WORDWARE GAME DEVELOPER’S LIBRARY

Game
Development and
Production

Erik Bethke

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Bethke, Erik.
Game development and production / by Erik Bethke.
p. cm.

ISBN 1-55622-951-8

1. Computer games--Design. 2. Computer games--Programming.

3. Project management. |. Title.

QA76.76.C672 B47 2002

794.8'1526--dc21 2002153470
CIP

© 2003, Wordware Publishing, Inc.
All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-951-8

10987654321
0301

Product names mentioned are used for identification purposes only and may be trademarks of their respective
companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing,
Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Foreword xXvil
Preface e e XIX
Acknowledgments o o XX1

Part I—Introduction to Game Development

Chapter 1 What Does This Book Cover? 3
HowtoMakeaGame. 3
FirstHaveaPlan. 3
Organize Your Team Effectively. 4
Game Development Is Software Development. 4
Where to Turn for Outside Help. 4
HowtoShipaGame 5
Post-Release 5
Successandthe LongRace 5
HowtoUse ThisBook. 6

Chapter2 Why Make Games? 7
ToShareaDream., 7
GamesTeach 7
Game Genres Satisfy Different Appetites 8

Gambling, Puzzle, and Parlor Games. 8
Military and Sports Simulations. 10
Role-PlayingGames 12
Youth Making Games 13
OnMoney oo it e e e e e e 13
Why Make Games? 14

Chapter 3 What Makes Game Development Hard? 15
The Importance of Planning 15
Very Few Titles Are Profitable 15

500,000 Units to Break Even? 16
Employee Compensation and Royalties 17
What Are the Financial Expectations for Your Game? 17
The Scope of the Game Must Match Financial Parameters. . . 17
Why Your Game Should Profit 18
Feature Storm 18

If the Game Is Worth Making, Make It Excellent 19

Contents

ExcellenceinSpades
Game Making Is a Long Race of Many Game Projects.
A Brief History of Software Development.
Overly Long Game Projects Are Disastrous

What Late Games Do to the Publisher.
Our Project Plan Behind Starfleet Command

The Vision for Starfleet Command
Constraints Give Much Needed Focus.
On Bugs Shipped in Starfleet Command.
Well-Met Goals Enable Future Successes.
Strong Game Developers Have Strong Foundations
The Tension between Preproduction and Production.
The Power of the Console

The Process Is Changing
A Strong Plan Makes Game Development Easy
The Gravitational Pull of Feature Creep.
Task Visibility for Team Motivation and for Progress Tracking . .
Use Your Core Competencies and Outsource the Rest.
A Pitfall of Success—Fan-Requested Features and Changes. . . .
The Relentless Pace of Technology
The Artof Warand Games

Chapter4 Game Project SurvivalTest
The Game Project Survival Test.
Game Requirements.,
Planning. e
ProjectControl.

Risk Management
Personnel.
Calculating Your Project’s Score

What Does My Score Mean?

Part Il—How to Make a Game

Chapter5 Whatlsa Game Made Of?.
The Extended Development Team.
Game Production Parts,

DesignParts
Where Do Lead Designers Come From?

Story and Dialogue Writers Are Writers for Interactivity. . .
CodingParts
Lead Programmers and Technical Directors.
Game Mechanics Programmer.

Contents v

3D Graphics Programmer 43
Artificial Intelligence Programmer. 43
User Interface Programmer 44
Audio Programmer 44
Tools Programmer 44
Mission/Level Editor Programmer. 44
Network, Server, or Client Programmer? 45
ArtParts e 45
ArtDirector e 46
Concept Artist. o . 46
2D Artist/Interface Designer. 47
3DModeler e 47
Character Modeler 47
Texture Artist 48
Animator/Motion Capture Studio 48
Storyboarder. 49
AudioParts. e 49
Voice-Overs v v v i i i e e e 49
SoundEffects 49
MUSIC & v v o e e e e e e e e e e e e e e e e e 50
Management Parts. o o . 50
Line Producer. 50
Associate Producer 50
Studio Head/Executive Producer. 51
Producer. 51
Quality Assurance Parts, 52
Publisher QA Parts. o o i e 52
QALead. e 52
MainTeam. 53
Multiplayer Team 53
FreshTeams. 53
Compatibility Team 53
Localization Team. 53
BetaTesting e 54
BetaTesters. e 54
Beta Testing Program Manager 54
Business Parts. 55
Business Development Parts 55
Business Development Executive 55
Publisher CEO and President 55
StudioHeads 55
Lawyers o o o o e 55
Licensing Parts. 56
Promoting, Buying, and Selling Parts. 56

SalesExecutive e 56

vi

Contents

Sales Force and Retail Purchasing Agents. 57
Press Relations Manager 57
Trade Shows. i i 57
Other Trade Showsand Events 58
The MarketingofaGame. 59
Hardcore Fans. 59
Manuals and Strategy Guides 60
Manual. e 60
Strategy Guide 60
Manufacturing Parts o oo, 61
Hardware Manufacturer Parts. 61
Console Manufacturers. 61
Hardware Representatives 61
Post-Release Parts 62
Chapter 6 Business ContextFirst 65
The Project Triangle 65
Implications of the Project Triangle. 66
Various Games and the Project Triangle 67
Questions for Youto Answer. oo 70
What to Do with These Answers 70
An Ultra-Low Budget Game 70
Fixed Budget, Fixed Deadline 72
High-Profile/High-Quality Projects 73
Walk Away o e e e e e 74
Chapter7 Key DesignElements 75
Business Context Shapes Design, or Does Design Shape
the Business Context? 76
Reconcile the Business Context and Game Idea Early 76
The Effects of a Slipped Game 77
Methods and the Unified Development Process 81
What Is a Development Method? 81
Why Use the Unified Software Development Process? 81
Requirements Capture. 82
Use Cases . . v v v v i it e e e e e e e e e e e 32
Case Studies. o v v i it e e e e 87
Case Study I—Diablo 87
UseCasesof Diablo. 88
Quick Analysis of the Use Cases of Diablo 89
Case Study II—Gran Turismo. 90
Use Cases of Gran Turismo. 92
Quick Analysis of the Use Cases of Gran Turismo 93
The Key Design Elements of Your Game 94
The Battle of the Counterterrorists Games 94

The Key Design Elements of Rainbow Six 95

Contents vii

Are We Playing a Mission or Planning a Mission?. 95

The Key Design Elements of Counter-Strike 96
Most Popular Multiplayer Game 96

Of Intersecting Sets and Elite Forces 97
Some Straight Questions to Ask Yourself 99
What Genre or Genres Does Your Game Feature? 99

Will the Game Be Single-Player, Multiplayer, or Both?. . . . 99
What Is the Platform?. 99
What Is Your Target Market? 100
What Major Technologies Are You Using? 100
NowWhat? 100
Chapter 8 Game Design Document 101
What Is a Game Design Document and What Does It Do? 101
What About the Proposal Document? 102
When Do You Write the Game Design Document? 103
What Should Go into a Game Design Document? 105
Section One: Defining the Game 106
Articulate What the Game Is as Clearly as Possible. 106
SettheMood. 107
Section Two: Core Gameplay 107
The Main Game View v v v v i oo 108

Core Player Activity v v v i i i i 108

The Controller Diagram. 108
In-Game User Interface 108
Section Three: Contextual Gameplay 109
ShellMenus 109

The Nuts and Bolts of Game Mechanics 109
Tutorial Mechanics. 109
Multiplayer Mechanics 110
Section Four: Talk Story 111
World Backstory o 112
Character Backgrounds 112
Level, Mission, and AreaDesign 113

Cut Scene Descriptions v v v v v vt ... 114
Section Five: Cover Your Assets 115
2D Spritesor3DModels 0. 115
Missions, Levels,orAreas 115
Voice o e 116

Key Framing and Motion Capture 117
Sound Effects 121
MUSIC. « « v v e e e e e e e e e e e e e e e e e e 121
Special Effects 125

SteppingBackaBit L o o o oo, 127

viii

Contents

Chapter 9 The Technical Design Document 129
Object-Oriented Design.o v, 129
Purpose of the Technical Design Document 130

Why Have a Software Development Process? 132
The Unified Software Development Process 133
Core Workflows of the Unified Process. 134
Phases of a Workflow in the Unified Process. 134
When Should the Technical Design Document Be Written?. . 135
What Goes into the Technical Design Document?. 136
Requirements Capture 136
Reverse Engineering 143
Nonobvious Requirements 143
Requirements Analysis. 144
Class Diagram. 145
Relationships. e 146
Drawing “is a” and “has a” Relationships and
Ordinalities.o i 146
Adding Annotation. L. 147
Other UML Diagram Types 147
Dynamic Modeling. 148
Architectural Diagrams 149
Large-Scale Planning and the Evil of a Long Build Time . . . 150
Refactoring. 150
Insulation. 151
Forward and Backward Code Generation with a
Modeling Tool. 154
TestingPlan. 154
Unit Testing and White Box Testing 154
Black Box Testing 155
BetaTestingo, 155
From Use CasestoTestCases 155

Chapter 10 The ProjectPlan. 157
What Is the Project Plan? 157
How Do We Create the Project Plan? 157

Gantt and PERT Charts for Organizing Project Tasks 158
Focusing onthe Gantt Chart 160
Using the Technical Design Document. 161
Task Granularity and Task Leveling 163
How Long Will That Task Take? 163
Short Time Estimate Possibilities 165
Estimating Research Tasks 165
Task Prioritization. 166
Resource Leveling. 171

Task Dependencieso i 172

Contents iX

The Top Ten Risks Document 174
The Non-Zero Chance of Delivery 175
Chapter 11 TaskTracking 177
Production Begins—Now What? 177
Task Visibility e 177
TheWall 177
Journals. 179
The Cult of the Yellow Notebook 179
Walk Around 180
Milestone Orientation Meetings 180
Praise People Publicly 180
Maintain the Gantt Chart 181
Update the Risks Chart 182
Chapter 12 Outsourcing Strategies. 183
Why Outsource? i ittt 183
When to Think About Outsourcing. 184
What to Outsource. 185
Do Not Outsource Programming—Exceptions Noted 185
On Outsourcing Art. oo v i vttt e e 186
Movies, Cut Scenes, or Full Motion Video. 186

3D Models—Modeling. 187
Animation and Motion Capture 187

User Interface Art. 188
Audio. e 188
MUSIC. « & v v vt e e e e e e e e e 188
Sound Effects 189
Voice-Over. . . . o v v i i e e e 190
What Else to Outsource 190
Chapter 13 Shipping YourGame 191
ShippingIsaPhase 191
How Do You Ship a Great Game?. 191
Alpha—Feature Complete. 192
What Is Feature Complete? 192
Additional Content. 192
Feature Trimming 192
TestingPlan 193
Publisher QA e 193
Team Testing e 194
Project Leader Testing 195
Automated Testing, 195
Focus Group Testing 195
BetaTesting., 196

Openor ClosedBetaTest? 196

Contents

Manufacturer Testing., 197
Licensor Testing, 198
How Do You Balancea Game?. 198
Final Candidate Cycle, 200
Transition, Ship, and Point Release. 200

Part lll—Game Development

Chapter 14 The Vision Document. 205
Write the Vision Document Twice. 205
So Is the Vision Document a Proposal? 206
Only 1 Percent CatchtheEye 206

What About the Precious Game Secrets? 207
Visuals o o e e e 207
Tactile e 208
What Aboutthe Words? 208
Contact Information 209

Chapter 15 Requirements Gathering 211

The Flavors of Requirements 211
Creative/License Requirements 211
Technical Requirements. 212
Fiscal and Temporal Requirements 213

Use Case Diagrams., 213

Chapter 16 The Design Document 215

What Does the Game Design Document Do? 215
The Game Design Document as a Process. 216

Game Concept e 216
Brainstorm. e 216
Delegate Design. 217
Managing the Design Document 218
60 Seconds of Gameplay. 218
Core Gameplay. vt 219
The Walkthrough 220
AssetLists. 221
Useof Other Games. v v v v v v v vt i 222
MenuDesign. e 222
Game Mechanics Detail 223
Writethe Manual? 223
Concept Sketches and Art Style Guide. 224
On Completeness and Uncertainty 224

Cut Features Even Before Considering the Schedule 224

Maintain the Game Design Document 225

On Fulfilled Expectations 225

Contents Xi

Chapter 17 Unified Modeling Language Survival Guide . . . 227
Use Cases Deliver Requirements. 227
Class Diagrams Are the Keystone of Design. 228
Detailed Syntax of the Class Diagram 230

Associations. 231
Attributes e 232
Operations. v v v v e e e e e e 232
Forward and Reverse Engineering of the Class Diagram 233
The Other Seven Diagrams of UML 238
Static Diagrams. e 238
Dynamic Diagrams 240

Chapter 18 TechnicalDesign 245
Nominate Functional Leads 245
Synthesize Use Cases and Nonvisible Requirements. 247

Start withthe Use Cases. 247
Casual, Frequent Design Review 247
Nonvisible Requirements 247
Measure Twice, CutOnce 249
Specify Tools, Languages, and Processes. 250
Goals for the Architecture 251
Identify Areas of Likely Change 252
The Quality Assurance Plan. 252
Defect Tracking., 252
Defect Tracking Software 253
The TestingPlan 253
How Many Bugs Are LefttoFind? 254
DefectPooling 254
DefectSeeding. 255
Political Resistance 255
Automated Testing. 256
BetaTesting iiee... 256
When to Releasethe Game 257

Chapter 19 TimeEstimates 259

Two Ways to Estimatea Task. 260
TimeBoxing, 260
Task Estimating. 261

Art . e 261
Design e 261
Programming. 262
Each Shall Estimate Thy Own Tasks 264
Save Your Plans and Compare 264

MakingthePlan L Lo, 264

Xii Contents

Chapter 20 Putting It All TogetherintoaPlan. 265
Let’s Create a Schedule for FishFood! 266
Create aNew ProjectFile 266

What Is a PERT/Gantt Chart Anyway? 266

Start Entering Tasks 268

Tasks Are Performed by Resources. 269

Where Does All of This Task Information Come From? 269
Organizing Tasks 270

Task Granularity 270

How to Account for Vacation and Sick Time 271
Remember Odd Tasks 271

Time Leveling in Project. 271
LetitJell e 273

How to Distribute the Schedule to the Team. 273
Chapter 21 Measuring Progress« . .. 275
OnLeadership 275
Know What Your Goal Is at All Times. 275

Set Goals, NotHours. 277

Task Tracking it 278

Only Visible Tasks Are Completed 279

The Daily Journal 279

TheWall e 282

Team Meetings e 285

Of Leavesand Gutters 286
Chapter 22 Controlling FeatureCreep 287
Great Games Satisfy Player Expectations 287
Feature Creep Occurs During Design. 288
Primary, Secondary, and Tertiary 288
Feature Walking., 288
Publisher-Suggested Features. 289

Push Independent Tasks tothe End. 290
Regularly Practice Feature Cutting 290
Chapter 23 Alpha, Beta, GoFinal! 293
The Test of Well-Laid Plans. 293
OnAlpha. e 294
OntoBeta. 294
TheFinale. 295
Chapter 24 Point Releasesvs.Patches 299
Software Complexity and the Fragility of Computers 299

How About Those Console Games—They Don’t Patch!? . . . 301

Online Games—the Perpetual Beta? 302

Point Release as a Sugarcoated Term for Patch. 302

FanRequests 303

xiii

The Publisher-Developer Post-Release Relationship. 303
Tools for Creating Patches 304
User Extensibility—The Magical Patch 305
Chapter 25 Garage Development Spans the Internet. 307
Silver Creek Entertainment. 307

Part IV—Game Development Resource Guide

Chapter 26 Getting a Job in the Game Industry 313
Who Is Trying to Get into Games? 313
You Want Me to Do What? Oh, I Would Rather Do This 314
Hours of the Game Industry 314
You Did Not Scare Me—I Love Games AND I Want In! 315
How to Get a Job as a Programmer. 316
Artists and Their Portfolios. 317
How Do IBecomea Tester? 318
[Have a Great Idea for a Game—I Want to Be a Designer!. . . . 318
So You Want to Bea Producer 318
GotoGDC—Free!. 319
What About Those Recruiters? 320
Resumes, Demo Reels, and the Interview. 320

Honesty vs. Modesty. 320

Chapter 27 Starting a Game Development Company 323
FindaPath 324
I Have a Plan; Now How Do I Get Started? 324
Rounding Out Your Development Team 325
Where to Locate Your Game Company. 326
Lawyerand Accountant 328
Deciding on the Type of Company 329

Non-Corporation i v i i .. 329
Corporation v v v v i e e e e e e e e e e e e e e 330
Taxes o e e e 331
Buy-Sell Agreements. 331
Insurance. 332
Workman’s Compensation 332
Liability Insurance 332
Employee Compensation Programs 332
Medical/Dental/Optical/IRA 334
401K/IRA/Retirement Benefits 335
Project Bonuses 335
Milestone Bonuses 335
Royalties. o i e 335
Stock Options. v v v i e e e e e e e 335
Trademarksand URLs. 336

War Chests o i i e 336

Xiv Contents

Chapter 28 OutsourcingMusic 339
Musicfor Games. 339
When to Think About Music. 339

Music Formats o, 340

What Is Better Than MIDI? 341
Digitized Sound Formats. 342

How Do You Break Down the MusicBid? 343
Score Music for Triggered Events. 344
Exploration and Ambient Music. 344
Chase/Battle/Hunting Music. 345
JumpLists. e 345
MenuMusic. o e 345

How Many Minutes Do You Really Need? 345

Live Performance? 346
Chapter 29 OutsourcingVoice 353
Interview with Chris Borders. 353
Voice-Over Script for the Orc Peon from Warcraft ITIT. 360
Chapter 30 Outsourcing Sound Effects 363
Interview with Adam Levenson. 363
Chapter 31 Outsourcing Writing 369
Computer Game Writing 369
Know Your Game; Know Your Business 369
BrevityisBliss 370

Speak the Speech I Pray You. 370

On Dialogue Trees i v i it i e 371
UseStoryasaReward 371

The 80 Percent Stereotype Rule. 371

Hint, Hint,and Hint 372

Expect Schizophrenia. 372

If You Have Time in a Bottle, Don’t Uncork It 373
Chapter 32 Outsourcing Cinematics and Models 375
Interview with Mark Gambiano. 376
Chapter 33 Outsourcing Motion Capture and Animation. . . 381
AnimationinGames e 381
KeyFraming 381

Motion Capture 382

How Does Motion Capture Work? 382

Cleaning up the MotionData 383

Planning Your Motion Capture Shoot 384

Best Use of Motion Capture 384

Contents XV

Chapter 34 Fan-Generated Material. 387
Game Development with Your Fans 387
Design Critique v v v vt it e e e e e e 387
Levelsand Missions oo v v vt 388
3DModels. 390

Other Potential Activities to Outsource. 390

Legal Matters When Working with Fans 390
Appendix A Suggested Reading. 395
Project Management. 395
GameIndustry L 396
Software Development 398

Appendix B The Art Institute of California—

OrangeCounty 401
Background. e 401
Game Art & Design Bachelor of Science Program 402

This page intentionally left blank

Foreword

It is a great honor to write a foreword for a book on game production, as this is a
subject that is very close to our hearts. We have played a very small part in help-
ing Erik with this book—he has accomplished a Herculean task in a relatively
short period of time. We believe this book will serve as an excellent foundation
for mastering the art of game production.

A multitude of books have been written on the specific disciplines of art, pro-
gramming, and design for games, but few, if any, have ever tackled game
production as a topic. Perhaps this is because there isn’t a standardized way of
referring to production in a manner similar to programming and art. Programming
is done in C and C+ + and usually follows standards that have been carefully
crafted over many years. Art uses both traditional media and a narrow range of
digital art tools, such as 3D Studio Max and Maya, and is often practiced by indi-
viduals with formal art training at their disposal. Perhaps game design is most
similar to game production in that, until recently, there haven’t been formal pro-
grams in game design, and it is somewhat of an “arcane art” that could be realized
in any potential medium. At the current time there aren’t any formal training pro-
grams for game production, though there are various courses available in project
management. Project management doesn’t fully encompass the skills needed to
manage game development, but it does provide some. Appropriately, this book
includes elements of project management, engineering discipline (a tribute to
Erik’s engineering background), and a lot of common sense (an essential ingredi-
ent in game production).

Erik explained that his goal with this book was to fully realize the discipline
of game production in a formal, yet widely appealing treatment. We were quite
impressed with his ambition, as we’ve learned over the years (via our work on
games like Baldur’s Gate, MDK2, Neverwinter Nights, and Star Wars: Knights of
the Old Republic) that game production is a huge area. Erik further explained that
he was going to provide additional information on topics such as outsourcing and
detailed production frameworks. During our review of the manuscript, we learned
a number of things that we’re going to be able to apply to development at
BioWare. We're also more excited than ever in seeing the final work with all of
the graphs, diagrams, and illustrations accompanying the text.

XVii

Xviii Foreword

In conclusion we believe you, the reader and presumed game producer or
game developer, will learn a great deal by reading this book. Its contents cover a
wide range of topics and contain pearls of knowledge that will be of value to not
only new game producers but also to experienced game developers. Read and
enjoy!

Dr. Greg Zeschuk and Dr. Ray Muzyka
Joint CEOs and co-executive producers, BioWare Corp.

Preface

Who Is This Book For?

This is a book about the making of digital interactive entertainment software—
games! Specifically, this book is for people who want to lead the making of games:
programmers, designers, art directors, producers (executive, associate, line,
internal development, external development), project managers, or leaders on
any type of entertainment software.

Are you a talented individual working on a mod to your favorite commercial
game who needs to understand how a game is put together?

Are you working with a small team across the Internet on a total conversion
like Day of Defeat that will grip gameplayers and game developers alike—but
are wondering how to motivate your team members and articulate your
vision for your total conversion?

Are you running your first game, with six or more developers working on
your game?

Have you been at work for a few months, and everything felt great at the
beginning, but now you are wondering if you are on time?

Are you just starting your second game project and determined to plan it
right this time?

Are you a successful executive producer who is now responsible for oversee-
ing several projects and want to know how you can get more clarity on your
project’s success?

Are you an external developer and want to know how you can best manage
risks and meet your milestones?

Is your project late?
Are you a member of a game development team and have a vested interest in
the success of this game?

Are you thinking of joining the industry as a producer and need a producer’s
handbhook?

The point is there are many different types of people responsible and accountable
for the production of a game project.

XixX

XX Preface

This book gives you specific tools for the management of your game, meth-
ods to create a project plan and track tasks, an overview of outsourcing parts of
your project, and philosophical tools to help you solve abstract production
problems.

The author’s personal experience producing the hit series Starfleet Com-
mand and other projects, as well as extensive interviews with many other
producers in the game industry, backs up this advice with real-world experience.

Games are incredible products of creativity requiring art, science, humor, and
music—a true blend of the mind. Managing this effort presents the producer with
many challenges, some specific and some vague. While this book will answer
many specific questions and give guidance in some of the general ideas, the tough
calls are still yours.

Acknowledgments

I have been very fortunate in the writing of this book and I was able to lean on
quite a number of folks from the game development community to answer ques-
tions and supply material for this book. I would especially like to thank the
following individuals: Chip Moshner, Jarrod Phillips, Jason Rubin, Kevin Cloud,
Ken Levine, James Masters, Lorne Lanning, David Perry, Nate Skinner, Nigel
Chanter, Steve Perkins, Chris Taylor, Trish Wright, Beth Drummond, and John
Carmack.

I would like to thank Chris Borders for his lengthy interview on voice in
games; Adam Levenson and Tommy Tallarico for their interviews on sound
effects and music; and Scott Bennie for his generous response on writing.

I would like to thank Steve McConnell for writing all of his books on software
project management.

I would like to thank all of the employees of Taldren who entrust in me every
day the responsibility to lead the team.

At Wordware I gratefully thank Jim Hill for the opportunity to write this book
and I also thank Wes Beckwith for being a wonderful development editor and so
supportive of writing this book. I also would like to thank Beth Kohler and Dianne
Stultz for the amazing editing job they performed.

A most outstanding thank you to Greg Zeschuk and Ray Muzyka who have
given so generously of their time and minds to make this book a much better
book.

My two dear partners, Sean Dumas and Zachary Drummond, are due my
heartfelt thanks for all of their support and just plain kicking ass every day.

And finally, I dedicate this book to my wife, Kai-wen, and my son, Kyle, who
is younger than this book.

XXi

This page intentionally left blank

Part |

Introduction to
Game Development

This page intentionally left blank

Chapter 1: What Does This Book Cover?

Chapter 1

What Does This
Book Cover”

How to Make a Game

Fairly audacious heading, huh? There
are a lot of books out there that are
introductions to C+ + or Direct3D, or
discuss the construction of a real-time
strategy game. What these books do
not cover is which development meth-
odologies you should employ in
creating your game and how to be
smart about outsourcing portions of it.

First Have a Plan

Games that have a poor development
methodology (or none at all) take much
longer than they should, run over bud-
get, and tend to be unreasonably buggy.
The majority of commercial games fail
to turn a profit.

Figuring out what your game needs
to do is called “requirements capture.”
This book will show you how to use
formalized methods such as the Unified
Modeling Language’s use case dia-
grams to quickly collect your require-
ments and communicate them

This book is not a vague list of
good ideas and suggestions; rather it
gets down and dirty and discusses
failed and successful project manage-
ment techniques from my own
experience as well as the experience of
a multitude of other development
studios.

effectively to your team and other pro-
ject stakeholders.

Even if you are working on a solo
project, you must still take your game’s
project planning seriously. A mere
demo of your capabilities to show a pro-
spective employer would be created
with higher quality and with more
speed if you follow the techniques pre-
sented here.

These are just the earliest ele-
ments of an entire game project
production methodology that is devel-
oped throughout this book.

Chapter 1: What Does This Book Gover?

Organize Your Team Effectively

Once you have a plan in hand, full game
production commences. This is the
most exciting time for a game project.
Literally every day new features will
come online, and on a healthy project,
the team will feed itself with new
energy to propel forward. This book
discusses how to create task visibility
so everyone knows what he or she
needs to do and how far along the rest
are in their tasks.

Controlling feature creep, reaching
alpha, and freezing new features are
critical to finishing your game. All of
the mega-hits in our industry kept their

feature sets narrow and the polish
deep. I will point this out again: The
mega-hits such as Doom, Warcraft,
Myst, Gran Turismo, Mario64, and The
Sims are not small games; rather their
feature set is small but polished to a
superior degree. This book will show
you how to get a grip on your features.
If you think about it, teams with
one developer must use their time
even more effectively than a fat 30-
person production. All the methods of
creating achievable tasks, measuring
progress, and controlling features are
even more critical for very small teams.

Game Development Is Software Development

Games are certainly special; however,
a point [will be making repeatedly
throughout this book is that game
development is software development.
Games are software with art, audio, and
gameplay. Financial planning software
is software that is specialized for finan-
cial transactions and planning, expert
systems are software with artificial
intelligence, and cockpit instrumenta-
tion 1is software dedicated to flying an

aircraft. Too often game developers
hold themselves apart from formal soft-
ware development and production
methods with the false rationalization
that games are an art, not a science.
Game developers need to master their
production methods so that they can
produce their games in an organized,
repeatable manner—a rigorous manner
that creates great games on budget and
on time.

Where to Turn for Outside Help

The game industry is maturing rapidly.
With this growth, outside vendors that
are experts in the fields of cinematics,
character modeling, motion capture,
sound effects, voice-over, language
localization, quality assurance, market-
ing, and music composition have pro-
duced mature, cost-effective solutions
for the largest to the smallest team.
Do you know how many moves you
need to capture for your game or how

much they will cost? Do you need to
record in high fidelity 120 frames per
second, or will buying a library of stock
moves be the best solution? I will show
you how to specify what you need and
give you an idea of how the bid will
break down in costs. Interviews by
major vendors in these areas will high-
light major gotchas where projects
went afoul and explain how to avoid
them.

Chapter 1: What Does This Book Cover?

How to Ship a Game

So you have finished your game, eh?
You've coded it all up and played
through it a bunch, and your friends like
it, but how do you know when it is
ready to ship? I will show you how to
track bugs, prioritize your bugs effec-
tively, task your bugs, and review your
final candidates for readiness.

All game projects can benefit from
beta testing. I will show you how to

Post-Release

After a game ships you will often have
a responsibility and an opportunity to
support your game. This is especially
true for the PC game market where it
1s possible to patch bugs, fine-tune the
balance, and add new features or con-
tent. The new content can take the
form of free downloads or larger pack-
ages that can be sold as expansions to
your game. These are the straightfor-
ward tasks; true mega-hits transcend
the status of just a game to play
through and become a hobby. Enabling
players to modify the game through the
creation of new levels, new modules,
new missions, or even total conver-
sions keeps your game alive far beyond
the life expectancy of a game without

effectively solicit help from beta test-
ers. Respect them and you will be
repaid in help beyond measure. Let
your beta testers lie fallow or fail to act
meaningfully on their suggestions and
your game will suffer. Beta testers are
project stakeholders too; you must
communicate with them effectively,
explain to them your decisions, and
show strength of leadership.

user-extensible elements. Pioneered to
great success, id Software’s Doom and
Quake series coined the term level
designer as an occupation. Arguably, the
greatest strength of Chris Taylor’s
Total Annihilation was its aggressive
design for user modification. Chapter 9
discusses the technical design, and it is
here, in the earliest stages of architec-
ture for your game, that you must plan
for user modification. Waiting until the
end of your project is not a valid
method for adding user-extensibility to
your game.

Fan communication is critical to
long-term success; set up an Internet
message board for your fans to trade
ideas, tips, gripes, rants, stories, chal-
lenges, and new content.

Success and the Long Race

The deeper message I am presenting in
this book is that successful game mak-
ing is a long race rather than a sprint to
fast cash. Any attempt to take a short-
cut for poor motives will manifest itself
in a sickly, failed game project. Take
your time to figure out the context of

your game project. Discover why you
are making this game. What is the
vision? What are your true profit goals?
Are they reasonable? What should you
accomplish in this game? Where does
this game you are making fit into a
chain of game projects?

