker to
come up with a new executable for you.
However, the gray area is where you
realize you must change the interface
to one of your classes and a header file

must be touched. If only a couple of
files include this header file, no wor-
ries, but if dozens and dozens of files
include this header file, look out—you
might as well just do a rebuild all.

The trick to good large-scale pro-
ject making is to consistently practice
good OO and keep your code modu-
larized. Very crudely speaking, do not
get in the habit of copying the include
directives from one file to another like
a huge fishing net, hoping to catch the
right file. Take the time to verify that
each and every include directive needs
to be at the top of the file you are
working on. This has been a constant
struggle with our Starfleet Command
series. When I took over the project in
1998 it was my largest project to date
and I had a lot of challenges. (I will skip
boring whining comments.) Too far
down the list of priorities was writing
code with a fast build time. At the time
we were under heavy pressure to make
a date, and all of us thought this game
would be it and we would be on to other
projects. We had no idea our game
would be such a success as to merit
working with the same code four years
later. Our project builds slowly due to
its size, but it is a crime that relatively
minor architectural changes cause sig-
nificant build times (30 minutes or
more!). We would love to rewrite the
entire Starfleet Command code base
from the ground up—that would be the
way to go! However, with tight budgets
we must use as much of the animal as
possible with each release. In this real-
world example we have chosen to go
the route of incremental refactoring.

Refactoring

Refactoring is the art and science of
making the code better without adding

150 Chapter 9: The Technical Design Document

new features. A smart maintenance
programmer will take time to not only
understand the code but also to clean
up OO foulings and other architectural
errors in the code.

Refactoring can be applied to clean-
ing up any aspect of how your code is
created. For the latest version of Star-
fleet Command we have separated the
3D rendering engine into a separate
DLL, and we have vastly decreased the
labor involved in sending messages
back and forth between the client and
server. The multiplayer code base both
at the application level and the UI level
were refactored. And the disappointing
UI engine that we inherited from
1998—Quill—we have wrapped a safe
and sane coding condom around that
performs as advertised while leaving
the underlying Quill alone. Refactoring
is a pragmatic practice, and I am a prac-
tical person. So we are rewriting and
polishing up significant chunks of the
code as we go, creating better software
as we maintain a regular release
schedule.

Please see the excellent book on
refactoring, Refactoring: Improving the

Design of Existing Code by Martin
Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts for a full dis-
cussion on techniques of refactoring.

Insulation

I fear I may be straying a little off the
path of the technical design document.
However, I defend myself by wanting to
convey to you not only passion for
reducing build times, but also some
practical advice on achieving faster
build times. I also argue that a section
in your technical design document

discussing your coding practices and
software design approaches, including a
section on build times, could only earn
you a nod of approval from the folks
who are to review your technical design
document as well as acting as the most
clear piece of communication to your
team about how you intend for build
times to be managed.

Besides just practicing good OO
there is another technique your pro-
grammers can employ tactically to
sections of the game to dramatically
insulate portions of the code from each
other. It goes by different names such
as Interface-Impl and Insulation. The
basic idea is to create an interface class
that contains an implementation class.
The role of the implementation class is
the traditional role of getting the job
done, and the role of the interface class
is to be the only public access to the
rest of the project. This permits the
developer of the implementation class
to change the attributes and members
of the implementation class all day long
without needing any other modules to
be recompiled!

A classic example of the use of
insulation is a class that is a stack. The
stack could be written using an array or
a linked list (or quite a few other data
structures) to push and pop data onto
the stack. You write this class as clean
as you want, but you will always give
away your implementation details in
the header file. Sure, that information is
privately declared, but it is still publicly
viewable and, more germane to this
point, any changes to the stack classes
implementation, say from an array to an
STL list, will cause a rebuild of all mod-
ules that ever used your stack class.

Chapter 9: The Technical Design Document 151

152 Chapter 9: The Technical Design Document

// stack.h - implented as an array
#if ! defined (stack.h)
#define stack.h

class cStack
{

private:
int* pStack;
int size;
int length;

public:
cStack();
cStack(const cStack &stack);
~cStack();

Stack& operator= (const Stack &stack);
void mPush(int value);
int mPop();
int mTop() const;
bool mIsEmpty();

}
#endif

A stack written as an array

// stack.h - implented as a linked list
#if ! defined (stack.h)
#define stack.h

class cStackLink;

class cStack
{

private:
cStackLink* pStack;

public:
cStack();
cStack(const cStack &stack);
~cStack();

Stack& operator= (const Stack &stack);
void mPush(int value);
int mPop();
int mTop() const;
bool mIsEmpty();

}
#endif

A stack written as a linked list

In practice there are many variations
you can take to elide your implementa-
tion details, with the wholesale privat-
ization of the implementation class
being the most aggressive and achiev-
ing the highest degree of insulation. I
have worked on a project that used this
method of insulation aggressively

throughout the project, and after dis-
cussing it in depth with my teammates,
in the end we disagreed with the wide-
spread use of insulation. In particular it
makes inheriting a class a pain, and
while it does save a lot of mind space
by hiding the implementation details
from the rest of the team, it also places

Chapter 9: The Technical Design Document 153

// stack.h - fully insulated we do not need to know the implementation
#if ! defined (stack.h)
#define stack.h

class cStackIter;
class cStackImpl;

class cStack
{

private:
cStackImpl*pStackImpl;
friend cStackIter;

public:
cStack();
cStack(const cStack &stack);
~cStack();

Stack& operator= (const cStack &stack);
void mPush(int value);
int mPop();
int mTop() const;
bool mIsEmpty();

};

bool operator== (const cStack& left, const cStack& right);
bool operator!= (const cStack& left, const cStack& right);

class cStackIterImpl;

class cStackIter
{

private:
cStackIterImpl* pStackIterImpl;
cStackIter(const cStackIter&);
cStackIter& operator= (const cStackIter&);

public:
cStackIter(const cStackIter& stack);
~cStackIter();
void operator++();
operator const void* () const;
int operator()() const;

};
#endif

A stack fully insulated from implementation details

an extra duty upon the developers who
have to write the interface and imple-
mentation classes. In the end, we
decided it is most useful in larger
classes like game manager classes,
which are likely to undergo a lot of
revision in development while at the
same time are unlikely to ever have
anything derived from them.

Please read the detailed and well-
written book on a relatively unexciting
topic, Large-Scale C++ Software

Design by John Lakos.

Forward and Backward CodeForward and Backward Code

Generation with a Modeling ToolGeneration with a Modeling Tool

So why do I advocate UML’s particular
set of boxes and lines for describing
software? Well, any set of lines and
boxes will do, as long as you think
through the stuff you need to think
through and communicate it well to
your teammates and project stake-
holders. That being said, UML is
making rapid progress in being
accepted as the industry standard for
describing and documenting software.

By becoming an industry standard
we are now seeing several products on
the market that will perform both for-
ward code generation from your
diagrams and reverse engineering on
existing code. I should let that settle
with you for a moment.

Think about it; your programmers
can link a bunch of boxes together in a
class diagram describing the relation-
ships between the classes, attributes,
members, parameters, public, private,
protected—quite a few details—hit a
button, and bam—the files are created
and the skeleton code is written! All
that is left for the programmers to do is
program. That makes UML cool.

The reverse engineering part can
come in handy when you need to digest
a whole mess of code. It really is quite
fun and educational to generate large
class diagrams and spend an afternoon
pasting them to a wall and reading over
them to get a feel for the lay of the land.

There are several tools to choose
from for the creation of UML diagrams,
including Rational’s Rose and Together
from Together Soft. We have even been
teased by Microsoft that Visual Studio 7
will come with a new version of Rose
bundled into the development
environment.

So yes, you can use your own
boxes and lines, but why not use the
boxes and lines that have software out
there that can help you?

Testing PlanTesting Plan

Towards the end of your technical
design document you must have a sec-
tion on your testing plan. How will you
test your game? Toss it to the publisher
and fix what they ask? Beta testing,
unit testing, black box testing, or white
box testing—which will you employ?

Unit Testing and White Box Testing

Unit testing is the most straightforward
of testing procedures. As you finish a
piece of your software, write a testing
suite to exercise your new piece across
all ranges of valid and invalid input and
see what breaks. This is the sort of
activity developers of the piece of code
should implement as a matter of course
in the development of their work.

Also note that unit testing will not
work with poorly architected code as
you will have few truly modular parts of
your game that can be tested independ-
ently from the rest of the game.

154 Chapter 9: The Technical Design Document

The best kind of unit and white box
testing is automated. For example,
some developers of 3D games have a
test where a computer constantly gen-
erates random locations and directions
for the camera to look at to see if any
positions and/or views cause a crash. In
the development of Excel, Microsoft
employs three or more redundant, inde-
pendent algorithms for the calculation
of the worksheets and compares the
values across them all to identify errors
in the algorithm that is being optimized
for shipping with Excel.

Black Box Testing

This is the type of testing most publish-
ers will perform on your game. They
may have organized checklists to fol-
low, but in the end it will be a bunch of
young folks early in their careers play-
ing your game in a relatively unstruc-
tured manner, looking for things that
are broken. The advantage black box
testing has over white box testing is
that since the testing is performed from
the user’s perspective with no knowl-
edge of the implementation details,
black box testing will often find bugs
that a white box testing plan was not
even looking for. The flip side is that
since the testing is not based on any
knowledge of the implementation of the
game, the testing can become rather
unfocused and can consume quite a lot
of man-hours in the pursuit of bugs.

Beta Testing

Beta testing is great; it is putting the
game in the hands of people who will
buy your game. Fix all of the bugs they
identify and you know for sure you are
spending your time on bugs that need
to be fixed. The problem with beta test-
ing is that it is an exaggerated form of
black box testing, where you have fans
just playing the game and reporting
what they feel like reporting. Beta test-
ers also consume great amounts of the
development team’s attention, as they
are real people who will express their
feelings and need continuous feedback
and direction to keep them happy and
productive. However, every game (and
product for that matter) should undergo
beta testing, as it is the only way to
determine if you really are making
something people will enjoy.

From Use Cases to Test Cases

How do you organize your black box
and beta testing? Again, UML offers an
aid, the test case diagram. The great
thing about this diagram is that it is just
the use case diagrams from the start of
our project being dusted off and getting
a shiny new label. Remember all of the
use cases you worked up to describe all
the interactions between the player and
the game? Those interactions are pre-
cisely what you want to test during
your black box and beta testing efforts.
Just collect all of your use cases and
convert them into a checklist of a test-
ing plan for the black box testing team
and the beta testers to test.

Chapter 9: The Technical Design Document 155

This page inten tion ally left blank

Chapter 10 > > > > > > > > > > > > > > >

The Project Plan

What Is the Project Plan?

The project plan is the culmination of
the planning articulated in the game
design, technical design, and other
design documents such as an art style
guide. The heart of the project plan is a
schedule that describes what will be
accomplished, how long the tasks will
take, and who will perform these tasks.
The project plan contains other infor-
mation such as milestone dates, task
dependencies, and a risk management
plan. The information in the project

plan is published to both the executive
management for progress reports and
to team members in the form of task-
ing. It is also used by the project
manager to level tasks between
resources, identify critical paths, and
develop contingency plans. A good pro-
ject plan will act as a major tool to avoid
surprises. All this seems like good
stuff, so let us get on with making a
project plan.

How Do We Create the Project Plan?

To create the project plan we will need
a list of tasks to be completed, who is
available to perform those tasks, when
the critical project dates are such as
milestones, and what the relationships

are between the tasks. The list of tasks,
the estimates of how long it will take to
perform these tasks, and their depend-
encies will come directly out of the

Chapter 10: The Project Plan 157

Components of a project plan: estimates, resources, tools, tracking, dependencies, risks, and alternate plans

game design document and technical
design documents.

Critical project dates such as mile-
stone and release dates should be
iteratively arrived at with the executive
management team as the project plan is
compiled. Many projects are schedule
driven; however, the most common for
the game industry is the holiday shop-
ping season from Thanksgiving to
Christmas every year. Often projects
will be planned by walking backwards
in time from November to discover the
critical dates like beta, alpha feature
lock, first playable. With these projects
it will be the project plan that adapts to
the critical dates. This is discussed
later in this chapter.

All of this project information will
need to be compiled into a usable for-
mat for project analysis and report
generation. With tools such as Micro-
soft Project or Primavera’s SureTrak
products, a myriad of reports and
graphs can be generated to review the
workload across team members, under-
stand what the critical path is, measure
project progress, and a whole host of
other views of your project status.
Many people are intimidated by project
planning, or they have seen project
planning only partially implemented
that failed to work. From my round-
tables on game production at the Game

Developers Conference I discovered
there was a fairly wide range of project
management rigor applied to game
development. Some shops considered
themselves too small to plan their
work; they just worked on whatever
was the most pressing task at the time.
Many developers just used simple
spreadsheets in Excel to plan their pro-
jects; some folks used Microsoft
Project to plan their tasks and then fol-
lowed up in Excel to perform their task
tracking; the more determined develop-
ers used Project for both planning and
tracking; and one large French devel-
oper that was part of a construction
firm used Project to plan and Microsoft
Team Manager for task tracking.

Gantt and PERT Charts forGantt and PERT Charts for

Organizing Project TasksOrganizing Project Tasks

There are many reports, graphs, and
charts used in project planning and
tracking. The two most commonly used
charts are the PERT and Gantt charts.
The acronym PERT stands for Program

Evaluation Review Technique, a method-
ology developed by the U.S. Navy in
the 1950s to manage the Polaris subma-
rine missile program. The PERT chart
places each task in a rectangular box
with a line drawn to the predecessor
task and a line to the next task; thus
the whole diagram looks like some sort
of tree. The PERT chart’s key feature

158 Chapter 10: The Project Plan

The project plan pipeline

TE
AM
FL
Y

Team-Fly®

is the visual ease in identifying the rela-
tionship between tasks and the critical
path of the project as a whole. The
drawback of a PERT chart is that its
utility is limited to just the higher-level
view of a project. When individual tasks
of any nontrivial project are displayed,
the resulting chart is crisscrossed with
lines and is too unwieldy for the viewer
to absorb.

The Gantt chart turns out to be the
most generally useful of the project
planning and tasking charts. It features
a spreadsheet-like data entry on the
left-hand side of the chart with any
number of columns, the minimum being
task name, task start date, task dura-
tion, and resource name. On the right-
hand side of the chart is a modified bar
graph where each task is a horizontal
bar organized in a cascading hierarchy
as time progress. The Gantt chart

excels in data entry, as there is no end
to fussing about where to put the boxes
as in a PERT chart. The project man-
ager usually just needs to enter the
task name, estimated time to complete,
and a resource to complete the job. A
tool like Microsoft Project will auto-
mate the graph side of the chart. The
Gantt chart will also accept task
dependency information like the PERT

chart and draw arrows between tasks to
show what order the tasks must be cre-
ated in; however, the Gantt chart pro-
duces a more flat graph that does not
show off the dependencies of tasks as
well as the PERT chart. The visual
clutter of a Gantt chart can be mini-
mized to a great extent by nesting the
tasks into a hierarchy of task, subtask,
sub-subtask, etc. Microsoft Project
allows for a total of nine levels of task
nesting.

Chapter 10: The Project Plan 159

A PERT chart from Microsoft Project

In my experience in game production I
have found the Gantt chart to be crucial
and the PERT chart fun. By fun I mean
that the PERT chart is so easy to digest
visually that seeing the key tasks get-
ting completed and checked off as the
project heads towards completion is a
visual treat. The problem with the
PERT chart is again you must reduce
the task resolution to just the highest
level tasks. This results in relatively
chunky task descriptions like “imple-
ment 3D engine,” “script campaign
one,” and “alpha test,” and these rela-
tively chunky tasks are actually
composed of many tasks spread over a
great deal of time. The PERT chart
becomes dissatisfying when you want
to mark off a PERT box when some-
thing is 90 percent complete even
though the final 10 percent will not be
completed for some time. For this rea-
son I do not use PERT charts for my
own projects.

NOTE: Please see Chapter 20 for a
quick survival guide to Microsoft Project.

Focusing on the Gantt Chart

So how exactly do we create a Gantt
chart? Obviously we need to know
what the tasks are, who is going to do
them, and how long they will take. The
ideal Gantt chart entry is a single, clear,
discrete task with a short duration

(debate rages but aim for between .25
day to 3 days in your task resolution).
An example of a poor entry would be
3D engine, 4 months, Bob. This task is
poorly described for two reasons: The
first is the name itself, 3D engine. What
does that mean? Test it? Design it?
Debug it? Implement it? Review it?
Break it? Fix it? Vague project task
names must be attacked ruthlessly and
reduced to a lean, aggressive name like
Create static design of the core 3D

engine. The second thing wrong with
this task is that it is four months long!

Good grief, why are we even putting
together a schedule? How will it serve
to measure progress when we can only
look Bob up after 15 weeks and ask if
he thinks he will make it next week?
With such coarse resolution we are
simply not getting enough incremental
task progression data to have a mean-
ingful analysis of whether the project is
tracking. For if we are not tracking,
maybe we should cut features in the 3D
engine, or maybe we need to add
another programmer to work on the
custom shaders, or maybe we should
kill the new 3D engine altogether and
make do with the previous engine or
integrate a commercial 3D engine. All
of these tough choices can be uncom-
fortable or even impractical for you and
your project, but these choices are

160 Chapter 10: The Project Plan

A Gantt chart from Microsoft Project

certainly not more comfortable when
Bob has been working for 15 weeks and
then admits that the 3D engine turned
out to be tougher than he thought and
that in four more weeks he will know
more!

There is a time and place for
coarsely defined Gantt charts—very
early in the project when you are defin-
ing your business parameters. At this
time it is useful to block out your pro-
ject with these coarse task granularities
to get an idea of how many people you
will need and about how long it will
take to get the job done. This proto-
Gantt chart can then be used iteratively
to help define the costs of the project
while they are still fairly malleable in
the early project negotiation phase. In
the ideal world a publisher would sign
up a project and pay for three months of
preproduction to determine the detailed
project schedule; this rarely happens.
Instead, you often work on the rough
size and scope of a project and then use
the early milestones to refine your
schedule and kill features to make the
project fit into the negotiated costs. I
have to warn you, creating these
proto-schedules is not a substitute for
going through with your full prepro-
duction phases and determining your
task estimates in detail! You should also
avoid creating a proto-schedule if you
have little experience in project plan-
ning, or where the game has not yet
jelled into a clear vision, or where there
are a lot of associated technical risks
because you or your team have not
developed a similar game.

WARNING!—Creating proto-schedules
should only be done by experienced
project planners who have managed
similar projects and where the game
scope is well understood.

Using the Technical Design

Document

The technical design document is sup-
posed to have the information for the
technical tasks. Depending on how you
organize your team members, the game
design document, the technical design
document, or a stand-alone art asset
document will describe the art tasks.
Wherever the information is coming
from, as you sit down to enter these
tasks and time estimates into Project,
you will discover that these tasks are
not ready for immediate entry. For
instance, the 30 luminosity maps
needed for your starships will be listed
as 45 man-days from your art director.
Should you enter that as a single task
named luminosity mapping, 45 days, art-

ists? No you should not; that would be
creating a vague task entry like the
previous 3D engine example. Will you
have all of your artists working on this
for 45 days? Will you burn one of your
artists on this tedious task? Do you
need all of the luminosity maps done at
the same time? These are the ques-
tions you need to ask yourself as you
translate the task estimates from your
leads into your schedule. For a task like
this I would write up 30 1.5-day tasks
and distribute them evenly across the
artists I had available to perform these
tasks (in my management style, if there
is something boring and repetitious, I
generally distribute the tasks evenly,
perhaps a bit heavier on the junior team
member). Getting ahead of myself into
a discussion of risk management and
task dependencies, I would schedule
these repetitious, low-risk tasks
towards the end of the project with
perhaps some sample luminosity maps
done early on to verify we understood

Chapter 10: The Project Plan 161

the production path and time estimate
to create the maps. These 30 1.5-day
tasks would be an eyesore to look at if
we were to enter them flat into the
schedule. To handle that bit of dust,
sweep these 30 entries into a super-
task named create luminosity maps.
This way we can view this individual
information easily by expanding the
super task create luminosity maps and
hide it when it is not of immediate
interest. Each of the 30 subtasks
should also refer to the specific starship
that the map is for or at the very least
be uniquely identified as in create lumi-

nosity map for Federation Enterprise-E,

1.5 days, Ed.

It will be difficult to always break down
tasks into their proper subtasks. For
example many times you will get a rea-
sonable-sounding task like investigate

pixel shaders, 3 days, Tom. It has a fairly
clear verb—investigate—right? Well,
does it mean Tom will spend three days
on learning what is going on with pixel
shaders and then move on? What is the
deliverable for this task? Will Tom
merely know more about pixel shaders
or are you expecting to implement pixel
shaders? Will the artists need to per-
form additional work to support the
pixel shaders if Tom gets them done? I
recommend this task be broken down
into the following tasks: Investigate the

162 Chapter 10: The Project Plan

A poorly broken down task—too long

The previous task
broken down into
30 bite-sized
1.5-day tasks
distributed to two
artists, with an
early phase to
determine the
validity of the task
estimate for both
artists, rolled up
under a super-task.

feasibility of pixel shaders, 1 day, Tom;

Implement core support for shaders, 1

day, Tom; Implement simple shader for

ripple effect, 1 day, Tom; Determine what

additional work the Artists must perform,

.25 day, Tom; and then wrap up all of
these tasks under a super-task named
implement ripple shader. Picture in your
mind that it is your job to view each and
every incoming task as a crystalline
rock that you examine closely, looking
for the fissures that represent the
subtasks inside of the project. Then
you grasp the task firmly in your hands
and break it up along these fissures.

Task Granularity and Task Leveling

Task leveling is the act of distributing
the workload across your developers so
that no one developer is stuck holding
up the show while the rest kick back at
the beach. Task leveling is a difficult
and imprecise business. No two devel-
opers on your team will produce code,
art, or other game development bits at
the same rate and with the same level
of initiative and independence. Task
tracking is such a central activity of
game production that the next chapter
is dedicated to its discussion. However,
here in the planning stage we can set
ourselves up for success later by plan-
ning our task leveling now. In the

previous section I stressed breaking
down large, vague tasks into clear,
crisp, small tasks; it turns out that
breaking tasks up into crisp bite-size
chunks is also critical for effective task
leveling. By breaking up the tasks into
their smaller pieces you will not only
see more clearly just how much work
you have to do, but you will also be able
to better analyze how to distribute your
tasks across your company.

How Long Will That Task Take?

As you enter the data you will not only
need to break up the tasks into smaller
tasks, but you will also need to spend a
moment chewing on the time estimates
being reported by your team members.
There is a lot of debate in the commu-
nity about padding tasks by two times
or three times to count for the chronic
underestimation that developers are
prone to make. I fundamentally dis-
agree. I think it is a very bad thing for
the development team to think in terms
of “programmer-hours” and feel
assured that their management lead
will take responsibility for padding the
schedule to accommodate their opti-
mism. If you think about this for a
moment, it does seem ludicrous to take
the developer’s estimate and institu-
tionally lie and come up with another
number. I believe the reason organiza-
tions do this multiplying technique is
they have found that taking the devel-
opers estimates has resulted in
previous projects slipping and going
over budget. The answer is the devel-
opment process is flawed, and that is
why the project is late, not because a
developer makes poor estimates. How
can a project succeed when such arbi-
trary estimates are tossed around?

Chapter 10: The Project Plan 163

Breakin’ down tasks

So how do you get good time esti-
mates? First of all I do not make creat-
ing the time estimates my responsibility

as the project manager; I make that the
developers’ responsibility. Is this just a
semantic nuance? No, the way to suc-
cess is to push down to them the
responsibility, the authority, and the
accountability to create their own time
estimates. I will not be performing the
work; they will. Your team members
are not just coders or pixel pushers;
they are game developers. Grow your
organization so they understand that
creating quality estimates is part of
their job and that they need to make an
estimate they can live with.

Will pushing estimating down to
the team members work? What about
the new artist; does he know how long
it will take to texture the level? How
about the AI programmer; now that he
has been tasked to create the network-
ing code, how will he come up with a
quality estimate? I am not saying that
the senior team members such as the
art director and the lead programmer as
well as the project manager should not
participate and help develop the esti-
mates. What I am saying is that my
team performs best when they are
working under a schedule they drafted.
It may look like I have not solved the
time estimate problem; it may look like
I just moved it down to the developer,
but that is too casual a statement.
When you walk up to Sally and ask her
how long it will take to create a mission
editor for the game, she might reply
with a shrug and a soul-searching
glance at the ceiling and come back
with an estimate of two months. This is
a low-quality estimate. Much better is
to walk up to Sally and say to her, “I

want you to think about what it is going
to take to get the mission editor done;
specifically, I want you to review the
technical and game designs for the mis-
sion editor and break it down into a
task resolution of one to three days
each and enter your tasks into
Microsoft Project. Would Friday be
okay with you to review your sched-
ule?” This is much stronger because
you gave a clear task of getting her area
estimated and put into a schedule, and
you told her how to get it down with
the comments on the time resolution
and Project. You also gave a firm date
and gave every indication that it is her
responsibility.

So what do you do when developer
estimates are too short or too long? You
are the project manager, and you have
responsibility for running the project.
While the buck stops with you, your job
is to get the right people matched to
the right tasks with the proper tools
and resources to get the job done. It is
the artists and the art director who are
responsible for the art estimates. You
said that before, Erik, but what do I do
with a time estimate that is clearly too
short? I want you to review every time
estimate for a reality check, a second
opinion, and for your own benefit to
build up a better mental map of how
long the myriad of development tasks
take. What I suggest you do with a
short time estimate is interview the
developer and/or lead for that section
and ask them why they thought they
could accomplish it so quickly. Maybe
you will find out something you did not
know; that would be a good thing.
Maybe they will shrug and admit they
didn’t give it enough thought. Or maybe
it is a feature they very much want to

164 Chapter 10: The Project Plan

see get done and do not want to see it
cut so they are “selling you” the
feature.

Short Time Estimate Possibilities

If the developer did not give the esti-
mate enough thought, then simply kick
it back for a revision. If you simply
were not aware of something that will
make the task quicker to complete—
no problem, accept the estimate. How-
ever, when it turns out they are selling
you on a feature, this could be a prob-
lem. First of all, this means you have a
flaw in your schedule that needs to be
corrected or the rest of your schedule
will be affected. The hard part is that
your developer is selling you this fea-
ture because she really wants to see it
get in the schedule and she felt she
needed to underestimate the task to get
it on the schedule. You have three
choices: Kill the feature, allow the fea-
ture, or allow a fixed amount of time to
work on the feature. Each situation is
unique, but I tend to ask the developer
why she thought it was so important to
implement the feature. If she does a
reasonable job convincing me it is a
desirable feature but I cannot afford to
rearrange the schedule to fit in the true
time for this task, then I will encourage
the developer to drop the feature. Many
times the developers will be passionate
about getting it done and will propose
to keep the time estimate to what the
schedule can afford, and they will work
hard to squeeze it in. This I feel is fair;
the manager should not create sched-
ules that require overtime, but I do feel
comfortable with developers working
as many hours as they like to create the
highest quality game they can.

Estimating Research Tasks

How do you estimate how long it will
take to get something done that no one
has done before, or no one in your orga-
nization has done before? Perhaps there
is little in the way of journal articles or
books to give direction. How do you
estimate how long one of these tasks
will take? The first step is to break
down the research task into as many
small, discrete tasks as possible as we
discussed previously. An example:
Elaborate on a task named research

pixel shaders and modify the task to a
series of tasks like the following:
1. Install video card with pixel shader

support
2. Install DirectX 8.0
3. Review DirectX 8.0 sample shader

code
4. Create stand-alone test bed to

explore pixel shaders
5. Create water effect through pixel

shaders
6. Create fire effect through pixel

shaders
7. Design architecture for the 3D

engine to utilize pixel shaders
8. Implement pixel shader

architecture
9. Unit test the pixel shader code
10. Implement fire effect—attach to

fireball spell
11. Implement water effect—attach to

water blast spell
12. Test the fireball spell
13. Test the water blast spell

By breaking down research pixel shaders

into 13 subtasks, we can put good esti-
mates on most of the tasks. Only task
number four, Create stand-alone test bed

to explore pixel shaders, looks like a type

Chapter 10: The Project Plan 165

of research that resists being nailed to a
firm time. The solution here is to set a
time box, a fixed period of time you will
allocate to the task. At the end of the
time box you will either be done with
the research or it will have turned out
to be too expensive to continue. Mm,
yes, what is that? How can you walk
away from something not done? Well
you might have to. Say you have 15
months to get your game done with ten
developers, five of them programmers.
Allowing three months for preproduc-
tion and three more months for testing
and transition leaves nine production
months or a total of 45 programmer
months. This is your time budget; if the
rest of your project is looking like 44
programmer months, then you have
just one month left over to play around
with your pixel shader. Put a time box
of one month around the pixel shader
work. These are the types of hard deci-
sions you will have to make if you are
going to run your project on budget.

Oh, so the pixel shaded spell
effects were a core feature? Everyone
thinks that is what it will take for your
Diablo killer to make it over the top?
After the one month passes and you are
still not done, would you feel it is still
so important a task that you would allo-
cate more time to get it done? If so,
then your original time box was not
honest by taking into account your pri-
orities. Time boxes only work if you
stick to them. If the feature is really
that important, then you should have
allocated two months or three months.
When setting a time box, set the maxi-
mum amount of time you are willing to
spend on a feature of that priority level.
Too many times when we are deciding
whether or not to implement a feature,
we just ask how cool it will be or

whether the competition has it, in the
end deciding to implement the feature
for a number of compelling reasons.
Remind yourself that the great games
all have a slim feature set that was exe-
cuted with excellence. Think about that
cool research-intense feature; do you
really need it? Only a project with
unlimited financing and no requirement
for shipping can afford to implement
features without asking the cost. Think
of time boxes as stones in a stream
where the rest of the tasks flow around
these blocks of time; a few rocks are
cool, many rocks is a stretch of rapids,
and a wall of rocks is a dam. Deter-
mining a task’s priority deserves its
own subsection.

Task Prioritization

Assuming you and your team are cre-
ative folks and that you are making a
game with a budget of time and money,
you will always face a situation where
you have too many ideas for cool fea-
tures and not enough time to imple-
ment them. You are then faced with the
job of prioritizing your features to be
sure you get the critical features
accomplished at the right expense of
the less important features.

I have a reliable method for task
prioritization: First discover all the
absolutely required overhead tasks
your team must accomplish or you will
not even have a shipping game. These
tasks include preproduction, beta test-
ing, getting hardware manufacturer
approval, getting licensor approval, cre-
ating milestones, and responding to
milestone feedback. These are what I
call zero-level tasks. Also do not forget
to estimate the number of holidays,
vacation, and sick time your team
members will take, and make a

166 Chapter 10: The Project Plan

reasonable provision for turnover (I use
one developer for every ten developers
per year). Subtract all of this
nonproduction time from your overall
schedule; this will leave you with the
real production time you have to work
with. Enter all of the zero-level tasks
into your Microsoft Project Gantt chart.
(See Chapter 20 for a quick overview of
Project and such tips as customizing
your team’s calendar.)

The next step is to take your
design documents and toss every task
into one of three buckets: core tasks,
secondary tasks, and tertiary tasks.
Take your time with this. I highly sug-
gest discussing the relative priority of
the tasks with various team members
to build consensus and to have some
solid feedback.

Now that you have your three
buckets, lay out all your core tasks in
Microsoft Project using good task artic-
ulation techniques, and assign the tasks
to the resources on your team. Now
that you have your zero-level tasks and
your core tasks entered into your Pro-
ject file, use the project-leveling tool to
see how the zero-level and core-level
tasks will lay out over time. If you were
conservative with what you labeled as a
core task, then you should have some
extra time left over to start plugging in
your secondary tasks. However, if the
buckets ended up with too much to do
for even your core tasks on the first
pass through, then you have to priori-
tize your core tasks and convert
enough of them to secondary to make
up the difference. This means that the
secondary and certainly the tertiary
tasks are unlikely to be completed if
you are having trouble accommodating
even the core tasks.

JARGON: Leveling is the term in project
management for the related tasks of
seeing how the tasks will lay out over
time and how loaded each of your
resources are, and the process of dis-
tributing tasks across your team to
achieve a more even workload.

How do you prioritize the core tasks
when you already consider them core?
First realize they cannot all be core. A
rigorous development process requires
developing good time estimates, and
you have done that; now you are look-
ing at a body of tasks that are core and
features you really want but do not have

the budget for. Perhaps you can make a
strong enough case for these features
to get approval to expand your project’s
budget. If you can do that, great—prob-
lem solved. If you are still holding to
your original budget, then let me show
you how I do low-level task prioritiza-
tion. It’s a crude method really, but it is
effective: Take all your core tasks and
enter them into a spreadsheet (use
Excel) with a column labeled priority
next to each task and a task time esti-
mate. Now quickly run down your
tasks, reading the task names and say-
ing out loud the first gut-level priority
that occurs to you for that task such as
7 or 3 or 10 if it is really critical. Go
down your whole column of tasks
whether it is ten core tasks or 200. Do
this first pass quickly; taking longer will
only make it harder. Now you will have
a first pass priority for all of your core
tasks. Have the spreadsheet software
sort the core tasks from most impor-
tant descending to least important. If
you are like me, then you will see that
you have stubbornly labeled too many
tasks with a 10 or 9, and too few tasks
have earned the label of 3 or 2. The
way to solve this is to allow yourself

Chapter 10: The Project Plan 167

only three level 10 tasks, three level 9
tasks, and so on. Start at the first item
labeled 10 and take your time thinking
deeply about the feature, discuss it with
your team if you have to, but one by
one you are going to demote your 10s
to 9s until you are left with just three
must-do 10s. Repeat this process all
the way down your list. The mathemat-
ically astute will notice that this specific
labeling system will fail if you have
over 30 tasks. The exact labeling
scheme is not important; it is just
important to force yourself to make

these prioritization choices. You could
use the numbers 999 to 0, you could
use the alphabet, or you could use a
three-letter alphabetic core like AAA to
DDD; whatever you use just leave
yourself a set of three tasks at each pri-
oritization level. The size of your task
set should be roughly one-tenth of the
overall numbers of tasks to be priori-
tized. Now just draw a line where you
run out of time for core tasks, and toss
the lower priority tasks in with your
secondary tasks.

168 Chapter 10: The Project Plan

Bug ID Bug Title Priority

2929 CD-Key

2953 SP - Klingon Campaign - Beginning Stardate is 112400.1, twice what it should be

2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel

2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member

3031 Dynaverse - Romulans can transfer in Borg officers

2561 Global - Freighter Convoys do not have escorts

2607 Campaign Screen - Player's ship gets stuck in Hex

2609 Tactical Sim - Fed vs Fed fights

2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking

3110 Dynaverse - Ten turn countdown results in stuck in Hexes

2624 Dynaverse Campaign Screen - Fleet leader is not clear

2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit

2633 Dynaverse - While being attacked, attacking another will teleport player

2637 DYNA - Map Screen not refreshing on completion of Mission

2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending

609 SP - Campaign Screen - States we are partners with the Contested Sector

2058 Dynaverse - Cause of numbers appearing after player names in the chat box

2119 New Conquest - Music stutters and pointer freezes loading new Conquest

2701 Global - When AI forfeits it stays in the Hex

2763 Dynaverse - Role of convoys

2765 Access Server not using list of IP addresses

2780 SP - General - Player can initiate a battle then auto move kicks in

2784 SP - General - Player can be attacked when auto move kicks in

2797 Hex information should appear in game display

2799 SP - General - There needs to be a message when auto move is enacted

2817 Dynaverse - "Stand by for mission briefing" panel repeats text

2826 Dynaverse - Spectate does not work

2841 Campaign Screen - All races should begin equally allied to Neutral Hexes

2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map

2869 Dynaverse - Enemy AI kills fleet member AI - Defeat with prestige

2880 Dynaverse - Borg cubes appear very infrequently in Shipyard

2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately

TE
AM
FL
Y

Team-Fly®

Chapter 10: The Project Plan 169

2318 Tactical Sim - Visioneer opinion on buying Starbases

1681 Dynaverse - Officer advancement text cut off in message board

2452 AI doesn't know to go back to a repair station to repair hull

2981 Dynaverse - Severely damaged AI attacks healthy players

951 Dynaverse - AI does not team up properly in a Hex

2023 Dynaverse - Able to join missions in old Hex after leaving for new Hex

1790 SP - Tactical Sim - Able to click on map behind "Campaign Over" screen

The list of bugs and issues unprioritized

Bug ID Bug Title Priority

2929 CD-Key A

2953 SP - Klingon Campaign - Beginning Stardate is 112400.1, twice what it should be C

2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel B

2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member C

3031 Dynaverse - Romulans can transfer in Borg officers B

2561 Global - Freighter Convoys do not have escorts B

2607 Campaign Screen - Player's ship gets stuck in Hex A

2609 Tactical Sim - Fed vs Fed fights B

2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking C

3110 Dynaverse - Ten turn countdown results in stuck in Hexes A

2624 Dynaverse Campaign Screen - Fleet leader is not clear C

2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit C

2633 Dynaverse - While being attacked, attacking another will teleport player

2637 DYNA - Map Screen not refreshing on completion of Mission

2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending

609 SP - Campaign Screen - States we are partners with the Contested Sector

2058 Dynaverse - Cause of numbers appearing after player names in the chat box

2119 New Conquest - Music stutters and pointer freezes loading new Conquest

2701 Global - When AI forfeits it stays in the Hex

2763 Dynaverse - Role of convoys

2765 Access Server not using list of IP addresses

2780 SP - General - Player can initiate a battle then auto move kicks in

2784 SP - General - Player can be attacked when auto move kicks in

2797 Hex information should appear in game display

2799 SP - General - There needs to be a message when auto move is enacted

2817 Dynaverse - "Stand by for mission briefing" panel repeats text

2826 Dynaverse - Spectate does not work

2841 Campaign Screen - All races should begin equally allied to Neutral Hexes

2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map

2869 Dynaverse - Enemy AI kills fleet member AI - Defeat with prestige

2880 Dynaverse - Borg cubes appear very infrequently in Shipyard

2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately

2318 Tactical Sim - Visioneer opinion on buying Starbases

1681 Dynaverse - Officer advancement text cut off in message board

2452 AI doesn't know to go back to a repair station to repair hull

2981 Dynaverse - Severely damaged AI attacks healthy players

951 Dynaverse - AI does not team up properly in a Hex

2023 Dynaverse - Able to join missions in old Hex after leaving for new Hex

1790 SP - Tactical Sim - Able to click on map behind "Campaign Over" screen

Prioritization starting (use A, B, C or 1, 2, 3)

170 Chapter 10: The Project Plan

Bug ID Bug Title Priority

2929 CD-Key A

2953 SP - Klingon Campaign: Beginning Stardate is 112400.1, twice what it should be C

2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel B

2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member C

3031 Dynaverse - Romulans can transfer in Borg officers B

2561 Global - Freighter Convoys do not have escorts B

2607 Campaign Screen - Player's ship gets stuck in Hex A

2609 Tactical Sim - Fed vs Fed fights B

2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking C

3110 Dynaverse - Ten turn countdown results in stuck in Hexes A

2624 Dynaverse Campaign Screen - Fleet leader is not clear C

2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit C

2633 Dynaverse - While being attacked, attacking another will teleport player B

2637 DYNA - Map Screen not refreshing on completion of Mission A

2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending A

609 SP - Campaign Screen - States we are partners with the Contested Sector B

2058 Dynaverse - Cause of numbers appearing after player names in the chat box C

2119 New Conquest - Music stutters and pointer freezes loading new Conquest C

2701 Global - When AI forfeits it stays in the Hex C

2763 Dynaverse - Role of convoys B

2765 Access Server not using list of IP addresses A

2780 SP - General - Player can initiate a battle then auto move kicks in A

2784 SP - General - Player can be attacked when auto move kicks in A

2797 Hex information should appear in game display C

2799 SP - General - There needs to be a message when auto move is enacted B

2817 Dynaverse - "Stand by for mission briefing" panel repeats text A

2826 Dynaverse - Spectate does not work B

2841 Campaign Screen - All races should begin equally allied to Neutral Hexes B

2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map B

2869 Dynaverse - Enemy AI kills fleet member AI - Defeat with prestige B

2880 Dynaverse - Borg cubes appear very infrequently in Shipyard C

2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately A

2318 Tactical Sim - Visioneer opinion on buying Starbases C

1681 Dynaverse - Officer advancement text cut off in message board C

2452 AI doesn't know to go back to a repair station to repair hull C

2981 Dynaverse - Severely damaged AI attacks healthy players C

951 Dynaverse - AI does not team up properly in a Hex B

2023 Dynaverse - Able to join missions in old Hex after leaving for new Hex B

1790 SP - Tactical Sim - Able to click on map behind "Campaign Over" screen C

All tasks have received a priority.

Resource Leveling

In a real schedule it will be much more
likely that the bulk of your core tasks
will fit in your schedule but one or two
of your developers have been
overscheduled.

If at the end you have leveled the
tasks the best you can and you are still

left with an overloaded resource, then
you will have to take their tasks and
run them through a rigorous task prior-
itization session with the spreadsheet
as I described above. Find the true core
tasks and relegate the rest to a second-
ary phase.

Chapter 10: The Project Plan 171

Bug ID Bug Title Priority

2929 CD-Key A

2607 Campaign Screen - Player's ship gets stuck in Hex A

3110 Dynaverse - Ten turn countdown results in stuck in Hexes A

2637 DYNA - Map Screen not refreshing on completion of Mission A

2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending A

2765 Access Server not using list of IP addresses A

2780 SP - General - Player can initiate a battle then auto move kicks in A

2784 SP - General - Player can be attacked when auto move kicks in A

2817 Dynaverse - "Stand by for mission briefing" panel repeats text A

2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately A

2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel B

3031 Dynaverse - Romulans can transfer in Borg officers B

2561 Global - Freighter Convoys do not have escorts B

2609 Tactical Sim - Fed vs Fed fights B

2633 Dynaverse - While being attacked, attacking another will teleport player B

609 SP - Campaign Screen - States we are partners with the Contested Sector B

2763 Dynaverse - Role of convoys B

2799 SP - General - There needs to be a message when auto move is enacted B

2826 Dynaverse - Spectate does not work B

2841 Campaign Screen - All races should begin equally allied to Neutral Hexes B

2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map B

2869 Dynaverse - Enemy AI kills fleet member AI - Defeat with prestige B

951 Dynaverse - AI does not team up properly in a Hex B

2023 Dynaverse - Able to join missions in old Hex after leaving for new Hex B

2953 SP - Klingon Campaign - Beginning Stardate is 112400.1, twice what it should be C

2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member C

2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking C

2624 Dynaverse Campaign Screen - Fleet leader is not clear C

2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit C

2058 Dynaverse - Cause of numbers appearing after player names in the chat box C

2119 New Conquest - Music stutters and pointer freezes loading new Conquest C

2701 Global - When AI forfeits it stays in the Hex C

2797 Hex information should appear in game display C

2880 Dynaverse - Borg cubes appear very infrequently in Shipyard C

2318 Tactical Sim - Visioneer opinion on buying Starbases C

1681 Dynaverse - Officer advancement text cut off in message board C

2452 AI doesn't know to go back to a repair station to repair hull C

2981 Dynaverse - Severely damaged AI attacks healthy players C

1790 SP - Tactical Sim - Able to click on map behind "Campaign Over" screen C

And now they are sorted.

Hold on to your secondary and
tertiary task lists. When you create
schedules that your developers can
accomplish, they will appreciate it and
respond with timely execution. It is
common for them to be excited and
push themselves to see how many of
the secondary and tertiary tasks they
can pick up. See the next chapter on
task tracking for more tips on how to
keep your team humming along.

If you were conservative with your
original labeling of core and secondary
tasks and you did have a surplus of
time, or if you had a surplus of time
with part of your development team,
then now is the fun time of piling on
your secondary tasks until you are out
of time with your resources. Use the
detailed task prioritization method on
the secondary tasks if you are having
trouble deciding which of the secondary
features you will implement.

Task Dependencies

Creating the schedule is not too bad so
far, is it? Painful decisions about what
will be a core task and what will be a
secondary task is about the only

difficult job. A rather tedious job, I
admit, entering tasks into Project, but
mechanical and straightforward. Project
planning enters a new level of complex-
ity when task dependencies are taken
into account. Task dependencies
develop when one task depends on the
completion of another task. A great
example is all of your production tasks
should be dependent on the completion
of the preproduction milestone. After
you have entered all your zero-level
and core-level tasks (as well as any sec-
ondary tasks you found time for) you
will now need to draw dependency lines
between tasks that are truly dependent

on each other. In Microsoft Project
there are two easy ways to link tasks:
One is to draw a link between two
tasks by simply left-clicking on one
task and dragging the pointer to
another task and letting go. The other
method is to simply type in the task ID
number in the Predecessors column.

JARGON: Dependent tasks are two
tasks that are linked such that work on
task B cannot start without the comple-
tion of task A. This makes task and
resource leveling more complicated.

172 Chapter 10: The Project Plan

An example of linking tasks

Try not to link too many tasks; specifi-
cally, link only tasks that are dependent
on each other. Some people, out of
frustration with Project’s leveling algo-
rithm, start linking all kinds of unre-
lated tasks to get their project to flow
in time the way they plan for produc-
tion to follow. In other words, do not
use the task dependency links to estab-
lish task priorities. Microsoft Project
has a field for task priority for every
task entry. Now run the Project level-
ing tool; if you are very lucky, all of
your tasks will politely level out and
none of your developers will be over-
scheduled due to the task dependencies
you entered.

Most of the time, however, entering
task dependencies will cause one or
more of your developers to go over
schedule. Now you will earn some of
your salt; this is an area where it is dif-
ficult to give general advice that will

apply to your specific overallocations
due to dependencies.

You first need to study the Gantt
chart and the resource usage charts to
understand what your dependency
problem is all about. In all cases your
developer was okay before the depend-
encies were drawn in from the earlier
stage where you determined the
zero-level and core tasks. So looking
back up the chain of tasks you will see
one or more tasks that are holding up
the show for your overscheduled devel-
oper. This will create a pocket of free
time for this same developer earlier in
the schedule as he is stalled waiting for
work. Now the most elegant solution
would be if the work he is waiting for is
something he could do himself; then
you can simply assign it to him and fix
the dependency problem. And in turn
you will need to take some other work
off this developer and exchange it with
the original developer who was the bot-
tleneck before.

Chapter 10: The Project Plan 173

Setting the priority level of a task from 0 to 999

The resource usage screen; the red numbers indicate an
overallocated resource.

The resource usage report shows holes and gaps indicating a problem of one resource waiting on another.

The gaps filled by task reassignment

If exchanging and rearranging tasks
still leaves you with a pocket of dead
time and a later overallocation of one of
your developers, then you will have to
trim off the overallocation and bring up
a secondary task to fill the void. That
will be the best you can do if all other
efforts to exchange, rearrange, and dis-
tribute the overallocated tasks fails.

The Top Ten Risks DocumentThe Top Ten Risks Document

By far the schedule is the major deliv-
erable of the project plan, but there is
one more document that is critical: the
top ten risks document. For this docu-
ment enumerate the ten most signifi-
cant risks to the project. Choose only
ten items; a longer list will lose its
focus. With each of the risk items also
list what actions you have taken or will
take to contain or address the risk.
Hopefully you will be able to create a

positive solution to each of your risks;
however, that is not a requirement.
The important thing is to create a
short, focused document with one
through ten of your risks that you can
share with your executive management
and with your development team.

This document should be main-
tained with delivery of each of your
development milestones from
preproduction to the game’s release.
You will then see a much greater
awareness from your executive man-
agement of the risks, and you should be
able to address these risks with more
energy. In fact, these short top ten risk
documents are the most effective way I
have found to communicate to my
executive management just how much
I need something: another programmer,
two more artists, or timely audio asset
delivery.

174 Chapter 10: The Project Plan

The Gantt chart of the fixed schedule

DATE: 3/1/02

Rank Risk Effect Solution

1 Mission design slips slip Finalize Missions ASAP

2 User interface design slips slip Finalize UI ASAP

3 QA resources added late to the project low quality, slip More QA Resources earlier

4 Voice-over assets delivered late slip Finalize dialogue ASAP

5 Feature creep slip Stop adding features

6 Late solicitation to beta testers slip Submit to beta testers earlier

7 Server stability low quality Create testing tools

8 Design process overly distributed washed out quality Reduce number of authorized designers

9 Overextended use of overtime slip, low quality Address slip issues

10 UI overcorrected for mass appeal lack of distinction Fewer designers

A top ten risks document

The Non-Zero Chance of Delivery

At the end of the day your job as the
project planner is to create a plan for
how long it will take to get the job

done, not the earliest possible date with a

non-zero chance of delivery.

Chapter 10: The Project Plan 175

This page inten tion ally left blank

Chapter 11 > > > > > > > > > > > > > > >

Task Tracking

Production Begins—Now What?

Congratulations! You have made it
through preproduction, your project is
approved and funded, now all you have
to do is follow your plans and make

your killer game! This is a short chap-
ter on how to track the completion of
tasks and how to get the most produc-
tivity out of your team.

Task Visibility

You cannot just print out copies of your
Gantt chart then surf the web for a year
while your people make the game. This

will not work. Even if you made the
most professional Gantt chart ever,
printed out in color and spiral bound.
Passing out these project binders to
everyone is an excellent idea, but if that
is all you do to make your developers
aware of their tasks and their team’s
tasks, then you will fail to get anywhere
near your team’s full production poten-
tial. I am not saying people are inher-
ently slothful, no, quite the opposite—
almost everyone I have met in the
industry prides himself on his ability to
work hard under a crunch to produce a
hit game. It is just that left to their own
devices, your folks will probably work

on what tasks are most interesting to
them unless they are reminded of
where they are on the schedule and
where everyone else is on the
schedule.

The key is to make the tasks visi-
ble. Team members need to know in
detail what they should be doing, and
they need to know how the work they
are doing correlates with others on the
team. They need to feel a part of the
team and share a sense of urgency to
get the job done. As tasks are com-
pleted it should be communicated as
quickly as possible to the rest of the
team to give them a sense of the pulse
of the project. I have some specific
techniques to share with you to achieve
strong task visibility.

The Wall

I have an effective, low-tech way of get-
ting task visibility out to the team
members: I print out the Gantt chart
and/or task lists and pin them up on a

central wall in our workspace. Software
solutions such as Microsoft Team Man-
ager and intranets to publish your
schedules and tasks are distinctly

Chapter 11: Task Tracking 177

unsatisfactory for two reasons: One,
your developers need to remember to
even open up the document or visit the
site, and two, monitors are too small to
show a whole Gantt chart, denying your
team the appreciation of the project
progress as a whole.

It is easy to print out your schedule
and pin it up. I recommend just display-
ing task name and ID, start time, end
time, who is assigned to it, and any pre-
decessor tasks on the left-hand side
and the Gantt chart on the right-hand
side. You should use the widest time
setting you have wall space for; when a
schedule is scrunched up into just dis-
playing quarters or months on the
Gantt window, you are not getting any
real-time information.

Now I make a requirement to my
developers that they come out to the
Gantt chart and mark the tasks off
themselves. I do not mark them off
even if I know they have been com-
pleted. This is to get the developers to
come out and find their place in the
schedule, mark off with a bit of pride
what they have finished, and then look
ahead to see what is coming up. Devel-
opers will almost always take the time
to then look over the whole schedule to
gauge how are they doing compared to
other team members.

When I first started using this
method of task tracking it was consid-
ered somewhat controversial. Some
people asked me privately if this was a
good idea. If someone were not accom-
plishing his tasks on time, would it not
be demoralizing for him if this were
made public knowledge? Would not that
developer feel more comfortable stay-
ing in his office and explaining privately
why he is behind in the schedule? Bah!
My first assumption is that everyone

on my team is a professional, and even
on an off day all would want to be
treated as professionals. Why would
protecting their comfort be of higher
importance than getting our tasks done
in a timely manner? If people are task-
ing late, they must have a reason. Was
it illness? Jury duty? Task underesti-
mation? Were they distracted helping
another team member on another prob-
lem? All of these are legitimate reasons
for being late and certainly nothing to
cause embarrassment or discomfort.
On the other hand, if they are late
because they were just goofing off, then
I feel comfortable making them squirm
in front of their other team members
and letting them know they have let the
team down. Knowing that the whole
team is aware of what they are and are
not getting done goes a long way to
inhibit goofing off.

A healthy bit of competition devel-
ops with a good wall. Assuming your
schedule was a sane schedule and man-
ifestly fair in the time allocated to the
tasks to be completed, your team will
be in a high morale state to begin with.
I use brightly colored highlighting mar-
kers to mark off the tasks. Your devel-
opers will come out at the end of the
day to mark off what they got done then
look ahead for something simple to do
before they go home—bam! Another
task is taken care of! This competition
effect will give extra momentum to
your whole project. It will give your
developers a meta-game to push them-
selves, and they will enjoy it.

Another benefit of the wall is that it
makes a great piece of visual feedback
to the executive management team.
They look over the wall and see all the
marked-off tasks spanning 25 square
feet of wall space and nod to them-

178 Chapter 11: Task Tracking

TE
AM
FL
Y

Team-Fly®

selves and move along. Do not under-
estimate the importance of reassuring
your management that you are respect-
ing their time and money and are mak-
ing measurable, steady progress. If you
are working in a large studio or in a
publishing house, the other teams will
see what you are doing and think you
are obviously trying to get attention. So
what—you are trying to grab manage-
ment’s attention. There is no glory in
obscurity.

Encourage your team members to
go ahead and write any unanticipated
tasks they had to complete onto the
wall’s task lists. This will help team

members who might be falling behind
in tracking due to being sidetracked by
tasks that were not originally on the
schedule. While it may seem crude to
scrawl new tasks on the list, it is legiti-
mate. You are after the maximum
visibility for all tasks, not just the ones
you were smart enough to think of
earlier.

When the time comes to update
the schedule, the wall charts with the
new tasks written on it and the com-
pleted tasks marked off will come in
handy. Just tear it off the wall and bring
it to your workstation where you have
Microsoft Project.

Journals

I have a background in engineering, and
while in school we were introduced to
the value of a journal to record actions,
observations, and data from the lab.
The idea is that no effort you make
should be unworthy of record. While I
admit that when we make a game we
are not building a skyscraper or a
transorbital spaceship, we are still cre-
ating something important and we
should take every care we can on the
execution of our game projects.

The Cult of the Yellow NotebookThe Cult of the Yellow Notebook

For the last seven years I have been
using yellow notebooks that are about
5" by 8" inches and feature lined paper
on one side and quad-ruled paper on
the reverse. This format allows me to
track micro-tasks and thoughts on the
lined side, and use the graph paper for
game designs, user interface layouts,
and technical designs. I have this

notebook open as I work, taking notes
whether I am working at my worksta-
tion in Photoshop, MS VC++, Project,
Visio, Excel, or simply Word. I also
take my journal with me to every meet-
ing to record what I need to do and
what I need to follow up with. On a
shelf in my office are the 40 or so note-
books I have filled so far in my career.
These yellow notebooks are a staple
that we purchase for all of the employ-
ees at Taldren, and we have an ample
stock for when people fill theirs up.

I am passionate about these note-
books because I have seen countless
small tasks fall through the cracks in
our overburdened minds—such a waste
that the simple act of note taking can
fix! About once every two to four
weeks I go back through my pages to
search for tasks I might have failed to
address, and I pull them forward into a
new checklist.

Chapter 11: Task Tracking 179

Walk Around

There is no older and simpler method
of task tracking than simply walking
around and seeing how people are
doing. I try to carve out an hour or two
every day to walk around and meet
with the individual team members to
see how things are going. At this pace I
would visit everyone in the company
two to four times a month. This lets
people know their work is important,
and the human connection really shows
you care about getting a great game
done. When the project hits a tough
spot you will find that you want to stay
in your office and focus on the burning
fires. But it is when the times are
smoky that you should make the extra
special effort of visiting with your team
members. Also be aware that no matter
how much you like everyone on your
team, there will naturally be some

personalities that you enjoy spending
more time with than others. Some peo-
ple might feel slighted so be sure to
visit all of your team members, not just
the ones you like to talk to.

Often it is by walking around that
you discover that tasks you thought
were the clear responsibility of one
developer have been conveniently rele-
gated to the no-man’s land between two
developers and have dropped to the
floor. This is a great time to clear up
such misunderstandings and get these
tasks properly assigned. If you ask the
right questions and remain approach-
able, these walkabouts will also turn up
the deeper concerns your team mem-
bers might have felt too uncomfortable
bringing up in some other forum or
method. Keep your ears and eyes open
and talk to your team members.

Milestone Orientation Meetings

Another useful technique I have found
is to kick off each milestone iteration
with a milestone meeting to review
what everyone is tasked with and what
the associated expectations are for
their work. I did not start this cere-
mony until just this year; however, each
time I run the meeting I am amazed at
how many misunderstandings we are
actually carrying around, and this is on
a project that has received our most
detailed preproduction to date!

At these meetings I simply keep
everyone in the room as I go through
the features and tasks one by one and
get a verbal discourse back from the
responsible developer to be sure they
understand what they need to do and to

give them a chance to request clarifica-
tion. They will also get full visibility for
what they need to accomplish in front
of the whole team; this goes a long way
to fight the impression that so and so
does not have much work to do.

Praise People PubliclyPraise People Publicly

I also take the time to praise individual
team members at each of these meet-
ings—not necessarily everyone—but I
do try to keep a running tab of who is
due for some recognition. While no one
I know would admit it, I think receiving
praise and recognition from your team
and supervisor is a great morale boost,
and the lack of praise and recognition
can be a significant drain on morale.

180 Chapter 11: Task Tracking

There are good books devoted to how
best to reward your employees with all
sorts of clever ideas from silver

nameplates to holiday turkeys, but I
think the best is a public thank you.

Maintain the Gantt Chart

By far the least fun part of project man-
agement is updating the Gantt chart.
As you sit in front of Microsoft Project,
none of the tasks will seem to have
been completed on the days you
planned. And so if you simply check off
tasks as they are completed, you will
be left with a schedule that is full of
hard-to-move completed tasks that
indicate they were completed on the
wrong day. These blocked off dates will
not be used in subsequent leveling
operations, and soon your schedule will
look like a mess.

No matter how tedious it is, do not
put off maintaining your schedule for
longer than a month. I have slacked
myself and have regretted it every
time. It just takes too much time to
repair a badly out-of-date schedule.
When a schedule is really in bad shape I
sometimes just start a fresh Project
file.

The latest version of Microsoft
Project does have one simple new fea-
ture: It lets you move completed tasks
back and forth in time! A minor mira-
cle, I tell you. In the older versions you
would have to unmark a completed
task, move it to the time it was com-
pleted (or at least out of the way of the
current task leveling concern), and
then remark it as complete. This only
made a tedious job twice as hard as it
needed to be.

Take the time to enter in com-
pletely new tasks that your developers
have taken the time to write on the
wall. Also take a close look at any open

tasks that are refusing to complete
despite one of your developers working
hard on the task. My bet is that if you
look under the hood of that task, you
will discover it is composed of multiple
tasks, some of which have been com-
pleted. Take the time to break up this
task into its component parts and give
your developer credit for what has been
accomplished. Quite often your devel-
opers will tell you that this or that fea-
ture is 90 percent done and that they
clearly had to move on to more press-
ing tasks for fear of causing stalls in the
project. Their judgment is almost
always correct in that there was little
profit in having them polish up some
feature to true shipping quality when
there are others waiting for them to
finish something else. This is the same
as a task that is really composed of
subtasks. In this case the subtask is
that final 10 percent of polish on the
radar, which is unimportant to solve
now. Take that 10 percent polish task
and enter it into the schedule; just put
it further down in time to when you
really will take care of the polish task.

For larger projects I strongly sug-
gest you delegate to your section leads
the input and maintenance of their part
of the schedule. This will help them
grow a valuable task, and it will help
you keep your job sane. To facilitate
this I favor using a tree of inserted
Microsoft Project files so that each
developer can work on his section of
the schedule. I discuss this in detail in
Chapter 20.

Chapter 11: Task Tracking 181

Update the Risks Chart

Rounding out the task tracking set of
duties is to update the risks chart: Take
the time to review your Gantt chart; is
it indicating a new problem down the
road? Are the artificial intelligence
tasks tracking? How is the mission
editor? How are the art assets coming
along? How is the testing of the multi-
player code coming along? Ask yourself
these types of questions as you review
the Gantt chart to see if a new risk has
developed or perhaps an older risk has
risen in priority. Also take a look at the
old risks; have some of then lessened
in importance or have they faded away
altogether? Some new risks may be
introduced from your walks around the
team or from a daily journal type mech-
anism or simple email from your team
members. Also take the time to review

what you are expecting from your
third-party vendors. Are they on time?
The true impact of a risks document
only comes into play when it is main-
tained like the project schedule. Be
sure to visit with your executive man-
agement and apprise them of the latest
risks. Post these risks in a public place
so that all of your team can review
them and have an opportunity to
respond to them. After all, taking the
time to discover your risks is a good
idea, but sharing your risks with the
rest of the team and management is
key to getting focus on the problems.
Of course occasionally you may develop
a risk that is personal in nature and is
not fit for wide dissemination. Use your
common sense and discretion when
choosing what to post on a wall.

182 Chapter 11: Task Tracking

Chapter 12 > > > > > > > > > > > > > > >

Outsourcing

Strategies

Why Outsource?

Many talented folks can be involved in
medium to large game projects from
the obvious artists and programmers to
writers dedicated to dialogue, to motion
capture actors, to voice-over directors,
to quality assurance leads. Artists and
programmers perform the bulk of the
labor on a game project, with these
other specialized tasks occurring for
relatively short blocks of time in
midproduction.

As can be seen readily in this diagram,
a single game project team requires
full-time work from the artists, pro-
grammers, design, and management;
however, the audio, dialogue, voice-
over, motion capture, and other

specialized tasks do not occur as a
steady task across the whole project.
This means that to be efficient in the
employment of these folks with special-
ized game development talents, we
need to either be a large development
house with many game projects in
simultaneous production, or we need to
outsource this work to third-party ven-
dors who will execute these production
tasks under our direction. Otherwise,
audio and other specialists who cannot
be gainfully employed across the dura-
tion of a single project would cause a
financial burden on our projects.

Most game developers would much
prefer to have generous budgets in
order to hire in-house all of these
experts and be able to work more
closely with them to achieve the high-
est level of quality possible. There are a
couple of problems with this approach:
First of all you are burning prodigious
cash whenever you cannot task them
directly to your game project; when
they are independent contractors you
only pay for the work you need to get
done. Second, it is difficult to find
excellent people to fill these positions.
The higher the quality you are looking

Chapter 12: Outsourcing Strategies 183

Layers of game production—games are software
with toppings.

for, the more likely the individuals
would have risen to a key position at
another developer or third-party pro-
duction house or may even be the
owners of their own production house.
In short, it will take your organization a
long time to build up the financial
strength to employ multiple teams and
find and retain excellent people for the
non-core tasks.

Almost all organizations outsource
to some degree; most publishers out-
source game development to developers,
and even those that internally produce
their own titles outsource a multitude
of tasks such as disk manufacturing and
payroll management. Now, what are
some good strategies and tasks to keep
in mind when weighing outsourcing?

When to Think About Outsourcing

Your outsourcing plan, which describes
what work will be outsourced, by what
contractor, by what date, and for how
much money, should be determined in
the earliest parts of preproduction, ide-
ally before the final budget of the
project is decided. There is a natural
tension here. The project needs an hon-
est preproduction phase to figure out
what tasks need to be performed and
who can perform them. Many times we
are creating new technology, and it will
take a bit of experimentation to figure
out how a particular kind of asset will
need to be created. All of this planning
will take a few people a couple of
months—varying widely depending on
the size of the project—which means
this will take money. However, the way
game projects work is that the pub-
lisher and developer have to come to
agreement on what the final budget will
be before any money is spent on the
project. This requires an unpleasant
choice for the developer: Either work
without compensation during the
preproduction phase to be able to rigor-
ously determine the costs or enter into
a fixed bid agreement with the pub-
lisher and then figure out how much the

project will cost. It is this tension that
is a major source of business frustration
in the industry and is the root of a con-
siderable lack of profit for all
concerned.

That is why I have dedicated such a
large portion of this book to introducing
outsourcing in all of its various forms.
Experienced game developers make
better educated guesses on the costs of
various features and assets due to hav-
ing been there before. Too often a
project manager will arbitrarily budget
X dollars for voice-over work and Y dol-
lars for music, only to find that music
requires more money and that the
voice-over could get by with less
money. This is fine if you catch this dis-
crepancy before you approach either
the music contractor or the voice-over
director, but it is awkward indeed if you
have already signed a contract with the
voice-over director! This chapter only
introduces outsourcing; several chap-
ters in Part IV are each devoted to a
particular type of asset for outsourcing.
I hope to provide material for you to
take advantage of so that you can begin
planning your music needs as soon as
possible on your project—before the
entire budget parameters are fixed.

184 Chapter 12: Outsourcing Strategies

What to Outsource

In short, you should outsource tasks
that are not your core competency
and/or are needed for a short period of
time in your project. In other words, if
your organization is weak at something,
hire someone good to do it for you.

Do Not Outsource Programming—Do Not Outsource Programming—

Exceptions NotedExceptions Noted

A big exception to this rule is the pro-
gramming. You should never outsource
your programming tasks on a game pro-
ject. A game is software and if you do
not have the expertise to create the
software, then you should hire the pro-
grammers for in-house production. If
you do not have programmers on staff,
you should not be making a game; make
what you are good at. This is why a lot
of publishers have outsourced game
development; it is the most difficult and
risky part of publishing games, and so
they have externalized those risks to
game developers. Almost all organiza-
tions can find a bucket of useful work
for programmers to perform year
round.

Occasionally I have heard of pro-
jects where the map editor, the video
compressor, or some other modular
tool-like portion of the project was
outsourced to an independent program-
mer. This may work and is more likely
to succeed the closer this task is to
being modular and having few interde-
pendencies with the game’s develop-
ment. This works especially well when
you are not prepared to staff up and
increase head count to perform this
minor amount of programming.

Much more controversial is the
outsourcing of the multiplayer portion
of a game project. The several exam-

ples I can think of where the multi-
player was outsourced all ended with
abysmal failure due to a lack of commu-
nication between the core team and the
multiplayer team, as there are just too
many interdependencies between
multiplayer and single player to suc-
cessfully outsource this area. The only
exception that comes to mind is the
case of Return to Castle Wolfenstein,
an amazing game produced by id Soft-
ware and developed by Grey Matter
with the multiplayer portion of the pro-
ject developed by Nerve Software. This
worked well because Grey Matter was
working with id Software’s solid Quake
III engine and could focus on the con-
tent creation. Likewise, Nerve had the
same solid engine to work with and
could work on multiplayer parts of the
game without needing constant com-
munication with Grey Matter. Thus,
the work was modular and there were
no awkward dependencies between the
two projects.

Taldren has outsourced a couple of
programming projects: We have had
external folks create missions for
Starfleet Command II, and we have had
folks create a ship editor for SFC II. For
the missions, it did not work out well
because the scripting API was still
being developed internally when we
had to get started making scripts (a
dependency). For internal teams this is
not that big an inconvenience and hap-
pens on most projects; the engine
development and content creation
stages are often overlapping (it is, of
course, much better to complete your
engine before content creation starts).
In the case of missions, we had to have
more communication with the external

Chapter 12: Outsourcing Strategies 185

mission programmers than was effi-
cient, and we had to perform significant
maintenance on the scripts later in the
development cycle. The ship editor
project worked out better because the
folks came forward with a functional
prototype of what they wanted to do
and just wanted an okay to move for-
ward on what was essentially their own
independent project.

On Outsourcing ArtOn Outsourcing Art

Art would have to be the next area I
would be reluctant to outsource from
my core development team. The out-
sourcing of art is probably the oldest
and most well understood of the tasks
to outsource. In the days when a single
programmer was all that was needed to
challenge the modest hardware, it was
common to find an artist buddy and buy
a month or two of art from him. Now
most games have their own internal art
teams to produce the required art for
the game. There are, however, common
exceptions.

Movies, Cut Scenes, or Full Motion

Video

The most commonly outsourced art
tasks are movies in a game. These
movies are sometimes called cut
scenes, in-game cinematics, or full
motion video (FMV), depending on the
technique used to create the movies
and the role they play in the game. The
reason movies are most commonly
outsourced is that movies are a labor-
intensive process that generally
requires building assets in a format and
of a higher quality than the game’s
engine and using tools and techniques
that are not applied in the production of
assets for the game itself. Large

development houses such as Blizzard
and Square have developed very large
and internationally recognized movie
making teams.

Sideways Comment on Large Movie

Teams

Again, you should outsource when you
are contemplating work that is beyond
your core competency or it would be an
overall financial burden to staff up for
this work. In the case of Blizzard and
Square, both organizations have
enjoyed so much historical success that
they could easily afford to employ
in-house movie teams. This allowed
them to create movies that the rest of
the game industry can only envy. There
is a significant drawback to having a
killer in-house movie team of such
power—it needs something to do.

How do you outsource a movie? This is
discussed in detail in Chapter 32. I will
merely outline the process here. To
prepare for outsourcing a movie it is
best if your team has a competent
storyboard artist who can communicate
all of the scenes, actions, and assets
that will be required in making the
movie. If you lack a sketched story-
board, create one with just words.

Take your storyboard to a number
of movie houses and ask them to
respond with a fixed bid to perform the
work. Be sure to define clearly what
work you want them to perform. For
example, if you want them to create a
silent movie that you will later take to
an audio house, specify that, or they
might include audio in the quote. Also
explicitly indicate if you will supply any
of the models or other assets featured
in the storyboard; otherwise they will
assume they are to create these
models.

186 Chapter 12: Outsourcing Strategies

As the movie houses are respond-
ing to your bid request, follow up with
their supplied references and ask peo-
ple who have worked with them before
if they are satisfied with the work
performed.

In the end you will need to choose
the movie house based on your own
business parameters: fast, cheap, or
high quality (which two of the three do
you want?). Maybe one of the movie
houses can do the work for you in a
rush as you need, but at a steep price.
Perhaps another has a key art director
that you know will nail the movie and
you are willing to pay her fee. Or per-
haps there is a movie house with a
substantial hole in their revenue stream
and they are willing to offer a deep dis-
count to keep things flowing. In the
end, never grind so hard that you only
force them to come back and ask for
more money or to underperform the
work to get by.

3D Models—Modeling

Almost all modern AAA games are 3D
games: shooters, strategy games, role-
playing games, and adventure games.
The hardware is just so capable that it
is pretty much uncompetitive not to be
a 3D game. Most game development
companies will have their own internal
staff of 3D modeling artists. However,
your project may be particularly 3D
model intensive and you prefer to
outsource than staff up, or you may
simply be late and you need some extra
modeling bandwidth to accomplish your
project’s goals. Or perhaps your devel-
opment organization is relatively young
and does not yet have 3D modelers in
house; in any of these cases outsourc-
ing your models would be a good idea.

How do you outsource a model?
Models tend to outsource well because
it is relatively easy to specify what you
are looking for by way of a sketch and
some technical details like poly count,
and models are modular and largely
have no dependencies on any other
aspect of the project. Finally, it is fairly
painless to inspect a model for
completeness.

Approach several art houses with
concept sketches of your model—
spaceship, racecar, or whatever you
need modeled—and provide a complete
technical description of the format you
need your model delivered in. Consult
your own art director and graphics lead
to determine if your models can have
only triangles or if quads are okay.
Determine poly count, and in addition
to being textured, specify any other
assets such as a damage layer, luminos-
ity, or specularity. What file format—
3D Studio Max or other? Write all of
this up and include other parameters
such as required delivery date and send
it out to the art houses you have
prescreened based on the portfolios and
references they have sent you.

Finally, as stated above, you must
select your modeling team based on
who is the best fit to your business
parameters: fast, cheap, or high quality.

In Chapter 32 I will go over this in
detail and provide a list of modeling
houses for you to contact.

Animation and Motion Capture

What good would having a fleet of static
character models be? Not much—that
is why we invented character anima-
tion. Roughly speaking, characters can
either be animated by hand, using what
is called key framing, or the motion can
be captured from the movements of a

Chapter 12: Outsourcing Strategies 187

live human, called motion capture. In
practice, almost all motion capture
involves manual animation techniques
to smooth out the noise in the data cap-
ture to achieve final quality motion as
well as to create secondary motions
such as facial expressions and hand
gestures.

A key decision to make is whether
you are exclusively key framing or are
using motion capture. Motion capture
will tend to produce more natural look-
ing, realistic movement, usually also at
a greater cost than key framing. Key
framing, on the other hand, may be
better for your game if you are looking

for unrealistic movements such as a
game featuring cartoon characters or a
game about non-human animating char-
acters. I provide a deeper discussion
on the pros and cons of outsourcing
motion capture in Chapter 33.

User Interface Art

How about outsourcing your user inter-
face art? I have strong feelings about
outsourcing your UI art. In short, don’t
do it! UI art is one of the most intimate
bits of your game’s art. It is the UI art
that will need to be tweaked many
times all the way through alpha and
beta to get it just right and to accommo-
date new features and changes to
existing features. There is almost no
way I can see a contract to outsource
this work; it is simply unfair to keep
asking an artist contractor to revise
over and over again the UI as the game
progresses. Also, the changes in UI
tend to be small and incremental and
require an inordinate amount of com-
munication between the programmers,
designers, and artists to get right. An
out-of-house artist would have to make
far too many visits onsite to make this

work practical. It takes game program-
mers, game artists, a designer, and a
producer to call yourself a game devel-
opment team. Without someone
representing all four of these key posi-
tions, you should not make games.

All of these warnings aside, I did
successfully outsource the UI art on a
gambling game that I ran back in 1997
when our game development house
lacked art bandwidth. To address this
we created what is fondly referred to as
“programmer art” throughout the
industry and kept on tweaking that art
until we had exactly the functionality
we needed. Then I turned that over to a
great guy, Bradley W. Schenck, who I
am happy to say is now one of my
employees.

Audio

Audio assets, on the other hand, are an
excellent and time-honored set of
assets to be outsourced. Audio does not
take as long as programming and art to
complete. Each of the three major
types of audio assets—music, sound
effects, and voice-over work—require
considerable talent, experience, a spe-
cialized toolset, and often contacts with
other talented folk such as cello players
that the rest of us do not regularly
maintain (or at least I do not).

Music

Music is almost always outsourced, and
only the largest of studios choose to
keep a staff composer on hand. Keeping
a composer year round would take an
extraordinarily versatile composer as
well as at least six major concurrent
projects. Highly talented and skilled
composers are readily available, and all
the composers I have met are rather
technical people quite interested in

188 Chapter 12: Outsourcing Strategies

TE
AM
FL
Y

Team-Fly®

game work and willing to deliver their
best to make the gaming experience
the strongest possible.

The first step is to contact a few
reputable composers and discuss the
vision for the game project with them.
Usually, people look into music for their
game after a lot of work for the game
has been completed. When that is true,
it is useful to provide a tape of the game
to the composer for review. You have to
outline to the composer your total bud-
get for music including post (unless you
are taking care of postproduction your-
self). Detail how many minutes of
music you are looking for and how you
would like to break down the music in
terms of themes. For example, in Star
Trek games we often create a Federa-
tion theme for when the player is
playing as the Federation as well as
themes for the other playable empires
such as Klingon and Romulan. Themes
are also broken into victory, defeat, bat-
tle, and suspense music. If you can,
supply your candidate composers with
some CDs of music that illustrate what
you are looking for; this is as effective
as providing a storyboard to illustrate a
proposed movie.

Your candidate composers should
then go away for a week or two and
give your project some deep thought.
They should then come back to you and
give you their proposal of how they will
approach the project: number of min-
utes and whether or not they will per-
form the music electronically or have
live players. If they will have live play-
ers, they should articulate how many,
the instruments, and the proposed
venue for the live performance. As for
providing a demonstration of the work,
it could go two ways: First, the com-
poser could deliver a small snippet in

electronic form; second, he might pro-
pose that a palette of new sounds be
created before any actual composition
work is performed.

Review the proposals and go with
the composer you feel has been most
responsive to your game. This is all dis-
cussed in detail in Chapter 28.

Sound Effects

Sound effects are another excellent set
of assets to outsource. To effectively
outsource this work, you must have a
very good idea of the number of sound
effects you are looking for and a strong
description of each sound. The game
developer creates a cue list of all of the
sounds, indicating which ones loop and
which do not, stereo or mono, bit-
depth, and sample frequency.

Ideally, all of the in-game animation
that corresponds to the sound effects
should be complete (or complete as far
as timing) with videotape of each of
these animations available for the
sound effects engineer to review while
making the sounds. If you do not have
the animations, then there will be a
needless amount of revisions and the
sounds will ultimately never quite fit
the animation.

With your cue list and animation
clippings in hand, select three different
sounds that should test the range and
versatility of the sound engineers. Send
out the business parameters, time of
delivery, budget, and delivery format as
well as the entire cue list, and highlight
the three sample test sounds you would
like to hear from the sound engineers.
If you send it out to half a dozen folks,
you will probably end up with one or
two who perform two of the sounds
well and two or so who perform one of
the sounds really well, and the rest just

Chapter 12: Outsourcing Strategies 189

miss. Now comes judgment time. After
getting it down to three or so choices, I
go with professionalism: Which engi-
neer made the best impression to work
with? And finally, I get whomever I
select to listen to the sounds another
engineer might have done better in a
particular case to better illustrate what
I was looking for. The process of
acquiring sound effects is detailed in
Chapter 30.

Voice-Over

Almost all voice-over work is out-
sourced to some degree as very few of
us make strong voice actors. Most top
games these days employ SAG talent,
and often quite high-profile stars are
used. Voice-over work involves six
roles: the talent, the director, the stu-
dio, postproduction, the producer of the
voice-over work, and the game design-
ers who specify what lines are needed
in the game.

I recommend using a full-service
voice-over house. The game designer
wants to focus on designing the game,
not filling out SAG union paperwork,
finding studio time, and organizing the
VO sessions.

Your job, in my opinion, is to design
the game and come up with a VO script
for all the actors in your game, not han-
dle all of the mundane tasks associated
with VO production. However, there
could be the odd case where you have

the right facilities or the job you need
done is so small that it makes sense to
do it yourself. (I just have not seen a
job too small to have it done right.)
Chapter 29 discusses voice-over pro-
duction in detail.

What Else to OutsourceWhat Else to Outsource

Of course there are a few other types of
work that could be outsourced. For
example, if you are self-publishing
something and want to sell direct to
consumers, you should look into elec-
tronic software distributors and
outsourcing your credit-card-taking
activities.

Outsourcing web site design makes
sense only if your team lacks both art
and web skills; however, a web site
design is usually well within the grasp
of a game development team. Out-
sourcing the web site hosting makes
good sense, and there is a wide variety
of vendors available; the services are so
standardized that it has become a
commodity.

I have seen a few businesses
advertise themselves as software test-
ing labs. While I do believe they will
perform very rigorous testing, I do not
believe there is a good market for these
folks to exist in—the ones I know of
have failed. I believe you as a developer
will need the facilities to test your own
game, and any strong publisher will be
sure to test your game.

190 Chapter 12: Outsourcing Strategies

Chapter 13 > > > > > > > > > > > > > > >

Shipping Your Game

Shipping Is a Phase

Shipping a game is not a point in time
where the game goes instantly from
production to a shrink-wrapped product
on a shelf at Electronics Boutique;
rather it is a process and a phase of the
project. Arguably all of the game devel-
opment process is in support of ship-
ping the game, so shipping starts at the
achievement of alpha with the team
taking a feature-complete game and
trying to make it the most polished
game they can before the last final can-
didate is burned and turned into a glass
master.

Great games truly become great in
the shipping phase, and the masses of
mediocre and almost-great games settle
into mediocrity in the shipping phase.
Sometimes the challenges are just too
great to save a mediocre game in the
shipping phase: too many bugs, devel-
opment overran its time budget, the
game’s vision has been misplaced.
Indeed all of the previous material in
this book was set down in the earnest
hopes of setting your game up for the
greatest degree of success.

How Do You Ship a Great Game?

There is one way I know to guarantee
shipping a great game: Simply play your
game (and have others play your game)
and keep fixing bugs, correcting flaws,
tweaking balance, and performing
wholesale changes to your game until it
is the most fun, addicting game avail-
able. You will see your total dedication
to gameplay and quality well rewarded
with appreciation from your fans, criti-
cal acclaim, and probably strong sales.
There is a large downside to this
method though: You have no way of
anticipating how long it will take to fin-
ish your game. Without that knowledge,
marketing will not be able to put
together a marketing plan, the sales-

people will not be able to sell your
game into stores with early strength,
fans will become frustrated waiting for
the game, the game magazine cover
that was so precious a year earlier is
forgotten, the publisher may choose not
to have an open checkbook, and finally,
the ultimate sales of the late but great
game may not support the additional
time and money spent on the project.

In short, working on a game
incrementally and without a plan until it
is well done is a risky method of devel-
opment, and only the top developers in
the industry are such bankable game
makers that they can routinely get
away with this strategy.

Chapter 13: Shipping Your Game 191

The solution to the dilemma of
quality versus timeliness can be solved
by continuously focusing your whole
team’s efforts and all of the resources
available to you to achieving the widest
bandwidth of play testing, balancing,
bug detection and correction, and being
as organized as possible in utilizing the
time you have to make a great game.
While a game is a work of art, the test-
ing and tweaking part of the project can

be successfully engineered. I do not
claim that you will be able to fix all your
bugs, correct all the flaws in your user
interface, or actually be brilliant in your
game design and balance. I just claim
that I have some good suggestions for
using your shipping phase time to max-
imum effect. This chapter acts as an
introduction to QA on game projects
while Chapter 18 discusses QA meth-
ods in depth.

Alpha—Feature Complete

The industry standards for alpha, beta,
final candidate, first playable, and demo
vary from publisher to publisher, year
to year, and project to project. My defi-
nition of when a game achieves alpha is
when it is feature complete.

What Is Feature Complete?What Is Feature Complete?

It can often be painstakingly difficult to
decide if a game is feature complete. It
is easy to say that a first-person
shooter is not complete when the char-
acters are not yet taking damage, but I
would argue that if the texture artists
want to keep improving the look of a
level but the level is otherwise com-
plete and playable, then you have a
feature-complete level.

Additional Content

The gray area in my mind is what to do
when you have the game feature com-
plete, but you have some folks with
extra time on their hands who could be
used to make additional levels, models,
or missions for your game—pure con-
tent. Do you go ahead and create this
work after alpha, cut this content from
the final game, or delay alpha? After all,
alpha means that this is the first time

the complete game is together in one
place and is available to be played;
should we not feel comfortable adding
content to make the game fuller
between alpha and beta? I think the
answer to this question is feature spe-
cific; however, I have my own rule of
thumb: If the potential post-alpha con-
tent feature is very modular with no
dependencies on other members of the
development team, if the game could
ship without the additional content, and
this additional content will have only a
minimal need for testing, then I feel
comfortable allowing this content after
alpha. If this additional content would
require significant testing or creates
dependencies with other tasks, I then
have to determine whether it is a core
feature or should be cut.

Feature Trimming

If you are not quite done with your fea-
ture list but the anticipated date of
alpha is looming close at hand, you
should seriously consider changing the
rules and cutting features. How much
do you cut and how much do you move
your alpha date out? Answering this
question is why you are in charge. This

192 Chapter 13: Shipping Your Game

is an exquisite balancing act where you
measure input and influence from your
executive management, your team,
your fans, and most importantly your
inner voice and choose a path to alpha.
It is easy to say cut the features that
are secondary and trivial and push for
the features that are primary. How you
make these choices is the hard part.
For myself I line up all of the open fea-
tures in Excel (I seem to take comfort
in lining up features for the cutting
block when they are neatly laid out in
Excel) and just start calling out loud to
myself “core” or “kill.” After I have
made my list of cut features, I print it
out and take it to a team meeting.
There I announce the fate of the fea-
tures one by one with a stony, poker

face. My team has worked with me long
enough to speak up for a feature that I
have killed and attempt to make a res-
urrection. If they can make compelling
enough arguments to me and the team
to resurrect a dead feature, then they
must identify a feature I have desig-
nated to live as a lesser priority than
the feature they are arguing for and I
swap them. By coming to the meeting
well prepared, I am making an uncom-
fortable meeting—a meeting where the
topic is a group failure to realize fea-
tures—as comfortable as possible with
strength and direction. This is tem-
pered with the purpose of the meeting
where the team members review my
decisions and ratify the feature-cut
plan.

Testing Plan

Now that alpha has been achieved and
we have all of our features, it is time to
test the game. At the beginning of the
project we created a set of test cases
from our use cases and requirements;
now is the time to finalize the testing
plan.

Publisher QAPublisher QA

For almost all major releases the pub-
lishers assume formal responsibility for
the quality assurance of a game before
it is released. Some very small projects
have just a single tester, others have a
team of six testers led by a lead tester,
and some larger projects have dedi-
cated single-player and multiplayer
testing teams. Occasionally close to the
final push new testers will be rotated in
on a project to give the game some
fresh minds. Other significant mile-
stones such as alpha and beta may

enjoy the attention of a dozen or so
testers for a week or two to verify the
readiness of the game.

These dedicated QA teams are
usually the only folks who are
employed full-time to test the game.
They should be the major source for
bug detection and sometimes are
invaluable in getting deep coverage on
an elusive problem. These publisher
QA teams will develop their own fea-
ture checklist for your game, and they
will move around the feature list, test-
ing as they receive builds, and perform
full verification sweeps at a lesser fre-
quency. The list that this QA team
compiles will be considered the bug list
that the other sources of bugs and flaws
are added to. This bug list will be main-
tained in a database. Some publishers
roll their own solutions, and others
such as Activision employ a web-based

Chapter 13: Shipping Your Game 193

bug tracking solution called PVCS
Tracker. This QA team or a dedicated
team will also perform compatibility
testing for PC games to ensure that the
game runs well across the spectrum of
PCs from the minimum requirements
to the latest hardware.

These QA teams sometimes do a
great job, and sometimes they are unin-
spired in their testing of the game for a
variety of reasons. My complaint with
publisher QA is that as an industry, the
publishers consider the testing posi-
tions to be low skilled and low paying.
Of course, I understand how the execu-
tives at a publishing house would be
hard-pressed to have a more enlight-
ened view of their QA when a casual
analysis would show that you are look-
ing at people who are very young, at
the beginning of their careers, who are
getting paid to sit around all day playing
the latest games and occasionally
writing down their observations on the
game. What skills could be involved in
playing a game that you are selling to
the masses? Why should you pay a pre-
mium wage for a position that has
endless applicants?

If you were the manager of a pro-
fessional baseball team, I doubt the
thought to fill some open positions on
the team’s roster from the pick of
Krispy Kreme’s employee softball team
would ever cross your mind. Hey, there
are millions of softball players who
would love to play ball professionally,
and you could get them cheap too, but
then they would not be professional ball
players, would they?

Team TestingTeam Testing

Team testing is critical to the polish and
balance of a game, and it is also one of
the most difficult tasks to schedule.

The idea is to get everybody on the
team to stop implementing new fea-
tures and fixing bugs and take a fresh
and hard look at what they have cre-
ated. The development team will be the
game’s harshest critics; no one outside
of the team knows the full potential of
the team and the game, and the game’s
shortcomings will stand out sharply in
their own eyes.

It is commonly advocated to play
the game for 30 to 60 minutes two or
three times a week. In my opinion it is
costly to ask people to switch tasks, no
matter the task, and to ask them to play
the game for such a short period. I
don’t think you get a lot of quality infor-
mation from that effort. Instead, I
advocate a full four hours spent on
gameplaying as often as your project
can tolerate the distraction—once
every 10 to 20 business days at the lon-
gest interval. With these longer play
sessions your team will be able to
really wrap their minds around the
game and dig deep to get real feedback.
Some of these sessions can be aborted
after a relatively quick hour or two if
you come across a fatal flaw that pre-
vents the rest of the game from being
appreciated. Also, it is not critical that
every single team member participates
in every play session; it is just impor-
tant that the whole team feels a sense
of ownership and pride in the game
through direct play experience.

Often great leaps of inspiration will
come out of these sessions, especially
in the areas of usability and user inter-
face. This is when the team is most
likely to have an objective eye and look
at a feature and say, “That sucks, let’s
do this instead.” Having a festive atmo-
sphere at these times, such as ordering
pizza, will go a long way to making

194 Chapter 13: Shipping Your Game

these sessions a loose, fun, and produc-
tive method of testing.

Project Leader TestingProject Leader Testing

Following the trend inward, from pub-
lisher QA through team testing, we
arrive at project leader testing. The
project leader, lead designer, project
visionary, or whatever name you
choose, is the one who is ultimately
accountable to the gamers for the over-
all quality of the game—whether it is
fun. The project leader should play the
game thoroughly and often—more thor-
oughly than often. In a game such as
Starfleet Command, I don’t necessarily
play every mission in depth before
release; rather I play with all of the
user interface and a lot of multiplayer,
and I spend a lot of time thinking about
how the game could be made better.

The project leader is the person
who has to simultaneously decide what
goes in and what is cut in the quest for
fun. All the while the project leader
must maintain the schedule. Only by
playing the game directly will the pro-
ject leader have a proper appreciation
for relative importance of the change
requests being showered at the game
from all directions. It is also the project
leader who must bear the responsibility
for acknowledging critical weaknesses
in the game that can only be corrected
by large efforts. These weaknesses
must be confirmed through the project
leader’s own experience with the game
and must not fall into a trap of just
responding to the latest cry for change.

Automated TestingAutomated Testing

Almost all games would lend them-
selves to automated testing for at least
a portion of the game. For example,
many 3D shooters employ an

automated camera test routine by ran-
domly placing the camera in any valid
point in the 3D level pointed in a ran-
dom direction. Any resulting crashes,
assert, or any other detectable fault can
be trapped, and all of the relevant con-
ditions such as the stack are saved off
for a programmer to follow up with.
Thinking of portions of your game that
lend themselves to automated review is
a great task for the programming staff
to brainstorm about. For example, in
Starfleet Command we have a mode I
call Popcorn where we have AI con-
trolled ships fighting each other in a
random free-for-all, and when a ship is
destroyed another is created to fill its
place. Over time, most of the tactical
game space is covered by these AIs
smashing each other, automatically
uncovering bugs in the tactical game as
we go.

Focus Group TestingFocus Group Testing

Focus group testing is a quasi-science
unto itself. Anyone can perform focus
group testing; however, there is a grow-
ing industry of professional focus group
testing folks. The idea is to put the pro-
spective consumers in front of your
software and watch everything they do.
Observe every difficulty, every missed
click, every indication of being lost
through the use of cameras and direct
observation. The idea is that anyone
who is on the team or on the pub-
lisher’s QA team is too familiar with
the game to give true objective feed-
back. The focus group testing can
result in your strongest ego-busting
feedback (as in “this game sucks” or
“this is stupid”). However much your
pride might be damaged by the experi-
ence (many publishers do not let the
development team observe the focus

Chapter 13: Shipping Your Game 195

group testing), you must look hard and
deep past their initial complaint and get
to the root of their difficulties and
address them.

We must remember we are making
consumer software that people do not
need to buy. Consumer software must
work well right out of the box, and thus
it is the first 15 minutes of use of your
software that you want to nail. Recent
mega-hits are known to craft the open-
ing 30 to 120 minutes of gameplay to a
much higher level than the rest of the
game. This is where focus group test-
ing shines; this is the best method to
discover the flaws that your game is
presenting to the new user right out of
the box.

The most important task involved
in a focus group test is to sort out all of
the comments and throw away those
that are purely frivolous, outrageous, or
impossible to accommodate and then
carefully review the more reasonable
comments and develop a strong set of
new directives to fix the user interface,
usability, or other first-impression
problems the focus group testers
experienced. A large danger exists,
however, of overreacting to the input
from the focus group testers and creat-
ing flaws that will be apparent to the
players of your game who are hooked.

Beta TestingBeta Testing

Beta testing should be a big part of the
QA process on a strong PC title; it is
probably the most rigorous way to
identify design flaws, compatibility
problems, and outright bugs. With a
beta test, the developer or publisher
distributes either the full game or more
commonly a portion of the game via CD
or electronically to either a closed or
open set of beta testers. Mailing CDs

out to a few hundred beta testers is
now a fairly reasonable cost as there
has been tremendous competition
among CD duplication houses. Last I
checked, you could deliver a master
CD-R to a duplication house and get
them duplicated with four-color
silk-screening for less than 40 cents
each.

Unfortunately for console titles,
beta testing is impractical as currently
it would be far too expensive to get
your beta test build duplicated by the
hardware manufacturers to send out to
the beta testers. With duplication fees
at $10 and more per unit this could
quickly get out of hand. Also, I am
unaware of any console game that has
ever had a beta test, and it may prove
impractical to obtain the permission of
the hardware manufacturer. I believe
with the advent of the hard drive and
built-in broadband access in the Xbox,
we will see an electronically distributed
beta test of the online games for the
Xbox in 2003.

Open or Closed Beta Test?

The decision of whether your beta test
should be open or closed is somewhat
project specific. For example, if your
game is a tightly scripted narrative
game that may only be played once,
such as Myst, I suggest that you do not
employ an open beta test, as too many
potential customers would see how to
win the game and would not perceive
the released version as having signifi-
cant value.

Any kind of multiplayer game lends
itself to open beta testing, with perhaps
the Quake tests and Counter-Strike
being the two strongest examples of an
open beta test. In the Quake tests, id
Software releases a demonstration/beta

196 Chapter 13: Shipping Your Game

test of the game well before actual
release, often longer than six months
before release. These tests may have
content that will not ship in the final
game, and most certainly the game bal-
ance will change. What id is primarily
looking for is feedback from the hun-
dreds of thousands of users of their
Quake tests for compatibility reports.
As id games are creating the bleeding
edge of games, id is very careful to
have robust and reliable software so as
to not alienate consumers. So despite
having arguably the most advanced
graphic engines in the game industry,
id games run well on machines that
meet the minimum specification with
very few complaints at the final release.
Also it acts as an early adopter, word-
of-mouth marketing mechanism by
appealing to the hardcore gamer’s
sense of being “elite” by getting in on
the ground floor of a new game.

Of course another reason not to
perform an open beta test is because
your game is not up to widespread
scrutiny. You are showing the world
what your game is made of, and if it is
not compelling, it would probably be
better not to do an open beta test. Con-
sider holding a closed beta test before
an open test. The closed beta test may
be performed with as few players as
you like (I suggest between 50 and 500
people). This way you will receive
reports on your most egregious flaws
before the rest of the world sees them.
The best way to conduct a beta test is
to go in stages from 50 to 150 to 500
and then open. Then, at each stage you
have fresh people looking at the game
(and fresh systems to run your game
on) while each time fixing the largest
bugs before going forward.

In Chapter 23 I present methods
for organizing your beta testers, solicit-
ing and collecting bug reports, and
communication strategies not only from
development to beta testers but also
between beta testers.

Manufacturer TestingManufacturer Testing

In the console world, the manufacturer
will test your game thoroughly against
their quality standards before allowing
the game to be duplicated. This is prob-
ably the single strongest reason why
console games generally ship in better
condition than PC games. The hard-
ware manufacturers are not nearly as
motivated as the developer and the
publisher to ship a game and thus can
afford to be much more critical about
the quality of the game. The reason for
this is two-fold: There are at any given
time scores to hundreds of games being
produced for their platforms, so send-
ing any one game in particular back to
development is unlikely to materially
affect their short-term cash position;
and two, it is in their best interest to
maintain the quality levels of games on
their platform; otherwise the consumer
could quickly become disillusioned and
wander off to another game console.

The manufacturer’s quality stan-
dards are typically written up at an
early stage of the platform’s life cycle
and updated from time to time, with a
certain amount of the rules being an
oral history. Also note that between
large territories such as Japan and
North America, the standards on some-
thing as basic as the common accept
button on the controller differs from the
X button and the O button.

The great thing about a console of
course is that compatibility testing is
not a large task. Rather, the game must

Chapter 13: Shipping Your Game 197

be eminently playable, with short load
times, high frame rates, and very for-
giving gameplay relative to a PC game.
In Chapter 23 I discuss how to better
prepare your game for the hardware
manufacturer’s testing process.

Licensor TestingLicensor Testing

When you create a game based on a
licensed property such as our Starfleet
Command series based upon Star Trek,
the licensor (the folks who own the
intellectual property) will usually enjoy
some sort of signoff authority on the
game’s look, feel, and content to be
sure your work supports the license
and does not infringe upon other
properties.

Typically the licensor will be
involved at the game’s conception and
take deeper looks from time to time
during the project, especially paying
attention to the finished game design
document, the first playable build, the
beta build, and the final release
candidate.

Occasionally you will work with
licensed material where the licensor
does not have any approval rights over
your work. That was the case also in
Starfleet Command for the Star Fleet
Battles material developed by Arma-
dillo Design Bureau, which we used to
base our core game mechanics upon. It
was critical in the case of Starfleet
Command that we have only one licen-
sor with final design approval (I
shudder at the nightmare of having
two!). It is very important to maintain a
great relationship with your licensor as
most often they are not in the game
business and they may not immediately
appreciate what you are trying to
achieve with their property. You do not
want them to be close minded about the

liberties you will likely need to take to
create a great game.

How Do You Balance a Game?How Do You Balance a Game?

Game balance is the finest art in game
making. It is painstakingly difficult to
analytically describe what a balanced
game is or present a method for devel-
oping balance in your own games.

The simpler the game and its game
mechanics, the closer to perfection
your balance will need to be. For exam-
ple, the game chess has had its rules
tweaked and refined over the centuries.
Many years ago, the rules changed
from the queen being able to move only
a single square of distance like the king
to her present powers of destruction.
Later, pawns were given the ability to
move one or two squares on their first
move. In response, the move en
passant was created to rebalance the
game after the pawn was given this
two-square option for first move. With
the advent of powerful computers, pre-
vious end games that were thought to
be theoretical draws have been won by
computers that found winning
sequences—some after more than 200
non-capture moves! The purpose of
these rule changes has been to achieve
a perfectly balanced game. At the pro-
fessional level, there are scores of rules
involving adjournment, time controls,
and a host of other details that are
adjusted as we strive to create the per-
fect game of chess. This refinement is
also occurring in professional sports
where many minor rules are made or
adjusted that are not apparent to main-
stream viewers.

The general idea with game bal-
ance is to start with the most dominant
rules and balance those first and work
your way out slowly to refine the

198 Chapter 13: Shipping Your Game

TE
AM
FL
Y

Team-Fly®

secondary and tertiary rules. The fol-
lowing diagram illustrates how we
prioritized game balance in Starfleet
Command 3.

For example, in a first-person
shooter, first determine how fast you
want the characters to run, turn, and
jump before you determine the damage
and rate of fire of the plasma rifle. In a
real-time strategy game, determine
how much the basic grunt units will
cost to build in time and resources
before you determine what the zeppelin
brigade will cost. Work your way
outward.

For PC games, the beta testing
cycle will provide you with plenty of
feedback about game balance, espe-
cially if there is a multiplayer option to
your game. I believe it is between

humans, not against the computer, that
you will have a strong enough opponent
to develop true balance.

I have discussed how to achieve
balance but not what balance is. I
regard a well-balanced game as one that
delays as long as possible the point at
which it is apparent to the loser that he
will lose the game. As soon as the loser
is certain of his doom, the game
becomes uninteresting and the loser
will want to quit. You want this realiza-
tion to be as close as possible to the
last moment in a game. Storytellers
know this intuitively, as every time a
chess game is used as a prop in a movie
or a book, the winner cleverly check-
mates his opponent in some surprising
manner that the loser was not
anticipating.

Chapter 13: Shipping Your Game 199

Balancing Starfleet Command 3 from the inside outward

For many games there is not a
clear winner or loser. In games such as
SimCity, you play as you do with a toy
rather than play a game. It is still
important to balance these games
though. Here again, the goal is to pro-
long the moment of manifest ending.
Instead of losing the game, a play-
oriented game must provide a lot of
simple game mechanics that interrelate
with each other, like Play-Doh and

Legos building upon each other. The
goal is to create an apparent endless
amount of replay through different sce-
narios. In SimCity a friend of mine
wanted to find out what it took to map
the entire city with Arcologies, and I
would build my cities up into greatness
only to wreak devastation and let the
simulation run overnight to see if the
city would recover without my
guidance.

Final Candidate Cycle

The final candidate cycle is where
everything comes together to make a
game. The final candidate cycle pro-
duces many war stories of not going
home, missing FedEx deadlines, and
finding obvious bugs that have some-
how escaped every form of testing to
date. Strong development teams bond
even closer during the final candidate
cycle, and unhealthy teams sometimes
turn on each other with team members
scattering to the four corners of the
globe as soon as the game ships.

It is extremely important in your
final candidate cycle to make as few
changes as possible to your game. This
means that you should fix very few
bugs during your final candidate cycle if
you have a fixed ship date that cannot
move. I learned just how important this
is with the first version of Starfleet

Command. During the final two weeks
before we shipped we fixed probably
100 bugs. As soon as the final candidate
was off to duplication we began to find
more bugs in the game. The bugs we
found in the first week after having the
game sent off to duplication were all
bugs that were created by fixing other

bugs late in the final candidate cycle. I
now believe that when you are
approaching that final two weeks, you
should document all of the bugs you
find in the second to last week and not
change a single line of code (maybe
data-only fixes, but no code fixes).
Then take a long hard look at that bug
list. If there are any bugs that you can-
not live with, you need to alter the
schedule to provide not only time to fix
the bugs, but also time to have a clear
two-week buffer to retest the entire
game.

Transition, Ship, and Point Release

This chapter illustrates that shipping a
game is not a single event in time
where the gold master is handed over
for duplication; rather it is a phase that
starts as far back as first playable,
through alpha and beta testing, through

final candidate, and on into commercial
release. For PC games there is often
the compelling need to patch and bal-
ance your game post-release. The
largest PC games in the industry, the
massively multiplayer games, perform

200 Chapter 13: Shipping Your Game

the greatest amounts of post-release
work. That is why they have not only
what are called transition plans to go
from development to release, but they
have transition teams to hand off the
project to a live team.

Console games have had to live up
to a much higher standard of quality in
the late 1990s as compared to PC
games, as there was no opportunity to
patch a game after release. The stron-
gest PC developers and publishers
release games of the same or even
higher quality standards of a console
game and do not rely on post-release
patching. Rather, companies like Bliz-
zard and id Software use point releases
as an opportunity to offer additional

content, fine-tuned balance based on
customer feedback, and the occasional
bug fix for a particular piece of hard-
ware incompatibility. Increasingly, as
PC games incorporate more multi-
player and online gameplay, the post-
release patches are often required to
perform critical cheat-prevention mea-
sures. Now that consoles such as the
Xbox are shipping with hard drives, it
will be interesting to see if publishers
have the stamina to remain as rigorous
as they have in the past or if they start
to slip and offer post-release support
that starts off with additional content
and later degrades into mere patches.
In Chapter 24 I discuss how to best
manage your point release efforts.

Chapter 13: Shipping Your Game 201

This page inten tion ally left blank

Part III > > > > > > > > > > > > > > > >

Game Development

This page inten tion ally left blank

Chapter 14 > > > > > > > > > > > > > > >

The Vision Document

All games need to be sponsored by
some sort of bankroll. It might be Lara
Croft’s money at Eidos, or it might be
some sweat capital from some young
guys in Texas. At any rate, all games
will need that signoff before they are
able to proceed. For modern games
capable of competing with the main
field this is a tidy sum indeed. Many
aspiring game developers have asked
me and others in the game industry
this question: “Hey, um. So I have this
great idea for a game, how do I get it
funded?” The truth of the matter is
there is no magical formula; each and
every game project has had its own
path to funding. That being said, all
games need some sort of outline or
vision document that explains to an
executive team why this game, of all of
the hundreds of game proposals they
have received, needs their support and
attention.

The vision document (also known
as the concept document) is an execu-
tive summary of the game design
document that touches upon all the key
features of the game in such a manner
to grab them and get them to request to
see the game demo and move forward
with a deal. Despite this rather prag-
matic use for the vision document (I
know, I know—you are a creative sort
and are not really interested in the dirty
details of raising money), it does serve

a noble purpose in keeping the game’s
focus clear to all stakeholders in the
game including the development team.

Write the Vision Document TwiceWrite the Vision Document Twice

This chapter on creating the vision doc-
ument has been placed before the main
chapter on creating a design document
on purpose. The writing of the vision
document begins the moment a game is
conceived. Lawrence Block, a very suc-
cessful mystery writer, advises in his
book Telling Lies for Fun and Profit that
inexperienced writers should actually
start off writing novels instead of short
stories. The reason is that it is much
more difficult to find just the right
words and say something important in a
few words than it is to stumble around
and write a few hundred thousand
words and hope that your readers will
entertain themselves on the way.

Your vision document, you hope,
will win the equivalent of the year’s
best sci-fi short story award and be
picked up by a major publisher and help
motivate your team to its best efforts.

The only way to make this docu-
ment tight and strong is to write it,
seek out criticism, and revise the vision
document. You will learn a ton about
the game you are proposing to make as
you perform your game design and
technical design processes. So I

Chapter 14: The Vision Document 205

advocate revising your vision document
again at the end of the design phase.

So Is the Vision Document aSo Is the Vision Document a

Proposal?

A formal proposal would contain the
vision document plus a schedule, a bud-
get, the team bio, and the company’s
history. Some folks put their proposed
budget and schedules straight into their
vision documents. I think it is better
instead to keep the budget as a sepa-
rate document, the schedule as a
separate document, and your team
bio/company history as another sepa-
rate document. The reason for this is
that it usually takes a long time to sell a
game project, and you will most likely
learn important new facts about your
game that will materially affect your
budget and schedule as you are circulat-
ing the vision document. What usually
happens is that you mail out or drop off
your vision document (possibly with a
VHS of gameplay) with a publisher’s
business development person, and your
proposal sits on their desk for a while
until they call you up and want to learn
more. I have had publishers call me six
months to a year after I passed them a
proposal, and I have had publishers visit
my studio without having yet seen the
vision document. Each relationship is
unique, and you should hold onto the
schedule and budget information until
you have firmed up interest from the
publisher and your facts are as current
as possible.

Thus I recommend you prepare a
separate document that features your
company, discusses the management
team, highlights the strengths of the
key employees, and indeed discusses
all of your employees and resources. A
game company is not about a single star

developer, but rather about a team.
This document will come in handy to
pass out to other potential partners of
your team that are not necessarily pub-
lishers looking to pick up a new title;
for example, you may want to pass it
over to your local NVIDIA developer
relations representative.

Instead of placing the schedule and
budget information with the vision doc-
ument, focus on getting the publisher
to visit your shop and meet your team
and firm up interest. When your pro-
spective publisher is ready to know
about the budget, don’t worry, they will
ask.

Only 1 Percent Catch the EyeOnly 1 Percent Catch the Eye

When I was working at Interplay as a
senior group producer, my boss at the
time resigned and was so distracted by
his new prospects that he forgot to
come back and clean out his office. His
office sat that way for two weeks while
I wondered what should become of his
office. Is there not some sort of stan-
dard plan for cleaning up an executive’s
office? Presumably there are contracts
and stuff in there, right? Well, being the
temporary senior guy in the division, I
shrugged and went in there with a few
boxes to start cleaning it out. The most
interesting thing about the abandoned
office was the more than 200 game
proposals/concept documents/vision
documents that were lying about in
stacks. I boxed these up and took them
to my office and looked at them for a
while. Then one night Sean Dumas
(one of my two partners at Taldren) and
I sat down and looked through all of
them critically as if it were our own
money we were looking to invest and
wondering which games we would pick
up. After leafing through the more than

206 Chapter 14: The Vision Document

200, it came down to just two vision
documents; only 1 percent looked like
they were potentially worth backing to
us. Why these two vision documents?

Both were carefully prepared with
oversized paper, liberal use of colorful
graphics, and unusual bindings, and
from page 1 we understood what the
proposed game was about and were
compelled to keep leafing through the
vision document learning more about
the game. We found that we wished we
could go and meet the guys who put
together these two vision documents.
That is what a good vision document
will do for you; it will attract people to
come and meet you and see what you
are all about.

What About the Precious Game

Secrets?

Some people might wonder about pass-
ing out their game’s secrets to people
they have never met. Even worse,
some big publisher might just steal
their idea! I have never seen or heard
of this actually happening. The industry
is full of game concepts; virtually every
developer I know of has his own pet
game project, and some have cabinets
full of them. Very few people in the
industry want to use someone else’s
idea in place of their own. If your vision
document is compelling, they will want
to meet your team. Making a great
game is far more work then coming up
with a strong idea, and all of the pub-
lishers know that.

In fact, after a publisher develops
interest in your vision document, the
most likely game deal will be that they
meet the team and place one of their

ideas in your team’s hands to execute.

Visuals

The vision document must be liberally
illustrated with images—both concept
art and screen shots—to accurately
convey the gameplay as well as give the
game life in the hands of the reader.

Select one single image, most
likely a concept image, to grace the
cover of your vision document. This
one image alone should convey the
game.

Throughout the rest of the vision
document be sure to place a striking
visual on each page that helps reinforce
the topic of the pages. For instance, if
you were making an RPG, the section
on backstory should feature an outdoor
shot giving the reader an impression of
what the world is about and another
drawing of perhaps a character in full
gear on the section on character
creation.

The document as a whole should
be somewhere between 5 and 20 pages.
Most people would suggest keeping it
at the lower end of the range, and I
would instead say keep it at the longer
end of the range if you have strong
visuals to carry the extra material.

Another idea for visuals is to use a
full page to illustrate the controls in
your game proposal. Use a picture of
the controller itself with annotations
describing the function various controls
perform.

Another striking use of visuals is to
illustrate your proposal with logos—
your company’s logo of course, the
game title’s logo, but also include the
PS2, Xbox, or GameCube logo if you
are proposing a game for those plat-
forms. If you are licensing an engine
such as Unreal, Quake, LithTech, or

Chapter 14: The Vision Document 207

NetImmerse, then by all means place
their logos on the page where you dis-
cuss your approach to developing the
game.

Tactile

The actual physical binding of your
vision document is very important. At
Taldren, each of our proposals has been
bound in a unique manner: a wooden
and brass screw setup for a hor-
ror-western game, an American Indian
inspired design featuring beads and
feathers (our most impressive), and
Black9’s metal binding. These bindings
do not need to cost a lot; the metal
bindings for our Black9 proposal were
made from two 90-cent steel joist
straps bound together with two 10-cent
bolts! Use oversized paper and con-
sider using a landscape format instead
of the normal portrait layout for your
vision document.

Most of those 200 vision docu-
ments that I dismissed were presented
in regular report covers that one might
use for a freshman English composition
class, some were just stapled pages
without any formal binding, and one
was submitted in a peach folder! You
might accuse me of being shallow; how-
ever, Sean and I read every single
vision document, and there was a rigid
one-to-one correlation between the
quality of the game concept and the
presentation of the game concept. If
you do not care enough to make your
best impression, why should anyone
else care enough to fund your project?

What About the Words?

Yes, of course your vision document
should include a carefully selected set
of words to communicate the game’s
vision. What are these words?

The hook: In just one to three sen-
tences describe the hook of your game.
I personally cringe every time I hear a
movie-type person say something like
“It’s Shrek meets Fast and Furious.”
Your mission: Say why the world needs
your game for its unique offerings, yet
simultaneously reassure the funding
source that it is substantially derivative
in either gameplay or licensed content
to assure certain success. Yep, that is
why it is unique, compelling, and more
of yesterday’s hit at the same time.
That last bit might sound a little cyni-
cal, but I am very sympathetic to the
problem; regardless of the size of the
risk it is just common sense to make a
piece of entertainment software that
many people will actually “get.” No
points are awarded for eclectic artistic
expression in the game industry; save
that material for the National Endow-
ment for the Arts.

208 Chapter 14: The Vision Document

The physical presentation of the Black9 vision
document

TE
AM
FL
Y

Team-Fly®

Touch upon every major feature in
your game. Think about the back of the
box and what the marketing messages
will be for this game. You must be the
champion for your game at this point
and put on your marketer’s hat. Don’t
be modest; now is the time to be the
confident showman. Marketing is all
about the art and science of getting
people to buy what they are told, and
you must be the one to start the sales
pitch.

After you write up the first pass of
the vision document, I recommend tak-
ing it down to your local copy shop or
coffee shop or anywhere your target
audience may be hanging out. Let them
casually leaf through the vision docu-
ment and see if they like it. My favorite
is the copy club where we sometimes
get stuff copied and bound. I put an
extremely deadpan look on my face as
if I were an overworked office drone,
and I plop the vision document down on
the counter and ask for it to be bound.
Then I watch the clerk’s eyes very

carefully. If he starts leafing through it
and comes back to you saying, “Whoa,
this is cool, so are you guys making
games or what?” then you know you
are on the right track. If he could not be
bothered to leaf through it, then you
should consider taking it back to the
conference room table and discussing
with your teammates how to spice it
up. (You can see that I like to beta test
everything!)

I would actually say very little
about the development team inside the
vision document; that is what the team
bio and company history are for, and
you would be handing them out simul-
taneously. Instead, have the vision
document focus just on the game.

Contact Information

Always place your contact information
on the last page of the proposal. List
phone numbers, email, fax, street
address, and phone extensions. Don’t
put any barriers in the way of a pro-
spective nibble on your vision
document!

Chapter 14: The Vision Document 209

This page inten tion ally left blank

Chapter 15 > > > > > > > > > > > > > > >

Requirements

Gathering

The key to successful game develop-
ment is planning, and you cannot create
a good plan without understanding what
goals or requirements your plan must
fulfill.

Where requirements gathering
stops and requirements analysis and
game design begins is in reality a bunch
of fuzzy borders, and you may certainly
consider the requirements capture
stage the first step towards creating a
game design document.

In traditional software develop-
ment you have customers that have a
need fulfilled, for example, ATM or
inventory control software. In games
we of course have customers, and when
working on sequels there is usually no
shortage of customers expressing
desired features. But for original games
your customers do not yet exist. This
makes it a bit more challenging to
determine your customers’ needs.
Instead, as a game development team
you will need to look into your creative
minds and work with your publisher’s
executive and marketing teams to
develop the requirements for the game.

The Flavors of RequirementsThe Flavors of Requirements

There are many types of requirements
that are routinely placed on a game

such as creative, functional, technical,
fiscal, licensee, and temporal require-
ments. Perhaps LucasArts has
approached your team and has
requested a proposal for a Star Wars

Episode I-II RTS exploiting your game
engine to be delivered by Q4 of the fol-
lowing year. This request for a proposal
has touched upon a great variety of
requirements, and you must build these
requirements out before you are able to
submit a bid of any confidence.

Creative/License Requirements

With our hypothetical example of a Star

Wars Episode I-II real-time strategy
game, we are able to rapidly understand
the creative space to build the proposal
around: The ground assault mechanized
units should not be the AT-AT walkers
from Episode V, the game should not
feature Star Trek Enterprise E’s float-
ing about, etc. Now this is a fairly easy
example to understand; however, take
the Star Trek license. In the years that
my company has worked on the Star-
fleet Command series, Viacom has seen
fit to license out portions of the Star
Trek universe to Interplay, Simon
Schuster, Hasbro, and Activision. The
licensees of the modern eras like Voy-
ager and Deep Space 9 could and would

Chapter 15: Requirements Gathering 211

sometimes feature material from the
original series via some sort of time
travel mechanisms. This would of
course irritate Interplay, which held the
TOS license, as it waters down their
“exclusive” license. Even more wild is
that the Star Trek universe features
forward time travel, and indeed Harry
Lang at Paramount’s licensing group
agreed that it was certainly plausible
for Interplay to request to use Next
Generation material!

Even more complications arose
with the fractured licenses; Interplay
was the oldest licensee at the time with
the most vaguely written license. For
Starfleet Command 2 we proposed to
create the online Dynaverse with sub-
stantially the gameplay of a massively
multiplayer game. Activision at the
same time had spent quite a large sum
of money to wrap up all of the licenses
under their banner and demanded to
have the exclusive license on massively
multiplayer games. So who had the
rights—Activision or Interplay? It
looked like Paramount briefly sold the
same thing twice inadvertently due to
the age of the Interplay contract. The
frustrating thing about it was during
the development of SFC2 we were
required to never refer to SFC2 having
any kind of massively multiplayer
gameplay. We struggled for months to
help Paramount find the language that
would best market our game yet at the
same time not require Activision to
more actively defend their license.

So you can see from the example of
Star Trek above, that licensing require-
ments may sometimes be difficult to
understand and document clearly. I
understand that the game industry is
currently entertaining two entirely

independent Lord of the Rings licenses:
one license derived from the book and
the other from the movie! Goodness
grief! Regular folks like us would not
think to cut a cake so cleverly!

Take your time and understand
exactly what license you have in your
hands. Find out if you are able to kill
major characters in your game. This is
an important feature for many games as
they are not a linear medium; you must
allow the player to explore different
options whether it is a role-playing,
strategy, or action game. Games must
almost always allow for alternate possi-
ble histories. Determine whether or
not you are allowed to create new
material for the license, and how the
approval process works for adding this
new material (forget about owning the
new material; no license holder of any
property with value would allow the
ownership to become fractured).

Technical Requirements

The technical requirements are mun-
dane requirements such as the pub-
lisher requiring that the game ship on
one CD or one DVD as that will signifi-
cantly lower the cost of goods sold.

The hardware manufacturers of the
consoles have many dozens of individ-
ual technical requirements like how
long you are allowed to load a mission
or level, and what buttons on the con-
troller may be used for what purposes.
By and large these console require-
ments are born from many years of
experience that aim to provide the play-
ers with the best gaming experiences.
The nice thing about these require-
ments is that you will not be given any
opportunity to negotiate these items so
you may free yourself from that

212 Chapter 15: Requirements Gathering

responsibility and just get on with
designing your game to fulfill these
console requirements!

Other technical requirements
include minimum frame rates, and for
the PC game market you will need to
identify your system requirements:

Of course, the lower your system
requirements, the broader the base of
consumers’ machines your game will
run on. However, the broader your
requirements, the tougher it will be on
the programming team to develop an
engine that will simultaneously take full
advantage of the higher end of the
machines available and not leave behind
the machines that just barely meet the
minimum spec. The decision on where
to set the minimum specification is
usually a negotiated discussion involv-
ing the marketing and development
teams, and both sides need to keep in
mind what the targeted market is for
the game. First-person shooters from id
Software generally push the world’s
computers into the future, and Sesame
Street games for kids need to work on
pretty much any machine out there!

Fiscal and Temporal Requirements

Know what your budget of money and
time is and be prepared to design your
game around these parameters. Much
discussion earlier in the book has been
devoted to this subject. I feel comfort-
able sharing with my team members
the overall budget numbers we have to
work with as I find it empowers them
to make stronger contributions to the
design and overall production of our
games.

Use Case DiagramsUse Case Diagrams

Traditional software development
would interview the future customers
of the software and create use case dia-
grams to document these interactions
between the user of the system and the
software. That would indeed be a
requirements gathering activity; how-
ever, that is essentially impractical in
games. The game designer must step
forward and lend his magic to the

Chapter 15: Requirements Gathering 213

System Requirements for BioWare’s Neverwinter Nights:

Required Recommended

Operating System: Win 98/ME/2000SP2/XP Win 98/ME/2000SP2/XP
CPU: Pentium II 450 MHZ or Pentium III 800 MHZ or

AMD K6-450 MHZ Athlon 800 MHZ
Memory 98/ME: 96 MB 128 MB
Memory 2000/XP: 128 MB 256 MB
Hard Disk Space: 1.2 GB
CD ROM: 8x
Audio System: DirectX certified
Video System: 16 MB TNT2-class OpenGL NVIDIA GeForce 2/ATI Radeon

1.2 compliant video card
DirectX: version 8.1

process and design these player (user)
and game (system) interactions. As this
process is more of a creative design
activity rather than a formal

requirements gathering process, I have
placed the discussion of the use case
diagrams in the next chapter on the
game design document.

214 Chapter 15: Requirements Gathering

Chapter 16 > > > > > > > > > > > > > > >

The Design Document

The design document is the soul of the
game. Some design documents exist
only as visions in their designer’s head,
and others consist of hundreds of
HTML linked pages complete with a
version control system tracking the
changes to the design document. Most
other game design documents lie in
between these two extremes.

My goal in this book has always
been to focus on sharing what I know
about the production and development
of games and to shy away from being a
book about game design. There are
already several of those at your local
bookstore, and despite the heavy

emphasis on rigor and process through-
out this book, I still feel that the true
game design process is an art form that
is difficult to put on paper. How does an
artist decide what will be a moving
piece before he creates it? I do not
know, and I would be very depressed to
learn that someone has figured out the
emotional magic to art and has devel-
oped a formula that someone else could
follow.

Thus, I will focus on how best to
articulate your game design document
and only touch upon some of the cre-
ative processes that might be involved
in developing the game design ideas.

What Does the Game Design Document Do?

Obviously it communicates what the
game should be to the development
team, but let’s take a closer look and
examine what that implies:

1. The programming staff must be
able to pick up the game design
document and efficiently develop
the technical requirements and
technical design for the software
that is needed to be developed for
the game.

2. The art team led by the art director
must be able to read through the
game design document and under-
stand the look and feel as well as

the scope of the art assets involved
in creating the game.

3. The game designers on the team
must understand what areas of the
game require their detailed hand in
fleshing out such as 3D levels, dia-
log, and scripting.

4. The audio designers must under-
stand what sound effects, voice-
overs, and music need to be
created for the game.

5. The marketing folks should under-
stand what themes and messages
they need to use to build the mar-
keting plan around.

Chapter 16: The Design Document 215

6. The producers must understand
the various components of the
game so they are able to break the
game down into a production plan.

7. The executive management team
must be able to read through the
game design document and develop
all of the required warm and fuzzy
feelings it would take for funding.

That is certainly a heavy list of custom-
ers for this game design document! Not
just a sketch of the game world and
some descriptions of the monsters,
huh? To deliver on all of the above
effectively, we should be organized
about the task.

The Game Design Document as a Process

The game design document is not
something you simply dash off over the
weekend. Instead, it is a process that
must be carried out over time by a
team of game developers for a game of
modern complexity and scope.

Game ConceptGame Concept

This is the classic step of imagining a
game that you would love to create, a
game so compelling that you wish you
could play it yourself, right now! This is
the sort of task you could accomplish
over the weekend or just an evening. At
Taldren this usually occurs late at night
after some milestone has been accom-
plished through a non-trivial amount of
blood and sweat, and we lie there in
exhaustion and begin to have glimmer-
ings of what we would love to create
next. This magical process I cannot
help you with; you either have it in you
or one of your team members has this
juice. The next step is to document the
vision.