6 Chapter 1: What Does This Book Gover?

How to Use This Book

I suggest you first lightly skim through the second half of your preproduction
the entire book cover to cover to geta phase to flesh out your production plan.

cursory exposure to formalized game Part IIT should remain handy during

development. production to help with organizing your
Parts I and II discuss the chal- team, wrestling with Microsoft Project,

lenges of game development Unified Modeling Language, Excel, and

thoroughly and introduce you to effec- other tools for measuring progress, and
tive methods of game development to for controlling the scope of your

use on your project. project.

The early chapters of Part III Review the later chapters of Part
should be read thoroughly at the begin- III as production reaches alpha and it is
ning of your game project to create a time to figure out how to ship your
detailed project plan that will give your —game.
project the best start possible. The methods presented in this

Part IV is a resource guide to get- book have been boiled down in a dis-
ting outside help on your project. This tilled format in the Game Project
material should be reviewed carefully in Survival Test included in Chapter 4.

Chapter 2: Why Make Games? 7

Chapter 2

Why Make Games?

To Share a Dream

Creative people love to share their different entertainment mediums, of
dreams, thoughts, and worlds. Artists ~ having the most interactivity with the
want to show you the world, musicians audience. This is a very special quality;

want you to feel the world, program- it makes the player the most important
mers want you to experience the world, part of the story—the hero. Novels are
and game designers want you to be interactive with the reader, as no two
there. readers will visualize a narrative in the
Games are deeply rewarding same way. Music is interactive for the
because they appeal on so many differ- rhythm, mood, and inspiration to dance
ent levels: They are stories to be that it charges humans with. Games are
caught up in, action sequences to live, very special—only in a game can a
stunning visuals to experience, and player try different actions, experience

they challenge our minds by exploring different outcomes, and explore a
our strategy and tactical skills. Games model of a world.
hold the unique position, of all the

Games Teach

Games and stories are deep elements to backgammon. Wei-Ch'i, or Go, can
of human culture. Peek-a-hoo and its be traced back by one legend to 2200
more sophisticated cousin
hide-and-seek teach the ele-
ments of hunting prey and
evading predators. The oldest
complete game set discovered so |
far is the Royal Game of Ur, an ’;_
ancient Sumerian game dating

back to 2500 B.C. The rules for | © @ 00 D Q@ ©© 62 @
this game are unknown, but the .. . ® e . ® . . ® 3 =
| 4

| |

conjecture is that it was a betting
game about moving a piece d "/ b
around a track of squares, per-

haps as a very early predecessor 1pe Royal Game of Ur with permission from James Masters

8 Chapter 2: Why Make Games?

B.C. China where Emperor Shun sup- Longer histories of games are
posedly used the game to train his son available; the point I am making here is
for assuming leadership of the state. that games have held an intimate role
Chess has a rich history throughout the in our intellectual growth from the ear-
Middle Ages, the Renaissance, and liest ages. We modern game makers are

through to modern times as the most carrying on an honorable, historic role.
celebrated game of strategic thinking.

Game Genres Satisfy Different Appetites

Electronic games are usually _ .
described by their genre—strat- | o st I
egy, adventure, role-playing,

action, and simulation. These
genres are a direct reflection of
the source material for the game.
Military and sports simulations;
gambling, parlor, and puzzle
games; storytelling; toys; and
children’s games comprise some
of the major branches of infiu-
ence for the creation of
electronic games.

Modern computer games
have a rich history; some of the
earliest games (1970s) were text
adventure games such as Adven-
ture, crude arcade games like
Pong, and a little later, multi-
player games such as NetTrek.
These early games explored sto-
rytelling, strategy, tactics, and
the player’s hand-eye coordina-
tion. The sophistication of these
games was, of course, limited by
technology—a limit that is con-)
stantly being pushed back. \‘ /

Background and influences on modern game genres

Gambling, Puzzle, and Parlor
Games cards. Games like Parcheesi and Scrab-

Games evolved from elegant board ble took solid form during the 1800s
games full of culture to a wide variety ~ and early 1900s. Parcheesi is the father

of wagering games involving dice or of board games and requires the players

Chapter 2: Why Make Games?

to navigate their tokens around the
board like Monopoly and Candy Land.
These games themselves have been
directly ported as electronic games, but
it is the fast-paced puzzle games like
Tetris that have developed new ground
in this genre.

As I type these words, over
110,000 people are playing straightfor-
ward conversions of the classic card and
board games online at Microsoft MSN
Gaming Zone (http://zone.msn.com/ql.asp).
These games have entertained families
and friends throughout the ages and
teach deduction, probability, and social
skills. The folks at Silver Creek

1

A partial listing of games and gamers on Microsoft's

4

Gaming Zone

Entertainment (http://www.silvercrk.com)
have taken the concept of spades and
hearts and have crafted the finest ver-
sions of these games, complete with a
rich set of features for social interaction
including chat, ratings, and blasting
your opponents with fireballs.

One of the coolest parlors (in my
opinion) happening right now is the
Internet Chess Club (http://www.chess-
club.com) with over 1,000 players
currently connected and 26 Grand Mas-
ters and International Masters playing
online. The ICC boasts an impressive
chat system, automated tournaments,
over 30 flavors of chess, anytime con-
trol, and impressive library and game
examination features. Automated chess
courses are broadcast throughout the
day, and many titled players turn their
mastery into cash by teaching chess
using the shekel—the unit of currency
on the ICC. It is an exciting place
where you have the choice of watching
GMs and IMs or playing in tourna-
ments around the clock. Instead of
dusty annotated chess columns in the
newspaper, try some three-minute blitz
action with the best players in the
world.

A dwarf and a fireball from Silver Creek Entertainment’s
Hardwood Spades

10

Chapter 2: Why Make Games?

the obligatory features of
impressive 3D plane graph-
ics, great looking scenery,

| and a realistic flight model,

| the truly impressive features
' of X-Plane involve its
expandability. Hundreds of

LTI e R

Various windows of the Blitz interface to the Internet Chess Club

Military and Sports Simulations

Games have long been providing simu-
lations of real-life experiences that
many of us do not get to experience in
daily life. There are simulations for
white-water kayaking, racing minivans
at night on the streets of Tokyo, fantas-
tic-looking detailed professional football
simulations, skateboarding simulators,
star fighter sims; in short, any sport,
military action, or transportation
method is a good candidate for an elec-
tronic simulation.

Flight simulators have been the
staple of computer simulations since
the early '80s. Microsoft enjoys the #1
spot with Microsoft Flight Simulator,
which they release new versions of
every even-numbered year—the latest
being FS 2002 (http://www.microsoft.com/
games/fs2002). Microsoft Flight Simulator
has a huge following including hun-
dreds of virtual airlines and air traffic
controllers, and half a dozen or so
books are available for Flight Simulator.

Austin Meyer of Laminar Research
is the author of the most realistic and
user-extensible flight simulator, X-
Plane (http:// www.x-plane.com). Aside from

planes and other features
created by devoted fans are
available for X-Plane, includ-
ing real-time weather that is
downloaded to your computer
while flying! The author put
his time into creating the first
simulation of what it would
be like to fly on Mars: real
flight with the gravity, air density, and
inertia models of flight on Mars.

A screen shot collage from X-Plane

Through the *70s and '80s Avalon
Hill produced a vast array of detailed
military board games that covered all
aspects of war making from the Bronze
Age to the Jet Age. Avalon Hill’s crown-
ing achievement is perhaps the most
detailed board game ever created:
Advanced Squad Leader (ASL). ASL is
also the most detailed squad-level mili-
tary board game simulation ever

Chapter 2: Why Make Games?

A screen shot from the real-time weather display for X-Plane

Virtual airlines from X-Plane

developed. Countless modules expand
the game and the rules to take into
account the differences of individual
operations in World War II. There are
zillions of rules (and errata!) for every-
thing from ammo types to night combat
rules. Military buffs have been playing
war games for hundreds of years, but
the developments that led to ASL car-
ried forward into electronic gaming.
Currently there is a rage going on
about WWII squad games such as
Microsoft’s Close Combat and Cor-
nered Rat’s World War II: Online. The
most hardcore of them all is Combat
Mission: Barbarossa to Berlin by Bat-
tlefront.com.

11

My company, Taldren, was founded
on the success of our team’s Starfleet
Command game, which is a 3D real-
time interpretation of the rule set of
Star Fleet Battles from Amarillo
Design Bureau. Star Fleet Battles is a
detailed simulation of starship naval
combat based on the Star Trek televi-
sion show and was created by Steven
Cole. The board game translated well
into a real-time 3D strategy game in
part because the pen and paper board
game itself broke the turns of the game
into 32 “impulses” of partial turns to
achieve a serviceable form of real-time

-_— simulation. The game itself
was usually played as a sce-
nario re-enacting a
“historical” battle between
star empires of the Star
Trek universe. The game
was so detailed in its
mechanics a simple
cruiser-on-cruiser skirmish
could take two to fours
hours to resolve, and a fleet
action such as a base
assault was a project for
the entire weekend and a bucket of caf-
feine. We developed the Starfleet
Command series that draws upon this
rich heritage and delivers a compelling
career in one of eight star empires or
pirate cartels. As the players get caught
up in epic struggles between the star
empires, they earn prestige points for
successful completion of their missions,
which can be used to repair their ships,
buy supplies, and upgrade to heavier
class starships. This electronic game
blends a television show telling the
story of exploring the galaxy with the
detail of a war game.

12

Car racing has been a staple of
games from the days of Monaco GP
and Pole Position in the arcade to the
state-of-the-art Gran Turismo 3 by
Sony. Gran Turismo 3 features hun-
dreds of hours of gameplay, the most
realistic driving physics model, and
graphics so compelling you can feel the
sunlight filtered through the pine trees.

Electronic Arts, the largest soft-
ware company in the games business,
sells about $3 billion in games a year.
Electronic Arts is both publisher and
developer of countless games dating
back to the early '80s. EA has done
very well across all platforms and all
genres; however, it is the simulation of
sports—professional sports—that is
EA’s cash cow. Madden NFL Football
(http://madden2002.ea.com) has been pub-
lished for years and has been released
on every major platform including the
PC, PlayStation, PlayStation 2, N64,
Game Boy Color, GameCube, and Xbox.

Role-Playing Games

No discussion of game making could be
complete without discussing storytell-
ing. Sitting around a fire and spinning a
tale is one of the oldest forms of enter-
tainment. Shamans acted out roles as
gods, animals, and warriors to explain
our world, teach us history, and to fuel
our imaginations after the sun went
down. With the advent of writing,
authors could now tell stories across
time—Ilonger, deeper stories than a sin-
gle dry throat could repeat. J.R.R.
Tolkien’s Lord of the Rings trilogy: Here
we drank wine with nearly immortal
elves, fought epic battles with orcs, and
saved the world from ultimate evil
through careful use of a ring. Science
fiction and fantasy exploded in the

Chapter 2: Why Make Games?

second half of the twentieth century to
become the dominant market of fiction.

Reading a novel is wonderful, but
would it not be better to slay the
dragon yourself and take the loot home
to your castle? In the early ’70s, Gary
Gygax created Dungeons and Dragons
and showed us how to slay the dragon.
Dungeons and Dragons was very spe-
cial because you did not compete
against the other players; rather you
acted or role-played a character in a fan-
tasy world. You wrote a backstory for
your elven ranger, what motivated him,
why he must slay the orcs of the Fell
Lands. You then joined up with the
characters of your friends and role-
played through an adventure run by
your Dungeon Master, or referee.

Dungeons and Dragons has been
played by virtually everyone in the
game industry, and it is a keystone of
the role-playing game genre. Text
adventures such as Zork and graphic
adventures such as the King’s Quest
series gave us choices for how the
story would turn out. As capabilities
expanded, breakthrough games such as
Bard’s Tale, written by the infant Inter-
play and published by Electronic Arts,
were later followed up by important
games like the Ultima and Wizardry
series. Role-playing games took a brief
slumber in the early ’80s when first-
person shooters dominated the PC
market, and the format of the computer
RPG remained fairly stale in the early
’90s. Starting around 1997 role-playing
games made a big comeback in the
form of three hugely important games:
Baldur’s Gate developed by BioWare,
Diablo developed by Blizzard, and
Ultima Online developed by Origin.
Baldur’s Gate brought us a gorgeous
game with intuitive controls and

Chapter 2: Why Make Games?

mechanics and lavish production values
that brought the Dungeons and
Dragons world of the Forgotten Realms
to life. Diablo stunned the game indus-
try with the simple and addictive game-
play of the tight user interface and
online multiplayer dungeon hacking.
Ultima Online was the first commer-
cially viable massively multiplayer
role-playing game. I spent probably 80
hours of my life there, mining virtual
iron ore to get ahead in a virtual econ-
omy where I paid a real $10 a month for
the privilege of exploring my mining
fantasies.

Looking back to pen and paper
role-playing games and fantasy fiction, I
am excited to see the future of role-
playing games with the release of
Neverwinter Nights developed by

Youth Making Games

You have to have the bug to make
games. The talent usually begins at a
young age. Like countless other game
developers who made goofy games on
early computers, [had a Commodore
Vic20 and C64 on which I created text
adventure games and crude bitmap
graphic maze adventures. In fourth
grade I produced a fairly elaborate
board game series that involved adven-
turing through a hostile, medieval
fantasy world with various characters
very similar to the Talisman board

On Money

In this whole discussion I have not
talked about the money to be made in
making games. Game making is both an
art and a science. If you are honest with
yourself, your team, the customer, and
to the game, you will make a great

13

BioWare, where the tools of game mas-
tering are part of the game. Scores of
players will participate together in
user-created adventures online. These
online role-playing games are fantastic
in scope compared to the multi-user
Dungeons available on Unix systems on
the Internet, but the story experience
1s just as compelling. I look forward to
seeing the massively multiplayer vir-
tual reality games as depicted in Tad
Williams’ Otherland fiction series,
where we become true avatars. Gas
Powered Games’ release of Dungeon
Siege, building on the groundbreaking
immediacy of Diablo, will be the slick-
est action/RPG today with breathtaking
3D graphics and strong online
multiplayer matchmaking that will sat-
1sfy the dungeoneer in all of us.

game. In eighth grade my friend Elliott
Einbinder and I created a wireframe,
first-person maze game; you used the
keyboard to navigate through the maze.
A most embarrassing flaw was in our
maze game: We could not figure out
how to prevent the player from cheat-
ing and walking through the walls! We
kept asking our computer science
teacher how we could query the video
display to find out if we drew a wall. We
had no concept of a world model and a
display model!

game. In all art forms, excellence is
always truth.

Honesty, truth, and clarity are all
interrelated, and they are important not
because of moral standards; they are
important because only with the

14

ruthless pursuit of a clean, tight game
can you hope to make a great game.
The rest of this book will focus on
how to get maximum value for your
development dollars with outsourcing,
how to decide which features to cut,
and how to track your tasks; all these
activities are heavily involved with

Why Make Games?

You should make games because you
love to. Making a game should be a
great source of creative release for you.
You love to see people enthralled by
your game, playing it over and over,
totally immersed in the world and the

Chapter 2: Why Make Games?

money. That being said, look deeper
and understand that I am helping you
realize the true goals for your game
project and to reach these goals as effi-
ciently as possible.

Great games sell just fine, and the
money will come naturally enough;
focus on making a great game.

challenges you have crafted for their
enjoyment. You should make games if
there is something fun you can visual-
ize in your mind, something fun you
would like to experience, and you want
to share that experience with others.

Chapter 3: What Makes Game Development Hard?

Chapter 3

15

What Makes Game
Development Hard”

The Importance of Planning

What does it take to make great games?
Brilliantly optimized graphics code?
Stunning sound effects, clever artificial
intelligence routines, lush artwork, or
simply irresistible gameplay? Well, you
need all of that of course, with game-
play one of the most important factors.
However, behind the scenes you are
going to need a trail guide and a map to
get there.

You might be working alone on a
great mod to a commercial game, or
you might be working with an artist on
a cool online card game, or you might
be the director of development at

Blizzard. The size of your project or
your role does not matter; you still
need a plan to create your game.

Why must you have a plan? With
the smallest of projects the plan will
likely be to get a prototype of the game
going as soon as possible and then just
iterating and playing with the game
until it is done. This method works well
if the game you are making is a hobby
project, or your company is funded by a
seemingly unlimited supply of someone
else’s money and you are not holding
yourself financially accountable.

Very Few Titles Are Profitable

Many people do not realize how few
games are profitable. In 2001 over
3,000 games were released for the PC
platform; it is likely only 100 or so of
those titles turned a profit, and of those
only the top 50 made significant money
for the developers and publishers.

In 2000 an established developer in
North America would likely receive
between $1 million and $3 million in
advances paid out over 12 to 36 months
for the development of a game. The
typical publisher will spend between
$250,000 and $1.5 million in marketing

The darkened boxes represent the number of
successful games published each year.

16

and sales development (“sales develop-
ment” is the euphemistic term for the
money the publisher must spend to get
the game actually on the shelf at the
retailer and well positioned). The box,
CDs, maps, manual, and other materials
in the box cost between $1.50 and
$4.00 collectively. The royalties an
established developer could expect
vary widely, from 10 to 30 percent,
depending on many factors including
how much of the financial risk the
developer is assuming and the types of
deductions to the wholesale price. Let’s
take a look at what these numbers
mean for a game that has an average
retail price of $35 over the life of sales
in the first 12 to 24 months after
release. Table 1 summarizes the finan-
cial assumptions behind this

hypothetical project.

Table 1—PC Game Project Financial Basics
Average Retail Price $35.00
Wholesale Price $21.00
Developer Advance $1,500,000
Developer Royalty 15%

Table 2—Game Project Payoffs at Various Sales
Targets

Units Royalty Less Advance
10,000 $ 31,500 $ (1,468,500)
30,000 $ 94,500 $ (1,405,500)
100,000 $ 315,000 $ (1,185,000)
200,000 $ 630,000 $ (870,000)
300,000 §$ 945,000 $ (555,000)
500,000 $ 1,575,000 $ 75,000
1,000,000 $ 3,150,000 $ 1,650,000
2,000,000 $ 6,300,000 $ 4,800,000

Chapter 3: What Makes Game Development Hard?

500,000 Units to Break Even?

Take a long hard look at Table 2. Notice
that not until 500,000 units have been
sold does the developer see a royalty
check. This is a $75,000 check that is
likely to be issued to you between 9
and 18 months after release of the title.
The conclusion from this is that royal-
ties alone will not feed you and your
team post-release. “No problem,” you
think, “my title will sell millions!”
Unfortunately, even good games don’t
always sell many units. As an example,
the excellent developer Raven sold a
little over 30,000 units of the strong
game Hexen II. Messiah, the long-
anticipated edgy first-person shooter,
saw fewer than 10,000 units sold in its
first three months (most games make
the large bulk of their sales in the first
90 days of release). Fallout 1 enjoyed a
loyal fan following and strong critical
reviews and sold a little more than
120,000 units in its first year. The
author’s Starfleet Command 1 sold over
350,000 units its first year without
counting the Gold Edition and the Neu-
tral Zone expansion. However, the
sequel, Starfleet Command 2, has sold
120,000 units in its first six months of
release. Sure, Diablo II from Blizzard
enjoyed over 2 million units of orders
on day one of release, and The Sims
has been in the top 3 of PC Data for
almost a year and a half. These titles
have clearly made a ton of money. In
fact, those orders that Blizzard had for
Diablo II on day 1 had a value that
exceeds the market capitalization of

Chapter 3: What Makes Game Development Hard?

Interplay Entertainment’—a publisher
with a rich publishing history spanning
over 15 years.

Employee Compensation and
Royalties

Table 2 has other implications. Many
development houses share royalties
they receive with their employees by
some fraction. Many developers go
even further and offset the often
too-low salaries paid in the highly

17

competitive game business with overly
optimistic promises of future royalty
payments. These promises are mean-
ingless in many cases: After the
employees crunch through develop-
ment and release and even during
post-release, supporting the fans, these
expectations of monetary rewards for
their labor turn out to be false. Then
these employees turn from energetic,
highly productive creative developers
to disenfranchised employees looking
for a new job.

What Are the Financial Expectations

for Your Game?

A recurring theme throughout this
book is managing expectations of all
project stakeholders through high-
quality communication that is clear and
honest. That is why I am presenting
this sobering information so early in
this book. You must be clear about why
you are creating your game. Do you
expect to make a profit? Are you
depending on the royalties (or direct
sales in the case of software sold as
shareware or by other direct sales
methods) to support yourself and your
development staff? Is this project only a
hobby and any money it produces a
happy bonus? Is a publisher funding the
project or do you have an investor
backing your project?

Knowing your financial expecta-
tions—not your hopes and dreams—for
your game project is critical to achiev-
ing success. Establishing these expec-
tations will determine the scope of the
project. With the scope of the project in
mind, an estimation of the number of

developers required to create the game
and how long it will take is established.
This estimate should then be compared
to the financial goals one more time to
establish a baseline for cost, time, and
scope.

The Scope of the Game Must
Match Financial Parameters

Most game projects fail to meet their
financial expectations because the
developers fail to articulate clearly and
honestly what the implications of their
expectations are. This is such an obvi-
ous statement, but virtually every
game project I know of suffers from a
disparity between what the expecta-
tions are for the project and the
resources and time allocated to the pro-
ject. Some of the very well-endowed
developers such as Blizzard, BioWare,
and id are famous for the “When it’s
done” mantra. There is little doubt that
a project from Blizzard, BioWare, or id
will be of the highest quality and most

1 This statement sounded a lot more impressive when | wrote it in the summer of 2001; as of October 2002

Interplay has been delisted from NASDAQ.

18

undoubtedly be very profitable. How-
ever, Blizzard, BioWare, and id also
have a large amount of working capital
on hand and have dedicated that work-
ing capital to making killer games.

If you do not have an unlimited
supply of working capital on hand, then
I strongly suggest you take on a differ-
ent mantra than “When it’s done.”
Most likely you have a budget of both

Chapter 3: What Makes Game Development Hard?

time and money to work with, so what
you need to do is figure out what is the
“best” game you can make within bud-
get. Remember, id founders once
created games for $6 an hour for a
long-forgotten publisher, SoftDisk, and
Blizzard once worked as a developer for
Interplay. There are steppingstones on
the way to greatness; too many devel-
opers try to take the gaming world by
storm in one ambitious step.

Why Your Game Should Profit

Part II, How to Make a Game, will show
how we take these baselines and
develop a project plan and then execute
the development of a game project.
Beyond just running a single game pro-
ject, I will discuss how your game
project should fit into a greater plan of
growth for yourself, your company,
and/or your team. The dot-com era has
distorted many people’s expectations of
what it takes to make a business. Too
many dot-coms were based on business
plans about gaining “mind share” or
“market presence,” or were just plain
hype. Many overnight millionaires
were made, so this style of business
creation certainly worked for some, but
for the vast majority of dot-coms, bank-
ruptcy and bust was the end. These
dot-coms failed to create a product or
service that people would actually pay
money for and be able to deliver it in
such a manner that they could make a
profit. Making a profit is not an evil
thing to do for a bunch of creative game
developers. Making a profit enables you
to store up capital to handle the period
of time between projects. A capital
reserve allows you to respond more
gracefully to project slippage due to
unexpected turnover or other

unforeseen events. Profit allows you
more tactical and strategic maneuver-
ing room for your game company. This
store of capital enables you to make
more ambitious games in the future,
retain employees, hire new talent, and
make capital improvements to your
workplace for greater efficiency. Too
many game developers pour their heart
and soul into game projects that have
no real likelihood of making a profit.

Maybe you do not care about profit.
Maybe it is of secondary or even ter-
tiary importance to you. I still urge you
to run your game project with the rigor
and the earnestness of a small business
that needs to deliver on expectations,
on budget, and on time.

Following are two unprofitable
attitudes when approaching game
development.

Feature Storm

Attitude #1: “Hey! What about quality?
You are leaving me cold here, Erik. My
game is going to rock; it is going to be
massively multiplayer, with magic, mar-
tial arts, and small arms combat. I am
going to have vehicles, and you can go
to any planet you want and even fly a
starship to get there! Erik, you dork, of

Chapter 3: What Makes Game Development Hard?

course my game is going to make a ton
of money; people are going to lay down
$10 a month to play it, and I will port it
over to the PS2 and Xbox and pick up
the juicy console money too. Sheesh!
Making a profit, that is going to be a
side effect of my vision, Erik. I do not
need to worry about that!”

What is wrong with attitude #1 is
that the designer has not looked into
the costs for developing every feature
under the sun. There is a reason why
Warcraft is a tight game about manag-
ing humans and orcs gathering stone,
gold, and wood. There is a reason why
Quake is a tight game about first-per-
son combat. Creating a game that
people want to play means fully deliver-
ing on every expectation you create in
your game design. If your game design
has martial arts combat, then your fans
will want a very playable martial arts
simulation. If you also have starfighters
to pilot in your game, your game better
be competitive with FreeSpace 2 in its

Excellence in Spades

Take a look at Hardwood Spades from
Silver Creek Entertainment (http:www.sil-
vercrk.com). This is by far the most pol-
ished execution of spades the world has
ever seen. A core team of just three
developers has put out an incredible
series of classic card games, where the
quality of the executed games is way
over the top. They have added a ton of
small, tight features and improvements
to the playing of spades such as casting
a fireball or a shower of flowers at
another player. This spades game is
multiplayer and is played 24x7 on serv-
ers hosted by these folks. They do not
take advance money from a publisher

19

execution of starfighter combat. Other-
wise you will end up creating a bunch of
open expectations that you will not be
able to fulfill. The market will crush
you for creating unmet hype.

If the Game Is Worth Making, Make
It Excellent

Attitude #2: “I am just making a little
spades game to get my feet wet. I am
never going to show it to anyone, and
no one is going to play it, so who cares
if I make a profit?”

The problem with attitude #2 is
that it ignores the strong wisdom that
says if something is worth doing, it is
worth doing well. A weak demonstra-
tion of your programming skills will
demonstrate that you are a weak pro-
grammer. An incomplete game design
document will demonstrate that you
make incomplete designs. Art that does
not appear competitive shows that you
do not have the artistic talent to
compete.

but sell their games direct to the con-
sumer online. They have slowly built
up a following over the years and are
now quietly selling hundreds of units a
month for each of their titles. I have the
utmost respect for these folks. They
had a vision for creating the highest
quality classic card games on the planet
and have executed that dream step-by-
step, building up their capital, fan base,
and quality level as they went. Notice
that they did not pitch the idea of the
world’s most gorgeous card games for
$2 million up front to a publisher and
then go find an artist, programmer,
game designer, and fan base. Instead,

20

they released their first game, Hard-
wood Solitaire, in 1997, which had
moderate success and enabled them to
build upon this experience. I have no
idea what their future plans are, but
notice that they have built up a strong
collection of popular titles and a

Chapter 3: What Makes Game Development Hard?

successful brand, and are now in the
powerful position of continuing to build
up their brand and products, licensing
their products for a distribution deal, or
perhaps selling themselves in whole to
a larger company to lock in a strong
return on their years of investment.

Game Making Is a Long Race

of Many Game Projects

Investing over time is what it takes to
make it big in the game industry. It is a
very long race in a very small world; do
not burn any bridges, and try to make
as many friends as possible along the
way.

Some of you may be familiar with
the games I have produced—the Star-
fleet Command series. Some of you
might say, “Hey, Erik, didn’t SFC1 and
SFC2 have a bit too many bugs? How
do you account for that? Oh, and didn’t
SFC2 not ship with a functional
Dynaverse 2, the hyped, massively
multiplayer-lite metagame? If you are
so wise, Erik, explain what happened.”

No problem, hang on a moment and
listen to what I have to say.

This is a book wrought from my
experience and the experience of other
developers—experience of both success
and failure.

What I have to share with you in
this book is not wisdom I received in
college, nor did my boss train me when
I first led a game project. This is
hands-on, face-the-challenges-as-you-
go advice. Much of what I have learned

has come from taking the time to ana-
lyze what happened and discussions
with my teammates and other game
developers to figure out what went
wrong and how we could have done
better. In many ways this book repre-
sents a field manual of essential game
production that I would have appreci-
ated reading when I started leading
game projects. Throughout this book I
will discuss the Starfleet Command
series and the decisions I have made
along the way as a producer. You will
be able to run shotgun and role-play an
armchair executive producer!

There are books out there that will
attempt to teach you to design and pro-
gram a real-time strategy game or write
the rasterizer for a software first-per-
son shooter. You can also find books
telling you how to design and architect
your game, and some books have made
strong efforts as a resource guide for
finding sources of art, music, and code.
However, these books do not address
how to make a game.

Chapter 3: What Makes Game Development Hard?

21

A Brief History of Software Development

How to make a game, I believe, is the

most elusive question in the game

industry. In fact, the software industry
at large is relatively open and up-front
about how immature the software engi-
neering processes are as a whole. Take
a look at After the Gold Rush by Steve
McConnell for an excellent discussion
of the much-needed maturation in the
software industry. Much development
in the software engineering community
1s going into improving the process of

how we go about making software.

During the '60s and ’70s great strides
were made in increasing the strength of
the programming languages from For-
tran and COBOL to C. During the '80s
the microcomputer created tremendous

improvements in the programming

workplace. Each developer could have

his own workstation where he edited,
ran, and debugged code. During the late
"80s and early '90s the leading edge of
the software development community
got charged with the efficacy of object-
oriented programming and the large-
project strength of C+ +. Improve-
ments continued with integrated
editors, debuggers, and profilers. Opti-
mizing compilers have almost made
assembly programming obsolete, and
visual interface layout tools have made
programming rather pleasant for busi-
ness applications. With all of these
fantastic improvements to the software
development process, software project
budgets have only gotten larger and
have only slipped by longer amounts of
time and by greater numbers.