Write out just two or three pages
that describe the game to your most
intimate development team members.
Don’t take the time to justify anything
—just write. After you have nailed the
core idea and the excitement behind
your game, gather your team into a

conference room with a whiteboard and
stacks and stacks of different colored
Post-it notes. What, didn’t you know
that Post-it notes stick well on
whiteboards?

Brainstorm

I have designed games by myself and
with others. Games that are designed
by committee are usually horribly
muted game designs and games that
are designed by solo individuals often
contain spikes of “game design noise.”
Think of all of the minds churning out
game design thoughts as sound sources
making sounds of all different shapes,
intensities, and durations. And now
think of the process of culling these
design thoughts down into a design
document. It’s easy to see each individ-
ual will bring his own bias, perspective,
wishes, and agenda to the design. If you
allow a solitary individual to make the
game, you have the purest expression
of art in a game, and the game will sim-
ply hit or miss upon this one person’s
vision. The trouble with this approach
is that games are now very large pro-
jects. The Interplay game Planescape
had over one million words of dialogue;
that is enough for ten novels! It takes
an exceedingly talented, skilled, and

216 Chapter 16: The Design Document

hardworking designer to perform the
design solo. On the other hand, think of
a committee of designers where each
member has the ability to censor an
idea. This will act as a low-pass and
high-pass filter allowing only the ideas
that everyone may agree on to pass
through. The result will be insipid,
derivative games without any reason
for being created.

The game design process requires
a lead designer with a team of design-
ers below contributing to the overall
design. Let me show you how this
would work in the initial brainstorm
session:

Open the brainstorm meeting, hav-
ing already passed out the game design
document some 2 to 24 hours before-
hand so that the game concept is fresh
in everyone’s mind. Next, take your
stack of colored Post-it notes and create
a colored key of topics along one of the
lower corners of the whiteboard. (By
the way, did I tell you to get a large

whiteboard? We have found a great deal
at the local Home Depot hardware
store: 4-foot by 8-foot whiteboards in
the raw without a border or frame for
$11! Compare this to hundreds of dol-
lars for a whiteboard of comparable size
at the local office superstore.) This key
of colors should include a color for
audio, technical, art, game design,
level/mission design, backstory, user
interface, controls, marketing, and mis-
cellaneous issues.

Now with your color key on the
whiteboard, open the floor. You are now
soliciting ideas, concerns, areas of dis-
cussion, notes, tasks, anything worth
noting belonging to any of these catego-
ries. If you find there is no appropriate
category available, use the miscella-
neous category or create a new one.

Anything goes; stand up there with a
good fat felt tip pen and dash off the
notes with only one concept per sticky
and put it on the board. Continually
rearrange your stickies for better logi-
cal grouping of the ideas. Here is a
stream of possible ideas: power-ups,
level designers, hire lead animator, 3D
engine, user extensibility, new chat
system, dark color schemes, transpar-
ent menus, Chinatown, Old West,
steam locomotives, lip-synching, use
Patrick Stewart for voice, finish by Q4
2008, and so on. Litter your whiteboard
with concepts.

I have found this whiteboard brain-
storm method to be a powerfully
effective method for rapidly digging up
tons of new issues that I and other
members of the development team
must follow up on in the course of the
design process.

Delegate Design

After about one to two hours of brain-
storming, the quality of ideas will start
to diminish; watch it carefully, allow
some humor of course, but be careful
not to allow it to devolve into a sillyfest.
When it is time to wrap it up, delegate
groupings of stickies to be followed up
by individuals and subgroups. Make
sure every single sticky has an owner
who is responsible for carrying out the
idea or issue to resolution.

Be sure each individual under-
stands what specific deliverables he or
she must produce for the design docu-
ment, from staffing plans to memory
tests on the PlayStation2. Each of these
design tasks must be scheduled and
have a due date. It may be useful to lay
all of these design tasks out in Micro-
soft Project or some other project
planning software if the number of

Chapter 16: The Design Document 217

design tasks is large or represents
more than three to six man-months of
effort.

Managing the Design Document

The design document is referred to in
the singular as if it were a massive
tome only suitable for the largest
three-ring binders your office super-
store carries. I think it is wrong to keep
the design document as one massive
document. As such it is much harder to
delegate sections to be worked on by
various team members. Break the doc-
ument up into as many discrete
building blocks as possible.

Place your design documents into a
version control system such as Per-
force or Visual Source Safe from the
very first iteration. This of course pre-
vents losses and allows you to go back
and understand what the changes have
been and perhaps revert to an older
document if you find yourself in a
design cul-de-sac.

Consider connecting all your docu-
ments, spreadsheets, diagrams,
sketches, and notes into a web of docu-
ments using HTML (after all, HTML
was designed to assist scientists in con-
necting their research papers). It is up
to you and your organization to deter-
mine what the overhead costs are for
connecting all the documents through
web links.

For each individual document I rec-
ommend listing the controlling author
and one-line descriptions of the revi-
sion history including dates.

60 Seconds of Gameplay

A defining document of the game detail-
ing 60 full seconds of every bit of
gameplay and response crystallizes the
game experience and leaves no room

for individual interpretations of what
the game could be about. I remember
reading the postmortem of Tropico in
Game Developer magazine. The author
of the postmortem was courageous
enough to admit that after one full year
of development on Tropico it became
evident that the development team was
not working together to create a game
of a single shared design, but rather
individual members were pursuing
their own game design for Tropico and
were actively and passively campaign-
ing for features and assets that would
support their vision of the game! I have
never seen this written down in print
anywhere else, but I have seen this
wholly unproductive behavior in action
on several teams. I think of it almost
like the quantum description of elec-
trons flying about the nucleus of an
atom, each electron representing a
member of the team and his personal
design for the game, and factoring in
the Heisenberg uncertainty principle,
no one really knows where anyone else
is and what their velocity is at the same
time. Obviously this is a misunder-
standing at best and a dysfunctional
team at worst.

With dysfunctional teams, the pro-
ducer and management must be merely
hoping the team will accidentally come
together and produce a commercial
game. And for teams suffering from
misunderstanding, think of all the
wasted effort pursuing bits of games
that almost were. The 60 seconds of
gameplay document will nip these scat-
tered games before they start growing
by making the actual gameplay clear.
This sort of document is a little difficult
to write with certainty from day one,
and it may take many iterations before

218 Chapter 16: The Design Document

TE
AM
FL
Y

Team-Fly®

the 60 seconds of gameplay settles
down to its final form.

As a side benefit to the marketing
team, console manufacturers and the
executive management team will be
grateful for (or sometimes demand) the
60 seconds of gameplay, and you will
have it on hand to pass out to these
stakeholders.

Core Gameplay

Building upon the 60 seconds of game-
play, create a document to flesh out the
core gameplay with a complete descrip-
tion of all of the interactions, behaviors,
and controls for the game. Take a car
racing game for example; describe all of
the controls for maneuvering the car,
and describe all of the interactions with
the environment such as bumping into
other cars and walls and traveling
across gravel, sand, and wet pavement.
Perhaps the game will feature time of
day, weather, and glare from the sun.
For a role-playing game note melee,
ranged, and spell attacks, healing
spells, information gathering spells,
walking, running, speaking to non-
player characters, traveling to new cit-
ies, gaining experience, allocating
experience points, buying new armor,
buying food, and so on. Don’t take the

time to detail all of these activities to
the finest detail; create separate docu-
ments for each of these. For example,
after listing that the player is able to
buy weapons, armor, and magical items
in the town in Diablo, create separate
documents that list the details for each
of these items and the vendors for each
of these subtypes of equipment.

Now you have a high-level design
document describing all of the core
gameplay for the game. This high-level
design document will then act as a find-
ing guide to the rest of the subgame
design documents.

I highly recommend using UML
use case diagrams to document each
and every one of these core interac-
tions with the game. These use cases
are readily usable by the programming
team to flesh out a technical design, and
the use cases will also serve as the
platform for developing the QA plan for
the game.

Note just by looking at the follow-
ing use case diagrams for the three
genres of real-time strategy, role-
playing, and first-person shooter, we
are able to discern at an analytic level
what these genres are about and the
gameplay experience delivered by
these three genres.

Chapter 16: The Design Document 219

The core use cases of Doom

The Walkthrough

One of the most valuable parts of the
game design document will be the asset
lists, which I cover in the next section.
However, to create comprehensive
asset lists you will need an understand-
ing of the complete gameplay experi-
ence. This is the walkthrough for the
entire game.

The walkthrough covers all of the
gameplay experience the player would

encounter through one pass through
the whole game. Commonly this would
be the documentation of the single-
player campaign for games that feature
campaigns. For our Black9 action-RPG
game we took the time to detail every
line of dialogue and every trap and chal-
lenge the player would face during each
of the 16 missions that occurred during
the single-player game.

220 Chapter 16: The Design Document

The core use cases of Gran Turismo 3

The core use cases of Diablo

JARGON: Walkthrough—the complete
documentation of the player’s experi-
ence from the start of the game to the
end of the game.

The exact format or type of walk-
through would differ dramatically
between different genres of games. For
the racing game of Gran Turismo, the
walkthrough would consist of describ-
ing all the races, race series, champion-
ships, and licensing courses. The
walkthrough would cover all the ene-
mies encountered during the game:
enemy cars, enemy superheroes,
enemy goblins, or enemy disasters,
such as in your SimCity game.

The completed walkthrough is a
major accomplishment deserving of a
fine meal! This walkthrough acts as a
travel guide for the rest of the team
with the very first application of the
walkthrough being the asset list
compilations.

Asset Lists

Asset lists are the spreadsheet lists of
all the little bits that comprise the game
such as spell effects, characters, race-
cars, car parts, crowd cheers, tiles,
movies, music, animations, AI behav-
iors, weapons, and so on. These asset
lists are fun to pore over and dream
about as the game takes shape. The
walkthrough from above makes it easy
to produce these asset lists as the AI
programmer only needs to read through
the walkthrough, highlighting AI behav-
iors as he comes across them. The lead
animator will build the animation
matrix from seeing the character list
and examining all the moves that each
of the characters must come up with.
Without a walkthrough you will be lim-
ited in your ability to list all of the
required assets. This is quite dangerous

to maintaining a tight schedule. With-
out having all the information in front of
you when making the development
plan, you will inadvertently allocate too
many resources for the creation of
some secondary or even tertiary assets
and only later find in the schedule that
you have run out of time to complete
some truly primary assets. This is one
way game projects slip.

Here is a short list of some of the
asset lists you should have (note that
some of these may not be appropriate
to the title you are creating):

1. Sound effect list
2. Voice-over list
3. Music theme list
4. Weapon list
5. Gear list
6. Spell list
7. Character model list
8. Environment model list
9. Animation matrix
10. AI behaviors
11. Mission list
12. Cut scene list
13. Physics scripting list
14. Power-ups list
15. Car parts list
16. NPC list

After you compile your asset list, the
producers and section leads can start to
fill in time estimates and dependency
information used later to build the pro-
duction plan. Remember that so far in
the process you have not formally sat
down and cut any features or assets
yet, and you don’t do that on your first
pass with the walkthrough and asset
lists. Instead of cutting right away, I
recommend you get on with other areas
of design while the asset lists stew for a
bit, gathering flavor. After at least two
weeks and preferably four, go back with

Chapter 16: The Design Document 221

a fresh eye and start to remove
requested assets, both from the asset
lists and the walkthrough, that are
clearly superfluous and will have no
meaningful impact on the game. There
is a fine line between detailing a game
world and creating asset verbiage that
never needed to be created in the first
place.

Use of Other Games

Using other games for inspiration and
as guidance for the implementation of
specific features is a good practice. For
example, since Diablo the industry is
pretty much settled on red-colored
health meters and blue-colored mana
meters. Don’t make yellow-colored
health meters and brown mana meters,
not even if you use nanotech, quintes-
sence, spell points, or any other magic
system—just use blue. For first-person
shooters, default the left mouse button
to fire the main weapon in normal
mode; no one will appreciate the right
mouse button being the default
behavior.

If you are designing a role-playing
game with an inventory system and you
like the paper-doll mechanics of Diablo,
take a screen shot from Diablo and
annotate what specific features will
remain the same and what you are
modifying. Referencing other games
and taking the game industry forward is
not plagiarism; it is just practical use of
time. Some other aspects of game
mechanics may not lend themselves to
a screen shot. In that case, make a writ-
ten reference in your design document
about a feature such as “the player
should be able to lasso his units as in
Warcraft III.”

Plagiarism is copying another
game, making a few minor modifica-

tions, and peddling it around town as if
it is something new. Many publishers
are guilty of opening up their latest
copy of PC Data or TRST sales data
and looking at what the number one
selling game is and then promptly set-
ting off to green-light a new game pro-
ject that is a clone of one that is already
a major hit. Think about the poor tim-
ing: The hit game was conceived at
least 24 months ago, and now the pub-
lisher will play catch-up and fund a new
title that will take another 24 months to
reach the market. Meanwhile, the guys
who made the original are wrapping up
their sequel and securing their position
on the franchise. This seems dumb to
me; I would rather be making the hit
game that others are chasing.

Menu Design

All games have some sort of menu sys-
tem, and in general the fewer menus
the better. The trend nowadays is to
embed as much of the menu system as
possible into the actual game. I remem-
ber how brilliant it was in Quake I
where id had the player choose his diffi-
culty level by running through a small
level and jumping through a teleporter.
It was interesting to note that the
insane difficulty setting was hidden by
the use of a traditional secret along the
path of choosing hard.

By current tastes the Quake I
method of choosing a difficulty level
would probably be considered labori-
ous; however, it is even more popular
to use the 3D engine of the game to
render the menu interfaces. Dungeon
Siege from Gas Powered Games fea-
tured animating chains and gears
pushing and pulling the menus around,
and many games now have the player
choose their character model only after

222 Chapter 16: The Design Document

seeing the character models on display
in their “living” format with sample ani-
mations and facial expressions. In
Grand Theft Auto 3 the player bought
weapons not through a 2D menu like
the weapon dealer in Diablo, but rather
by entering Amunation in Liberty City
and simply walking through and collid-
ing with the object of their choice.

The design of the menu system
might be a drag, but it is very important
to creating a clean, professional game-
play experience for the player. Creating
slick menuing systems is more difficult
than one would first think. The process
I employ is to enlist my trusty friend
the use case diagram and note all of the
steps involved in getting the player
from startup to all of the various modes
of play and options.

Game Mechanics Detail

The game mechanics detail is probably
what most people think of when they

hear game design document. This
document details all of the itty-bitty
mechanics of your combat system, your
sell system, or your racing model. All
games are a simulation of some sort of
activity, and the game mechanics detail
is the formal analysis of that simulation
and the description of how that model
will be realized in your game. The
game mechanics are much too specific
to a particular game for me to be able to
develop a generalized plan or format for
its presentation.

Write the Manual?

One interesting suggestion from Steve
McConnell that I have yet to try out on
a project is to write the manual for the
game during the game design process!
If I were to try that, I think the best
place is after the core gameplay,
walkthrough, asset lists, game mechan-
ics, and menu designs have been laid to
paper.

Chapter 16: The Design Document 223

The use cases of Gran Turismo 3’s menu system

Concept Sketches and Art Style

Guide

The art director should be leading the
art team through a series of sketching,
prototyping, and visual design tasks
while assisting in the overall production
planning process. The sketches will
help all involved understand the look
and feel of the game. The user-inter-
face prototypes dramatically assist in
the communication of the core
gameplay.

On Completeness and Uncertainty

As the author of a book on how to go
about doing something, I am obliged to
assume the role of someone pontificat-
ing. As a pontificator on performing a
rigorous game design process, I will
freely admit here that in my profes-
sional career I have yet to create a
game design document that lives up to
what I have described not only in this
chapter, but in the rest of the book. In
the real world you will have many com-
peting time pressures. Instead of
carrying everything out to full comple-
tion, you must use your judgment and
determine what areas of the design
require the most game design
resources. If you are making a sequel
to a game that your team has already
made, then you should not spend time
creating documentation for the parts of
the game that are not changing;
instead, focus on the creative differ-
ences the new version is bringing to
play. In areas of the game design docu-
ment that still need more design effort
but that you don’t have time to address
at the present time, simply note the
incompleteness, assign it to a member
of the team, and suggest a date for
completion.

The twin brother of incomplete
work is uncertain work. Games are art
forms realized in a piece of engineering
brought forth by team effort. There is
no way anyone has ever written down
at the start of the project every detail
about a game without changing his
mind on the way to making a great
game. It’s fine to note straightaway in
the game design document areas that
you feel need further examination or
are dependent on learning new facts
that will be unveiled at a later point in
the project. As with incomplete work,
be sure this area of uncertainty has an
owner and a suggested date when the
issue will be reexamined.

Cut Features Even BeforeCut Features Even Before

Considering the ScheduleConsidering the Schedule

After laying out all this game design
material on paper, most people would
go straight to time estimates and pro-
ject planning without considering
cutting features. I hold a fervent con-
viction that the world’s great games do
not have an abundance of features,
rather they have just the right amount of
features polished to an uncommonly
high standard! To help make your game
a great game, rather than just plugging
in every single feature you and your
team can think of, instead consider
your process to be like sculpting the
perfect game out of game developer
mind-stone. As these extraneous fea-
tures are cut from the project, the true
beauty of a great game will shine. By
cutting now, without any pressure from
a time resource point of view, your
feature cuts will be more pure and
objective. Go ahead and cut big features
as well as small features. No worries if
you cannot bring yourself to make per-
manent cuts; simply designate truly

224 Chapter 16: The Design Document

great features as primary, the lesser
ideas as secondary, and the most obvi-
ously weak features as tertiary.

You will no doubt have to repeat
this process of prioritizing and cutting
features later in the production process,
but that task will be much easier with
all of this thinking about what really

needs to be in the game already
completed.

Maintain the Game DesignMaintain the Game Design

Document

Ah, so you are all done; HTML every-
where, no one has ever pushed UML
use cases to the limits you have, and
you are prepared to have an auditing
company review your asset lists. Fan-
tastic! Congratulate your team and
have a beer. Now get on with the rest of
the production plan and production in
general. Oh, wait, there is one thing left
to do with the design document: Keep

it up to date. This can be difficult,
tedious busywork for a team, and you
must decide what level of formality and
rigor must be applied to maintain your
own game design document. However,
the moment a game design document is
saved and checked into the source con-
trol system it starts to diverge. This is
due to people finding their own
improvements to the design. Perhaps
the design was vague, or perhaps the
developer learned of a better technique,
or perhaps someone ran low on time
and cut some features. All of this activ-
ity should be documented to assist
developers downstream. Think of the
QA team that must update the testing
plan, the manual writer, the voice
director who must plan the dialogue
sessions; there are a good many people
who need an up-to-date design
document.

On Fulfilled Expectations

Great games create expectations in
the player’s mind, and you should
deliver fully on these expectations.
Take your time as the game design doc-
ument is being wrapped up to ask
yourself what expectations the game
design suggests to the player. Brain-
storm a bit and compile a list of these
expectations and then go back and
review your game design document to
determine if you are truly delivering
the best gameplay experience for

fulfilling these expectations. Also look
for features that are listed in the game
design document that are not appar-
ently fulfilling any expectations. This
would be another clue for some feature
trimming. If after searching your soul
your game design creates a nice set of
expectations and delivers fully with no
excess fat, then you may safely declare
that the game design document is
complete.

Chapter 16: The Design Document 225

This page inten tion ally left blank

Chapter 17 > > > > > > > > > > > > > > >

Unified Modeling

Language Survival

Guide

The Unified Modeling Language (UML)
is referenced frequently throughout
this book, and the reasons for the use of
UML are amply supplied in the text.
This chapter aims to provide you, in a

single sitting, a quick and dirty guide to
UML so that you may focus immedi-
ately on the requirements and technical
design of your game.

Use Cases Deliver Requirements

The use case in UML is the conveyor
of requirements, and it is requirements
gathering that is the cornerstone of
technical design. The use case is a
standardized method of documenting a
scenario or an interaction between the
user and the software—in short, a use.
An interaction could be to withdraw
money from an ATM or to send the
document to the printer or to cause the
player character to jump, pick up an
object, or swing a sword. A collection
of shapes and notations featuring stick
figure actors, ellipsoid uses, and line
relationships comprise the visual com-
ponents of a use case diagram.

Chapter 17: Unified Modeling Language Survival Guide 227

The simplest use case diagram

Collections of interactions may be plot-
ted together in the same diagram to
help organize and prepare for the for-
mal design process.

Use case diagrams cannot get too com-
plicated. They are designed to allow the
software developer to quickly write
down an interaction between the user
and the software with a verb-like label,
wrap an ellipse around the label, and
draw some relationship lines.

For those of you who are curious,
formal UML includes varying types of
line shapes to describe different types
of relationships:
1. Association—the basic relationship

representing the communication
path between an actor and a use
case, drawn as a simple line.

2. Extends—the insertion of addi-
tional behavior into a base use case
that does not know about it, drawn
as a dashed line with an arrowhead
with the tag <<extends>>
accompanying the line.

3. Generalization—a relationship
between a general use case and a
more specific use case that inherits
and adds features to it, drawn as a
solid line with a triangular arrow-
head.

4. Inclusion—the insertion of addi-
tional behavior into a base use case
that explicitly describes the inser-
tion, drawn as a dashed line with
an arrowhead with the tag
<<include>> accompanying the
line.

Class Diagrams Are the Keystone of Design

A class diagram describes the static
design of your software, the associa-
tions between your classes, and the
subtypes of your classes; it is the work-
horse software design.

Taking the lead from Martin
Fowler’s UML Distilled is the concept
of design perspectives. When designing
software the modeler will be engaged
in one of three distinct phases of

design: Conceptual, Specification, and
Implementation.

Conceptual design happens as you
are starting to sort out the implications
from your use cases and are laying out
proto-classes to help organize and see
the behaviors start to take shape. It is
not necessary that all of the conceptual
classes map directly at a later stage to
classes that will end up being imple-

228 Chapter 17: Unified Modeling Language Survival Guide

A use case diagram featuring the automatic teller
machine

A use case diagram featuring various relationships

TE
AM
FL
Y

Team-Fly®

mented. Rather the purpose is to get
all of your class-like thoughts down on
paper for study and review before com-
mitting to the next phase of
construction: Specification.

Specification design occurs after
you have used your use case diagrams
to describe requirements and have
developed your requirements with the
use of the Conceptual model. The most
important benefit of object-oriented
programming is to separate the inter-
face to a class (or package, library, etc.)
from the implementation of the class.
The goal of Specification is to nail down
the interface of the object; the imple-
mentation details are kept out of the
Specification model, and what is left is a
clean view of how that portion of the
software you propose to create inter-
acts with the rest of the software.

Implementation design may pro-
ceed after the Specification phase has
been completed. The Implementation
design is what most people think of
when they think of object modeling. At
this stage all of the glorious detailed

bits of your classes are documented and
displayed like a dissected frog in a biol-
ogy class.

Like all aspects of UML, you do not
need to doggedly pass through these
modeling stages before you write code.
If the domain you need to model is
something you are familiar with and it
is not too complicated, maybe dashing
off the implementation model is the
most efficient for your task. Perhaps
your task is so straightforward that
absolutely no design work is required,
and you may start tapping out code
right off. However, if you are at the
start of your project and you are
designing a complex system, go ahead
and work through the phases.

It is fairly important to identify
what specific stage of technical design
you are in. For example, you might
understand one part of the domain
fairly well and start right in at the
Implementation design and then
wander out of this area of deep under-
standing and still attempt to design at
the Implementation view. This is likely
to create bugs in your software at
design time. If you need Conceptual or
Specification work but you stubbornly
try to force an Implementation model
on the less well understood parts just
out of momentum, you are bound to
create errors. A more specific example:
Suppose you licensed Epic’s Unreal
Technology engine and decided to use
GameSpy’s multiplayer libraries. You
already understand the GameSpy librar-
ies from earlier games, so you start
dashing out Implementation diagrams
but end up creating a poor design
because you did not take the time to
understand how the Unreal engine han-
dles starting up a multiplayer game.

Chapter 17: Unified Modeling Language Survival Guide 229

A basic class diagram

Detailed Syntax of the Class Diagram

230 Chapter 17: Unified Modeling Language Survival Guide

A class diagram with multiplicities marked

A class diagram with all the fixins’

Associations

Associations are the connections
between the classes in your class dia-
gram, represented by lines attaching
the classes (boxes) to each other.
These associations represent the rela-
tionships between the classes: The
cPlayerCharacter class may have a
cInventory container class. UML deco-
rates these simple association lines
with symbols and text to fully describe
the nature of the association.

Role names are text labels that are
placed at either end of the association
line to describe what role this class
portrays.

Multiplicity is another detail of the
association that is described at either
end of the association line. Multiplicity

describes how many instances of the
targeted class may be connected to the
class at the other end of the associa-
tion. The notation for multiplicity is
writen as the number of instances of
the class, such as simply a 1 for one
instance, 6 for a half dozen, 1..6 for the
range of possibilities from one to six,
0..1 when there can be only one or
none, and finally an asterisk to repre-
sent an infinite quantity, such as 2..* for
at least two and upwards to infinity. To
describe the number of legs an animal
has, use the notation of a comma sepa-
rating the discrete values the number
of instances may take on such as 1, 2, 4,

6, 8, 30, 750 for clams, tur-
keys, salamanders, lobsters,
house centipedes, and the
millipede species of Illacme
plenipes of California,
respectively.

Navigability and general-

ization are the last bits of
adornment that occur at the
ends of association lines,
drawn simply as open
arrows with just lines (navi-
gability) or as arrowheads

(generalization). These two arrows
depict the two broadest relationships
possible between classes: the “has a”
and the “is a” relationships. General-
ization is the “is a” relationship where
one class that is more specialized in
function is derived from another class
that is more generalized in function.
Navigability would then of course be
the “has a” relationship; the direction
of the arrow in a “has a” relationship
illustrates which class is the container
class.

Chapter 17: Unified Modeling Language Survival Guide 231

A class diagram with roles marked

Focusing on the use of multiplicity markings

If navigability occurs in only one direc-
tion (the usual case), it is called unidi-
rectional; if both objects point to each
other, it is called bidirectional. In the
case of an association line without
arrows, UML says the association is
either unknown or bidirectional. We
think this ambiguity in the language is
a flaw and recommend treating lines
without the arrows as unknown rather
than imply a bidirectional behavior.

Attributes

Attributes may be thought of as simple
fields in a class. At the conceptual level
an attribute is just a “has a” association.
An example of an attribute is the name
of the player in the cPlayerCharacter
class. Class boxes are subdivided into
three sections: class name, attributes,
and operations. The full syntax for an
attribute is:

visibility name: type =
defaultValue

For example: + mplayerHealth: int =
100

This declares a public member data
with the name mplayerHealth on the

cPlayerCharacter that is of type int,
which is instantiated with a default
value of 100.

Visibility describes how this attrib-
ute is seen in the interface: public,
protected, or private.

Table 1—UML Symbols for Visibility

public +

protected #

private –

Operations

Operations are the activities defined in
individual methods that a class con-
tains. For Specification modeling we are
only concerned with the public meth-
ods defined in a class; when Implemen-
tation modeling, we are of course
concerned with all of the member func-
tions: public, private, and protected.

The full UML syntax for describing
an operation is:

visibility name (parameter list):
return-type-expression {property-
string}

For example: +GetAmbientLightLevel
(in timeOfDay: Date) : float

This describes a query operation avail-
able on cEnviroment by the name of
GetAmbientLightLevel that given the
timeOfDay of type Date will return a
float that represents the fraction of
ambient light to be used for the render-
ing engine.

There, that is what it takes to pro-
duce a class diagram—the keystone of
UML and object modeling!

232 Chapter 17: Unified Modeling Language Survival Guide

Focusing on the difference between an “is a” and a
“has a” relationship

A class with some attributes indicated

A class with some operations marked

Forward and Reverse Engineering of the

Class Diagram

The coolest aspect (not necessarily the
most beneficial) of UML in my opinion
is the ability to have software applica-
tions such as Rational Rose, Together,
or even Visio create code from your
diagrams (forward engineering) and/or
create diagrams from your code
(reverse engineering). There are at
least 75 UML modeling tools (most of
them perform forward engineering and
a smaller set perform reverse engi-
neering) for sale as of this writing
(summer 2002). One list of these prod-
ucts is maintained at Objects By
Design: http://www.objectsbydesign.com/tools/

umltools_byCompany.html.
At first thought it may seem like

magic that a computer could read a dia-
gram. What these tools do is act like
the parser in your compiler to explore
the interface and composition of your
classes and draw the corresponding
UML diagrams with the correct syntax.
In the forward engineering direction,
these tools generate skeleton code in a
number of different programming lan-
guages (e.g., C++, Java, SmallTalk,
C#, VB, Eiffel) with C++ and Java
being the two most commonly sup-
ported languages. Common sense
would tell you that adding the member
function huntForFood() on your Ogre
class will not cause any software in the
world to be able to figure out what you
meant by huntForFood and flesh out the
code for you (explanation follows).1

Rather, it will just create the template

of code for you. Here, let me walk you
through a sample with our friend the
Ogre:

For this set of examples I decided
to try a UML modeling product that I
had not tried before, Embarcadero’s
Describe (http://www.embarcadero.com/prod-

ucts/describe/index.asp). While I have barely
scratched the surface, I was able to
download the product, install, and start
modeling straightaway without using
the help system at all. Fairly impressive
endorsement if you ask me. Now on
with the example:

First we create a basic class diagram
with our Ogre derived from the base
class MonsterNPC.

MonsterNPC has two public attrib-
utes, mName of type string and
mHunger of type bool (although I am
sure you would not make your attrib-
utes public). Ogre has been fleshed out
with the public member function
huntForFood().

Chapter 17: Unified Modeling Language Survival Guide 233

A basic class diagram for Ogre, an NPC derived from
MonsterNPC

1 Of course, that sentence should be read with the connotation of “currently.” No doubt computers will
continue to grow in power exponentially and someday neural nets, expert systems, and probably a
hodge-podge of AI techniques will allow a computer to guess at the implementation for huntForFood(). It
is interesting to note that computers and software are already designing integrated circuit chips at the
lowest level and performing the majority of stock trades automatically.

Now all I need to do is press the
code generation button (while I am
using Describe, other tools like Ratio-
nal Rose and Together also have
buttons to generate code). At this point
I am given many options in the

Describe UI that are not directly rele-
vant to this overview of UML. One of
these options is to proceed with the
code making! Here is what Describe
generated:

//**
// C++ Class Name : MonsterNPC
// ---
// Filetype: (HEADER)
// Filepath: C:/Program Files/Embarcadero/Describe/GDTemp/MonsterNPC.h
//
//
// Describe Properties
// ---
// - Symbol Type : CLD_Class
// - Method : UML (5.6.1)
// - System Name : Ogre
// - Diagram Type : Class Diagram
// - Diagram Name : MonsterNPC
// ---
// Author : Administrator
// Creation Date : Sun - Jul 7, 2002
//
// Change Log :
//
//**
#ifndef MONSTERNPC_H
#define MONSTERNPC_H

class MonsterNPC
{

public:
string mName;
bool mHunger;
MonsterNPC () ;
virtual ~MonsterNPC () ;
MonsterNPC (const MonsterNPC &x) ;

};
#endif

The first file is MonsterNPC.h, defining
the interface to the base class that Ogre
is derived from. Notice all the nice
comment work supplied by Describe;
just think how envious your fellow
teammates will be with your diligent
code style!

The next file created was Mons-
terNPC.cpp; notice how it has done a
lot of typing drudgery for us, and now
all we have to do is fill in the body of
the functions. Again, there are many
nice bits of commenting that one should
really get around to filling out.

234 Chapter 17: Unified Modeling Language Survival Guide

Code generated for MonsterNPC.h

//**
// C++ Class Name : MonsterNPC
// ---
// Filetype: (SOURCE)
// Filepath: C:/Program Files/Embarcadero/Describe/GDTemp/MonsterNPC.cpp
//
//
// Describe Properties
// ---
// - Symbol Type : CLD_Class
// - Method : UML (5.6.1)
// - System Name : Ogre
// - Diagram Type : Class Diagram
// - Diagram Name : MonsterNPC
// ---
// Author : Administrator
// Creation Date : Sun - Jul 7, 2002
//
// Change Log :
//
//**
#include "MonsterNPC.h"
//--
// Constructor/Destructor
//--
MonsterNPC::MonsterNPC ()
{
}
MonsterNPC::MonsterNPC (const MonsterNPC &x)
{
}
MonsterNPC::~MonsterNPC ()
{
}

Now here is Ogre.h; notice how
Describe knows to write the correct

syntax for deriving Ogre from
MonsterNPC. Neat, huh? I think so.

//**
// C++ Class Name : Ogre
// ---
// Filetype: (HEADER)
// Filepath: C:/Program Files/Embarcadero/Describe/GDTemp/Ogre.h
//
//
// Describe Properties
// ---
// - Symbol Type : CLD_Class
// - Method : UML (5.6.1)
// - System Name : Ogre
// - Diagram Type : Class Diagram
// - Diagram Name : MonsterNPC
// ---
// Author : Administrator
// Creation Date : Sun - Jul 7, 2002
//

Chapter 17: Unified Modeling Language Survival Guide 235

Code generated for MonsterNPC.cpp

// Change Log :
//
//**
#ifndef OGRE_H
#define OGRE_H

#include "MonsterNPC.h"

class Ogre : public MonsterNPC
{

public:
huntForFood () ;
Ogre () ;
~Ogre () ;
Ogre (const Ogre &x) ;

};
#endif

Code generated by Describe for Ogre.h

Finally Ogre.cpp shows the skeleton
constructor, copy constructor, destruc-
tor, and huntForFood().

//**
// C++ Class Name : Ogre
// ---
// Filetype: (SOURCE)
// Filepath: C:/Program Files/Embarcadero/Describe/GDTemp/Ogre.cpp
//
//
// Describe Properties
// ---
// - Symbol Type : CLD_Class
// - Method : UML (5.6.1)
// - System Name : Ogre
// - Diagram Type : Class Diagram
// - Diagram Name : MonsterNPC
// ---
// Author : Administrator
// Creation Date : Sun - Jul 7, 2002
//
// Change Log :
//
//**
#include "Ogre.h"
//--
// Constructor/Destructor
//--
Ogre::Ogre ()
{
}
Ogre::Ogre (const Ogre &x)
{
}
Ogre::~Ogre ()
{

236 Chapter 17: Unified Modeling Language Survival Guide

}
//--
// huntForFood
//--
Ogre::huntForFood ()
{

}

Code generated for Ogre.cpp

Describe, like all other good forward
code generating tools, automatically
updates its own diagrams to reflect the
additional functions such as the con-
structor, copy constructor, and destruc-
tor that have been added to the classes.
This is very neat as well.

What just happened might have been
reverse generation of the diagram
update with the constructor, destructor,
and copy constructor by writing the
code first and then updating the dia-
gram, or it could have been forward
generation by modifying the diagram
and then proceeding with the code gen-
eration. I could not tell you since it all
happened within a blink of the eye.

To test the reverse engineering
capabilities of Describe, I added a new
member function to Ogre: pickTeeth-
WithElfBones(). It seemed like a fun
thing for our Ogre to do on occasion.

To accomplish this I opened up the
code generated by Describe in a simple
editor like Windows Notepad and added
the declaration of pickTeethWithElf-
Bones() to the public members section
of the Ogre class in Ogre.h. (I omit this
painfully dull figure illustrating a one-
line change to Ogre.h.) I then told
Describe to reverse engineer the dia-
gram from the source code:

Bam, there is the pickTeethWithElf-
Bones() member function in the Ogre
box including the + symbol indicating it
is a public function. As a final step I
then directed Describe to perform
some forward engineering magic by
again generating code from the dia-
gram. What is there to generate? The
skeleton of the function pickTeeth-
WithElfBones() in the Ogre.cpp file of
course!

Chapter 17: Unified Modeling Language Survival Guide 237

The class diagram has been updated after the code
generation.

The new function pickTeethWithElfBones() has been
automatically generated.

This brings me to a very important
point to keep in mind about UML.
While I have been advocating a method-
ology that is likely to be a more
extensive process than you are cur-
rently using, by going with UML and
with the flow of the industry standard,
not only will your team be creating
higher quality software on time through

all of these magical benefits of whole-
some software engineering, but as a
side effect or bonus your team will save
itself from the tedium of making header
files and stubbing in their functions.
Using UML with a good UML tool such
as Describe, Together, or Rational
Rose will save your team time.

The Other Seven Diagrams of UML

The use case and class diagrams from
UML are the two most useful diagrams
for any software engineering project,
especially game projects where the
technical design phase must often be
conducted under constant pressure to
get on with it and start some gameplay
action. The use case diagram exists to
collect behavior and requirements, and
the phases of class diagrams (concep-
tual, specification, and implementation)
exist to design the software. That is a
whole lot of functionality in just two
diagrams; however the UML provides
seven more diagrams.

Table 2—The Nine Diagrams of the UML

Static Design
Diagrams

Dynamic Behavior
Diagrams

Class diagram Use case diagram

Object diagram Sequence diagram

Component diagram Collaboration diagram

Deployment diagram State diagram

Activity diagram

As you can see, there are four diagram
types listed as static design diagrams.
Besides the class diagram there are the
object, component, and deployment
diagrams. Honestly, these types of
static design diagrams are merely

variations upon the theme of a class
diagram.

Static DiagramsStatic Diagrams

The object diagram depicts the static
behavior of a set of instantiated objects
and the relationships between these
objects. This is useful for illustrating
tables in a database in relation to spe-
cific objects elsewhere in the system.
Again, an object diagram is very similar
to a class diagram but is instead focused
on the perspective of allocated, instan-
tiated, real objects. This diagram is not
needed for all modeling jobs; however,
it is useful when examining the static
relationship behavior of a system of
objects that can vary quite a bit under
different scenarios.

238 Chapter 17: Unified Modeling Language Survival Guide

An example of an object diagram

TE
AM
FL
Y

Team-Fly®

The syntax for the object diagram is to
declare the name of the object as
instance name: class name. Attributes
of an object are often shown in an
object diagram as it is the varying val-
ues of the attributes in a class that
compose an instantiated object.

The underline notation for the
instance name should not be confused
with the underline notation used on
attributes and operations. An under-
lined attribute or operation indicates an
attribute or operation that is of class
scope rather than limited in scope to
the instance.

The component diagram, also
known as a package diagram, is simply
building upon the concept of a class dia-
gram but with larger chunks of your
software system besides single classes.
For example, component diagrams are
well suited for depicting the connec-
tions between the 3D rendering engine,
the AI subsystem, and the network
layer. Each component may be drawn as
a simple box or more ornately as a
file-folder-like icon or a box with two
tabs on the left-hand side as if it were
to plug into something. Draw simple
lined arrows between the components
to indicate dependencies.

The component diagram is a great
tool for developing a road map for main-
taining a body of code and for working
with a team of developers in general.
Also, if your body of code is becoming
tangled and your build times are grow-
ing out of control, mapping the

dependencies between the classes
across your project may guide you to
perform some surgical refactoring to
bring your builds back under control. A
great book on the problem of depend-
encies and build times is Large-Scale

C++ Software Design by John Lakos.
Component diagrams do not need

to be fancy; however, inside the folder
icons for a component, you may list the
important parts that comprise the com-
ponent as well as the UML standard
visibility symbols such as +, –, and #.
In fact, the class, component, and
deployment diagrams share the follow-
ing UML structures: stereotypes, gen-
eralizations, and associations.

The deployment diagram acts as the
most natural extension of the compo-
nent diagram, the physical arrangement
of your software system and subsys-
tems with a pictorial description of the
delivery platform and where the major
components live on the delivery
platform.

For many games, especially con-
sole games, the deployment diagram
would be a simple diagram with just a
single machine being the platform.
However, in the case of very fast hard-
ware video and hardware audio, it may

Chapter 17: Unified Modeling Language Survival Guide 239

Indicating a function with class scope versus
instance scope

A sample package diagram based on a simple 2D
game

still be useful to depict what subsys-
tems of the hardware the various bits of
your game engine are running on.

Deployment diagrams are an excel-
lent opportunity to use all of the Visio
stencils that are lying about. You can

use a cloud to represent the Internet,
different server icons, modems, satel-
lite dishes, whatever you want; the
deployment diagram is the diagram that
expresses the software in its most
physical terms.

Dynamic DiagramsDynamic Diagrams

The class, object, component/package,
and deployment diagrams comprise the
four static design diagrams of the UML.
As shown in Table 2, there are five
diagrams to assist in describing the
dynamic behavior of software. It is an
inherently flawed process to render
onto a 2D plane the time-dependent
dynamic behavior of software. There is
no guarantee that the software should
not rightly take up more than two
dimensions in representation and no
guarantee that it will lay its time com-
ponent out nicely to be read top to

bottom or left to right. That may be one
reason the UML has defined more
(five) diagram types for the dynamic
behavior of software compared to the
four diagram types of static behavior.

You are already familiar with the
handiest of the dynamic behavior dia-
grams, the use case, but what are the
rest of the dynamic diagrams about?

Activity diagrams are useful for
documenting the behavior of objects
that have complex state-changing
behavior. A programmer I knew from
my earliest game programming job

240 Chapter 17: Unified Modeling Language Survival Guide

A sample deployment diagram based on SFC3 and D3 with clients, servers, and web site

used to exhort rather menacingly about
the lack of appreciation we younger
programmers had for the state
machine. I have to admit that while I
had a general idea what the guy was
talking about at the time, I did not
understand exactly why state machines
are a panacea to programming. Now
that I know more, I know the state
machine is not the panacea to strong
programming; instead, the state
machine is just another good tool in the
programmer’s box. I believe what the
older programmer was trying to say
was that the failure of younger pro-
grammers to visualize and understand
the state machines we were already
creating caused a lot of bugs. Thus, the

utility of the state diagram to visualize
and model objects with complex state
behavior.

The first bit of notation you will
immediately pick up on is that the
boxes in an activity diagram are round
edged; these are the states that your
object transitions between. Martin
Fowler uses the terms “activity” for
the round-edged box states and
“actions” for the transitional arrows
drawn between the states. The idea is
that actions would be quick (how quick
depends on the nature of the problem
you are modeling) and that activities
happen “for a while” (how long again
depends on your problem).

Chapter 17: Unified Modeling Language Survival Guide 241

A sample activity diagram of state behavior of the ghost NPC class in Pac-Man

Each of the transitions in your
object should be documented with the
guard condition, which is a boolean con-
dition that when met allows the object
to pass to the new state. For example,
when Pac-Man eats the power-up, the
Ghosts then start to flee from Pac-Man.

There are also two predefined
states for all objects in the UML nota-
tion: the start state and the end state,
represented by solid filled circles, with
start usually placed at the top of the
diagram and end at the bottom.

It is common for an object to tran-
sition among a set of related activities
(states) while at the same time open to
being interrupted and transitioning to
another state that is connected to all of
these related states.

Sequence diagrams are designed to
address the need to model the dynamic
behavior between objects. Again, the
state chart tracks the changing of state
internally in an object, while the
sequence diagram tracks the communi-
cation occurring between a number of
objects.

242 Chapter 17: Unified Modeling Language Survival Guide

A sample sequence diagram depicting a simplified logon sequence

The sequence diagram is useful for
designing how your components and
packages will interact at the specifica-
tion stage and assists you in designing
the message traffic in your objects in
the implementation design stage. A
sequence diagram documents a single
scenario or course of events. In fact, a
sequence diagram maps well to a use
case diagram. You should certainly
spend more energy on collecting your
requirements into use cases rather than
rigorously ensuring that you have a
documented sequence diagram for each
of your use cases.

The main benefit of sequence
diagrams in game development is in
multiplayer code technical design.
Multiplayer code tends to need a lot
of asynchronous callbacks, multi-
threading, blocking calls, or combina-
tions of all of these. You also have
peer-to-peer or client-server communi-
cation. There is usually a lot of compli-
cated messaging going on. Zachary
Drummond and I independently devel-
oped sequence diagrams on our own
while working on a client-server game
in 1997. Later we found out there is a
standardized language for expressing
this messaging behavior!

Now a quick overview of the syn-
tax behind the sequence diagram: First,
all of the objects that are part of the
scenario to be designed are listed
across the diagram from left to right,
with the leftmost object being the insti-
gator of all of the action and the
rightmost object generally being the
last object to be instantiated in the
scenario.

Below each object is the object’s
timeline represented by a vertical
dashed line, starting at the bottom of
the object’s box and extending to the

bottom of the diagram. From the time
the object is actually created until it is
deleted, the timeline has an open rect-
angle on top of the dashed line. At the
bottom of the rectangle, if the object is
deleted in this scenario, a large, bold X
is placed to clearly indicate when the
object was destroyed.

The messages themselves are
lines with solid filled arrowheads that
lead from the calling object to the called
object. This message line is always
labeled with the name of the calling
object’s member function that is mak-
ing the function call or asynchronous
message (or by whatever messaging
vehicle you are using). Additional con-
ditions may wrap the message label to
document what conditions would have
to be met for the message to fire off.

Objects may send messages to
themselves; this is documented by hav-
ing the object point an arrow back to
itself. Messages that are simple returns
are drawn by using a dashed line with a
solid arrow back to the calling object.

Like many bits of the UML, you
may choose to use additional symbol
types to add clarity to a diagram. For
example, UML uses half-filled arrow-
heads to represent asynchronous
messages.

The collaboration diagram in my
opinion is just not useful or at best can
only be useful in odd cases. Maybe I
have failed to appreciate the use of a
collaboration diagram; like anything I
put forth in this book, if you take issue
or have a suggestion, please drop me a
line at erik@taldren.com.

The basic syntax of the collabora-
tion diagram is to basically smash
together a class diagram and a
sequence diagram and end up with a
diagram that does a worse job at

Chapter 17: Unified Modeling Language Survival Guide 243

modeling dynamic behavior than the
sequence diagram and a worse job at
static modeling than the class diagram.
That is, it uses boxes for objects and
message arrows to indicate calls
between the objects.

Essentially this diagram is an infor-
mal sequence diagram where object
lifetime is not required to be drawn and
you feel the need to sprawl about your
drawing surface. I have so much disdain
for these collaboration diagrams that I
am not even going to include an exam-
ple. I highly recommend UML Distilled

by Fowler and Scott, and if you are mor-
bidly curious, you can check out the
collaboration diagram in that book!

Collectively, the sequence and col-
laboration diagrams are called UML’s
interaction diagrams. Use the sequence
diagrams.

State diagrams are the last bit of
the UML to discuss, and as with the
collaboration diagram, I do not think
the state diagram is useful. The state
diagram is essentially a flow chart using
UML notational bits. Sure, flow charts
are useful and they had their day, but I
feel the trio of use case, class, and
sequence diagrams are the different
views to use, representing require-
ments, and static and dynamic
behaviors. The odd state diagram will
also help you out with particularly
state-driven complex objects.

Here again, to sabotage the state
diagram I omit a diagram for it; see
UML Distilled if you remain interested.
Email me if you’re passionate about the
state diagram; I see it only useful for
the high ceremony shops that would
like to make an easy-to-read flow chart.

244 Chapter 17: Unified Modeling Language Survival Guide

Chapter 18 > > > > > > > > > > > > > > >

Technical Design

The technical design document is sec-
ond only to the game design document
in importance for a successfully
planned project. The technical design
document is the reflection of the game
design document and a blueprint for
your development team.

Every organization has a different
format for technical design documents
and depending on the size of the organi-
zation, its experience, and the size of
the game project and the goals for the
game, the level of effort that is spent
creating this document varies wildly.

First off, it should be noted that
even with business software, the
design phases and the technical

design/architectural phases overlap
each other, and no technical design doc-
ument is 100 percent complete before
starting formal production of your
game. In fact, attempting to achieve
perfection in the technical design phase
is not keeping your eye on the true
goal: creating a great game. Instead
your group should achieve a good

design that meets your requirements
and goals for the project. In other
words, I will be spelling out a whole
bunch of detail that could possibly go
into a technical design document, and
you will need to use your own judg-
ment of what is appropriate for your
team and your project.

Nominate Functional Leads

At Taldren we have found that modern
games have grown too large in scope
and complexity for a single lead pro-
grammer to know everything important
across the whole of the project. And
even if one programmer could keep it
all in his head, that would not be best
for your team or the project.

Instead of the lead programmer or
technical director designing all soft-
ware, we nominate functional leads for
each subsystem of our games. This has
been common practice at other game
development houses for some time
now. Besides not overwhelming a

single developer, we find that we create
a lot more energy and buy-in from our
programmers if they have specific sub-
systems that they own. Also, this is a
necessary exercise if you want to grow
your programmers into stronger pro-
grammers. In my opinion, growing your
folks into stronger developers should
be a goal as important as making a
great game, possibly even more impor-
tant than a solitary game. Your games
must be the strongest you can create in
order to ensure the success of your
business; however, never forget that
your games are created by people

Chapter 18: Technical Design 245

thinking, and structuring the challenges
in your projects that cause each of your
programmers to stretch and grow is
how to truly make a great company.

This goal of developing your more
junior people into stronger developers
and taking your strongest programmers
to new levels may find heavy resistance
from some who prefer (subconsciously
or consciously) to remain a hero pro-
grammer who calls all the shots in a
given area and feels indispensable. This
is negative to the ultimate health and
performance of your team. At Taldren
we consciously cross-train at least two
developers, and ideally three, in each
major area of expertise, such as graph-
ics, AI, and networking, to ensure that
we do not have any indispensable hero
programmers. It sounds like we are cal-
lous of people’s egos, and in a way we
are. I am not interested in protecting an
ego that depends on hoarding technical
knowledge. Instead, I want to grow
healthy egos that discuss their techni-
cal challenges and proactively share
their knowledge with each other.

After nominating each of your func-
tional leads, it is time to parcel out the
game’s requirements and game design
document to each of the technical leads.
Of course the entirety of the game
design documents and other documen-
tation should be readily accessible to all
developers, but here is where the lead

programmer or technical director
makes a conscious decision to parcel
out information to his leads. This par-
celing out ensures that the leads will
actually read their area of the game
design document and not get lost trying
to get through the whole pile of docu-
ments. I have discovered through
experience that some folks enjoy read-
ing whole design documents and others
do not. For the latter types you must
pull out what you want them to read.
(For our latest project, in addition to
having all of the design documents in
the version control system with easy
access to all of the development team, I
burned a CD with all of the documents
at the end of the game design phase and
handed it out to every member of the
development team so that they would
have the convenience of not having to
look for the documents on SourceSafe
and could also conveniently take a copy
of the game design material home with
them. I will let you know how this
turns out.)

Some of the leads we have on
Black9:

1. Artificial Intelligence
2. Unreal Warfare
3. Xbox
4. PS2
5. Networking
6. Quality Assurance
7. Level Design

246 Chapter 18: Technical Design

Synthesize Use Cases and Nonvisible

Requirements

How do your developers actually create
a technical design for their areas of
responsibility from the design
documents?

Start with the Use CasesStart with the Use Cases

Those use case diagrams that illustrate
the game design document are excel-
lent collections of the behavior of the
various subsystems in the game. The
technical leads should take the use case
diagram to a whiteboard (or paper or
modeling software such as Describe)
and start to annotate it with questions
that will lead to further refinement of
the design and notes suggesting the
technical design of the system.

Over time these annotated use
case diagrams should be used as the
raw material to develop the static
design of the software. In some areas it
might be appropriate to start right out
with class diagrams, and in other areas
it might be better to start at a higher
level such as a package or component
diagram.

Casual, Frequent Design Review

As the functional leads are performing
the analysis of the requirements, they
should meet with each other at irregu-
lar points when they have reached
some intermediate stage of design and
discuss their proposed design with
those who have areas of responsibility
that border on the work of the first
developer. This is an activity that the
lead programmer or technical director
should be actively monitoring and push-
ing to happen. This will help ensure
that all of the game is designed as a
coherent whole and that there are no

missing tasks that fall between two
developers when no one claims respon-
sibility for that area.

This is an amazingly important process,
and it is the main reason you co-locate
your developers in an office so that
they can communicate with each other.
Hundreds of minor decisions will be
ferreted out with this discussion pro-
cess that were never identified as
needed.

Nonvisible RequirementsNonvisible Requirements

Use case diagrams are only able to doc-
ument the interaction of the game with
the player and in some cases between
the client and the server or other play-
ers. There are a great many require-
ments that games need to meet that are
not interactions with the player. I lump
all of these together as nonvisible
requirements.

All games have a minimum frame-
rate requirement, with strategy and
puzzle games being able to get away

Chapter 18: Technical Design 247

Two developers rejecting a task—it falls through the
cracks.

with as few as 10 or 15 frames per sec-
ond and most console games using 30
frames per second. The highest per-
forming action games are 60 frames per
second. In the requirements gathering
document, the designer merely wrote
down what his frame rate requirement
was. Now the technical leads must
work together to develop a technical
plan to meet these requirements. The
technical design document is not
merely an echo of what another guy
said earlier when the requirements
were identified; now the requirements
must be analyzed, and a plan of attack
must be articulated. It is fine if the
issue is not fully understood yet. For
example, if a wholly new 3D engine
technology must be created, it would be
fine if the technical design discussed a
strategy called frame-locking to keep
the frame-rate smooth and if the docu-
ment spelled out various ways that
performance will be optimized or met
through modifying assets such as poly-
gon and texture map reductions.

Other nonvisible requirements
should or may include the following:

� Maximum run-time memory foot-
print (this is especially important
with console games)

� The layout of the data structures
on the physical media such as CD,
cartridge, or DVD

� The maximum bandwidth allowed
per player per second

� The customer support and release
quality requirements

� All of the console manufacturer’s
requirements (there are dozens of
them)—I recommend creating a
little distilled checklist of require-
ments that is used to generate
specific tasks.

� For PCs, develop a technical plan
to meet the specified minimum
system requirements such as the
memory on video cards.

� Specify what SDKs and APIs the
game will use and declare at what
point you will lock down these
third-party software libraries and
what your risk plan is if they fail to
deliver on all of their promises.

� Detail how the game will be local-
ized, how the game’s strings will
be organized, and how the font will
be swapped out for other lan-
guages’ fonts. Make sure your
strings are stored as double-byte
strings to facilitate worldwide
localization.

� Security —what is your strategy to
prevent copying? CD-keys or some
sort of CD encrypting software?

� Security/cheating—if your game
features online gameplay, then you
must address cheating or popular
games will die a sudden death.

� Portability—is it a goal to move the
code over to Linux? Mac? PS2?
GameCube? Xbox? Plan ahead to
isolate platform-specific code.

� Database usage—you may not have
a full-blown use for SQL in your
game, but you certainly have art
and audio assets that must be effi-
ciently organized and referenced
both during production and at run
time.

� Concurrency and threads limita-
tions—for example, virtually all
consoles do not support the use of
threaded programming; your plan
must explicitly detail the use or
non-use of threads.

248 Chapter 18: Technical Design

TE
AM
FL
Y

Team-Fly®

These are just some of the nonvisible
requirements that your game could be
holding on to; your team has the
responsibility to look for the rest of
these not-so-easy-to-spot
requirements.

Measure Twice, Cut OnceMeasure Twice, Cut Once

As your team prepares the technical
design document, it should also be
performing tests and experiments to
establish reasonable confidence in the
performance of the game software.
Some concrete examples are in order.
Suppose you are licensing the Unreal
engine from Epic to make your game
(as we are). What are the performance
parameters of the engine? If you load in
a character model with 5,000 polygons,
20 animations, and one 512 by 512 by
24-bit texture map, how much run-time
memory does the geometry require?
How much for the texture map? Which
compression algorithms are you using
for the texture map? How about that
animation data? How much memory
will that take up? How does key-framed
animation data compare to motion cap-
tured data from a memory footprint?

It is critical to both measure the
actual values observed as well as pre-

dict what the values ought to be, based
on simple calculations of the data
involved. For example, we ran a set of
tests on Unreal’s performance with ani-
mation data, and the results we got
back from the first test indicated that
Unreal used an outrageous amount of
memory for each animation. This outra-
geous value was presented at a team
meeting, which I interrupted to do a
back-of-the-envelope guesstimate of
the order of magnitude the data should
require. It turned out to be roughly 12
times less memory. So a deeper test

was called for, and we soon learned that
indeed Unreal used the much lower
amount of memory as predicted by the
calculation and that there was an error
in the first estimate.

I remember being taught this les-
son when in graduate school at USC’s
Aerospace department when one of the
youngest professors there, Dr. Irwin,
challenged a highly respected older
graduate student to calculate the orbital
velocity of the KH11 spy satellite on
the spot. The student said he would
need to know how much mass the sat-
ellite had before he would be able to
proceed with the calculation. Dr. Irwin
responded harshly, “Guess!” The stu-
dent surprised himself by being able to
come up with a decent number for the
mass. Then the student said he was not
familiar with the radius of the orbit the
KH11 used. Dr. Irwin responded again
harshly, “It is a damn spy satel-
lite—guess!” This of course was a
strong clue that the spy satellite orbited
at a very low altitude and that the stu-
dent knew that already. From there it
was a simple equation that the student
had worked through probably a hundred
times before in the regular coursework.
The moral of the story is that fragile,
worthless engineers are handicapped
by documentation and textbooks, and
thinking, useful engineers have some
idea of what is reasonable (with the
accuracy of the guesstimate ranging
widely depending on the problem to
within an order of magnitude or ± 25
percent). Your developers should know
how many bits it should take to repre-
sent a 5,000-polygon model and should
be ready to interpret the actual results
measured. Raw measurements without
any thought behind them are even
more dangerous than no numbers; at

Chapter 18: Technical Design 249

least with no numbers you know what
you don’t know.

Another simple example of this is
that very quickly your developers
should spot the impractical requirement
that a PS2 game support 1024x1024x32
texture maps for the characters. It is
easy to calculate that this one texture
map takes up 4 megabytes of mem-
ory—the exact size of the PS2’s video
buffer!

Another solid example of the use-
fulness of looking at the whole
enchilada and making sense of your
numbers occurred in an episode of
clever task estimating for a Game Boy
Advance project we were considering.
The question at the time was how
many artists the project required. We
knew that GBA teams required very
few team members; however, this
side-scroller would require the best of
our artists and quite a bit of art. This
last requirement, quite a bit of art, trig-
gered the question in my mind of
“Never mind how many artists do we
need for the project, instead how much
art can we possibly cram into the
GBA?” Taking the largest cartridge size
that Nintendo uses for the GBA we
were able to quickly calculate that two
of our artists working full time on the
project for six months would produce
more art than the GBA could even han-
dle! Two artists by six months was the
upper limit of our budget, and we hap-
pily penciled it in on the schedule as
one of the rare cases when you know
without a doubt that your time estimate
is as strong as possible.

Even when the final draft of the
technical design document has been
completed and the team is ready to
move on to production, it is important
to keep monitoring your expected

results to actual measured results. This
is basic scientific procedure taught in
physics labs in all college physics
courses. I repeat it here as so many of
us in the game programming craft are
self-taught.

Specify Tools, Languages, andSpecify Tools, Languages, and

Processes

Your technical design document should
specify what programming languages
will be used, such as C++, SQL,
UnrealScript. If the language choice is
important, then the technical design
document should elaborate on why
each of the languages are the best
choice for their jobs.

SIDEBAR: On scripting languages, I
have worked my way up in the game
industry from being a scripter on an
adventure game, through game pro-
grammer, to producer, and now CEO of
Taldren. I have a love/hate relationship
with scripting languages and it is mostly
on the hate side. It is entirely influenced
by my first experience with a scripting
language (a proprietary language
named SAGA II developed by my first
game industry employer, The Dreamer’s
Guild). This language was designed to
be C-like yet supposedly made crash-
proof by ignorant scripters such as
myself. I think the very goal of this
scripting language was the flaw: to
reduce the amount of serious bugs
caused by scripters. Instead of the rela-
tively short time it would have taken to
train good scripters to avoid producing
array-bounds, memory leaks, and other
crash bugs, many man-months were
devoted to the creation and the mainte-
nance of a mediocre language with
crude debugging tools. Essentially
SAGA never fully worked as advertised,
and we scripters still created bugs that
required the attention of more senior
programmers to solve. Recently at

250 Chapter 18: Technical Design

Taldren we have been introduced to the
UnrealScript language. This one I highly
approve of, as it has a much nobler
goal: to be able to be used by consumer
end users for user extensibility. With this
requirement Epic was forced to push
the quality level of UnrealScript far
above what most internal tools in the
game industry would achieve. Unreal-
Script is an object-oriented scripting
language somewhat like Java that pro-
duces decent code. In the end, I prefer
that teams develop APIs in C++ that
other team members are able to use to
more effectively grow their core pro-
gramming skill set instead of developing
throwaway knowledge in a proprietary
scripting language. For the truly robust
projects that may benefit from a script-
ing language, by all means use or
develop one. This area of the technical
design document should fully articulate
the reasons for using or not using a
scripting language.

How about if you are using a new pro-
cess such as taking advantage of
Unified Modeling Language as sug-
gested in this book? Or will your team
be using a software-modeling tool such
as Rational’s Rose for the first time?
What about on the art side; will you
switch from 3D Studio Max to Maya
and if so, why?

Decide which components for the
game may be reused from existing soft-
ware or be licensed from third parties.
Solid third-party software is almost
always less expensive than building
your own. However, you may have
strategic goals for creating your own
software that is a requirement your
team is preparing to meet.

When using APIs and SDKs such
as the Miles sound libraries or DirectX,
it is important to articulate at the tech-
nical design stage which version of

these APIs the game is going to be
made with. Many PC games have been
delayed a year or more after switching
to the latest version of DirectX due to
the overwhelming desire to take advan-
tage of a feature that only the latest
DirectX supported. Sometimes teams
upgrade their APIs and SDKs late in
the development cycle only to find that
the new stuff is not fully backwardly
compatible with the older stuff—big
bummer. Identify as early as possible if
there is a likely need to upgrade during
the production of the game and if so,
take stock of the risks involved early
on. If possible commit to rigid cutoff
dates where the project will no longer
tolerate upgrades and revisions to
these APIs and SDKs.

Goals for the ArchitectureGoals for the Architecture

Besides merely satisfying the immedi-
ate needs of this particular game
project, many projects have implied
requirements that would move much
more rapidly towards being realized if
these requirements were articulated
and planned for during the technical
design phase.

Are you building up the code base
for your company? Is it intended to
build a robust 3D engine that may be
reused in a future project? How about
portability? Will this reusable 3D
engine you are proposing to engineer
always run on the PlayStation2 or do
you intend to port to the GameCube or
Xbox?

How about user extensibility? Do
you want your gamers to be able to
modify or create new content for your
game?

Any and all of the above must be
explicitly planned for during the techni-
cal design phase, as it will materially

Chapter 18: Technical Design 251

affect how the technical leads go about
designing the game’s software.

Identify what sort of code and tech-
nical design reviews your team will
utilize during the course of production
for the game.

Identify Areas of Likely ChangeIdentify Areas of Likely Change

The game design document and/or the
technical design document may identify
areas of the game that are likely to
undergo significant change during the
development of the game. An obvious
example would be the design of a level

in the game. The level designers are
likely to make hundreds of adjustments
and tweaks to a level. This implies
strongly that a robust and easy-to-use
level-building tool is a key requirement
for the successful production of the
game. Something less obvious may be
the numbers behind the game mechan-
ics in a game, such as weapon damage
tables. Put these tables into easy-to-
modify text files so that the designers
are able to modify these directly with-
out the aid of a programmer.

The Quality Assurance Plan

Quality assurance on a game project
deserves its own book; however, I will
use the remainder of this chapter to
outline how the quality assurance plan
is really a part of the technical design
document that your programmers are
creating and offer some suggestions for
your quality assurance plan.

Your quality assurance plan should
discuss a number of topics including
the defect tracking system, automated
testing sweeps, focus group, and beta
testing. One of your programmers
should be assigned to develop or help
develop the QA plan with the lead QA
team member. Often the lead QA guy
over at the publisher is unavailable at
project green-light and your team is on
its own in the planning stages for the
QA plan.

Defect TrackingDefect Tracking

Tracking bugs is the central activity for
the QA plan. If you do not actively iden-
tify and record your bugs, not much is
going to get fixed. There are quite a
number of details you might want to

include in your bug reports; listed
below is a good set of fields to track in
your bug database:

� Bug ID—a unique identifier for a
bug; never recycle bug IDs in the
course of a project.

� Title—a one-line description of the
bug

� Submitter—the name of the tester
who entered the bug

� Description—a complete descrip-
tion of the bug including steps
required to reproduce. Optionally,
attached files such as screen shots
or debug dumps may be included to
help describe the bug’s behavior.

� Date Submitted—the date this bug
was born

� Build Number—this is a critical
piece of information as you do not
want your programmers chasing
down bugs that have already been
fixed or have been made obsolete
in more recent builds or were
understood to be nonfunctional
with the build identified.

252 Chapter 18: Technical Design

� Production Status—this records
the development team’s status
with the bug—Unassigned, In
Work, Request Verify Fixed,
Request Not A Bug, Cannot Dupli-
cate, Need More Info, etc. There
are a good many potential states
that production could be in.

� QA Status—Is the bug open or
closed? Perhaps your organization
needs more resolution than that
such as Closed—Verified Fixed, or
Closed—Resolved.

� Platform—if your game is multi-
platform, it is critical to state which
platform the bug was identified on.

� System Specs—for PC games it
might be quite handy to have the
submitter’s system specs readily
accessible straight from the bug
database.

� Owner—who is the current owner
of the bug? Bugs without owners
simply will not be addressed.
Assign a bug back to the QA lead
after development has fixed it so
that it is now QA’s job to verify the
fixed bug.

� Severity—use numbers or descrip-
tive words such as High, Medium,
Low, and Suggestion or Critical,
Important, Moderate, and
Cosmetic.

� Area—use a field to note in what
portion of the game this bug was
identified, such as mission 1, or the
main menu, or during multiplayer
skirmish.

� Closed Date—note when the bug
died.

� Verified By—the name of the
tester who verified the bug fixed

� Notes—a free-form text area
where the developers and QA folks
may write short notes to each
other in the pursuit of bug closure

� Bug Fixer—simply the person who
corrected the bug

� Bug Change History—a little his-
tory noting the changes that a bug
goes through in its lifetime

Defect Tracking Software

You will definitely want to track your
bugs in a database of some kind. Many
organizations build their own bug track-
ing databases using tools such as
Microsoft Access, or you could use a
professional quality tool like Merant’s
Tracker (http://www.merant.com/PVCS/prod-

ucts/tracker/index.html) or Mozilla’s Bugzilla
(http://bugzilla.mozilla.org).

Activision uses Tracker exclusively,
and we have found it to be very produc-
tive with both a Windows client and a
simple web browser client. The web
browser client is relatively slow to use,
but it does have the huge advantage of
being able to check on the progress of
SFC3 from my home or anywhere.
Bugzilla also has a web interface.

The Testing PlanThe Testing Plan

The testing plan should detail what,
how, who, and when the game will be
tested. As for what to test, dust off the
use case diagrams as they make an
excellent checklist of the functionality
the game is supposed to perform.

Additionally, set up lists to review
each and every button for spelling and
tool-tips, and check the alignment and
positioning of all of your graphical
assets. Check to be sure all of the
assets are in the correct and final

Chapter 18: Technical Design 253

format. Be sure there are no extrane-
ous files in the release build such as
debug helper files and your lead artist’s
favorite MP3s!

The QA lead should build a large
spreadsheet in Excel or some other
handy application to track all the neces-
sary tests that should be performed
many times during the course of
production.

Every button should be clicked,
right-clicked, and double-clicked, the
game should be run for days on end,
the keyboard keys should all be mashed
at once, and all of the controller buttons
mashed. Now this sort of button smash-
ing does not need to be tested often—
at least one sweep after alpha or beta.

How Many Bugs Are Left to Find?

An extremely intriguing pair of ideas
to estimate the number of bugs in
your game can be found in Steve
McConnell’s Software Project Survival

Guide. One is called defect pooling and
the other is defect seeding; despite
reading about these techniques in 1998,
I have not yet been able to find a pub-
lisher’s QA team willing to let me try
them out on them! Read on to find out
why.

Defect Pooling

The way defect pooling works is by tak-
ing your QA resources and dividing
them into two separate pools—pool A
and pool B. Pool A and pool B are then
to go about their QA business as if the
other team did not exist. All of the bugs
pool A finds should be plugged into the
bug database, and every bug pool B
finds should be plugged into the data-
base. Hopefully, hopefully, a great
number of duplicate bug entries will
show up in the bug database; and that

is a good thing? Yes. A simple pair of
equations will illustrate how:
Bugs Unique Identified Bugs = Bugs Pool A +
Bugs Pool B – Bugs Pool A & B

Bugs Total Unique Bugs That Exist = (Bugs Pool A *
Bugs Pool B) / Bugs Unique Identified Bugs

To do this right the two QA pools must
not become aware of the bugs already
found by the other pool; otherwise you
will not have an accurate count of the
duplicate bug reports. It is common
sense that this would work; imagine
two end users who play your game for a
year and they both find the same three
bugs in the game. You would then be
extremely confident that if you fix
these three bugs, the game would be
darn near bug-free. On the other hand,
if these two players were finding about
50 new bugs a month in your game and
there was absolutely zero overlap in
their bug reports, then you should
develop a deep and foreboding sense of
apprehension as there appears to be no
limit to the number of bugs in your
game.

The reason why defect pooling has
never worked for me is that no pub-
lisher was willing to double the size of
the QA team for us. I am convinced this
technique does not cost more; indeed I
believe it would save the publishers a
ton of money if they would test areas of

254 Chapter 18: Technical Design

Using pools of bugs to estimate remaining bugs

the game until they met a certain over-
lap requirement of, say, 75 percent
bugs common to the two pools before
shifting the attention of the QA team to
another area of the game. To be han-
dled efficiently, one would need to look
into the feature set of the bug tracking
software to set it up so that the testers
in pool A would not be able to see the
bugs in pool B, and some tool is needed
to facilitate the marking of duplicate
bugs between the pools (I am imagining
some sort of neat 3D operating system
where the QA lead could quickly draw
spider-web-like connections between
bugs).

Defect Seeding

Defect seeding is much easier to set up
than defect pooling; in fact it does not
require any work from the QA team to
set up and monitor. Similar to defect
pooling, the idea is to use a simple sta-
tistical modeling tool to estimate how
many bugs could possibly be left to
identify in the game.

To use defect seeding the develop-
ment team must consciously put bugs

into the game. All sorts of bugs: crash
bugs, spelling errors, poor balance, etc.
The more bugs placed throughout the
game and at all levels of severity, the
better the estimate it will produce.

Now as QA discovers bugs in the game,
the producer or lead programmer
should track which of the seeded bugs
have been identified by the QA team
and which have yet to be identified. A
simple equation shows how to use this
information:

Bugs Total Unique That Exist = (Bugs Seeded Planted

* Bugs Seeded Found) * Bugs All Reported So Far

A quick review of the seeded defects
that have yet to be identified by the QA
team will reveal a gap in their QA pro-
cess, and the development team may
then gently suggest focusing more time
in the area of light coverage.

Notice that by carefully keeping
track of the categorization of both the
seeded and normal bugs you will be
able to build estimates for the number
of bugs total in portions of the game
such as mission 1 vs. mission 10 or sin-
gle-player versus multiplayer. This also
is an excellent tool for guiding QA to
areas that need more attention and for
developing confidence that an area has
received enough QA attention.

Political Resistance

Too many times on my game projects
the QA team spends an inordinate
amount of time testing the areas of the
game they want to test and not enough
time on this little corner here or over
there. As I said earlier, I have yet to be
able to get the QA teams I work with
excited about either of these methods.
It is just like trying to introduce UML
or C++ to developers who do not use
the tool currently; the resistance is
caused by the perceived loss of time
involved in learning the new method
and some degree of fear that any for-
malized method of measuring the QA
team’s performance would reflect

Chapter 18: Technical Design 255

Using seeded bugs (dark boxes); the white boxes
indicate normal bugs.

poorly on them. On the whole I find
this ironic, as the QA team should be
the most enthusiastic about identifying
flaws in the process and wanting to
improve them.

At Taldren we have occasionally
placed a few seeded bugs, and we have
informally tracked the overlap between
our own QA folks and the publisher’s
folks and even compared that to the
beta testers. Each of these casual
efforts provided us with more informa-
tion, and we felt that given time we
should do this more rigorously. Of
course it should be said that you must
have a handy way of removing these
seeded bugs from the game before
release! This need to make the bugs
easy to remove causes a slight distor-
tion as regular bugs do not have this
limitation, and thus the seeded bugs are
not exactly statistically equivalent.

Automated Testing

Seeded defects are essentially tracking
testing coverage. An efficient and reli-
able method of achieving testing
coverage is to have a computer find the
bugs automatically!

Various 3D first-person shooters
have used this method by having the
camera randomly teleport to a point in
the level and pick a random direction to
point at. This camera should just keep
jumping around continuously looking
for crash bugs.

There is also commercial testing
software you can purchase that will do
all of the random mouse clicking and
button mashing you could hope for. To
use automated testing well, you must
challenge the creativity of your pro-
grammers to come up with scenarios
that will tax your game’s subsystems.

Beta Testing

You must have a plan for beta testing,
not merely throw it out to whoever
wants it, listen to the complaints, and
fix the complaints until they stop. To
use beta testers effectively you must be
deliberate and spend a lot of time com-
municating with them.

Why are you using beta testers?
Are you looking for free publicity for
the game? Or are you looking for great
compatibility testing? Or is your game a
massively multiplayer game that simply
must be beta tested by a great number
of consumers? Are you looking for a
second opinion on the interface or the
game’s balance? All of these are good
reasons to use beta testers, and your
plan for the beta testers must reflect
the reason.

You should have at least one per-
son who is given the responsibility of
coordinating the activities with the beta
testers and sorting through their com-
plaints. (Note that this might be a sec-
ond pool to use in a defect pooling
system.) A web site should be set up
with bug forms and other information
such as a requested time to play the
game online to get the player count on
the servers up higher.

Essentially beta testers are
untrained testers who want to be enter-
tained and cannot be told to do anything
specific as you are able to with a QA
employee.

I may sound negative on beta test-
ing but I am not! Taldren would not
have enjoyed the success it has without
the tremendous input from our beta
testers at every step of the way.

256 Chapter 18: Technical Design

When to Release the Game

The whole point of the QA plan is to
develop an organized method for test-
ing the game so that QA is able to give
the thumbs-up to the rest of the team
when the game is ready to be released,
right? No. The QA plan and QA team
exist only to identify flaws in the game
and keep accurate records of the status
of each bug. Too many games find
themselves in an ugly period of war
between the development team and the
QA team. Sometimes games will sput-
ter and stall while QA demands certain
defects to be fixed and the development
team practices some kind of passive-
aggressive behavior and works on
something else. The most critical ele-
ment of the QA plan must be to
articulate very clearly what objective,
measurable quality goal the game must
achieve before it is ready to be
released.

For example, is the goal to ship the
game with no known crash bugs, or no
known crash bugs and no known text

errors? Or perhaps ship with a mean
gameplay time of six hours before a
beta tester notices a bug? Or all high
bugs fixed and 80 percent of the
medium bugs fixed? All software and all
games ship with bugs; knowing this,
your QA plan cannot be to simply test
and fix the game forever until someone
feels enough pressure to ship the game
(this is of course the normal method of
determining when to ship a game). By
making this an objective, measurable
goal, the development and QA teams
will be much more likely to work har-
moniously together as they now have a
common enemy: the release quality
goal.

In the end do not let executive
management shirk their duty. They are
the ones who release software; devel-
opment teams create software and QA
teams test software. It is the executive
management that is responsible for the
business, and deciding when to release
a game is as important a decision as
they come.

Chapter 18: Technical Design 257

This page inten tion ally left blank

TE
AM
FL
Y

Team-Fly®

Chapter 19 > > > > > > > > > > > > > > >

Time Estimates

The requirements analysis, game
design, and technical design phases
have us cover the most difficult part of
project planning: identifying the tasks
we must perform. Second to identifying
the tasks is estimating how long it will
take to complete them.

All great games are unique works
of engineering and art carried out pas-
sionately by a team of game developers
for an extended length of time. It is
impossible at the start of the project to
identify all the tasks that must be per-
formed, and it is more than impossible
to estimate exactly how long it will take
to finish a creative effort that involves
new bits of engineering and inspiration.
Despite this challenge, if you walk into
a publisher’s office and announce at the
end of your presentation that your pro-
ject will take as long as it takes until
the game is done, you will find yourself
ushered out of the office after the pub-
lisher picks himself up off the ground.
This calls for a story:

Recently Taldren required the ser-
vices of an outside accounting firm;
they quoted a price for their services
that was a range, not a fixed bid. I dug a
little deeper and it turned out they did
not know if it was going to take them
20 or 40 hours to complete this
accounting task for us. I gave it a
moment’s thought and realized that the
accounting folks sure have their

business model more mature than the
typical game developer. I am sure it is
true that he does not know if it will
take 20 hours, 40, or somewhere in
between to perform this accounting
work. However, I could not help being
offended since the business model we
game developers use is a fixed bid. I
told the accountant that we must agree
to a fixed price for projects between
30,000 and 60,000 man-hours! It should
be common sense that it is far easier to
estimate a task that a single person will
be charged with and is expected to last
less than a week compared to a project
requiring two dozen developers for
nearly two years. Yet if I used the same
range as the accountant, I would quote
our publisher’s advances (fees) like
this:

Publisher: “Congratulations, I
believe in your game, and we will pick
it up. But first, how long will it take to
complete and how much in terms of
advances will you require?”

Erik: “We have given it consider-
able thought and planning and have
settled on a $2.6 million budget and
ready in 18 months at the low end and
$5.2 million and three years at the
upper end; we will let you know as we
progress.”

And that is when the publisher falls
off his chair laughing and I am ushered
out of the building.

Chapter 19: Time Estimates 259

The funny thing is that in reality
many, many game projects are actually
run as in the scenario above. More
often than not developers find out
mid-project that they can no longer
ignore the underbid, and the release
date is looming near and the game is
not ready. It is not uncommon for some
games to receive multiple new infu-
sions of time and cash. These failures
to accurately bid a project force publish-
ers to be even more defensive in their
positions and demand even more profit
from future game development deals.

I now realize why independent
game companies are so much more effi-
cient than the military and TV and
movie industries—we have to be! That
is something I am genuinely proud
of—how much work we all get done
with relatively modest resources. That
being said we do need to do a better job
of estimating our projects and slowly
weaning our publishers off of time and
money budgets that estimate the few-
est dollars and have a non-zero
probability of creating the game.

Now let us get on with the
estimating.

Two Ways to Estimate a Task

I have a very simple view when esti-
mating the time required for a task to
be completed; it is always one of two
answers: How much time will it take to
complete the task or how long do we
have to complete the task.

Time BoxingTime Boxing

I find that in practice it is a lot easier to
deal with tasks that simply have to be
executed by a certain time. I first heard
the term “time boxing” from a technical
director at Electronic Arts Sports when
I asked him how he estimates how long
it will take to do something that is tech-
nically very challenging when there is
not a standard reference for how long it
will take to complete. He replied that
when you simply do not know how long
a task will take, spend your estimating
time figuring out how long you could
afford to be working on the problem.
That becomes your time estimate that
you later plug into your Gantt chart. If
you run out of time and the task is still
not complete and you intend to honor

your time budget, you must abandon
the task: Cut the feature, fall back to a
less exciting version of the feature, or
make some other cut to compensate for
the loss. If you determine that you can-
not perform a satisfactory cut and you
are out of time, then you are stuck with
going to your executive management
team and advising them of your
dilemma and requesting additional time
and money, an activity you should
avoid.

The elegant thing about time box-
ing is that you do not need to get
bogged down in estimating something
that is fundamentally unestimatable,
and at the same time you have a power-
ful motivational tool for the devel-
oper(s) who must carry out the work. If
someone knows that their work will
simply be thrown away unless they
complete it by a certain date, and that
certain date is backed up by a rationally
developed project plan, then they dig
deep into themselves, concentrate, and
usually find great satisfaction by

260 Chapter 19: Time Estimates

pushing themselves to new levels of
personal achievement to meet the
deadline.

JARGON: Time boxing—placing a rigid
time constraint around a task that is
based on the project not being able to
afford more time on that particular task.

Task EstimatingTask Estimating

The core of the chapter is estimating
how long it will take to implement
some software or create some artwork.
The artwork side is considerably more
reliable in predicting than the software
side.

Art

Typically your game’s art assets can be
broken down into a certain number of
models, textures, animations, rooms,
levels, sprites, tiles, and so on. Esti-
mating is then very straightforward;
create one or two of these assets and
assume that the rest will take as long or
even a bit shorter as the team develops
more experience with the tools and the
desired artistic direction.

Have your artists keep careful
records of how long it is actually taking
to create the art assets. After about one
month of production, stop and hold a
meeting and review their data on how
long it is taking them. Also follow up on
anything that appears to be taking lon-
ger than expected and ask if there is
anything that could be done to make
them more productive. Usually at this
point I find that the estimates are
trending downward. It is vitally impor-
tant to task the artists, like all develop-
ers, at less than 100 percent capacity to
allow for the usual time loss of illness,
vacation, system upgrades, and unusual
family events. In the artists’ case, how-
ever, there is also the inevitable need to

go back and iterate on specific areas of
the game when an area is undergoing
design drift or rapid technological
development.

Design

My weakest area of task estimation is
design. I have always led the design
efforts at Taldren, and I am constantly
undervaluing my time. As an entrepre-
neur I think it is perfectly normal to
add another 10 hours of tasks to a
70-hour workweek. I say this glibly,
without boasting, but it is the truth.
This makes it difficult for the designers
and producers below me, as I expect
from them the same unflagging devo-
tion to the company, and I feel I am not
currently allocating enough time for
design and production management. I
recently returned from a visit to South
Korea where I spent several days learn-
ing about how a game developer there,
Makkoya, goes about its business of
making games. One of the most strik-
ing impressions I had was that fully
one-fourth of the company was devoted
to game design! At Taldren, I am sure
that one-fourth or more of the person-
nel enjoy significant responsibilities and
authority in game design, but until this
summer we never had a full-time
employee exclusively devoted to game
design. Game design is iterative and
creative; this conspires to make it diffi-
cult to estimate how long it will take to
complete a task. I generally allow
approximately one man-day for the
design of a screen or panel depending
on its complexity. For larger systems
such as how the combat system of an
RPG system might work, a week might
be appropriate to rough out the entire
system and perhaps another two to
three weeks to flesh out all of the

Chapter 19: Time Estimates 261

details. In the end, you should have the
designer responsible for the design
task estimate how long it will take to
complete the task. If game design is
somewhat analogous to writing, then
you should expect your designer to be
able to generate three to ten pages of
design a day. I feel uncomfortable
attempting to distill the efforts of game
design into too simplistic a metric.
Please contact me if you have some
better methods of estimating design
tasks.

Programming

Programming tasks are notoriously dif-
ficult to estimate; in fact, it could be
argued that the theme of this book
revolves around the difficulty of plan-
ning software. There is no standardized
method for predicting how long some
programming task ought to take. There
is no standard such as the number of
lines of code per day per developer.

For example, if you create an
incentive for programmers based on
the number of lines of code, they will
simply write more lines of code. This
happened when Apple and IBM worked
together on the Taligent operating sys-
tem. The IBM engineers had labored
under a number-of-lines-produced-per-
day incentive program, while the Apple
engineers were new to the system. The
Apple engineers, being superb problem
solvers and optimizers, realized they
would be paid more money to write
more lines of code, so they did—to the
detriment to the project. Similar prob-
lems occur at the close of a project if
management proposes bonuses based
on the number of bugs closed per
developer. Consciously or subcon-
sciously, folks will realize that quality is
not sought during development and

they might as well be sloppy and collect
the bug fixing awards at the end of the
month.

Hire the best folks you can and
avoid using incentive programs that
motivate your programmers to go into
another direction besides making the
best game possible, on time and on
budget.

There are roughly four categories
of programming tasks:

1. Difficult, due to the design being
vague, a time risk

2. Tedious but not a time risk
3. Simple and not a time risk
4. Difficult and a time risk

Category number one: tasks are diffi-
cult and time-consuming because they
are vague. In my opinion, this is the
number one reason why schedules
break in my firm opinion. Schedules do
not break because the developer is
pushing the envelope too hard or
because the developer has explicitly
agreed to too many features. Rather,
the schedule breaks when the devel-
oper agrees to perform a task at a high
level without digging deep enough to
find all of the required subtasks.

This is also by far the most difficult
process to consistently master: task
identification. That is why so much of
this book focuses on raising the formal-
ism of the game development process
by involving a separate requirements
gathering phase and Unified Modeling
Language for specifying software
requirements—tasks.

So how do you know if a task has
been broken down enough? My simple
rule is to ask the programmer, “How
are you going do X?”

The response “I don’t know; when
I get there I will figure it out,” is an

262 Chapter 19: Time Estimates

easy red flag to spot. This task requires
immediate attention to break it down
into smaller tasks.

Better is this response: “Um, I will
start with looking at Y for inspiration
and then I will plug away for a while
until I am confident that this is the best
method for performing X in a separate
test-bed framework. Then I will inte-
grate the new code.” That response
may well be detailed enough to feel
comfortable depending on that task’s
unique circumstances. You will need to
make the call if it requires deeper
analysis.

Of course the reply “Oh that’s easy.
I wrote up my attack plan earlier in the
day and sent it to you in an email; didn’t
you get it?” makes me feel all warm
and fuzzy inside like a good beer.

Often the real difficulty is that the
project is not far enough along to break
down a task into finer resolution. To
address this I demand much more reso-
lution for the tasks upcoming in the
next 60 days or so than I require of
tasks much later in the schedule. I
highly recommend meeting at the
beginning of each milestone to assess
the quality and depth of your game and
technical design material for the
upcoming milestone and quickly assign
someone to drive to the required reso-
lution in advance of the rest of the
development team. In this manner your
technical directors and art directors
should act like scouts for an army
scouring the future and reporting back
and suggesting course changes.

Category two tasks are tedious and
time consuming but low risk. These
tasks are not especially difficult to esti-
mate nor do they create much worry
that something unexpected will occur
to everyone’s unpleasant surprise. The

danger that lies in these sorts of tasks
is that due to their tedious, inglorious
nature, the folks assigned to perform
them will settle into a lower energy
state, as their area is apparently not
critical. This attitude could cause these
tasks to go over budget, and again the
resource assigned to the task may not
understand the impact of running over
schedule. There is not much trick in
estimating these tasks; rather the chal-
lenge is maintaining a sense of
importance and urgency in these tasks
as the developer is working on them.
You will need to show them what they
will be working on next or how they
could be helping out in other more
exciting areas if they push through
their slogful of tasks.

Category three tasks are simple
and are not a time risk. Not much to be
said here; these are straightforward.
However, I do encourage you to load up
your project with as many of these
types of tasks as possible! As with long,
tedious tasks, there is a minor danger
of small, simple tasks seeming unim-
portant, and some time loss could occur
here. However, I find this to be a rela-
tively rare occurrence as most people
derive pleasure from closing out their
tasks, and the smaller tasks give them
more apparent velocity on their task
closure rate.

Category four tasks are the diffi-
cult, time-risk tasks that we touched on
earlier with time boxing. These are the
glory tasks usually assigned to your
most senior programmers: create a new
3D engine, create a physics engine,
reverse engineer something obscure,
create a technique for doing anything
no one has done before. The first thing
to do with these types of tasks is be
sure they are not masquerading as

Chapter 19: Time Estimates 263

category one tasks, where the goals
and design have been vaguely defined
and that the current task appears diffi-
cult due to the breadth of the task. For
example, “create a new 3D engine” is
grossly vague as a task and could
involve anywhere from the efforts of a
few months to many man-years
depending on the sophistication of the
3D engine requirements. This is clearly
a candidate for breaking down into
smaller steps. A better example of a
category four task would be when John
Carmack set out to put curved surfaces
in Quake III. That would be an excel-
lent task to wrap a time box around.
(However, in John Carmack’s case I
would guess he just worked on it until
he was satisfied with his efforts.)

At the end of the day you really
want to eliminate as many of these
types of tasks as possible from your
game project. They act like festering
boils on an otherwise healthy game
project plan. Be sure each of these cat-
egory four tasks that remain in your
project are key features both in game-
play and in a marketing sense. If there
is significant doubt that anyone will
miss this particular feature, you should
probably cut it and save yourself the
schedule pressure.

Each Shall Estimate Thy OwnEach Shall Estimate Thy Own

Tasks

A key rule that I follow under all practi-
cal circumstances is to have my

programmers estimate their own tasks.
This has several powerful benefits. The
most powerful is that you have full
buy-in from the developer that they
have a reasonable schedule to follow.
Another benefit is that you are growing
your employee’s strength in project
planning and management by having
them participate or, even better, shape
the final game development schedule.

How will they derive their own
time estimates? At the end it will come
down to a very subjective calculation
that distinguishes humans from com-
puters. We are able to soak in data from
a myriad of sources—past performance,
expected performance, level of interest,
motivation, and guesses—and in a rela-
tively short period of time estimate
how long it will take to perform a task.

Yep, that’s it; at the end of the day
it will come down to just a gut estimate.
Of course the simpler the item is, such
as implementing a dialog box, the more
straightforward the estimating process
is. However, I do not know of anyone
who has a software-project-estimator-
o-matic device for coming up with
estimates.

Save Your Plans and CompareSave Your Plans and Compare

To improve your developers’ skill at
estimating, take care not to throw away
their original estimates, and take the
time to compare them with the actual
results achieved during production.
This should always be educational no
matter how senior the programmer.

Making the Plan

Now that we have identified all of our
tasks and have generated time esti-
mates for them, it is time to flip to the

next chapter and roll all of this data into
a plan!

264 Chapter 19: Time Estimates

Chapter 20 > > > > > > > > > > > > > > >

Putting It All Together

into a Plan

A lot of game companies use Microsoft
Project to plan their game project
schedules. MS Project is decidedly
stronger at planning schedules than
maintaining schedules. There are many
annoying difficulties getting a workable
schedule out of MS Project, and it
seems that maintaining the tasks is
certainly the most time-consuming
chore a producer will face.

There are a host of other project
planning products that you may use, but
from running my “Real Methods of
Game Production” roundtables at the
Game Developers Conference in 1999
and 2002, I have found there is no
clearly superior tool to MS Project.

Project planning and task tracking
are two separate activities in my mind,
and all of the project planning software
packages including MS Project purport
to do both tasks well. The real truth is
these software packages do a decent
job at planning a project, but when it
comes time to update the schedule by
closing tasks and inserting new tasks,
the process is slow and tedious. Many
times I have simply started new sched-
ules to plan out from that current point
to the end of the project. Mind you, it is
not impossible; it just takes a lot of
time.

The larger game development
teams schedule maintenance that is so
time consuming they have a dedicated
human on their team updating the
schedule full time! Part of the problem
is that game projects with 100 to 800
man-months lie somewhere between
the two classes of project management
software: the dozen or so man-months
of effort for a marketing campaign
(which MS Project is excellent for) and
the hundreds of man-year efforts for
major construction projects (for which
you need very expensive software such
as Primavera and a small group of dedi-
cated project managers).

Okay, now on with the overview of
MS Project.

The goal of a schedule is to orga-
nize all of the project’s tasks, illustrate
the dependencies between tasks, track
progress, level tasks, and assist in sce-
nario planning.

Dependencies need special care as
you do not want some of your develop-
ment team to stall for lack of art, for
example, nor do you want a critical fea-
ture to fail to be completed on time for
a given milestone because the key com-
ponent of this critical feature must be
completed by just one programmer who

Chapter 20: Putting It All Together into a Plan 265

another critical

task.
Tracking progress is simply marking

off tasks that have been completed.

Scenario planning is using the soft-
ware to analyze different “what-if”
scenarios such as “What if we cut the
map editor altogether?”

Let’s Create a Schedule for FishFood!

Go ahead and fire up your copy of MS
Project. A wizard tool will pop up sug-
gesting that you take up the wizard’s
offer; decline the offer, close, and close
the window.

Create a New Project FileCreate a New Project File

A blank project will be staring at you;
dismiss this project and select File |
New to create a new project file. A pro-
ject information pop-up dialog will
solicit either a start date or end date.
Choose a start date to schedule from
rather than an end date to schedule
back from.

Project, like all Office products, offers
a properties dialog that you may fill
out with a bunch of dull details such
as author name, manager, company, etc.
If you feel the need to decorate your
files with such details, choose File |
Properties.

What Is a PERT/Gantt ChartWhat Is a PERT/Gantt Chart

Anyway?

There are a myriad of diagrams, charts,
and reports you are able to generate
with Project. A good-sized project will
be composed of thousands of bits of
information from task names to
assigned resources, start dates,
priorities, and dependencies. The view
you choose will reflect what you are
trying to get a good look at. The two
most common types of charts are Gantt
and PERT. These were introduced in
Chapter 10.

To review, the PERT chart is the
visually simpler chart with boxes for
tasks that are drawn left to right with

266 Chapter 20: Putting It All Together into a Plan

Properties for an MS project

MS Project’s File | Properties dialog

dependency links between the boxes.
The boxes may be detailed with dura-
tion and resource name.

The advantage of the PERT chart
is that it displays the critical path of a
project very well. It stands out like the
trunk of a tree with non-critical path
tasks stemming from the trunk as
branches or sometimes as solitary
boxes. PERT charts are fun to fill in as
tasks are completed. The disadvantage
to a PERT chart comes when you are
charting more than just the high-level
tasks, say fifty to a thousand tasks.
When the number of tasks reaches that
size, it takes a lot of paper to print out
the chart, and the dependency lines
may become too tangled to make much
visual sense. Another minor disadvan-
tage of the PERT chart is that since it
is such a graphical layout, the project

manager might get distracted for an
inordinate amount of time fiddling with
the boxes and getting the layout of the
boxes to look good. (This apparently
remains a minor AI problem to solve
someday: well-laid-out PERT charts.)
Bottom line: PERT is good for over-
views and easily constructed from the
Gantt chart.

The Gantt chart consists of a
spreadsheet of data on the left-hand
side such as task ID, task name, start
date, end date, duration, and resource
name (who is going to do the job). On
the right-hand side are the tasks graph-
ically portrayed as bars of varying
length proportional to their duration
laid out left to right underneath the
project calendar displayed at the top of
the chart.

Chapter 20: Putting It All Together into a Plan 267

A sample PERT chart

The main advantage of the Gantt chart
is that it is good for displaying up to
several hundred tasks resulting in a
finer granulation in your schedule.
(The finer the granulation in your
schedule, the more likely you are plan-
ning all of the required tasks, and thus
the more likely you will be on time.)

Dependencies between tasks are
drawn as simple arrows between the
tasks. The Gantt chart is easy to read
both from top to bottom, with the con-
vention of the earlier tasks at the top,
and from left to right as time passes.

The main disadvantage to the
Gantt chart is, of course, the key
strength of the PERT chart: that it is
difficult to see at a glance the critical
path of the project. Fortunately, with
Project it is simple to enter your task
information under the Gantt chart and
later choose to view your scheduling
information from any number of views
such as the PERT chart.

Start Entering TasksStart Entering Tasks

Entering task information in Project
really could not be easier. Pick a row
and start by simply typing in the name
of the task in the Task Name column,
and enter the estimated time for dura-
tion. Bam, you have entered a basic
task.

Now let’s talk about task names. It is
important to be sure the name of a task
includes a strong verb like “purchase
workstations” or “test logon protocol”
or “implement save game” rather than
the vague “workstations,” “logon pro-
tocol,” and “save game.” The strong
verb makes the difference between a
task and a topic. I still make the mis-
take of using topic names rather than
task names; this is usually a strong hint
from my subconscious that this topic
has not been thought out enough for
me to feel comfortable articulating dis-
crete tasks.

Another common mistake I see in
game project schedules, including my
own, is that the schedule is composed
of only features to be implemented and
assets to be created. You may be won-
dering what else there is to game
production. Well, it does take actual

268 Chapter 20: Putting It All Together into a Plan

A sample Gantt chart for a simple game called FishFood!

Focusing on a task name and durationTE
AM
FL
Y

Team-Fly®

time to test all of the deliverables in the
milestone before you send it off to the
publisher. It takes time to respond to
the publisher’s feedback, it takes time
to go to E3, and it certainly takes loads
of time creating the E3 build! It takes
time to train developers on new tools
such as when you switch from Charac-
ter Studio to Maya. It takes time to
create all of the documentation at the
start of the project. It takes time to rec-
oncile the schedule with reality. It
takes time to submit a build to the
license manager and get feedback. It
takes time to plug in the sound effects
and voice-overs. And it certainly takes
time to balance and tweak your games.

Tasks Are Performed byTasks Are Performed by

Resources

The final key bit of information that you
need to add to your task besides task
name and duration is who will do the
work—the resource. Enter the first
name, last name, initials, job title, or
alphanumeric string you want in the
resource column.

If you do not know at this time who will
be performing the task, as you want to
see how things will stack up before

deciding, guess, flip a coin, or choose
somebody at this point. We will use
Project’s task leveling tool later to help
us sort out who should be doing what
for maximum productivity.

Where Does All of This TaskWhere Does All of This Task

Information Come From?Information Come From?

An excellent question to ask at this
point is where these task names, time
estimates, and durations are coming
from.

Experienced game developers who
have led large portions of games and
who are tasked with creating a schedule
for a type of game project they are
familiar with will be able to sit down
with Project and immediately dash off a
few dozen tasks before pausing to
think. However, at some point both the
experienced project manager and the
less experienced project manager will
need to come up with tasks in a more
formal manner. By far the best (and
only) way to come up with the tasks is
to get them from the people who will be
carrying out the work, or at the very
least the leads of each of the portions of
the game project. For example, your
lead animator should come up with
estimates for all of your animation. I
would advise against your lead pro-
grammer, who might specialize in
graphics, coming up with the online
multiplayer tasks; those should come
from the multiplayer programmer
herself.

You may choose to collect these
tasks from a rather informal brain-
storming session, or you might send an
email out to everyone to review the
design documents (game and technical)
and come up with the tasks for their
area of the project. The size and scope

Chapter 20: Putting It All Together into a Plan 269

Adding a human resource to a project

of your project will determine what
works best for your project. In general,
if I am trying to execute a mini-project
like getting a build ready for E3 or
developing a demo for a brand-new
game we will be pitching to publishers,
the informal brainstorming approach
works most efficiently for me. I reserve
the more formal approach, where each
resource is given perhaps a week to
break down his area of the schedule
into composite components, for the
beginning of full production.

The reason it is so important to get
the developers themselves to come up
with the tasks is threefold: First, they
are the experts in that field, and they
will be better able to break the problem
down into smaller pieces. Second, you
want them to participate in the schedul-
ing so that they understand better what
they need to accomplish, why, and by
when. Finally, by giving the developer
the authority to set the time estimates
you will achieve a far greater “buy-in”
and sense of obligation to get the job
done in a reasonable amount of time
compared to when the schedule is
passed down by a heavy (and often less
knowledgeable) hand from above.

Organizing TasksOrganizing Tasks

I have to admit I like building MS Pro-
ject Gantt charts (it is a good thing to
like your job), and Project makes it easy
to organize the tasks in your Gantt
chart. There are nine levels of indenta-
tion to facilitate the logical grouping of
tasks. As the tasks are coming in from
your various team members, plug them
into the chart, push them around, and
indent them; have fun. Now is the time
to make the schedule logical and clean.
In fact, this aspect of project making is
so easy I am able to do it in real time

for small projects with half a dozen of
my guys riding shotgun over my shoul-
der, shouting out tasks and time
estimates, and am able to keep up and
cook a schedule together. Some people
might shudder at the apparent lack of
thought put into a schedule crafted in
that manner; however, I have found
that all schedules are merely estimates
of what needs to happen. Also, most
people’s guesstimates of how long a
task will take to complete will not be
far off from a more carefully crafted
estimate (both of which are bound to
differ more relative to the actual time it
took to complete the task compared to
the difference between the two tasks).

Draw dependencies between tasks
with reluctance; do not think that the
more lines you draw on the Gantt chart
the more accurate your schedule will
become. Rather, group related tasks
under super-tasks and draw dependen-
cies between these chunkier bits.

Task GranularityTask Granularity

How fine in time resolution should your
task estimations be—a day or a week
or some other time? I have been back
and forth across the issue and yes, the
finer the resolution the more accurate
and reliable the project is likely to be. If
you could measure every task down to
a quarter of a day, you would have tre-
mendous resolution to work with, and
you would have a Gantt chart that
would impress the most jaded of execu-
tive management teams. The problem
with schedules with ultra-fine task res-
olution is that they invariably become
wrong quite quickly and require a tre-
mendous amount of producer time to
fix: Delete these 10 tasks, add these 20
tasks, modify the duration of these two
dozen tasks, and so on.

270 Chapter 20: Putting It All Together into a Plan

Thus, my new philosophy on task
resolution for schedules is to cut the
tasks into pieces as small as possible
but no smaller than the producer has
time to maintain. This is really just
being honest with yourself and knowing
what your time limitations are for main-
taining the project plan. I would say
that a schedule that has 15 developers
working on a game for 15 months
should have somewhere between 300
and 600 tasks in the project plan.

How to Account for Vacation andHow to Account for Vacation and

Sick TimeSick Time

When creating your schedule you must
account for vacation and sick time. I
have to admit I was vexed for quite a
while on how to best manage the plan-
ning for vacation and sick time. I mean,
how would you know that your lead
programmer would come down with
bronchitis and lose seven days 13
months from now? If you try to stick
tasks in the project plan called “vaca-
tion” or “sick days,” you are creating a
bunch of little falsehoods that will
annoy you as you try to perform project
leveling. Project will toss these tasks
about all over the place, and you will
start placing dependency lines or spe-
cial instructions for the timing of each
and every one of these tasks.

After thinking about the sick and
vacation day problem for a long time, I
have finally developed an elegant and
easy solution: I modify the working
calendar for all of the developers at
Taldren and change Fridays to half-
days. This effectively places two full
days of fluff per month into the sched-
ule, leaving 24 working days a year for
sick and vacation time. Take whatever
your company manual says about days
off and adjust your Friday time off up

and down to suit your tastes (I recom-
mend going a little bit conservative).

I like this method for handling
unschedulable tasks so much I might
start writing off part of Mondays for
project maintenance, system upgrades,
interviews, dog and pony shows, and
other unplanned tasks that tend to
affect everyone in the company at one
time or another. By keeping these tasks
separated on Mondays vs. Fridays, I
will be able to adjust either one up or
down as I develop more accurate his-
torical data.

Remember Odd TasksRemember Odd Tasks

Scour your collective brains to identify
weird or odd tasks like trade shows,
submission to hardware manufacturers,
the installer, the auto-patcher, customer
service, fan interaction, and so on. This
is one area where experienced organi-
zations have an edge on start-ups; the
start-ups generally only plan for the
absolute minimum of tasks yet still
have to complete all the tasks that
everyone else does as well.

Time Leveling in ProjectTime Leveling in Project

The main advantage of a project track-
ing package such as MS Project over a
task tracking database is the ability to
analyze the loads between the various
team members and perform task
leveling.

There are two principal tools for
performing task leveling in MS Project
that complement each other in your
quest for a clean, balanced schedule
across your team: the automated level-
ing tool and the resource usage view.

After you plug in all of the tasks
with the required bits of info of who and
how long, click on Tools | Resource
Leveling | Level Now….

Chapter 20: Putting It All Together into a Plan 271

Despite the intimidating number of
choices on this dialog box, there are
really only two meaningful options: to
level by ID or to level by Priority, Stan-

dard. For simple schedules with less
than 300 tasks, I find that leveling by
ID tends to work well as the Gantt
chart will most likely be laid out with
early tasks at the top of the chart and
later tasks at the bottom of the chart.
The Priority sort is useful when you
have truly large project files and you
have attached priority weighting to
each of your tasks (if you do not weight
individual tasks, then the leveling will
behave as if you had chosen the ID
sort).

What MS Project does during the
leveling is look at all of the dependen-

cies between the tasks across all
resources and lay them out in time in
order to best accommodate a smooth
path to completion. As you know, com-
puters are not intelligent; as such, MS
Project will make a finite number of
dumb placements of tasks. Your job is
to look over these errors and correct
them through adding dependency lines,
priority weightings, or time constraints
such as “start no earlier than X date.”
After iterating for a while you will end
up with a schedule that makes sense.

All done? No. If you click on the
Resource Usage View button, you will
discover that your task assignments
have caused an uneven allocation of
time across your team, as shown in the
following figure.

You will see that some of your develop-
ers have large gaps of idle time in their
schedule, and others are acting as the
long pole and causing the game to
sprawl out past the final delivery date.
How do you fix this? You have to under-
stand what MS Project is telling you. It
is saying that the long pole folks have
been assigned too many critical path
tasks and the others with gaps in their
schedules are twiddling their thumbs
while waiting for the critical path folks
to deliver the goods. The solution is to
look for tasks belonging to the critical
path folks that may be transferred to

272 Chapter 20: Putting It All Together into a Plan

The Resource Leveling dialog in MS Project

The resource usage view before leveling

the people with gaps. This is very much
an iterative process as you are looking
for clever bits of reassignment that will
neatly cover the gaps in some folks’
schedules while eliminating the spikes
in the critical path folks’ schedules.

To solve the difference between
developer A with a gap and developer B
with a spike, you might have to rotate a
subset of tasks through developer B
and developer D to make it all work
out. The goal is to massage your sched-
ule until your resource usage view
looks like a nice clean brick of time
with all gaps filled and the whole team
finishing up at the roughly the same
time.

Let it JellLet it Jell

All freshly minted project plans are full
of errors, inconsistencies, and omis-
sions. All of my project plans needed
several passes to get into shape, and
the difference from the first draft to the
first revision is always the most dra-
matic. You will not be able to fix these
flaws the same day that you create the
schedule. Instead you must let it jell for
at least a week and then come back and
read through the schedule carefully
with the leads of your team with a

critical eye. Take the time to do this
and you will make a schedule at least
twice as strong as it was just a week
previously. Novelists must do this with
finished manuscripts; producers should
also set aside their schedule for a time
and revise.

How to Distribute the Schedule toHow to Distribute the Schedule to

the Teamthe Team

A fine schedule that is locked up and
kept in the oracle’s tower is not very
useful. A project plan must be a com-
munication device used by the whole
team. Every time I think of producers
who keep the schedule information
secret, I squint like Clint Eastwood and

twitch my fingers looking for a gun.
Managing a team is not a management
vs. the developers contest! Take the
schedule and paste it up on the wall! As
the team members get tasks accom-
plished, have them go up and highlight
completed tasks (more on measuring
progress in the next chapter).

Take the time to create customized
reports for each of your team members.
MS Project boasts a number of reports
including To Do Lists and a Who Does
What list, as shown on the following
page.

Chapter 20: Putting It All Together into a Plan 273

After leveling

Also, you can sort the main Gantt chart
by resource name and print out just
that section of the schedule. Print out

mini Gantt charts for each team mem-
ber to stick up on their own walls—
they’ll love it!

274 Chapter 20: Putting It All Together into a Plan

A sample To Do List report for the Black9 project

Chapter 21 > > > > > > > > > > > > > > >

Measuring Progress

On Leadership

There are many books you could buy on
leadership, and I am sure many of them
are worthwhile to read. In this section
of the chapter I am putting down what I
think leadership in game development
is all about.

Know What Your Goal Is at AllKnow What Your Goal Is at All

Times

As a leader your job is to be out in front
and guide your troops to some goal. You
will likely do a good job of leading
towards the goal if you keep it in mind,
and correspondingly you will do a
crappy job if you cannot figure it out.
This painfully straightforward fact is
the number one responsibility of the
leader.

Despite how obvious this rule is, it
is all too easy to forget what the goal is.
For the great majority of game projects
it is to create a great game on time and
on budget (three goals combined actu-
ally). I discussed in earlier chapters
how to use your business parameters
and how to shape these goals to reflect
your specific goals. Here are a few
examples of how the goal is sometimes
forgotten:

As a leader you will sometimes
come across employee behavior that is
underwhelming. Specifically, you might
have tasked an employee to perform a

certain set of tasks only to learn later
that he has not made good progress due
to his claim of insufficient information
to get the tasks completed. Your emo-
tional reaction is to be defensive and
point out all of the instruction you have
already provided on the set of tasks and
express your frustration that the
employee is not telling the truth. Com-
pounding this frustration, the conversa-
tion is taking place in front of other
team members. You assert clearly that
the employee is fibbing and is not rec-
ognizing the sufficient information you
have provided to get the job done. Here
you have blown it. The other employ-
ees are being presented with a choice
of whom to believe—you or the
employee in question. Is the employee
lazy and not only shirking his work but
lying and trying to shift blame to his
supervisor? Or, are you being an arbi-
trary manager so insecure about your-
self that you resort to being harsh on
your employees in front of other team
members? Either outcome is bad for
the company; the employees lose a lot
of respect for either you the manager
or for their teammate. See? The leader
in this case forgot the goal is to be sure
the employee has all of the information
and resources he needs to accomplish
his task and was instead focused on

Chapter 21: Measuring Progress 275

defending himself at a considerable loss
to the company.

What should the leader do? In most
of the cases where employees are
claiming that they are confused and do
not have enough information to get the
job done, the best policy is to provide
them with more information until they
understand what they need to do. If you
are pressed for time and are unable to
help them get this information, simply
delegate the task directly to them! Ask
them to figure out what the issues/
goals/requirements for the task are and
after they have figured out the task of
what they are supposed to do, only
then carry out the work. By far, most
employees will respond well to this
direction. If you have hired well (and I
assume you have or you will have too
many problems to be successful), then
in the overwhelming majority of cases
your employee is genuinely confused
and it is indeed your fault that he does
not know enough to make strong prog-
ress on the task.

In the game industry it is
extremely common for most members
of the development team to wear multi-
ple hats and have quite a lot of respon-
sibility. This is even truer of the
managers on a game project. Most
game industry managers must perform
their management duties as well as a
considerable amount of production
work depending on the skill set of the
manager and the needs of the project. I
have seen several instances where the
leader was overtasked and due to time
pressure provided minimal guidance to
his staff. In the end he got into a defen-
sive argument with the staff over
whether or not the employee had
enough information to get the job done.

What do you do if the employee is
truly lying and he is shirking his work
and trying to blame it on you? This is a
serious problem, and the best way to
deal with this problem is to wait 24
hours to cool off and ask yourself again
if his claim of not having enough infor-
mation could be valid. If it still seems
like an outright lie to you, then you
must confront this employee and nip
this bad behavior in the bud before it
grows out of control. Specifically, do not
dress him down in front of his team-
mates; instead, after the cooling-off
period, take him into a private office
and let him know that you are not los-
ing your mind and that he is lying to
you. Make this a verbal or written
warning at your discretion and then be
consistent. If he persists in this malev-
olent behavior, you will need to let him
go before he corrupts the rest of your
team.

There is a class of management
problems similar to this I call task rejec-

tion. Naturally, you will want to mini-
mize task rejection on your project, as
it is extremely unproductive.

JARGON: Task rejection—the author’s
term for the behavior of developers to
sometimes carry out a task with some
form of passive-aggressive behavior.

Employees practice task rejection due
to a limited number of reasons:

1. They are simply employees with a
poor work ethic.

2. They do not have enough informa-
tion to carry out the task.

3. They feel that the goal as outlined
to them is unattainable.

4. The employee is facing a problem
in her personal life that is causing
her a significant distraction.

276 Chapter 21: Measuring Progress

I hesitated to list problem #4, because
in my experience an otherwise compe-
tent employee even while faced with
significant personal problems continues
to perform her duties in good speed
while under this distraction.

If you have an employee with a
poor work ethic, I suggest you simply
let him go. I find it impossible to instill
a sense of work ethic in those who lack
one. I believe that letting this type of
worker go is honestly the best action
you can take on behalf of the employee.

Problem #2 should be the easiest
to solve and is by far the most common.
I always find it amazing when I walk
into an employee’s office and ask what
is going on with some task he is not
getting done, and he pauses and thinks
about the task, almost as if it was the
first time he has given it deep thought.
Then I discover that he does not have a
key piece of information to get over
some of hump. Your job is to simply
supply the information or supply him
with the path to the information and
then he will be able to cheerfully carry
on with the work.

The employee who feels he is fac-
ing an impossible task will usually feel
defeat and will somewhat shut down.
Some of your stronger employees will
almost perversely focus in on a very
narrow problem and solving that prob-
lem with superior quality. This is an
issue you must resolve quickly. A key
management task to keep your people
happy and humming with bite-size
achievable goals. It could be that the
employee is correct and the goals you
have outlined are too difficult to
achieve, or it could be simply that he
perceives that they are too much. In the
case of the perception problem, it

should be relatively straightforward to
fix that impression. On the other hand,
if the goal is truly unattainable, then
you have a problem.

Why is the goal unattainable? Is it
because you scheduled overaggres-
sively in the desperate hope that your
developers will chase your impossible
deadline and will in turn be less late?
Or is the goal simply unattainable? If
you are between a rock and a hard place
and you have no options, then I suggest
you be open and honest and acknowl-
edge to your employees that you know
the goal is unattainable but you wish to
press forward for some good reason. If
you are a manager with a fake deadline
approach, I implore you not to do this; it
only burns out the development talent.
Put more work into your scheduling
and planning, and your projects should
run smoother.

Set Goals, Not HoursSet Goals, Not Hours

I got ahead of myself; why do I stress
goals? Give your people specific targets
such as “finish three character models
by the end of the month” rather than
set arbitrary hours. The reason is peo-
ple pretty much finish what they are
supposed to, whether that means fin-
ishing the character models or finishing
their hours, and they optimize their
work behavior to meet their goals.
Which goal is more important to you:
achieving some sort of milestone or
being sure your team spends X number
of hours working on your project?

Lately, I have been fond of setting
achievable but difficult goals for my
team such as “Clear 200 bugs from the
database this week and you can all take
Friday off.” They enjoy the empower-
ment and dig in and focus.

Chapter 21: Measuring Progress 277

Task Tracking

To measure project progress you must
track the tasks that have been com-
pleted, the remaining tasks, and the
newly identified tasks. Microsoft Pro-
ject as a project management software
solution, you would think, would be
great for tracking what has been com-
pleted, what remains, and what is new.
It turns out that it is fairly tedious to do
all these activities. I swear I think
Taldren could make a bunch of money
by creating a truly easy-to-use and
effective project tracking software
package. In MS Project, tasks that are
completed are difficult to move around;
as soon as you mark them 100 percent
complete, they are frozen in the sched-
ule like boulders in the stream. If you
are using the automated leveling tool
(one of the main reasons to be using
Project in the first place), these boul-
ders act as annoying nuisances that
must be manually moved about. If a
task is marked completed but lies in the
future, I think Project should shift
it back in time behind “now,” adjusting
duration if need be; the task is done!
So Project does not help much when it
comes time to mark tasks complete.
Entering new tasks is actually easier in
my opinion than marking tasks com-
plete. It still requires adjusting the
dependencies between tasks and proba-
bly re-leveling work between
resources. However, that work is
appropriate and necessary as you want
to understand the impact of the new
tasks on the rest of the schedule.

What is the alternative to tracking
a project in MS Project? From running
my roundtable “Real Methods of Game
Production” at the Game Developers
Conference, I have found that most

folks use MS Project to plan their game
projects and use either Excel, a data-
base application, or a bug tracking
application to track their project tasks.
All three of these treat a task as a
record in a simple database, allowing
the manager to quickly add records and
modify existing records. It is easy to
sort the records both in a spreadsheet
and in a bug tracking system (note that
database applications like FileMaker
Pro and Access are used to create
rough, internal bug/task tracking data-
base applications).

The ease of use of these systems
blows away MS Project in raw speed for
the manager. The great negative of dis-
pensing with MS Project is that you will
not be able to identify critical paths,
overloaded resources, or task depend-
encies. Those are powerful project
management tools to set aside. In the
real world it seems that all of the best-
laid plans fall victim to the Pile-Of-
Stuff-We-Must-Do-So-Why-Bother-
With-Project philosophy. This is a
heavy problem on my heart, and I have
not yet figured out how to best solve
this problem other than have better
project management tools. Some teams
literally have a full-time human devoted
to updating MS Project files for large
teams of 25+ developers; other smaller
teams of 10 or fewer simply keep lists
of things to do from high to low and
work on the highs until they are all
gone and then the mediums and then
the lows. You need to measure the size
of your team and figure out what level
of methodology you require.

I do have a specific recommenda-
tion though: Use MS Project to create a
skeleton of real, measurable tasks that

278 Chapter 21: Measuring Progress

TE
AM
FL
Y

Team-Fly®

are almost like a continuous string of
micro-milestones each of your team
members must achieve for the game to
ship on time. Then use a spreadsheet
or database application to track the
thousands of minor bugs and tasks that
come up during actual production of the
game. This allows you to maintain an
MS Project plan to do high-level project
planning tasks like deciding you cannot
afford to take the time to create the
map editor so all of the tasks associated
with the map editor should be pruned
from the plan. Or you see that the ani-
mation work is falling behind and that
you need to hire another animator.

As for specific bug tracking soft-
ware to use, see the section on quality
assurance in Chapter 18, “Technical
Design.”

Only Visible Tasks Are CompletedOnly Visible Tasks Are Completed

It might be a little extreme, but I feel it
is a useful axiom of project manage-
ment to assume that only visible tasks
will be completed by the development
team. I have a bagful of techniques that
I use to make tasks visible.

The Daily Journal

Games are built a day at a time, and
there are a surprising few number of
days to complete a game. If you are
slated to make a game in 18 months,
then from a Wednesday to a Friday each
of your developers must complete a full
1 percent of all they are going to put
into the game. Each day counts. That is
why I force my guys to figure out what
they are going to get accomplished each
day when they arrive in the morning
and publish that information on our
intranet application we call the Daily
Journal. Below is a screen shot from
one of my entries.

Chapter 21: Measuring Progress 279

September 4, 2002, of my Daily Journal entry

The Daily Journal is a simple applica-
tion that stores your journal entries day
by day. As you can see, it displays my
name as a link so that anyone can click
on it and go back and view the whole
history of my daily entries as shown in
the following screen shot:

Where the task visibility shows is in
the view where each person’s daily
journal is automatically scanned for the
first line and compiled into a what-
everyone-is-doing-at-a-glance view,
shown in the figure on the following
page.

280 Chapter 21: Measuring Progress

The Daily Journal provides a long history of activities.

You may notice that we are able to cus-
tomize it at will and place such informa-
tion as the SFC3 build number, which is
automatically generated by our build
machine. This assists people entering
and reviewing bugs to be able to know
the current build. Another custom we
have is to note what time we came in
that day and what time we left. We also
use the notation of an X next to a task
that has been completed and an O next
to a task that is in progress (sometimes
I only give myself the credit of a lower-
case o if I do not feel that I have made
significant progress on a task).

The whole team-at-a-glance mode
has vastly increased the efficacy of my
managers as well as myself for collect-
ing the information about what every-
one is working on that day. When I was
working at the Dreamer’s Guild they
once tried a system where a producer
with a clipboard would walk through,
asking each person what he or she had
accomplished that day or week. I
remember how we resented that per-
son and the clipboard as a waste of time
and wondered why someone could not
find a workstation for them and put
them to work! Now with the Daily

Chapter 21: Measuring Progress 281

The what-everyone-is-doing-at-a-glance mode of the Daily Journal

Journal not only have we saved a tre-
mendous amount of precious human
time, but we have also opened up the
Daily Journal to every single person in
the company! You would be surprised
what a morale booster it is for everyone
to be able to check up on me or anyone
else in the company and see what is
going on. Some people are naturally
positive and others are naturally suspi-
cious. With full visibility up and down
the chain, everyone is reassured what
the rest are doing. Similarly, the Daily
Journal acts as a polite forum for show-
ing off what you have accomplished to
the whole company without drawing
undue attention to yourself.

Finally, the Daily Journal acts as a
just-in-time troubleshooting device, as
many times you will see someone
working on task X that reminds you
that you need task Y from him or her,
or that, whoa, task X shouldn’t start
yet; work on task Z instead! I also
encourage people to write in concerns
that need airing team-wide to get multi-
ple people’s attention on solving
difficult or vague problems.

In principle many of these func-
tions could be accomplished by sending
an email to the whole team; however,
that would end up being more stuff in
my email box for me to sort through
compared to the elegant web display.

The Wall

The wall is in reference to a number of
ways I plaster our walls with task lists.
I discovered when I first started leading
teams that people have a very flexible
amount of energy and focus that they
bring to their development day, and it is
up to you as the project leader to har-
ness the full value of their day.

I noticed that game developers
love to compete. A healthy team loves to
kick ass with the tasks and wants to
clear them off and move on. Typically
this exhibits itself with some members
of the team checking off all their tasks
and checking out early while other poor
souls have their weekend doomed to
finish up their tasks.

I started by extracting from MS
Project or the bug list the tasks that
had to be completed by the next mile-
stone. I wrote them out on a white-
board in my office with a column for
each member of the team and asked my
team members to come in and check off
their tasks the moment they were com-
pleted—not in batches! The effect was
to create a little game where people
would come in and check off their tasks
and simultaneously see how they stood
compared to the others on the team. If
they were “ahead” they would feel
good, and if they were “behind” they
would feel the pressure to focus and get
stuff checked off.

This competition bit works really
well. However, as every manager
should admit, when the tasks were
assigned they were only estimated to be
leveled out between the developers;
many surprises and details occur during
development. I have always maintained
that game development is a team effort,
and I do not like people to gloat that
they are way ahead of everyone else.
Instead of allowing ugly disparities
between team members, I continuously
adjust task assignments to do real-time
leveling. This relieves the pressure on
the folks who were behind and were
feeling that their load was unachiev-
able, and it puts healthy pressure on
the guys who were ahead to get back
and put their shoulder into the problem.

282 Chapter 21: Measuring Progress

This is the key to the management
style I have used throughout my career
in leading games, and I feel it is the
only fair way to manage the team. Of
course this real-time task leveling
requires a lot of judgment to be sure
that all of the team members will not
task reject and not take advantage of
the “free leveling.” This I have found

not to be a real problem in practice, as
we only hire excellent people.

I do not use whiteboards anymore
as my handwriting is not very good and
it is too slow to update. Instead, I use
MS Excel to create lists in a spread-
sheet to create punch lists of tasks that
need rapid execution. See the following
for a real example of a list of tasks on
SFC3 during mid-production:

Chapter 21: Measuring Progress 283

Status Who Art? Priority Est Where What

MH 10 E Skirmish If I am the only human and I click start - auto

ready all players and begin the game

MH 10 E Skirmish All ships should default to higher officers

MH 10 E Skirmish Need to supply the mission objectives for a

skirmish game

MH 6 E Supply Ship Do not display Trade-In or Cost of ship in a

non-campaign game

MH 7 M Skirmish Removing frustrating highlighting mechanic as

per Scott's comment on the different player

lines

MH 7 M Skirmish Hang in skirmish setup when I was doing

free-for-all between a Fed DN and a Kli DN and

I clicked on all sub panels like Officers, Refit,

Supply for both ships

MH Yes 3 M Skirmish Where do we put mission descriptions? Or just

have longer more descriptive mission names

MH Yes 10 H Skirmish The clickable options need to be visibly

clickable - suggest a shadow box or

something????