Overly Long Game Projects Are Disastrous

Take a look at Table 3 listing game pro-
jects, how long they took to release,

and the outcome.

This table is a Who’s Who of games
that have run horribly over budget, and
only two games on that list have made

significant money: The Sims and

Baldur’s Gate. The best-selling game
on the list, The Sims, has made and is
continuing to make a huge fortune for

Electronic Arts. Why is it that The

Sims has made the most money on that
list? Because Electronic Arts was very
fortunate that no one else (that state-
ment is worth repeating) no one in the
entire PC game industry of some 3,000
titles a year for five years in a row has
released a title even remotely competi-

tive to The Sims, filling a vastly

Table 3—Long Game Projects

Stonekeep 1 5 years of Weak sales
development

Daikatana 4 years of Weak sales
development,
fantastic cost
overruns

Messiah 5 years of Weak sales
development

Max Payne 5 years of Just released
development

The Sims 5 years of Amazing sales

development

Baldur's Gate | 3+ years of Very strong
development sales

Duke Nukem 5+ years of Yet to be
Forever development | released

Stonekeep 2 5 years of Project

development | cancelled

Ultima Online 2| 4 years of Project

development cancelled

22

underserved market of women who are
consumers waiting for games to be
designed for them. And with the right
title EA can make tons of money due to
its marketing and sales strength; this
cannot be underestimated.

Also note that Maxis released
something like ten games in the sims
genre and only two of these, SimCity
and The Sims, have generated great
returns over ten years. The rest of the
sim-type games were relatively poor
sellers. This is something that seems
to be forgotten by a lot of people—that
Will Wright has been experimenting
with this type of game for ten+ years
before hitting a home run with The
Sims.

Max Payne has just been released,
and we need a little time to see how the
market will respond to this adventure
shooter with amazing graphics (I expect
this game to do well). The other suc-
cessful title on the list, Baldur’s Gate,
had a number of delays and develop-
ment extensions but ultimately was
still successful: The Baldur’s Gate
series (BG with its expansion pack and
sequel/expansion pack) has sold nearly
4 million units worldwide. It came at
the right time for role-playing games
and was a quality title with a strong
license (Advanced Dungeons and
Dragons) behind it.

Chapter 3: What Makes Game Development Hard?

As for the rest of the titles, they
were simply too-little too-late titles
that had to compete against stronger
games that were produced faster and
for less money. Or in the case of
Stonekeep 2 and Ultima Online 2, there
were millions of dollars of game devel-
opment and even the hype of game
magazine covers that the publishers
had to walk away from when the games
were cancelled!

What Late Games Do to Publishers

When projects run over, even by less
than three years, they hurt the industry
at large. Consumers are tired of being
frustrated by overly hyped games that
are late. The publishers are constantly
attempting to make realistic financial
projections to manage their cash flow
and maintain investor confidence. With
poor cash flow or low investor confi-
dence, a publisher is often forced into
publishing more titles. More titles
mean each receives less attention at
every stage of development. This in
turn weakens the publisher more, as
titles begin to ship before they are
ready in order to fill gaps in the quarter.
This creates a vicious feedback cycle
that pressures the publisher to publish
even more titles.

Our Project Plan Behind Starfleet Command

Interplay was impressed with our quick
execution of Caesars Palace W95 while
working for another developer, and
after doing various contracting and
working on our own demo of a game,
we joined Interplay in the summer of
1998. Interplay presented me with

running Starfleet Command and the
opportunity to work with Sean, Zach,
and other folks I had worked with
before. We jumped at the opportunity
to work on a big title at a big publisher.
When we got into it, we realized that
Interplay was a big company with many

Chapter 3: What Makes Game Development Hard?

Starfleet Command

different games in production. Our sis-
ter project, Klingon Academy, was
making impressive success in the dam-
age effects of its 3D engine and its cine-
matic cut scenes. Starfleet Command,
on the other hand, was considered a
niche game appealing only to the most
hardcore of game players—fans of Star
Fleet Battles. This turned out to be a
great advantage on several different
levels at the same time. The
first benefit is that Brian
Fargo, the founder and CEO of
the company, left the project’s
vision entirely in my hands
while Klingon Academy
received more of Interplay’s
attention. The other benefit
was of course the built-in base
of Star Fleet Battles fans who
had waited 20 years for a com-
puterized version of their
favorite, ultra-detailed naval
starship simulation set in the
original series’ Star Trek
universe.

The Vision for Starfleet Command

Starfleet Command was my first big
title to manage; I was very excited and
determined to do a good job. I wanted

23

to earn Interplay’s respect so that they
would trust us enough to fund a future
game concept of ours. SFC itself was an
exciting title for us to work on, but for
every game project you must know
why you are doing it. For Starfleet
Command our goal was to create the
most faithful, highest fidelity modeling
of naval starship combat set in the Star
Trek universe. We were not trying to
make a Star Trek game, we were not
trying to make a 3D game, and we were
not trying to make a real-time strategy
game like StarCraft. As we worked on
our vision statement, we developed the
term real-time tactical to describe our
gameplay. Our game was all about tacti-
cal starship combat. We did not send
teams down to planets, we did not have
the player act as a courier and carry
goods across the galaxy, and we did not
allow the scavenging of enemy vessels
to build a Frankenstein ship. No,
instead you were a naval officer in one

The vessel library screen from Starfleet Command

of six star empires carrying out combat
missions on behalf of your empire.
Over 1,000 starships were modeled
in our game, with over 100 missions to
test your tactics and strategy. The
player role-played a captain enjoying a

24

career of over 30 years in the service of
his empire. That was what Starfleet

Chapter 3: What Makes Game Development Hard?

Command was about, that was our goal,
and we delivered on that.

Constraints Give Much Needed Focus

Starfleet Command went on to be a
stunning success. The press at the time
was stunned to see a Star Trek game
that was actually fun. The secret to our
success was following our vision. We
had no budget for fancy movies to tell a
story, so we did not try to create a
game with a linear story line that

depended on movies. Instead we devel-
oped a random mission/campaign
generator with linear story missions
embedded like raisins in pudding. You
must look at every constraint on your
project as an opportunity to focus your
game on its key features.

On Bugs Shipped in Starfleet Command

High-quality games with ultra-low bug
counts like Quake and Diablo sell very
well. However, Quake and Diablo sell
strongly for quite a few good reasons
working together. We had a fixed
timeline; in fact, the Starfleet Com-
mand project was already late before I
took it over. After reviewing where the
project was for two months, I decided
on a delivery date of summer 1999
given a lot of extra programming and
art resources. Interplay granted the
resources but in turn needed the date
to be unmoving. We had a project with a
flexible feature set but a fixed timeline.
We essentially put too many features in
the game and coded too late into the
production process. We were still cod-
ing heavily two weeks from final master
and worked on the first patch all the
way through manufacturing. We fixed
so many bugs in the last three months
of development that we honestly
thought we had a game with a fairly low
bug count and a ton of features. After a
week of it being on the street, I devel-
oped a new realization of how high a

quality standard software must have in
order to work on anyone’s computer, in
any manner the user could come up
with. We did have to ship with known
bugs though, and the consumers had to
deal with those too. We were fast with
the patches, and altogether the public
enjoyed a game that was original and
fun to play. Starfleet Command went on
to sell over 350,000 units in its first
year, and at that time at Interplay, SFC
was the second most successful title,
behind Baldur’s Gate developed by
BioWare. Also it is a fact that there are
more bugs inherent to games with
more complex systems; for example,
SFC is much more complex and
detailed than Quake and therefore
needs additional QA attention. Role-
playing games like BG are also more
complicated and required additional QA
time and completely different QA pro-
cesses. Treating all games in an identi-
cal manner from a QA perspective is
just plain wrong (but it happens all the
time).

Chapter 3: What Makes Game Development Hard? 25

Well-Met Goals Enable Future Successes

Based on the success of Starfleet Com- independent developer. See Chapter

mand, Interplay’s management was 27 to see how we set up as Taldren

very receptive to our pitch to do and how we structured our company

Starfleet Command 2 as a wholly for the development of Starfleet
Command 2.

Strong Game Developers Have Strong

Foundations
(" voou s;,,;;.,;.,
.-Ag_lot R
Empires
5538382838835 288¢83333322£83323¢8ss

A small chronicle of great games
The above figure chronicles just a few games over the years.
of the most successful and influential
The Tension between Preproduction and
Production
Bridges for the most part stoically sup- routinely go over budget, take too
port their loads across their spans. long, and generally underperform or

Dams rarely burst, flooding entire cit- are just buggy? The difference is in
ies. Why do civil engineering projects process and methodologies. Per-
seem to be routinely successful when forming something complex that
software engineering projects requires the efforts of many skilled

26

humans over an extended period of
time necessitates breaking up the
large, complex task into a series of
small, achievable, measurable tasks.
Ideally, figuring out what you are doing
should come before you do it; the game
industry term for this phase of work is
preproduction, or the vision or design
phase. We have a name for it sure
enough, but too many projects violate
their preproduction phases and move
straight to production. Twenty years
ago preproduction would have been a
sketch of the game screen on a napkin
and a couple of experimental routines
to get the idea straight. Ten years ago
preproduction was largely about the art
of the proposed game. Now prepro-
duction is usually a playable demo.

True preproduction would be the
distillation of all the game’s require-
ments, an analysis stage to determine
the implications of these requirements,
a culling stage to meet the business
parameters, and a detailed game, art,
audio, and technical design to detail the
requirements. Preproduction would
still not be done, however, for these
detailed game, art, audio, and technical
designs would uncover new details
about the project requiring another
revision of the feature set to meet the
business requirements.

Any risky areas of the project need
to be explicitly called out, and alterna-
tive plans need to be formulated to get

Chapter 3: What Makes Game Development Hard?

around these risks. Finally the plan
needs to be presented to all stake-
holders including the development
team, the publisher, and the marketing,
press relations, and sales forces.

Games are big productions, and
successful games require the full effort
of many individuals spanning many
companies. In my opinion, preproduc-
tion is the most important stage of the
project. I would like to see the day
when a project spends a full 25 to 40
percent of its overall prerelease time in
preproduction. During production there
should be relatively few surprises. The
developers should be able to work eight
hours a day, take vacations, and pick up
their children from school. Instead, the
industry responds to the intense com-
petition by compressing preproduction
into the shortest period of time possi-
ble. There is no hype, celebration,
visibility, or honor in the game industry
as a whole for preproduction. In my
opinion, everyone would make a lot
more money if instead of 3,000 game
projects being launched a year, 4,000 or
5,000 game projects could receive two
to nine months of preproduction and get
cancelled, and only the top 400 to 800
would get produced and released. Pub-
lishers’ net revenues would be five to
ten times higher if their hit projects
were not bogged down by four to ten
failed projects.

The Power of the Console

The console side of the business does
manage itself a lot stronger than the PC
world in this regard. The answer lies in
the hardware vendors; they do not
allow a title to be released unless they

approve. A console title must be pre-
sented to the hardware vendor several
times along the way and can be sent
back for revision or altogether cancel-
led by the hardware vendor with no

Chapter 3: What Makes Game Development Hard?

recourse for the publisher except to
work harder. This added rigor in the
console world allows far fewer titles to

27

be produced, but the net revenues
across all console titles are reported to
be seven times more profitable.

Why Aren’t All Publishers Using Preproduction?

If preproduction is so compelling, why
isn’t every publisher using it? Actually
publishers have a twist on this process,
called green-light meetings. Some pro-
jects have only one at the beginning of
a project; other companies have a
series of green-light meetings acting as
gates that the project must pass
through. However, these meetings are
just meetings. There are a bunch of
executives with too much work to do
trying to figure out if they should can-
cel a project or not. To help them make
a positive decision, the developers, pro-
ducers, and executive producers at the
publishing house spend a lot of devel-
opment energy making bits of software
and art that hopefully make a striking
impression on the executive’s mind.
This is accurately enough called “eye
candy.”

JARGON: A green-light meeting is a
meeting at which a body of decision
makers at the publisher decide whether

or not to publish a game.

Instead of one of these green-light
meetings, I think each game project
should undergo a green-light mini-
phase where each portion of the pro-
ject, such as art, game design, and
technical, present their detailed plan on
how to get their job done to one or
more experts in that field. It should be
the composite findings of these experts
that is shown to the executives. It could
be that diagrams, charts, concept
sketches, and even demonstrations of

eye candy are appropriate, but the eye
candy should be presented in the con-
text of an overall production plan. If this
level of rigor were followed, we would
all be making stronger games resulting
in much stronger sales and much saner
schedules. Unfortunately the experts
you would need to employ would have
to be so skilled that they would most
likely be art directors or technical
directors, or running their own devel-
opment company. The usual process is
that game projects are ignored by the
executives in the early stages when
there are other more pressing fires to
be put out, or the executives tend to
focus on what they see in the form of
eye candy.

The Process Is Changing

The game development process is one
of the hotter topics that publishers now
look for in a developer. Microsoft, for
instance, sends a solid team of experts
down to a prospective developer and
interviews the house for a day or two.
Microsoft also appears to be the pub-
lisher that respects preproduction the
most by giving each project at least two
or three months of real, funded
preproduction. The actual presentation
to the executives of the preproduction
1s more of a team affair involving the
developer, the producers, as well as
early reports of something called
usability.

Having far less development
resources to tap than Microsoft, Eidos

28

calls upon the heads of their various
studios to pass judgment at the green-
light meeting. Each of these studio
heads has a strong development back-
ground and his or her gut reactions are
fairly good divining rods of a game’s

Chapter 3: What Makes Game Development Hard?

success when you only have 20 min-
utes to review a title.

Look for more publishers changing
their project review process as they try
to cull their failing projects before
release, and ideally, early in production.

A Strong Plan Makes Game Development Easy

This is not a chapter of gloom and
doom; rather this chapter points out the
larger pitfalls in game development.
The whole book is dedicated to taking a
proactive, forward-looking approach to
game development. Chapters 8 and 9
detail the role of the game design and
technical design documents. Chapter 10
discusses how the game design and
technical design documents are synthe-
sized into a project plan. Chapter 17
delves deeper into the rigor that should
be put into preproduction with an intro-
duction to Unified Modeling Language
in the form of use cases and how they
are used to perform your requirements
capture.

Chapter 16 discusses how critical
the game design document is in shaping
the team’s vision for the game. If
everyone knows what the game is sup-
posed to be like, they will make it a lot
faster and better. Chapter 16 presents
specific steps you should take when

constructing your game design docu-
ment; other leaders in the game
industry will discuss what material they
think is critical in the game design
document.

Technical design is presented in
Chapter 18, a thick chapter with a lot
of discussion of large project object-
oriented technical design. Unified
Modeling Language is revisited here to
see how it is used to model the soft-
ware from different views, such as
static views of deployment, packages
and class diagrams, and the dynamic
views of activity and sequence
diagrams.

Developing accurate time esti-
mates is addressed in Chapter 19,
including classic questions such as how
much to pad or whether one should one
pad at all.

Wrestling all of this data together
into a digestible project plan is dis-
cussed in Chapter 20.

The Gravitational Pull of Feature Creep

Even if you have the best-constructed
production plan this industry has ever
seen, your project still needs to be
organized. Do not think that production
is the time to go get your plan profes-
sionally printed and sent to all of your

friends while you work on getting your
A licenses in Gran Turismo 3. Rather,
production is the time to put your plan
to work; Chapter 22 tells you how to
get a grip on feature creep.

Chapter 3: What Makes Game Development Hard?

29

Task Visibility for Team Motivation and for

Progress Tracking

Task visibility is my passion. There is a
deep satisfaction I get as a producer
when [know my team members know
their own tasks and the tasks that the
others have to do. When each person is
humming along, tearing through the
project with the utmost confidence in
his or her team members, it seems like
anything and everything can be done.
As the leader of a team or a subteam,
your job is to monitor this well-being.
Too many times a project’s Gantt chart

(discussed in Chapters 10 and 20) is
posted on a wall and updated only once
a month. Task visibility means a lot
more than the manager keeping track
of progress and reporting to the execu-
tive management. The development
team is the most important customer to
report the project’s progress. Chapter
10 gives an introduction to task track-
ing, while Chapter 21 provides detailed
task management techniques from vari-
ous top studios.

Use Your Core Competencies and Outsource

the Rest

A large portion of this book is an
in-depth guide to outsourcing parts of
your development from cinematics and
motion capture to music and sound
effects. Figuring out what you should
outsource is discussed in Chapter 12.

Chapter 12 introduces outsourcing, and
Chapters 28 through 33 give specific
advice on where to get your out-
sourcing done and how to do business
with these vendors.

A Pitfall of Success—Fan-Requested Features

and Changes

Ironically, making a hit game brings
with it the challenges of meeting a fan
base with an insatiable appetite for
more, bigger, faster, and cooler fea-
tures. Endless debates discussing your
game balancing skills and astonishing
acts of generosity from your most dedi-
cated fans will test the depth of your
commitment to your game, which is
now their game. Mastering the
post-release fan relationship is a lot

more than issuing a patch and crawling
back into your cave of creativity. Now
that your game has enjoyed success, it
1s time to open your shop door, so to
speak, and take your relationship with
the fans to a deeper level that will carry
forward to your next title. Chapter 24
discusses the issues involved in this
relationship and some specific advice
from successful game developers.

30

Chapter 3: What Makes Game Development Hard?

The Relentless Pace of Technology

Game making is a creative art form that
competes with other media such as
novels, television, movies, and music.
While technology has had dramatic
effects on how music is recorded, how
film 1s taped, how television is deliv-
ered, and even how a novel is typed,
none of these other art forms have to
compete with technology to nearly the
pace game making does.

Movies are probably the closest art
form in scope, cost, and high-level pro-
duction methods. That being said,
camera technology stays stable for 20
years at a stretch, lights are lights, and
microphones are microphones. Right
now the movie industry is looking at
using digital film, but again, this is tech-
nology that has been in regular use for
20 or more years.

In the past 25 years that electronic
games have been a consumer enter-
tainment medium, they have gone
through nearly countless technological
evolutions including text adventures,
2D graphic adventures, turn-based
strategy games, 3D action games,
smooth-scrolling 3D action games,
ray-casting engines, binary space-
partition engines, and I could go on and
on listing the different game engines
that have been created.

Each new game must develop its
own tools first and then create its con-
tent. Future add-on and expansion
packs will often use the same engine,
and in some cases the sequel will use a
modified version of the prior game. It
has become increasingly common in the
last five years to license whole game
engines such as Quake and Unreal to
act as the foundation engine to build a
game. A game requires not only a solid

design but also a completed engine and
tool path prior to entering the imple-
mentation or production phase;
otherwise the inevitable result seems
to be redoing work over and over,
which is demoralizing, expensive, and a
waste of time.

This shifting engine technology is
not seen in any other consumer soft-
ware product. There is no consumer
operating system, word processor, or
spreadsheet that has required the com-
puting power of the last five or ten
years of Intel’s advances to the x86 line
of chips. It is games that drive our vora-
cious appetites for more RAM to hold
our textures, gigabytes of hard drive
space to hold our gigabyte installs, and
the fastest CPU on the planet to simu-
late our fantasy worlds.

The dark side of this technological
advance on the PC side of the game
business is that we do not know what
hardware the consumers will have
before they install and run our soft-
ware. We do not know if they have 64
MB of RAM, 128 MB, or just 32 MB of
main memory. We do not know if they
have a 3D accelerator card with 8 MB
of RAM, 32, 64, or no 3D card at all! We
do not know if they will have enough
space to install our game in its full
glory, so we have multiple install
options. We do not know if their graph-
ics card chipset will support the subset
of features we want for our game. We
do not even know how fast the target
CPU is. In fact we do not even know
what operating system they will be run-
ning our game on. Sure it will be a
Windows variant, but there must be big
differences between Windows 95, Win-
dows 98, Windows NT, Windows 2000,

Chapter 3: What Makes Game Development Hard?

Windows ME, and Windows XP or
Microsoft would not have put thou-
sands of man-years into these operating
systems. These operating systems
have major differences on critical low-
level functionality like how memory is
accessed and protected, how timers are
created, what their resolution is, and
the efficiency of storing and retrieving
data from the hard drive. There are
people out there playing Starfleet Com-
mand 1 with the graphics options
turned low on laptops with only a
Pentium 90 MHz and no 3D card, and
there are also folks out there with a
Pentium IV 1.7 GHz with a GeForce 3
card that has 64 MB of memory just on
the card. Depending on which metric
you use, the Pentium IV 1.7 GHz is
nearly twenty times more powerful than
the Pentium 90. This is called Moore’s
Law, stating that the computing power
of computers doubles every 18 months.
With all of these unknowns, we
need to create a game that will run sub-
stantially well and deliver the same
play experience on the greatest number
of machines out there. This is where
minimum requirements and clever use
of scalability in performance-intensive
features such as graphics and artificial
intelligence comes to play. Hardcore
games typically have the most aggres-
sive schedule for culling older
machines from the minimum require-
ments. This, however, cuts into sales
for mass-market games, and a delicate
balance exists between pushing the
edge of the performance bar in order to
gain exposure and adoption by the hard-
core players, and planning for broad
sales by supporting as many older sys-
tems as possible. Games that are strong
examples of this are The Sims, Star-
Craft, and Baldur’s Gate I and II, which

31

work on quite low-end systems. Much
of their success in the mass market

may relate to the fact that people with
lower end systems can still play them.

The final challenge in the fast pace
of technological change is that your
requirements will often change mid-
project or very late in your project.
With less than six weeks to go on
Starfleet Command 1, I was informed
that Interplay signed a ten-product
agreement to support AMD’s 3DNow
chip set. With little time left before
code freeze, we were forced to optimize
just a handful of low-level vector and
matrix routines to take advantage of the
3DNow feature set.

The console market is considerably
different. When you make a game for
the PlayStation 2 you know exactly how
fast it will be, how much video RAM
you will have, and every other detail of
the console at the time of producing the
game. (Except when a developer is
working on a game for a console that
has not been released yet to the public.
In the case of Taldren, we are working
on an Xbox game, and I get packages
from Microsoft every so often with a
revision to the software running the
box. At larger intervals the hardware
itself changes.) This factor, combined
with much more stringent QA from the
console manufacturers themselves,
makes console games practically
bug-free in comparison to PC games.

Console developers have a strate-
gic advantage in that their platform is
known and immutable, but also a disad-
vantage in that their platform may be
supplanted by new consoles such as the
recently released GameCube/Xbox,
which technologically are far superior
to the PS2. The console developers
must then go through an awkward

32

stage of trying to prove to the publish-
ers that they are capable of developing
on the new console platform.

The only way to deal with these
technological changes is to plan for
them. You need to build profiling and
diagnostic tools straight into your game
so that you can understand how it is
performing under various game condi-
tions. You need to allow time in your

Chapter 3: What Makes Game Development Hard?

schedule to support the odd piece of
software or hardware that is strategi-
cally important to your publisher. You
will also need to develop your mini-
mum requirements as early in your
schedule as possible. The sooner you
set the goal of meeting a specific mini-
mum requirement, the closer you will
be to actually achieving that goal.

The Art of War and Games

Around 500 B.C. Sun Tzu Wu spelled
out five essential points to follow for
victory in battle:

1. He will win who knows when to
fight and when not to fight.

2. He will win who knows how to
handle both superior and inferior
forces.

3. He will win whose army is ani-
mated by the same spirit
throughout all the ranks.

4. He will win who, prepared himself,
waits to take the enemy
unprepared.

5. He will win who has military capac-
ity and is not interfered with by his
sovereign.

“Victory lies in the knowledge of these
five points.” Sun Tzu

Only after writing the first draft of
this chapter did I pick up my copy of
The Art of War and flip through it.
Notice how well this advice that is over
2,500 years old neatly describes the
fundamental challenges of game

development. Preproduction was so
valued by Sun Tzu that he felt point #1
was insufficient and added point #4
with the admonishment of not hyping
your game too early. Point #2 suc-
cinctly reminds you to create a game in
response to the financial parameters of
your game project. Point #3 clearly
supports strong task visibility and a
production plan signed off by the whole
team. And I see point #5 as the
combination of building your game
development experience and not being
forced to follow inefficient production
methods due to inexperience on the
part of the publisher.

Sun Tzu’s five essential points in Chinese

Chapter 4: Game Project Survival Test

Chapter 4

33

Game Project
Survival Test

This test is an adaptation of the soft-
ware project survival test that can be
found in Steve McConnell’s Software
Project Survival Guide. The idea behind
this test is to quickly get a rough guide
to the overall preparedness of yourself

and your team for the game project at
hand. I suggest taking the test at the
beginning, middle, and end of each of
your projects as a reminder of good
practices.

The Game Project Survival Test

As you read through the questions
below, score 3 points if you are comfort-
able answering yes, score 2 points if
you feel your team is partially address-
ing the question but more work could
be done, and score 1 point if you really
want to say yes, but it would be a lie. If
the question is referring to something
that occurs mid-project, answer the
question according to your current
plans.

Game Requirements

1. Is there a clear, unambiguous
vision statement for the game?

2. Do all team members believe
that this vision is realistic?

3. Does the project have a rea-
sonable expectation of being
profitable for both the pub-
lisher and the developer?

4. Has the core gameplay and
user interface of the game
been fleshed out so that every-
one clearly understands what
the game is and why it is fun?

5. Do the team members think
the game will be fun?

Planning

6. Does the game have a detailed,
written game design document?

7. Does the game have a detailed,
written technical design
document?

8. Does the game have a detailed,
written art production plan?

9. Do you have a detailed, inte-
grated project schedule that
lists all of the tasks that need
to be performed, and have the
dependencies between various
team members been indicated?

34

10.

11.

12.

13.

14.

15.

16.

17.

Does your project schedule
include tasks like press tours?
E3? The Game Developers
Conference? Installer? Auto-
patcher? Submission to hard-
ware manufacturer approval?
Were the schedule and the
budget for the game officially
updated and discussed
between the publisher and the
developer at the end of the lat-
est milestone—even if to say,
“Yes, everything is on track”?
Are the features of the game
tagged with core, secondary,
and tertiary levels of priority
to facilitate feature trimming if
necessary to maintain the
schedule?

Does the game have a written
quality assurance plan? Does it
handle beta testers? In-house
testing? Automated test
suites?

Does the game have a detailed
milestone plan? Does it clearly
describe what will be delivered
and reviewable at each
milestone?

Does the schedule allow
enough time for balance, tun-
ing, and tweaking of features to
ensure that it is fun?

Does the schedule account for
sick days, holidays, and vaca-
tion time? Are the developers
tasked at less than 100 per-
cent? Are the leads tasked at
less than 75 or 50 percent
depending on their responsibil-
ity sets?

Has the game design, technical
design, art production plan, QA
plan, and all of the rest of the

Chapter 4: Game Project Survival Test

composite game development
team signed off on the plan?

Project Control

18.

19.

20.

21.

22.

23.

24.

Does the game have a single
executive—the project leader
or lead designer or producer?
Whatever you call the job at
your shop, has this person
been given full authority,
responsibility, and accountabil-
ity for the success of this
game? And is the person
enthusiastically embracing this
authority, responsibility, and
accountability?

Does this project leader have
the right workload? Does she
have the adequate amount of
time to perform at her highest
level of project management?
Have the milestones been laid
out with clear, measurable
deliverables that can easily be
quantified as done or not done?
Are the milestones being
delivered to the publisher in
such a manner as to make it
easy for them to review the
milestones and measure the
progress of the project for
themselves?

Do the developers have access
to an anonymous communica-
tion channel where they can
report problems without fear?
Does the game project plan
have a written plan for control-
ling feature creep in the game?
Does the game project have a
clearly defined method of how
changes will be reviewed by
development team leads such
as the art and technical
directors?

Chapter 4: Game Project Survival Test

25.

26.

27.

28.

Are all of the game design,
technical design, schedule, art
production, QA, and all other
planning materials easily
accessible to all development
team members? Are they
encouraged to read the
material?

Is all source code under ver-
sion control software?

Are all of the binary assets
such as textures, models,
music files, and sound effects
also stored under version con-
trol software?

Do all of the team members
have the tools to do the job
such as workstations, PS2 and
Xbox development kits, 3D
Studio Max or Maya seats, bug
tracking software, and schedul-
ing software?

Risk Management
_29. Does the game project have a

30.

31.

32.

written risks document with
possible solutions?

Is this risks document updated
at the completion of every
milestone?

Does the game project have a
risks officer who is encouraged
to scout ahead for risks on the
project?

If the project is using subcon-
tractors, is there a written plan
for how to manage the subcon-
tractors? For each subcontrac-
tor is there a single member
of the development team who
1s responsible for that subcon-
tractor?

35

Personnel
__33. Does the game development

34.

35.

36.

37.

38.

team have all of the expertise
needed to complete the game?
Does the game development
team have a management team
that is experienced with man-
aging game development? In
other words, are the develop-
ers able to concentrate on
developing rather than worry-
ing about the state of their
game development shop?
Does the game have a lead
programmer who is capable of
leading the programmers of
the team to making a kick-ass
game?

Are there enough developers
to do all of the work?

Do all of the development
team members get along with
each other?

Is each team member commit-
ted to staying with the game
until it successfully ships?

Calculating Your Project’s Score
____Subtotal: Add the points above

(ranges from 38 to 114).

____Development team size factor:

If your game project has fewer
than nine full-time developers,
including all artists, program-
mers, designers, QA, and audio
people, use 1.5. If your team
has fewer than 19 full-time
developers, use 1.2.

___ Grand total: Multiply your subto-

tal by the team size factor.

36

What Does My Score Mean?

Scores: 1024+ AAA—Your game has
every possible resource, tool, and plan
it will take to make a hit game on time
and on budget.

Scores: 91-101 AA—Your game
is being managed on a level much
higher than the industry norm and is
most likely to be a successful project
with only a minor amount of difficulty in
schedule or budget. Anticipate cost and
schedule overruns of at most 5 to 10
percent above baseline.