DF 10 E Battlefest Always default newly spawned ships in skirmish

to Red Alert

DF 10 E Battlefest Delay after the player dies before spawning

new ship to savor the explosion

DF 10 E Battlefest Battlefest ships should be created with good

tractors, anti-cloak device, etc…

DF 8 E Tactical Rear-firing torpedo arcs are too narrow

Art Yes 10 E Everywhere All weapon arc pie charts should have a bright

color for the actual arc and darkness for out of

arc.

Art Yes 10 E Everywhere Cloaking Devices need an icon

Art Yes 10 E Tactical Remove the target speed indicator hole in the

bottom bar

Art Yes 10 E Tactical Weapon arc button needs to be reversed

Art Yes 10 E Vessel Library / Refit Weapon arc button needs to be reveresed

Art Yes 8 E Everywhere Warp system icon needs to be revisited

Art Yes 6 E Tactical Remove metal border around the tactical map

Art Yes 9 M Vessel Library / Refit Move the variant choose to just under the ship

description at the top of the screen

Art Yes 8 M Tactical Open up the shield reinforcement click area

Art Yes 6 M Tactical Speed text at the bottom bar hole needs to stop

jumping around

SB 10 E Reticule Move all of the target related text under the

tactical map

SB 10 E Reticule Remove target name from the reticule

SB 10 E Reticule Remove speed and range from the reticule

284 Chapter 21: Measuring Progress

Status Who Art? Priority Est Where What

SB 10 E Reticule Change the reticule art to the art explored in

Photoshop by Erik and Scott

SB 10 E Tactical Firing probes will uncover cloaked ships within

a radius of 5 around the probe

SB 10 E Weapon Text Weapon text on the HUD screen should be

separated for each weapon

SB 10 E Weapon Text Weapon text shall be colored Green for

Charged & in arc, Yellow for Charged and out of

arc, and Red for uncharged, offline, or

destroyed

SB 10 E Weapon Text Weapon text status text should be "Ready", "No

Arc", "No Charge", "Offline" and "Destroyed"

with Offline, No Charge and Destroyed all

sharing the red color state

SB 9 E Tactical All ships' basic scanners should have a weak

anti-cloak ability

SB 9 E Tactical Verify that the battle report stats are accurate

SB 9 E Tactical Remove player fleet loss stat from battle report

SB 8 E Tactical Do not draw the multiple tube bar below

weapon icons

SB 8 E Tactical Have a greater penalty for losing cloak status if

fly too close or too fast

SB 8 E Tactical High forward speed and reverse need more

penalties

SB 8 E Tactical When tapping the Z key and you have no target

or a friendly selected have an officer say "No

enemy targeted, sir."

SB 8 E Tactical Display the mission title

SB 7 E Tactical Have an Officer warn the player that a ship has

uncloaked nearby

SB Yes 7 E Tactical Add to the enemy schematic area the current

subsystem target

SB 7 E Tactical Torpedoes should explode on your hull

SB 7 E Tactical Ship explosions should be less lethal, but do

damage out to a farther range as per the effect

SB 6 E Debug Add the ability to jump into an AI ship to see

what is going on

SB 5 E Tactical Remain targeted on the enemy while cloaked

even if the player taps away on T and doesn't

actually target anything else

SB Yes 4 E Tactical Chop up the bottom bar indicator lights into

three states reflected no charge, charge, and

finally when in arc, light the other two buttons

SB 4 E Tactical Display the player's race logo when no target

selected

SB 10 M Tactical The weapon & systems icons shall go from

Green to Yellow to Red and then to Black when

destroyed

SB 8 M Multiplayer Add a "shot-clock" to the game to prevent

non-engaging idiots from delaying the game.

After 10 turns of no activity a cloak appears and

counts down 3 turns. If this timer passes

without DAMAGE being scored the game is

ruled a draw

SB 8 M Tactical Everyone gets basic mines, use the mine layer

device for big mines

SB 8 M Vessel Library / Refit Reorganize the ship class as per Scott's

recommendation

SB 7 M Tactical Tone down the cloak effect for larger ships

SB 7 M Tactical Tone down the warp effect for larger ships

A bit of this real-world spreadsheet

These spreadsheets I then post in a
centralized hallway near my office and
have the development team come by as
tasks are completed and check them
off. This creates the same visibility and
competitiveness effect as with the
whiteboard but with the added benefit
that I am able to print out individual
copies so the guys are able to have
their own copy of what they are
assigned at their desk.

On Starfleet Command 1 I took this
to an extreme and prepared daily
spreadsheets for each one of the team
members and left their task lists on
their keyboards like some sort of evil
project tooth fairy. This worked out
great for everyone and we had tremen-
dous efficiency, but at a great cost of my
time. Today I feel it is better to create
lists once a week and update as
required. The closer you are to final
candidate, then of course you will need
to update the lists more often.

Many of you might be surprised
that we have this nifty web solution for
our daily journal and at the same time
use the relatively crude spreadsheet
method of delivering tasks. Why do we
not use a bug tracking application or
some other web application? The
answer is that we do use a bug tracking
application, and it does that job very
well. However, those bug tracking
applications do not focus people on the
tasks they must get accomplished and
in what order.

To avoid the Sisyphus effect of
constantly taking away people’s accom-
plishments and replacing them with
fresh new lists of stuff to finish, I sim-
ply leave on the spreadsheets a fair
amount of what they have already
accomplished. This looks great when
visitors come by and look over these

heavily marked up lists of stuff, and the
individual team members take pride in
a pile of checked off tasks.

Team MeetingsTeam Meetings

Another necessary aspect of task visi-
bility is to hold team meetings. I am on
record for hating meetings. I hate see-
ing people stare at the ceiling and drool
and the inevitable silly developer jokes
that crop up in a meeting that is poorly
focused and whose only purpose
appears to be to steal everyone’s life. I
have been at my share of stupid meet-
ings—Dilbert stuff. At Taldren we have
no standing scheduled meetings;
instead we have core hours, and other
managers and I call meetings at will
when required. Most of these meetings
focus on a narrow problem that crosses
the border between several team mem-
bers. The type of meeting that is
relevant for this discussion is the team
meeting. Lately we have been calling
meetings right after delivering a mile-
stone for Black9 with the rough agenda
of “What exactly are we going to accom-
plish for the upcoming milestone,”
followed a couple of weeks later with a
meeting discussing “How are we going
to finish up this milestone?” Despite
the Daily Journal, email, the wall, and
management by walking around, there
seems to be some magical energy about
the team meeting where people really
do open up and share their problems
and concerns and seek out help from
the other team members.

I simply cannot count how many
new tasks are discovered during a team
meeting. I now have a ritual of asking
each person to declare out loud how
they interpret their milestone obliga-
tions and discuss in general terms how
they are going to go about completing

Chapter 21: Measuring Progress 285

these obligations. This seems to have
tremendous power in creating these
verbal contracts between team mem-
bers as I cannot ever recall hearing one
of my guys express verbally what he
will get accomplished and see him fail
to finish it (maybe late, but always
accomplished). It seems that folks in
general are more worried about letting
down their team members in a public
forum than facing their manager in a
private meeting in an office. I am sure
some productivity consultant some-
where has a good explanation; please
forward it to me if you come across
one.

Of Leaves and GuttersOf Leaves and Gutters

The final word I would like to say about
measuring progress is that sometimes
change for change’s sake will increase
your team’s productivity. The way
change can usefully be applied to task
tracking is to sometimes change the
focus of the team. Let me provide a
healthy example:

I have noticed that game projects
collect a great number of small and
easy tasks that are clearly of less
importance than the high-priority stuff
the team has been grinding through. To

harness the effect of change, every
once in a while I will come in on a Mon-
day morning and tell everyone, “Okay,
this week I want every one of the text
errors and stupid little bugs cleaned out
of the bug database. Finish them and
take Friday off!” The team loves the
change of pace from working on tough
bugs to tearing through a bunch of
small stuff and seeing the overall bug
count come down. As a manager you
can feel good about this, for no matter
how trivial a bug is, it takes time to fix.
And you cannot allow the game to ship
with easy-to-fix bugs, so you might as
well clean them up. I would much
rather fix 10 to 20 easy bugs than fix
one medium bug that is obscure and
difficult to fix. I call these bugs leaves,
and I think of this switching of focus as
clearing out the leaves from the gutters.

If you are having trouble with your
publisher asking for an unending
stream of new features and feature
revisions, I feel it is entirely healthy for
a project to stop and take measure of
the true progress of the project by
focusing the team on clearing the gut-
ters of these leaves and seeing how
much time is left for addressing new
features and feature revisions.

286 Chapter 21: Measuring Progress

Chapter 22 > > > > > > > > > > > > > > >

Controlling Feature

Creep

Making games well would be hard
enough if we were challenged with just
identifying the tasks and estimating
them well at the outset of a project;
however, it is made nearly impossible
(and impossible for the cancelled pro-
jects) when someone goes about adding
features during production of a game.

Now why would anyone do such an
evil act?

The answer is they are not being
evil, they are just trying to make the

game better by adding something to the
game. I will be the first to say that no
game design ever laid to paper was ever
complete before production began and
that all games need to have their feature
set tweaked, expanded, reduced, folded,
and spindled during the course of pro-
duction. That being said, this chapter
focuses on how to best direct this cre-
ative energy to being more creative than
destructive to your game project.

Great Games Satisfy Player Expectations

Careful analysis of all great games will
show that they fully delivered on all
expectations that the game developers
planted in the minds of the players and
then brought these expectations full cir-
cle with excellent implementation of
these features. For example, Blizzard’s
Diablo is one of the more simple games
ever created in the RPG genre, arguably
only a slightly more sophisticated cousin
of the arcade game Gauntlet, yet Diablo
has enjoyed far more commercial suc-
cess than the mega-RPGs that Bethesda
has put out in the Elder Scrolls series. I
have to admit, I love the Bethesda
games and long to lose myself in game
worlds that are larger than I am able to

explore. Yet the Bethesda games are
distinctly weaker in execution than the
Blizzard games. This weakness I feel is
directly attributable to the sheer amount
of expectations that the Bethesda games
open up. For example, Bethesda games
pride themselves on having huge worlds
where you can step off the story path
and explore anywhere you want. Well, I
go exploring off the beaten path and
quickly find the nonscripted fare to be
pretty tame, canned, repetitive encoun-
ters that due to the complexity of the
software are relatively buggy. Diablo, on
the other hand, features one of the
smallest game worlds in modern games
that still somehow gets you from a

Chapter 22: Controlling Feature Creep 287

quaint medieval village through 15 lay-
ers of underground dungeons complete
with exploring hell itself!

id’s games are the finest examples
of small, tight feature sets that fully
deliver. The reason feature creep
happens is that while a game is in pro-
duction it is often difficult to imagine
how the final gameplay will feel, and
out of anxiety or lack of confidence peo-
ple start to suggest more and more
stuff to throw into the pot. If you think
about excellent cooking, it too tends to
be simple in ingredients when the chef
is confident about his craft, and tends to
have the flavors and spices all run
together in a muddy mess when the
chef is lacking confidence.

My basic belief is that feature
creep is bad and that every new feature
proposed should have to claw its way
through a gantlet of interrogation and
examination before allowing the pro-
posed feature to take its place upon the
sacred schedule.

Feature Creep Occurs DuringFeature Creep Occurs During

Design

Feature creep actually starts during the
earliest parts of the project: require-
ments gathering and game design. Here
it is quite easy to lose track of the core
game you are making (because it is still
so fresh and new) and start sprawling a
bit and tossing in ill-considered, dis-
tracting features. The solution to this
problem is to let the game design docu-
ment jell for a few days and then crack
it back open and consciously mark each
and every task as primary, secondary,
or tertiary.

Primary, Secondary, and TertiaryPrimary, Secondary, and Tertiary

Right at the outset a lot of your fea-
tures really are not as central and core
to the game as other features. Aggres-
sively push to move as many features
into secondary and tertiary positions as
you can, right up to the point where
you feel you are compromising the
game, and then push just a tad more. In
Microsoft Project you will be able to
make notes on the tasks and track the
lower priority tasks by assigning them
a low-priority weighting. For visual
clarity consider using different colors
for primary, secondary, and tertiary.
Some managers feel this is the wrong
framework for getting the most work
out of their developers. They would
instead rather consider every possible
task a must-do task and reluctantly cut
tasks when forced by reality at the end
of the project. I have found through
direct, hands-on management of my
folks (of which there is a wide personal-
ity spectrum) that they relish checking
off their primary task lists and love to
then tear through their secondary and
tertiary tasks rather than plug away at
an impossibly long task list where the
producer comes along every so often
and cuts away tasks that are clearly low
priority when there is no more over-
time to give.

Feature WalkingFeature Walking

Feature walking is where a single
instance of feature creep sprawls into a
whole new series of feature requests
and bugs to be fixed. I find these situa-
tions to be the most frustrating. Here
you are, successfully carving time out
of the schedule to complete a feature

288 Chapter 22: Controlling Feature Creep

TE
AM
FL
Y

Team-Fly®

request only to find out you are further
behind than if you had never agreed to
the feature in the first place. Be espe-
cially alert when you accept a new
feature, and try as hard as possible to
identify where this new feature may
take you.

Publisher-Suggested FeaturesPublisher-Suggested Features

The most difficult features to cut are
the features suggested by your pub-
lisher. These may come from their
executive management, from their QA
staff, or directly from your producer at
the publisher. Most of these folks to
some degree or another wish they were
the designers on the game. This is
actually a good thing; you want the
folks working at the publisher’s place to
be passionate about the game and to
have enough interest in games in gen-
eral to execute their actual job
descriptions. The side effect of this
required skill set and passion is an
ongoing list of feature suggestions and
revisions from these publisher folks.
Publishers hold the great majority of
power in the game developer-game
publisher relationship due to being the
source of capital as well as access to
market. This steady imbibing of sub-
conscious power often makes it difficult
for the publisher to constructively
accept rejection of a feature suggestion
they have made to the developer. As a
publisher they feel it is morally within
their right to request these changes.

My advice is to avoid outright
rejection of these publisher feature
requests. Instead, you should track
them: Immediately tag a feature sug-
gestion with a priority label of primary,
secondary, or tertiary and also develop
a time estimate for the suggestion if
your resources have time to look into it

(the suggestion may be of such low pri-
ority it does not merit the distraction of
your team members to estimate how
long it will take to complete).

As these publisher suggestions
begin to pile up, your publisher will
likely begin to develop a sensitivity to
the pile of work they have been sug-
gesting and will likely become sympa-
thetic and roll up their sleeves and
participate with the feature cutting as
well as the feature creeping.

No matter how the publisher tries
to position their suggestions construc-
tively, push back and do not allow them
to develop the assertion that their sug-
gestions (or QA’s or the beta tester’s)
are somehow more objective than your
own team’s suggestions. In my opinion
all of this game creation work is pretty
messy gut-call decisions when you look
closely.

In fact, the ugly truth of the matter
is that many of these publisher (or QA
or beta test) ideas are in fact simply bad
ideas. This too will be politically diffi-
cult for the game developer to respond
to. I do, however, have a technique I
use that I feel works best for everyone
and of course requires the most work.
Instead of dismissing poor suggestions
out of hand and getting into a shouting
match with your publisher, stop and
think to yourself why they made that
particular suggestion. The suggestion

itself may be crummy, but what you
should be interested in discovering is
why they made the suggestion in the
first place. What was bothering them
that they are trying to fix? Focus on
that and develop a conversation with
the publisher. This is good game design
and excellent customer service. The
publisher should respond to your genu-
ine efforts to solve their identified

Chapter 22: Controlling Feature Creep 289

problem and should be more than will-
ing to drop their poor suggestion if you
are able to mutually develop a truer
solution to the problem they identified.

Push Independent Tasks to thePush Independent Tasks to the

End

No matter what the priority a given
task may be assigned, strive to push
newly suggested features as far back in
the schedule as possible. Any new fea-
ture suggestion task that might be
independently completed (and no other
task would be dependent on that task
being completed) should be pushed
back. The reason for this is that so
many suggested features tagged with a
high priority under the relatively
rosy-tinted glasses worn at the pro-
ject’s beginning phases will undergo
rapid transformation into not-so-
important tasks when it is closer to the
end and time is running short. This
critical hard tack must be held through
development; otherwise the addition of
these “high-priority” new features will
cause the schedule to break and possi-
bly jeopardize a planned, truly core fea-
ture later in the schedule. These
dropped core features create the jarring
lapses between creating player expec-
tations and failing to fulfill these expec-
tations. This is where great game ideas
are turned into mediocre released
games.

Regularly Practice Feature CuttingRegularly Practice Feature Cutting

I have talked a lot so far about how to
manage the feature creeping phenom-
ena, however I have not really provided
any specific advice as to what to do with
your secondary and tertiary features.

My rule of thumb: Be sure to
implement fully all primary features,
pretty much cut all tertiary features

(unless they are trivial to execute), and
use the secondary features as a source
of morale and personal accomplishment
for your developers to chew through as
the schedule allows. In other words, as
soon as you mark something as tertiary
you are emotionally accepting it to be
cancelled without further ado.

The producer should either call a
meeting or just handle the feature
cutting herself. I recommend at the
beginning of the milestone phase that
the producer review all of the outstand-
ing secondary suggestions and
determine if any of these need to
become tertiary, and if the schedule is
under pressure, determine which of the
primary tasks must be converted to
secondary for the project to remain on
time. Remember, it is always far easier
to resurrect a task if you find yourself
running ahead again compared to sav-
ing the project after it has already run
significantly over budget due to distrac-
tions of minor tasks.

If your tertiary task bucket is get-
ting too full, I suggest the elegant
solution of opening up a spreadsheet or
database to track suggested features for
version 2.0 of the game you have in
production. This has the double effect
of easing ugly pressure on the current
game as well as creating the positive
feeling of a sequel to the current work
being planned. I call this activity flush-
ing ideas to the dream pile.

How far should you cut back? If
you are ahead of schedule, obviously
the pressure to cut will not be that
great. However, do not get too cocky as
something down the road could always
pop up and chew through your time
surplus and more in short order. I rec-
ommend completing each milestone

290 Chapter 22: Controlling Feature Creep

two to four weeks before it is due if at
all possible.

If you are just on time, I would rec-
ommend being a bit more aggressive as
your developers will actually work
harder and with higher quality if you
ease the schedule pressure on them
and turn them into heroes.

Finally, if you are running late, you
must act quickly and decisively to cut

the feature suggestions down to a more
reasonable size. Your developers are
actually performing below their best, as
they feel like losers for allowing the
project to get behind schedule. You
must remove this ugly feeling by push-
ing enough primary features to
secondary to put you immediately back
on schedule without any use of 80-hour
workweeks.

Chapter 22: Controlling Feature Creep 291

This page inten tion ally left blank

Chapter 23 > > > > > > > > > > > > > > >

Alpha, Beta, Go Final!

The Test of Well-Laid Plans

Requirements, planning, time esti-
mates, Gantt charts, state diagrams,
vectors, models, voice-over files,
menus, meetings, staffing up, cutting
features, adding features; all of these
activities need to come together and
produce a game starting with the alpha
build.

Back up. There is a build before
alpha called first playable, which is
where the home stretch to making a
game really kicks off. The game should
at this time be essentially fun. It should
be easy for any member of the team to
play the latest build and immediately
start rattling off features they would
like to see in the game. The producer
should be smiling at this point because
the vast majority of these suggestions
should be planned for content and fea-
tures that are just around the corner
before alpha is reached.

So your primary target during pro-
duction should be to reach first playable
as soon as possible but no sooner than
it takes to create robust, healthy soft-
ware along the way. Once you reach
first playable, almost all “big scary
risks” should be dealt with and you
should be at mostly content creation
and relatively well-contained program-
ming tasks. I believe that first playable
is the most important milestone in a

project. At first playable either you will
see a fun game that simply needs more
stuff or you will have engine technology
bits that are poorly bolted together (and
everyone is being polite and not dis-
cussing the obvious lack of a game).

The concept of first playable and
alpha used to blend together; however,
as the size of projects increases it is
becoming clear that we need an earlier
stage than feature complete to gauge
the progress of a game project. Sure,
there should be milestones all along the
way that have specific deliverables, but
there is a night and day difference
between a milestone that has a laundry
list of things that need to be accom-
plished versus being able to pick up a
controller and play a game.

JARGON: First playable—the first time
all of the major gameplay elements are
functional and playable.

Review your schedule and prune off all
the “leaf tasks” that do not have any
important dependencies and depriori-
tize them relative to any task that
delivers core gameplay functionality.
An easy example of this is to verify that
your basic localization pathways are in
place, but delay the actual localization
of your game as long as possible.

Chapter 23: Alpha, Beta, Go Final! 293

On AlphaOn Alpha

Reaching alpha is the second most
important milestone in my opinion (do
you see a trend here?). The idea behind
alpha is that your programmers should
no longer be actively breaking the code
base with new features but rather
shifting their focus to cleaning up the
code base.

To allow yourself to reach alpha
you must have the courage to announce
to the team and to executive manage-
ment that you are feature complete.
Announcing it really is not difficult;
more difficult is resisting the urges
from the team, beta testers, and execu-
tive management to add more features
to the game. The only fair thing to do if
a game reaches alpha and then new fea-
tures are implemented is to drive the
game back to alpha again before moving
on and attempting to reach beta. That
is, after adding a bunch of new features,
you should ask out loud, “Are we good
now? Feature lock?”

JARGON: Alpha—the point at which a
game is feature complete.

To determine whether or not you are at
feature lock, you will need to do two
tasks: Compare the alpha candidate
build to the maintained design docu-
ments and determine if all of the
planned features have been imple-
mented. Next you need to play the
game as a team and honestly determine
if the game is fun or not. Feature-
complete games will be fun with bugs
and balance to address, and games that
are not fun need something more or
something less. Either way, you are not
alpha on your way to beta, instead you
are still in production.

If your budget allows, it is always
good to perform some focus group

testing on your alpha build. Reportedly
Microsoft is the king of focus groups
with specialized focus group testing
experts who use rooms with one-way
mirrors and many other sophisticated
techniques to ferret out the true opin-
ions of the unbiased alpha testers.

Another group of alpha testers
should be the marketing team. I know, I
know, great salespeople are able to sell
snow to Eskimos, but I always feel
better when the marketing folks under-
stand my games and really get behind
them.

On to BetaOn to Beta

Between alpha and beta your team will
focus on making the game stable, fixing
crash bugs, cleaning out text bugs, and
balancing the game. The classic high
standard for beta is a feature-complete
game with no known bugs (more com-
monly, no known show-stoppers or no
known shippable bugs).

Different groups and different pro-
jects have their customized version of
beta, and I suggest you use the strictest
measure of beta your group will toler-
ate. Any relaxing of the standards at
beta only invite more feature creep and
feature revision as folks think, oh well,
we will fix the bugs post-beta.

JARGON: Beta—the point at which a
game contains no known bugs (that are
not shippable).

I highly suggest that folks treat all of
the time after beta as being gone—
unusable for tasking. With that attitude
both the publisher and the developer
will work together to keep the feature
set tight and clean and avoid feature
walking. With all your energy and
focus, the beta candidate should be a
shippable product.

294 Chapter 23: Alpha, Beta, Go Final!

If you are working on a fixed time
budget to release, you must carefully
manage your time even more to focus
on the bugs that have true high priority
and not get distracted on the micro fea-
tures or even bugs of low or medium
importance. This might mean you will
have to consciously start to close out
trifling bugs that you know you can live
with—not simple-to-fix bugs like spell-
ing errors, but the little tiny sugges-
tions that not many people would really
notice.

If you want to save yourself a
bunch of time, do not release your beta
build to beta testers until you are beta!
That might sound silly, but I disagree
with Activision’s policy of sending alpha
builds to beta testers and responding to
their bug reports until the game is of
shippable quality. The reason I disagree
is that your team and the publisher’s
QA department is more than qualified
to find all the low-hanging fruit in the
alpha build, and you should attack the
alpha with zeal but still only release the
beta with no known bugs to outside
beta testers.

I advocate being even more con-
servative with your beta testing plan
and release the beta in stages: Release
a build to 25 testers for two weeks, fix
bugs, then release to 100 testers for
four weeks, fix bugs, and then open it
all the way up to your final number
amount of testers, perhaps 1,000 or so.

The beta testers are there to find
bugs and flaws in balance that escaped
the attention of the in-house QA teams.
Outside of high-priority compatibility
bugs, the beta testers should only be
finding crash bugs by using the game in
unexpected ways and finding other
low-priority obscure bugs. You want to
use the beta testing feedback to make

your game bulletproof. So if you release
the beta build too early or to too many
beta testers at the start, you will often
be clobbered with reports on bugs your
team already knows about and many
duplicate reports.

You will also need at least one full-
time person to handle the communica-
tion with the beta testers. It is far too
easy to create the expectation with the
beta testers that they are playing an
important role in the development team
and to dash that expectation with a
demonstrated lack of coordination and
communication.

The FinaleThe Finale

The road to the final gold master for all
of my games is blurred with memories
that I cannot recall with clarity. I
remember making hot to-do lists two
to three times a day and sleeping in the
offices and wandering around Costa
Mesa in the middle of the night, eating
at the local International House of Pan-
cakes or Denny’s. Is there a method?
Not really—it is just test, fix, test, fix,
test, fix until you run out of time. Sure,
the QA team will make a few regres-
sion tests to double-check that every-
thing that was previously fixed stayed
fixed (there are always surprises), and
there may still be some feature revi-
sions going on to accommodate beta
tester feedback.

JARGON: Gold master—the final candi-
date build that becomes the master
used for production of the final game.

A big decision to make between beta
and final is whether or not you are
going to patch the game. It may sound
unromantic, but I believe the majority
of games that release patches knew
before release that they would need to

Chapter 23: Alpha, Beta, Go Final! 295

create a patch. So if you know you are
going to create a patch, it is better to be
honest with yourself and the team and
be organized about the patch planning.

For example, on SFC1 we realized
we were low on time about 60 days
from release and decided to pull two of
the six playable races from the single-
player campaign; however, we left
those two in for multiplayer missions.
This allowed us to take those missions
off the QA plan and the corresponding
set of bugs to after release. This also
allowed us to sweeten the eventual
patch that had bug fixes with two new
campaigns, making the game 50 per-
cent larger from the single-player
perspective.

If you are creating a console title
that absolutely positively cannot have a
patch, then your entire philosophy on
how you will approach bugs will be dif-
ferent from a game with a patch. I recall
having a phone conversation with a
fairly highly placed Xbox executive,
who was gushing with pride over the
recent success of Morrowind for the
Xbox. It was selling through like crazy
despite being the buggiest game to date
from the executive’s own voluntary
admission. He said the final eight
weeks of testing was focused purely on
identifying hang bugs and that the QA
and development teams ruthlessly
ignored all other bugs no matter how
trivial to fix in the pursuit of shipping a
crash-free Morrowind on the Xbox.

The real challenge in executing the
final candidate well is to avoid creating
new bugs while closing older bugs. Not
only does this not help, but many times
it may hurt as the new bugs could be of
greater severity than the older bugs.
One method to address this problem is
to use what is called pair programming:

two programmers in front of one work-
station. There is a philosophy of
programming known as extreme pro-
gramming that holds pair programming
as one of its central techniques to cre-
ating reliable and robust code. I fully
agree that pair programming produces
reliable and robust code, but for the
great majority of production time, this
is a luxury that is really not required.
However, during those final three
weeks of code tweaking, it is of consid-
erable comfort to have another person
verify your changes. During production
my teams tolerate pair programming
only on very tough problems, but dur-
ing the pursuit of the final candidate
everyone welcomes the comfort of
sharing the stress and responsibility of
their bugs with another.

Even if you use pair programming,
my final bit of advice on the pursuit of
the final candidate is to not modify any
code in the final ten days of production.
Instead, document bugs and flaws and
stick them in the readme. If you find
trivial-to-fix bugs like errors in the text
assets, fix them with caution. If you find
serious bugs in the main game execut-
able and you feel the game simply
cannot ship with these bugs, perform
the fix and then reset your clock for
another ten days of testing before
release. I thought I understood this
well with SFC1, yet all of the major
bugs the fans encountered with the
final release were bugs introduced in
the last ten days of the final candidate
cycle. Even with pair programming
errors sneaked through faster than the
QA team could identify.

Obviously if you have no time limit
on when you have to ship your game,
then quality is the highest priority for
your game. In that case, the pursuit of

296 Chapter 23: Alpha, Beta, Go Final!

the final is much simpler, if not longer.
You are free to iterate until all known
bugs are fixed or the only ones

remaining are below your quality
threshold and the beta testers have
stopped reporting new bugs.

Chapter 23: Alpha, Beta, Go Final! 297

This page inten tion ally left blank

TE
AM
FL
Y

Team-Fly®

Chapter 24 > > > > > > > > > > > > > > >

Point Releases vs.

Patches

Patches—the bane of PC games. It
seems it is impossible to buy a PC
game without it requiring a patch
shortly after release. Often a patch is
available as soon as the game hits the
store shelves; what gives? If the devel-
opers are able to have a patch ready by
the time the boxes are on the shelves,
why did they ship the game before it
was finished?

Software Complexity and theSoftware Complexity and the

Fragility of ComputersFragility of Computers

The basic problem is that software is
far more complex than is apparent to
both the consumer and the developers.
Compounding this problem is that soft-
ware is a digital system that usually
works or does not work with nothing in
between. Computers are very literal
machines and have no ability to inter-
pret what they should do when there
are minor flaws in the software code or
data. This is in contrast to things found
in the real world. Most cars start off in
great condition and then one day wind
up at the junkyard, but along the way
they malfunction and receive repairs.
Along the way to malfunctioning, a car
may develop a leak in a tire, be slow to
start, make a strange noise at 4500
rpm, spill out too much smoke, drift to

the left, or just become dirty. None of
these suboptimal behaviors will stop
the car from performing its basic role in
getting you to work. All of these bad
behaviors are “bugs” that need to be
fixed, but in stark contrast to software
it is rare for a car to unexpectedly
“crash”—except of course due to “user
error” (or other “users”). Software
often runs splendidly without the
slightest hint of a problem and then
crashes instantly with no possibility of
recovery. This pathological behavior is
the main culprit in our frustration with
software.

Think of eating out at dinner; it
doesn’t always taste the same. The
watermelon may be underripe at the
salad bar, or the chicken may be a little
too pink at the bone for comfort, or the
baked potato was undercooked. None of
these are issues that will prevent your
meal from “functioning.” In fact, most
people will just deal with this without
any thought and move on; others might
send their chicken and potato back to
the kitchen for more cooking. Either
way the “user” of the dinner has a lot of
flexibility and control in dealing with
the “bugs” found in the dinner. None of
these dinner “bugs” are tantamount to
a crash. A crash would be more like

Chapter 24: Point Releases vs. Patches 299

going back for a second helping of egg
salad at the company BBQ after it has
been sitting in the sun for four hours;
that will “crash” the user’s “operating
system.” That bad egg salad will indeed
irritate the average consumer, but for
the most part, food products, while hav-
ing many “bugs,” cause very few
“crashes” and result in very little
“user” frustration.

Or take a used house that someone
would be happy to buy. It will have hun-
dreds of hairline cracks in the cement
walkways, stains on the tile, rust in the
gutters, squeaky floorboards, insects
living inside, and so on, and all of this is
normal. It is unreasonable to expect a
house to be free from all errors and
“bugs” of construction; even new
homes will feature dozens of minor
defects. The key again is that none of
these minor problems will affect the
value or function of the home in any
material manner.

Back to software. Again our soft-
ware is very fragile; feed it just a bit of
unexpected data or wander off into user
behavior not planned for and the soft-
ware will usually fault in a way that is
visible, material, and frustrating to the
user. There are techniques for making
software more robust such as exception
handling, where the programmer pur-
posely writes code for cases of use that
are not supposed to ever occur (excep-
tions) that are handled by other blocks
of code so the software is able to grace-
fully recover.

JARGON: In C++ this is accomplished
via a try block where the possibility of
failure could occur, a throw statement
when an exceptional case occurs, and a
catch statement that provides the spe-
cific exception handling code.

The reason military, medical, and espe-
cially space mission software is so
expensive to develop is the reliability
and robustness requirements that soft-
ware must fulfill. There have been
many robotic spacecraft missions that
were initially thought to be complete
failures due to mechanical and/or soft-
ware bugs that were overcome by solid
software and/or updating the software
on the spacecraft. The most positive
example of this is perhaps the Galileo
spacecraft with Jupiter as its target.
After traveling through millions of
miles of space, the high-gain transmit-
ting antennae failed to deploy. This was
a big tragedy; after spending nearly $2
billion and nearly two decades from
conception to arrival at Jupiter, all was
considered lost. All the rest of Galileo’s
instruments checked out, but what
would it matter if Galileo were mute
and could not send back the data and
images of the truly awesome Jupiter
and its own miniature solar system of
satellites. The only way for Galileo to
communicate was through its low-gain
transmitter, which it used during the
interplanetary journey. The problem
with this antenna was that it was only
capable of about 1/100th the bandwidth
of the high-gain antennae. After much
grief and anguish some rocket scien-
tists and programmers got together and
upgraded the compression algorithms
that Galileo launched with, and in the
end Galileo was able to transmit about
one-tenth the data they had planned to
send back. While still a disappointment,
this simply required the various scien-
tists to think more carefully about
which images and data they truly
wanted to download from the space-
craft. In the end, less science was

300 Chapter 24: Point Releases vs. Patches

performed, however, science was

performed.
All game software that I know of

has some bugs; even the simplest and
most rigorously tested of console titles
contain a few. I certainly agree and
acknowledge that there are wide spans
from the infamously failing Battle-
cruiser series to the near marvels of
perfection that Nintendo released such
as Mario64 and Zelda64. In the previ-
ous chapters we discussed how to best
ship a game with the fewest flaws pos-
sible. This chapter discusses your
options in dealing with patches, point
releases, and fan-requested features
after release.

The finest piece of modern PC
game software from a high-quality
ultra-low bug count point of view, in my
opinion, is Counter-Strike. Counter-
Strike enjoys an impeccable pedigree;
the engine behind Counter-Strike is the
Half-Life engine, which in turn is
Valve’s modification of id Software’s
Quake I engine. Both Quake and
Half-Life were developed by the best
developers in the world and received
far more testing and revisions than the
average PC game. On top of this mar-
velous technical foundation, Counter-
Strike was in what seemed like intermi-
nable beta. I believe that is the truest
reason why Counter-Strike runs so
flawlessly: it was in open beta for over
18 months, and at a cost of $0 and loads
of fun, it has become probably the sin-
gle most tested game in the history of
electronic gaming. Counter-Strike
remains one of the world’s most popu-
lar games despite its lack of any tradi-
tional marketing and distribution and
after over three years of release!

It seems that to obtain truly
bug-free, robust game code you must

release the game to the public, respond
to bug reports, and rerelease many
times until the game is perfect or you
run out of development resources or
the public’s interest. Again, the previ-
ous chapters dealt with how to make
the highest quality software possible
before release; at this point we are dis-
cussing post-release.

How About Those ConsoleHow About Those Console

Games—They Don’t Patch!?Games—They Don’t Patch!?

It is horribly expensive to patch a con-
sole game. You must send a replace-
ment CD/DVD/cartridge out to the
consumer and pay for postage for both
the returned and the new fixed media,
as well as destroy the older media and
build replacements. This has occurred a
few rare times in console gaming his-
tory. The last time I was aware of this
practice was with the first run of Gran
Turismo 2 for the PlayStation 2. One
critical bug that was found post-release
erased the player’s garage (save game).
In general, it is true that consoles do
not patch because it is financially
impractical. Due to this, most develop-
ers and publishers spend relatively
more money creating an arguably sim-
pler game relative to their PC brethren.
With the stakes so high, the publishers
also staff up larger test teams and take
more time. Finally, as discussed earlier,
the hardware manufacturers add their
own QA teams to verify that the game
meets their standards.

Dark clouds of patches loom on the
horizon of console games. First the
Xbox started off with a hard drive to
accommodate downloadable and incre-
mental content, and now the PS2 also
boasts an external hard drive. These
hard drives were built for online con-
tent, but mark my words, these hard

Chapter 24: Point Releases vs. Patches 301

drives will hold patches in the near
future. Of course, a console patch will
never be called a patch; it will be called
an update or an upgrade. Look under
the hood and you will see that some
flaws in the originally released game
will be fixed in the update.

Online Games—the PerpetualOnline Games—the Perpetual

Beta?

The other extreme from the console
game is the online game in regard to
the frequency of patches being
released. It is not uncommon for mas-
sively multiplayer games to release a
patch a week or even more often.
Despite this frequency of patching, the
better online games enjoy tremendous
commercial success with gross margins
in excess of 40 percent and a noticeable
fraction of the GDP of South Korea. So
if both console games and online games
make a ton of money, what is the rele-
vance of patches? At the end of the day
you must do whatever it takes to make
a consumer happy to buy something
they do not have to buy—a luxury item.
For the console game, that means mak-
ing good on the expectation that the
consumer will be able to pop the new
game into the machine in the living
room and be up and having fun in a mat-
ter of seconds. For the massively
multiplayer online game, that means
the developers will continuously
improve the gameplay experience since
the game is sold as a monthly service
rather than a one-time product. This
monthly service arrangement makes it
not just okay to release patches but
actually expected and demanded!

Point Release as a SugarcoatedPoint Release as a Sugarcoated

Term for PatchTerm for Patch

One day I realized that id Software used
the term “point release” instead of
patch, and while id Software deserves
the reputation of making some of the
world’s finest games, I still felt the sim-
ple use of clean-sounding “point
release” rather than the dull “patch”
enhanced id’s reputation in the public’s
eye. A point release sounds much more
deliberate than a patch. After all, a
patch is something you sew onto jeans
or glue onto tires when you are too
poor to buy new—definitely not glam-
orous. A point release indicates that
you had this patch planned all along and
it is the user’s good fortune to get this
update from the developer.

Now to be fair to id, the quality of
their released games exceeds most any
other developer’s after being patched.
id also deliberately adds more function-
ality to their point releases similar to
how online games add features and
improve functionality. Almost all users
feel good about getting extra functional-
ity after having paid for a game. The
problem with patching games that are
not massively multiplayer is that the
user has to log onto the Internet,
search for the patch, download the
patch, and see if the patch addresses
the particular bug that the user experi-
enced that caused them to go out and
look for the patch in the first place.
Contrast this effort to playing an online
game, where as part of the login pro-
cess the game determines whether or
not your version of the game is up to
date, and if not your local copy of the
game is auto-patched.

302 Chapter 24: Point Releases vs. Patches

Fan RequestsFan Requests

If you have made a good game and the
word-of-mouth ball gets rolling, soon
players will attempt to communicate to
the developers what new features they
would like to see in the game. I suggest
you set up a message board such as
Infopop’s (http://www.infopop.com) Ulti-
mate Bulletin Board software. Hosting
a forum for players to discuss their
experiences with your games is also a
good idea and has been one of the best
moves for Taldren (see our forums at
www.taldren.com).

When dealing with fan requests
you will receive a bunch of suggestions
that might be roughly categorized into
bad ideas, good ideas that are too big to
bite off at this time, and good ideas that
are just right in size. The best way to
handle this is to address the bad ideas
and say why you do not think they are
good. Trust me, this builds respect and
develops a better relationship with your
fans as they will come to learn how
your group approaches games and will

likely learn something they did not
know. Most obviously it will show that
you are listening to their suggestions.
For the good and ambitious ideas it is
also best to acknowledge the idea and
show that you support the idea on its
merits, but at the same time shape
their expectations that this feature is
not likely to be added in the near
future.

It is the good ideas that will not
take much time to implement that are
the real gems. At the risk of appearing
crass, here is where the return on your
time investment in the message boards
will be returned in spades. The amount
of gratitude you will receive from your
fans for adding a few special requests
(this stuff could literally take minutes if
not hours—just bits of creative insight
that the fans came up with) will demon-
strate to them that you have a true
dedication to their interests. This is the
stuff that will produce a fan for as long
as you are in the game business. This is
also the “special sauce” that converts a
mere “patch” into a “point release”!

The Publisher-Developer Post-Release

Relationship

The business model of a game devel-
oper is under continuous challenge by
the publisher. In short, the publisher
distorts a business (the developer) into
a business with a single customer, and
the customer is the source of capital
and the access to market. These three
factors combine to make the publisher a
dominant force of control for the devel-
oper. In regard to patches, almost all
development contracts require the
developer to warranty their work for
some period of time after release. This
is all reasonable, but if you look at the

project’s budget and milestone
advances, you will never see an amount
of money earmarked for post-release
support. All publishers know that PC
games require post-release support,
and in fact they demand the developers
provide this service. The leverage the
publisher invariably leans on is “Hey,
dontcha wanna earn royalties?” or “I
don’t want to work with someone who
does shoddy work and is not willing to
stand by it.” Certainly publishers
should not expose themselves to
unnecessary work, and if they do their

Chapter 24: Point Releases vs. Patches 303

job by running their publishing com-
pany well and are careful in the
selection of their developers and in
their review of milestones, all should
go well with the project. A publisher
should advance the costs of post-
release support as the developer is
always the last one to receive royalty
income to offset the costs of support.

I have tried (unsuccessfully) to use
the online nature of a component SFC
series to include a modest budget for
post-release support. I recommend that
others keep pushing for it. Any pub-
lisher in the world would bend over
backwards to advance the funds neces-
sary to create patches for Doom III or

Warcraft III. It is smart money to sup-
port your games in post release. My
point is all games require post-release
support; even the most financially
healthy and successful developers sup-
port their games after release. I would
think lesser games deserve all the sup-
port they can get, no? At the bottom
line, the publisher knows they are able
to use the overtime efforts of a start-up
developer trying to make their reputa-
tion to stand by their games. Devel-
opers should push back when they have
times of leverage and also realize that
it is their position to give and struggle
while they are growing their
businesses.

Tools for Creating Patches

So, okay you actually need to make a
patch today. Listed below are two popu-
lar patching tools: the more established
RT Patch by PocketSoft and the upstart
Visual Patch by Indigo Rose. Both of
these tools compare what you distrib-
uted to the users in the previous
version to the binary bits of the new
version and extract the differences.
After extracting the differences it com-
presses it tightly and wraps it in a
self-executing self-extracting patch-
applying tool. Both of these tools allow
you to wrap your own user interface to
the process if you like, or you can use
their standard user interface. I recom-
mend that you download both and give
them a try.

I also recommend that you provide
a main menu level option in your game

to get the latest patch. I like the auto-
patcher in BioWare’s Neverwinter
Nights the best; it is verbose and visu-
ally pleasing to watch it go about its
patching business.

Product name: Visual Patch

Published by: Indigo Rose, Inc.

URL: http://www.indigorose.com/
products/visual_patch1.php

Price: $495

Product name: RT Patch v. 6

Published by: PocketSoft Inc.

URL: http://www.pocketsoft.com/
pr/rtpproc.html

Price: $995

304 Chapter 24: Point Releases vs. Patches

User Extensibility—The Magical Patch

Another patching mechanism that we
make use of at Taldren is to externalize
as much of the game data as possible to
facilitate user extensibility. Your fans
will be able to generate far more ideas
than you will be able to handle. It would
be far better if you simply allow them
to make their own changes to the game.
I find it useful to think of it as their
game. For example, in the SFC series
all of the ship data has always been eas-
ily modifiable in the format of a simple
spreadsheet readable by Excel.

There are many subtle benefits to
user extensibility; one is that it gives

your game legs without your continued
effort. Half-Life and, by heritage, Quake
are probably the most user-extended
games in the history of games. Clearly
an activity (providing for user extensi-
bility in their games) that the highly
successful Valve and id Software per-
form is an activity that any company
should emulate. Too many companies
think user extensibility robs sales from
their own future sales. I am not going
to proselytize further on this issue; for
those of you who resist user extensibil-
ity, good, stay that way—more for
Taldren!

Chapter 24: Point Releases vs. Patches 305

This page inten tion ally left blank

Chapter 25 > > > > > > > > > > > > > > >

Garage Development

Spans the Internet

Mario64 enjoyed a reputed budget of
$20M+, and Wing Commander IV,
Return to Castle Wolfenstein, and
Warcraft III all are rumored to have
development budgets approaching
$10M. Most modern AAA budgets are
in the range of $2M to $5M. So what
could a few inexperienced, passionate
wannabe game developers accomplish
when facing these seven- or eight-
figure budgets expended on behalf of

teams that have hundreds of years of
collective game industry experience?

One company started out making
electronic pinball games—Epic;
another company cut up thick paper to
make playing cards—Nintendo; another
loaned an employee a computer over
the weekends and he created a side-
scroller featuring a kid wearing a foot-
ball helmet—id Software.

Silver Creek Entertainment

In this chapter I profile Silver Creek
Entertainment, as independent as you
could imagine. They create, market,
and distribute their own games and
have never worked with another entity,

let alone a publisher. This includes run-
ning their own online multiplayer
service that they built and operate.

These guys started off by setting
their sights on no less than Microsoft!

Profile of Jonas Stewart

hwsol@silvercrk.com
Jonas Stewart

Pixel Pusher and Game Design
Silver Creek Entertainment

Erik Bethke: How many developers

are at Silver Creek Entertainment?

How many programmers, artists,

testers, and management?

Jonas Stewart: There are five folks and
a boatload of gnomes in hamster

wheels. This is broken down into three
development staff members: two cod-
ers and an artist (that’s me), one person
who keeps the office in order and han-
dles customer relations, and one person
who deals with bipedal creatures out-
side our fortress who aren’t customers.

Chapter 25: Garage Development Spans the Internet 307

We pretty much self-manage and
don’t have anyone but the marketplace
to answer to. My idea of a true indie is
a team that answers to no one but their
own heart’s desire and the customers
they produce for.

What language is used for the

development of SCE’s games?

C++? What tools do you use for

creating the art of the SCE series

of games?

Most everything is written in C++
with some Python scripting thrown in.

Almost all the art is done in Photo-
shop with a mouse (I know it sounds
bad but you get the hang of it) and on
occasion I’ve used trueSpace, Bryce,
and Poser. But I find I can accomplish
most of what I need now in Photoshop
alone. Of course you don’t exactly need
Maya or Max to do card games yet.

Do you folks work on just one game

at a time, or are you working on

multiple games at a time?

We try to focus on one game, but we
oftentimes float back to old projects to
spruce them up a bit. We constantly try
to improve our released games as we
make new gizmos or see a way to
improve something on our current pro-
ject. Unless there is something making
it incompatible with our current lineup,
a lot of what we do can be applied to
our older stuff with not too much pain.
The players don’t seem to mind getting
a free new feature now and then either.

What is your general development

process?

Our general development process...
hmm. “Let’s make a card game. Okay,
and let’s make it really cool with fairy
dust and stuff.” Months later a card

game appears in all its glory. Of course
there is the daily grind that does tend
to wear down the team until it’s done.
It’s really just a build and polish sort of
thing. We do try to keep focused on
what adds something to the game or at
least the intended purpose of the
games. So on our multiplayer games,
we think in terms of helping players
have fun together with Fooms (the fire-
balls and magic elements), whereas
with Solitaire we try to keep in mind a
state of solitude and enjoying just hang-
ing out being yourself.

We do have a mental plan that
encompasses what we want to do. But
we are very flexible along the way to
take in new ideas that lend to the
cause.

Would you say your competitive

advantage is the absolute total

commitment of quality that you

bring to your games?

Yes, that’s probably true. We fill a niche
for card games that are well crafted and
steeped in a fantasy atmosphere. Not
everyone cares, but for those who do,
we have something to offer them.
There are plenty of generic card games
out there, but we try to take something
that seems plain and see if we can
breathe life into it. It’s kinda like a
No. 2 pencil—to one person it’s just a
stick with graphite that you can leave
notes to get more milk, but in the
hands of the right people that pencil is
a gateway to wonderful worlds. They
illustrate a place like the Shire or a
post-apocalyptic LA. It’s all perspective
and the use of your craft; we are still
working on it.

There is plenty of shovelware for
the rest of the folks, but that’s not what
we want to make.

308 Chapter 25: Garage Development Spans the Internet

TE
AM
FL
Y

Team-Fly®

If I may ask, what sort of sales fig-

ures for Hardwood Spades and/or

other SCE games are you comfort-

able releasing?

We eat and aren’t sleeping under the
bridge so I can’t complain. Our main
mission is to make games all day and
get paid to do it, although it would be
nice to have a castle. I’ll be saving my
nickels for a while, though.

The way I see it, every day above
ground is a GOOD day.

Have you considered retail distribu-

tion? What has been your

experience with game publishers?

We may take a stab at retail when the
time is right, but selling online has
been a good and loyal friend. Retail is a
fearsome beast that has chewed up and
spat out more than its fair share of
games. It’s definitely not just about
making the best game… there are a lot
of other factors that can tank a project
even after you release it. Online at
least the power of success and failure is
on our hands a tad more. Of course I
read that “they” just found a 2km aster-
oid that may collide with the planet
within the next 15 years…so maybe
this is all a moot point.

What are your marketing budget

and/or strategy for SCE games?

“If we build it, they will come.” We just
make stuff as good as we can and let
folks know about it at download sites
and in search engines. It’s just Internet
promotion 101.

Probably one of the best places to
learn about online, direct to customer
selling is the Association of Shareware
Professionals. These folks are veteran
indies…. they don’t talk much about

game development, but they know a lot
about the business of selling online.

What is SCE’s early story? How did

you start the company?

Our early story, eh? Well after the fall
of the dinosaurs and rodents ruled the
earth. . .err wait, let’s fast forward a tad.
Basically Silver Creek started after two
guys, Jonas Stewart (that’s me) and
Dan Edwards, decided that making
games would be cool around ’93-’94. So
after we realized that some epic full
person shooter Blade Runner game was
a bit ambitious for two guys just learn-
ing this stuff, we tried a “weekend”
project, which became the original
Hardwood Solitaire.

Windows was still scoffed at as a
medium for games at the time, but we
were shooting for releasing on Win32
(95) since we were on the OS beta.
Hardwood Solitaire turned into some-
thing far more complex than a weekend
project as we tried to put together
something that was truly different from
the other dull implementations that
were out there. . . the main culprit being
the one that came with Windows or the
other “application-like” card games. We
wanted to bring our gamer attitude to a
card game and try to make it LOOK like
a game, not a spreadsheet or word pro-
cessor app. Working during the sum-
mer and living at home eating lots of
Top Ramen (chicken flavor is pretty
tasty), we bought ourselves enough
time to finish one of the first if not the
first Windows Truecolor game released.
Hardwood Solitaire evolved into HWS
II: The Enchanted Decks, which was a
much more refined product.

Chapter 25: Garage Development Spans the Internet 309

We also volunteered at the Game
Developers Conference from ’95-’99,
which was pretty cool. That helped us
keep exposed to aspects of the gaming
industry, and it was pretty cool back
then. Something any aspiring game
developer should do at least once. After
that we attended as Independent Game
Developer finalists and even picked up
an Indy award in 2001 for Hardwood
Spades there.

After Solitaire we took the plunge
into online games with Hearts, Spades,
and Euchre. They are leaps and bounds
more complex and trippy than Solitaire,
but we grossly underestimated the
effort that “tacking on” multiplayer
meant. Needless to say, having a com-
munity of people is something that
needs constant attention. Somewhat
like being mayor of a small town and
you soon realize that you don’t ever
want to be president of the U.S.

Anyhow.. . I guess that was the
quickie version of “the beginning.” I
did leave out the absolutely massive
amount of time playing Duke Nukem
3D and Doom and that we wore out
quite a few joysticks playing Descent
and flying guided missiles through the
mines. But hey, we all did that back in
the day, right?

What is the future for SCE? Do you

feel the need to grow into more

product lines?

For now we are sticking to card games.
Trying to keep focused on what we
seem to be pretty good at. Puzzle and
card games are in nice small bite-sized
chunks. We really don’t want to become
managers to a large team of people; we
want to make games, and keeping pro-
ject teams small allows us to do that.

Do you have any tips for aspiring

indie developers?

An unfinished project is not a game. Try
to finish everything you make unless it
has a fatal error in concept or design.

If you are hooking up with buddies
to make a game, make sure that it gets
done. Most of the time it won’t when
you have to count on a bunch of free
help; try to keep the team as small as
you can. Ideally you can really only
count on yourself, but working with a
trusted friend as long as you both have
passion will work. It might not be great,
but you will learn plenty in the making.

Start small and finish it. Then make
the next step; it’s not realistic to think
you will be making the next big thing
on your first project.

Making games or any type of
entertainment is really like a magic
trick. There is a lot of preparation and
sweat that goes into making folks who
witness the magic believe in it. Make
sure you enjoy knowing that magic
won’t be the same for you once you
become the magician. You will know it’s
a trick but hopefully enjoy its construc-
tion. Err, I don’t know if that made any
sense, but basically there is a difference
between enjoying the entertainment
and creating it.

And above all else, have fun! If you
don’t have the burning desire to make
games, and you don’t spend nearly all of
your waking hours at least thinking
about games and game design, then find
another thing to try that you are pas-
sionate about. We all will eventually
cease to exist . . .enjoy the time you
have; don’t waste it on something you
don’t like.

310 Chapter 25: Garage Development Spans the Internet

Part IV > > > > > > > > > > > > > > > >

Game Development

Resource Guide

This page inten tion ally left blank

Chapter 26 > > > > > > > > > > > > > > >

Getting a Job in the

Game Industry

“You work in games, huh? That’s cool; so, what
do you do, just play games all day, huh?”

—Most anyone outside the game industry

Who Is Trying to Get into Games?

As I write this chapter at Taldren we
are conducting interviews for artists,
from modelers and texture artists to
riggers and animators. We are staffing
up for our Black9 game that was
announced in late 2002.

There are roughly three groups of
people we are looking at: young people
who have just finished school, people
who have a lot of experience in a
related industry, and people who have
experience in the game industry. Natu-
rally, the folks who have the experience
in the game industry are generally
more desirable to hire, as it will cost us
less in training to get the maximum
production out of the programmer,
artist, or designer. The folks with expe-
rience in other industries such as
stop-motion animation, 3D modeling for
film, SQL business programming, or
aerospace engineering generally all
have a strong work ethic and an inter-
esting background that might be of
some value to your game shop. The
younger people straight out of college,

especially the newer game schools such
as DigiPen and The Art Institute of Cal-
ifornia, are usually full of energy and
raring to go as they have just finished
paying tens of thousands of dollars to
learn how to make games and are now
eager to really make games.

Recently I had two folks come in
from the animation/film industry. I
asked them why they thought they
would like to get into games. It was
interesting that both of them said they
were looking for a stable position.
While game companies are not as solid
as working for Sears or General Elec-
tric, apparently we are more stable than
these film and animation houses that
staff up for a project, put everyone on
1099s, rip through the work, and then
lay them off.

So they want a nice, stable job?
Hmm, I was hoping for something along
the lines of having an everlasting burn-
ing passion for creating games and that
they are pounding on my door to apply
that passion to our games! We are not

Chapter 26: Getting a Job in the Game Industry 313

your local Department of Motor Vehi-
cles where you can regain your
confidence with a nice steady job and

then wade back into film when you feel
better. So first of all, express your pas-
sion for creating games.

You Want Me to Do What? Oh, I Would

Rather Do This

The other sorts of misfits for the game
industry are the folks who confuse
working in the game industry with get-
ting paid to play games. Twice I have
employed guys who have reported to
me that they are not “into” their cur-
rent assignment, and that is their
explanation for not getting their task
completed. Sometimes I think all young
people should join the military, work on
a farm, or do asphalt roofing for a few
years before entering the game

industry. I have found over the years
that the folks who have had crappy
blue-collar jobs in the past truly appre-
ciate sitting in air-conditioned offices
being paid to be creative. The people
without this background often confuse
the word “hobby” with “work.” While it
is true you should enjoy your work, we
all have jobs to get done, and there is
quite likely at any given time some-
thing we would rather be doing!

Hours of the Game Industry

The truth behind the game industry is
that most work is done at independent
game development houses that are
working against a milestone-advance
payment schedule, and the work must
simply be performed on time.

Anyone will tell you that employ-
ees who put in a solid 40 hours a week,
with a full benefits program, who are
well paid, and who spend their
nonworking hours with friends, family,
and other rewarding activities are most
productive and happy. Working 120
hours a week is not very efficient and
does not result in high-quality work.
Most developers have hearts of gold
with the best intentions, the author
included, who start off each project
with the simultaneous goals of making
the best game possible while having
sane and humane schedules for their
staff. The game industry is a brutally

competitive industry where folks all
around the world love to make games
and are willing and able to pour their
souls into the games; we all are like
this. It is like being a professional
entertainer or athlete in that you must
train hard for a long time, often poorly
compensated, for the chance to become
successful later in your career. Here at
Taldren we are now three years old,
and for each of our projects we have
strived to improve our project estima-
tion capabilities. However, we continue
to find ourselves needing to work the
occasional Saturday, and a few week-
ends a year we must work through the
weekend at crunch time.

I have another axiom that covers
this phenomenon: The younger the
development house, the harder they
must work to be competitive. The
largest, highest profile projects are

314 Chapter 26: Getting a Job in the Game Industry

naturally going to be signed up with
the more successful, well-established
developers. These developers will have
a lot more leverage and control over
the relationship with their publisher
and will most likely be able to achieve
better advances, a longer schedule, and
in general be able to develop with their

more experienced team members at a
more healthy pace than a start-up shop
with their first contract. People looking
into the game industry should under-
stand this dynamic and find some other
job if they are allergic to long hours and
a load of work.

You Did Not Scare Me—I Love Games AND I

Want In!

Okay, if the above comments did not
dissuade you from wanting to enter the
game industry, then come on in, the
water’s great!

So what do you know how to do
and what would you like to do? Gen-
erally speaking there are six broad
classes of skill sets in the industry:

1. Programming
2. Art
3. Testing
4. Producing
5. Audio
6. Design

I listed the skill sets in descending
order of ease for breaking into the
industry. Skilled programmers have the
easiest time getting into games. How-
ever, Visual Basic programmers
generally do not cut the mustard.
Strong artists from other industries can
often slide over without difficulty. The
easiest way into games with the least
skills is to become a tester at a publish-
ing house; the only requirements seem
to be a passion for games and some
degree of written communication skills.

Producing jobs are both easy and
difficult to get. Producers in the game
industry often come from the testing or

occasionally programming side of
development; however, increasingly
folks are being hired into producing
slots at publishers who have some
other management experience such as
in the film or music industries.

Audio jobs are difficult to get in my
opinion, due to the relatively low num-
ber of jobs industry-wide and the
willingness of so many talented individ-
uals to work for relatively low
compensation.

Design is the single most difficult
job to get in the industry and I am sure
the hardest job to get as your break-in
job. Some old-time paper RPG design-
ers from TSR were able to transition
into well-paying jobs at Interplay’s
Black Isle studio in the heyday of the
Baldur’s Gate series. The most com-
mon way for new people to get into
design positions is in the 3D first-
person genre where exceptionally tal-
ented and dedicated folks create
compelling levels on their own that get
picked up by fans and become popular.
However, I argue these folks typically
work for free on their own for a year or
two before their work is noticed, so
their first position is essentially as
self-employed intern.

Chapter 26: Getting a Job in the Game Industry 315

How to Get a Job as a Programmer

Program bunches. Learn C at a mini-
mum—I highly recommend C++—and
have a passing knowledge of assembly
so that you are not ignorant of it. Pick a
simple game such as Pac-Man, Frogger,
Pitfall, or Sub-space and do your best to
recreate the game on your PC with
high frame rates and interesting
improvements to the fundamental
gameplay. Find an artist on the Internet
to create some artwork for your game.
Now you have your own game in your
portfolio. Depending on your time and
skill set this might take you one to six
months to create. If your code is well
written and your game plays well, you
probably have enough demonstrable
strength to get an entry-level job at a
game company working with their
internal scripting language to develop
missions or scripts. This is your foot in
the door, this is where the vast majority
of programmers in the industry start:
performing the coding work that is con-
sidered safe and tedious, allowing the
more senior programmers to concen-
trate on the more challenging aspects
of the project. As you demonstrate
growth and ability, you will quickly be
handed more and more challenging
work—don’t worry!

This has been my path into the
game industry. I started as a scripter on
I Have No Mouth And I Must Scream,
developed by the Dreamer’s Guild for
Cyberdreams. When I was hired I came
from space science work at JPL with a
strong professional background in
FORTRAN and a basic understanding
of the syntax of the rest of the major
languages including C and C++. For
No Mouth, we used an internal script-
ing language called SAGA that worked

pretty much like an unreliable C with-
out low-level abilities. I was steadily
given more responsibility until two
years later I led my own team on a
gambling game project, Caesars Win-
dows95. From that position I transi-
tioned fully into management as
a senior producer at Interplay on Star-
fleet Command I, and now I am fortu-
nate to run my own development
studio, Taldren.

Programming is a valuable skill set
that is not about to go out of demand.
As a game programmer you are also the
ultimate arbitrator of how a feature will
turn out, so to the closet game design-
ers out there (that would probably be
everyone), this is a great job to exer-
cise your creativity.

When you go in for your interview,
be prepared to answer programming
questions in real time. The Internet is
full of great sites with helpful hints on
how to handle the programming test
such as http://cplus.about.com/cs/careers/. Why
am I pointing out a site to you that
probably has spoilers for the questions I
and other developers would have asked
you? The reason is simply memorizing
the solutions will not help you; you will
be called upon to explain your code in
front of the senior technical staff in the
company, and if you are fudging they
will notice. Go ahead and scour sites
such as the one above, use it to prepare
yourself, and become a stronger
programmer.

Typical starting salary for an
entry-level programmer is about
$40,000. Various factors such as the rel-
ative wealth of the company and the
cost of living in the area will cause this
number to be higher or lower.

316 Chapter 26: Getting a Job in the Game Industry

Artists and Their Portfolios

Artists have it both easier and more dif-
ficult than programmers; on one hand,
it is a lot easier for the interviewer to
review a portfolio or a demo reel to see
how strong the artist is, but on the
other hand, it is all too easy to create
an impression that may be incorrect if
your portfolio and demo reel are not
top quality.

Animators, modelers, texture guys,
and riggers, the most convenient for-
mat for delivering your portfolio of
work to a game company is in the form
of a VHS tape. Take some time to plan
out your demo reel; think about what
impression you want to deliver. Will
you take your existing work and
arrange it, or will you create new work
especially for the demo reel? Be careful
not to show too much material from a
single genre such as traditional fantasy,
sci-fi, or comic book work unless that is
all you are capable of performing. While
showing your range of ability is impor-
tant to be sure you are considered for
every job you want, do not include
weak material just for the sake of
variety.

Trim your demo reel down until
every bit of it is vital for demonstrating
who you are and then cut just a little
more. Having the eye to revise, edit,
and trim your own work is the mark
of a professional. One time I had to
endure a demo reel that offered over 12
different walk animations for a cartoon
dog. The only impression I developed
was that the artist himself could not
decide what his best take was, and he
was shifting that burden to me!

Demo reels with a sound track to
add an aural dimension almost always

are received with much greater enthu-
siasm. A clever technique for animators
is to use the voice track from a popular
movie and animate a character to
lip-synch a few lines from the movie. I
recently saw the demo of an animator
who did this to the famous righteous-
ness of God speech Samuel L. Jackson
delivered in Pulp Fiction. The character
delivering the lines was a cross
between a Chihuahua and a gremlin,
with perfectly bugged-out eyes to pull
off the anger in Samuel Jackson’s line.
This was brilliant for the production
values of the line, the voice-over was
AAA quality, and I was free to enjoy
myself and appreciate the quality of the
animation. In fact, I believe this was a
strong demonstration of the guy’s abil-
ity to animate to a given specification
rather than a crutch or a cheat of any
kind.

Bradley W. Schenck is Taldren’s
senior art director, and in his career he
has seen about 5,000 resumes, has
interviewed more than 500 people, and
has directly hired about 50 people in
positions of game artists. The key thing
he looks for besides manifest skill and
talent as shown in a reel or a portfolio
is an emotional, bone-deep statement of
why the artist loves the aspect of art he
is pursuing. For animators, solemn
statements about the weight of a body
in motion make Brad crack a thin smile.
He is looking for people who think
about their art when they are driving,
taking a shower—their quiet time.

Typical starting salaries for artists
are about $35,000, with the usual fac-
tors at play.

Chapter 26: Getting a Job in the Game Industry 317

How Do I Become a Tester?

Starting as a tester is a venerable tradi-
tion. All publishers have their own QA
departments staffed with testers. While
developers may or may not. Developer
QA staffs, however, often double as a
line producer/MIS guy or has some
other double duty.

The easiest way to become a tester
is to call up the publishers and simply
ask if they have any openings. Most
publishers will not hire testers who are
not local, so if you are not local to the
publisher you would like to work for,
visit the city where the publisher is
located and appear local.

I Have a Great Idea for a Game—I Want to Be a

Designer!

If you have no experience in the game
industry and you are not the creator of
some intellectual property that is being
adapted in the production of a game,
then your only real avenue into straight
game design is mod-making and level
making. Find a game you love that facil-
itates user modification such as
Neverwinter Nights, Dungeon Siege,
Quake, or Unreal and think of some-
thing new and different you can create
with these game engines and push

through and make a new game. The
most famous example of this method is
the mega-hit Counter-Strike, which is a
mod of Half-Life; the Counter-Strike
crew now have their choice of
opportunities.

However, most game designers in
the industry work their way through
programming or art and have gradually
assumed greater design responsibilities
over the course of their projects.

So You Want to Be a Producer

The final job position I will discuss is
the producer. The producer comes in
many different flavors in the game
industry such as coach, line producer,
executive producer, associate producer,
project leader, project planner, and pro-
ject manager. Several of these titles are
synonymous, and in general a producer
is a person who gets everything else
done that programmers, artists, design-
ers, testers, and audio folks do not
perform. Most producers start at the
bottom as line producers and work
their way up as they demonstrate that
they can handle more responsibility.
Another common method is for an art

director or a technical director to be
promoted into a project leader role at a
game development studio. However, at
publishers it is increasingly common to
hire senior producers from other indus-
tries where the individual held a
management position.

Being a producer, I believe, is one
of the most difficult jobs as you must
relish pressure, have excellent commu-
nication skills, both written and oral, be
able to resolve personality issues, be
decisive, and thrive under constant task
switching. It is true that the project
leader usually has the most influence
over the final shape of a game, but

318 Chapter 26: Getting a Job in the Game Industry

TE
AM
FL
Y

Team-Fly®

rather than a great prize, this is a heavy
responsibility.

If you feel you were born to lead a
team of creative folks, then start at the
bottom and consistently demonstrate
your willingness to work towards the
best interest of your team and game, be
proactive, and challenge yourself to

solve new problems. If you do this,
your leadership skills will be recog-
nized rapidly, and no doubt you will be
promoted to the role of a producer. The
reason is that there is, at least in my
opinion, a profound shortage of folks
out there who truly have what it takes
to inspire their teams to the greatest of
efforts and make the best games.

Go to GDC—Free!

A great place to meet game developers
is at the Game Developers Conference
(http://www.gdconf.com/) held in the spring
in San Jose. It is a little-known factoid
that you can be a volunteer at the con-
ference working several hours each day
in exchange for a full pass to the event.
This will save you about a thousand
bucks!

At GDC there are two prime ave-
nues for networking for a job in the
industry; the most straightforward is of
course the job fair. Here you will find
dozens of companies looking for new
people. Your resume will go into the
pile, and if you wrote a good one,
maybe you will get a call back. The
problem with this approach is that your
resume will go to the HR department
and sit for a while, gathering dust.

The better way to network for a
job is to actually go up and speak to
developers. After attending one of the
conference sessions go up to the
speaker and ask a good question and
then follow up with an introduction
about yourself and state that you are

looking to break in and would like some
advice on where to start. If they know
of a job opening, they will steer you
there more quickly than your resume
will in the HR department. The reason
is simple: They will see you standing
there and will be able to look you in the
eye to gauge your determination and
sincerity. Also, rank-and-file develop-
ers usually know of job openings well
before HR does. The truth is that team
members, recalling that a buddy of
theirs over at this other game shop is
wrapping up his project and is looking
for a change, fill the vast majority of
positions in the game industry. In other
words, I believe 90+ percent of jobs in
the industry are filled by word-of-
mouth and shuffling about. The HR
department only gets a job description
if the company has been unable to fill a
position through this word-of-mouth
method. Also, it takes guts to walk
right up to someone and ask for a job,
and we developers like to find people
with guts.

Chapter 26: Getting a Job in the Game Industry 319

What About Those Recruiters?

I will save you, the recruiters, and
game companies a lot of time; if you are
new to the industry, fresh out of school,
just start knocking on doors yourself as
you do not have enough material in
your resume to sell yourself. If you
have a lot of experience from another
industry, you might benefit from the
use of a recruiter, but knocking on
doors may still be your best bet.
Recruiters are somewhat difficult to
digest for the smaller independent
developers such as Taldren; recruiters
not only charge 20 to 30 percent of the
prospective employee’s salary as a fee,

but they also pump up that salary to the
highest levels that wealthy and/or des-
perate publishers are paying for their
internal teams. So when I see the
resume of someone without experience
in the industry come through a
recruiter, I just toss it in the trash, as I
do not want to pay such a premium for
someone who still needs experience.
The only resumes I want to see from a
recruiter are from those with signifi-
cant experience from another
developer or publisher who is likely to
make a significant contribution to
Taldren; that is worth paying such a
premium.

Resumes, Demo Reels, and the Interview

I am placing these logistical steps for
how to get a job at the end of this chap-
ter because I think they are the most
mundane, overly discussed topics on
the subject. I have already discussed
how you will really find your path into
the game industry. This section will
just be a short section on how to pres-
ent yourself.

Honesty vs. ModestyHonesty vs. Modesty

No matter what, you must be honest
when creating your resume or demo
reel, or performing your interview.
First of all, it is unlikely that you will be
able to fool the people you are trying to
get to hire you; second, even if you do
manage to fool them, you are only set-
ting yourself up for tragic
disappointment all around when you do
not live up to your own advertisement.
Or perhaps worse, it is never discov-
ered and you end up working for some

marginal company who cannot properly
evaluate your skills and talents for what
they are.

Having said that, you are still
responsible for selling yourself to the
company. Focus on the skills, talents,
energy, and interests you genuinely do
have and display them in the most
attractive light.

Make sure your resume’s objective
clearly focuses on the job position the
company is offering. If there are multi-
ple job openings you are interested in
and they are not identical but you feel
you would be strong at any one of them,
then tailor your resume for each posi-
tion. You should of course write a cover
letter that positions you as perfectly
suited for the job posting the employer
has described.

A pet peeve of mine is programmer
candidates who list six or more pro-
gramming languages on their resume.

320 Chapter 26: Getting a Job in the Game Industry

The vast majority of programmers I
know specialize in a language or possi-
bly two, such as C and assembly, or
C++ and assembly, or C++ and SQL.
The game company wants to know
what you are excellent at, not how many
different programming language books
you bought or whether or not you know
FORTRAN77.

This goes beyond just program-
ming languages and can be applied to
the rest of the knowledge sets you
might put down on your resume. I sug-
gest you be sure your main skills and
talents are highlighted on your resume,
and the others you have had past expo-
sure to, if you must list them, should
include some qualification such as
“familiarity with Unix scripting lan-
guages such as sed, awk, and Perl or
“familiarity with the UI of LightWave.”

Here is a listing of recruiting
companies:

Interact

831 S. Douglas St. Suite 119
El Segundo, CA 90245
phone: (310) 643-4700
(800) 333-5751
fax: (310) 643-4750
Info@InteractJobs.com

Mary-Margaret.com Recruiting and

Business Services

Specializing in Entertainment Software
toll-free voice: (877) 662-3777
toll-free fax: (877) 662-3888
robin@mary-margaret.com
www.mary-margaret.com

Prime Candidate, Inc.

Pat Bigley
phone: (818) 784-1976
fax: (818) 501-1853
paddi@ix.netcom.com
www.primecandidateinc.com

Instant Studio

Eric Wills
President
phone: (480) 358-1417
fax: (480) 358-1439
eric@instantstudio.net
www.instantstudio.net

Chapter 26: Getting a Job in the Game Industry 321

This page inten tion ally left blank

Chapter 27 > > > > > > > > > > > > > > >

Starting a Game

Development Company

“You will always have a boss, Erik, no matter where you go.”

—Trish Wright advising a pre-Taldren Erik Bethke

So you want to run your own game
company, huh?

Why?
Why do you want to start a game

company? Most likely you are bursting
with creative energy; you have a game
that is tearing itself out through your
mind and is screaming to be shared
with the world. Is that it?

Or maybe you have been working
with some friends of yours for a while
and have developed a deep sense of
camaraderie and you are ready to put
this team to the test as a game
company.

Maybe you have been extremely
hard working and have already devel-
oped a game in your spare time (or a
good portion of the game) and are now
looking for a way to capitalize on this
effort.

Or, maybe one or two of you are a
member of the idle rich and making

games sounds like a great way to pass
the time.

While all of these are solid reasons
to start a game company, none are com-

pelling reasons to create a game
company. For all of these reasons you
would most likely be better off joining
forces with an existing game company.
Creating a game company and, more
importantly, running a successful game
company is very hard. The great major-
ity of game development companies
fail, even quite a few that have enjoyed
great success.

Why does your game company
need to exist? What unique niche or
role will your company fulfill? Do you
have a great idea, and you just need a
publisher to hand you a pile of money
so you can produce a great hit? If so,
buddy, get in line—and boy is it a long
line.

Chapter 27: Starting a Game Development Company 323

Find a Path

Why does the world need your game
company?

If you are able to answer that ques-
tion with strength you should create
and run a game company.

Sure, point to any successful game
development company and you will
show me that all it took was a mega-hit:
Warcraft, Doom, Final Fantasy. How-
ever, as I said earlier in the book,
without diminishing the greatness of
these games or the effort it took to
execute them, I feel the truly interest-
ing struggle was how Blizzard got to
the point where they could create
Warcraft. How did id get to Doom? Do
you know why Square named the key
franchise Final Fantasy?

Here are some specific examples.
Epic and id started out creating small
shareware titles that were addictive to
play and always financed their early
projects through sweat and shareware
registrations. When they both became
successful they started performing
their own publishing functions and used
their position of impeccable strength to
have publishers bid for their games.

Treyarch Entertainment started off
as a regular milestone developer for
Interplay; however, Treyarch aggres-
sively pursued console port projects
from Electronic Arts. These port pro-
jects turned out to be fairly substantial
and could be delivered with much
stronger regularity compared to an
original property such as their Die By
The Sword. Just four years after imple-
menting that strategy, Treyarch
employs 130 developers and has been
bought out by Activision.

You have two major transition
points to manage: How will you launch
your company, and after launching how
will you transition your company into a
sustainable, successful company?

Most game company developers
would benefit from a few years’ experi-
ence in the industry to formulate their
plan; others are quite capable of just
striking out on their own path on their
first day. Think about your company;
what are your key employees especially
talented at? What are you especially
passionate about? What opportunities
are available from folks with whom you
have established relationships?

I Have a Plan; Now How Do I Get Started?

Okay, I will assume for the rest of this
chapter that you have at least a handful
of developers who have banded
together to create a game, modify a
game, perform a port of a game, or have
some other subcontract to sustain your
team. (Again, if you have your own pile
of money, much of the start-up phase
loses its romantic challenge.)

Your first priority must be to exe-
cute your first project on time, on

budget, and with as much quality as you
can muster. I list the priorities in
roughly that order. As this is your first
project, more than likely you have been
commissioned to perform a relatively
modest project on behalf of a publisher.
This publisher is taking a chance on
you, they believe in you, but it is more
of a trust-but-verify type of trust. As
your team is new and untried, it is
doubtful the publisher is expecting you

324 Chapter 27: Starting a Game Development Company

to light the world on fire with amazing
new features not found anywhere else.
What they are expecting is that you will
conduct your company with profession-
alism, and deliver what you said you
would deliver on time and on budget.
That will be the truest strength of your
team: how strong a game you are able
to create while remaining true to your
advance and time budgets.

The first step of delivering your
contract on time and on budget is being
sure you have the right developers to
perform the work.

Um, Erik, what about forming a
corporation and office space and my
business cards; it seems like we need
to cover this before I hire any employ-
ees. Yes, those are important; however,
I like to be sure production is rolling
before I attend to some of these nice-
ties. When we started Taldren the
existing Starfleet Command team first
rolled straight into production on
Starfleet Command II, while Zach,
Sean, and I found office space, a payroll
company, and tended to a hundred other
details of setting up a company.

Rounding Out Your Development Team

So my philosophy is to get develop-
ment rolling as quickly as possible and
then follow up with the rest of your
infrastructure. I am not suggesting you
do anything illegal like not pay people
or run without workman’s compensa-
tion or liability insurance. Just move
through these items as quickly as you
can while keeping your mind focused
on production.

Who are your key employees? Do
you have everyone it will take to get
the job done? Hopefully the truly key
employees such as your lead program-
mer, lead artist, and lead designer are
already filled and now you simply need
more developers.

The best way to find new employ-
ees is through word of mouth. Perhaps
you already know some developers or
your employees do. As odd as it might
sound at first, ask other game compa-
nies if they know of quality recruits
they have passed on for some reason.
This will generally provide you with
excellent candidates as other develop-
ers would be loathe to recommend a

poor candidate for fear it would reflect
badly on them.

After exhausting your personal
contacts, the next place to look for peo-
ple is on web sites that are community
access points for different disciplines
such as:

G.A.N.G.

Game Audio Network Guild
P.O. Box 1001
San Juan Capistrano, CA 92693
info@audiogang.org
www.audiogang.org

ProTools User Forum

Follow the links to the User Confer-
ence bulletin board at the
Digidesign site:
http://www.digidesign.com/

The key benefit of using these sites is
that they attract generally more
proactive, more sincere candidates who
are staying up to date with their skills
by interacting with others in the
industry.

Chapter 27: Starting a Game Development Company 325

If you still have openings after that,
then it is time to cast your net wider by
perhaps using Gamasutra (www.gama-

sutra.com), a strong site dedicated to
game development in general, which
has robust resume and job posting
facilities.

In general I would not use a site
like Monster.com, but not because I
feel it is not good; in fact I would
consider using Monster.com for
noncreative positions such as adminis-
tration. However, I feel the above com-
munity sites that are dedicated to a
creative discipline will find you much
stronger recruits.

Another resource for finding new
developers is straight out of one of the
new game development schools such as
DigiPen (www.digipen.edu) and The Art
Institute of California (see Appendix B).
At Taldren we have hired folks from
both places and have been pleased with
the energy these newly minted game
developers bring to the company. Of
course you should only hire these folks
if you have entry-level art and program-
ming positions. You will also sometimes
have to put in extra work as their first
professional employer to shape their
work ethics and manage their expecta-
tions for the game industry. Most of the
time these folks turn out to be good
developers earning loyalty back and
forth between the company and the
employee.

The final suggestion on recruiting
new developers is to use one of a num-
ber of professional recruiting firms
such as Interact (www.interact.com).
Recruiters are generally tapped into
better information than you and act as a
giant amplifier on your personal con-
tacts network. In return for identifying
and placing a candidate with your com-
pany, they will receive a commission of
20 percent of the candidate’s salary
within 60 or 90 days of placement.
While this is expensive, nothing can
beat filling a position in your company
with the right person on time. Like
most things in game development there
exists a triangle between cost, timeli-
ness, and quality. The recruiter will
usually find you quality candidates
quickly and therefore must charge a
premium for this service. You may or
may not need a recruiter. If you have a
bunch of time to fill your position, you
will probably be able to find your own
quality candidates. However, if you are
short on time, a recruiter can help you
fill that critical hole before your project
is endangered. Keep in mind that slip-
ping just one month on a team project
far outweighs the 20 percent recruiter
fee, let alone the cost of not getting
your game to market on time and tying
up your team for another month.

Fill your positions!

Where to Locate Your Game Company

This is a question that does not apply to
many of us when we are starting our
company. More than likely the place
where we start our company is where
we are currently located. Usually the
founding employees all know each

other professionally and already live in
the same city.

However, there are a few things to
consider when deciding where to locate
your company like local tax laws,

326 Chapter 27: Starting a Game Development Company

availability of talent, and proximity to
game publishers.

Optimizing for tax laws may be one
of the more interesting ideas to think
about. It is my understanding that
Ireland has special promotions for film
and game companies. According to my
sources your company and your employ-

ees are currently not required to pay
federal taxes in Ireland as an incentive
to bring business to Ireland.

Similarly, there have been tax
incentives from the Canadian govern-
ment in the past. The South Korean
government invests heavily in game
companies, and I am sure there are a
host of places you could locate your
company to take advantage of the local
tax laws. Westwood employees enjoy
the no state income tax in Nevada.
However, at the end of the day I do not
believe that optimizing for tax purposes
is a good reason to relocate your com-
pany to an offbeat locale. There is a
basic reason why these tax breaks are
offered; it is because that local economy
is suffering from a lack of business in
the hi-tech and entertainment fields.

It is most important to be near
potential publishers, especially when
you are starting your company. Pub-
lishers are risking real amounts of
capital on young, creative people (the
people it takes to make games), and
more often than not they lose a bunch
of money. For all publishers it is such a
relief to be able to send their producer
down to your shop for the afternoon on
short notice that that alone could make
or break your deal compared to if you
set up shop in Montana. The West
Coast is where it’s at for major publish-
ers: Seattle, the Bay Area of California,
and Southern California. If you have
space, employees, and some good

visual material, you should have no
problem convincing several publishers
to come out and visit you. However, if
you are just a state away in Arizona,
you might have to subsist on small con-
tract work for quite a while before
someone gets curious enough to want
to come out and see your shop. Despite
being located in Southern California, I
think that this is an annoying attitude; a
publisher should be willing to go to
Shanghai, Moscow, or Santa Fe to find
a developer, but the truth is Santa
Monica is a car drive away from
Activision, Sony, THQ, Infogrames,
Interplay, Midway, Blizzard, Universal,
Vivendi, TDK, Conspiracy, Crave,
Encore, Sammy, and perhaps a couple
more publishers that I could not recall
off the top of my head. Do good work in
one of the three main West Coast areas
and you will continue to get good work.

The other aspect of locating your
company is to find someplace where
there is abundant talent for games.
Conveniently enough, this happens to
be the same place the game publishers
are located. Plenty of strong universi-
ties and a deep, vibrant hi-tech industry
base are the raw materials of the South-
ern California, Bay Area, and Seattle
communities.

Of course, there are many exam-
ples of successful game companies that
are not located in these areas. If you
choose to live outside these areas, such
as the game development scene in
Texas, you and your employees should
enjoy the lower costs of living and be
able to have a greater command of the
local development talent. Again, in the
end you will likely start your company
around the location of your founding
opportunity.

Chapter 27: Starting a Game Development Company 327

Lawyer and Accountant

Game businesses are created to enter
into business relationships with other
entities and to make money while mak-
ing games. Thus, you need a lawyer
and an accountant.

Your lawyer is critical in helping
negotiate your contracts. When you
start out you will not have much lever-
age to bring to bear, but fundamentally
if someone wants to fund you, you have
some leverage. A competent lawyer
with experience in the game industry

will help you focus your negotiations on
the parts of the contract that must be
changed and let you know the parts you
can likely let slide. At the end of the
day however, your lawyer is a vendor
providing you with a service, and you
need to make your own decisions on
how to best run your negotiations. The
reason I stress the familiarity with
games is that if you get just any old
lawyer, or even a high-flying Hollywood
lawyer, he will not be familiar with the
current trends in game publisher-
developer contracts, and you will end
up paying him a lot of money to learn
the ropes.

Your accountant will organize your
books, help you structure your busi-
ness accounting, and of course prepare
your company’s taxes. As your com-
pany grows you may need your accoun-
tant to assist in preparing financial
statements for your capital raising
instrument.

Your accountant should also be
familiar with the game industry as she
would be better able to advise you on
how best to handle your tax obligations
suited to the game development busi-
ness model.

Below is a list of lawyers and
accountants who are familiar with the
game industry.

Accounting:

Khoo & Company, Inc.

Eng Kuan Khoo
2240 Union Street, Suite 101
San Francisco, CA 94123
Phone: (415) 776-7998
Fax: (415) 776-7610
mailto:eng@khoocpa.com
http://www.khoocpa.com

Legal:

Farella Braun + Martel, LLP

Bruce Maximov
Russ Building, 30th Floor
235 Montgomery Street
San Francisco, CA 94104
Phone: (415) 954-4400
Fax: (415) 954-4480
http://www.fbm.com

Fischbach, Perlstein & Lieberman,

LLP

David Rosenbaum
1875 Century Park East, Suite 850
Los Angeles, CA 90067
Phone: (310) 556-1956
drosenbaum@fpllaw.com

328 Chapter 27: Starting a Game Development Company

TE
AM
FL
Y

Team-Fly®

Stephen Rubin

15591 Second Street
Waterford, VA 20197
Phone: (540) 882-4911
Fax: (540) 882-4913
www.stephenrubin.com
rubinesq@aol.com

Russo & Hale, LLP

Tim Hale
401 Florence Street
Palo Alto, CA 94301
Voice: (650) 327-9800
Fax: (650) 327-3737
thale@computerlaw.com
http://www.computerlaw.com

Deciding on the Type of Company

An important step you must take when
starting your game development com-
pany is to decide what type of organiza-
tion it will be—sole proprietorship,
partnership, or corporation.

First I should point out that I do
not have a law degree; my only qualifi-
cations are that I have run a game
development shop for a few years. Also,
my comments pertain to U.S. legal
structures; those of you in other coun-
tries will likely have similar structures
available to choose from.

The questions that shape your
organizational trust are: How do you
want decisions to be made? How do
you want to pay your taxes? What liabil-
ity do you want? What other forms of
flexibility do you require for your busi-
ness plan?

Non-Corporation

The two basic structures are corpora-
tions and non-corporations. I will
discuss the non-corporations first as
they are the simplest. The first is sole
proprietorship: You’re the boss; hire
employees or not. If you are the only
owner, you are a sole proprietor. Very
little legal paperwork needs to be set
up. You will probably need a local busi-
ness license; however, your own social
security number will act as the Internal

Revenue Service’s tracking number for
your business’s financials. You simply
pay taxes as an individual on the profits
and losses of your company.

The other non-corporation struc-
ture is the partnership. It is easy to
form a partnership. If you work with
anyone else and do not expressly docu-
ment him or her as an independent
contractor, employee, vendor, or client,
then poof! Like magic, he becomes
your partner. For example, a successful
game developer could grow his busi-
ness for five years up to the point that
three publishers offer simultaneous
projects. He now needs two more pro-
ducers to run these projects and
neglects for some reason to pay them
an explicit salary and have them sign an
employment contract. After just a year
these two new producers decide they
don’t like the games industry and want
out. Do they simply walk away? No,
they talk to their lawyer and come to
realize they are your partners and you
now share the equity with them. How
much equity you ask? Is it one-eighth
each? (One part for each year of service
from each of these individuals plus our
founder.) No. They get one-third each!
In fact, our hero now is a minority
owner. These two turkeys decide they
want cash and sell out their two-thirds

Chapter 27: Starting a Game Development Company 329

of the company for $100 to their neigh-
bor, and now our hero has lost control
of his company for $100, and he did not
even get the $100. Bad move. The
moral of the story is always, always doc-
ument the nature of the relationship
between all people working at, working
with, and working for your game
company.

The other large problem with a
non-corporation is that you are held
personally liable for any and all debts
and damages incurred on behalf of the
company. This means you are person-
ally exposed to any lawsuit or debt the
company could incur. This is even
worse with general partnerships, for in
a general partnership each partner is
held personally responsible for any and
all debts and liabilities incurred on
behalf of the company. For example,
Mary and Bob form a game develop-
ment company, and Bob secretly
decides the company really needs cus-
tom-made desks for each employee.
This turns out to be a $50,000 expense.
When Mary finds out she blows her lid
and declares that the company shall not
make any such purchase of custom
desks. No such luck; Mary is the proud
owner of 20 custom-made desks
whether she likes it or not. In fact, if
the company does not have enough
money to pay for the desks and Bob is
flat broke, the woodworker has the
legal right to come after Mary and liqui-
date her comic book collection to
satisfy the debt.

A third drawback with a non-
corporation is that it is difficult to sell
equity in your company, which you
might find desirable when raising capi-
tal or when structuring an employee

compensation and golden handcuffs
program. You can have some degree of
investor liability protection with a lim-
ited partnership; however, if you are
seeking capital, you will be much more
successful as a corporation.

So why would anyone have a non-
corporation? The main thing going for
non-corporations is the simplicity of
setting up shop; however, this is time
well worth spending to be protected.

Corporation

Corporations come in three main fla-
vors: standard subchapter C, sub-
chapter S, and the relatively new LLC.

To understand what an LLC and a
subchapter S is, we must first discuss
what a vanilla subchapter C corporation
is. The subchapter C corporation, like
all corporations, is a separate legal
entity distinct from any individuals and
is responsible and liable for its own
actions outright. Corporations incur
debts and suffer liabilities all on their
own without getting down into the
pockets of the officers or shareholders
of the corporation. This is a very posi-
tive quality in the eyes of officers and
shareholders. (Just ask any executive of
Worldcom, Enron, Rite-Aid, or any of
the other 1,000 U.S. public corporations
who have restated their income in the
period of 1997 to mid-2002 whether or
not they would enjoy losing the liability
protection of the corporation!) This
protection from the activities of the cor-
poration makes it safe enough to
encourage successful, wealthy, and/or
energetic people to become committed
to the organization and make an invest-
ment of money, time, or both.

330 Chapter 27: Starting a Game Development Company

Taxes

A subchapter C corporation has the
freedom to sell shares to anyone in the
world and pays its own taxes. The
employees of the corporation pay their
own taxes on their salaries. That seems
straightforward until you think about
being a small business owner. How
would you like to make a profit at your
game company, pay your taxes, draw a
salary, and then pay taxes again on that
same money on your personal income
taxes? That would usually suck. So
President Eisenhower pushed the
subchapter S entity through Congress
in the 1950s to promote small business
activity. The subchapter S is a corpora-
tion just the same as a subchapter C,
but the corporation does not pay any

tax! Wow! Neat. The profits the com-
pany makes is simply considered the
personal income of the shareholders in
proportion to their holdings in the com-
pany, thus you are only taxed once!

So why would anyone set up a
subchapter C? Wouldn’t Microsoft orga-
nize as a subchapter S in a heartbeat?
Well, there are serious restrictions on
being a subchapter S. First of all your
company may only have 35 sharehold-
ers, effectively preventing you from
raising capital through the public equity
markets. Furthermore, a subchapter S
may only have U.S. citizens and resi-
dents as shareholders. This might be a
problem if a key founder of your com-
pany is foreign. Also, the shareholders
of a subchapter S must be individuals
and not other entities such as other
corporations (with the exception of cer-
tain trusts). Finally, a subchapter S may
not own any subsidiaries.

So with all of these restrictions,
why would you form your company as a
subchapter S? Eventually you may want
to go public, or you might get a foreign
founder, and so on. . . That is why the
IRS makes forms; the subchapter S acts
as an incubator as the best structure for
the early years of your company, and
later you simply fill out some paper-
work and become a subchapter C.

So what is a limited liability com-
pany—the LLC? The LLC is really a
refinement of the subchapter S entity
without the subsidiary restriction and
the restriction of U.S. residents and
aliens. The catch with the LLC is that it
involves just a tad bit more paperwork
to set up.

Buy-Sell AgreementsBuy-Sell Agreements

Beyond your company’s formal struc-
ture, you should also have your lawyer
draft language that describes some-
thing called a buy-sell agreement
between the major shareholders of the
corporation. This is a critical agreement
as I found out the hard way with my
first subchapter S, which I co-founded
before I entered the game industry. In a
nutshell, the buy-sell agreement han-
dles the procedures that will be taken
when a major shareholder leaves the
company through choice, termination,
death, illness, or injury. It is critical to
have this in place before the time
comes to handle the individual’s exit.
At the time of exit it will be too late to
handle the situation with grace, for the
stakes are too high and the drama is
happening in real time. Believe me;
work this out when everybody is all full
of good cheer at the start of the game
company.

Chapter 27: Starting a Game Development Company 331

Insurance

Workman’s CompensationWorkman’s Compensation

If you will have employees, you will
need workman’s compensation insur-
ance. The good news for us is that our
rates are very low as we employ people
to just come in and sit down and enjoy
themselves. No lifting or physical activ-
ity is required for a game developer!
Your accountant will likely be able to
get you in touch with a good insurance
broker.

This insurance is absolutely
required; if you are not prepared to pay
for it, then you are not prepared to
employ people.

Liability InsuranceLiability Insurance

Any good corporation should have a lia-
bility insurance policy to handle minor
legal scrapes and other complaints
against your company. Usually this is
paired up with fire, theft, flood, and
other disaster protection.

Liability insurance is not a strict
legal requirement as in the case of
workman’s compensation insurance;
however, this is the kind of insurance
you want to buy!

Employee Compensation Programs

Employee compensation is the most
pleasurable part of the legal/business
side of running a game development
company. I suppose selling your com-
pany for tens of millions of dollars
would feel good too, but I genuinely
enjoy trying to figure out how to best
motivate and reward my people.

Like a lot of things, when designing
your employee compensation plan, you
must figure out what your true goals
are before you make any decisions.

For example, getting strong
employees at low salaries is great; your
company will increase its profit margin.
Maybe that is a goal for you—low sala-
ries (low costs). Fair enough, no
company would express as a goal to
have high costs. However, the interest-
ing question is how you will achieve
your goal. For example, I once worked
at a game development company that
was very short on cash flow and was

heavily motivated to reduce costs
through hiring young, inexperienced
(cheap) developers. This is fine, it is a
tried-and-true strategy; the problem
was the company did not have a consis-
tent pay scale. They would pay one
person $12 an hour and another $8,
where the $8 guy was performing at a
level far above the $12 guy. And some-
times they paid $20 or even $25 an
hour for other developers who were in
turn less capable than some of their
$10-an-hour guys. This creates a host
of problems: People have a sense of
fairness, and if they find out that Bob is
earning more than they are and they
know they are outperforming Bob, you
have just created a disenfranchised
employee, and it will be extremely diffi-
cult to regain that employee’s
confidence and productivity.

My solution to that problem is to
establish an internal pay scale that fits

332 Chapter 27: Starting a Game Development Company

your finances and then stick to it. For
instance, if I accidentally printed out
the salaries of everyone at Taldren and
it got posted over the water cooler, no
one could be offended. (You will always
have some people who have a differ-
ence of opinion with you, but as long as
you are consistent in applying your pay
scale it will be a defensible and com-
fortable payroll report. And at the end
of the day, if someone is still bent out of
shape and I honestly feel that they are
being compensated fairly, I don’t worry
about it.)

The standard is of course to pay a
salary. You could pay hourly, but I will
be blunt and honest: To be competitive
and successful in the game industry
especially when you are starting up your
game company, there will be a lot of
overtime and it will be difficult to pay
people for all those overtime hours.

The counterpoint to this sugges-
tion is to have all independent contrac-
tors working for you on a 1099 basis.
This is apparently how the overwhelm-
ing bulk of production work is done in
Hollywood, where a production studio
casts their net out wide pulling in inde-
pendent contractors to perform the
work when there is work and then lets
them go again when there is no work.
This cycles on forever. This also occurs
in the art production houses in the
game industry. I have also been advised
to structure my business that way. I
fundamentally disagree; I feel you
should work hard to create a highly
motivated well-oiled game production
company. Games are different from film,
and what works for film may not neces-
sarily work for games. Games are so
much more flexible than film in their

ability to absorb more and more tweak-
ing and improvement. When can you
really say a game could not stand
another tweak, feature, asset, or
improvement? A film, on the other
hand, as a discrete piece of art that can
be viewed and thought about, could be
declared more comfortably finished
than a game.

It takes a long time to master a
craft, and in the case of games, every
two years you must reinvent your tech-
nology, forcing you to always chase
mastery. This alone dictates the model
of making solid hires and retaining good
people for as long as practical.

So how much should you pay your
employees? The honest answer is that
no one really knows; it is like the stock
market. Certain positions like lead con-
sole programmers tend to make a bit
more money than a texture artist,
although I am sure there is more than
one lead console programmer in the
world earning less than some texture
artists. You have your financing from
somewhere, seed money or your first
deal—that is your budget. Be honest
and go out and find the strongest peo-
ple you can within your budget. I am
sure that if you have a solid manage-
ment team and a good attitude, you will
attract some good folks to work with
you no matter what budget you have to
work with at the beginning.

There are salary surveys that float
around the industry, and I cringe some-
what when newcomers see the salary
surveys and go, wow, I am a program-
mer; I will make $80,000+. Yes, it is
true there are many game program-
mers who earn $80,000 a year and
more; however, they all started at a

Chapter 27: Starting a Game Development Company 333

much lower rate earlier in their career.
The problem with these surveys is that
they tend to be skewed towards the
more established developers and inter-
nal publisher teams that answer these
surveys.

At the risk of being crude, I will
throw out some rough figures for a
start-up game company. If you are a
small start-up in Oregon and have a
$300,000 annual budget and you need
to perform two GBA titles, you are in a
tight position, but you have to start
somewhere (GBA title budgets are usu-
ally $200K in North America with only
the most well-known GBA developers
getting $500,000 for a single title; so on
your first title you might be happy to
get $150,000). If you turn around each
project in six months, you will need at
least two programmers, two artists, and
a designer/producer. Assuming you
have a very low overhead ratio, call it
20 percent, then you have a salary bud-
get of $250,000 without considering
bonuses. So your salary plan might look
like this:

Lead programmer: $55,000
Programmer: $40,000
Lead artist: $50,000
Artist: $35,000
Designer/producer: $45,000

This would leave $25,000 spare for
end-of-the-year bonuses or slippage
money. It is always a good idea to have
spare money. These are actually

reasonable salaries for people with rela-
tively modest experience in the game
industry.

Notice you have just a five-person
team and only six months to execute
your games; here again it is of the
utmost importance to design your
games to fit your business parameters.

Medical/Dental/Optical/IRA

After you have sorted out your salary
levels, I suggest setting up your
employees with health and dental bene-
fits. This is pretty much normal at any
development shop, although you might
be thinking of cutting corners when you
are starting up and feel this is a luxury
you could provide later. I disagree;
health care is expensive and only more
so when the individual is forced to
secure it on her own without the bene-
fit of negotiating as part of a group plan.
If at the end of your salary plan you do
not have enough money to provide
some level of medical and dental bene-
fits, I strongly urge you to trim back
your salaries enough to allow this cov-
erage. Your employees will appreciate it
and immediately feel a lot more com-
fortable with the professionalism you
provide with a full medical benefits
package. You may still choose what
level of compensation you will pay
towards the package, and there are
other choices to make, as your insur-
ance broker will be able to offer
disability and other products.

334 Chapter 27: Starting a Game Development Company

401K/IRA/Retirement Benefits401K/IRA/Retirement Benefits

One benefit that I feel is a luxury is a
401K or SIMPLE-IRA plan; these are
retirement plans where your company
has the option to contribute some
matching funds towards the employee’s
retirement account. We have a
SIMPLE-IRA plan at Taldren. We
started it up after one year in business,
and there was a tangible increase in
morale after the introduction of the pro-
gram. Again, the folks here felt more
comfortable and reassured that we are
a professional organization.

Project BonusesProject Bonuses

A time-honored tradition in the game
industry is to provide a completion
bonus in the range of 5 to 20 percent of
the employee’s annual salary upon the
final acceptance of the completed pro-
ject. This is a good bonus program
because it drives people towards com-
pleting the game. One problem I have
with the completion bonus is that if the
project slips beyond the employees’
control they could become frustrated as
they see the money running away from
them. Furthermore, if they thought the
project would last a year and then it
lasts 16 months, their bonus has effec-
tively been diluted. I do not disagree
with the completion bonus, but I feel it
should not be your only bonus program.

Milestone BonusesMilestone Bonuses

As a milestone developer you make
money when you deliver milestones to
the publisher and they are accepted and
paid. I have to admit I am partial to
extending that business model down to
the employees in a minor way by
attaching a bonus to the timely delivery

of the milestones. The condition here is
the timely delivery of the milestone;
again, a single employee may do a great
job and still be unable to collect the
bonus because as a group we were late.
The effect I hope to deliver to my team
is that this is a group effort. The bonus
should not be overly large, or you could
potentially cause people to rush their
work at the risk of quality.

Royalties

Older than project completion bonuses
are sharing the project royalties among
the employees. This worked much
more often in the past when game bud-
gets were in the $75,000 to $150,000
range. Now the costs of most games
are so large that they do not recoup
their advances, and all of the promised
royalties do not happen. I am a great
believer in delivering on the expecta-
tions you create, so my advice with
project royalties is to not promise them
until they actually happen. If there is no
expectation, there can be no disappoint-
ment. This may be a problem for some
start-up development companies as
they do not have enough budget avail-
able to pay salaries so they turn instead
to project royalties as a form of regular
compensation. Nine cases out of ten
you will only succeed in burning
morale. Sure, if you make a breakaway
hit and you are packing away the roy-
alty checks, share the good fortune, but
my advice is to not overhype the royal-
ties until they happen.

Stock OptionsStock Options

Stock options, on the other hand, I do
feel are an honorable compensation
instrument even for small, privately
held development studios. Stock

Chapter 27: Starting a Game Development Company 335

options for a private company are not
immediately liquid; however, if you do
sell your company to a publisher some
time in the future, it is a nice gesture to
recognize the unique contributions of
your employees with some equity.

Take the time to educate your
employees on the mechanics of your
stock option plan, as it will likely be
their first experience with options and
they might be too shy to admit they
have questions about how they work.

Trademarks and URLs

You should of course trademark your
company’s name and logo as well as any
significant chunks of intellectual prop-
erty you own. Again, this is an area
where your lawyer will make the pro-
cess painless. I can offer this much
advice: Try not to found your company
with simple names like Studio One as
no doubt the URL has been taken and
the trademark office will already have a
lot of similar sounding company names
that could potentially confuse the con-
sumer. Best to think of some word that
is not an English word, yet people

would “get it” the first time they heard
it.

Basically, if you have a mark or a
brand you want to protect, wrap a ™
around it while you await the results of
the trademark search. After a period of
time you will be told whether or not
you may go ahead with the ®. The ©
stands for copyright and you should
attach that to any document you create
unless you are in a work-for-hire
arrangement. And even then it is com-
mon to own your code outright and
provide the publisher with an unre-
stricted license.

War Chests

Finally, without ever losing the magic
in your heart for the beauty of games,
never forget that you are running a
business. A business primarily exists
to create money. It might make money
unethically, ethically, in an environmen-
tally friendly manner, or any other way,
but at the end of each day your com-
pany has been created to make money.

That seems like an all-too-obvious
statement; however, looking at the
dot-com bust of the 1990s you will see
that American business lost track of
the bottom line and measured business

success in hype created and not wealth
creation. For a short while you can
spend hype, but it is not very liquid and
it will disappear all too quickly.

You have to start somewhere, and
for most game developers we have
modest starting points. No matter how
modest your early contracts must be to
get started, structure your deals and
company expenses to make money off
each of your games. Your advances
must be large enough to cover your
costs as well as provide a small profit to
add to your war chest.

336 Chapter 27: Starting a Game Development Company

Game development can sometimes
be a grim game, where you and your
guys work hard against milestones that
pay 90 to 110 percent of your costs
until the day you encounter a tough
problem, such as no follow-up project,
grave project slip, or a failed publisher.

You must work towards building a
war chest. Your goal should be to first
have one extra month of burn rate, then
three months of burn rate, then six
months, and finally a year of burn. I
would imagine after you have piled up a
year’s worth of cash, you could enter-
tain investing in other ventures rather
than socking away more cash. War
chests cannot be undervalued; the

quality of your projects, contract lan-
guage, and ultimately your profitability
will be directly related to the amount of
cash you have in your war chest. With-
out it, when you need the cash badly to
pay the next payroll, you have no nego-
tiating room.

Earning money is easy, just work;
it is the saving of money that is truly
difficult. There are always a bunch of
compelling things that you must spend
money on at any stage of your com-
pany; however, I sincerely advocate
being as frugal as possible without
impacting productivity, and build that
war chest!

Chapter 27: Starting a Game Development Company 337

This page inten tion ally left blank

TE
AM
FL
Y

Team-Fly®

Chapter 28 > > > > > > > > > > > > > > >

Outsourcing Music

“Audio is one-third the game!”

—Tommy Tallarico

Music for Games

As in the movie industry, music is a
critical component of a successful
game. It is the mood and tempo of the
music that will add the elusive quality
of emotion to your game. With all of the
visual information a game pumps out to
the player, the ear is a critical channel
to reach deep into the player’s soul to
enthrall the player.

For me the eerie percussion
instrumentals of MechWarrior 2 evoked
the strongest response from me. I can
recall only fragments of individual mis-
sions, but it is the haunting, militaristic
beats of Mech II that I keep on my per-
sonal jukebox. And whenever I hear the
beat I have a fierce feeling of belonging
to a clan of warriors—a clan of mech
warriors in the 31st century striving to
become Khan. The music evokes
images of life and death struggles on
distant planets. . .ahem. Where was I?
Oh yes, music in games. Strong, evoca-
tive music is as vital as strong
gameplay to make a complete experi-
ence. Bad music, on the other hand,
may be so detrimental to your game
that the game experience suffers, or at
best the player turns off your music and

pops in a CD of her own to listen while
playing your game.

Presumably I do not need to spend
too much time convincing you to put
music in your game. I just wanted to be
sure you know how important music is
to your game. Any range of human
emotion may be nurtured and rein-
forced through music: love, loss, hate,
fear, and triumph, just to name a few.
The music you commission for your
game should have the whole range of
game experience in mind. For every
major event/situation/level/experience
in your game, ideally, a musical piece
should be there to flesh out the experi-
ence and make it complete.

When to Think About MusicWhen to Think About Music

Most games have many challenges:
time pressures, budget constraints, fat
technical risks, original game mechan-
ics to tweak. Coming up with good
original music is just not as challenging
to the producer as the rest of the game
project. Simply carve out what you can
from the audio budget for music, find a
competent composer, tell them the bud-
get and deadline, and collect your
tracks when they are done.

Chapter 28: Outsourcing Music 339

The issue I have with this approach
to game music is that it is haphazard.
As I pointed out at the beginning of this
chapter, music is a critical aspect of the
game to develop emotional bonding
with the player, so why short-change
the game with a rushed job?

There is a tendency for people to
believe that early in the project there
will not be enough visible or demon-
strable to articulate well to the
composer the game experience.
Another reason I have heard is if you
give someone too long to do the job,
they will charge you more! (Only the
reverse could possibly be true; give
someone time to fit it into his down-
time and perhaps you would be able to
get a discount.)

In the budget planning stage you
should involve your composer if at all
practical. By starting this early, the
composer may be able to point out to
you options you did not know you had
and thus be able to modify the budget
when it is still in its malleable phase at
the start of the project. Even without
jumping into the work directly, the
composer is respected as a project
stakeholder and thus will naturally have
greater buy-in and, more practically,
will be able to munch on creative
thoughts for your game in the back-
ground until it is time for music
composition to formally begin. Perhaps
the composer will keep his ears open
for new sounds and equipment that will
lend themselves well to your project. In
short, talk to your composer and con-
duct your relationship with him as a
two-way street, not just a request for
bid from a collection of vendors who
will do a quick job at the lowest price.

TOMMY TALLARICO SAYS: For some
reason audio doesn’t seem to be taken
as seriously or respected as other parts
of a game. This is quickly changing now
that we have live orchestras and 5.1
digital audio playing.

Another interesting thing is that one
of the reasons people dealt with audio
last was because they have in their
heads (from the movie and TV indus-
tries) that sound is POST-production.
This just isn’t the case at all with audio
for games.

Music FormatsMusic Formats

Switching gears from the philosophical
to the practical, I should take a moment
to outline the formats of music that are
typically employed in games.

� MIDI—Musical Instrument Digital
Interface is a format whose specifi-
cation is published by the MIDI
Manufacturer’s Association
(http://www.midi.org). MIDI is more
than just a data format for music; it
is actually three components to the
MIDI specification, which are the
communications protocol (lan-
guage), the connector (hardware
interface), and a distribution format
called Standard MIDI Files. For
your purposes as a producer of a
game, you are really only inter-
ested in what the data format can
do for you.

The MIDI format is a bit different from
other methods of digitizing music. It
does not attempt to digitize sound at
all! Rather, MIDI digitizes, or encodes
into a binary format, commands such as
note on, note off, and note velocities
that are comprehensible to a MIDI-
capable device. What does this mean,

340 Chapter 28: Outsourcing Music

and why should you care? MIDI files
are very, very small. How small? A
MIDI file I have close at hand happens
to be 2 minutes and 24 seconds long
and requires just 8 kilobytes to store.
Compare this to an MP3 of “With a Lit-
tle Help from My Friends” by the
Beatles that requires 2.75 megabytes of
space for a 2 minute, 44 second song.
Thus, a MIDI file is roughly 350 times

smaller than an MP3 and roughly 3,500
times smaller than straight digital
audio!

The catch with MIDI is of course
quality. Anytime something is 300 to
3,000 times less expensive than some-
thing else in terms of space, money, or
time, quality must be compromised to
achieve that savings. The resulting
quality of a MIDI file is determined
more by the sound samples the playback
device is employing to replicate the
composer’s musical instructions.

The days of MIDI music for main-
stream games have passed within the
last few years as the capabilities of the
consoles and PC have soared and
production values have increased dra-
matically. MIDI will remain a most
compelling format on any platform
where memory and storage are a pre-
mium such as mobile phones, PDAs,
and handheld consoles.

What Is Better Than MIDI?What Is Better Than MIDI?

So if MIDI is limited in quality by being
a mere set of instructions for instru-
ment on and off, what would be a
reasonable way to improve the quality?

The direction of improvement
would have to lie along the road of
incorporating actual sounds with the
musical instructions. Four different for-
mats have been developed to varying
degrees of success by encoding

digitized sound snippets along with the
musical score:

� XMI—a more powerful version of
MIDI where the instrument sam-
ples are built into the music file.
This results in a musical file that
sounds the same on any compatible
playback device.

� SF2—Sound Fonts, created by
Creative Labs for use on their
sound cards. Sound Fonts are sets
of digitized instruments that are
downloaded to the playback device.
Thus, a musical file created for use
with Sound Fonts will only sound
the same on other devices that also
have the same Sound Fonts
installed.

� SBK—Sound Bank, a similar and
competing standard to Creative
Lab’s Sound Fonts.

� Tracker—a set of related sound
formats: MOD (Module), XM
(Extended Module), IT (Impulse
Tracker), STM/S3M (Scream
Tracker). These originated on the
Amiga and were popular in early
DOS-based computer games. They
contained built-in sound samples
with the sequence information sim-
ilar to the XMI format, but it was
up to the computer CPU to mix the
samples together to create the
music. In the old days the better
quality the tracker file was, the
more taxing it was on the CPU.
Lots of early Epic games used
these, including Unreal and Unreal
Tournament.

All of these formats sound better than
MIDI but at a cost of either a signifi-
cantly larger music file or the require-
ment to distribute and install a sound
font library on the target machine. As

Chapter 28: Outsourcing Music 341

memory and storage become less and
less expensive, these costs dwindle
away into little concerns on modern
consoles and PCs.

Digitized Sound FormatsDigitized Sound Formats

Sound effects like explosions tend to be
noisier and more complicated than
musical scores. This would explain why
you cannot recall the last time you
heard a MIDI explosion.

JARGON: Compression techniques that
throw away bits of information such as
JPEG for images are termed lossy, as in
to lose information. Conversely, com-
pression techniques that never throw
away information are termed non-lossy.

At first glance, why would anyone want
a lossy format? What could possibly be
good about throwing away information?
The answer lies in the whole point of
compression: to make something
smaller. If we’re trying to make a chunk
of information smaller (images, music,
sound effects, it does not matter), we
might be clever and achieve some effi-
ciencies, but to truly scrunch the
information down we will have to toss
out information.

Any form of lossy compression for
sound effects will strip the richness and
depth of the sound effect, creating a flat
sound. That is why the sound effects
side of game audio has enjoyed a larger
budget of bytes over the years. Only in
recent times have we moved to fully
digitized sound formats for music. In
fact, MIDI could be said to be aggres-
sively lossy, as it throws away almost
all bits of information of how the real
instruments should actually sound.

� WAV—A very popular format for
digitized sound and so widely
employed for sound effects that

people often casually use the
phrase “WAV file” to mean sound
effects.

� ADPCM—Windows standard
audio format, which is a compres-
sion algorithm on top of the WAV
format.

� VOC—A predecessor to WAV for
Sound Blaster cards. It was used in
the early DOS days.

� CD/Redbook Audio—Redbook
audio is the format used to record
commercial music CDs that con-
sumers purchase. Thus, Redbook
audio enjoys the status of having
the highest standard of quality
accessible to consumers. As the
CD format for games became
widely accepted, there was plenty
of storage on the media to hold the
beefy Redbook audio files. How-
ever, now the production values of
the rest of the game have grown a
voracious appetite for more storage
space. The heyday for Redbook
audio on the game CD has for the
most part passed on in favor of a
much more popular format, a for-
mat that is twelve times smaller
than Redbook audio with nearly
identical quality: MP3.

� MP3—Otherwise known as Mpeg
3. By now everyone is familiar with
MP3. The MP3 standard would
seem like it is free and open, but
the truth is that the MPEG devel-
opment group manages the devel-
opment of the MP3 standard. An
interesting detail is that the Fraun-
hofer Institute is the principal
source of engineering behind MP3
and, along with Thompson Multi-
media, holds some 18 patents cov-
ering a wide spectrum of the MP3

342 Chapter 28: Outsourcing Music

technology space. This means that
most any commercial exploitation
of the MP3 format appears to be
liable for a royalty to Thompson
Multimedia. Looking up the rele-
vant information at http://www.mp3li-

censing.com/royalty/games.html, it appears
that there is a $2,500 fee for games
that distribute files in MP3 format.
This fee is waived if you sell fewer
than 5,000 copies or as an entity
you gross less than $100,000 a
year.

Full technical details on MP3
are found at the Fraunhofer Insti-
tute: http://www.iis.fhg.de/amm/techinf/

layer3/index.html.
To address piracy, the Fraun-

hofer Institute has been working
with others such as the Secure
Digital Music Initiative (SDMI) to
create the Audio Scrambler which
selectively encodes bits of the
music stream with annoying noise
that will only be properly decoded
with the right key. Check out
http://www.iis.fhg.de/amm/techinf/ipmp/

scrambling.html for more details on the
Audio Scrambler.

The other technique is water-
marking for digital rights manage-
ment. This may be used to develop
proof of ownership, access control,
and tracing illegal copies. For more
details, see http://www.iis.fhg.de/amm/

techinf/ipmp/water.html.

� WMA—Windows Media Audio,
Microsoft’s answer to MP3,
includes integrated support for dig-
ital rights management. Windows
Media Audio is a portion of the
codec that combined with Windows
Media Video is called simply Win-
dows Media. For a complete
overview of the tools and technol-
ogy behind the Windows Media
site, visit http://www.microsoft.com/win-

dows/windowsmedia/technologies.asp.
Microsoft boasts that their com-
pression is better than MP3 and
RealAudio and offers a whole suite
of tools for the creation, manipula-
tion, playback, and distribution of
media files.

� RealAudio—Another competing
standard similar to MP3 and WMA
from RealNetworks. I tried hard to
find information on the RealNet-
works site for some technical infor-
mation about RealAudio; all I could
find is commercial messages and
information relevant to a user of
their playback and recording soft-
ware. However, RealNetworks also
offers tools for both the creation
and playback of rich media files.

TOMMY TALLARICO SAYS: Don’t for-
get Yellowbook or streaming audio. This
is by far the most widely used way of
doing music now and in the future. The
newer platforms are also able to have
multiple streams playing at once and
mixable on the fly depending on the
action.

How Do You Break Down the Music Bid?

Game music ranges quite a bit in cost,
influenced by the composer’s experi-
ence, the choice of performance

(synthetic or live), and the total
minutes of music purchased.

Most of the music work offered to
composers is work for hire without any

Chapter 28: Outsourcing Music 343

royalty arrangements. The more suc-
cessful composers such as Tommy
Tallarico have made strides in correct-
ing that with bonuses when games
reach different sales targets. Whether
or not the composer has other distribu-
tion rights beyond the game is a matter
of negotiation with the publisher of the
game, the usual winner in that
discussion.

Music created by a North American
composer and delivered in high-quality
synthesized MP3 or other digital for-
mats runs between $600 and $1,500 per
minute, with $1,000 being the industry
norm. So what does $1,000 for a minute
of music mean?

Most AAA games have the game-
play hours running at about 15 to 25
hours; we will call it 20 hours. (Usually
you do not count multiplayer or user
extensibility options such as map
editors in gameplay hours. Only the
single-player experience is used to
calculate gameplay hours.) Does this
mean you need to commission 20 hours
of music, which would be 20 hours x 60
minutes x 1000 = $1.2M of music? Um,
no. While there have certainly been
game budgets large enough to accom-
modate that figure, that would be an
outrageous amount of original music. I
doubt that many composers have 1,200
minutes of great music on tap and ready
to hand over to you. I would guess that
many composers would be happy if
they produced 20 hours of quality
music in their professional careers!

Movies are scored throughout their
110 minutes of playtime with the usual
action films using popular rock sans
vocals and dramas using classical com-
posers with long stretches of muted
music. Movies are not rock videos and

do not require music to be played
throughout the experience.

Games are also not rock videos,
and a constant stream of music is not
only unwarranted, it is not desirable.
Rather, the music must be placed to
support the action, tension, and drama
you are developing in the game.

Score Music for Triggered EventsScore Music for Triggered Events

Take Pac-Man, for example; for the
most part there is a steady-state drum-
ming of the wakka-wakka sound effect
as Pac-Man eats the dots. When
Pac-Man eats the power-up, a short,
fast-paced aggressive musical tone
reinforces the comical terror of the
now-dark blue ghosts on the run from
Pac-Man.

Another example is the simple act
of Mario picking up a star in Mario64,
triggering what is called a short musical

sting. These are important aural rein-
forcements for a game action.

Exploration and Ambient MusicExploration and Ambient Music

Ambient music is scored for the slow
periods of gameplay that you need to
have between the action sequences.
This music should not be too driving or
distracting; rather it should reinforce
the aesthetic mood or setting in the
game. For example, if you were making
a game with intrigue between two rival
warlords in feudal Japan where the
character plays the role of an intrepid
ninja assassin exploring the rival war-
lord’s castle in the middle of the night, I
think the haunting sounds of the Japa-
nese shakuhachi would be the perfect
instrument for the job. Liberally scat-
tering doses of exploration music with
dollops of silence mixed in between is
great for the important quiet periods of
the game.

344 Chapter 28: Outsourcing Music

Chase/Battle/Hunting MusicChase/Battle/Hunting Music

This is the fast-paced hard-charging
music that is reserved for the most
exhilarating moments in a game. While
this music is critical to nail, it is impor-
tant not to overdo it and use it too
liberally. If you do, you will totally spoil
the impact when you really need to get
the player’s blood pumping.

Jump ListsJump Lists

Each game handles its music differ-
ently. However at a high level, many
AAA games employ some sort of con-
text-sensitive music track switching.
The specific technology employed
determines its name; for Starfleet
Command we used very small seg-
ments of just eight seconds each and
jumped around dynamically in real time
relative to the amount of combat action
the player was facing in the game. So
we called it jump lists.

You need to determine how you
will transition between musical tracks
and have that information handy at the
start of your talks with the composer.

Menu MusicMenu Music

This upbeat but vague music is the
equivalent of the credits music in a
movie. This music needs to have
enough aural impact to help overcome
the relative lack of action as the player
clicks through the menus.

TOMMY TALLARICO SAYS:

Cinematics are becoming a very impor-
tant role in the storytelling aspect of a
game. For FMV movies (mostly used in
intros, between levels, and ending cred-
its) the composer is able to completely
score right to the picture.

How Many Minutes Do You ReallyHow Many Minutes Do You Really

Need?

Here is how we have broken down our
musical minutes for our upcoming
action/RPG Black9:

World Setting 1:
6 search and/or ambient songs @ 1:30
minutes = 9 minutes
4 chase and/or battle songs @ 1:30 = 6
minutes
5 musical stings @ 5 seconds = 25
seconds
3 cinematic songs @ 1 minute = 3
minutes

World Setting 2:
6 search and/or ambient songs @ 1:30
minutes = 9 minutes
4 chase and/or battle songs @ 1:30 = 6
minutes
5 musical stings @ 5 seconds = 25
seconds
3 cinematic songs @ 1 minute = 3
minutes

World Setting 3:
4 search and/or ambient songs @ 1:30
minutes = 6 minutes
4 chase and/or battle songs @ 1:30 = 6
minutes
4 musical stings @ 5 seconds = 20
seconds
2 cinematic songs @ 1 minute = 2
minutes

Menu Music
5 minutes of theme music = 5 minutes

This is a total of 53 minutes of music
planned for a game with about 20 hours
of gameplay. Taking the industry aver-
age of $1,000 a minute, we will expect
to pay about $50,000 to $60,000 for the
music in our game.

Chapter 28: Outsourcing Music 345

I think this is a good value when
you consider that the music industry
would typically advance a new, upcom-
ing group $100,000 to $500,000 for
their first record. You will get music
composed by a professional, custom
designed for your game, and you will
have the distribution license for the
material. A good deal I think.

Live Performance?Live Performance?

Ever wonder what all those folks who
were studying violin and the tuba were
going to end up doing after they gradu-
ated college? I wondered. Sure, if they
turned out to be Yo-Yo Ma, life is good,
but what about the rest of them? I don’t
know about you but I have only been to
the Hollywood Bowl a handful of times,
and I grew up within walking distance
of the bowl. Well, it turns out the world
has quite a bit of work for professional
players of classical instruments.
Movies, television, and games have all
benefited from live performances, most
often directed by the composer. How
much does a live performance cost? For
Starfleet Command I, Ron Jones, our
composer, considered flying out to
Prague to hire the world-famous but
apparently inexpensive Prague Orches-
tra. In the end, Ron did fly, but a short

distance to the Salt Lake Orchestra.
How much will it cost to have your
music performed by a live orchestra? It
varies by the venue and number of
players of course, but a nice round
number would be $25,000.

TOMMY TALLARICO SAYS: Another
thing I think is important to say is that
the nonunion buyout orchestras in
Europe are the least expensive. The
easy calculation is to add about $1,500
per minute of music to your budget.
Depending on which orchestra you use
that number can easily go up to $10,000
per minute.