Scores: 68-90 A—Your game is
being managed better than the average
game project. Significant challenges
will pop up from time to time; however,
you stand a strong chance of mastering
these challenges. Anticipate cost and
schedule overruns limited to 25 per-
cent above the bhaseline amount.

Scores: 45-67 B—This is about
the typical level of management a game
project is provided with. This game will
certainly face significant challenges at
some point. The project will be run

Chapter 4: Game Project Survival Test

with unnecessary risk, frustration, and
stress. Some degree of team burnout
will occur. Anticipate some turnover at
the end of the project. It is without
question that the project will be over
budget and will take considerably lon-
ger than planned at the start of the
project. Anticipate cost overruns
between 50 and 100 percent of the
baseline planned.

Scores below 45 C—Games with
these scores are at high risk of being
cancelled by the publisher due to poor
progress visibility, feature creep, and
cost overruns. Only a team without
financial concerns will be able to plow
through these challenges without being
cancelled. These types of projects
always result in developer burnout, and
some turnover will occur at the end of
the project and to some degree in the
middle of the project. These projects
are advised to get serious planning and
management happening immediately or
be cancelled and save the industry from
one more crappy game.

Part Il

How to Make a
Game

This page intentionally left blank

Chapter 5: What Is a Game Made Of?

Chapter 5

39

What Is a Game
Made Of-”°

The Extended Development Team

Before you tear off into preproduction
of your game, I want to show you all
the parts that go into a game. Whether
your background is art, programming,
design, marketing, or sales, you will
tend to view a game project as a
medium of art, software with game
design, a game design in motion, or a
product to be marketed or sold. The big
picture of game development involves a
team effort of many individuals span-
ning dozens of professions all across

Game Production Parts

Surely a game project is all about pro-
ducing a great game. If not for the
developers, there would be no product
to sell! I am biased as I am a developer,
and so yes, I do think game develop-
ment is the most critical component of
a successful electronic entertainment
product. However, the developers hold
a sacred trust given to them by the rest
of the project stakeholders that they
will be able to develop a compelling and
competitive game, on budget and on

our industry and spilling into other
industries. When you see what it takes
to make a modern commercial game, I
hope you get a more balanced view of
the various roles to be played to carry
out a hit game.

That Lever 2000 soap commercial
is bouncing around my head right now
with its silly jingle of all your 2,000
parts. So, following that jingle, let’s
take a look at all of the parts of a game.

time. This is a sacred trust that has
been violated more times than it has
been honored. We developers must
perform to the best of our ability to
deliver the strongest game on time and
on budget.

Design Parts

1. Lead Designers/Visionary
2. Game Mechanics

3. Level/Mission Designers
4. Story and Dialogue Writers

The flavors of game designers

Where Do Lead Designers Come
From?

We have to design a game first and
foremost. Some games have a key
visionary who has been kicking around
an idea for a long time; others are more
of a collaborative process with a leader.
There is probably no single more diffi-
cult task in the industry than being able
to create an original game of your own
design and see it through to commer-
cial release (only a nitpicker would
point out that seeing your game
become a mega-hit would be harder).
Each game has its own story of how it
got to be funded and made. However, it
is usually the publisher or the studio
head of a successful game development
company that has finally arranged for all
the business points to be in place in
order to kick off their game.

If the publisher suggests the game
concept, then the developer will supply
the lead designer. Often the founder of
a game development company will act
as a lead designer on the project.

The lead designer’s job is to coor-
dinate the design staff in the effort to
create timely, thorough, compelling
game design specifications that the rest

Chapter 5: What Is a Game Made Of?

of the team can readily use and is
readily understood by the game’s pub-
lisher and other key stakeholders. The
lead designer is not responsible for
designing the whole game; rather it is
the lead designer’s role to be a director
and sculpt not only what goes into a
game, but also what does not belong
and should be cut. (In practice, the lead
designer also picks up any design tasks
that the rest of the team is not able to
do.)

How Do You Nail Down the Game
Mechanics?

Each game usually has a lead game
mechanics designer. This person often
has a game programming background,
as programmers are the ones most
likely to implement the game mechan-
ics in the code. This person receives
direction from the lead designer, solicits
engineering feasibility from the pro-
gramming staff, and confers with the
mission or level designers to find out
their requirements. Depending on the
type of game, the game mechanics
designer often plays with Excel, trying
to achieve a rough balance to the game
and simulating portions of the game to
get an idea of how some of their
mechanics will play both for single
player and multiplayer.

Who Are the Level and Mission
Designers?

Some games have levels, others have
missions, and quite a few have neither.
Whatever game you have, it can almost
always be broken down into a series of
smaller challenges, puzzles, levels, or
missions for the player to complete.
Level and mission designers are some-
times programmers writing scripting
code for a mission. Sometimes these

Chapter 5: What Is a Game Made Of?

designers are artists laying out tiles of a
map and designing triggers, and some-
times they work in pure text,
describing to others how the game
should be laid out.

Story and Dialogue Writers Are
Writers for Interactivity

Writing a compelling narrative that is
formatted for the high degree of
interactivity found in games is a wholly
different skill than writing the narrative
of a short story or novel or a motion
picture screenplay. A writer for games
needs to spend a lot of time with the
lead designer for direction on where to
take the story arc, and he or she needs
to spend even more time with the mis-
sion and story writers to determine
what is possible and not possible to do
in the scripting language, map editor, or
level building tool.

Writing natural sounding language
for characters is not the same as just
listening to people talk and writing it
down; it is a talent for having an ear
that sets the right rhythm of tone and
balance for their characters to speak in
a fantasy world in a believable manner.

I am discussing design roles that
people will play, not saying that each
project will literally divide its design
tasks into discrete people; in other
words, designers will cross over back
and forth through these roles.

Coding Parts

I detailed game designers first, as the
designers define the spirit of the game;
however, I have often been caught say-
ing the ultimate designers on a project
are the programmers and the artists.
The designers can write documents and
create specifications until they turn
blue, but the game will not be anything

41

other than what the programmers and
artists create. I am not trying to cast
programmers as an uncooperative
bunch; I am a programmer myself.
What I am trying to say is that the pro-
grammers and artists are very special
people and often need to be convinced
of the designer’s vision. Most often the
final implementation is a blend of the
designers’, programmers’, and artists’
collective vision.

The programmers’ roles are to
obviously create the code: the 3D
engine, the networking library, art
asset converter, and such, to realize the
vision for the game. Games are often
late, over budget, or buggy as I men-
tioned earlier. Games are hardly ever
late two months while they wait for the
tile artist to get her act together, and
games are hardly ever late by a month
because the audio guys have not mas-
tered your sounds yet. It is a rare
project that is delayed due to sheer
asset production deficiencies, and even
when that occurs the programmers are
not idle. Why? Because electronic
games boil down to just code—code
with art, code with sound, code with
gameplay, yes, but it is still just code.
Even with code being the main deliver-
able, why does it always have to be
late? This is an issue that is larger than
the game industry. In Steve
McConnell's Rapid Development, he
writes that 50 to 90 percent of general
software engineering projects are sig-
nificantly late. Software engineering
projects, in general, are chronically fail-
ing. The reason for this is that we game
developers are part of a larger indus-
try—software development—that is in
turn an immature branch of the engi-
neering discipline. The processes in
specifying software, the processes for

42

creating software, and the processes for
testing software and even establishing
skill levels in programmers have yet to
be established! You have to be a
licensed engineer to pilot a ship for
commercial transport, to build a bridge
or a skyscraper, or even analyze the
soil on a hill for a single-family dwell-
ing. In fact, in California and in most
states you must have a license to cut
someone’s hair. No one needs a license
to write code.

The idea of licensing game pro-
grammers may seem, at first, ridicu-
lously out of place in the game industry.
The lifeblood, the very soul of the
industry is founded on clever people
dropping out of whatever they were
doing before and putting their heart and
soul into creating a fun game. Why do [
advocate the clearly un-fun part of get-
ting a license to write code?

Imagine a future of game develop-
ment where each game project has a
licensed software engineer as the lead
programmer or technical director (with
the license administered much like a
professional engineering license). With
this type of person a very important
safety structure has been put into
place. Someone is responsible for the
technical soundness of a project, and
not only is her name and reputation on
the line for this project, but her license
to operate as a professional engineer
could be revoked if she is shown to be
manifestly negligent in her role as a
technical director. I know I am way out
on my own here with this opinion, but I
really think this would protect not just
the programming staff from unreason-
able schedules, but the publishers
themselves. They could lay down some
outline of a feature set, quality level,
budget, and timeline and say go make

Chapter 5: What Is a Game Made Of?

the game, but it would be so much
stronger if they had to have the signa-
ture of the lead programmer (a licensed
software engineer) to sign off on the
project before the project could con-
tinue past preproduction and into
production.

Microsoft employs a version of this
method where Microsoft employees
have to sign off on a developer for tech-
nical, artistic, design, and project
management competence before any
funding of the team can commence.

Well, enough of my diatribe on the
merits of licensing programmers, let’s
go see what they actually do on a
project.

Lead Programmers and Technical
Directors

The lead programmer has traditionally
been the most experienced program-
mer on the team (from the 1970s
through the 1980s, he or she could
have been the only programmer). The
lead programmer usually takes on the
programming tasks that are the most
challenging of the project. The quintes-
sential examples of lead programmers
are John Carmack of id and Tim Swee-
ney of Epic. These guys are usually the
heroes of the projects, and many teams
are structured around the lead
programmer.

Some games tend to have a large
programming staff, such as the mas-
sively multiplayer game Ultima Online
or EverQuest, or the single-player/
multiplayer game Neverwinter Nights
with over 25 programmers. These large
projects typically employ a technical
director that oversees the program-
mers and reports directly to the project
manager. The technical director title
implies much less coding being

Chapter 5: What Is a Game Made Of?

performed by the individual and more
management of programmers and code
creation. Sometimes smaller projects
employ a technical director when the
lead programmer is handling a tricky
part of the project she does not care for
or has no time for, or is otherwise not
suitable for project management.
Another model is to have a series of
“assistant leads” who are all responsi-
ble for different aspects of a program-
ming task—i.e., functional leads—who
each in turn manage a few program-
mers and who ultimately report to the
lead programmer. This is the model at
BioWare and at Taldren.

The lead programmer is like the
queen in chess; she might be your most
productive programmer on the project,
but you must use her time wisely. Tech-
nical directors, on the other hand, act as
scouts on behalf of the programming
staff, looking ahead, lining up depend-
encies between programmers, and
coordinating the development of the
software.

The rest of the programming posi-
tions I describe below are not necessar-
ily distinct humans on every project;
rather they are common programming
roles that most projects have. A lot of
projects, for example, have the 3D
graphics programmer and the lead pro-
grammer be one and the same, or the
game mechanics and user interface pro-
grammer could be the same person.

Game Mechanics Programmer

The game mechanics programmer is
the one who converts the “real meat
and potatoes” of the game design into
playable code. This person usually
models the physics of the game world,
how objects such as weapons and

43

potions work, and how the protagonists
and antagonists function.

The game mechanics programmer
can usually be seen near one of the pro-
ject’s designers, debating the merits of
the designer’s weapon mechanics and
such. The game mechanics position is
usually a mid-level programming job
that ambitious scripters and mission
programmers often grow into.

The great thing about being the
game mechanics programmer is you are
the one who really puts the game into
the game. You are the first one to see a
lightning bolt strike the ogre, the first
to see a tank shell a building, and the
first to see the health pack heal the
character. This is a fun job.

3D Graphics Programmer

The 3D graphics programmer is one of
the most highly respected positions in
the industry. 3D graphics programmers
must have a strong comfort level in
mathematics including calculus, vector
and matrix math, trigonometry, and
algebra. The 3D graphics programmers
enjoy seeing their work come vividly
into being in lush 3D graphics, immers-
ing the player in environments they can
only dream about.

Artificial Intelligence Programmer

The demands on the artificial intelli-
gence programmer vary from game to
game and from genre to genre. Steven
Polge, now working with Epic, has writ-
ten some truly impressive bits of Al
code such as the Reaper bot. Also, the
Al programmers are usually the folks
who have the proper skills to write
scripting languages and other tools
used by the designers.

44

User Interface Programmer

The user interface programmer is the
person who has the tricky job of devel-
oping the software that bridges the
game mechanics of the fantasy world
with a slick implementation of the user
interface through the controls, in-game
panels, and HUD elements, as well as
the shell or navigational menus. The Ul
programmer is the expert on the Ul
library and usually maintains it by
extending its functionality. The UI pro-
grammer position is one that is likely to
have been gained through experience in
the industry. UI programming is often
hard to get precisely right and is often
underappreciated.

Audio Programmer

The audio programmer is the person
who codes up the 3D sound effects, the
voice-over tag system, and the music
playback system. Often this position is
a light position due to strong, widely
used audio libraries available such as
the Miles Sound System from RAD
Tools.

Tools Programmer

Michael Abrash once told me that id
spends greater than 50 percent of its
programming resources creating tools.
This is a significant statement. Most
game companies do not commit this
level of programming resources to their
games. BioWare has a large tools
department as well, over ten people,
who make tools for all of BioWare’s
games. They have found this saves a lot
of time and rework by designers and
artists. The fact that id is arguably the
most successful developer ever, with
many mega-hits of their own as well as
a prosperous licensing program that

Chapter 5: What Is a Game Made Of?

includes other mega-hits such as
Half-Life, seems to say that every pro-
grammer on the project should be a
tools programmer half of the time.

Most teams do not have full-time
tools programmers, although if the
team is part of a larger house, there
might be a tools department. Still,
every solid game company builds up its
own toolset over time to get graphics
on the screen, get audio out the speak-
ers, and get the characters in the game
to have interesting behavior.

A game development organization
should have short-term and long-term
tools production goals. I suggest a
Gantt chart produced in MS Project be
printed out and hung on a wall to indi-
cate the internal tools development in
your organization. This visibility will
help everyone see how the tools are
integral to the growth of your team and
how things are planned to get better in
the future.

Mission/Level Editor Programmer

The mission editor programmer is just
one of the tools positions; however, for
many games with a mission or level
editor, the editor will be released to the
public with the game’s release.
Developing a mission editor or level
editor that is robust and easy to use is
the work of creating another piece of
commercial software. The UnrealEd
level editor for the creation of Unreal
Tournament levels by Epic is a fine
example of a 3D solid constructive
geometry modeling and scripting tool
that is extremely powerful, robust, and
easy to use by both industry profes-
sionals and by fans who want to make
new content for their favorite games.
Some development houses organize a
world-building tool as part of the main

Chapter 5: What Is a Game Made Of?

game team, and others put this work in
the tools group if they were rigorous in
the technical design of the world editor
to make it truly useful for other game
projects.

Network, Server, or Client
Programmer?

The network programmer writes the
low-level and application-level code to
get games running between a small
number of players using modems, a
local area network, or across the
Internet. In the past the network pro-
grammer had to master a variety of
protocols such as IPX, and serial and
modem protocols. Modern games are
now run almost exclusively on TCP/IP
and UDP, the networking protocols of
the Internet.

The multiplayer architecture of
games can be broken down into two
main structures: peer-to-peer and
client-server.

Peer-to-peer structures have all of
the player machines simulating their
own copy of the game and use a variety
of algorithms to keep the states on the
different computers as close as possi-
ble. The peer-to-peer machines all talk
directly to every other computer in the
network. The bandwidth required to
service this model of game grows expo-
nentially with each added player. That
is an unfortunate side effect as you try
to handle more players.

The client-server structure divides
up the computing of game simulation
into a server, which handles the actual
simulation, and the client, which is the
viewer, or browser, of the world events.
There are several benefits to this struc-
ture, including the fact that the band-
width requirement grows only linearly
with the number of players, and the

45

game can also be protected from quite a
few forms of cheating by having it run
on a trusted and secure server.
(Remember, in a peer-to-peer game
each machine is running its own copy of
the world and has authority on some
portion of the world. This authority can
easily be abused by running a rogue
version in the peer-to-peer network.)
Why are not all games client-
server? Arguably they all should be;
however, depending on the game, the
client-server architecture is much more
complex and requires divorcing the
simulation and the presentation along
much stricter object-oriented lines.
Today’s massively multiplayer games
are a prime example of the complexity
of client-server games. Literally dozens
of machines, running a score or more
instances of servers, carry out different
operations such as player authentica-
tion, version checking, cheat detection,
game simulation, chat hosting, database
transactions, and more. Peer-to-peer
games are much more similar to tradi-
tional single-player games with the
exception of the games periodically
making corrections to be more in line
with each other’s view of the world.

Art Parts

The artists of an electronic game may
wear a host of different titles just like
the programmers. Games used to have
a single artist drawing the character
sprites and the world backdrops for
these electronic heroes to carry out
their missions. In the earliest days the
programmer, designer, and artist were
one and the same person. Starting in
the mid-"80s small teams of artists,
usually no more than three, would work
on a project. Starting in the early "90s
game projects grew substantially in

46

their art requirements and budgets.
Famous examples of these are Wing
Commander IV by Origin, where over
$10 million was spent by Chris Roberts
on chasing the dream of the fabled
movie-in-a-game; Mario64, rumored to
have a budget of over $20 million; and
finally the Japanese epics in the Final
Fantasy series and Shenmue, which
have had gargantuan budgets.

Artists are now differentiated by
their skill sets. It is interesting to know
that many artists can build 3D models
of the most arcane objects quite accu-
rately and swiftly without being able to
sketch them. The domain of the artist
now covers a wide enough area that
you will need to plan your art team
carefully to be sure you have enough
bandwidth of skill and talent across
your art requirements.

Art Director

The art director is the manager for the
art team, scouting ahead to be sure that
project dependencies are taken care of
ahead of time and that the artists pro-
duce their art assets on time for the
rest of the game project. The other,
arguably more important role is to look
at every art asset as it is being con-
structed to be sure it is consistent in
quality and theme with the rest of the
game.

The art director job should be
given to the artist with the most indus-
try experience, tempered with people
skills, and the person who best enjoys
the entire team’s respect.

Concept Artist

The concept artist is gathering visibil-
ity. In the past a few sketches would
convey the look of the major characters

Chapter 5: What Is a Game Made Of?

and locations, and the game was off into
production. Now with project budgets
10 and 20 times larger than in 1995, the
stakes are much larger and the penalty
for getting the art wrong is often fatal
to a project. This is where the concept
artist saves the day. High-quality
black-and-white drawings are often
colorized (color comp) to accurately
convey to the art director, the pro-
ducer, and the major project stake-
holders what the look of an art asset
will be before it is created. For exam-
ple, on our Starfleet Command series,
we needed to create a black-and-white
sketch for each and every proposed
ship model we wanted to introduce into
our Star Trek game. These
black-and-white sketches first made
the rounds of the team to be sure we
liked them, then the sketch went on to
Interplay’s upper management, then on
to Paramount’s interactive licensing
director, and on to even Rick Berman,
the producer of the Star Trek television
show and movies now at Paramount.
Only when we received approval from
all these folks did we start to colorize
the sketch and start the approval pro-
cess once again for the colorized
sketch. Once this was approved, we
were permitted to actually begin work
on an art asset that would make it into
the game. (The resulting 3D model
would of course need to make this
same approval-seeking trip.)

This approval process is even more
stringent at LucasArts on Star Wars
properties, and Japanese games are
very much oriented around the concept
artist, such as Yoshitaka, best known in
the game industry for his work on the
Final Fantasy series.

Chapter 5: What Is a Game Made Of?

2D Artist/Interface Designer

The 2D artist is an expert in classical
sketching and painting. These artists
are capable of painting backdrops, cre-
ating character portraits, and creating
tiles and sprites for use in non-3D
game engines. These artists used to
use Deluxe Paint in the golden age of
game development and have now
moved on to Photoshop, Illustrator, and
other packages.

Even in a 3D game, the 2D artist is
an incredibly versatile and important
member of the team, producing high-
res artwork for ads and marketing, and
helping to create assets for a promo-
tional web site, install graphics, and
countless more elements of 2D art.

The interface designer usually is
an expert 2D artist with a strong sense
of functional aesthetics. This artist will
make just navigating your game’s
menus an exciting and fun activity. The
interface designer is a key team mem-
ber; be sure you have one, or don’t
make your game. Sometimes designers
and programmers with strong visual
design skills can successfully fill this
role. This area of art is the most closely
tied to your game—the game design,
the game mechanics, and the look of
the game. And these areas see the
most change of any art asset. For these
reasons, I strongly recommend against
outsourcing your interface design art
assets—get the best person you can
and work with him full time.

3D Modeler

The 3D modeler was the highlight of
the show around 1994-1997. At this
time artists with experience in the
industry were almost invariably 2D
artists who were clever or stubborn

47

enough to get their 2D visions articu-
lated into a painfully small set of pixels
using tools such as Deluxe Paint on the
Amiga and later the PC. These artists
on the whole were not prepared to han-
dle the technical requirements of
operating a 3D modeling package.
Instead, a strange hybrid program-
mer-artist with a fascination for things
3D was required to operate the early
arcane 3D packages. These artists were
also in prime demand in the movie
industry, and the scale of wages paid
there made it very difficult for the game
companies to recruit them over to
games. In these years game projects
had to train their 2D Deluxe Paint art-
ists slowly to use early versions of
LightWave and other technical 3D
packages.

Over time the packages got much
stronger and easier to use. College
courses now teach 3D Studio Max, and
in general people have had time to
learn how to use the 3D modeling pack-
ages. 3D modelers are still highly
respected members of any game team,
but it is more balanced now with the
other key art positions.

Character Modeler

The character modeler is a specialized
breed of 3D modeler. Some strong 3D
artists are competent at making
mechanical things such as spaceships,
tanks, and architecture, while others
seem to lean towards the organics of
characters. Low-poly character model-
ers have a special understanding of how
the detail of the character will come to
life in the texture stage to make the
most economical use of their polygon
budget.

48

Texture Artist

The texture artist, like the concept art-
ist, is now a highly visible element of
your art team. Games are almost
always constructed out of polygons
with textures on them. The sophistica-
tion of the modeling packages is so
strong now, the texture phase of creat-
ing a 3D object is usually estimated at
three to four times longer than the
actual building of the model. The tex-
ture artist is a 2D artist who can “skin”
an object in his mind and create a com-
pelling set of textures to “paint” that
skin on the 3D model.

Animator/Motion Capture Studio

Animation comes in two broadly differ-
ent categories: character/animal/mon-
ster animation and everything else.
Rotating antennas, windmills, and radar
dishes are good examples of the every-
thing else category. Animating a wind-
mill is an almost trivial task for an artist
on your team, while animating the snarl
on a goblin’s face is an entirely different
task.

JARGON: Key framing is the technique
of using a 3D modeling package to set

key frames to have the engine interpo-

late between.

JARGON: Motion capture is using a
special matrix camera to record the
movements of a real human actor wear-
ing a motion capture suit that has funny
reflective balls attached to it. Most pro-
jects that use motion capture also use
key framing for part of their animation
duties.

To animate a character, two different
solutions are at your disposal: key

Chapter 5: What Is a Game Made Of?

framing and motion capture. Key fram-
ing is the older, more established
method of animating your characters.
Key framing excels at animating car-
toon characters and monsters and for
extreme movements—motions that are
impossible to capture with a human
actor. Animating by key framing is an
entirely different skill set from 3D
modeling, texturing, or sketching. If
your project will involve characters that
need to be animated, be sure your team
has enough competent animators to get
the job done; animation can be a slow
art.

Motion capture is the buzzword—
this is the state of the art. Humans
move with very subtle grace; studying
a motion-captured movement will
reveal how much the whole body
moves during the walk or the swing of
a bat. Motion capture’s largest draw-
back would have to be cost in both
dollars and time spent massaging the
data into usable form. This field is con-
stantly improving, and there are half a
dozen competitors in the field. In Chap-
ter 33 I will show you in depth what
you need to know about motion capture
including how to get a successful bid.

There is quite a bit of technical
drudgery involved in smoothing out all
of the details of the character’s model
and animations—dealing with the skel-
eton, motion capture data, prop bones,
and a host of tiny, necessary details.
Some studios divide this work between
the modelers and the animators
depending on the nature of the task,
and other studios like BioWare have
dedicated folks called character riggers
who handle these types of tasks.

Chapter 5: What Is a Game Made Of?

Storyboarder

If your game is to have any movies or
cinematic sequences, it is important
that your team have a storyboard artist.
The storyboard artist will be able to
design and articulate the scenes in a
sequence for internal and external
review before committing to costly live
action or resource-intensive computer-
generated sequences. Show the movies
to the publisher, show them to the
team, and work it all out ahead of time
through simple boxes and captions.
Most storyboarders are accomplished
concept artists but not necessarily.

Audio Parts

Audio assets come in three main fla-
vors: sound effects, music, and voice-
over. In the beginning there were only
crude sound effects performing buzzes,
beeps, and whistles. We now have full
Dolby 5.1 3D sound. Music has come a
long way from clever timing of beeps to
compositions by film composers per-
formed by 50-piece live orchestras. And
voice acting is now an art form per-
formed by stars like Patrick Stewart
and contracted under the authority of
the Screen Actors Guild.

Voice-Overs

Voices in a game really bring it to life.
Compelling voice acting reinforces
every other element of interactivity
by having the actors speak to your
character. The tutorials for Starfleet
Command went from being a dry intro-
duction to our gameplay to being the
most compelling Star Trek moment I
ever experienced with George Takei
performing Admiral Sulu teaching me
to command a starship. I remember

49

when Origin’s Strike Commander was
released for $50, but an additional
speech pack was available for $20 more.
That is a testament to wacky product
strategies as well as a testament to the
compelling depth voice adds to a game.

The only way to get good voice
work done is to work with an experi-
enced voice-over director. A good
director will know immediately where
to secure the talent, the studio time,
and the engineer, and get you the post-
processed audio in a format you need.
In Chapter 29 I will guide you through
the process of getting high-quality
voice into your game. The pleasant sur-
prise of voice work is that it is probably
the coolest element you can add to your
game for the money, and it is essential
in many role-playing games, which are
dialog and VO intensive.

Sound Effects

Sound effect engineers are wizards at
listening to one sound and finding
clever ways to stretch it, compress it,
twist it, and come up with precisely the
sound you need. Sometimes they will
Foley—that is, record your sound effect
from the actual object generating the
sound. Sometimes the sound engineer
will record some other sound and then
twist it around just for your game.

Sound effects are an excellent tar-
get for outsourcing as only the larger
developers with three or more concur-
rent projects can keep a sound effects
crew productively working. Chapter 30
contains an interview with a sound
engineer so you can see what it will
take to get strong sounds into your
game.

50

Music

Some games spend a lot of effort on
music, and it really gets the emotional
hooks into the player when the music is
first-rate. Music is probably the most
popular and oldest art form worldwide.
Nearly any emotion can be invoked
with compelling music. There are two
options: synthesized music and music
that is performed live. We spent nearly
$100,000 on the score and 30-piece
orchestra performance for Starfleet
Command 2. The music was very spe-
cial; all of the sounds are richer and
fuller bodied when performed by
humans versus a synthesized chip.
That being said, a single musician can
create extremely strong music with a
professional synthesizer and software.
Chapter 28 will discuss outsourcing
music in detail and give you plenty of
leads to be sure your game has the
emotional impact of high-quality music.

Management Parts

Management of a game project is the
most critical component in my experi-
ence. In recent private email with other
studio heads in the industry, the con-
sensus was that a developer is limited
in number of teams not by program-
mers or artists, but by quality produc-
ers/project managers. That being said,
the management of a game project is
often shared by a group of individuals
with different responsibility sets.

Line Producer

The line producer coordinates count-
less small tasks that one by one are not
very challenging, but taken as a whole
1s a daunting amount of work that
needs to get done every day. If a project
lacks a line producer, the efficacy of

Chapter 5: What Is a Game Made Of?

every team member will be compro-
mised by a little distraction at a time.
The line producer will often supply the
team with food when the hours are
forced and late; will get design docu-
ments printed and sent overnight; and
will often coordinate getting builds out
to the publisher and to beta testers.
The line is a critical function that
should be filled by a line producer,
instead of your art director on Mon-
days, your 3D graphics programmer on
Tuesdays, and so on.

JARGON: Builds and revs refer to
interim functional versions of the game
distributed for testing to internal and
external testers.

Associate Producer

The associate producer is found on
larger projects in a single team com-
pany, and all ompanies with multiple
teams need an associate producer. Pub-
lishers also structure themselves with
an executive producer managing a
group of titles and an associate pro-
ducer on each title performing day-to-
day management. The associate pro-
ducers have an interesting combination
of a lot of responsibility and little
authority. The associate producer is the
understudy of the executive producer.
The business negotiations, contracting,
and human resource decisions will be
carried out by the executive producer,
but in almost every other aspect of the
game project the associate producer
will have a strong contribution to make.
The associate producers are often bur-
dened with the dreary task of updating
the schedule and reporting on task
tracking. The associate also helps com-
munication between all team members
and is usually the strongest advocate

Chapter 5: What Is a Game Made Of?

for the game. In truth, each studio has
its own name for the hierarchy of man-
agers in the organization such as assis-
tant producers, senior group producers,
and project planners.

Studio Head/Executive Producer

The studio head at a game developer
and the executive producer at the pub-
lisher each have the same fundamental
job on a game project: be responsible
for planning and executing the project
in a profit-producing manner.

Studio heads are almost always the
founders of their own companies, those
who have risen through the ranks and
are industry veterans and who have
paid their dues and made money for
their publishers in the past. In the case
of Valve, Gabe Newell brought lots of
project management experience from
13 years of creating software such as
Microsoft Windows. Studio heads run
small companies—game development
shops—and have to simultaneously be
game designers who are passionate
about their games, software managers
who respect technology, and business-
men who are savvy enough to get a
good publishing deal. Some developers
such as id and Epic have divided the
role of the studio head into a more prac-
tical split of one person running the
business and another acting as the pro-
ject leader for the game.