You may also say that for one hour
of an orchestra’s time, the composer
normally budgets for three minutes of
finished music per hour of orchestra
time.

When live orchestra is used it’s not
just the players/musicians that get hired.
You need an arranger (arranges each
part for every instrument), a copyist
(writes out all of the music for every part
of the orchestra to play), a conductor,
an engineer, and a studio. You could
have a great orchestra and a crappy
room (studio) and it will still sound horri-
ble. Rooms are VERY important when
recording live orchestra.

With permission from Bill Brown, here
is a survey on the use of live orchestras
for games.

346 Chapter 28: Outsourcing Music

USING LIVE ORCHESTRA FOR GAMES

by Bill Brown

This article is a gathering of thoughts and news items from various sources regarding the use

of live orchestral soundtracks and chorus in games with information for developers, publishers,

and composers alike on the benefits of recording with live orchestras. Many of the games

listed here have already seen very successful press and great creative results—with a

tangible, positive impact on game and game soundtrack sales.

Emerging markets for soundtrack sales are currently being pioneered by G.A.N.G. in brand

new territories and markets. G.A.N.G. has already convinced a major national retailer to create

soundtrack displays in sections where games are sold, exponentially raising awareness of

game soundtracks to potential buyers.

The intention of this presentation is to create an ongoing resource to educate and bring aware-

ness about the benefits of using live orchestra for games. G.A.N.G. members are invited to

submit orchestral game music news to Bill for future updates to this page.

Orchestral Soundtracks—Ancillary Market Opportunities:

When your soundtrack is recorded with a live orchestra, you automatically create media
interest and word of mouth—people appreciate the immersive effect live orchestra brings to
the experience. Filmmakers have known this for years—MIDI scores cannot compare to
the magic that happens when an orchestra is hired to perform a soundtrack.

Standalone CD Soundtracks Soundtrack sales can quickly recoup session costs and can
continue to bring in revenue for both the composer and publisher for years beyond the life
of the game.

Marketing campaigns Movie trailers, TV, and Internet promotion create community “buzz” and
word of mouth via the Internet and between gamers—selling more games—exponentially. A
big orchestral score is news, and news equals sales.

Bundling Opportunities Pre-Sales, Extra Features, Licensing Opportunities—Simultaneous
release with game SKUs in new markets, or with simultaneous marketing campaigns (as in the
case of the major motion picture The Sum of All Fears and the game of the same name,
released in conjunction with the film).

NEWS FROM THE FRONT LINES:

Clive Barker’s Undying: Bill Brown—Composer: (Excerpt from Gamasutra’s Game Audio
Gallery feature) “I was set to record a live chorus for a Game Boy commercial spot a couple
years back and had just started talking with DreamWorks about Undying which later became
Clive Barker’s Undying. The day we were going to go record the chorus, I wrote a few ideas
down that seemed to fit the mood of Undying, drawing from both Latin and Gaelic text that
seemed to fit and brought them along just in case we had time to fit in a few lines. We
recorded in a big church in the valley, which was noisy, but had a big sound to it. I just sang the

Chapter 28: Outsourcing Music 347

4-part harmony to the separate sections and then conducted them all wild to DAT (with no
accompaniment). So I brought those tracks back to my studio and experimented with them. I
arranged orchestra accompaniment around the vocal parts using my synths and samplers
here. A year later, I was finally working on the project, and it all fell together in about three
weeks of writing. This is a very good example of the wonderful results that can happen just by
involving your composer as soon as your project gets the green light!”

Undying was nominated for the prestigious British Academy of Film and Television Arts
(BAFTA) 2001 Interactive Entertainment Award in the Music category. “The music was very
well-integrated into the game, successfully matching and enhancing the uncomfortable feel,
helping to build the participant’s tension at critical moments in the narrative. Intelligent sound
woven into the fabric of a filmic genre.”

Tommy Tallarico on Evil Dead; “My only fully live orchestra gig was Evil Dead (PS, Dream-
cast, PC) for THQ. I used the National Hungarian Symphony Orchestra (64 pieces) and the
Budapest Chamber Choir (30 people—15 male/15 female). I wrote the entire vocal score in
Latin. I used Steve Salani’s services at Forte Music. It was a VERY inexpensive alternative.
Although the quality isn’t as good as the stuff I’ve heard from Jack, Jeremy & Michael, it is
definitely better than MIDI (in my opinion). The voices were really incredible!! I would highly
recommend people use the choir!”

HEADHUNTER records in London

Abbey Road’s famous Studio One has played host to innumerable big-budget orchestral
recordings for film, but the final session before its refurbishment in 2001 saw it being used for a
new purpose: to record the soundtrack for a video game.

The publishers of HEADHUNTER understood the business model for making money back by
releasing the score soundtrack—which is still a huge seller in Japan. This commitment on the
publisher’s part opened a floodgate of creativity to flow into the scoring and implementation of
music in the game. Our hats are off to composer Richard Jacques and the entire team!

348 Chapter 28: Outsourcing Music

TE
AM
FL
Y

Team-Fly®

Orchestral Composers—GDC

Chance Thomas speaks out at the 2002 GDC orchestral seminar: The GDC program
stated: “The live symphony orchestra is the palette of choice for many of today’s top games.
No amount of technology can match the magnificent power, range, skill, color, and sheer emo-
tive strength of a live orchestra. With current game systems capable of delivering high-quality
digital audio interactively, developers are increasingly turning to the orchestra to breathe life
into their games. This GDC session offers education and informative discussion on just what it
takes to produce a live orchestral game score.” Couldn’t have said it any better ourselves!
Chance was joined on this panel by fellow composers Jeremy Soule and Jack Wall. Read Jack
Wall’s white paper “Using a Live Orchestra in Game Soundtracks” originally presented at the
2002 Game Developers Conference.

The panel exposed the benefits of releasing soundtracks independently from the game itself.
Chance Thomas’s soundtrack for Quest for Glory V is a great example of the potential bene-
fits. The soundtrack was released before the game and included a playable demo of the
project. They sold 50,000 copies of the soundtrack and made $500,000 from soundtrack
sales. Chance said, “Music is the language of emotion. We draw people in.” Ironically the

soundtrack outsold the game. Quote from gamesdomain Quest for Glory V review: “The
music was very well done, Sierra knows this is one of the highlights of the game, which is why
they are selling the soundtrack.”

More ideas from Jack Wall—Composer: Myst III Exile: (In regard to using live orchestra)...
“The way I got Myst III Exile going was I talked up ancillary markets to the producer and to
the marketing department. If you have great sounding music, you can sell this music as a
standalone CD, you can use this music in your marketing campaigns, etc. They used the
heck out of me for Myst III Exile. I basically crafted about 80% of their entire launch marketing
campaign for them. It took a lot out of me, but obviously, it was worth it. They put the music on
United Airlines flights. They used the Main Title in the trailer that played nationwide in movie

theaters. But, more directly, I think it’s how to educate publishers and developers that it will
truly translate into sales—That’s the bottom line!” Read Jack’s Myst III: Exile article “The Evolu-
tion of a Videogame Soundtrack.”

Chapter 28: Outsourcing Music 349

Medal of Honor Allied Assault and Medal of

Honor Frontline Scores Recorded in Seattle

The next two scores for the DreamWorks Interactive Medal of Honor Series are complete. A
95-piece orchestra was used for the recording, which included a full choir. Michael Giacchino
—Composer.

The Academy of Interactive Arts and Science Awards

Medal of Honor Underground Best Original Score

At the 4th Annual Interactive Achievement Awards, Medal of Honor Underground won in both
categories in which it was a finalist: “Outstanding Achievement in Original Musical Composi-
tion” and “Outstanding Achievement in Sound Design.”

When you hear the phrase “video game score,” what do you usually think of? MIDI? Eric
Serra-style synth? Synthesized orchestras? Drum machines? How about “fully orchestral John
Williams-style action scores?” Finally, the orchestral score has migrated to video and computer
games, with the release of Medal of Honor. The game, based on the film Saving Private Ryan,
was authorized by Steven Spielberg and turned out probably the best game music score ever
heard up to this point. The music is in the percussive, swashbuckling vein of John Williams and
it conjures up images of his Indiana Jones scores… Michael Giacchino—Composer.

Outcast Nominated for Aias Best Original Score 2001

The 60+ minute score recorded with a 105-piece Moscow Symphony Orchestra and Chorus
was one of three finalists for the 2001 AIAS award for Best Original Score. Lennie
Moore—Composer.

Infogrames subsequently released Outcast as a stand-alone soundtrack and marketed that
soundtrack through their official web site. In 2001, in collaboration with Vivendi/Universal a
re-mix CD was released which incorporated the soundtrack from Outcast into re-mixes done
by European artists.

350 Chapter 28: Outsourcing Music

2002 Aias Outstanding Achievement in Musical

Composition Nominee—Myst III: Exile

AIAS nominates score for Myst III: Exile for 2002 “Outstanding Achievement in Musical Com-
position” award. The score for Myst III was recorded with the Northwest Symphony in Seattle.
Jack Wall—Composer.

Myst III: Exile’s score won the Game Industry News’ Best Soundtrack award for 2002.

Game Soundtracks Using Live Orchestra and/or Live Chorus:

Sovereign (not yet released) Jeremy Soule—Sony/Verant

Hitman 2 (not yet released) Jesper Kyd—Eidos Microsoft

Medal of Honor: Frontline (5/2002) Michael Giacchino—DreamWorks SKG

Headhunter (5/2002) Richard Jacques—Sega

Medal of Honor: Allied Assault (1/2002) Michael Giacchino—DreamWorks SKG

Myst III: Exile (5/2001) Jack Wall—Mattel/Ubisoft

Azurik: Rise of Perathia (11/2001) Jeremy Soule—Microsoft

Evil Dead (3/2001) Tommy Tallarico—THQ

Clive Barker’s Undying (2/2001) Bill Brown—DreamWorks SKG

Mech Warrior 4 (11/2000) Duane Decker—Microsoft

Medal of Honor: Underground (10/2000) Michael Giacchino—DreamWorks SKG

Crimson Skies 1 & 2 (9/2000) David Henry—Microsoft

Klingon Academy (06/2000) Inon Zur—Interplay

Amen: The Awakening (4/2000) Jeremy Soule—GT Interactive

Medal of Honor (11/1999) Michael Giacchino—DreamWorks SKG

Outcast (8/1999) Lennie Moore—Infogrames

Quest for Glory V: Dragon Fire (1999) Chance Thomas—Sierra

Small Soldiers (1998) Michael Giacchino—DreamWorks SKG

Heart of Darkness (1998) Bruce Broughton—Infogrames

Total Annihilation (1997) Jeremy Soule—Cave Dog

The Lost World (1997) Michael Giacchino—DreamWorks SKG

StarFleet Academy (1997) Ron Jones—Interplay

The above list is a work in progress, if you know of additions or corrections please email Bill.

Thanks go to http://www.music4games.net for some of the tidbits included here.

Chapter 28: Outsourcing Music 351

This page inten tion ally left blank

Chapter 29 > > > > > > > > > > > > > > >

Outsourcing Voice

“Work com-plete.”

—Orc peon from the Warcraft series

When sitting down with Chris Borders
to go over the budget for voice-over
work for Starfleet Command, I was
shocked to find out how reasonable it
was to have celebrity actors such as
George Takei (Mr. Sulu of course) per-
form lines that I wrote for my game!

Adding the human voice brings a
special magic to your game. Think
about the wonderful voices in the
Warcraft series; how many of you read-
ing this book can read these lines as
they were delivered in the game?

ORC PEON

Work com-plete.
I can do that.

The magic behind the voices is that we
get the intelligence of a human driving
the personality of these fantasy charac-
ters in our games! It really is the

coolest thing. Also, voice work is ide-
ally suited for outsourcing as it takes a
highly specialized set of skills to cast
the talent, direct the talent, record the
voice, and post-process the voice. Only
the larger publishers have enough work
to employ their VO directors full-time.
Alternatively, some game studios have
a single amazingly talented audio guy
who is able to handle all of the voice-
over work for the games. This is a rare
talent though; you would do better to
outsource as you will not save any
money having the VO director/producer
on staff year round.

Voice is pretty much all positive.
While there are still physical limits with
the hardware we are using, the limits
are very generous, so go out and get
great voices for your games!

In the following interview Chris
Borders tells us how it is all done.

Interview with Chris Borders

Erik Bethke: Would you provide a

short background on yourself and

what role you play in voice-over

work in the game industry? Where

did you learn to do voice-over

work?

Chris Borders: I started working in
video game voice-over (VO) back in
1995 as a VO editor for Interplay Pro-
ductions. I edited VO recordings and
attended many VO recording sessions
for Interplay on such titles as Star Trek:

Chapter 29: Outsourcing Voice 353

Judgment Rites, Stonekeep, and
Descent.

Shortly thereafter I was quickly
promoted to the title of VO supervisor
simply because we were developing
more and more titles and needed some-
one to handle all the VO work that was
coming in. My job was to oversee all
aspects of VO development for Inter-
play games including going over the
script and characters, setting up audi-
tions, hiring a VO casting director,
studio director, and recording studio,
scheduling VO talent, setting up union
contracts (SAG/AFTRA), attending the
sessions, and organizing the material
for editing and implementation.

Being no one at the company had
ever done this job before (and mostly
relied on outside contractors), it was
quite an undertaking. I literally had to
almost start from scratch. First I
started bare knuckles, making connec-
tions with the best possible people I
could find in the VO industry. I spent
many hours on the phone every day
“schmoozing” with various Hollywood
talent agents, VO directors, and record-
ing studios.

After a year of doing this I realized
I could do much of the talent casting
and some of the lower budget titles’
studio direction myself.

Eventually I took on the casting
and studio directing for some major
projects myself, and I only hired a con-
tracted director when I couldn’t take it
on because of overlapping projects.

I now cast and direct the majority
of all Interplay titles including the very
successful Baldur’s Gate series which
has received many high-praised
reviews for its high-quality voice-over
acting.

What range of budgets are you see-

ing for voice-over work in today’s

games from low to high?

Most of the games I work on have good
budgets that allow me to hire better
than average VO talent and some celeb-
rity film actors. However, I occasionally
have to work with much smaller bud-
gets that can sometimes affect the
quality of the VO acting. On Baldur’s
Gate II I had to cast as many as 300
character roles with a budget that was
better suited for 30 character roles.
This became quite a challenge for me,
being I wanted BG2 to have the best
VO possible. I however managed to pull
a few strings and pull it off.

Typically I see most game VO bud-
gets ranging from $20,000 to $100,000
depending on how many characters are
in the game, how much dialogue there
is, and if the producer calls for celebrity
actors.

What in your opinion was a good

value? What was simply

overspending?

In the past before I became a director, I
noticed that when poor quality actors
were hired to save money it always
ended up costing more in the long run.
Thus, budgets had to be raised to
accommodate better actors to make the
part work. This is, in my opinion, a
huge waste, being the work had to be
done twice thus costing more, when
just hiring a professional actor in the
first place and recording it once would
have saved studio cost, director cost,
editor cost, not to mention having to
still pay the poor quality actors (that
will never be used in the final produc-
tion) their session fee.

However, just hiring a bunch of
famous celebrity actors so you can have

354 Chapter 29: Outsourcing Voice

big names on your title is not always a
good idea either. Most great games
(unlike motion pictures and TV) don’t
rely on famous box office actors to
make them sell. I will hire a celebrity
actor mostly because I know it will
make the character part really shine
due to that actor’s abilities. And if the
game player recognizes that actor’s
voice while playing the game, then all
the better.

On the other hand, if you are mak-
ing a game based on a famous motion
picture or TV show, etc., then it might
be in your best interest to hire the
same actors (if obtainable) that origi-
nally acted in the film, TV show, etc.
This will make the gaming experience
similar to the original product. But
again, one must use discretion when
doing this, especially if the original
actor will cost you your entire game
budget.

All in all, I try to hire experienced
professional VO actors that fit the parts
well. There is a huge amount of tal-
ented VO actors out there. They may
not have recognizable names that the
general public will know, but they will
do the job well and will not cost you
your entire budget.

What preparation should the devel-

oper and producer have on hand

before they approach you for voice

work?

The most important thing to start with
is a good script with well-defined char-
acters. This is half the battle. One thing
I have seen over and over through the
years is a great game with a poorly
written script. I heard this great quote
by rock singer Iggy Pop that I always
use when asked about why some
scripts should be rewritten: “A stale

waffle with a bunch of syrup on it will
still taste like a stale waffle.” In other
words, if the script does not read well,
no actor on earth will make it better. Of
course, many game developers don’t
always have a prolific scriptwriter on
staff. For this reason I suggest con-
tracting a professional “script doctor.”
A script doctor will take your script and
make it better for an actor to read so it
sounds more natural or funnier
(depending on what type of game script
it is) and will not change the main idea
that the original writer was trying to
achieve.

Also, have a budget in mind. If you
don’t know how much it will cost to
record the VO, your designers may
create a monster. In other words,
designers will add voice-over parts as
much as can fit into the games’ system
limits. If you don’t have enough money
to fulfill this much VO, things may have
to be greatly refigured, taking up valu-
able development time.

If you already have a rough idea of
how much money it will cost to accom-
plish what your designers are design-
ing, you will be better prepared in
keeping on track and on budget.

What preparation do you do? How

do you plan the voice-over work?

How do you do the casting for the

different roles?

I first start by meeting with the devel-
opment team to discuss the title and to
give them an idea of what kind of bud-
get they will be looking at based on
what they are trying to achieve. Once I
have character descriptions I can start
the process of casting actors. I do this
two different ways depending on the
title and how much time I have to com-
plete the VO work. If I know exactly

Chapter 29: Outsourcing Voice 355

what the designers are looking for and
have little time, I can just cast actors
that I know will work well for the vari-
ous characters. On the other hand, if
the designers have very intricate char-
acter descriptions or don’t exactly
know what they are looking for, I will
set up voice auditions so they can listen
to many different actors voicing sample
lines for each character. This will take
slightly more time, though the end
result usually is dead-on to what the
character designer was thinking
originally.

Once I have a final script in hand
and actors have been cast in the various
roles, I then proceed to schedule the
various actors for work. This is very
involved, being I have to schedule the
proper amount of time with each actor
to complete the part, negotiate the
actor’s session fee (within budget), and
schedule studio time.

Then from there we start recording
the parts. This can take anywhere from
a couple of hours to a month depending
on how many characters there are and
how much dialogue needs to be
recorded.

Once all the scripted dialogue (VO)
is recorded, picks are made and the VO
files are edited and implemented into
the game for testing.

You use SAG actors, right? How

does that work?

The term SAG stands for Screen
Actors Guild. SAG is an actors union
that the majority of professional screen
actors in America belong to. So in order
for a game company to hire a union
actor, someone must be affiliated as a

SAG union payroll service or signatory.
Many game companies do this them-
selves, which is very simple to set up
with SAG.

However, it is not impossible to do
it sideways using a SAG payroll signa-
tory service. This service will create all
the contracts based on the deals that
have been made with each actor’s man-
ager or agent.

There are, however, extra fees
involved with hiring a union actor.

12.65 percent on top of the actor’s
fee is for the actor’s pension and health
benefits (this fee goes directly to SAG).
Many agents charge a 10 percent fee on
top of the actor fee, being they are the
ones who are representing the actor.
And of course if you use a union signa-
tory, they will also charge a small fee
for their services.

AFTRA (American Federation of
Television and Radio Artists) is also an
actors union that can be used to hire
union talent (many actors belong to
both SAG and AFTRA). All the rates
and fees are the same as SAG.

TOMMY TALLARICO SAYS: A lot of
games record with non-SAG actors as
well; it’s just a lot harder to find talented
non-SAG people to act. Although it may
seem cheaper to go non-SAG in the
beginning, it could end up costing you a
lot more because of the amount of time
and takes.

For a smaller project (couple of
hundred lines), you’re safe going the
non-SAG route. If you have 500 lines or
more you definitely want to consider
doing it union. In the long run you’ll be a
lot happier.

356 Chapter 29: Outsourcing Voice

What happens at a voice recording

session? What facilities does the

studio have to make it a voice-

recording studio? How do you

evaluate a studio?

When looking for a recording studio to
record voice-over, quality should be
your first objective.

The studio should have a profes-
sional staff, state-of-the-art digital
recording equipment, and a very quiet
and dead sound booth. Things like a
nice lounge, good food, and a sexy
receptionist are not important unless
entertaining your expensive talent is
more important to you than the record-
ings you will get from them. Most of
today’s professional voice-over record-
ing studios should have the ability to
record voice-over digitally to hard disk
or digital tape (DAT), and a sound booth
that is designed for VO.

Most music recording studios have
ambient rooms so musical intruments
like drums and guitars sound better.
This is not what you want to record VO
for CD-ROM games. If you are sup-
posed to be listening to your VO char-
acter in an outdoor setting, recording
them in an ambient VO booth will not
sound like it was recorded outside, but
in an ambient room. And there are no
special studio tricks that can remove
this “room ambiance” well. However, if
you start with a dead room with no
ambience, it is simple to later add a
room ambience or a stadium ambience
using a digital reverb.

The recording process is fairly sim-
ple. The actor or actors sit in the VO
booth, and the director and recording
engineer sit in the control room, usu-
ally with a thick piece of glass between

them so they can see each other. The
actor will talk directly into a high-
quality condenser microphone and lis-
ten to him or herself back with head-
phones (this is optional as some actors
prefer not to hear themselves through
the mixer). In the control room, the
director has a small microphone that
can be turned on or off from a button
near the director seat that patches into
the mixer so he or she can talk back to
the actor to give direction. The record-
ing engineer makes sure all the record-
ing levels are correct by monitoring the
session and also watches the tape coun-
ter and sometimes takes notes as to
how many takes were done per line and
what time each take was recorded, so
later the editor can reference these
recording notes. A good studio will also
record the director’s voice as well; this
way the editor has a second reference
as to what take is what and what is
going on in the session.

How actors are recorded is slightly
different depending on the script and
how the game’s characters interact
with each other and the player.

In many games, VO characters
interact with each other throughout the
script. It is sometimes best to record
many actors together at the same time.
This is known as an ensemble session.
Each actor is set up in the booth with
his or her own mic and patched into the
mixer on a separate recording track.
This way the scripted character inter-
action sounds more natural, yet there is
still enough separation to allow the edi-
tor to edit the various characters’ takes,
so different reads can be implemented.

The other type is just recording
one actor at a time. This is the most

Chapter 29: Outsourcing Voice 357

common style of recording for CD-
ROM games, as you are in a one-on-
one situation and can pay close atten-
tion to just one character at a time.
This is also a much more cost-effective
way to record, being that it is far easier
to schedule an actor for four hours (or
less) to complete the part versus hav-
ing to block out a full eight-hour day
using multiple actors only reading their
occasional parts over that long time
span.

How many takes does it require for

the talent to get their lines? How

much voice work can an actor do in

a session?

Generally a standard VO session is four
hours as per most actor union rules and
regulations. After four hours the talent
can charge more for an additional four
hours (or less) and is required to have a
one-hour lunch break. After eight
hours, again more fees will apply and a
one-hour dinner break.

Most actors will require as little as
two takes and as many as ten takes to
read the part to the satisfaction of the
director. Some actors take longer just
because, and some can hit it “right on
the head” after the first take. If the
casting director and the recording
director do their work correctly, there
is no reason it should have to go
beyond ten completely read takes.
After that you might have a very frus-
trated actor on your hands. Many
seasoned VO actors will ask you if they
are really the right person for the job if
you just can’t get what you are trying to
get. And rightfully so, being that actor
may have other VO jobs that same day,
and it is very hard on their voice to
keep repeating the line over and over

when they may not be the right
performer in the first place.

TOMMY TALLARICO SAYS: Remem-
ber, a SAG actor can only do three
different characters within those four
hours. You have to pay extra if you want
them to do other characters, even if it’s
only a few lines.

The other thing you may want to
mention is that you can’t mix SAG and
non-SAG actors on a project. If you go
SAG, everyone has to be SAG.

What is the most unusual thing

about your job that not many other

people in the industry have much

awareness about?

Well in general, the entertainment
industry is a far cry from your average
desk job. However, there are many sim-
ilarities as well. On one side I get to
work with some of the most talented
actors on earth, and I get to hear some
really great stories firsthand (sorry,
National Enquirer, my lips are sealed).
On the other, I have very detailed
schedules I have to maintain; I must
keep up a professional outlook, and not
every actor is a pleasure to work with
(however, this is not the norm). So,
when people say to me, “Gee it must
be cool doing what you do for a living,”
I am quick to remind them that it’s not
all what it sounds like, and even I have
frustrating days like anyone.

Here is a funny story I like to tell
about how strange my job can be. I was
working on the Interplay game title
Star Trek: Starfleet Academy, and we
were shooting full motion video on a
green screen at a well-known Holly-
wood set just across the street from
Paramount Studios. I had to be up by
4:00 A.M. and on the set by 6:00 A.M.,

358 Chapter 29: Outsourcing Voice

TE
AM
FL
Y

Team-Fly®

and I was leaving the set by as late as
10:00 at night. So needless to say I was
very tired. We were in the middle of a
break and I was looking over some of
the dailies, and up walks actor William
Shatner from his private trailer/dress-
ing room. Being we were filming Mr.
Shatner for this production, this was
fairly normal; however, I was in one of
those strange (too much caffeine, not
enough sleep) trances, and Mr. Shatner
(in full Starfleet dress uniform, I might
add) starts asking me about the tech-
nology we are using to make this game,
and at that moment I freaked in my
mind and thought to myself, “Crap!
Captain Kirk is standing here asking
me about technology, what a strange
life!”

What trends are you seeing in

voice-over work in games?

With the sound quality in games getting
better and better every year, gamers
are noticing game sound more than
ever before. Just five years ago when I
started in this business, not one game
reviewer ever mentioned the sound in
a game, much less gave it a review.
Now in 2001 it is fairly normal to read
many game reviews on voice-over,
music, and sound design. So it is more
important than ever for a game to have
high-quality VO done by professional
actors, rather than just grabbing the 2D
artist down the hall and having him
record his best impersonation to the
portable DAT recorder.

My goal is to try to achieve a simi-
lar quality that a great motion picture
has when it comes to voice-over acting
in the games I work on. Though our
game budgets are far less than a multi-
million-dollar film, it can still be done

within reason. I keep reading reviews
on what the gamer did not like about
the VO, and I try to improve it within
the boundaries that I am stuck with.

What are some mistakes you or

projects you have worked on made

in regards to voice; can you avoid

them now?

The biggest pitfall I have to deal with is
the VO programming in a game. On
some titles the character keeps repeat-
ing the same line over and over every
time the player clicks on the character.
I can’t tell you how often I read a
review where the reviewer says, “I got
so sick of hearing that character say the
same thing over and over, I just turned
down the volume to zero so I could fin-
ish the game.” I am trying my best to
combat these types of problems before-
hand with the designers and program-
mers so this does not happen on future
titles. VO programming is getting
better, however it is still not perfect.

How do you control the creeping

nature of many game projects from

affecting your budgets, specifically

in requesting retakes or reschedul-

ing of talent time?

It is always tough when you propose a
VO budget early for a game and it turns
out that you needed more money to
complete the VO once it is near com-
pletion. I always try to pad my VO
budgets best as I can so there is no “we
can’t afford any more” from the pro-
ducer if it looks like a part has to be
redone or some of the actors ended up
costing more than I anticipated. It
doesn’t always work in every case;
however, most of the times I have to
ask for more budget monies it was

Chapter 29: Outsourcing Voice 359

because the designers decided to add
ten more characters at the last minute.

What was your most challenging

game project? Which game were

you most proud of?

I am always proud of everything I work
on, however a couple projects I am
especially proud of are: Baldur’s Gate
II: Shadows of Amn, Baldur’s Gate II:
Throne of Bhaal, Baldur’s Gate: Dark
Alliance, Star Trek: Klingon Academy,
Star Trek: Starfleet Command, and Fall-
out: Tactics.

My most challenging project was
by far Star Trek: Klingon Academy. It
was a huge undertaking finding as
many as thirty actors that could sound
like a true Star Trek Klingon. Auditions
went on for weeks before I found the
right actors. The studio sessions were
even tougher. . . “No, no, more Huuq in
that line, and more anger!” I even had
to fly all the way to Toronto, Canada, to

record extra VO and ADR (Automated
Dialogue Replacement) with famed
actor Christopher Plummer, who
voiced and acted the part of General
Chang. Christopher Plummer is a very
talented actor! This game took almost a
year to complete just my work.

TOMMY TALLARICO SAYS: I think one
very important element that is not
addressed here is the actual script writ-
ing itself!! You can have the best actors
in the world, but if the script is terrible it
doesn’t matter how many Academy
Awards they’ve won. A lot of times the
designer is put in charge of writing a
script. Unless the designer is very tal-
ented, this really shouldn’t be done!

The designer could certainly pro-
vide a treatment or first draft for a script,
but I would highly recommend hiring a
proper scriptwriter to at least check over
the work. Scriptwriting is a lot harder
and more important than most people
think!

Voice-Over Script for the Orc Peon from

Warcraft III

As Chris Borders discussed in his
interview, one of the most common
mistakes is to record only one line for
an action that will occur repeatedly in a
game. This is doubly painful since it is
relatively inexpensive to record multi-
ple lines, and some basic scripting
provides the logic for choosing which
line to say. For example, Blizzard has
always placed cute one-liners that are
triggered each time the player clicks on
one of their units in the Warcraft series
of real-time strategy games. The game
chooses the lines randomly from a set
of common phrases and notices when
the player clicks on a single unit too

much and triggers a different set of
lines. In the tradition of the reverse
design document, here is the script for
the orc peon in Warcraft III:

ORC PEON: A character that sounds
like a good-natured, but slow younger
brother of Yoda.

ORC PEON

In response to the player’s clicking to

select.

Yes?
What you want?
Humm?
Hrmp?

360 Chapter 29: Outsourcing Voice

ORC PEON

In response to the player’s harassment

through clicking.

What!?
Me busy. Leave me alone!
No time for play!
Me not that kind of Orc!

ORC PEON

In response to the player’s direction to

carry out a task:

Work. Work.
I can do that.
Okey dokey.
Be happy to.

ORC PEON

Announcing that he has finished con-

structing a building.

Work com-plete.

And finally, I leave you with the immor-
tal words of the orc grunt:

ORC GRUNT

Zug. Zug.

Chapter 29: Outsourcing Voice 361

This page inten tion ally left blank

Chapter 30 > > > > > > > > > > > > > > >

Outsourcing Sound

Effects

“Gulp, uhh, huh-huh, gulp! Bleh ---”

—Trent Reznor of Nine-Inch Nails—absolutely nailing
the sound of a drowning man for id Software’s Quake

Sound effects are tremendously impor-
tant for games as they are in cartoons
and even more so in movies. As Tommy
Tallarico is apt to wax on about, games
are one-third audio (for the accountants
among us, the gameplay and the graph-
ics would be the other two). So much
attention with game making is placed
on making the graphics scream through
your eyes and grab hold of the back of
your skull and glue you to the screen
that sound effects are never properly
appreciated for the indispensable
impact they deliver in a game.

It seems appropriate to me then,
that id Software with technical genius
John Carmack at the helm would be a

pioneer with audio and join up with
Trent Reznor of Nine-Inch Nails to pro-
duce all of the sound effects for Quake.
I must have played hundreds of hours
of deathmatch Quake with Sean and
Zach, and I will never be able to forget
just how incredibly clean Trent Reznor
produced the sound of a nail gun’s nails
ricocheting off the stonework in the
halls of Quake. Or the painfully real
sound of a man who has stayed under-
water for too long gulping down
precious air. (My understanding is that
Trent did some method acting for this
one!)

So, let’s dig into sound effects!

Interview with Adam Levenson

Erik Bethke: Would you provide a

short background on yourself and

what role you play in audio work in

the game industry?

Adam Levenson: I started playing
music at about six years old. Yes, I was
a drummer. I was also fascinated by
cassette machines and liked to create

collage style recordings of just about
anything I could find. Many years later,
after surviving adolescence, I com-
pleted my bachelor’s degree in orches-
tral music at Boston University. While
studying at BU, I worked as a freelance
orchestral percussionist in Boston area
orchestras and toured internationally

Chapter 30: Outsourcing Sound Effects 363

playing avant-garde contemporary
music. After graduating, I rebelled
against the staid classical world, moved
to New York, and played in a rock ’n
roll band. Eventually, the East Coast
weather and the groveling existence of
a drummer in a rock band got the best
of me, and I decided I needed a more
satisfying creative life. I moved out to
LA to study in a cutting-edge masters
degree program in world music at
CalArts. During my time at CalArts, I
commuted up to San Rafael, California,
to study North Indian classical drum-
ming on the tabla. After CalArts, I thor-
oughly immersed myself in the study of
Indian and Middle Eastern music for
about five years. I worked as a dance
accompanist, playing live for ballet and
modern dance classes in San Francisco
and Berkeley. Accompanying eventu-
ally led to composing for dance compa-
nies. One of the choreographers I was
working with had a husband who was
leading up development on an
edutainment title for Broderbund (now
I’m dating myself). He heard my music
and decided to offer me a gig to produce
sound and music for his game. I had
never even seen an Apple computer.
Soon I was freelancing for several game
companies and finally landed a full-time
gig at Trilobyte in Oregon in 1996.
Since joining the Interplay audio team
about four and a half years ago as a
sound designer, I am now audio direc-
tor at the company. Continuing my pur-
suit of educational masochism, I
recently finished a certificate degree in
C++ programming.

My role in game audio production
is directorial while remaining very
much hands-on with respect to techni-
cal design, music supervision, sound
design, and post production.

What range of budgets are you see-

ing for audio in general and sound

effects specifically in today’s games

from low to high?

The sound effects portion of game
audio production is enjoying a higher
profile on next generation platforms,
and budgets are increasing to meet the
demand. Consumers expect to be
entertained by today’s game sounds; it
no longer serves a solely utilitarian
role. Smart developers are careful to
customize each project’s sound effect
budget to meet the needs of the game,
so budgets vary widely depending on
the demand for sounds.

Average budgets for sound effects
production, not including game audio
mixing and implementation, range from
$20K to $60K. Some AAA titles come
in with much larger sound effects bud-
gets at over $100K, and there are a few
publishers and developers with far
more limited resources coming in at
lower than $20K.

What preparation should the devel-

oper and producer have on hand

before they approach you for sound

work?

Creating an entertaining sound effects
experience for the end user means cre-
ating mood, stirring emotion, and
delivering believability. All of this relies
on getting as much detail as possible
from the developer regarding each ele-
ment of the game you’ll be dealing
with. For example, your next fabulous
RPG game has a gigantic white dragon
in it. The thing is so huge that the
game practically crawls to a complete
stop whenever it appears. Sure, anyone
can go in, get some dragon sounds
pulled from various libraries, and slap
them into the game engine. You’ve got

364 Chapter 30: Outsourcing Sound Effects

sound now, but who cares; it has noth-
ing specific to do with the character
design. The trick is to ask the designer
questions about the creature. Is it a
good dragon, is it a bad dragon, is it a
very, very bad dragon? What is its
motivation? Seriously. If you know
something about who this dragon is,
then you can make sound design deci-
sions that will build character into the
voice and create something that when
matched up with picture, raises the lit-
tle hairs on your forearm.

Producers and designers should be
ready to answer your detailed questions
about areas, creatures, weapons, vehi-
cles, about every aspect of the game.
Their answers will help you create a
more immersive sound experience and
may even help them to sharpen their
vision of the game.

What preparation do you do?

Preparation for sound effects produc-
tion is the most important stage in the
sound development process. Without
two or three weeks dedicated to prepa-
ration, you are usually flying by the seat
of your pants and coming in for a crash
landing. As I said in the previous ques-
tion, you need to take the time to ask a
lot of detailed questions, seek out
what’s between the lines, and start for-
mulating an aesthetic and technical
approach to your sound design.

As you learn more about the design
and contents of your game project,
you’ll have to make suggestions regard-
ing sound effect interactivity and
playback. This is the sound designer’s
job, not really a programmer’s job. You
know how things will need to work to
sound great, so come up with a vision,
and use your technical creativity to dis-
cover a way to make it happen. Taking

the time to learn as much about your
project as possible will only make you a
better salesperson when it comes to
presenting your ideas.

How do you plan the audio work?

Planning? This is the video game indus-
try, not auto manufacturing, right? Not
really. Sound effect production is just
one part of a much larger audio devel-
opment process involving dialog, music,
ambient sound, and more. You not only
need to coordinate your delivery and
payment schedules with the developer
and other audio creators, but you need
to coordinate how your sounds are
going to aesthetically fit into the overall
game mix. It’s a production line just
like an auto factory. People working on
putting cars together don’t just ran-
domly pump rivets into metal, well, at
least we hope not. Everything they do
is based on a predetermined plan. We
can be more flexible than that since this
is a creative process, but be careful;
lack of planning is going to keep you at
the office into the wee hours pulling
your hair out, and there’s a limited sup-
ply of hair for many people.

Where did you learn to do audio

work?

From early tinkering with cassette
machines, to layers and layers of lossy
four-track bouncing, to the first version
of Protools, most of my audio education
has been hands on. Put aside my mas-
ter’s degree in music and a summer of
audio engineering classes in Sonoma,
California, and really it comes down to
getting hands on and getting humble.
Humility will allow you to learn from
the talented people you meet. Audio
production is creative work; there are
no rules with the exception of some

Chapter 30: Outsourcing Sound Effects 365

basic technical requirements, and you
can learn from almost anybody. I’ve
been extremely lucky to have worked
with some of the most talented people
in the industry, so I’ve absorbed the
most from them.

How do you evaluate a studio?

We’re talking specifically about sound
editing and design here so studio is
only an issue in that you want to see a
rig that is compatible with standard for-
mats, can produce a high-quality sound,
and provides sufficient tools to work
with sounds. Yes, I going to say it:
Protools. Digidesign has spent years
working on this juggernaut of sound
design. It provides multiplatform com-
patibility, is an extremely portable and
widely used format, and doesn’t neces-
sarily burn a hole in your wallet. Well,
not such a big hole anymore.

What is the most unusual thing

about your job that not many other

people in the industry have much

awareness about?

There is a stunning lack of awareness
in the video game industry when it
comes to sound. Most producers have
no idea how complex, work intensive,
and intriguing audio work can be.
Post-production is like black magic to
most industry people where strange
terms like foley and headroom are
thrown together with acronyms like
PL2, AES/EBU, and SD2. Then there’s
3D audio, but don’t get me started.
Audio production combines program-
ming, audio engineering, music
composition, post-production, acting,
directing, and the kitchen sink. Sound
designers, of course, have it the hard-
est, since most people can relate

somewhat to music. They’re familiar
with music studios, sort of. But they’re
probably not familiar with recording the
family dog, grunging it up in your favor-
ite DAW, harmonizing, adding a layer of
your own recorded voice perversions,
and matching the whole mess to pic-
ture. No.

What trends are you seeing in

sound effects work in games?

Yes, I’m biased, but this is exciting.
Sound effects playback in games is
changing, and the changes are revolu-
tionary. The age of games with all
prerendered sounds is ending, and
real-time mixing is taking over. This
will bring more interactivity, more
believability, and since sounds are being
mixed for specific conditions, more
emotional impact for the player. Every-
thing we talked about at the beginning
of the interview.

The other trend for SFX is higher
production values in game movies.
Users want cinematic experiences
when they’ve got their Xbox hooked up
to their Sony Dream home theater sys-
tem. They just watched Saving Private

Ryan, and their popcorn butter-stained
fingers are reaching for your latest
game project—don’t disappoint!

What are some mistakes you or

projects you have worked on made

in regards to sound; can you avoid

them now?

Tons of mistakes. It’s a cliché, but
that’s how you learn, and I don’t think
mistakes are ever really avoidable in
such a large and complex undertaking
as game SFX. You just learn how to
deal with the problems better.

366 Chapter 30: Outsourcing Sound Effects

How do you control the creeping

nature of many game projects from

affecting your budgets, specifically

in requesting retakes or reschedul-

ing of talent time?

Real estate people talk about location,
location, location, right? You need to
talk planning, planning, planning. Like
we talked about before, preparation is
the key to success. Now, there will
always be unexpected things like dialog
pick-ups and changes to game design
that make you hit your head against the
wall repeatedly, but first make sure you
record the sound of your head smashing
into the wall. Take the time to carefully
document during the preparation phase,
not just a sound effects doc but also an
audio programming doc. Everyone
needs to be on the same page going
into a project; it’s your responsibility to
make sure everyone understands what
sounds need to be done, and to try to
cover contingencies.

Below is a list of amazingly tal-
ented folks. All of them come highly
recommended and will make your game
a better game through sound.

Tommy Tallarico Studios, Inc.

Tommy Tallarico
President
President/Founder, G.A.N.G. (Game
Audio Network Guild)
[www.audiogang.org]
Host, writer, co-producer, “The Electric
Playground” and “Judgment Day” tele-
vision shows
tallarico@aol.com

Immersive

Adam Levenson
Audio Director
6 Vista Cielo
Rancho Santa Margarita, CA 92688
Phone: (949) 433-9079
adam@immersive-sound.com

TikiMan Casting

Chris Borders
Dialogue Director
Phone: (949) 363-9548

Huge Sound

Chance Thomas
Phone: (559) 658-9266
Fax: (559) 658-9267
Cell: (559) 283-HUGE
www.HUGEsound.com

Jesper Kyd Productions

New York City
Game clients: Activision, EA, Eidos,
Microsoft, BioWare, Shiny, IO
Interactive.
Latest game scores: Brute Force,
Hitman 1 and 2, Minority Report,
Freedom, MDK2, Messiah
Studio: 212-987-9441
www.jesperkyd.com
Representation:
kirsten@jesperkyd.com

Owner/Composer: kyd@jesperkyd.com

Chapter 30: Outsourcing Sound Effects 367

This page inten tion ally left blank

TE
AM
FL
Y

Team-Fly®

Chapter 31 > > > > > > > > > > > > > > >

Outsourcing Writing

“It’s a good day to die.”

—The 113th Klingon lacking an original line in a Star Trek story

I am taking a step off the stage, and I
am grateful to hand this chapter’s baton
over to Scott Bennie, the designer,
writer, and producer for Star Trek: 25th

Anniversary and Judgment Rites, as
well as a frequent writer for the
Starfleet Command series.

Computer Game Writing

By Scott Bennie

A book could probably be written on
writing for computer games, but a few
paragraphs are going to have to suffice.
So here’s some advice for prospective
writers in the electronic game industry.
These laws are absolute, unfailing,
applicable in all circumstances, and if
you fail to pay heed to every single
word, you will not only suck as a game
writer, you’ll fail at life in general.

In other words, use your discretion
when applying these rules.

Know Your Game; Know YourKnow Your Game; Know Your

Business

This should go without saying, but it’s
best to start with the basics. If you’re
an outside contractor, it’s quite possible
that you may not understand the game
you are writing. This is a problem. Fix
it.

A writer who’s uninvolved in the
game industry may find the process of

making games intimidating. Relax. You
don’t need to understand the code or
the AI. What you do need to understand
is every feature of gameplay and how
they interrelate. You need to under-
stand what the player will likely be
seeing and experiencing when your dia-
logue plays.

Play games similar to the ones you
are writing. Talk to fans of the genre
and determine what they like. Grab as
much of the developer’s time as you
can get and discuss what they’re
expecting to see. Understand that bad
things happen in the development
cycle. Computer games are complicated
by the fact that nothing’s written in
stone until the game ships. So even if
you know the product that you’re
designing for, some kid down in Q&A
may walk up to the producer and tell
him, “this game sucks!” and the whole
game could change overnight. Or some
guy in a business suit who’s never

Chapter 31: Outsourcing Writing 369

played a game in his life because it
might have distracted him from his
shark-like quest to achieve his MBA
may call a meeting and announce:
“Your game Xanadu is just like Nimrod.
We just saw Nimrod’s sales figures, and
it tanked. But Hamsterquest is a huge
seller. Make Xanadu like
Hamsterquest.”

The really sad thing is that this can
(and often does) happen multiple times
on a project. Don’t get too attached to
your work.

Brevity is BlissBrevity is Bliss

The biggest problem people encounter
when writing for games is that they
WRITE TOO DAMN MUCH! They
write truckloads of unbroken exposi-
tion. They write characters who don’t
know how to shut the hell up and take a
breath. I know they do this because I’ve
done it too.

Okay, so now that I’ve confessed
my shameful secret, let me tell you
how to break the habit.

First, be ruthless with your prose.
Get together with other authors, read it
out loud, and accept their recommenda-
tions on what to cut. In everything you
write, there’s going to be “cool bits,”
lines of which you are particularly
proud. Do not exempt them. If you can,
distill the cool bits into smaller but
equally cool bits.

Second, study screenplays, espe-
cially action film screenplays or
animation storyboards. They’re the
closest popular medium to games when
it comes to storytelling; both are pri-
marily visual experiences, and in both
mediums excess dialogue kills the pace.

With rare exceptions, condense
each speaking part to three or four
lines of dialogue. Thirty words at a time,

maximum. If you need to exceed that in
order to deliver exposition, try to break
it up between multiple characters.

Remember the seven-second rule.
Studies have shown that in any visual
medium, you can only hold the audi-
ence’s attention for an average of seven
seconds before their minds begin to
wander, so you need to cut to a new
visual or event to keep their attention.
No matter how good your dialogue is, if
you dedicate 20 seconds to a long
speech, it will die. So treat wordiness
like a disease.

Speak the Speech I Pray YouSpeak the Speech I Pray You

(Okay, I had to get a Shakespeare refer-
ence in here somewhere.) When you
write dialogue, speak it out loud. Act it
out, over and over again. Perform it
loudly, convincingly, as an actor would
do it in a studio. Nurse your inner Wil-
liam Shatner. Then, after your throat’s
gone hoarse, take everything that was
hard to pronounce, everything that ran
together without a breath, everything
that sounded awkward and hokey, high-
light it on your word processor, and hit
the Delete key and don’t look back.
Confine those words to the graveyard
of things that didn’t deserve to be
released into the world.

Then do it again until you’ve got it
right.

Develop an ear for interesting, nat-
ural dialogue. Record a call-in radio
show, then transcribe it. It’s amazing
how different people sound in real life
as opposed to a story. You probably
don’t want to fully adopt the cadences
of the real world in your dialogue (fic-
tion is after all, not real life but the
condensation of interesting bits), but it
doesn’t hurt to infuse your dialogue
with more natural patterns.

370 Chapter 31: Outsourcing Writing

Sometimes your genre (say, a
medieval fantasy game) will require you
to write period or anachronistic dia-
logue to evoke the proper mood. You
should try to capture it. However, if
you’re required to make a choice
between beautifully written evocative
period dialogue and clearly explaining a
game concept or giving direction to the
player, choose the clear explanation.
Keep things close enough to a modern
tenor that you will be understood. The
needs of the game outweigh the needs
of setting a pretty mood.

On Dialogue TreesOn Dialogue Trees

Some games, such as computer RPGs,
have dialogue trees where the player
has to choose between a number of
dialogue selections. Too often the dia-
logue’s scripted with one obviously
correct answer (almost always “the
nice approach” or “the smartass
approach,” etc.) Unfortunately this can
make a game too predictable. The
answer should not always be the obvi-
ous one. You need to mix attitudes;
make it so Character A responds best
to threats, Character B will always try
to stall for time, Character C values
politeness and respect, and Character D
respects people who get into insult
duels with him. Character E likes a
chance to talk tough, but he’ll settle
down if you acknowledge him once he’s
had a chance to display his manhood.
Character F will be panicked, but if you
carefully calm him down, you can then
have a reasonable conversation, etc.

Once you’ve got your character
matched to the personality that’s
needed to “win” the dialogue tree, you
need to leave hints about the charac-
ter’s personality in the environment.
Players can hear stories about people

from other people, find legends in
ancient tomes, spot the graves of the
people who were killed by Character D
because he thought he was being
patronized, etc.

In teaching, a multiple-choice test
is defined as “a test where the correct
answer is obvious to an informed stu-
dent.” Dialogue trees are multiple-
choice tests. There needs to be a way
for the player to learn what’s the best
approach to a problem aside from trial
and error, because trial and error sucks.

Use Story as a RewardUse Story as a Reward

Reduced to a behavior, games are all
about the cycle of challenge and reward.
If that makes a game designer sound
like B.F. Skinner or Pavlov, if the shoe
fits, wear it. In a game, a designer sets
a goal, which the player is encouraged
to meet. When they meet that goal,
they receive a reward.

Treat the story as one of the most
important rewards. Take your story and
break it down into segments. Make
sure they are regularly fed new revela-
tions and more significant plot points as
one of the rewards of the story. When-
ever you can, cultivate mystery and use
foreshadowing to build the player’s
expectation that something big is going
to happen, then make sure the payoff is
big enough to meet the player’s
expectations.

When you can, make the story (and
the game) tied to the character’s
actions. Don’t just reference future
events, reference past events, player
accomplishments, and failures.

The 80 Percent Stereotype RuleThe 80 Percent Stereotype Rule

If you’re working in an established
genre, you need to fulfill the gamer’s
expectations, and like it or not, the

Chapter 31: Outsourcing Writing 371

player expects archetypal (meaning
cliché) characters to act in expected
ways. On the other hand, the overuse
of stereotypes is not only offensive
from an artistic standpoint, their over-
use can destroy the drama. In Star

Trek, the first time a Klingon ever said,
“It’s a good day to die” it was good
drama; but by the thirtieth time it had
become bad comedy.

Whenever you can, take the cliché
and twist it a little: “I don’t care if it’s a
good day to die or not, today one of us
is NOT walking away!” references the
cliché and thus gives the player a sense
of familiarity but is better at maintain-
ing the drama.

I’d like to suggest the 80 percent
stereotype rule. If you can make a ste-
reotypical situation or character play
out differently than expected 20 per-
cent of the time, you preserve the
comfortable feeling of the expected
while still providing the player with
surprises. However, when you set up
an expectation and break it, the player
eventually needs to understand why.

Hint, Hint, and HintHint, Hint, and Hint

And that leads us to the second really
big mistake writers make: A computer
game lives or dies depending on how
well it provides the player with clear
direction. Nothing frustrates a player
more than not knowing where to go and
what to do. It’s okay to hurt them, to
surprise them, to annoy them, but
never ever confuse them. Players do
like to explore, but they also want a
safety net, so make sure there’s always
a clear task available for them to per-
form when they get bored with
exploring the world.

If your game is mission based, all
major mission objectives need to be

codified and available to the player at all
times through the scenario. Mission
objectives need to be crystal clear. If
you can, get hold of some blind testers
while you’re writing the scenario, read
the scenario objectives to them, and
ask them for feedback on what they
think the scenario wants them to do.
You should know within five minutes if
your directions are clear enough.

A mission success should never
depend on fulfilling a hidden objective.
On paper, finding the hidden objective
to solve the scenario sounds great; the
reality is that it’s a recipe for frustra-
tion. (A better way to achieve this
desired effect is to tell the player, “We
want you to explore the area; if you find
something interesting, we’ll get back to
you with further instructions.”)

Time related hints to help players
who haven’t solved a puzzle (or items
in the environment such as hint books)
are usually good things. The designers
may not want to use this approach, but
it’s better to cover too many bases than
too few.

Expect SchizophreniaExpect Schizophrenia

The most frustrating thing for writers
coming into the industry to understand
is that you’re not writing a linear story.
You are not writing a screenplay; you
are writing sequences of possible
events that will not become a story
until the player puts them together.

You can (and probably should) limit
the number of possible outcomes, but
(except for linear action games) you’re
not likely to have control over the
exact sequence of events. You (or the
designer) can set up special events trig-
gered by other events so you know that
some events will follow others, but you
need to know that sometimes the

372 Chapter 31: Outsourcing Writing

player will go to Location A first and
then Location B, and sometimes it’ll be
the other way. You need to adjust the
attitudes of game characters to reflect
the fact.

If You Have Time in a Bottle, Don’tIf You Have Time in a Bottle, Don’t

Uncork ItUncork It

Computer games sometimes break
basic rules of storytelling, and that’s
okay. Yes, it makes no sense that Villain
X would not advance his evil plan while
Our Hero spends two years in the wil-
derness looking for gold pieces under
mulberry bushes, so you’d normally
expect some pretty serious conse-
quences for that time wastage. How-
ever, players hate to be pushed. Great
story ideas don’t always translate into
great game ideas, so it’s better to give
them what they want than to do the

game your way and have them take it
back to the store because they hate it.

It’s okay to do an occasional
“countdown to escape” or a “you have a
short amount of time to defeat this par-
ticular foe” sequence to add dramatic
tension, but otherwise, a writer should
accept that “we will not use time limits
as a way to increase the tension” and
learn to live with the smaller palette.

Scott Bennie
33509 Mayfair Ave.
Abbotsford BC Canada
V2S 1P6
(604) 870-1113

(Contact the author at erik@taldren.com for
more information about freelance
writers.)

Chapter 31: Outsourcing Writing 373

This page inten tion ally left blank

Chapter 32 > > > > > > > > > > > > > > >

Outsourcing

Cinematics and

Models

“They want Star Wars for a nickel.”

—Anonymous art house producer

Game development houses are defined
as a collection of programmers and art-
ists who get together to make a game.
So why would it be a good idea to
outsource art from your studio and lose
out on developing the experience with
your own employees?

The basic answer is that you do not
have the artists on staff who have the
expertise or you simply have too much
work to carry out with the artists you
do have. Either way, you would go out
of house only when you do not have the
talent in-house. The classic case is of
cinematics, which require the skill sets
of creating high-res models, texturing
them, animating them, creating
high-res backdrops, and creating the
cinematic sequence. Finally, the cine-
matic crew will go back and add special

effects like explosions or laser blasts
and then hand off the finished cinematic
to the audio team. This is a consider-
ably different skill set than creating
low-res 3D models for your game. Even
houses such as Blizzard and Square,
who are world renowned for their
cinematics, effectively outsource their
movies, as these cinematic teams are
nearly separate entities from the game
teams.

The following interview with Mark
Gambiano covers all aspects of working
with an art house from his experience
at Mondo Media. In the interest of full
disclosure, Mark was the art director
for our in-game low-poly ships on
Starfleet Command I, when my art
team was under three artists.

Chapter 32: Outsourcing Cinematics and Models 375

Interview with Mark Gambiano

Erik Bethke: Would you provide a

short background on yourself and

what role you play in art production

in the game industry?

Mark Gambiano: Growing up, my inter-
ests were divided between art and
electronics, which was a pretty odd
combination back in the ’60s and ’70s. I
couldn’t seem to settle on either one as
a career and majored in both in college.
Video gaming had just hit the scene,
and I spent a lot of time in video
arcades. I had also bought a Mattel
Intellivision console about that time
and was learning my first painful lesson
about game addiction and repetitive
stress injuries. Later, when personal
computers started to become more
affordable in the mid-’80s, I bought an
Atari 800, and computer graphics
looked to me to be a great way to com-
bine both of my long-time interests. I
messed around with 2D paint programs
and even some very crude 3D pack-
ages. Moving up to an Atari 512ST and
later a Mac IIcx, I continued to teach
myself more about 2D and 3D com-
puter graphics and began to create
some portfolio work.

When I decided to get into com-
puter graphics as a profession back in
1990, one of my early clients was
Mondo Media, a company in San Fran-
cisco that was doing 2D point-of-sale
retail demos and speaker support pre-
sentation work at the time. I came in as
one of their first 3D artists, although
much of the work at that time was 2D
NAPLPS vector artwork for the original
Prodigy online service. After a couple
years freelancing, I went to work for
them full time, and we stepped into the
field of game production with a full

motion video title called Critical Path.
That was followed by another full
motion video title The Daedalus
Encounter (featuring Tia Carrere of
Wayne’s World fame). Although it
wasn’t my call to do the games with
video, I was creative director on both
projects and pushed hard to make the
3D as high quality and cutting edge as
possible. FMV games never really
caught on, but the company used the
3D skills developed on our game pro-
jects to solicit contract work from other
developers, either creating game assets
or doing high-res 3D intro cinematics.
Some of the projects I was involved
with as a 3D artist included Zork: Nem-
esis, Blade Runner, Civilization:
Evolution, and Hot Shots Golf. In addi-
tion, I directed or art directed game
assets for Star Fleet Command I and II,
and high-res cinematics for
MechWarrior 3, Alpha Centauri: Alien
Crossfire, and a Japanese Dreamcast
game called Under Cover.

Could you break down what sort of

outsourcing you see going to an art

house? Models, movies, and?

It runs the gamut. Most of the time, we
would get high-res cinematic work from
developers that either didn’t have the
time or resources to do them in-house
or felt that we could do a superior job.
The work usually consisted of design-
ing or redesigning opening, interstitial,
and ending cinematics. Sometimes the
client wanted us to use rezzed-up game
assets, as with Aliens vs. Predator, but
most of the time it was like MechWar-
rior 3 and Under Cover, where we built
high-res models and environments
from scratch. On other games like

376 Chapter 32: Outsourcing Cinematics and Models

Zork: Nemesis and Blade Runner, we
produced high-res 3D environments for
use as stills or Quicktime VR-style
panaramas. On Hot Shots Golf, Star-
fleet Command, Nerf Arena Blast, and
others, we created low-poly in-game
assets. On a couple of the low-poly
jobs, we also did animation, either
key-framed or motion-captured.

What range of budgets are you see-

ing for art production in today’s

games from low to high?

Mondo Media moved away from doing
that kind of contract a couple of years
ago in order to pursue doing original
content for the web, so my figures are a
few years old. Budgets ran from about
$10K to as much as $450K. Most
seemed to be in the $25 to $75K range,
though.

What in your opinion was a good

value? What was simply

overspending?

I think nearly all of our clients got more
than they paid for, so for them it was a
good value. There were very few jobs
that came in where we felt the budget
was even adequate, let alone “fat.” As
to whether their budgets for this work
were excessive in relation to the game
development costs overall, I can’t say,
since we were never privy to that kind
of information.

What preparation should the devel-

oper and producer have on hand

before they approach you for art

production?

It depends on whether the job is for
in-game assets or for cinematics. With
cinematics, we usually get the job
towards the end of the production
cycle, so the look and feel has been

well defined. The problem here was
usually that the client has come up with
a Titanic-level script but has only a
Blair Witch budget. We nearly always
have to adjust their expectations and
come up with timesaving alternatives
to get the work done on budget. In
these cases, it would be better for the
clients to present a general idea of what
they want and let us come up with a
script and approach that provides the
most bang for the buck.

On real-time 3D jobs where we’re
doing game assets, the client really
needs to have their art specs down
solid before handing them off to an art
house. On nearly every project we
were involved in that used custom 3D
engines, many aspects of the model and
mapping specs were either unknowns
or still in flux at the time the client
wanted us to get started. In the worst
cases, they changed well into the art
production cycle and required substan-
tial revisions to the work that everyone
thought was completed. This usually
resulted in delays and additional
charges back to the client for the
revisions.

What preparation do you do? How

do you plan the motion capture

work? Where did you learn to do

art production?

The director or art director usually
does general research on the project
and puts together a file of reference
materials. If the project involves
real-time assets, we assign a technical
director to keep an eye on those
aspects. The TD pours over the specs
with a fine-tooth comb, making sure
that every aspect of what we have to
deliver has been defined. We create
spreadsheets that list all of the assets

Chapter 32: Outsourcing Cinematics and Models 377

and use them to keep track of progress.
Often we end up doing some design
work as well, developing visual con-
cepts for the assets and running them
by the client for revisions and approv-
als. When it gets close to production
time, we select the best artists for the
type of work and schedule their time.

For mo-cap, we subcontract to a
firm that specializes in that kind of
work. We come up with a complete shot
list and discuss the technical challenges
of pulling off the capture session. We
work with them to select the perform-
ers and then attend the session to
direct the action. The toughest one we
had to do was for a hockey game—set-
ting up on a frozen ice rink in the wee
hours of the morning for several days
in a row. Ice is reflective and the shav-
ings tend to obscure the markers, so it
was a real challenge. Plus, all the
moves had to begin and end in a default
position and take place within a rela-
tively small perimeter.

Much of our art production skills
came from on-the-job training and plain
old painful experience. Every job was
an “opportunity” to learn—the specs or
process or client expectations were
always a bit different on every job. It
was up to the directors to make sure
they had a solid grasp of every aspect of
a project, or had specialists in place to
handle those things they could not.

What is the most unusual thing

about your job that not many other

people in the industry have much

awareness about?

Probably the misconception that we are
just some kind of “art factory,” and the
client just puts the script they want in
one end and the animation they envi-
sioned comes out the other side. We

much prefer to be thought of as a part-
ner in a client’s project, and after years
of experience doing very similar things
for a lot of different clients, we’ve come
up with a lot of ways to save them
money and get maximum impact out of
the shots that we produce. What we
need in return is for them to have an
open mind and not expect, as one pro-
ducer aptly put it, “Star Wars for a
nickel.” Most of the time, the clients do
understand this, and ultimately, the
level of quality of the finished product
pleasantly surprises nearly all.

What trends are you seeing in art

production in games?

First, there’s been a huge consolidation
in the game industry—publishers being
acquired by large corporations and ulti-
mately doing fewer titles. Also, the
huge shift in titles towards real-time
3D and away from 2D and prerendered
3D has meant a big drop-off in the num-
ber of clients looking for high-res
prerendered intros for their titles.
Many are trying to use their 3D
engines and game assets to do the
cinematics, which is both a blessing and
a curse. They can do more of the work
in-house, but it usually doesn’t look as
good. Still, with the new GPU-based
3D cards like the NVIDIA GeForce and
ATi Radeon getting so powerful, it’s
only a matter of time before real-time
3D really does look like prerendered
work, and at that point we’ll have the
best of both worlds.

What are some mistakes you or

projects you have worked on made

in regards to art production; can

you avoid them now?

For real-time 3D, the worst one was
doing artwork for clients whose

378 Chapter 32: Outsourcing Cinematics and Models

TE
AM
FL
Y

Team-Fly®

programming teams didn’t have their
act together and either delayed art pro-
duction or caused unnecessary extra
work by changing specs after models
had been built and mapped. I found the
best way to avoid getting caught in this
trap was to produce a small representa-
tive sample of the models requested
and not proceed with production on the
rest until the client had signed off on
them (and agreed that any further
changes could be back-charged). That
way, if the specs changed, we only had
to fix one set of models instead of doz-
ens, and the specter of additional
charges helped motivate them to make
sure their engine was going to be happy
with the models presented.

On high-res work, the biggest trap
was trying to do too much—either in
quantity of shots, quality of shots, or
both—given the budget. Sadly, too
often the budgets were very tight to
begin with. Sometimes management
would have to trim them after the
design was done to close the deal, yet
the expectations had not changed in the
least. Also, it seemed like the budgets
were always a “best case” scenario;
there was little wiggle room in them for
unforeseen problems, and problems
almost always showed up.

One of the worst dangers was with
client-provided models. The client
would tell us they had this or that
model available, so we would cut that
out of the budget. On one project we
really got stung because the models
had been converted from Alias for use
in 3D Studio Max, and they were a
mess—all kinds of extra faces and junk
clogging up the works. Ultimately we
had to rebuild them from scratch,
because it was actually faster than try-
ing to fix them. The project was a fixed

bid, so we got screwed. After that,
whenever a client said they had a model
we could use, we insisted on approving
the model before we would discount
the bid.

How do you control the creeping

nature of many game projects from

affecting your budgets, specifically

in requesting retakes or reschedul-

ing of talent time?

With cinematic projects, it was rarely
an issue. Usually most of the assets
were available, or we used stand-ins
and waited for the models before doing
the final renders. If the wait got exces-
sive, we were often able to get the
client to turn production of that asset
over to us for an additional charge.
They were usually in crunch mode at
the time and it was one less thing for
them to deal with.

Retakes could be a problem with
some clients. We usually did one or two
retakes per shot as a matter of course,
but every once in a while we got a cli-
ent who was a real pain to please.
Usually this was because they were one
of the “I don’t know what I want, but I’ll
know it when I see it” variety. As art-
ists, we did the best we could to make
them happy. If it really started to get
excessive, we let the producer or man-
agement work out some kind of agree-
ment. Thankfully, that rarely happened;
the vast majority of our clients were
very pleased with our work and would
come back to us for their next project.

What was your most challenging

game project? Which game were

you most proud of?

The most challenging one was probably
Critical Path, although The Daedalus
Encounter and MechWarrior 3 are close

Chapter 32: Outsourcing Cinematics and Models 379

runners-up. It was the first time we had
done a game and also the first time we
had tried to combine actors shot on
bluescreen with high-res, animated
environments. We had a motley collec-
tion of 486 PCs, and renders took
forever. To cap it off, we had to design
and produce the game (which was
really only supposed to be a demo) in
only four and a half months. We worked
outrageous hours (my personal best
was 36 hours straight during a 119-hour
week) and were there nearly every
weekend.

I think the work I’m most proud of
from a visual standpoint were the five-
and-a-quarter minutes of high-res
cinematics we did for Under Cover. I
was given a lot of control over the pro-
ject, and as a big anime fan, I was able
to fulfill a dream by traveling to Japan to
meet with the clients and do some
sightseeing and shopping. The work

was challenging since it contained a lot
of human character work, but I think
we produced some really beautiful
shots. I was also really pleased with the
MechWarrior 3 work. It was great
going to E3 that year and seeing our
stuff blown up to wall-size proportions
and slathered all over the convention
hall.

Following are some art houses:

Mondo Media

135 Mississippi
San Francisco, CA 94107
Phone: (415) 865-2700
Fax: (415) 865-2645

Dragonlight Productions, Inc.

19100 Ventura Blvd., Suite 10
Tarzana, CA 91356
Phone: (818) 343-1701
bizdev@dragonlight.com
krissie@dragonlight.com
http://www.dragonlight.com

380 Chapter 32: Outsourcing Cinematics and Models

Chapter 33 > > > > > > > > > > > > > > >

Outsourcing Motion

Capture and

Animation

“Can you motion capture a snake or water falling?”

—The author when on tour of the House of Moves facility

Animation in Games

The overwhelming majority of games
have characters that need to be ani-
mated. The exceptions to this would be
games such as racing and flight simula-
tions, or even the author’s own Star-
fleet Command series, which use 3D
vehicle models that do not require any
animation work.

So if you have kids with football
helmets, monkeys inside of glass balls,
space marines on a ringworld, or
undead zombies, then you need anima-
tion. Animation work is as well suited
to outsourcing as any other art task. In
other words, it is better to have the tal-
ent in house; however, if you have too
much work or just do not have the tal-
ent, then by all means look outside to
solve your animation needs.

The first question you must deter-
mine is whether or not you will employ
artists to key-frame the animation or
retain a motion capture studio and use

motion actors to perform moves and
capture them digitally.

The answer to this question is
really easy if you are animating spiders,
six-legged robots, sharks, snakes, and
blobs; all of these make excellent candi-
dates for key-framing due to the diffi-
culty of training spiders and blobs to be
motion capture performers. When I was
given a tour of the House of Moves
facility, I asked Jarod Phillips all sorts of
annoying questions like, “Have you
motion captured a snake or a water-
fall?” His answer was that they tried
motion capturing a dog at the insistence
of a client, but it did not work out well
and a skilled key-framer would have
performed a far superior job and faster.

Key FramingKey Framing

Outsourcing your animation work is
actually straightforward. Take the fin-
ished model and textured model and
hand it over to the animation house. In

Chapter 33: Outsourcing Motion Capture and Animation 381

addition to the model and texture, you
will need to supply your technical
requirements such as number of bones
and in what data format you want to
receive your animation. You must also
supply a move list that describes in as
much detail as possible the moves that
you want the character to perform.

Typically a key-framer should be
able to perform at a rate of between
one to two moves a day, varying consid-
erably upon the complexity of the
moves. Be sure to indicate in your
move list what moves are intended to
be looping and which are not to loop.

Animation work is priced on the
per-move basis with rates ranging from
$25 to $150 a move or more.

Motion CaptureMotion Capture

Motion capture is the digital science
and art of recording the movement of
humans with multiple cameras and
using it to drive animated 3D models.
In principle, one would be able to
quickly obtain perfectly natural and
fluid animation and drop it right on top
of your model.

In practice, motion capture rivals
the cost in both time and money of key
framing and may cost even more. In
addition, it has been common in the
past for the motion-captured results to
be very poor and require man-months
of cleanup before being usable by the
3D model and game engine.

How Does Motion Capture Work?

The basic idea is to suit up a motion
actor who has some expertise in the
motions to be recorded. For example,
for a SWAT game you choose to motion
capture a police SWAT officer or for a
basketball game you may record how an
NBA star dribbles. The suit is of some

black, stretchy fabric. A couple dozen
little balls are glued to the suit. These
balls are covered with tons of tiny
reflective glass beads, the same sort of
stuff you see on reflective sporting
equipment such as bags for the rack on
the back of a bicycle. These glass balls
are designed to be efficient in reflecting
light of a certain color.

Next in the setup are a bunch of
cameras. The number of cameras var-
ies depending on the facility, with a
typical number being 18. These cam-
eras do not record the movement of the
actor; they record the movement of
those reflective white balls.

The motion is captured in what is
called the volume, the 3D box of space
that the cameras are set up to view.
Outside of the capture volume, the
cameras are blind. To record moves
such as an athlete performing a pole
vault you would probably need to spend
a lot of money setting up the motion
capture cameras in a big open building
such as a large hangar, which would
also involve the costs for transporting
and tuning the system. This is a good
example of when you should probably
break out a key-framer for the job.

Typical volumes are 16 feet by 20
feet—large enough for complete walk
and run cycles. Too small a volume and
useful captures cannot be performed.
Quite a few companies set up their own
facilities and end up creating a space
that is too small and have to go out of
house for some of their moves!

Motion capture has come a long
way in quality from the early years with
most advances in the proprietary soft-
ware that runs the cameras in real time
as the data is being collected as well as
software that is run in post-production
to “clean up” the motion captured data.

382 Chapter 33: Outsourcing Motion Capture and Animation

Cleaning up the Motion Data

After spending tens of thousands of dol-
lars for your motion capture sessions, it
would be nice if the data were to just
drop in and work. The truth is the data
is full of noise and errors that must be
cleaned up. Each of the motion capture
systems has automated tools that
smooth out some of the noise in the
motion and perhaps do some boundary
checks. A common error is when a
character makes contact with the
ground, as in a tumble, and the cameras
lose track of a few balls. When this hap-
pens the system will often make a poor
guess as to what the motion really
ought to be. This is fixed by a human in
the post-processing phase where they
are looking at the skeleton of a charac-
ter and watching it move through its
range of motions.

A large proportion of the out-
sourced motion capture work is per-
formed by House of Moves using the
standard Vicon cameras and its Deva
system for post-processing. However,
many publishers and some of the larg-
est independent developers have their
own systems.

One of the more interesting motion
capture studios is Giant. Giant uses a
fundamentally different motion capture
system. Instead of using the expensive
proprietary Vicon cameras, Giant
employs 18 or so regular black-and-
white security-type video cameras.
These cameras then feed the real-time
data into Giant’s processing software
called Motion Reality. One of the
appeals of Giant’s system is that before

you capture any motion data, you pro-
vide your character’s model, textures,
and skeletal structure to Giant for

preprocessing. This preprocessing
involves using some neat-o biometri-
cally correct algorithms that learn the
parameters of motion for your specific
character. This provides two distinct
advantages: first, when taking the
actual motion capture shoot, instead of
the director looking at a constellation of
balls on the playback monitor, he is able
to see the motion as applied to the
actual character while in the motion
capture studio, without waiting days for
the data to be cleaned up and applied to
the character. Second, because the bio-
metrically correct algorithms are
applied to the motion capture data in
real time, you save yourself a lot of
cleanup processing that occurs when
balls go out of the camera’s view, due
to the algorithm’s ability to extrapolate
and interpolate where those missing
balls ought to be.

So Giant’s system sounds like the
best one to use, right? I honestly can-
not give you a final answer. We have
used both data from Giant, sourced
from a motion capture session just for
us, as well as some library footage from
House of Moves. To our surprise, while
Giant’s post-processing software was
relatively easy to use, there was more
cleanup involved than I expected for
the advanced system. As for the House
of Moves data, it was data that was
about two or three years old by the
time we were able to play with it, and it
showed its age. The data was noisy and
not all that cool feeling when applied to
our models.

I would have to say that both of
these motion capture studios deserve
consideration for your next project.

Chapter 33: Outsourcing Motion Capture and Animation 383

Planning Your Motion CapturePlanning Your Motion Capture

Shoot

To be successful with motion capture I
suggest you seek out your eventual
motion capture vendor early in produc-
tion to establish budget. Shop around,
as one facility may be booked and
another might be happy to sell time at
a minimal margin. The motion capture
studios tend to build their bid by count-
ing the total number of moves and
actors you are requiring. Next they
classify your moves into several cate-
gories of difficulty from routine to very
difficult. For example, routine moves
would be running, shooting a weapon,
and sneaking about. Moderately com-
plex moves would involve light stunt
work such as falling to a mat. From
there, the shots can get pretty expen-
sive, especially if you are hiring a stunt
coordinator and stunt men to perform
wire work.

You should prepare a list of all of
the moves you need your characters to
perform. Then meet with one or more
of the motion capture studios and ask
them how would they approach the pro-
ject. Do they see room for collapsing
some of the requested moves? Do they
suggest some killer moves that you
overlooked? Who do they suggest you
hire as the motion actor?

One of the first things a motion
capture studio will tell you if you are
listening is that celebrities often make
poor motion capture actors. For exam-
ple, the going rate for a motion capture
actor with modest stunt abilities is
around $1,000 for the day. Some pro-
jects have spent $500,000 capturing the
motion of star athletes only to throw
the data away because the motion was

poor relative to what a motion actor is
able to perform.

After you have your budget and
animation plan, it is best to go back and
work on your characters for a while and
be sure you have worked out all of your
technical requirements and that your
game design is final (e.g., you know if
you need climbing or swimming
motions). Only then come back to the
motion capture studio to perform the
data collection.

You will need to allocate at least
three months in your schedule to allow
the motion capture studio to perform a
first-pass cleanup to the data and then
turn over the data to your team for fur-
ther refinement.

Best Use of Motion CaptureBest Use of Motion Capture

In my opinion, motion capture really
shines in recording the subtle move-
ments a human makes that are difficult
to notice and thus difficult to get into
your key-framing. Fortunately, to me,
this means that aggressively acrobatic
work for which Hollywood might use
human performers and wires should
instead be done by key-frames. I love
to see motion capture used for the idle
animations of the character. We have
amazing motion of the female protago-
nist for the upcoming Black9 stretching
and limbering up for battle—wow! And
on the sublime side of the spectrum, it
should be trivial to key-frame simple
walks and run cycles.

In the future I expect the software
side of motion capture to make large
strides; soon I believe the data will just
drop in, and in the end motion capture
will provide us with amazingly quick
and amazingly good motion for our
characters.

384 Chapter 33: Outsourcing Motion Capture and Animation

Here is a list of motion capture
studios:

House of Moves

Jarrod Phillips
Vice-President, Sales and Marketing
5318 McConnell Ave.
Los Angeles, CA 90066
Phone: (310) 306-6131
Fax: (310) 306-1351
jarrodp@moves.com
http://www.moves.com

Giant Studios West

Chip Mosher
West Coast Sales Manager
Giant Studios West
3100 Donald Douglas Loop North,
Hangar 7
Santa Monica, CA 90405
Phone: (310) 392-7001

Chapter 33: Outsourcing Motion Capture and Animation 385

This page inten tion ally left blank

Chapter 34 > > > > > > > > > > > > > > >

Fan-Generated

Material

“I Have No Debugger and I Must Script.”

—The author, circa 1995

Game Development with Your Fans

Outsourcing game development to
fans—an interesting idea, huh? Taldren
has experimented with outsourcing
parts of our game development to fans;
while we are not currently engaging
any fans, we would consider it in the
future.

WARNING: Remember to always
secure all of the intellectual property
rights when working with external con-
tractors, most especially when working
with fans. Any hole, ambiguity, or loose-
ness in your agreement with the fan
contractor will generally be ruled in
favor of the fan in any courtroom dis-
pute. This is discussed in more detail at
the end of this chapter.

Design CritiqueDesign Critique

So what sort of work is useful to have
fans look at? The most straightforward
and common is design critique. This
happens during the closed or open
betas at the end of a project where the
fans will tell you whether or not you
have made the game fun to play. Fans
will of course do this work for free, not
really for access to a free game, but

rather for the novelty of influencing a
game they care about in progress.

Money is an interesting thing; we
use it as the medium of exchange for
the bulk of human industry in the mod-
ern world. I have to admit I find it very
refreshing to interact directly with our
fans and customize our games to their
liking. Of course it is far more challeng-
ing to adjust a game to fit some sort of
balance between the wave functions of
all these people’s opinions. It is much
simpler to design, implement, and test
without having to verify if it truly
entertains your customers. Beta testing
solves that problem, but at the cost of
quite a bit of communication and
iteration.

At Taldren we also experimented
with a more intimate form of fan design
critique by way of a private forum we
called The Inner Circle. For Starfleet
Command II we actually sent these
folks candidate design documents early
in development where it would be a lot
easier for us to respond to their com-
ments before actually implementing

Chapter 34: Fan-Generated Material 387

parts of the game. I think this tech-
nique should be reserved for careful
use. It worked well for SFC2, as it was
an established game with fairly narrow
interpretation of the licensed material
to maneuver the game design through.
The licensed material from the Star

Trek shows and the Star Fleet Battles
board game provided both ourselves
and the fans a lot of structure to draw
from when defining the game mechan-
ics and the subsequent balancing. I
would imagine this technique might be
useful when creating other high-fidelity
simulations such as a tank warfare sim.
This is certainly not a useful technique
when exploring gameplay of a totally
new creation that would provide poor
guidance for outsiders to base their
input on. Finally, no matter what any-
one else says, at the end of the day
someone on your team (most likely the
lead designer or project leader) must
make the final call.

Levels and MissionsLevels and Missions

There are many examples of fans creat-
ing content for their favorite games
back to the very innovation of elec-
tronic games. Indeed, the bulk of the
early development of games was the
result of mainframe programs taking
over from each other and incrementally
improving on the earlier games. How-
ever, it would have to be the advent of
id Software’s Doom that inaugurated
the modern era of fan extensibility and
content creation for commercial games.

id Software constructed Doom to
be extremely easy for players to create
new levels (called WADs) to further
extend the deliciously 3D carnage of
Doom into a never-ending nightmare.
The quality of these levels ranged from

mind numbingly underwhelming to lev-
els that met or even exceeded the
original shipping levels for Doom. In
fact, a mini cottage industry sprang up
around Doom with unlicensed collec-
tions of levels for sale on cheaply
produced CDs in jewel cases and a
game programming book dedicated to
Doom with a level editor for Doom.
Soon, better level editors were made
for Doom than the level editors that
shipped with Doom.

Games such as Counter-Strike and
Day of Defeat are the most visible and
successful of these fan mods, as they
are called. There are at any given time
hundreds of fan groups working
together across the Internet to develop
new games based on the engines and
tools of their favorite games.

All of this technical ability and
energy are a potential resource for your
game. The first step in considering this
path is to develop a strong tool for
implementing new missions or levels
for your game. Strong, reliable tools
that end users are able to use with effi-
ciency and confidence requiring little
or no technical support is what you
need to create. With a poor tool your
technical support burden from your
tools programmer will quickly outstrip
the cost savings of having your own
designer implement a few more levels.
Of course, a strong, reliable tool is just
what you should build for your own
internal team. Thus, I argue the cost
of making a strong reliable tool for end
users is free.

For the Starfleet Command series
we experimented with hiring fan pro-
grammers to write a few mission
scripts. We ended up hiring three or
four programmers, and we paid them as

388 Chapter 34: Fan-Generated Material

TE
AM
FL
Y

Team-Fly®

independent contractors. Programming
missions for Starfleet Command
required a passing knowledge of C++
as each mission was built as a dynamic
linked library (DLL). We chose to pro-
gram our missions in C++, largely due
to my earlier experience as script pro-
grammer on I Have No Mouth And I
Must Scream. At that time we used a
C-like proprietary programming lan-
guage named SAGA. As a scripter
working with SAGA, I was continuously
frustrated with some features promised
in the language that didn’t quite work.
The goal of SAGA was to create a
C-like language that was very safe with
built-in memory and bounds checking,
array types—the sort of features you
would find in Visual Basic or Java. As I
ran into problems with SAGA, the tools
programmer(s) would stop and take the
time to fix the bug. It struck me that
the rest of the team and I were working
very hard to implement a new program-
ming language that was missing all the
common tools of a standard program-
ming language like a debugger! From
that experience I developed the opinion
that you must have a really good reason
why you need to create a new program-
ming language to script your missions.

As I said, we simply used C++ as
the language for Starfleet Command;
we wrote a mission scripting API that
developed support for creating ship
entities, a set of engine callbacks, and a
host of other goodies that were
required to make fun missions. This
system worked out much better for our
internal mission programmers as C++
has a plethora of handy tools already
developed. It allowed for rapid tweak-
ing of the scripting API, required less
maintenance by more senior

programmers to support the scripting
API, and our internal programmers
were able to continue progressing in
their C++ skills rather than work with
a proprietary language with little future
reuse.

This C++ scripting API worked
out less well for our external fan
scripters. This is due less to the lan-
guage being C++ and more to our con-
stant, dribbling changes to the API. We
never noticed the cost of making
changes to the API with our internal
team as it was nearly effortless to com-
municate the required changes in the
calling parameters or other change
details, and we promptly had newly
rebuilt scripts. For the external
scripters working across a hemisphere,
all communication occurred by way of
email. In principle, we could write up
our changes in the scripting API and
distribute them in email to the external
scripters; however, that would only
work out if we wrote down the changes
we made to the API. With internal folks
it is so much easier and faster to com-
municate late-breaking changes by
holding an impromptu water-cooler
meeting or popping into another
employee’s office. After all, rapid, liquid
communication is the main benefit for
working in an office in the first place! In
the end the missions we received from
the external scripters required signifi-
cant maintenance on our part and over-
all was probably not a net benefit. The
remedy of course would have been to
reserve working with the external
scripters until after the scripting API
settled down into its final form. We
have always released this scripting API
to the consumers who buy our Starfleet
Command games, and waiting until the

Chapter 34: Fan-Generated Material 389

API settled into its final form and only
then releasing it to external fan
scripters would have been an
improvement.

3D Models3D Models

Outsourcing 3D character models to
fans is an order of magnitude more
straightforward than outsourcing mis-
sion programming. Fans have an innate
attraction to making models, whether
they are starships and airplanes that do
not require animation or human and
non-human animated characters. Your
first job is to screen the fan for the req-
uisite talent and skill required to create
a 3D model of the same high quality
that your internal team is producing. I
advise you to review their skills as you
would with a potential artist you might
hire. The general procedure is to pro-
vide the fan modeler with a sketch or
even better a color comp of the model
to be created and provide them with all
of the technical details such as polygon
budget, whether or not all of the poly-
gons must be triangles, the limits on
the size of the texture map, and per-
haps details on other possible texture
maps such as the bump, luminosity, or
damage textures. It would be unreason-
able to hold the fan to the same sort of
rigors as your employees, although it is
completely appropriate to have a dead-
line. You may still have an issue with
quality, and it may not be immediately
apparent that there are technical prob-
lems with the model until you drop the
model into your game engine and try it
out. It is important to drop the model
into the engine and perform your other
quality check procedures as soon as
possible when working with fan model-
ers. It will be much more effective to

provide the fans with rapid feedback
while the work is still fresh in their
mind and while they have the energy to
work on your project. You must
remember that even if you do pay these
fans a decent rate for this outsourced
work, they know that they do not work
for you and are not motivated in the
same way as employees.

Other Potential Activities toOther Potential Activities to

Outsource

3D models, missions, and levels are
just a few of the assets or activities that
you could outsource to fans. To identify
these opportunities, be open minded
when fans contact you and offer help,
and think about the possible holes you
might have in production. For example,
David Perry has a volunteer staff that
works on his dperry.com web site. Per-
haps you have a musically talented fan
who is happy to flesh out your musical
scores—maybe sound effects. Or per-
haps running the news update for your
web site. If you end up with a relation-
ship with a fan, I think in the end it
strengthens your organization; you will
be provided with a new ally, a strong
source of information, and who knows
what other potential opportunities!

Legal Matters When Working withLegal Matters When Working with

Fans

Important disclaimer: Again I remind
you that I am not a lawyer, and I am not
qualified to provide legal advice. The
simple rule of thumb is to not treat fans
any less formally than you would treat
other independent contractors. That
means you should agree to a fee for
their services. I strongly suggest a
fixed fee payable upon satisfactory com-
pletion of the work. Second, you really

390 Chapter 34: Fan-Generated Material

must develop the agreement that the
work they perform is a work for hire
and that the fan contractor relinquishes
any claim to the work. This waiver of
rights is obviously important to avoid
surprising and ugly claims causing
costly litigation to resolve. Acquiring
this agreement becomes even more
important in the likely event that you

are developing this work as a work for
hire for a publisher and you are promis-
ing to hand over all rights to the
publisher.

Talk to your lawyer and ask her to
draw up a boilerplate independent con-
tractor agreement for you. You will end
up using this agreement many times—
well worth the investment.

Chapter 34: Fan-Generated Material 391

This page inten tion ally left blank

Epilogue

I recently heard a talk by Mark Terrano
of Microsoft in Daejon, South Korea.
His talk was titled “What is Life?” It
was simply the most information-
dense, most wonderful talk I have ever
heard given about the games business.
Mark opened and closed his talk by
referring to himself both as teacher and
as student. Mark is an accomplished
developer with a good number of great
games.

Honestly, I feel more on the stu-
dent side than the teacher side, myself.

A year and a half and over 200,000
words went into this book. This was my
first attempt to write a book, and I apol-
ogize to you, dear readers, for having to
endure my clumsy efforts. While writ-
ing this book our company has grown
from 15 employees to 25, and we have
started and shipped SFC3. We are now
working on our first console title, a

multiplatform sci-fi action/RPG called
Black9. And I became a father.

After eight years of game develop-
ment, personally leading the shipping of
five games, I feel like I am just begin-
ning to understand what I need to focus
on to become a stronger game
producer.

The tools are getting better, the
machines are faster, the games are
much bigger, and this will only acceler-
ate. The future of games is amazingly
bright, and I just cannot wait to play
your games!

Please consider this book as just
my humble efforts to begin a conversa-
tion with all of you on how to make
games better.

Please send all your thoughts,
information, and criticisms to me at
erik@taldren.com so I may learn from you.

Epilogue 393

This page inten tion ally left blank

Appendix A > > > > > > > > > > > > > > >

Suggested Reading

I am addicted to books; book buying is
easily my largest discretionary form of
spending. My personal library is quite
extensive on the topics of software
development, the game industry, chess,
science, science fiction, role-playing
games, world affairs, and the Chinese

and Japanese languages. May you bene-
fit from my reading (and spending) and
choose the best titles for you. Of course
this book list makes no recommenda-
tions for chess or Asian languages—
email me if you are interested in those
topics!

Project Management

Jacobson, Ivar et al., The Unified Software Development Process, Addison Wesley,
ISBN 0201571692, 1998

Here is the software development methodology that is espoused by the three
amigos: Jacobson, Booch, and Rumbaugh. This book goes beyond software
modeling and discusses how best to customize a methodology for your
project.

McConnell, Steve C., Rapid Development: Taming Wild Software Schedules,

Microsoft Press, ISBN 1556159005, 1996

Rapid Development is the larger work that Steve McConnell drew upon to
create his Software Project Survival Guide. If you have already digested the
Survival Guide and are hungering for more, read this large work at 647
pages! At the same time I can no longer recommend reading McConnell’s
older work, Code Complete. While it is somewhat different than Rapid Devel-

opment, there is not much material that is unique between the two works and
what is unique in Code Complete is somewhat dated—its focus on the C pro-
gramming language may be of interest to some of your technical teammates.

McConnell, Steve C., Software Project Survival Guide, Microsoft Press, ISBN
1572316217, 1997

A most excellent distillation of Steve McConnell’s work in improving the
software development process, every manager and developer of a game pro-
ject should be required to read this short book—just 250 pages!

Appendix A: Suggested Reading 395

Game Industry

Abrash, Michael, Michael Abrash’s Graphics Programming Black Book, Coriolis
Group Books, ISBN 1576101746, 1997

Previously published as: Zen of Graphics Programming: The Ultimate Guide to

Writing Fast PC Graphics, Coriolis Group Books, ISBN 188357708X, 1994.

Abrash, Michael, Zen of Code Optimization: The Ultimate Guide to Writing Soft-

ware That Pushes PCs to the Limit, Coriolis Group Books, ISBN 1883577039,
1994

Michael Abrash is one of my all-time favorite authors. The text of his Zen of
Graphics series of books is material from magazine articles he has written for
years. Michael Abrash remains the only author whose books I have reread
just for the sheer pleasure of his writing—the material itself was bonus
material. The Zen books I feel are must-reads for all of your programmers.
Even though the bulk of his material is outdated due to advances in technol-
ogy, the clarity of logic that he brings to bear on an algorithmic problem
deserves to be studied.

Deloura, Mark, Game Programming Gems volume 1, Charles River Media, ISBN
1584500492, 2000

Deloura, Mark, Game Programming Gems volume 2, Charles River Media, ISBN
1584500549, 2001

Deloura, Mark, Game Programming Gems volume 3, Charles River Media, ISBN
1584502339, 2002

Mark Deloura is the director of developer relations at Sony PlayStation and
was previously editor-in-chief of Game Developer magazine. Deloura’s Game

Programming Gems have been edited with excellence, making each article of
each volume in the series a must-read for the programmers on your team.

Hallford, Neal, and Jana Hallford, Swords & Circuitry: A Designer’s Guide to Com-

puter Role-Playing Games, Prima Tech, ISBN 0761532994, 2001

This 524-page book is nicely focused on one genre—computer RPGs. The
highlights of the Hallfords’ book include interviews with Trent Oster, the lead
designer (among many hats) of Neverwinter Nights representing BioWare
Corp.; Chris Taylor, the lead designer of Dungeon Siege and CEO of Gas
Powered Games; as well as four other interviews of lead designers of hit
RPGs. The Hallfords also do a nice job of trying to analyze game design
issues that are specific to the computer RPG. I would like to see a series of
books myself that focus on different genres such as sports, extreme sports,
platform, first-person shooter, etc. There is not very much specific that you
will be able to make immediate use of; however, it is a pleasure to read.

396 Appendix A: Suggested Reading

Olson, Jennifer (Editor-in-chief) et al., Game Developer magazine, CMP Media
LLC

This magazine is the only and best print magazine for game development.
Postmortems of games are key regular features such as “Black & White” by
Peter Molyneux and “Deus Ex” by Warren Spector. Visit their web site at
http://www.gdmag.com/ to subscribe to the magazine. It is also free to qualified
professional game developers.

Rollings, Andrew, and Dave Morris, Game Architecture and Design, Coriolis Group
Books, ISBN 1576104257, 2000

While I do believe this book is fundamentally worth reading, I could not
escape the feeling that neither of the two authors have personally led a major
game project. The positives of the book include some specific thoughts on
how you might want to organize your team and some game design templates.

Sawyer, Ben et. al., Game Developer’s Marketplace, Coriolis Group Books, ISBN
1576101770, 1998

This 728-page tome covers a wide selection of game development topics
from the history of game development and the business of game develop-
ment to design and audio. A lot of the specific tools mentioned in the book
are now outdated; however, it is easy reading and the careful producer will
gain some knowledge from the book.

Sawyer, Ben, Game Developer’s Source Book, Coriolis Group Books, ISBN
1883577594, 1996

This is Ben Sawyer’s 824-page predecessor to Game Developer’s Marketplace.
Several chapters were reproduced in the Marketplace title. If you own Mar-

ketplace there should be no driving reason to purchase Source Book.

Yu, Alan (Director of Conferences and Events) et al., Game Developers Conference

Proceedings, CMP Media LLC

These proceedings are the collected papers on a wide variety of topics from
programming and art to design and legal that are presented each year at the
Game Developers Conference in March in the United States. Selected topics
from 2000-2002 are available for free at http://www.gdconf.com/archives/. The full
proceedings are available for purchase at the GamaSutra Store at
https://www.gamasutra.com/php-bin/store.php (also a CMP Media LLC holding).

Appendix A: Suggested Reading 397

Software Development

Booch, Grady et. al., The Unified Modeling Language User Guide, Addison Wesley,
ISBN 020165783X, 1999

This is the definitive overview of the Unified Modeling Language. Each of
the three amigos was lead author on a UML book: Booch wrote the User

Guide, Jacobson, Development Process, and Rumbaugh, the Reference Manual.
The Reference Manual and User Guide really should be purchased as a set
after you have digested UML Distilled. I highly encourage reading Develop-

ment Process before digging into the User Guide and Reference Manual.

Cline, Marshall et. al., C++ FAQs 2nd Ed., Addison Wesley, ISBN 0201309831,
1998

The moderators of the online C++ FAQ at comp.lang.c++ collect and
answer the questions most often asked by professional programmers on
USENET. Every advanced C++ programmer I know has learned something
from the book, an excellent read for your junior and intermediate developers
with bite-sized chunks of information.

Fowler, Martin, with Kendall Scott, UML Distilled 2nd Ed., A Brief Guide to the

Standard Object Modeling Language, Addison Wesley, ISBN 020165783X,
2000

Unlike most technical books, UML Distilled manages to cover something
important in less than 200 pages. I consider this book a must-read for all of
my developers, producers, and designers.

Lakos, John, Large-Scale C++ Software Design, Addison Wesley, ISBN
0201633620, 1997

This is a very important book; every programmer on your game development
team should be exposed to this unique book. Game projects are now quite
large pieces of software and the majority of game developers are self-taught
or academically taught with no formal background in software engineering in
a practical sense from working on large teams. This book discusses how to
physically design your software, a topic that I believe is not covered anywhere
else.

Maguire, Steve, Writing Solid Code: Microsoft’s Techniques for Developing

Bug-Free C Programs, Microsoft Press, ISBN 1556155514, 1993

The other Steve writing for Microsoft Press on good software development.
Maguire presents many practical tips on writing solid code. This book con-
tains especially lucid writing on debugging and how to integrate code

398 Appendix A: Suggested Reading

TE
AM
FL
Y

Team-Fly®

team-wide. All junior and most intermediate programmers will benefit
greatly from this book, and advanced programmers might be reminded of a
safety technique that they have allowed to fall into disrepair.

Meyers, Scott, Effective C++ CD: 85 Specific Ways to Improve Your Programs and

Designs, Addison Wesley, ISBN 0201310155, 1999

Meyers, Scott, Effective STL: 50 Specific Ways to Improve Your Use of the Standard

Template Library, Addison Wesley, ISBN 0201749629, 2001

Meyers, Scott, Effective C++: 50 Specific Ways to Improve Your Programs and

Design 2nd Ed., Addison Wesley, ISBN 0201924889, 1997

Meyers, Scott, More Effective C++: 35 New Ways to Improve Your Programs and

Designs, Addison Wesley, ISBN 020163371X, 1995

Scott Meyers is a very lucid author and perhaps the most popular C++
author. The Effective C++ series is most thoughtfully written, and Meyers
shows an uncommon sensitivity of what the beginning to intermediate pro-
grammer would need to understand about C++. All of Meyers’ books can be
recommended without hesitation; however, the CD version of the two Effec-
tive C++ books and the STL book seem like the best buys. To get an idea
how popular the Effective C++ books have been, notice the other C++
books at your local bookstore that attempt to capitalize on the title such as
Essential C++, Efficient C++, and Exceptional C++.

Musser, David R., STL Tutorial and Reference Guide: C++ Programming with the

Standard Template Library (2nd Ed.), Addison Wesley, ISBN 0201379236,
2001

The original edition of this book stood out to me as the only book able to
explain to me how to use STL! For some reason, at the time that I was learn-
ing STL, either I was dense, or the other texts were poor, or an unfortunate
synergy of the two conspired to make this a slower process than it needs to
be. Your C++ programmers must have an introduction to the Standard Tem-
plate Library that is part of C++. Lists, vectors, sets, and more complex data
structures and algorithms have already been developed to a rigorously high
quality. Your developers should not be reinventing their wheels when good
ones are available for free!

Rumbaugh, James et. al., The Unified Modeling Language Reference Guide, Addi-
son Wesley, ISBN 020130998X, 1999

This is the definitive reference for the Unified Modeling Language.

Appendix A: Suggested Reading 399

This page inten tion ally left blank

Appendix B > > > > > > > > > > > > > > >

The Art Institute of

California—Orange

County

Thanks to The Art Institute of Califor-
nia—Orange County for providing the
following information about the school.

Background

Opened in July 2000, The Art Institute
of California—Orange County is an
applied arts institute providing Bache-
lor’s and Associate’s degrees in
Graphic Design, Media Arts & Anima-
tion, Game Art & Design, Multimedia
& Web Design, Interior Design, and
Culinary Arts. Located in the heart of
Orange County’s South Coast Metro
region, The Art Institute is ideally situ-
ated in close proximity to Orange
County’s thriving business community,
cultural attractions, shopping, enter-
tainment and its famous beaches, not to
mention the Los Angeles metropolitan
area. The school is one of The Art
Institutes, www.artinstitutes.edu, a system
of 24 education institutions located
nationwide, providing an important
source of design, media arts, fashion,
and culinary professionals. The Art

Institutes have provided career-
oriented education programs for over
35 years, with more than 125,000
graduates.

Each program is offered on a year-
round basis, allowing students to con-
tinue to work uninterrupted toward
their degrees. Academic programs are
carefully defined with the support and
contributions of members of the profes-
sional community through Program
Advisory Committees. Curricula are
further reviewed periodically to ensure
they meet the needs of a changing
marketplace to qualify graduates for
entry-level positions in their chosen
fields.

The Art Institute is comprised of
more than 50 faculty members who are
working professionals in their respec-
tive fields. By tapping industry

Appendix B: The Art Institute of California—Orange County 401

professionals, The Art Institute is able
to bring a real-world perspective work
setting and industry standards into the
classroom preparing students for
entry-level positions upon graduation.

The Art Institute of California—
Orange County is accredited as a
branch of The Art Institute of Colorado
(Denver) by the Accrediting Council for
Independent Colleges and Schools to
award the Bachelor of Science and
Associate of Science degrees. ACICS is

listed as a nationally recognized accred-
iting agency by the U.S. Department of
Education. Its accreditation of degree-
granting institutions is recognized by
the Council for Higher Education
Accreditation. The Art Institute of Cali-
fornia—Orange County is granted
approval by the Bureau of Private
Postsecondary and Vocational Educa-
tion as a California private
postsecondary degree-granting
institution.

Game Art & Design Bachelor of Science

Program

The Art Institute of California—Orange
County (along with its sister schools in
San Francisco and Los Angeles) offers a
unique new Bachelor’s degree program
in Game Art & Design to bring a new
generation of talent to the computer
game industry.

The Game Art & Design Bachelor
of Science degree program is designed
for students who want to prepare for
entry-level art positions in the game
development field. Geared toward 3D
animation and game level design, the
program’s students will learn character
animation techniques, complex model-
ing, computer mapping, game level
design, and how to script within the
game. Through traditional art and
design courses like life drawing, color
theory, illustration, and sculpture, stu-
dents also will create interactive game
levels and learn to make computer
game animation come alive with move-
ment, color, and action characters.

Students will apply knowledge of
video and animation to produce game
products using 2D software to create
backgrounds, 3D modeling and anima-
tion software to create game art, and

3D software to apply textures. The
students also will receive a broad-based
education that will include classes in
art history and the humanities. By
exposing students to classic art forms,
they are able to incorporate more vari-
ety into their writing styles and
animation sequences.

The curriculum will prepare future
game developers to produce story lines
and animations filled with creativity and
inventive cleverness. The action and
suspense that challenge people as they
play video games can be accomplished
through intelligent story writing. The
curriculum also includes general educa-
tion courses in areas such as mathe-
matics and the social sciences.

The growing field of companies
producing computer games is actively
seeking artists trained in the art of
computer animation and experienced
with computer technologies—in
Orange County alone there are game
entertainment companies like Interplay
Entertainment, Blizzard Entertain-
ment, Taldren, Shiny Entertainment,
and GameSpy Industries. Computer
and video game sales could approach

402 Appendix B: The Art Institute of California—Orange County

$17 billion in 2003, with another $1.1
billion in online gaming revenues,
according to IDC. The game industry
includes video games played on console
game systems, personal computers,
and handhelds. According to Forrester
Research, nearly 49 million American
homes today have at least one video
game system. Nearly 75 million homes
are projected to have systems by 2005,
achieving a 70 percent penetration
level.

The Art Institutes’ Game Art &
Design program was designed by a fac-
ulty curriculum committee and profes-
sional advisory boards of industry
experts, including specialists with work
experience at Sega of America, Macro-
media, Konami, Pixar, LucasArts,
Sonique, Terra Lycos, PDI/Dream-
Works, and Apple. The program gives
students a curriculum that responds to

the ongoing changes in the game devel-
opment and multimedia industries,
ensuring that students graduate with
the skills and knowledge that employ-
ers need. Furthermore, students learn
about the changing demands in the
business world through a regular series
of guest speakers.

Potential students interested in the
Game Art & Design, Media Arts & Ani-
mation, or another program offered by
The Art Institute of California—Orange
County are invited to call (888)
549-3055 or (714) 830-0200 or visit
www.aicaoc.aii.edu for curriculum and
admissions information.

For more information on The Art Insti-

tute of California—Orange County,

please contact Anne Mack at (714)

830-0254 or macka@aii.edu.

Appendix B: The Art Institute of California—Orange County 403

This page inten tion ally left blank

Index

2D artist, 47
3D graphics programmer, 43
3D modeler, 47
3D models, outsourcing, 187, 390
80 percent stereotype rule, 371-372

A
Activision, 97-98

and licensing, 212
activity diagram, 148, 240-241
actor, 84
ADPCM, 342
Advanced Squad Leader, 10-11
alpha, 192, 294
alpha testers, 294
Alter Echo, sound effects list, 121
ambient music, 344
analysis model, 144-145
animation, 48

in games, 381
outsourcing, 187-188

art assets,
estimating time for creating, 261
prototyping, 224

art director, 46
Art Institute of California, see The Art

Institute of California
art, outsourcing, 186-188, 376-380
art parts, 45-49
artificial intelligence programmers, 43
artist, entering game industry as, 317
asset lists, 221-222
assets,

animation, 117
audio, 49
character models, 115
missions, 115
music, 121-122
sound effects, 121
special effects, 125-127
voice, 116

associate producer, 50-51
association relationship, 228
associations, 231-232
attributes, 232
audio assets, 49-50
audio bid example, 122-125
audio, outsourcing, 188-190
audio programmers, 44
Audio Scrambler, 343
automated testing, 155, 195, 256
Avalon Hill, 10-11

B
backstory, creating, 112
balance, 198-200
Baldur’s Gate, 12-13, 21, 22

tutorials, 110
battle music, 345
Bennie, Scott, on writing for games,

369-373
beta, 294-295
beta testers, 54, 256, 295
beta testing, 54, 155, 196-197, 256, 295

program manager, 54
BioWare, 17-18

QA, 52
biz dev, 55
black box testing, 155
Black9

audio bid example, 122-125
motion capture list, 118-120
special effects list, 126-127
vision document, 208

Blizzard, 17-18, 68, 69
bonuses, 335
Borders, Chris, on voice-over work,

353-360
brainstorming, 216-217
Brown, Bill, on using live orchestras for

games, 347-351
bug tracking, 252-253

Index 405

Bugzilla, 253
build, 50
build times, 150
business development executive, 55
business development parts, 55-56
business elements, 55-61
business entities, types of, 329-331
business parameters, 76
buy-sell agreement, 331
buzz, 57

C
cancellation of games, 26
catch statement, 300
CD/Redbook audio, 342
character backgrounds, creating, 112-113
character modeler, 47
character models, listing, 115
chase music, 345
chess, 8
class diagram, 145-147, 228-230, 238

annotating, 147
example, 233-238

client-server structure, 45
closed beta testing vs. open beta testing,

196-197
coding parts, 41-45
collaboration diagram, 243-244
compatibility team, 53
component diagram, 149, 239 see also

package diagram
component-based development, 81
compression, 342
concept artist, 46
concept document, see vision document
conceptual design, 228-229
console, developing for, 26-27, 31
console games, patches for, 301-302
console manufacturers, 61
controller diagram, 108
core gameplay, defining, 219
core player activity, 108
Counter-Strike, 71-72

key design elements, 96
low bug count, 301
multiplayer popularity of, 96-97

cut scenes,
description of, 114
example of, 114-115
outsourcing, 186-187

D
Daikatana, 78
defect pooling, 254-255
defect seeding, 255
dependencies, 265
dependent tasks, 172
deployment diagram, 149-150, 239-240
Descent to Undermountain, 79-80
Describe, 233-238
design,

conceptual, 228-229
implementation, 229
specification, 229

design critique, outsourcing, 387-388
design document, see game design

document
design parts, 39-41
design, reviewing, 247
design tasks, estimating, 261-262
designer, entering game industry as, 318
development methods, 81
development process,

at Eidos, 27-28
at Microsoft, 27
reasons for using, 132-133

Diablo, 13, 59-60, 68, 73
feature set, 287-288
use case diagrams, 220
use cases example, 87-90

Diablo II, 16
dialogue, writing, 370-371
DigiPen, 326
Doom,

extensibility of, 388
game definition, 106
use case diagrams, 219

downtime, accounting for in schedule, 271
Dungeon Siege, 13

menu design, 222-223
Dungeons and Dragons, 12-13
dynamic behavior diagrams, 240-244
dynamic modeling, 148

E
E3, 57-58
Eidos, 78

game development process, 27-28
Electronic Arts, 12, 21-22, 67
Electronic Entertainment Expo, see E3
Elite Force, 97-99

406 Index

employees,
compensating, 332-336
hiring, 325-326
rewarding, 180-181

Epic, 324
Excel, 158
executive producer, 51
expectations,

financial, 17-18
fulfilling, 19, 225

exploration music, 344
extend relationship, 228
eye candy, 27

F
Fallout 1, 16
fans, 59-60

communication with, 5
contracting with, 390-391
creating content, 388-389
critiquing design, 387-388
outsourcing 3D models to, 390
requests from, 29, 303

feature complete, 192
feature creep, 288
feature storm, 18-19
feature walking, 288-289
features,

adding, 192
cutting, 192-193, 224-225, 290-291
publisher-suggested, 289-290
ranking, 288

final candidate cycle, 200
financial expectations, 17-18
first playable, 293
fiscal requirements, 213
fixed budget/fixed deadline projects, 72, 74
flight simulators, 10
focus group testing, 195-196
FreeSpace 2, 19
fresh teams, 53
full motion video, outsourcing, 186-187
functional leads, 245-246

G
Gamasutra, 326
Gambiano, Mark, on outsourcing game art,

376-380
gambling games, 8-10
game balance, 198-200

game company,
accounting assistance, 328
employee benefits, 334-336
employee compensation, 332-334
hiring employees, 325-326
insurance, 332
legal assistance, 328-329
location, 326-327
making money, 336-337
starting, 323-325
tax considerations, 327, 331
trademarks, 336
type of, 329-331
URLs, 336

game concept,
brainstorming, 216-217
defining, 216

game design document, 101-102, 215
as process, 216-225
completeness of, 224
creating asset lists, 115-127
creating the story, 111-114
defining contextual gameplay,

109-111
defining core gameplay, 107-108
defining the game, 106-107
delegating writing of, 103-104
maintaining, 225
managing, 218
purpose of, 215-216
requirements for, 105
reviewing, 104-105
when to write, 103

Game Developers Conference, 61, 319
game development, 28
game development houses, 375
game elements, 63
game genres, see genres
game industry,

breaking into, 313-314, 316-319
long hours of, 314-315
skill sets in, 315

game mechanics,
defining, 109-110
designers, 40
detailing, 223
programmers, 43

game production elements, 39-51
game programmers, licensing, 42
game project survival test, 33-36

Index 407

gameplay,
defining, 107-108, 109-111
documenting 60 seconds of, 218-219

games,
cancelling, 26
defining, 106-107
documenting areas of likely change,

252
excellence in, 19
financial assumptions for, 16
motives for making, 5
profitability of, 15-17
reasons for making, 7-8, 13-14
requirements of, 143-144
using for inspiration, 222
when to release, 257

Gaming Zone, 9
Gantt chart, 159-161, 267-268

maintaining, 181
vs. PERT chart, 159-160

generalization, 231
generalization relationship, 228
genres, 8-13
Giant, 383
Go, 7-8
goals,

recognizing, 275
setting, 277
technical, 251-252

gold master, 295
Gran Turismo 3, 12

menu system use cases, 223
use case diagrams, 220
use cases example, 90-93

Grand Theft Auto 3, menu design, 223
green-light committee, 27
green-light meeting, 27
Grey Matter, 185

H
Half-Life, 60, 71
hardware manufacturer parts, 61
hardware representatives, 61
Hardwood Solitaire, 20
Hardwood Spades, 19-20
“has a” relationship, 146-147, 231
header file, 130
Heisenberg uncertainty principle, 218
Hexen II, 16
high-profile/high-quality projects, 73, 74

House of Moves, 383
hunting music, 345

I
id Software, 17-18, 69, 324

beta testing, 54
implementation class, 151
implementation design, 229
include relationship, 228
insulation, 151-154
interactivity, 7
interface class, 151
interface designer, 47
Internet Chess Club, 9
Interplay, 22-23, 68, 79-80

and licensing, 212
Ion Storm, 78
“is a” relationship, 146-147, 231

J
Jacobson, Ivar, 81
journals, using to document projects, 179
jump lists, 345

K
key design elements, 94

reviewing, 99-100
key framing, 48, 381-382
Klingon Academy, 23

L
languages, specifying, 250
late games, problems with, 21-22
lawyers, 55-56
lead designers, 40
lead programmers, 42-43
level designers, 5, 40-41
level editor programmers, 44-45
leveling,

resource, 171-172
task, 163, 167

levels, documenting, 113-114
Levenson, Adam, on sound effects, 363-367
license requirements, 211-212
licensing, 56
licensor testing, 198
line producer, 50
localization team, 53
lossy compression, 342
low-budget projects, 70-72, 74

408 Index

TE
AM
FL
Y

Team-Fly®

M
Madden NFL Football, 12
main game view, 108
main QA team, 53
Makkoya, design staff, 261
management parts, 50-51
manual, 60

when to write, 223
manufacturer testing, 197-198
manufacturing parts, 61
Mario64, music in, 344
marketing, 59
marketing development funds, 56
marketing director, 59
Max Payne, 22
menus,

designing, 222-223
music in, 345

Messiah, 16
Microsoft, 81

preproduction process, 27
Microsoft Excel, see Excel
Microsoft Flight Simulator, 10
Microsoft Project, 158, 265

using, 167, 172-173, 181, 266,
268-269, 271-273

MIDI, 340-341
milestone meetings, 180
military simulations, 10-12
missed deadlines, effects of, 77
mission designers, 40-41
mission editor programmers, 44-45
missions, listing, 115
mod, 70
modeling, outsourcing, 187
Moore’s Law, 31, 133
motion capture, 48, 382

list example, 118-120
using in games, 382-384

movies, outsourcing, 186-187
MP3, 342-343
multiplayer mechanics, 110-111

outsourcing, 185
multiplayer QA team, 53
multiplicity, 231
music, 50

formats, 340-342
in games, 339-340
outsourcing, 188-189

types of, 344-345
music bid, 343-344

example, 345-346
Musical Instrument Digital Interface, see

MIDI
musical sting, 344
Muzyka, Ray,

on selling cross-genre game, 98
on user expectations, 95

N
navigability, 231-232
Nerve Software, 185
network programmers, 45
Neverwinter Nights, 13

system requirements, 213

O
object diagram, 147, 238-239
object-oriented design, 129-130
online games, patches for, 302
open beta testing vs. closed beta testing,

196-197
operations, 232
orchestras, using for game music, 346,

347-351
organization, 4, 28
outsourcing, 4, 29

3D models, 187, 390
animation, 187-188
art, 186-188, 376-380
audio, 188-190
cut scenes, 186-187
design critique, 387-388
full motion video, 186-187
movies, 186-187
multiplayer mechanics, 185
music, 188-189
programming, 185-186
reasons for, 183-184
sound effects, 189-190, 363-367
tasks suitable for, 185-190, 390
user interface art, 188
voice work, 190, 353-360
writing, 369-373

P
package diagram, 147 see also component

diagram

Index 409

Pac-Man,
game definition, 106
music in, 344
use cases example, 85-87

pair programming, 296
Parcheesi, 8-9
parlor games, 8-10
patches, 295-296, 299

tools for creating, 304
PC, developing for, 30-31
peer-to-peer structure, 45
PERT chart, 158-159, 266-267

vs. Gantt chart, 159-160
piracy, preventing, 343
planning, 3, 15
point release, 201, 302
post-release elements, 62
post-release support, 5, 29, 62

need for, 303-304
preproduction, 26

at Microsoft, 27
press relations manager, 57
prioritization of tasks, 166-168

example, 168-171
producer, 51

entering game industry as, 318-319
production plan, 101-102
profitability of games, 15-17
programmer, entering game industry as,

316
programming, outsourcing, 185-186
programming tasks,

estimating, 262-264
types of, 262-264

progress, measuring, 278-279
project leader testing, 195
project plan, 157

creating, 157-158
project triangle, 65-66

examples of using, 67-70
implications of, 66

promotion, 56
promotion parts, 56-57
proposal document, 102-103 see also vision

document
proto-schedules, 161
publisher CEO, 55
publisher QA parts, 52-53
publisher QA testing, 193-194
puzzle games, 8-10

Q
QA, see quality assurance
QA lead, 52-53
Quake, 19

test, 196-197
Quake I, menu design, 222
quality assurance, 52

elements, 52-54
plan, 252

R
Rainbow Six, key design elements, 95
RealAudio, 343
real-time tactical, 23
recruiting companies, use of in game

industry, 320
refactoring, 150-151
relationships, 84, 146

types of, 228
requirements,

nonvisible, 248-249
types of, 211-213

requirements analysis, 144-145
requirements capture, 3, 82, 136-137
requirements gathering, 211
research tasks, estimating, 165-166
resource leveling, 171-172
resources, 269
retail purchasing agents, 57
Return to Castle Wolfenstein, outsourcing

of multiplayer mechanics, 185
rev, 50
reverse engineering, 87, 143
risks document, 174

updating, 182
risks, identifying, 174
role names, 231
role-playing games, 12-13
Romero, John, 78
Royal Game of Ur, 7
royalties, 16, 335

as deferred income, 17
RT Patch, 304

S
sales development, 16
sales executive, 56-57
sales force, 57
sales parts, 56-57
SBK, 241

410 Index

scenario planning, 266
schedule, distributing, 273-274
script, 114

example, 116-117
Secure Digital Music Initiative, 343
sell-in, 57
sell-through, 57
sequence diagram, 148-149, 242-243
SF2, 341
shell menus, creating, 109
shipping, 5, 191-192

as a phase, 191, 200
Silver Creek Entertainment, 9, 19-20, 71,

307-310
SimCity, 22
software, complexity of, 299-300
software development, 4, 21
Sound Bank, see SBK
sound effect engineers, 49
sound effects, 49, 363

example, 121
outsourcing, 189-190, 363-367

Sound Fonts, see SF2
sound formats, 342-343
special effects list example, 126-127
specification design, 229
sports simulations, 12
stack, 151-153
Star Fleet Battles, 11, 68-69
Star Trek, 11
Star Trek license, 211-212
Starfleet Command, 11, 68-69

vision for, 22-24
Starfleet Command 1, 16
Starfleet Command 2, 16
Starfleet Command 3,

script example, 116-117
task list example, 283-284
use cases, 137, 139-141

Starfleet Command series, 11, 16
bugs in, 20, 24

Starfleet Command: The Next Generation,
tutorials, 110

state diagram, 241-242, 244
state machine, 241
static design diagrams, 238-240
Stewart, Jonas, on Silver Creek

Entertainment, 307-310
stock options, 335-336
Stonekeep 2, 22

storyboard, 114
storyboarder, 49
storytelling, 12
strategy guides, 60-61
structural modeling, 147
studio heads, 51, 55
Sun Tzu Wu, 32

T
Taldren, 11, 77

design staff, 261
outsourcing of programming, 185-186
use of fan design critique, 387-388
use of functional leads, 245-246

Tallarico, Tommy
on audio, 343, 345
on live orchestras, 346
on sound in games, 340
on voice-over work, 356, 358, 360

task list example, Starfleet Command 3,
283-284

task rejection, 276-277
task/time estimating, 259-260
tasks,

breaking down, 162-163
delegating, 217-218
dependencies of, 172-174
dependent, 172
developing own, 270
distributing, 271-273
estimating, 261-264
estimating own, 164, 264
estimating time to perform, 163-165
example of prioritizing, 168-171
granularity of, 163
leveling, 163, 167, 271-273
naming, 268
organizing, 270
prioritizing, 166-168
time resolution of, 270-271
tracking, 177-181, 278-283
visibility of, 29, 177
ways to make visible, 177-179

team meetings, 285-286
team testing, 194-195
technical design document, 129, 245

components of, 136
creating, 247-252
reasons for using, 130-132
using to create schedule, 161-163

Index 411

when to write, 135-136
technical directors, 42-43
technical requirements, 212-213
technology, pace of, 30-32
test case diagram, 155
tester, entering game industry as, 318
testing, 5, 154-155, 193, 255-256

automated, 155, 195, 256
beta, 54, 155, 196-197, 256, 295
focus group, 195-196
licensor, 198
manufacturer, 197-198
project leader, 195
publisher QA, 193-194
team, 194-195

testing plan, 253-254
texture artist, 48
The Art Institute of California, 326, 401-403
The Sims, 16, 21-22, 67
throw statement, 300
time boxing, 260-261
time requirements, 213
Tomb Raider, 78
tools programmers, 44
top ten risks document, 174

updating, 182
Tracker, 253, 341
tracking progress, 266
trade shows, 57-59
Treyarch Entertainment, 324
Tropico, 106, 218
try block, 300
tutorials, 109-110

U
Ultima Online, 113
Ultima Online 2, 22
UML, 84, 141, 154

diagramming tools, 154
diagrams, 141, 147, 238
modeling tools, 233

Unified Modeling Language, see UML
Unified Process, 84 see also Unified

Software Development Process
Unified Software Development Process,

81-82, 133-134
core workflows, 134

workflow phases, 134-135
unit testing, 154-155
unprofitable attitudes, 18-19
UnrealScript, 251
use case, 84
use case diagram, 227-228, 238

creating, 142-143
examples, 219-220
using to create technical design

document, 247
use cases examples, 82-84

Diablo, 87-90
Gran Turismo 3, 90-93
Pac-Man, 85-87
Starfleet Command 3, 137

user extensibility, 305
user interface,

in-game, 108
programmers, 44

user interface art, outsourcing, 188

V
visibility, 232
vision document, 205-206

presentation of, 206-209
Visual Patch, 304
VOC, 342
voice assets, 116
voice-overs, 49

outsourcing, 190, 353-360
script example, 360-361

volume, 382
voxels, 90

W
walkthrough, 220-221
Warcraft, 19
watermarking, 343
WAV, 342
Wei-Ch’i, 7-8
white box testing, 155
WMA, 343
writers, 41
writing, outsourcing, 369-373

X
XMI, 341
X-Plane, 10

412 Index

About the CD

The contents of the companion CD are not the usual bits of programming code
one would expect in a traditional computer programming book. Instead, you will
find three tools that are very useful in the production and development of your
games.

The following folders are on the CD:

� Perforce—Perforce is a very powerful asset and source code control system.
Asset management and version control are critical bits of day-to-day house-
keeping in the development of a game. Most folks start out with Microsoft’s
very modestly priced Visual Source Safe. After your team grows you will
begin to feel the limits of VSS, and Perforce is an excellent solution. Perforce
is somewhat expensive; however, the version included on the CD is a free
two-client and server license to use as long as you like.

� Perforce has also graciously supplied a Best Practices White Paper on ver-
sion control.

� Daily Journal—The Daily Journal is a tool we developed and use internally at
Taldren to track and publish the company’s activities on a daily basis. As you
will see, it is a very thin web applet with no additional bells or whistles. Feel
free to modify the Daily Journal to your needs.

� Describe—Describe is by far the easiest to use of the forward and backward
code generation UML tools that I have used. A full-featured demo of
Describe is included on the CD.

CAUTION: By opening the CD package, you accept the terms and conditions of the
CD/Source Code Usage License Agreement.

Additionally, opening the CD package makes this book nonreturnable.

CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the
CD and using the contents therein:

1. By opening the accompanying software package, you are indicating that you have read
and agree to be bound by all terms and conditions of this CD/Source Code usage
license agreement.

2. The compilation of code and utilities contained on the CD and in the book are copy-
righted and protected by both U.S. copyright law and international copyright treaties,
and is owned by Wordware Publishing, Inc. Individual source code, example programs,
help files, freeware, shareware, utilities, and evaluation packages, including their
copyrights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, share-
ware, freeware, utilities, example programs, or evaluation programs, may be made
available on a public forum (such as a World Wide Web page, FTP site, bulletin board,
or Internet news group) without the express written permission of Wordware Pub-
lishing, Inc. or the author of the respective source code, help files, shareware,
freeware, utilities, example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or
otherwise use the enclosed programs, help files, freeware, shareware, utilities, or
evaluation programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without
warranty of any kind. Wordware Publishing, Inc. and the authors specifically disclaim
all other warranties, express or implied, including but not limited to implied warran-
ties of merchantability and fitness for a particular purpose with respect to defects in
the disk, the program, source code, sample files, help files, freeware, shareware, utili-
ties, and evaluation programs contained therein, and/or the techniques described in
the book and implemented in the example programs. In no event shall Wordware Pub-
lishing, Inc., its dealers, its distributors, or the authors be liable or held responsible
for any loss of profit or any other alleged or actual private or commercial damage,
including but not limited to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup pur-
poses. The CD and all accompanying source code, sample files, help files, freeware,
shareware, utilities, and evaluation programs may be copied to your hard drive. With
the exception of freeware and shareware programs, at no time can any part of the con-
tents of this CD reside on more than one computer at one time. The contents of the
CD can be copied to another computer, as long as the contents of the CD contained on
the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example
programs, shareware, freeware, help files, utilities, or evaluation programs in any
compilation of source code, utilities, help files, example programs, freeware, share-
ware, or evaluation programs on any media, including but not limited to CD, disk, or
Internet distribution, without the express written permission of Wordware Pub-
lishing, Inc. or the owner of the individual source code, utilities, help files, example
programs, freeware, shareware, or evaluation programs.

8. You may use the source code, techniques, and example programs in your own com-
mercial or private applications unless otherwise noted by additional usage agreements
as found on the CD.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