The business development execu-
tive at the publisher often supplies the

o1

executive producer on the publishing
side with a game project and game
developer lead. The executive pro-
ducer’s job is to then complete the
evaluation of the developer and project
to determine its suitability for produc-
tion. If the executive producer is
confident the project should go forward,
he will negotiate the key terms with
the developer and work to help the pro-
ject meet its first internal green-light or
assessment milestone. If the project
passes, then the executive producer’s
job is to oversee the project’s progress
through the reports generated by the
associate producers and by looking
over builds of the project in progress.
The executive producer is often called
upon to maintain the relationship with
any licenses and is sometimes involved
in contracting external vendors. The
executive producer is the person most
visible inside the publishing company
for the game’s success, while the press
and the fans tend to focus on the game
developer.

Producer

As a game development studio grows
into two teams or larger, the role of the
producer becomes critical to the effec-
tive execution of the studio’s projects.
The producer is the person who will
manage the project at a larger develop-
ment studio, allowing the studio
head/executive producer to concentrate
on strategic company issues.

92

Quality Assurance Parts

Quality assurance (QA) is another criti-
cal component of game development.
The single best way to test your game
is of course to play it and play it until it
1s solid and as much fun as you know
how to make it. The problem with this
method is that it will take a very long
time for a single person to play through
a game 1in its entirety (which may not
even be possible), and a single person
will make errors and have a bias.

The industry has yet to come up
with a unified testing method that is
known as the best practice employed
widely. Instead each developer and pub-
lisher and indeed each game project
tends to have its own QA process.
Microsoft appears to be the organiza-
tion that exerts the most effort in a
rigorous QA process.

Most small developers do not have
a full-time QA staff, as they would only
see useful work roughly half of a pro-
ject’s lifetime. Larger, multiteam
development companies can often gain-
fully employ a full-time QA staff. For
example, BioWare employs a full-time
QA department of over ten people,
which supplements the even larger QA
teams at their publishers, reducing the
errors sent to the publishers to speed
up development and saving the devel-
opers themselves from having to test
their own stuff, instead allowing them
to focus on finishing new content/fea-
tures. Smaller developers often
cross-train the line producer and asso-
ciate producer to be the first line of QA
with a backup of team-wide testing
days.

Chapter 5: What Is a Game Made Of?

Publisher QA Parts

All high-profile commercial games
receive a considerable amount of pro-
fessional testing by the publisher’s
internal QA department. This depart-
ment follows the guidelines set by the
publisher’s management and works as
efficiently as possible to report defects
in content and quality to the developer
prior to commercial release. Most com-
mercially released games have antici-
pated release dates that are difficult to
postpone in the case of a late project or
a particularly buggy one. These internal
QA teams are trained to report the
severity of the defect and generally cre-
ate high-quality bug reports that have
items prioritized for the development
team’s attention.

QA Lead

The QA lead is the person who leads
the efforts of the QA staff. The QA lead
is always a former tester who showed
promise of superior skill in organization
and communication. The QA lead coor-
dinates getting new builds or revs of
the game in progress.

The QA lead also proofreads all
reported defects from her team and dis-
cards duplicate and erroneous reports
and often rejects reports back to the
reporting tester, requesting clarification
and/or testing. The QA lead is almost
always an aspiring game designer or
producer and often includes extensive
commentary on the game’s content in
order to gain visibility for possible
promotion. This is because most pub-
lishers have an outdated, poor concept

Chapter 5: What Is a Game Made Of?

of the QA staff and treat them as low-
skilled, low-paid workers, leaving those
workers with little choice for a career
in QA. Instead they are actively trying
to strike out into development or some
other role in the game industry. A nota-
ble exception to this is Microsoft,
which seeks out folks with college
degrees and pays well for its QA
positions.

Main Team

The main QA team is the team that will
monitor the game’s progress from the
time the game is initially submitted to
QA through release and often into
post-release. The main QA team will go
through stages of varying productivity
in direct relation to the development
team’s ability to respond to the bug
reports in a timely fashion. This team is
generally referred to as the QA team
even though there are many other
potential testers of the game. The main
QA team will often rotate in fresh team
members as a natural process of other
games finishing and employee turnover.

Multiplayer Team

Games with significant multiplayer
gameplay often have a QA team dedi-
cated to testing this functionality. This
is more common with PC games, as
console games tend to have much more
limited multiplayer gameplay. The
multiplayer team is used to be sure all
of the modem, LAN, Internet, and
matching options are thoroughly tested.
Bugs associated with multiplayer code
are often more difficult to track down
and report; this allows testing of the
single-player campaigns and missions
to continue on in parallel. In the same
manner, individual members of both the

93

multiplayer team and main team are
specialists in a particular portion of the
game such as a chapter or character
class or playable race.

Fresh Teams

The problem with having dedicated
main teams and multiplayer teams who
look at the same game from three
months to a year is that their ability to
discern fundamental problems with
gameplay and usability are compro-
mised fairly quickly as they learn the
game and lose the critical insight of a
new player. It is still important to have
efficient teams who know what the
game is and what the last reported set
of bugs were so they can quickly turn
around a bug report to the development
team. However, fresh teams are often
introduced to a game the closer it
comes to shipping, depending on QA
resources available internally to the
publisher.

Compatibility Team

The compatibility team is often a dedi-
cated team of QA members who happily
rebuild computers all day while testing
the major functionality of your game.
These guys have very little work to do
on a console! The compatibility team
usually has a standardized checklist of
hardware and operating systems the
publisher considers commercially
important to support.

Localization Team

Also, all big games are localized into
various markets, and native speakers of
these languages will be employed to
QA both the accuracy and the quality of
the localization of the game.

o4

Beta Testing

Beta testing 1s testing performed by
unpaid volunteer fans who want a first
peek at an upcoming title and who are
excited by the opportunity to improve a
game before its release. At first many
publishers were apprehensive that a
beta version of the game would become
widely pirated and steal sales from the
release version of the game. Or in the
case of weaker titles, many publishers
consider it a shrewd strategy to avoid
the beta testing stage. Perhaps the
most successful beta testing programs
are run by id; examples of these are
Doom and Quake Test. These first-
person shooters had multiplayer
gameplay and no single-player mis-
sions. Even with only three or so maps
to play test, these “tests” by id pro-
duced more hours of fun and gameplay
than most games ever achieve in their
final release. I personally played sev-
eral hundred hours of Quake Test
before Quake was released—sniff—
thank you, id!

Bottom line, if you want to make a
great game, run a beta test and fix your
game until beta testing proves you are
ready for release. In recent years the
advent of the massively multiplayer
game has required extensive beta test-
ing. These massively multiplayer
games require hundreds if not thou-
sands of concurrent players to analyze
how the server will respond to the
stresses of full release. These thou-
sands of beta testers are also required
to smooth out the authentication,
account management, and game bal-
ance to avoid having paying subscribers
complete the beta testing period. The
sheer costs of these games and the

Chapter 5: What Is a Game Made Of?

limited rigor employed to date on beta
testing programs still results in the
pressure to release these games to the
public and endure two to six months of
painful post-release beta testing that
strains the faith of your hardcore,
early-adopting fans.

Beta Testers

The beta testers are almost always the
fans who showed up on your message
board when you first opened up shop.
They often have beta testing experi-
ence or have heard about beta pro-
grams and will sometimes be quite
proactive in their effort to secure a seat
in your beta testing program. The num-
ber one rule with beta testers is to
communicate with them; failure to do
so only creates an expectation in the
beta tester’s heart that they are part of
the development team, only to find out
that their voices are unheard.

Beta Testing Program Manager

To facilitate this communication with
the beta testers, one of the develop-
ment team members—often the
associate or line producer—takes on
the role of beta testing program man-
ager. This is a very stressful job. The
time period that beta testing takes
place is during the final months of a
project when everything must come
together. The beta testers are anxious
to see their reported defects fixed in
the very next version of the game and
are quite vocal about new features they
want and how they want the game to be
balanced. In Chapter 23 I will discuss
the mechanisms and techniques the
beta testing program director should
employ for a successful beta test.

Chapter 5: What Is a Game Made Of?

Business Parts

Making games is big business.
Depending on how you look at the
numbers, the console game market
(hardware and software) along with the
PC game market generates more reve-
nue than the box-office receipts of all of
Hollywood’s films annually.

There are a lot of different busi-
ness executives who are involved in a
game project; here I will present the
major roles.

Business Development Parts

Business Development Executive

The business development executive is
casually called the “biz dev.”

JARGON: “Biz deV” is the short name
given to the business development
executive at a publishing company.

When developers go around pitching
games to publishers, they first need to
get the approval of the publisher’s busi-
ness development executive before the
game is sent to a green-light
committee.

The biz dev person keeps a close
eye on what is going on in the industry
and is the first to know about games in
development that are looking for a pub-
lishing deal. The biz dev person often
negotiates the key terms of a game
publishing contract.

Publisher CEO and President

A chief executive is responsible for all
aspects of the game publishing corpora-
tion. Very often this individual has ten
to twenty years in the game industry
and has a well-developed instinct for
making great games (not infallible

99

though). Making sure that your game is
visible and impressive to this key exec-
utive at green-light meetings ensures
the highest level of support the organi-
zation can bring to bear for your game.

Studio Heads

Founders, lead programmers, visionar-
ies, game makers, CEOs, presidents,
head coaches—whatever you call them,
studio heads are the chief decision mak-
ers at a game development house.
Studio heads generally have five to fif-
teen years of experience in the game
industry and at least one hit title under
their belt where they held a strong lead
role. Studio heads most commonly
come from programming and design
backgrounds, although there are some
medical doctors of considerable renown
running BioWare. Artists are the major-
ity shareowner at id, and Gabe Newell
of Valve had an extensive background of
software development at Microsoft.

Studio heads decide the fundamen-
tal structure and working environment
for their studios based on past experi-
ence. The studio head is intimately
involved when a game project is start-
ing up and is usually the salesperson
pitching the game to the publishers.
Studio heads are generally the most
qualified team leaders in their organiza-
tion and spend a lot of their time
training new producers to run teams
and subteams.

Lawyers

Both the publisher and the developer
need the best lawyers they can afford.
Each contract is unique, and while a

96

publisher’s contract is the fruit of many
painful relationships, the developer
should be patient and exercise great
care in negotiating terms. This is some-
thing you do not want to try on your
own.

WARNING: Do not negotiate a publish-
ing contract without the aid of a lawyer
who has strong experience in electronic
entertainment publishing contracts.

Lawyers are actually good people who
help you understand clearly what a
contract is and is not saying. Under-
standing what you are agreeing to
before you sign a contract is a funda-
mental safety mechanism for both the
developer and the publisher. In Chapter
27 I provide a list of law firms who are
used by different studios.

Licensing Parts

Many games are based on licenses such
as comic books, novels, movies, and
sports stars. In turn, games themselves
are licensed to create strategy guides,
action figures, T-shirts, and movies.
Publishers may have their biz dev exec-
utive manage the licensing of a game,
or they may have a full-time staff mem-
ber for routine licenses such as
strategy guides.

Promoting, Buying, and Selling
Parts

Sales? Is that not the job of the teenage
clerk at the local Electronics Boutique?
Well, yes of course, but well before a
gamer walks into a computer game
store, a sales force has made the larger
sale of the game to the buyer agent of
the retailer.

The decision on the retail buyer’s
part of how many units of the game title
to order on release depends on how hot

Chapter 5: What Is a Game Made Of?

the title appears to be, the wholesale
price, and the influence of any number
of incentive programs that have been
negotiated between the publisher’s
sales force and the retailer’s buying
force well before the game’s release.

Sales Executive

Each publisher has a top executive in
charge of sales. This person has a lot of
influence on the ultimate sales of a
game. The executive in charge of sales
has a budget that goes by several differ-
ent euphemistic phrases such as
“marketing development funds”; this
budget is spent to buy shelf space at
retail. This is a pretty strange concept
to people who are unfamiliar with the
industry—that the publisher not only
needs to absorb the risk of funding the
development of the game and its pack-
aging and marketing, but also must
completely absolve the retailer from
any risk. Selling games is a consign-
ment business.

The retailer will put the product up
on the shelves, and if it does not sell
quickly enough, the retailer simply
sends the product back and gets its
money back. Retailers take maximum
advantage of this relationship when a
highly anticipated game is released by
ordering as many units as the publisher
will deliver. It sounds great when you
have an order of 200,000 units from
CompUSA for your game, but if your
game fails to meet expectations,
CompUSA will not hesitate a moment
to send 160,000 units back to you—all
marked up with their price tags—and
simply order more later. Those 40,000
units you sold at CompUSA effectively
had the packaging and shipping costs of
200,000 units, which wipes out much of

Chapter 5: What Is a Game Made Of?

the margin from those 40,000 units that
did sell.

A careful study of some publishers’
financial reports to the SEC will show
periodic “write-offs” and “one-time
charges.” There can be a whole variety
of reasons why a business is forced to
report a loss on their books, but in the
case of game publishers it is often mas-
sive quantities of returned games that
they have accumulated for as many
quarters as they could get away with. It
is not unheard of to see six to ten quar-
ters of accumulated returned product
discharged as a write-off. Keep in mind
that during those six to ten quarters
this product was accounted for as reve-
nue. This practice is not sustainable,
and the stronger publishers do not do
this. A strong sales executive should
work closely with the publisher’s chief
financial officer to manage what is
called “sell-in” to the retailers with
the goal of having the highest “sell-
through” to “sell-in” ratio.

JARGON: Sell-in is the number of units
the retailers order or buy.

Sell-through is the good stuff; this is the
measure of how many units of your
game were sold through to consumers
—a true sale.

Sales Force and Retail Purchasing
Agents

Under the direction of the sales execu-
tive, the publisher’s sales staff meets
periodically with the retail purchasing
agents, each of whom represents a dif-
ferent retail chain. Prior to calling on
the buying agents, a publisher will
often host an internal sales meeting to
communicate their product’s selling
points to the sales force. These meet-
ings can sometimes be fairly lavish
with, for example, large ice sculptures

a7

and Klingon impersonators to get the
sales staff pumped up and primed to
handle the buying agents.

Press Relations Manager

The press relations manager will over-
see how the game is communicated to
the press. For large titles, this is a
nearly full-time job, and a quality PR
manager should be split across as few
titles as possible—one to three titles at
most. The PR manager will field all
press inquiries, as well as inquiries by
those claiming to be press. The PR
manager will strategize and plan how
the details of your game will be
released to the press.

JARGON: Buzz—what the press, fans,
and industry are saying about a particu-
lar title.

If PR has a solid date on when the game
will ship, then PR can create a solid
plan for ramping up the buzz in a
steady, ever-increasing volume to peak
just as the title is released. Releasing
too many of your game’s goodies too
early will provide you with little to say
later in the project, and interest in your
title will sputter and fade before it is
released. On the other hand, if you do
not release enough information on your
game to grab press and fan attention, it
may be difficult to maintain the support
of the executives at the publisher and
other project stakeholders.

Trade Shows

The Electronic Entertainment Expo, or
E3, is the largest show in North Amer-
ica for publishers to get their products
implanted in the agents’ minds. E3 is a
vast show with tens of thousands of
attendees strolling through hundreds of
displays ranging from mini amusement

98

parks from the likes of Nintendo to a
folding desk and some business cards
from discount CD duplicators. Thou-
sands of products will be on display and
scores of tricks are used to try to get
your attention, from the obligatory
booth babes to breath mints that are
rolled out like cellophane. E3 is a
cacophony of sound effects, lights,
noise, and people. For all of this energy
E3 is the largest news reporting event
in the game industry and next to the
retail buyers, the game press is the
second most important contingent of
VIPs to grace the floor. These folks
have conspicuous press ribbons dan-
gling from their badge so you know
when not to speak candidly (handy).
Like anything competitive, the
press at E3 is out to get more viewers
and readers. The larger the market
share, the more their business will
grow. Years ago the press were trying
to figure out how to arrange their time
more efficiently for those precious
three days of E3; they wanted to be
sure they looked at every hot game. It
would be a minor tragedy if a compet-
ing magazine or site were to report on a
major title that you failed to see at the
show. So the publishers and the press
put together a schedule of viewings and
demonstrations for all of the large
press. That might sound innocent
enough, but if you think about it for a
moment, you will realize that all of the
major press walks into the show with a
schedule of titles filling all of the
required genres and platforms priori-
tized in order of importance. Of course
this journalist will still walk the floor,
but it will be between appointments or
at the end of the show. This makes it
really tough for the little games trying

Chapter 5: What Is a Game Made Of?

to break out, as they are not even on
the list to be seen.

The Internet game sites have
another pressure—real-time reporting.
To keep up, all of the major game sites
need to have nearly live coverage of the
show in an effort to bring the show to
the fans and of course to gain more
viewers. Real-time reporting is hard for
several reasons, not the least of which
is that you need to have something to
say. Here again, publishers and the
press will work together to give the
press an E3 package a couple of weeks
before the show. This package always
contains the best screen shots, plenty
of quotable material, and occasionally a
playable preview build of the game. The
better journalists look at this material
as just more information; the less rigor-
ous journalists (or those with very little
time) have been known to lift the
majority of the quotable material and
publish that in lieu of an original opin-
ion on the game.

Other Trade Shows and Events

E3 is important and dominant no doubt;
however, it is hard to get your message
across to the buyers, press, and fans
when there are 3,000 other titles. Pub-
lishers have been creative about how to
handle this problem; they hold their
own shows in one form or another. For
example, Activision hosts its own show
in Europe between E3 and ECTS (the
major show in Europe) to be sure
awareness is implanted before and
more effectively than the ECTS show.
Interplay hosted a very cool event
for three of the Star Trek games (one of
which was Starfleet Command) on the
Paramount Studios lot. Press from
around the world came to view three

Chapter 5: What Is a Game Made Of?

games hosted by George Takei. The
trailers for all three games were shown
in the posh Paramount screening the-
ater, and a fine lunch was served where
the press mingled with the developers
for an extended Q&A period after the
press had a couple of hours to play the
games. It was a relaxed but focused
event that gave those three games
ample time with the press.

The Marketing of a Game

As you can see there is a lot of sales
and promoting of a game behind the
curtains, but what about the ads—the
traditional form of selling a product? Of
course games have ads; take a look at
your favorite game magazine and it
seems like half of the pages are full-
page ads. And the online sites have
banners, navigational bar headings, and
a myriad of advertising terms for the
various bits of electronic click-mes.

Like the press relations manager,
the marketing director for a game
should not be spread too thin across
many different games. The marketing
manager will work with the producer
and development team to craft the
game’s image in all of its various forms:
print ads, banner ads, and the
all-important box.

Just like press coverage, it is
important not to create too much hype
for the game and then fail to deliver on
time. Publishers are getting much more
savvy and are scheduling their market-
ing campaigns to kick off only when the
ship date is known with confidence.

The marketing manager will also
be responsible for getting your game
shown at smaller venues such as the
GenCon game convention held in Mil-
waukee. The marketing manager will

99

coordinate strongly with the press
manager and sometimes supervises the
press activities. Sometimes it is consid-
ered a peer position, and in some places
the same person is overloaded with
both jobs. In particular, the marketing
and press managers will be working
closely with any playable demos that
are to be released, making sure they
are cover-mounted on the game maga-
zine CDs and that the retail stores
carry a supply of demos in a display.

Hardcore Fans

It is commonly known that hardcore
fans and the word-of-mouth sales they
generate is the largest factor in the
number of games you will sell. Hard-
core fans are eager to check up on the
progress of their favorite game at the
developer’s web site, interact in the
forums, and beta test. If they like the
game, they can be responsible for not
just the sale of the box they buy for
themselves, but for the six or eight
boxes that they have convinced their
LAN party to play with. Or in the case
of console games, the hardcore early
adopters get the game first and invite
people over to play. I have met fans
who have sold ten, twenty, and more
titles just for their passion of the game.
Hardcore fans are always looking for
the best in games; they also have a
bunch of friends the industry calls
casual gamers and mass-market
gamers. These casual and mass-market
gamers ask for recommendations from
the hardcore gamers. The hardcore
gamers will in turn recommend the
titles they feel comfortable with. This
1s just common sense, but what it
means is that Blizzard’s Diablo was
perfectly poised to capitalize on the

60

streamlined interpretation of the com-
puter role-playing game genre where
just light taps on the left mouse button
looted catacombs and vanquished ele-
mental evil. Valve’s Half-Life laid a
heavy story on top of the first-person
shooter genre dominated by id (in fact
they licensed id’s Quake engine) to pro-
duce a mega-hit. And depending on how
you measure it, Half-Life and its free,
fan-created mods Counter-Strike and
Day of Defeat are the most popular
online games. These games are simply
the most approachable, solid, and just
plain fun games you can buy. If you
want your game to sell, study how nar-
row the feature sets of Mario64,
Half-Life, and Diablo really are, and
how well and deep these few features
are executed.

Manuals and Strategy Guides

Games need to have a manual, and if
the game is considered a potential hit,
then no doubt a strategy guide will be
produced for the title.

Manual

How the manual gets written varies
from publisher to publisher and from
game to game. The most common
method is to use an experienced con-
tract manual writer. This person
receives a copy of the game about four
to six months before release and inter-
acts with a member of the development
team while writing to create the most
accurate manual possible before a game
ships. Another common method is for
developers to create the manual given
that they are the most familiar with the
game’s functionality. The biggest chal-
lenge in creating a manual is that rarely
does one have the luxury of waiting

Chapter 5: What Is a Game Made Of?

until all features have been frozen and
all stats in the game have been bal-
anced. This results in almost all
manuals being vague in some areas and
fairly narrow in the scope of just pro-
viding use of the controls of the game,
rather than how to play the game. Now
enters the strategy guide.

Strategy Guide

The strategy guide fills a niche role in
the game industry, providing detailed
stats, walk-throughs, strategy, and tac-
tics to complete a game. Writers of
strategy guides have various stories,
but it is not as simple a job as playing
your favorite game and writing up all
the nifty hints and secrets. What really
happens is that the publisher of the
game and the publisher of the guide
work together to get builds of the game
to the strategy guide author as early as
practical in the project. Essentially, the
guide author is a beta tester too; this
makes the job of writing the definitive
guide more challenging as the stats,
missions, puzzles, and various parts of
the game are still in flux. For instance,
even the ultra-high-profile game Gran
Turismo 3 (GT3) for the PS2 contains
many discrepancies in the pricing of
various upgrades between the U.S. ver-
sion of the game and the U.S. strategy
guide. GT3 shipped in Japan well ahead
of the U.S. version and as such there
was a little more time to produce an
accurate guide. Despite this there were
still discrepancies.

For our own Starfleet Command:
Orion Pirates, the strategy guide writer
of SFC2, Dennis Green, returned to
write the most thorough guide possible.
His project came under stress when we
at Taldren overlooked some of his

Chapter 5: What Is a Game Made Of?

requests for information during the
final push. Unfortunately, after we were
able to catch up and provide him with
the information he needed, several
strong chapters of the book had to be
cut to reduce paper costs for the guide.
It is a tough market to make money
when work already created has to be
cut.

Manufacturing Parts

I am astonished at how quickly a PC
game can reach the store shelves. Do
you know how fast a publisher can take
the final gold master from the hands of
the QA lead and deliver a shrink-
wrapped retail box in an Electronics
Boutique shop in the local mall? Five
days. That is right, in five days a
30-cent recordable CD from the local
OfficeMax can be turned into $70 mil-
lion of merchandise on store shelves in
the form of Diablo II. This is perhaps
the quickest a game can reach the store
shelves and usually only occurs at a fis-
cal quarter end for the publisher—most
especially Q4 for the holiday shopping
season!

To accomplish this a publisher has
an operations manager who keeps his
eyes peeled looking for the strongest
vendors for CD duplication, manual
printing, box printing, and assembly.
This is quite a job, and normally they
would like to see about 20 to 30 days
to get the job done, so as to not have
to pay for express drop shipments
between the vendors. But when the
end of the quarter is rearing its ugly
face, the operations manager saves the
day. Toward the two-thirds mark of your
schedule, meet with the operations
manager to nail down the firm dates for
when they need everything—final box,

61

final manual, and final posters and other
goodies in the box. This is definitely an
area of the project where it repays you
in spades to be proactive and find out
the due dates for these deliverables
ahead of time.

Hardware Manufacturer Parts

Console Manufacturers

The console manufacturers assign a
producer to oversee the development
of each of the titles for the platform.
The console manufacturer retains broad
editorial approval rights for the game,
and it is very important to follow their
feedback to receive your ultimate
approval for the gold master.

Hardware Representatives

Some of the coolest people to work
with in the industry are the hardware
vendors like SoundBlaster and
NVIDIA. These folks are motivated to
be sure that not only does your game
work on their hardware but also that
your game takes advantage of all of the
features of their latest cards. What that
means to a PC developer is a bunch of
free hardware such as sound cards,
video cards, joysticks, and speakers for
use of the development team to test the
hardware. These folks are best
approached at their booths at the Game
Developers Conference (www.gdconf.com).
Tell them your story, where you are
working, and what game you are work-
ing on, and if they feel that you are for
real, you can get test hardware. Please
do not abuse this if you are not making
a commercial game and will not be
making a genuine test of the hardware,
as it will only make those resources
harder to come by for the rest of us.

62

Post-Release Parts

Releasing a successful game to retail
will be one of the most difficult things
you accomplish in your professional
career. After all of the cleverness it will
take to get your project funded, staffed,
and real; after all of the dedication to
the craft during production; and after all
of the blood, sweat, and tears it will
take to drive a game through the final
candidate cycle, you will find the day
after you signed off on the gold master
one of the most pure days in your
career with no task that must be done
now. Instead, you and the rest of the
team will most likely disappear and
rediscover what your family looks like
and decide to talk with them—and
sleep. After this much-needed rest is
completed, is it time to dream up a new
game? No, it is time for post-release.
Post-release involves patches,
updates, answering questions on the
forums, helping customer service field
questions on the phone support lines,
and combating cheating. For massively

Chapter 5: What Is a Game Made Of?

multiplayer games, these issues are
much more serious as you are billing
for a monthly service instead of a
one-time purchase of a product. In fact
massively multiplayer games have
whole development teams called the
“live teams” to maintain the software,
add new content, act as gamemasters,
and in general keep the product fresh
and alive in the hands of gamers.

Having a bunch of fans is a very
good thing; that is the whole reason for
your work. However, a bunch of fans
require a substantial amount of interac-
tion and communication. At Taldren
about six of the employees have taken
the initiative to read our forums on a
regular basis to field questions and
moderate the forums.

Chapter 24 discusses the issues of
post-release in detail with guidance
from several studios on how to most
effectively support the fans of your
game.

Chapter 5: What Is a Game Made Of?

Publisher = Studio Heads
i An Overview
— of the Parts of -
Producar
Fraducer
Praducer Diegiganes Lezad Designes
24 Lead Audio Director '__G'%m"w) L?ud ;
agrarmmers Programme
QA Taarm Music: Al Programmers An Director
Cornpatibility - e Meteoring o~ Birtied,
Tasn Zound Effects Frogrammars Concept &lists
Lecalization ‘Jpice Crver Uzer Intarface TTe—
Tean Frogrammars
. Game Mechanics E S
EBieta Testing FErogrammars 3D Modelers
Hardzore Fans Scriptars Atists
Electronic Garre
Enletainmen Mark eting Press Relations Sales Slafl Buyers
Expa
Licensoes
Hardware
LIS Manufacturer
Slralegy Guide Manufaciuring
Final Rets
Package

Consurmir

Paiches

This page intentionally left blank

Chapter 6: Business Context First

Chapter 6

65

Business Context
First

Inception

Vision Document

Technical Desgn

First Flayable Phazss

Firal Candidate Cycle

@ rclease

Post Releaze Sugport

Where the business parameters lie on the project life
cycle

The first project sin that people commit
is to dive right in and start designing
their game, or worse, to start program-
ming. Every project, from the largest
massively multiplayer games with
development budgets over $8 million to
total conversions done by some hard-
core fans, needs to be positioned within
an appropriate business context. Even
if you have no plan to make money off
the game, or it is not a business ven-
ture, it is still critically important to
identify why you are making the game
and what the goals are for your game.

The Project Triangle

A useful device for analyzing the goals
of your project is to create a triangle
and label the points of the triangle as
follows: (1) On Budget, (2) On Time,
and (3) High-Quality/Feature Rich. It is
a business law of software development
projects (and just about any other type
of project) that you can achieve two out
of three of these goals on any project,
but you cannot achieve all three. Fail-
ure to understand that you can only
have two out of three of these proper-
ties will result in a game that misses
not just one goal, but also two or three

66

of these goals! See the diagram below
for a visual aid to this example:

HIGH QUALITY

ON BUDGET ON TIME

The Project Triangle—pick two out of three goals

Implications of the Project Triangle

Each line on the triangle is a relation-
ship between two of the goals. Each
line should be responsibly labeled with
the negative consequence of your deci-
sion. This triangle states that every
well-managed project will exhibit one of
three negative behaviors: being late,
being over budget, or sacrificing quality.
This sounds pessimistic, but it is true.
Once again for impact: Well-managed
projects will be late, cost too much, or
be of low quality; less well-managed
projects will exhibit two negatives;
poorly managed projects will feature all
three failures.

There are many different software
development strategies on the market
such as Iterative, Waterfall, Extreme,
Unified, and others. None of these
development methodologies are a
magic potion. You will still be faced with
the question of how to best manage
your particular project and its chal-
lenges. Instead, each of these
methodologies will have strategies and
suggestions for managing costs, time,
and features. However, it will come
down to the business context of the
game and how you manage your project
to decide which two goals you will meet
and which one you work to control and
manage.

Chapter 6: Business Context First

On Budget and On Time—means
you must accept sacrifice of quality
High Quality and On Budget—
means you must accept a late game
High Quality and On Time—means
you must accept extra spending

ON TIME ON BUDGET

HIGH QUALITY
must be flexible

A project where being on budget and on time is
more important than quality

ON BUDGET HIGH QUALITY

ON TIME
must be flexible

A project where being on budget and having high
quality is more important than timeliness

HIGH QUALITY ON TIME

ON BUDGET
must be flexible

N

A project where being on time and having high
quality is more important than cost

Chapter 6: Business Context First

Various Games and the Project
Triangle

1. The Sims series: High Quality

2. Diablo series: High Quality and On
Budget

3. Quake series: High Quality and On
Budget

4. Ultima Online series: High Quality

5. Starfleet Command series: On
Budget and On Time

6. Baldur’s Gate: High Quality and On
Budget

7. Klingon Academy: no goals satis-
factorily achieved

HIGH QUALITY

/ The Sims.
. Diabl.t.)"\\
Baldur’s Gate :
Ultima Online

Quake

Starfleet Command

ON TIME ON BUDGET

Limbo?

|
| Klingon Academy

Various games and where they fit on the Project
Triangle

How is the triangle related to success?
The Sims is probably the highest gross-
ing PC game in history, being at #1 in
the charts for close to two years punc-
tuated by a few brief weeks off to allow
a major release to have its day. The
Sims was notoriously late at over five
years and also over budget. Why did
The Sims succeed when it achieved

67

only one goal instead of two goals? The
Sims met a huge unfulfilled demand to
play god to simulated people doing ordi-
nary things; this has enormous appeal
to consumers and gamers of all ages,
especially women. The designers of
The Sims knew that above all they had
to get the simulation right. If The Sims
was boring or lame, people would be
turned off and not play. So they crafted
and crafted the behavior of The Sims
almost to exclusion of any other fea-
tures, considering the relatively mod-
est effort spent on the graphics. No one
had modeled people before quite like
this, and in the early days of the project
there was only modest support for it, as
other games at Electronic Arts were
given more resources. Thus the
designers of The Sims did the right
thing and recognized the business
parameters of their project and focused
on what would really matter—the
behavior in The Sims. Sure, if they’d
had stronger corporate backing early
on, they could have staffed up and per-
haps sped up the research and develop-
ment phase to under a year and then
just another year to create the whole
game. This would have been ultimately
more lucrative for Electronic Arts, as
they would have made this ungodly
amount of money earlier and would
have had made the team available to do
the expansions to The Sims that much
quicker. Looking back at game projects
from afar, it is easy to be an armchair
executive producer and say what you
would have done better, but truthfully
in the early developmental stages of
The Sims there probably was not all
that much to see, and so it would be dif-
ficult for executive management to
understand this game and get behind it.

68

The Diablo series has been a fan-
tastic hit for Blizzard and is the stan-
dard and envy of the PC game industry
to measure against. Blizzard first
achieved outstanding financial success
with Warcraft II, which built upon the
classic real-time strategy gameplay of
Warcraft I and polished it to a tight and
smooth production that is the earmark
of a Blizzard production. Blizzard’s
model for making mega-hits is to set
aside a large budget of money, have a
large staff (Blizzard reportedly has
about 200 full-time staff for a publisher
of two concurrent titles), and take as
long as it takes to make the game per-
fect. Blizzard knows they have a repu-
tation for the highest quality games
available, and each release they pro-
duce is an opportunity to damage that
hard-earned reputation. The Blizzard
label is probably the single most lucra-
tive publisher brand in the industry. It
is a common joke in the industry that if
Blizzard ever needed cash in a hurry,
they could print a box called StarCraft
IT or Diablo III and just ship a million
empty boxes just for the pre-orders!
This total focus on quality has of course
repaid Blizzard (and its owners) hand-
somely. So Blizzard’s answer to the tri-
angle is to bypass being on time and
focus on quality and, to a lesser extent,
budget. I just took a peek at Blizzard’s
web site and noticed that in their
description of one of the programming
positions is a willingness to work long
hours; apparently Blizzard games take
as long as they need to as long as
everyone is pushing hard.

The statement of working over-
time as a requirement of the job at
Blizzard is a pretty clear indication that
they too are worried about getting their
games done in some sort of timely

Chapter 6: Business Context First

fashion. The point of this triangle is not
to figure out which one of the triangle
goals you are going to abandon wildly
and throw out the window; the point is
to identify in what part of the triangle
you enjoy the most flexibility. Knowing
where you are flexible will keep your
project from breaking.

Starfleet Command (SFC) is shown
in the figure as on time and on budget.
What this means is that quality was the
most flexible aspect of the project
whereas on time and on budget were
not flexible. SFC was produced inter-
nally at Interplay during a time of great
expectations with the impact of going
public and the beginnings of tight fiscal
policy. Interplay had many games in
production at that time including three
other Star Trek games—Klingon Acad-
emy, New Worlds, and the Secret of
Vulcan Fury. Of all the Star Trek games
in production, SFC was considered the
underdog as our game focused on the
real-time tactical simulation of naval
starships based on the gameplay of a
20-year-old board game called Star
Fleet Battles. Klingon Academy was a
sexy 3D space shooter featuring over
110 minutes of live footage with star
talent like Christopher Plummer. The
Secret of Vulcan Fury amounted to tak-
ing the player back to the original
series with fully digitized and animated
faces of Kirk, Spock, and Bones. New
Worlds focused on capitalizing on the
real-time strategy genre and impress-
ing the eye with ground troops of the
Star Trek universe rendered in breath-
taking 3D detail.

We had a trick up our sleeve with
Starfleet Command—a completely
unfair advantage really. Our game, as [
said, was based on simulating naval
combat in space between majestic

Chapter 6: Business Context First

starships of the Star Trek universe.
That is practically half of what the show
is about if you think about it—photons
and disrupters—just watch Star Trek
II: The Wrath of Khan. We knew what
we had and decided to make the best
real-time tactical starship simulation
we could. Along the way we broke new
ground with real-time tactical warfare,
and after we released SFC other titles
like Dominion Wars and Bridge Com-
mander attempted to find their own
path down the naval starship simula-
tion. With the fixed budget and the
requirement to ship on time, our atten-
tion was focused on what would make
the game: the real-time tactical combat.

To create a foundation for our
gameplay we licensed the mechanics of
the hit board game Star Fleet Battles.
Here we had a coherent set of game-
play mechanics that were play tested
and improved over the years. However,
these were gameplay mechanics for a
hex grid, pen and paper game, not the
game mechanics for a commercial game
of the late 1990s. Glossing over the
hours and hours of design discussions,
we settled on an interface where the
player sees a third-person 3D view of
his starship traveling on an invisible
plane, battling with an astonishing array
of controls for the operation of the
whole warship—the electronic warfare,
the shuttles, tractors, transporters,
marines, heavy weapons, engineer-
ing—bringing all of these systems to
bear against the enemy starship in dark
skies. This purity of concept was a god-
send. I listed SFC as on time and on
budget. Yes we were a little buggy
when released, but we made a quiet hit
game in a market where so many have
failed—we made SFC.

69

Quake and Diablo have a lot in
common; hoth games are produced by
development houses with the strongest
reputations, both companies have a
“when it is ready” policy for shipping
their games, and finally both companies
have paid their dues.

The real interesting question is not
when Blizzard and id ship their games,
but how they got where they are today.
How did they arrange to make their
first hit game so that they could have a
pile of money to use for their future
games? Blizzard was kind enough to
produce a recounting of their first ten
years in the business in early 2001. The
page is no longer posted at their site,
and that is a shame. However, the his-
tory of Blizzard started with the name
Silicone and Synapse. They, like all
developers, started out doing work
under contract for other publishers. It
1s ironic that Blizzard is now eclipsing
Interplay, the publisher it worked for
when it started in the industry. Blizzard
was able to create Warcraft with the
help of the Davidsons, who had an
uncanny amount of wisdom to invest in
a pre-Warcraft Blizzard.

The history of id Software is also
about ten years long, where John
Carmack and crew developed the plat-
form game Commander Keen featuring
a football helmet-wearing child protago-
nist. It was Castle Wolfenstein 3-D
published by Apogee that blew every-
one away with its riveting 3D action
and launched id into stardom to go on to
create Doom I and II, Quake I, II, and
II1, and to be the engine behind dozens
of other hit titles.

These folks did not get lucky; they
are creatively brilliant, have consider-
able business savvy, and have worked
hard consistently for the last ten years

70

through an ever-changing set of param-
eters involved in making games. What
you need to do as the producer of your
game is to think hard, very hard, and
articulate on paper what the business
parameters are for the game you are
making. These parameters—these

Chapter 6: Business Context First

restrictions and requirements—are not
sources of angst to rebel fruitlessly
against. Rather they should act as foci
for your game’s creation; they should
act as genuine opportunities to shape a
successful vision for your game project.

Questions for You to Answer

Here are some straightforward ques-

tions; your mission is to take some

time, grab a piece of paper, and write

down the answers.

m What are you trying to accomplish
with this game?

m When must you complete this
game project?

®m How much money do you have to
produce it?

m Who do you have to get the job
done?

What to Do with These Answers

An Ultra-Low Budget Game

If you are funding the project yourself
with your free time and hobby money,
you have a very distinct limit on how
much money you can afford to spend on
this project. The goals for your project
should be correspondingly low. After
performing your preproduction as out-
lined in Chapters 6 through 10 with
detailed information in Chapters 14
through 20, your project should amount
to no more than 500 to 1,000 hours of
work per person to finish your project
in a year. A way to partially solve your
budget problem is to share your project
with others: friends, family, and even
folks across the Internet. Coordinating
a group of volunteers to work together
on a game project is very challenging,
and their creators abandon the

overwhelming majority of these pro-
jects. However, id Software used
essentially this method to escape their
stay at Softdisk. Chapter 25 contains an
interview with one of the founders of
Sliver Creek Entertainment, whose
first game began as a weekend project.

The goal for this type of project for
the creators is most often to do the pro-
ject for fun and to act as a compelling
demonstration of their abilities to land a
full-time position in the game industry.
There are two principal paths to take:
Make a small game or produce a modifi-
cation to an existing commercial game
(called a mod).

JARGON: Mod is the name for a game
that is made from the engine and assets
of another game.

Ambitious mods that offer extensive
changes are often called total conver-
sions. Making a small game and making
a mod are two different sorts of pro-
jects; each has its own challenges, and
you will learn different things by
accomplishing them.

Many people might think that cre-
ating a demo of a simple real-time
strategy (RTS) game that has incom-
plete Al poor art, and no sound could
still represent your passion for creating
a large, commercial RTS. Yes, you
might get your passion across, but in
my opinion it would not be the best

Chapter 6: Business Context First

demonstration. Just like consumers of
games, we do not want to have ten fea-
tures shoddily executed. Instead we
would rather see just three or four pol-
ished features that are shippable. It is
not interesting to know how long it will
take you to implement feature X, rather
it is much more compelling to know
how long it will take you to drive fea-
ture X to shipping quality. The folks at
Silver Creek Entertainment have taken
this to heart and have produced the
most excellent card games: Hardwood
Spades, Hardwood Hearts, and Hard-
wood Solitaire. These folks have taken
the very simple feature sets of these
classic card games and have added gor-
geous 2D graphics, flawless online
multiplayer format, and clever added
features such as customizing your ava-
tar’s look and tossing fireballs at your
opponents. Silver Creek started with an
artist passionate about quality for his
card games and two other developers;
they now are running their own devel-
opment company and are hosting their
own online games without funding from
a publisher. This is a significant accom-
plishment, for these folks have
achieved what many developers aspire
to—self-funded games; and they have
done it in an area of high risk—online
games.

This is such an excellent model—
driving a few features to perfection—
that the folks at Silver Creek are not
sending out their resumes and seeking
a job working for someone else in the
industry; instead, their hobby project
was developed in a product with real
value to thousands of players.

To be successful with this model
you need to find a game concept that is
simple but playable and would require a
minimum of engineering to get it

m

functional. This would leave the bal-
ance of your time to create lush polish
to that feature set.

Creating a mod of a commercial
game is another way to work with an
ultra-low budget. Principally, two guys,
Cliffe and Minh Le, created the phe-
nomenally successful mod to Half-Life
called Counter-Strike (CS) with some
textures created by three other guys.
They started with the Half-Life engine,
which is in turn a variation of the
Quake engine. Half-Life itself is a
mega-hit from Valve Software that taps
into the underserved market of players
looking for a compelling story to
engross them as they enjoy the action
of the first-person shooter genre.
Starting with a commercial hit game
has the same compelling marketing
potential for your mod as it does for a
publisher’s sequel to a hit game. The
Half-Life engine was eminently amend-
able to user modification, to the point
where even the menus of the game
support choosing a custom game type.
The CS project was created by an expe-
rienced team that had worked together
on Action Quake 2 and other mod pro-
jects before, so a single mod project
was just the first step for these guys. It
was their third project that really blew
everyone away including Valve. This
team, due to its experience and reputa-
tion on previous mod projects, received
unprecedented support from Valve
including design feedback, technical
support, and even project financing.

Counter-Strike perfectly illustrates
a project that is on budget and is of very
high quality, but the time side of the tri-
angle had to be as flexible as they
come. CS was released in the summer
of 1999 as beta 1, and it took nearly two
years for it to proceed through four

12

more major releases and ship as an
expansion to Half-Life in retail.

Fixed Budget, Fixed Deadline

I am most familiar with projects with
these sorts of parameters, as all of my
shipping titles have had these parame-
ters. I have worked on one professional
title that had a ridiculously low budget,
PlanetNET, that never shipped. At
Taldren we are now working on several
game concepts that have a variety of
business parameters to fulfill different
roles for the future of Taldren. But fixed
budget, fixed deadline games are what
my reputation is built on. To make
these projects work you must walk
backwards from your shipping date and
determine your beta and alpha dates.
This will give you a gross amount of
time available for your production and
preproduction phases. I am a strong
supporter of preproduction and feel that
any project worth doing should spend
about 15 to 35 percent of the total
development time in preproduction.
This will give you a crude estimate of
the man-months you have available for
production. This is your budget for
man-months.

Now with your man-month budget
in hand it is time to sketch out the fea-
ture set of your project. Break down
your list of features into three piles:
primary features, secondary features,
and tertiary features. This section dis-
cusses how to identify your core
features and put the secondary and ter-
tiary features into other piles. You must
then create a project plan that clears
away all of the dependencies and risks
and supports the primary features.
Chapter 10 outlines the project plan,
while Chapter 20 drills down to details.

Chapter 6: Business Context First

During production on these titles
you will find yourself shifting secondary
tasks to tertiary and primary to second-
ary when you are low on time and
popping the secondary and tertiary
tasks up when you have available time.
It is vitally important to your produc-
tion team that you do not make all
features must-do items that you reluc-
tantly cross off as reality presents itself.
People perform badly when under the
cloud of being failures; for the sake of
your team and your game, set them up
to succeed by prioritizing your features
into these three different categories. In
fact, your team members will cruise
through their primary tasks so much
more confidently that they will develop
their features at the fastest rate possi-
ble. Feeling like winners and making
progress only enables them to get
excited and want to knock off the sec-
ondary and tertiary items. Perhaps the
most compelling reason to separate
your features into these three piles is
that all features inherently have a prior-
ity, and you will make choices during
production. But it is only through for-
mally acknowledging these priorities
and writing them up in your plan that
you will derive all of the planning bene-
fits of knowing what you really must
get done.

AXIOM: All games inherently have pri-
mary, secondary, and tertiary features;
the wise developer will embrace these
prioritized features lists and turn them

into an asset.

Chapters 11 and 21 discuss specific
techniques for measuring progress and
task completion that enable the highest
quality workflows.

Chapter 6: Business Context First

High-Profile/High-Quality Projects

For the high-profile, mega-hit titles
from well-established houses like
Blizzard, id, Verant, and BioWare, a
different set of challenges present
themselves—all of them revolving
around an industry and fan base with a
high set of expectations for these great
developers’ next titles. This means that
quality must be so high that each
release sets new high water marks for
the industry to try to achieve.

To understand better what goes
into a mega-hit game, it is a great idea
to look under the hood of a mega-hit
and start pulling on the hoses and
unbolting the pieces and looking to see
how things fit together. I call this pro-
cess creating a reverse design docu-
ment after the technique of reverse
engineering. Chapter 8 gives you an
idea of the steps you should take when
writing a reverse design document. For
myself I wanted to see what went into
the construction of Diablo, so I spent 27
pages of text detailing to myself how
characters grew, how big the isometric
tiles were, how the palette was laid out,
how the inventory system worked, the
user-interface, and all of the other parts
that went into the production of Diablo,
including the manual and box design.
What I discovered astonished me:
Diablo is actually a very simple game
with a small set of features. This hit me
like an epiphany. Now when I walk
through E3 or flip through a game mag-
azine I quickly project a mini-reverse
design document in my mind for these
games to get an idea of how complex
they are. This led me to formulate
Erik’s Axiom 13 of Game Design.

13

AXIOM 13: As the complexity of a game
increases, its likelihood of commercial
success decreases at a geometrical
rate.

I highly encourage you to create a
reverse design document for your
favorite mega-hit whether it be Quake,
The Sims, Total Annihilation, or
another title. What you will find is that
these games all have a clean, tightened
feature set that is polished to a degree
that their competitors have not been
able to achieve. In fact, Michael Abrash
decided to join id Software for many
good reasons, but one of the reasons he
chose to join the Quake team was
because early in the project John
Carmack wanted to put in a portal tech-
nology that would allow players to
seamlessly jump from one Quake map
to another in an extremely compelling
version of action cyberspace. This fea-
ture was cut from production and in fact
has yet to ship in a Quake game. This
again is a reflection of the theme of
concentrating on executing your fea-
tures well.

But without knowing better I
would have thought these very suc-
cessful developers would give no
thought to adding features to their pro-
jects—heck, they don’t even have to be
late. They could just hire teams and
subteams to get these features done,
right? No is the simple answer. The
difference between a strong developer
and a weak developer on your team is
not just a linear difference in work out-
put; it can literally be a tenfold, hun-
dred-fold, or more difference in
productivity. In fact for the networking
code in Quake, John Carmack hired a
programmer whose whole career was

74

in creating networking code. For some
reason this did not work out well for
Quake, and the programmer moved on.
In two months time John Carmack
came up to speed on the issues
involved in networked games and pro-
duced a solid networking layer that was
only 2,000 lines long and, as usual for
John Carmack, set a new standard for
multiplayer Internet gaming perfor-
mance. From the time The Mythical
Man-Month was written by Frederick
Brooks, the idea that you could simply
add up programmers like cantaloupe in
your grocery cart has been under
attack. Surprisingly, many people will
attempt to add pressure to your project
by asking you to hire more folks and
get more done—or much more com-
monly get it done for a specified quar-
ter. You certainly can get useful work

Walk Away

Ultra-low budget projects should be
simple games polished to a high degree
or perhaps a port of an existing game
engine into a new and compelling
format.

Fixed budget, fixed deadline
projects should organize their features
into primary, secondary, and tertiary
piles and create their project plan in a
manner that most supports the comple-
tion of the primary feature sets.

Chapter 6: Business Context First

done by hiring crack independent con-
tractors and extra staff, but it is not a
magic bullet. You need to organize and
manage this extra talent. Adding addi-
tional staff requires more administra-
tive overhead, and there is a critical
threshold of number of staff in an area
on a project beyond which you get
diminishing and ultimately negative
returns on work, even if the people on
the project are competent. This is prob-
ably due to the increasingly complex
communication required between a
large number of people on a project as
it grows in team size.

These mega-hit developers have
learned they cannot grow their teams
to indefinite sizes and still produce
clean, compelling hits. For this reason
the features in these games are limited
to roughly what their current team can
produce.

High-profile/high-quality pro-
jects concentrate their best develop-
ment team on a clean, tight set of
features that they will execute to a
quality level everyone else in the
industry will then struggle to match.
This will usually result in creating a
barrier of entry that will place your
organization ahead of the competition,
and like compound interest you should
be able to reap the result for years to
come.

Chapter 7: Key Design Elements

Chapter 7

75

Key Design €lements

All games start as an idea, something
like “Wouldn't it be cool to be a space
marine and blow up zombies on
Phobos” or “Wouldn'’t it be cool to be a
pilot in a starfighter involved in an epic
struggle to overcome the oppression of
a star empire gone bad” or “Wouldn’t it
be cool to drive modified street cars on
Tokyo streets at night.” These idea
sparks are often the source of long con-
versations between developers late into
the night at the studio. Another poten-
tial starting point for a game is a
licensed property; i.e., “make a
RPG/RTS/action game using XXX
license.” (Fans may want to play that
license specifically. Major licenses
include Star Trek, Star Wars, D&D,
WWE Lord of the Rings, and Harry
Potter.)

Chapter 6 discussed getting your
business goals and parameters settled
for your project before you start formal
design and development of your game.
This chapter discusses how to use the
structure your business context and
your game ideas provide and how to
turn them into a game concept worthy
of fleshing out into a game design
document.

Incephon

Business Parameters

B

B
Implemerdation
Alpha Phozs

)
Finzl Candidate Cycle

W FRclease

)
Post Relesse Suppor

Binrgein Bin

Where the key design elements lie in the project’s
lifetime

76

Chapter 7: Key Design Elements

Business Context Shapes Design, or Does
Design Shape the Business Context?

First of all, I am not asserting that hav-
ing your business context in hand will
act as a magical tool that will turn any
game idea into a well-thought-out game
concept. It is only an important aid to
assess the requirements that your game
idea is implying. Some game ideas
(such as the faithful recreation of Mid-
dle Earth where the whole world is
modeled with strong Al, 3D graphics
capable of great indoor and terrain ren-
dering, where an unlimited number of
players can join in together on both
sides of epic conflict between good and
evil) cannot be reconciled with the
business parameters of two artists and
a programmer looking to break into the
industry, who have six months of living
expenses available to them on their col-
lective credit cards. That Middle Earth
concept is an example of a game that
will dictate the business parameters. If
we take the business parameters of two
artists and a programmer, they might
want to recreate an arcade classic on

the Nintendo Game Boy Color or
Advance, use it to secure their first
deal, and then move on to more ambi-
tious projects.

For many game projects there is a
middle ground where the business
parameters and the game idea go back
and forth and refine each other. Perhaps
the developer pitches a massively
multiplayer game to a publisher who is
wary of the costs and risks behind mas-
sively multiplayer. From these talks it
is quite possible the developer will end
up creating a game that exploits a
license the publisher has rights to and
features a much more modest
multiplayer feature set. This is not an
acceptance of a mediocre plan; rather it
is a mature development of the idea
into a viable concept. A viable concept
is a game that people with capital
believe will be seen through to comple-
tion, with a high probability of favorable
reception in the market to overcome
the inherit risk in game making.

Reconcile the Business Context and Game

Idea Early

This process of refining the game idea
and business context is the earliest
stage of a game project. All projects
reconcile their business contexts and
the game idea at some point. Tragically,
for too many projects this reconciliation
only occurs after the project manifests
itself by underperforming, usually by
missing milestone dates. Some projects
have a painful reassessment where
senior management allocates more
funds and grins and bears it. For other

projects, senior management interprets
this late reconciliation as an unpleasant
surprise presented by an immature
development team and consequently
cancels the project.

Allocating more funds and time to a
project is a common occurrence, and
because it is commonplace, too many
developers think it does no harm to
themselves and no significant harm to
the publisher. That is fallacy; when a
publisher is forced to spend additional

Chapter 7: Key Design Elements

dollars and push back the release of the
title, there are many negative impacts.

First of all, the publisher must
extend additional money to the devel-
oper. This is an obvious point, but it
means that these funds are unavailable
towards the development of another
title with another developer or (worse
for this title) funds may be drawn from
the marketing budget to pay for this
overage.

The second impact is that the pub-
lisher has to delay when they will be
able to start recouping their investment
and see a profit that they can put to
work in future games.

The third problem is that the
marketing effort is deflated as the
awareness for the game is now ill-
timed, and it will be difficult for the
game cover that marketing was able to
secure for your game last quarter to
have real value 18 months later. Right
or wrong, the developer is the vendor
and the publisher is the customer, and
the adage that the customer is always
right holds firm in this case, with the
developer being tarnished by the repu-
tation of poor estimating capability.

Another reason to avoid going back
for extra money and time from your
publisher is that the business deal will
never improve. A loss of royalty points
i1s common; sometimes you will see a
shifting of intellectual property rights.
In the extreme sometimes the devel-
oper agrees to an assignment of equity
in the project to the publisher. In the
case of shifting equity to the publisher,
the developer is strongly advised to get
full value for that equity; no matter how
small an equity stake the publisher
takes, it will make all other publishers
avoid doing business with the

7

compromised developer for fear of a
conflict of interest and confidentiality
concerns.

The developer is also losing time
by going over his time budget, and
spending more time on a project with
the business deal worsening is not a
good goal.

The final reason to avoid a late rec-
onciliation of the business context and
game idea is to prevent team members
from becoming disillusioned and mov-
ing on to another company.

At Taldren we have released
Starfleet Command, Starfleet Com-
mand: Gold, Starfleet Command:
Neutral Zone, Starfleet Command 2:
Empires at War, and Starfleet Com-
mand: Orion Pirates in less than two
years. At the same time we gathered
more fans and have always produced a
profit for our publisher. Many of our
employees are loyal to Taldren because
of the steady pace of release; they
know their work will be released and
not wasted.

The Effects of a Slipped Game

1. Less working capital for the
publisher.

2. The total advance is tied up longer
than expected.

3. Marketing dollars are often wasted
as the hype bugle is blown too
soon.

4. The developer’s reputation almost
always suffers.

5. The business deal never improves
for the developer.

6. The developer loses the opportu-
nity to work on other titles.

7. Team members are in danger of
becoming disillusioned, and the
team may suffer uncomfortable
turnover.

78

Ion Storm has to be the most infamous
example of the consequences for late
reconciliation of the business context
and the game idea. Ion Storm was
founded around John Romero, who is
credited with the design of Doom—per-
haps the greatest PC game ever. The
UK-based Eidos was flush with cash,
and John Romero left id just as Quake
was entering its final stages towards
release. Eidos needed to put the sur-
plus capital from the Tomb Raider
series to work, as all businesses must
do. Tomb Raider was so successful that
Eidos needed to get into a number of
games, but established top developers
were already booked, so Eidos would
need to go with a less established
development house. The idea of taking
advantage of the designer behind Doom
and creating a new development house

1s not a bad idea; in fact it is a good idea.

Experience, a built-in fan base, and a
great story for the media would create
an environment that would be condu-
cive to game development, one would
think.

Ion Storm was founded with the
vision statement that design is king.
Even this is not a bad idea; treated
properly this would mean that Ion
Storm would capitalize on its core
strength—game design embodied by
John Romero—and take advantage of
existing game engines. Looking at how
Ion Storm interpreted their vision
statement would reveal where Eidos
made their mistake. Ion Storm used the
vision statement, design is king, to
treat game development as a pure art
form and lost respect for a strong
development process. Ion Storm’s mar-
quee project Daikatana suffered all of
the ills described above. Whole engine
retooling caused massive delays and

Chapter 7: Key Design Elements

required Eidos to double the already
overgenerous advance of $13 million to
$26 million to keep Ion Storm’s three
projects rolling.

Daikatana did not just lose face in
the game press, it became the material
for much derision, and even the local
Texas newspapers saw the poor man-
agement at lon Storm as a good story
for a series of columns. Ion Storm not
only suffered crippling turnover, but
some employees helped feed the nega-
tive press storm by leaking to the press
ugly internal email. John Romero was
forced to hand over the company to
Eidos, and their games shipped to little
success. lon Storm’s Dallas office has
been closed by Eidos to what amounts
to a large write-off of Lara Croft earn-
ings and a reputation for Eidos to
overcome. In fact the quieter Ion Storm
Austin studio run by Warren Spector,
which shipped the critically acclaimed
Deus Ex, is now looking for a shiny
new name to operate under to distance
that studio from the ill-fated Dallas
studio.

The sad thing is that John Romero
really can design games; just play
Doom any day and you will see how
amazing a game it was and still is. And
Eidos turned on the cash to set up the
game for greatness. It is just heart-
breaking, really, to think about the
potential of Ion Storm and to see it fall
for lack of rigorous development
methods.

What can be worse than either
pumping more money into a late project
or canceling a project? Shipping it. It
should never be done, but almost every
large publisher has shipped a game well
before it was finished. I don’t mean just
with bugs; [mean before critical parts
of the game were complete.

Chapter 7: Key Design Elements

Descent to Undermountain from
Interplay is a classic example of a game
that was shipped too early. The idea
behind Descent to Undermountain was
to take advantage of two key assets of
Interplay: the Advanced Dungeons and
Dragons license and the mega-hit
Descent. Management at Interplay
decided it would be a snap to plop down
some fantasy environments, characters,
and monsters to bash. Management
decided the Descent game engine
would be ready for immediate develop-
ment into another title. Most publish-
ers do not have a strong technical
director available for code review. Yet at
the same time many publishers also
negotiate the terms of the publishing
deals to either own the software engine

79

behind the game or have a license to
the software engine. Descent to
Undermountain was a case where the
revenue opportunity was so large as to
prevent an objective review of what it
would take to get the game done. The
original business parameters for this
title called for a budget of only six
months of four developers’ time. No
established development house was
chosen to do the job; rather an ambi-
tious independent contractor program-
mer stepped up, and various artists at
Interplay contributed to the project. No
project manager was allocated. Let me
share with you what Gamespot thought
of the results of this game after it
slipped to three years and six times the
original budget:

/

From Gamespot review of Descent to Undermountain:

But somewhere along the line something went horribly wrong, and now
gamers are asking themselves two questions. The first arose merely out of
befuddlement: How could the company that produced Fallout also be
responsible for one of the lousiest games to come down the pike in quite a
while? The second, though, addresses a much more serious issue: Why did
Interplay ship the thing when it wasn’t even close to being the sort of cut-
ting-edge product the hype machine had led us to believe it would be?
...There’s probably no way to learn the answer to the first question,
but—thanks to some very frank members of the Descent to Undermountain
team—the answer to the second is now common knowledge. The game
went out when it was scheduled to go out (in time for a Christmas release)
even though it wasn’t ready. That’s not just me speculating; that’s precisely
\what a member of the DTU team stated in a recent post on Usenet.

~

/

When a project is three years in the
making and six times the original bud-
get, there is tremendous pressure to
just ship the game. At the time, Inter-
play was receiving a huge amount of
attention for Descent to Undermoun-
tain; everyone wanted a truly 3D
dungeon romp. (Dungeon Siege, the
first really 3D dungeon romping game,
and BioWare’s Neverwinter Nights,

which is a more detailed 3D implemen-
tation of D&D, weren'’t released until
2002.) Interplay thought at the time
that with all the hype, maybe, just
maybe, the early sales in the first few
weeks would be large enough to recoup
a significant portion of the costs. It was
also Christmas time when 40 percent
or more of our sales as an industry hap-
pen. Interplay had three choices:

80

1. Ship it now.

2. Cancel the project altogether.
(Remember lost money really is
lost, and it is best not to chase it.)

3. Find areal AAA development
house and start over with a new
large budget and two years more of
development time. (Really the

Chapter 7: Key Design Elements

same thing as canceling the
project.)

Unfortunately for Interplay at the time,
canceling the project or starting over
with a new developer appeared to be
more expensive than shipping the title.
Let us see what Gamespot thought of
this decision to ship the game:

/

N

From Gamespot review of Descent to Undermountain:

The lesson to be learned should be obvious: If you're gonna ride the hype
machine, you’d better deliver the goods. Sadly, DTU doesn’t even come
close—and the worst part is that sometime over the next year or so we’'ll
probably see this same story played out all over again.

So what have we learned today? That pushing a product out the door
before it's ready makes loyal customers angry; that game developers should
keep at least one eye on what’s going on in terms of technology when work-
ing on a new game; and that if you buy Descent to Undermountain after
reading this, you get what you deserve.

\

/

Descent to Undermountain shipped in a
condition that was far below the indus-
try standards of the time, Diablo and
Quake II. The hype behind this game
also crushed it. It is just possible that if
Interplay had developed this title qui-
etly, hard-core fans of AD&D and/or
Descent might have bought 20,000 cop-
ies and been patient for a patch or two.
I am not saying this is a great idea, but
it is better than a hype storm. This is a
poor way of doing business; the game
industry shows time and time again
that the mega-hits are just games that
offer straightforward gameplay with
strong production values. Wacky or
niche games or poor craftsmanship are
not rewarded. Just make a few quality
titles and you will spend a lot less
money in development, and your indi-
vidual titles will have more capital to
work with.

Descent to Undermountain was a
perfect case where the game idea and
the business parameters were in con-
flict. If Interplay wanted a title in six
months and had only a modest budget
to accomplish it with, then Interplay
should have commissioned the develop-
ers of Descent, Parallax, to create a
cool expansion pack for Descent and
they should have contented themselves
with the sales of an expansion pack.
Perhaps it was perceived that with
Descent II already in development at
the time, it would have been competing
for sales. The other option was for
Interplay to allocate the funds they
were to later plow into Stonekeep II
and hire a top developer to create a 3D
dungeon romp of quality. Stonekeep II
would later go into production for five
years and then be cancelled. You must
create a game that is compatible with
your business context or fail.

Chapter 7: Key Design Elements

81

Methods and the Unified Development Process

Microsoft, the most successful software
development organization on the
planet, sells a lot of games. Microsoft is
perhaps best known for its Flight Simu-
lator franchise, but MS now owns
Ensemble (Age of Empires franchise),
Bungie (Halo and Myth, formerly the
premier Macintosh development
house), FASA Interactive, and Digital
Anvil (the former Chris Roberts com-
pany working on Freelancer), as well as
being the publisher for a host of exter-
nally developed titles such as Dungeon
Siege. Microsoft is a large organization
with many layers of development pro-
cedures that other publishers do not
employ. The first thing Microsoft does
when evaluating a developer is to send
a small team of game development
leads comprised of production, design,
programming, and art to evaluate the
strength of the team. A large part of
this evaluation is to also evaluate the
developer’s methods to determine if
they are compatible with Microsoft’s
and if these methods give Microsoft
confidence that the developer has
thought through their project and will
deliver a great game, on budget and on
time. Development methods must be
good things judging by Microsoft’s
success.

What Is a Development Method?

meth-od noun—A means or manner
of procedure, especially a regular and
systematic way of accomplishing
something.

We do want systematic game
development; this whole book is dedi-
cated to the presentation of various
game development methods. System-
atic and repeatable methods allow us to

retain what worked and improve upon
what did not work well. The alternative
to using a method is employing ad hoc
techniques over and over again and
being successful only by good fortune. I
rather like to make my own luck, thank
you very much. The first method we
need to nail down is how to reconcile
your game idea and business parame-
ters. I advocate using a comfortable
subset of the Unified Software Devel-
opment Process developed by the three
amigos Ivar Jacobson, Grady Booch,
and James Rumbaugh.

Why Use the Unified Software
Development Process?

The simple reason is that the Unified
Process is quickly becoming the soft-
ware industry standard. The Unified
Process has a long legacy dating back to
at least 1967; at this time Ivar Jacobson
worked for the telecom giant Ericsson.
Jacobson had a radical idea for the
design of the next generation telephone
switching equipment at the time, a
method we would now call component-
based development. For this project
Ericsson modeled the whole switch
system and subsystems as intercon-
nected blocks. The relationships
between these blocks was then articu-
lated and revised. The dynamic pro-
cesses of the switch were identified and
modeled. Every message passing back
and forth from each object was included
in this model. This software architec-
ture and object message compilation
was probably the best technical design
document of the time. This was a radi-
cal concept because software custom-
ers at the time were not accustomed to
seeing a blueprint of the software

82

before the software engineering began.
This method was not chosen on a
whim; rather it met the demand that
the software be robust enough for the
telephone switching equipment to
remain operating while receiving
upgrades and patches to the software
components of the switch in real-time.

I will skip the middle part of the
history behind the Unified Process; the
point is that 35 years ago a repeatable
method of creating great software was
developed, and despite this, most soft-
ware organizations have weak
methodology.

The Unified Modeling Language
is the standardized text and visual lan-
guage for the articulation of software
design supporting the Unified Process.
Beyond the development of Ivar
Jacobson, Grady Booch, and James
Rumbaugh, UML enjoyed broad sup-
port and major companies such as IBM,
HP, and Microsoft joined in the devel-
opment and standardization of UML.

Requirements Capture

The purpose of a software development
process is to take the user’s require-
ments and transform them into a func-
tional software system. That transform
stage is what we game developers are
doing when we make games. We take
the vision of the gameplay—how it
should play—and turn that into a fin-
ished game.

Chapter 7: Key Design Elements

JARGON: Requirements capture—
articulating the requirements the func-
tional software must satisfy, such as to
be fun or to run at 30 frames per

second.

What is the first step in the develop-
ment process? Figuring out what we
are supposed to do. There is a neat for-
malized term for this: requirements
capture. Requirements capture is
something you have already started.
Those business constraints from Chap-
ter 6 are some of the requirements the
software must satisfy. How do we
methodically discover the rest of our
game’s requirements? The short
answer is that there is no quick, magi-
cal method to sit down and write up in a
single sitting all of the requirements
your game must fulfill. Wait, don’t go
away, [am still going to show you how
to do it; it just involves several iterative
steps.

Use Cases

First, if you have not already done this,
write down your game idea on a single
sheet of paper. Write two or three sen-
tences that describe your game in the
center of the piece of paper. Now in no
particular order write down the major
functionality of the game in an outward,
radial manner from the game idea in the
center. The larger, chunkier aspects of
the game should be close to the center
and the detailed ideas farther away. For
example if you are designing a role-

[User interface

SOFTWARE
P — DEVELOPMENT |
— ' PROCESS '

— &

Consumer's Computer

The role of a development process

Chapter 7: Key Design Elements

playing game, you have characters;
write that down. Characters have stats;
write that down. Characters have
names; creating the characters’ names
is a feature. What you are doing is
brainstorming the gross feature set of
your game. This particular method of
putting the game idea down at the cen-
ter of the page is good to get you

83

started if you have not put a lot of effort
into your game design document yet.
The immediate goal is to identify all of
the core activities the player can per-
form in your game. Each of these core
activities is composed of many individ-
ual actions the player performs. Each of
these actions is called a use case in the
Unified Modeling Language.

Experience

Fairts

o
Magic System

@

Hit Pairits
Armot Class
Skill Points

Role-Playing
Game

@

Buying and
Seling Stuff

Health Potions

oo vs. Evil
ar
Lawe vz, Chaos

Gold, swords, etc

Rope, Lanterns

Wieather, night

Yoice-Crer

Brainstorming features

84

JARGON: Use case—an interaction
between an actor and the software sys-
tem. A fully articulated use case is
composed of both text describing a
sequence of actions and a graphical
diagram showing the relationship of this
particular use case with others in the
system.

Collecting these use cases and writing
them down will drive our process to
identify the requirements of our soft-
ware. The software requirements will
then help us develop the architecture
for our software. The use cases repre-
sent function, and the architecture
represents form. The Unified Process
is called use case driven because it is
the effort to capture our use cases that
drives the development. All of our
future efforts in the construction of our
software are to further the realization
of these use cases into a functioning
software system. Now, what exactly
does a use case look like?

Wiew Balance

©

/K | +{ Deposit Funds

Bank Cuztomer

| Withdrany Cash

L0

A simple use case diagram featuring the use of an
automatic teller machine

It turns out one of the fundamental ten-
ants of UML is that the language shall
be extensible, flexible, and ultimately
serve only to aid the process of distill-
ing and communicating the system
requirements. This ATM transaction
diagram uses only three UML symbols:
the oval use case, the stick figure actor,

Chapter 7: Key Design Elements

and the relationship line. The stick
figure is called an actor. Actors repre-
sented by a stick figure are most often
users of your software, or players of
your game, who are interacting with
the game. It is better to use the
abstract term “actor” so you will see
all of the external users of your game
system such as the single-player
player, the multiplayer player, the sys-
tem administrator, and the database
server of your online component. After
identifying your actors, the use cases
will flow rapidly. The use cases are the
unique interactions between the actors
and the software system (game). The
use cases are represented by a simple
oval with an active verb phrase such as
“withdraw cash” or “analyze risk.”

JARGON: An actor is a user, either
human or another external system, that
is interacting with the system under
analysis.

JARGON: A relationship is a line drawn
between actors and use cases, some-
times with extra notation that further
describes the type of relationship, such
as <<extends>> and <<uses>>.

The level of articulated rigor in a dia-
gram should be reasonably proportional
to your needs. For example, if it is
important to describe the relationship
line in better detail, use a one-word
descriptor between the less than and
greater than symbols. Common exam-
ples are the relationship descriptor of
< <extends>>, < <uses>>, where
extends would communicate that a par-
ticular use case is really a special case
of a simpler base use case, and uses
would indicate that a particular use case
employs another use case as part of its
action.

Chapter 7: Key Design Elements

I shall now plop Pac-Man down on
the cold steel of our examining table.
Cutting the skin of a clean, tight,

85

mega-hit game, let us take a look at the
innards of Pac-Man and see some of
these use cases in action:

Display System

Display maze

Display characters and their animation

Display score

Display high score

Display credits

View movie (Ms. Pac-Man)

[View Maze

{ A Wieww Characters)

b

e Curre

Player

6

Score

| == Wiewr High Score

‘Watch hMovie

Wiew Credits

i

The use cases of Pac-Man that are related to
displaying and viewing

Player Input

Insert coin

Push coin return

Choose single player or multiplayer

Move up, down, left, or right

;

»
Push Coin Refurn
hoose Single
[Flaver of Two
Player

LA

Player

..

[={ wove Doven

Maove Right

Move Left

“g

The use cases of Pac-Man related to player input

86 Chapter 7: Key Design Elements

Game Object Interaction ’
wall

Wall collision
Eat dot

<>
Eat power-up dot
Eat fruit oD
Eat ghost, send ghost to center of box Dot
Pac-Man dies

Miscellaneous

Receive extra man

Enter initials

[~ Eriter Inftials

Player

Miscellaneous use cases for Pac-Man

We can also take a higher-level view of
Pac-Man and combine these low-level
use case diagrams into a generalized
use case view of the software package
as a whole. See the diagram to the
right.

Now you have a good tool for
breaking your game idea down into
visual parts that describe the required
functionality. This is very important,
because when your game exists only
as an idea expressed in a half-dozen
sentences, it is difficult to see the com-
plexity of your proposed game and
reconcile it with your business con-
straints. Looking at the UML diagrams (Ewmar)
for Pac-Man, we confirm our under- ”'“-““""":______
standing that this is a very simple Ny
game. Looking over the diagrams I can

The combined use cases of Pac-Man Game Object Interactions

Chapter 7: Key Design Elements

see only four roles: a programmer for
the 2D display system, a programmer
for the game mechanics, an artist, and
some audio. This of course is a very
small game, and a solid Pac-Man clone
could happen inside a weekend for a
two- to four-person team.

Case Studies

It is now time to apply these tools to
modern games that are of greater com-
plexity than Pac-Man. Each of the
following two games, Diablo and Gran
Turismo 3, has enjoyed legendary mar-
ketplace success, and each has spawned
a lucrative franchise of sequels, expan-
sions, and licensed products. Is there a
common thread between these games?
Did the developers in each case just get
lucky, or were the developers just
extraordinarily brilliant? I honestly do
not know how much luck was involved,
but someone with a lot of intelligence,
skill, and time honed these two game
concepts into production plans that
have succeeded far beyond the industry
standard. I can show you the elegance
in the design of these games, illustrat-
ing how, looking back, these were
mega-hits from their conception.

Case Study I—Diablo

Diablo is a computer role-playing game
for the PC developed by Blizzard
North, originally an independent devel-
oper of another name bought by
Blizzard during the development of
Diablo. Diablo featured the killing of
hordes of monsters like skeletons, wan-
dering around in a dungeon, gathering
gold, and collecting magic items all in
the quest to vanquish ultimate evil—all
straightforward fun stuff. The key

87

This process of understanding how
something else was put together has a
fancy name—reverse engineering. 1
highly encourage you to perform some
reverse engineering on other games
that you are familiar with. We continue
with some sketches from other games.

concept behind Diablo was to make the
user interface priority #1, not the
story, not the size of the game, not the
number of different character types, not
customized character appearance, not a
rich role-playing game mechanics set;
no, the focus was the user interface.
Indeed, the mouse controls were a
stunning left-click on monsters to
attack, left-click on chests to open, and
right-click to cast a spell. The interface
itself was appealing to look at with
large glass spheres that held blue and
red liquids representing remaining life
and mana (energy to cast spells).
Shortly I will more carefully break
down the use cases of Diablo; but there
is a tremendous amount of courage and
insight behind the user interface design
of Diablo. In the summer of 1995 I was
up late one night with a bunch of other
game developers talking about games
we could make. I remember we sug-
gested just a simple variant of Gauntlet,
the arcade classic where you just went
around bashing monsters, collecting
gold, and powering up. I remember how
we all laughed at the time and said
there was no way it could be viable. No
publisher would see the game as fea-
ture-rich enough to fund. Perhaps as a
bit of forgotten shareware, but no way it
could be a commercial game. At that
time RPGs such as Bethesda’s Elder

88 Chapter 7: Key Design Elements

Scrolls series were vast worlds with Use Cases of Diablo
hundreds of NPCs, dozens of cities,
hund_reds of locatlons., actual Weather, game with strong production values
and time of day. Imagine making a game qych a5 superb voice-overs and movies,
that left out all of these features and but we will see that Diablo is a simple
just concentrated on a tight interface
and high production values—that was

Diablo is a simple game, a polished

game behind the features. I will cover
the major features and elements of the

Diablo. game; I do not propose to create an
exhaustive reverse design document in
this chapter.

Display System Coop
Terrain: Draw floors. () - @z?:_@ T
Terrain: Draw isometric walls. ’k'f"fz'“‘f.\ﬁ'— N)

Terrain: Color cycling special effects for water e &)

and lava (tiles do not animate). (e o

Terrain: Ghost walls when a character is located

behind the wall.

Characters: Render and animate characters (2D

sprites composed from 3D rendered models). 7

Game Objects: Colored outlines for interactive - J i

objects such as treasure chests, magical rings, (— Ay

monsters, and non-player characters in the town ‘_'_';_'_1 .
center. Camd—)
Spell Effects: Display any one of a couple of r»{;:»«:;'rj
dozen spell effects with dazzling animations and —
cool sound effects.

Menus: Display menu choices.

Movies: Display the intro and exit movies to the

player.

Audio: Hear sound effects. The view related use cases of Diablo
Audio: Hear music.

Audio: Hear voice-overs.

Game Object Interaction v
. - Left Click - Right Click
Move Player Character: Left-click to move the

player character.

Left-click Object Interaction: Interpret the left-click
on an object automatically by object type to mean
open a chest, attack an enemy, or move the player 1
to a location as above.

Load Level: When the player directs their
character into special trigger areas on a map
level, load the target map level. The game object interaction use cases of Diablo

Diblo Plsrver

Tc(ml—Fly ”

Chapter 7: Key Design Elements

Right-click Object Interaction: If the character

has a spell bound to their ranged action, cast a
spell at this location on the map or on this
character (this could be either an offensive spell
on an enemy or an aid spell on an ally). Otherwise
if this character has a bow, fire an arrow at the
character indicated.

89

Character Management

Name Character: Small feature for user
customization to allow the player to bond with
their character.

View Character Stats: View attributes, health,
experience points.

Allocate Character Attribute Growth Points: When
the character achieves the next experience allow
the player to choose where they want the growth
points to be allocated, choosing from strength,
dexterity, intelligence, and constitution.

Inventory: Display the character’s inventory in a
“paper-doll” fashion with sockets for the
backpack, belt, helmet, hands, pants, boots, and
tunic locations.

Inventory: Allow the player to shuffle objects
about in their backpack to “make room” for new
treasure and to abandon lesser treasure in favor
of higher prized treasure. Validate the placement
of inventory items based on their type. For
example, healing potions can be carried in the
backpack or in the belt pouch but not in the
helmet slot.

Quick Analysis of the Use Cases of
Diablo

Looking over the use cases of Diablo
you will notice that I have partitioned
Diablo into three subsystems: Display
System, Game Objects, and Character
Management. Below is a short discus-
sion of these systems.

The display system is just a 2D
isometric engine that is capable of ren-
dering animating 2D sprites (quite
probably used for both the characters
and the spell effects). This graphics
technology was hardly groundbreaking
in 1997; isometric engines have been
around since Q-bert in the arcade. The

Stals

Allocate
Experience
Foirts

Mame Character

Diishlo Ployer

The character transaction use cases of Diablo

Hear Things

anipulate
[Character

Interact With C)
Game Ohbjects,

raverse g

System

Wiew Things

Diabdo Player

The aggregate use cases of Diablo

game also uses a 256-color palette inci-
dentally. There is no question that the
graphics in Diablo look strong; the art
direction was strong and led to a con-
sistent look that was foreboding and
well supported the theme of the game.

90

Touching on character manage-
ment for a moment, the display system
is called upon to also render menus
such as the menus of the town shop-
keepers who have stayed behind after
the arrival of demonic forces to make a
profit selling adventuring gear to the
player’s character and the inventory,
spell, and character management
menus. These again are just menus,
displaying customized fonts, buttons,

icons, and cool negative space textures.

The characters in the game ani-
mate well due to the aggressive use of
3D rendering to produce the 2D frames
from which to composite the 2D
sprites. This technology is not new
either; our example Pac-Man uses just
a few frames from open mouth to
closed mouth to animate our hero, and
the Wing Commander series used an
array of images (about eight to sixteen
individual images) from all angles
around the starfighter to produce its
“3D” starfighter game. The plan for
Diablo was to again use established
technology but take it to a quality level
never before seen in games by using
over 5,000 frames of animation for just
the three main protagonist characters.
This dedication to visual fidelity repre-
sents a lot of confidence in staying with
established technology but taking it to
a very high level of quality. I know of
another game I will not mention by
name that became severely distracted
with the pursuit of volumetrically pro-
jected pixels, known as voxels, for the
rendering and animation of their char-
acters. This distraction helped to
cripple this title.

The game object interaction sys-
tem runs the heart of the game. This is
a game of hack and slash and loot gath-
ering. The context of this hack-and-

Chapter 7: Key Design Elements

slash has something to do with a crystal
in somebody’s head, demons from hell,
a butcher, and dead townsfolk—plenty
of motivation to keep our player charac-
ter hacking away at the monsters in the
game. The game object interaction han-
dles the combat, spell casting, opening
doors and chests, triggering traps, and
level changes. Notice that my use cases
above do not have any detail on how
combat, spell casting, or the opening of
doors and chests works. Those are
detailed use cases that would be cov-
ered in the design document; this chap-
ter is focusing on the key design
elements of the game in the effort to be
sure we have the correct scope for our
game.

My use of UMLs use case notation
has been purposely slim with the use of
just the simple table format of major
user interactions and a few diagrams to
show the relationship of these interac-
tions with each other. In later chapters I
will discuss more advanced use cases
as we progress through the game
design and head into technical design.

Case Study ll—Gran Turismo

The Gran Turismo series for the
PlayStation and PlayStation 2 platforms
published by Sony is all about racing
cars. Every conceivable subgenre of
racing has been explored over the years
as well as many sequels offering the
latest technical wizardry for themes
already visited. Racing cars have been a
staple of video games since the days of
the Atari 2600 with Night Driver, where
the road and terrain are a solid field of
black demarked thoughtfully with some
magenta lane markers. Nighttime rac-
ing has continued to evolve to Tokyo
Street Racer on the PS2 and Project
Gotham on the Xbox. Racing games

Chapter 7: Key Design Elements

deliver an experience that almost
everyone wants to do—race cars. Some
want to race at night, some off road,
some want to race taxis, some want to
run over pedestrians, but hey, there is
a racing game for everyone.

What is it about Gran Turismo that
makes it a mega-hit? Was it luck? Was
it a large budget? Or was there some
sort of planning and direction behind
Gran Turismo? I am presenting a case
for thoughtful planning.

Gran Turismo’s (GT) vision state-
ment was most likely something like
“The best racing simulator on any plat-
form.” To back up that vision statement
we need to look into what it would
mean to be the “best racing simulator.”
The best is so encompassing in its
superlative that Sony set out to domi-
nate all other racing games. Hmm, that
is a tall order. The first step is to pick
the type of racing Sony would model. In
the end, Sony chose to model a variety
of racing from raw amateur racing of
minivans to world-class events featur-
ing million-dollar racing machines
achieving the highest form of automo-
tive engineering.

So, at first glance it would appear
that Sony violated the design guideline
of focusing on one game and a tight set
of features and doing them well. How-
ever, if we take a look at how they
presented these various classes of rac-
ing to the player, we will see that it was
a seamless presentation of gameplay
from the lowliest of minivans to the
Suzuki Escudo.

When you load up the simulation
mode of Gran Turismo for the first time
(it doesn’t matter which version), you
are given a small amount of credits to
purchase your first racecar. Taking a
look at the various car manufacturers,

91

the player has only a couple of choices
in the beginning of the game. After
spending all his cash, the player then
sets out to race some beginner races to
build up a supply of cash so he can mod-
ify his car. The car modification game-
play is the hidden weapon of Gran
Turismo. Here players can ogle new
tires, polished ports, oversized turbos,
and a host of other modifications to
their car. The exhaust improvement
conveniently enough has the highest
bang for the buck and will most likely
be the first purchase for any player.
Here the player bonds with his car, and
all the cool parts available drive the
player to go back to the track and keep
racing. This context for the racing is
compelling. It is the same inven-
tory/party growth dynamic from a
role-playing game like Diablo—a most
compelling feature.

This racing around a track and
modifying the car goes on and on
throughout the whole game. What
changes are the events, the tracks, the
competition, and most importantly, the
car the player is racing. Gran Turismo
features hundreds of cars, dozens of
tracks, and scores of events. The
events are classified into licenses from
Beginner to International A. Players
can always find a race and almost
always can earn some cash to make
forward progress on acquiring new
goodies for their car. This car modifica-
tion meta-game is what ties all of Gran
Turismo together and presents to the
player a world where they can start
with a modest real-world car, and
through racing, modifications, and
licensing they too can be an interna-
tional racecar driver. This is the
brilliant vision behind Gran Turismo—
it slowly builds up to the super cars,

92

and all along the way the player is
hooked and believes in the world and
knows why he is playing this game.
Later in the series Gran Turismo
added rally racing. This additional mode
of racing was also seamlessly inte-
grated into the core game. Indeed, the
player’s rally racing cars just need to
change the tires to racing slicks and
they would often do well in the pave-
ment events. In classic arcade fashion,
new tracks would only be revealed to
the player after completing a racing
series or a licensing program. The rally
events in the later GT series upheld
that tradition with their own set of rally
tracks to unveil. The Gran Turismo
series is the greatest of the racing
games because it fully delivered on the
gameplay that is central to racing and
takes players from knowing nothing

Chapter 7: Key Design Elements

about racing cars to being able to carry
on an extended conversation about gear
ratios and coil-overs.

I justified Gran Turismo’s success
without ever mentioning that the game
has always boasted the most realistic
physics model for its racing, the most
gorgeous graphics, and a complete
aural experience second to none. All of
these technical features are of course
critically important to an electronic
game; however, it is the key features of
a game that will lead to success and
enable the project to fully realize the
efforts of the whole game development
team.

Use Cases of Gran Turismo

Here are the key features of Gran
Turismo 3 distilled into some use cases

Car Driving Controls

Press the Gas Pedal

Use the Normal Brakes

Turn the Car Left or Right

Shift the Gears Up or Down

Use the Emergency Brakes

=

for review:
T
Right

Use the Brakes)|
52 Emergency™,
Brakes

GT3 Player

The player input use cases of Gran Turismo 3

Display and Audio System

Render the Track, Terrain, and Sky

Render the Cars

Render the Special Effects

Play Sound Effects and Music

A\
-, /r/ .. e
— e
O —— (Fiey Sound Effe:/.-s\)
T2 S
e m‘udag;:“i‘
@: Cu’gﬂ—| ”Nz:_errects _

T3 Player

The display and audio use cases of Gran Turismo 3

Chapter 7: Key Design Elements

93

Shell Activity Menus

Access Buy Car

Access Garage

Access Wash Car/0il Change

Access Race Car

Access Modify Car

Access Licensing Tests

>

[Modty Car

o Beoess Licens
Tests

ACCEST Garage’

imsh Car
O Change,

GT3 Player

The shell menu use cases of Gran Turismo 3

Modify Car

Browse Major Systems: Engine, Transmission,
Aerodynamics, etc.

Review Individual ltem: Read the stats of this
item and see how it would look on the car if it is
an external add-on or what the change to weight
and power would be if it is a performance item.

Purchase Item: Buy the specified upgrade part.

Install Item: Have the newly purchased item. This
especially makes sense for the purchase of tires;

it is useful to the player to be able to choose from
a suite of tires.

Quick Analysis of the Use Cases of
Gran Turismo

Again, this chapter is not discussing
how to complete a detailed design doc-
ument, so I have only covered the

higher-level functions of Gran Turismo.

But in two areas, driving the car and
modifying the car, I drilled down to the
individual interactive activities the

TN P
|\:u"|w smfr/_(} D_\:‘udlty c;_u:/_.
/"_ T
(Hear sttt
e

- ~
(Traverse Menus K}—
‘__ -

GT3 Player

The use cases of Gran Turismo from five miles up

-~ Browsa Ml

/ Svstema: Ergne,

\ Trenzmizzon,
i,

&

eview Individus
Car Parlz

D

nstal Car Parts

T3 Player

The modify car use cases of Gran Turismo 3

player has to play with. Driving the car
and modifying the car is the game;
everything else is in context of these
two activities.

Gran Turismo is successful largely
due to a clear vision and plan for the
game. It was perfectly designed to cap-
ture the largest segment of the market
who would enjoy racing games. In fact
my father and his best friend went out
and purchased PlayStations after play-
ing Gran Turismo 1 at my house and
went on to compete with actual cash
prizes for virtual driving seasons.
These two men in the over-50 demo-
graphic were not hard-core gamers;
they were mass-market consumers
who bought the PlayStation just to play
Gran Turismo. That is a true hit.

94

The Key Design Elements of Your
Game

[am sure you are now comfortable with
this light introduction to UML use
cases. They are hardly more than a
table of actions and a simple diagram
composed of a stick figure and bubbles
of action. Now I want you to think about
the interactions of your game and write
down its use cases.

The methodical way of discovering
your use cases is to focus on the core
activity of your game and write down all
the things the player does in the core of
your game. Work your way outward,
writing down the other activities you
have planned for your game, such as
buying gear, building a house, research-
ing flame throwers, learning a new
spell. Keep working outward until you
can’t think of anything you missed. At
this stage we are looking for the major
activities, so don’t think about how
many buttons the save menu will have,
just what are the big interactions
between the player and the game.

Then sort these activities into
groups based on similar functionality as
I have done with Diablo and Gran
Turismo. Finally sketch out the use
case diagram complete with the player
actor and your use cases. It is useful to
create diagrams for each group of activ-
ity. You have now articulated your
gameplay in both an easy-to-read text
format and graphical format. These use
cases will be the basis of refinement for
the game design and technical design
stages. However, in this chapter we are
looking for key design elements. Exam-
ine your groups of activities and look
hard for a set of activities that stand out
as potentially unnecessary to the core
of your game. Are there parts of your

Chapter 7: Key Design Elements

game design that are distracting in
complexity? Are these parts only fun to
a hard-core set of fans? Are these fea-
tures hidden from the novice player?
Can they be cut altogether?

Take a look at your design; are you
sure you are only making one game? [
think a lot of the projects that slip by
years make the mistake of trying to fold
more than one game into a single game
project. You do not need to make more
than one game to be competitive. Just
make a small set of features that are
inherently fun, make those tight, and
take the production values as high as
possible. This is how a hit is made.

The Battle of the Counterterrorists
Games

There are two games that neatly make
the point I am discussing in this chap-
ter, nailing the right key design ele-
ments. These two games are Rainbow
Six and Counter-Strike. Both of these
games feature special operations type
protagonists working as a team to
defeat terrorists and other modern day
bad guys. An experienced development
team produced one of these games with
a full development staff for an estah-
lished publisher. The other game was
developed principally by two fans who
have had experience making mods with
modest financial backing of a develop-
ment house.

Both of these games are successes
and I would be proud to have been a
team member in any capacity on either
of these two projects. That being said,
Counter-Strike clobbered Rainbow Six.
Counter-Strike is the mod produced by
a small staff of fans working part-time,
while Rainbow Six is a full game with
many man-years of effort. If game
development is so hard, how could

Chapter 7: Key Design Elements

these fans have done so well compared
to the pros?

While poor technical execution
will never make a hit game, the answer
to this question lies again in the key
design elements of Counter-Strike
versus Rainbow Six.

The Key Design Elements of
Rainbow Six

Rainbow Six was the earlier of the two
games; to some degree this can never
be a fair comparison, as the Counter-
Strike mod team had Rainbow Six avail-
able to experiment with and to refine.
Rainbow Six was designed for single-
player play, and while it did have multi-
player mode, the game was much more
playable in its single-player mode.
Rainbow Six featured an extensive
campaign structure where you managed
the team members of your elite special
forces. This team management would
appear to be at first glance quite fun
and supportive of the context of playing
the missions of Rainbow Six, much like
Gran Turismo, and that might be true.
However, the Rainbow Six team added
another context layer to the game: mis-
sion planning. Here the player planned
out the mission to such a degree that
they could tell their team members
when to throw the flash grenades and
which doors to break down and which
to sneak through. After the planning
stage was complete, the game acted
somewhat like the blend of a movie and
a game experience. The movie experi-
ence came in where your Al team-
mates, whom you gave instructions to
prior to mission start, would follow
your orders and have whatever success
might befall them; the game part was
that you still had interactive control
over your character.

95

Are We Playing a Mission or
Planning a Mission?

I think the preplanning of the missions
is what prevented Rainbow Six from
taking off to a higher level of success.
The problem with such a detailed mod-
eling of the preplanning stage is that it
was cumbersome in three ways: First,
the player already had context for the
missions through the campaign struc-
ture and the team management feature
sets; second, it was cumbersome due to
the user interface of the preplanning. It
was like having to act as some kind of
game scripter, programming your team-
mates. And finally it was cumbersome;
each time you died or otherwise failed
on your mission, the player would
break out of the cool, immersive action
of the mission and be forced to calculate
new scripting paths for their Al team-
mates. All of these awkward bits leaked
out throughout the game-playing expe-
rience, leaving me wondering if the
designers of the game ever came to
agreement about whether the game
was about playing the mission or play-
ing the premission planning.

(RAY SPEAKS: | totally agree. | recall
being very irritated with how difficult it
was to equip your party, choose your
party, plan out your party’s actions etc.
There was no learning curve; instead
you were dumped into an equipping-
your-character simulation, which,
fundamentally, was not the game | had
thought | was purchasing. This created
a perception/reality gap for the con-
sumer that made people not want to

N

play the game.
\

96

The Key Design Elements of
Counter-Strike

Counter-Strike was designed to have
only a multiplayer mode; not even a
training simulation against bots like
Quake III was available. Counter-
Strike’s brilliance is much like Diablo’s
in its courage to strip away game fea-
tures and polish the core game until it
is humming with game shine. For years
in first-person shooters, when you died
you instantly respawned to frag again.
This is of course a load of fun, as one
could easily spend a few hundred hours
blowing away your friends before you
get bored. But eventually people did
get a little burnt out on straight death
match, and a desire for something more
manifested itself. These explorations
for more came in the way of mods for
Quake and Unreal that had different vic-
tory conditions for winning such as
capture the flag. The team that pro-
duced Counter-Strike took the idea of
a mod with context to the next level
(that, by the way, is an overly worn
phrase in the industry, but it sure is
handy).

The next level of gameplay in a
first-person shooter was to wrap an
economy about the fragging of the
game through credits one earned by
winning missions and getting frags.
This economy would enable the player
to buy larger and more capable weap-
ons, armor, and grenades, which in turn
would enable him to perform even
better and potentially get even cooler
equipment. This feature combined with
the idea of a death where the player had
to sit out the rest of the turn really
helped to focus the player on the harsh-
ness of the Counter-Strike world and
put some good tension back into the

Chapter 7: Key Design Elements

game. Players would carry their credit
balance forward each time the mission
was over, and the frag counting would
continue. Thus, Counter-Strike was
designed in the beginning to be a
replacement for the endless multi-
player fragging and instead be a much
more compelling way of playing
extended multiplayer first-person
shooter action. All of this was accom-
plished by the thinnest of user inter-
faces, on top of Half-Life’s version of
the Quake engine.

In my opinion the Counter-Strike
team really understood the gameplay
experience they wanted to deliver—
the most visceral counterterrorist
gameplay experience, period. In the
case of the Rainbow Six team, I think
they were handicapped by the source
material from Tom Clancy’s Rainbow
Six in choosing to model the extensive
preplanning stage of a mission. That
stage is no doubt realistic and the larger
portion of the job in a real counter-
terrorist mission, but it just gets in the
way of having fun hunting terrorists.
And we are in the profession of deliver-
ing fun, not realism. Realism should
only be used to create fun, not detract
from it.

Most Popular Multiplayer Game

It is interesting to see that Counter-
Strike is the most popular multiplayer
gameplayed online, with anywhere from
25,000 to 60,000 simultaneous players.
One could say that Half-Life itself was a
mega-hit with over two million copies
sold, whereas Rainbow Six was a more
modest success, and use that argument
to explain why Counter-Strike is the
more popular counterterrorist game.
However, that argument fails when you
realize people do not play games they

Chapter 7: Key Design Elements

do not want to play. Sure, marketing
can help a game get off the ground to
some extent, but the games business is
still dominated by word-of-mouth sales
where one fan recommends the title to
another. The big titles that receive
large marketing budgets are also fun
and playable games that enjoy strong
word-of-mouth sales. Unlike the movie
business, an aggressive marketing cam-
paign cannot save your bacon. There is
a long-standing tradition of going to bad
movies just to see how bad they are;
this does not happen with games.
Games are too expensive at about $50;
no one is inclined to buy a game just to
see how bad it is. However, a bad
movie has a couple of chances. First of
all, just seeing what mischief with tod-
dlers Arnold Schwarzenegger has
gotten himself into complete with some
buttered popcorn, a fountain soda, your
friend’s company, and a walk about the
mall is a good entertainment value.
This movie will go onto DVD, VHS,
rental, cable, then prime-time TV, and
eventually the USA channel—plenty of
ways for a non-hit movie to recoup and
make a small amount of money for the
studio.

The 50,000 people playing Coun-
ter-Strike online is even more impres-
sive when you think about the ratio of
people playing the multiplayer portion
of a game relative to the single-player
portion. It has been casually measured
across a number of games, excluding
the massively multiplayer online role-
playing games, that only about 5 to 15
percent of the purchasers of a game will
go on to play it in its multiplayer for-
mat. Thus Counter-Strike was much
more successful than Rainbow Six, and
it was working with only 5 to 15 per-
cent of the counterterrorist market.

97

Of Intersecting Sets and Elite Forces

A second-tier game will sell its most
copies in the first few weeks when the
early adopters who have kept on top of
all the previews will buy the game.
During this time period the online
reviews are written up. To my surprise
it appears that strong reviews cannot
sell a game either. The most excellent
Elite Force (not anywhere close to
being a second-tier game) developed by
Raven received the most stellar press
reviews one could ask for, including
game of the year from most publica-
tions. Built on the Quake engine and
developed by a top developer, it had
lavish press coverage generating plenty
of awareness before the release of the
title. The title was reasonably on time
and reasonably bug-free. The team
behind the game was so into the game,
they produced a free expansion pack.
Elite Force was firmly expected to be a
major hit inside of Activision. I do not
know the actual numbers on the inter-
nal return-on-investment worksheets,
but I have heard they were expecting
700,000 to 1,000,000 units in the first
year worldwide. Elite Force went on to
do about one-third of those numbers.
Why? Why did Elite Force not succeed
when not a single person at Raven,
Activision, or the press could have set
the game up better for success? Is it
bad luck? Is the gaming public so
fickle?

I have a theory why Elite Force
failed to meet Activision’s expectations.
First of all, the game did sell well at
approximately 300,000 units generating
a gross revenue of $15 million. That is
enough money to make a living for all
involved and keep at it. However, I
think it is the expectations that were at

98

fault; I don’t think the game could ever
hope to sell more units than it did. Sure
a truly immense advertising campaign
with television commercials played 20
times a day on all channels and appear-
ances of the game on all of the late-
night talk shows would have sold
maybe 100,000 to 200,000 more copies,
but Activision would have had to pay
for each copy they were selling. My
theory is that when you are experi-
menting with genre crossing and blend-
ing, be sure you are creating a union
between the two or more sets of play-
ers you are marketing to, and not creat-
ing the intersection between these
markets.

[RAY SPEAKS: This certainly is an art
form, but | think it can be done; it’s just
difficult. Creating the correct impression
on the fans of both genres and making
the parts that don’t appeal to the other
genre’s fans at all times accessible is
probably the hardest thing to implement,
but this is critical to achieving main-
stream success through selling to a few
hard-core genres in a cross-genre

ame.
\g S

The two markets for Elite Force were
the Star Trek gamers and the first-
person shooter gamers. Activision has
been working hard for years trying to
find a breakaway hit for the Star Trek
license they paid so dearly for, and
teaming up with world class developer
Raven and using the fabulous Quake
engine should produce a lavish 3D-
game with production values far and
above any that a Star Trek gamer has
seen before. And for the first-person
shooters who are tired of blowing mon-
sters up in worlds freshly created with
little or no backstory, Elite Force
offered the Star Trek universe, which
consumers have had exposure to for

Chapter 7: Key Design Elements

over 25 years. Sounds wonderful, so
why did this game not sell a million
copies or more? Warcraft IT was just a
sequel to a game of orcs and humans
gathering rocks and trees and banging
on each other. That sold millions of
copies; why shouldn’t Elite Force sell a
million? The reason is in the key
design elements themselves; the very
strategy used to make a hit—a cross
between Star Trek and first-person
shooters—is what held Elite Force
back.

Let us first take a look at Elite
Force from the perspective of a Star
Trek gamer. Star Trek is about a
starship named Enterprise exploring the

Y galaxy on romantic adventures that are

solved through cleverness, diplomacy,
or the gunboat diplomacy that the
Enterprise can deliver with photons and
phasers. The Star Trek gamer is look-
ing to live the experience depicted in
the television episodes and movies.
These episodes feature fantastic sci-
ence, starship combat, and exploring
various social themes in a futuristic
context. Star Trek does feature combat
between individuals in the form of the
hand-held phaser, a device that you just
point and shoot to disable or to disinte-
grate. This weapon reveals an utter
disdain for prowess of personal martial
skill; this hand phaser is almost a nerd
fantasy where they can get back at
every childhood bully by just pointing
their garage door opener—and bzzt!—
no more enemies. The Star Trek gamer
1s not looking for a first-person shooter;
there is nothing in the Star Trek uni-
verse backstory that leaves the player
wanting to explore a shooter. The most
successful Star Trek games have been
the adventure games 25th Anniversary
and Judgment Rites, as well as the

Chapter 7: Key Design Elements

starship games of Starfleet Command,
Starfleet Academy, and Armada.

From the first-person shooter per-
spective, an FPS player traditionally
looked for the technically impressive
and challenging games such as the
Quake and Unreal series. However,
after the release of the story-rich
Half-Life, the industry realized that the
FPS crowd would love to have a good
reason to exercise their martial prow-
ess. The creepy world of Half-Life is a
good reason, the pulse-pounding excite-
ment of World War II through Day of
Defeat is a great reason, and hunting
terrorists with a submachine is always
great fun. But again the Star Trek uni-
verse lacks any compelling imagery of

99

personal combat. Sure, Kirk would slug
it out with the occasional alien, and
Spock could put someone to sleep by
pinching them; either way, Star Trek
lacks that visceral appeal.

Star Wars, on the other hand, has a
glorious tradition of martial combat on
the personal scale through the use of
light sabers. This style of combat was
indeed a strong success with the Jedi
Knight series from LucasArts. Finally,
let me repeat, Elite Force was not an
unsuccessful game; it was a great
game, very well produced. And missing
the expectations set for it is not a
reflection on the execution of Elite
Force, but rather a reflection on the key
design concepts of the game.

Some Straight Questions to Ask Yourself

The case studies I presented intro-
duced use cases from the Unified
Modeling Language and illustrated
what [mean by determining the key
design elements of your game.

I ask you to pause just a moment
before you wield your scalpel and slice
off the most extraneous bits of your
game design. I would like you to first
get a bit more material down on a sec-
ond sheet of paper to consider while
you review your key design elements.

What Genre or Genres Does Your
Game Feature?

First, what is your game’s genre, such
as adventure, role-playing game (RPG),
real-time strategy (RTS), real-time tac-
tical (RTT), action, first-person shooter
(FPS), puzzle, sports, or some other
genre?

Or is it a blend of genres?

Write down your game’s genre or
genre blend, and why.

Will the Game Be Single-Player,
Multiplayer, or Both?

Does your game play well as a single-
player game but perhaps not make
much sense as a multiplayer game? Or
is it the other way around where it
takes real humans to play against to
make it fun? Or is it reasonably fun
either way?

Write down single-player, multi-
player, or both, and why.

What Is the Platform?

Which platform are you targeting: PC,
handheld, Xbox, PlayStation 2, or
GameCube?

Write down the platform or plat-
forms you are targeting, and why.

100

What Is Your Target Market?

Is this a game anyone could enjoy? Or
is it targeted for the core game market
of males 18 to 45 years of age? Are you
targeting women as well as men?
Children? What is the violence level in
your game? The language? Sexual
content?

Write down your target market,
and why.

Now What?

Notice I did not give any opinions or
suggestions on how to answer those
questions or which answers I thought
you might choose. It is not my place to
tell you that a cell-shaded 3D RPG
would be the next big thing on the
Game Boy Advance. No, the answer to
the questions above need to come from
your heart, that place of inner vision
where you can see and play your game
in your mind’s eye. That gameplay in
your mind—I want you to write that
down. This is your game. If you told me
your game concept, I could offer sug-
gestions and opinions, but they would
be just that—opinions and suggestions.
For this game of yours to be a success
you must be able to have a strong
vision for how your game will play.
Now find a table someplace com-
fortable and put in front of you the

Chapter 7: Key Design Elements

What Major Technologies Are You
Using?
Is your game to be 2D or 3D in its fun-
damental presentation? Will it use a
commercial engine? Is there something
special about the physics? Perhaps you
envision cell-shaded rendering of char-
acters or the scene.

Write down the major bits of tech-
nology you will employ in your game,
and why.

notes you have taken on game concept,
business context, and the feature ques-
tions asked above. Then I want you to
put this book aside and just keep visual-
izing your game. Get up and take a
walk, get something to eat, and come
back to your table of notes. Now, start
slicing out the parts of your game fea-
ture brainstorm that are not actually
central to your game design. Before
you invest in creating a hundred-page
game design document and develop a
total technical design, you should figure
out what you are making. The game
design and technical design stages are a
lot of work; be courageous and kill the
features that are superfluous before
you spend any more effort on them.

All of the great games have a small
feature set that is well polished. Make
your game great.

Chapter 8: Game Design Document 101

Chapter 8

Game Design
Document

Inception

What Is a Game Design
Document and What
Does It Do?

When one says “Look it up in the
design document,” folks are generally
referring to the game design document.
This is the fun document that details all
of the characters, the levels, the game
mechanics, the views, the menus, and
so on—in short, the game. The game
design document for most designers is
great fun; here they get to flesh out
their vision with muscles and sinew on
top of the skeleton of the game concept
that it was before. By no means am I
saying it is easy to create a complete
design document. Creating a finished
design document is so difficult I have
never been able to finish one of my
own, nor have I seen anyone else finish
his or her design documents. With my
two latest projects, Starfleet Command:
The Next Generation for Activision and
Black9, I am certainly taking the design
efforts to our highest levels, and I see
the results paying off with faster and
stronger production.

The game design document is part
of a suite of documents that specify the

game you are creating. All of these

Technicsl Design
impismertation
Flir=t Playable Praze

Final Candidate Cycle

P Release

Post Release Support

Bargain Bin

Where the game design document lies in the project
life cycle

102

documents I collectively call the pro-
duction plan:

m Concept/Vision/Proposal
Document

Game Design Document
Art Design Document
Technical Design Document
Project Schedule

Software Testing Plan

Risk Mitigation Plan

The Production Plan

Vision Game

Concept

Document Praposal

Game
Design

At Document Technical

Design Design

Document Document

Project
Schedule

Software

Testing Plan

The components of the production plan

The purpose of creating all of these
documents is to know what we are
going to do. To figure out what we are

Chapter 8: Game Design Document

going to do, we need to do a bunch of
thinking. Writing down what we have
thought about in the form of diagrams
and notes forces us to drive the quality
and quantity of thinking to the required
level for making a production plan.
Knowing what we are going to do will
help us answer a great deal more plan-
ning questions: Who is going to do
them? How long will it take? What
needs to be done prior to getting that
done? What features do we need to cut
to give us time to do that? What are the
risks in this project? This is all the
most basic stuff to kick off a software
development project to reassure each
other we know what we are doing, and
incidentally most good publishers
require this planning. This chapter will
focus on the game design portion of the
production plan.

There are several good books on
the market that discuss game design in
particular. This book aims to cover new
ground by discussing game production
and development as a whole of which
game design is a subtask in this greater
effort. What I will not do is design your
game for you. I will not be offering
opinions on whether your game should
be multiplayer or 3D or online or all
three. I have neither the inclination nor
the hubris to make a book offering such
suggestions. [am merely presenting a
rigorous and systematic approach to
game design you might apply to your
own creative vision.

What About the Proposal Document?

An observant reader will notice that I
have omitted a formal discussion of
what should go into your proposal
document, which you would show pub-
lishers in order to receive funding. A

few years ago established developers
could write up five to ten pages of game
vision and accompany it with some
sketches and likely receive funding if a
publisher believed in the concept. As

Chapter 8: Game Design Document

time passes, the competition gets
stronger and the games themselves are
larger in scope and require deeper tal-
ent and skill to execute competitively.
The publishers are now expecting to
see a playable prototype of your game
demonstrating all the talents your team
is bringing to the table from program-
ming, art, and design to sound and
animation.

I am not suggesting that you will
not need a vision document or a pro-
posal to pass around; you will need one
to sell your game after you have a play-
able prototype to demonstrate. The
downside of this trend is that the devel-
opment house has to shoulder a larger
portion of the financial risk of the pro-
ject by performing the early financing
for the project. This in turn leads to

103

only the stronger, more willful develop-
ers being able to develop original
content—the holy grail of all develop-
ers across the land.

I am suggesting specifically that
you go ahead and create the first draft
of your game design document before
you create your proposal. There are a
few reasons for this: First you still
don’t really know your game, so if you
take the time to create a first draft of
your game design document, you will
create a much stronger vision docu-
ment and proposal. When you take the
game concept in your mind and first try
to lay out a proposal, you will find a
need to use vague language in parts (or
just outright guesses) to describe your
game. But if you have your game
design document in your hands, you
will be able to write a tight proposal.

When Do You Write the Game Design

Document?

You should write your first draft of the
game design document immediately
after narrowing down your key design
concepts from the preceding chapter.
However, as I will show you, the game
design document is a large undertaking
itself in the breadth of topics to be
detailed.

You might be reading this book
from a variety of different perspectives:
as a producer or project leader or hold-
ing some other position in the industry
or looking to get into the industry. If
you already have a team of folks to
work on this game with you, I encour-
age you to distribute and delegate
portions of the game design document
to your team. This is somewhat contro-
versial, and I am sure a good many of
my peers would disagree and feel more

comfortable with a strong designer at
the helm of the ship articulating the
game’s design from a single, focused
mind. I do agree that you need to have
a visionary who has ultimate ownership
of the game’s design and who holds
executive control, but I advocate judi-
ciously distributing some of the more
modular, more straightforward tasks to
other team members. Or at least pro-
vide textual or visual sketches and
allow others to elaborate on your
designs. The reason for this delegation
1s twofold: One, creating a game design
document is so much work that it is
natural to break the job up across multi-
ple people to get the work done more
rapidly and with higher quality. My
other justification for this delegation is
that this is one of the effective ways

104

you can build a strongly bound, effec-
tive team for your project. They will
not be able to disengage from the pro-
ject easily if it is their ideas and plans
that make up the project.

Ineeption

Buznzzs Paramstars

[

| *zon Document
.

Garne Design]
| Techrica Desgn]
. I

Irglemertstion

First Flavable Phase

Final Candidste Cycle

@ Fcleaze

i
Post Relesse Support

Burvle) (pergeinbin |
\ X

4

Game design activity is always happening.

To delegate design tasks well, be sure
to take the time to clearly describe to
your teammates what topics you need
them to design and provide a style
guide or template that you require the
work delivered under. This is important

Chapter 8: Game Design Document

because many of your team members
may be new to game design or lack the
creative initiative that your designer
self has. After all, that is why you are
leading the production plan. If you lay
out what they need to write up, specify
what diagrams they need to create and
what their text needs to discuss, and
provide a template, they will not feel
frustrated but will feel empowered in
contributing to the project in the early
stages. This will help them understand
that their role is important and create a
feeling of project stakeholder in the
team member.

Again, I have never seen a com-
pleted design document, and one of the
reasons 1s that game design documents
need to be maintained through the
course of production. With every game
developer wishing they had just
another few weeks to add this bit of
polish to their games, it would be logi-
cal to think that every game design
document could have added a bit more
detail here or clarification there. In the
end, you should measure the complete-
ness of your game design document by
how well the team was led by the game
design. How much confusion or lost
work was created by a lack of detail or
clarity in the document? How much
reworking of the gameplay had to be
performed in the course of production
due to ill-thought-out designs? These
are the questions you should ask your-
self in the postpartum stage of your
game’s cycle.

Take the time to review your game
design document at the beginning of
each milestone to be sure your devel-
opers have ready the most accurate and
up-to-date reflection of the game’s
design before they commence that

Chapter 8: Game Design Document

105

milestone’s work. Also look farther into groundwork for elements of the game

the future to document design changes
so that your developers do not lay the

no longer needed even if they are
beyond the current milestone.

What Should Go into a Game Design Document?

Game design documents are more akin
to business plans than blueprints for a
building or a mechanical engineering
diagram in that the industry has devel-
oped no standardized formal
requirements for a game design docu-
ment. This is part of the lack of
development discipline and rigor that is
pervasive throughout the software
industry. Games used to be so much
smaller in scope and complexity that it
was much simpler to document the
game design, so no great amount of for-
malism was required. The movie
industry has settled down to such a
degree that there are hundreds of uni-
versities and colleges that offer specific
courses on how to write a movie script.
The game industry grosses more reve-
nue than Hollywood does at the box
office, yet just a few pioneering univer-
sities and colleges are offering classes
on game programming and art for new
media. I know of no class that teaches
game design. Thus, we are just too
young an industry and our technology
is changing too rapidly for us to settle
on the requirements of a game design
document. Another complication is that
all of us get our starts on smaller pro-
jects or conversion work where the
demand for a detailed design document
is substantially lower, robbing us of an
opportunity to grow our game design
skills before we reach the Big Project.

What am I going to do about this
lack of a game design document

standard? I am sharing my game design
requirements as well as providing
information from other development
houses illustrating what we are doing in
the field and what we are looking for in
a game design document.

Elitfben

A happy, productive game developer backed up with
strong designs

The game design document should
describe to all the team members the
functional requirements of the features
they are implementing for the project.
The ideal game design document is
complete and has seen revisions to fix
gameplay and add clarity. In theory the
game developers should be able to take
their copy of the game design docu-
ment and run with it. In practice it is
very difficult to create a document that
strong.

106

Section One: Defining the Game

I will discuss the content of the game
design document by using sections; the
order of the sections was chosen to
lead the reader from general informa-
tion concerning the project at large
towards the details of the project that
are specific to only certain members of
the development team.

Articulate What the Game Is as
Clearly as Possible

[remember reading the postmortem of
Tropico in Game Developer magazine. |
really appreciate reading postmortems
of game projects, and I am always
grateful to the developers who have
the courage to document what they

did wrong and what they did right. The
most amazing thing I read in the
Tropico design document is that after a
year of development the team came to
the shocking realization that there were
about half a dozen different visions of
Tropico being developed by various
team members. Each team member
was implementing his or her own
version of the project! I was first
shocked to hear that something like
that could happen; I was then shocked
to read that the team had the courage
to document it and share it with the
industry. Then I thought about it more
carefully, and I realized that every game
project has the potential to splinter off
into separate projects and that many
other projects have suffered from the
same lack of central vision. I believe
this is why so many developers advo-
cate a strong lead designer who dictates
all decisions from art to dialogue to
placement of buttons on the screen.
Experienced developers have been
burned by design-by-committee too

Chapter 8: Game Design Document

many times to tolerate their time being
frittered away, and they demand a
strong and clear vision for the game.

Every game design document
should have a section at the front that
clearly describes to the reader what the
game is. It should be written so clearly
and succinctly that it does not leave any
vagueness in the reader’s mind what
the game is about. It should describe
the world, the gameplay, and what moti-
vates the player. Following are a couple
of examples.

Pac-Man: An arcade game featuring
a single joystick for controls where the
player directs the protagonist, Pac-Man,
to clear levels of mazes of dots by eat-
ing these dots. The enemies of our
hero are four cute pastel-colored ghosts
that will eat our hero unless our hero is
under the influence of the big power-up
dot.

Doom: A first-person shooter
played on the PC platform, where the
player controls a space marine in a 3D
environment against a horde of bizarre
monsters. The player has a config-
urable set of controls taking advantage
of the keyboard, mouse, or joystick.
The gameplay is action based with no
strategic or role-playing elements;
instead the game depends on bleeding
edge technology providing a rush of
adrenaline through its aggressive atten-
tion to carnage. Single-player mode will
provide three episodes of missions
against an increasingly horrible cast of
monsters and scary settings; the
multiplayer mode will feature an
unprecedented level of player-to-player
combat.

From my own experience I know
there are many personalities in the
game business; some personalities
belong to wonderful human beings you

Chapter 8: Game Design Document

want to spend a bunch of time with;
other personalities are less inviting. I
think a lot of projects suffer when the
leaders of the projects choose to prac-
tice conflict avoidance. I would hazard a
bet that members of the Tropico team
sensed they were working towards dif-
ferent goals yet decided not to rock the
boat either in an effort to create a more
pleasant workplace or to selfishly give
their own version of the game more
time to grow (perhaps to a level of com-
mitment where it could not be cut
back). This is an area I find particularly
hard to manage. I think my teammates
would be surprised to hear me say that.
They would probably say I lead the
team well and with strength. However,
I must confess there are only a few
things in life I like to do less than to cut
off the design direction of one of my
team members. This is because while I
believe a game project needs executive
direction, I also believe the best games
are made when everyone’s energies are
woven into a stronger whole than any
individual can deliver. Therefore my
advice is to take the time to write up
exactly what your game is and present
it to your team members as early as
possible. If you know one of your team
members despises real-time strategy
games, but you are committed to creat-
ing a real-time strategy game, no good
can come out of misleading him—tell
the truth straight up. He will either do
his best to create the best real-time
strategy game he can or move on to
another project that fits his interest.
But by no means would it be a good
idea to keep investing in a team mem-
ber making role-playing features that
you cannot use. When it comes time to
cut those features out, you will have a

107

genuinely pissed off person and a con-
fused team.

Set the Mood

When the game is so clinically des-
cribed as I advocate above, often the
soul of the game is lost in the transla-
tion. Many games are role-playing
games set in a fantasy world. This does
not mean that Ultima, Bard’s Tale,
Baldur’s Gate, and Pool Radiance are
the same game. I like to see a short
piece of fiction at the opening of a game
design document to quickly give me
the feel for this world, to put me in the
mood. The intro movie in a released
game has the same function: to intro-
duce the player to what sort of
challenges the game holds.

Some games do not lend them-
selves well to a fiction treatment, such
as the abstract puzzle and classic arcade
games of Pac-Man, Frogger, and Tetris.
Even so, a snippet of words from an
auto-racing television commentary
intermixed with entries in a racecar
drivers’ journal discussing the upgrades
he has performed on his car and how
desperately he needs to win this race to
pay his debts would quickly draw me
into the world of Gran Turismo.

Section Two: Core Gameplay

Now we move quickly from general
statements about the game to direct
comments about the core gameplay. We
want to fix in the reader’s mind the
vision and feel for the gameplay early
on so that when he digests the rest of
the document it will be in relation to
the core gameplay and create a tighter
understanding of the game design.

108

The Main Game View

Some games have only one view of the
game; others have several view modes
or even different levels of gameplay
with different views. This chapter in
the game design document needs to
define the main game view of the
game. Is it a 3D view? 2D? Isometric?
If it is isometric, what is the scale of
the tiles and characters? If it is a 3D
view, what kind of 3D view? Is it an
interior engine type game, or do you
require exterior environments? If it is
an exterior engine, how far does the
view need to extend? Is it primarily
rendering hills and trees or is it render-
ing a racetrack or a city? Make a few
sketches of the view, or even better get
an artist on your team to make a
full-color mockup of the view.

MUST DO!—The main game view of
the project must be in every game
design document and quickly convey to
the reader what the game will look like.

Core Player Activity

What does the player do in this game?
What is the key interaction? Pilot a
starship? Drive a racecar? Organize an
army? Maneuver a character through a
3D space? This is where you detail the
key interactions between the player
and the game. Together with the main
view from above the reader will
develop a strong understanding of the
game you are creating.

This is an excellent place to use
the UML use case diagrams introduced
in the previous chapter to document
the interactions between the player and
the game. Create the UML diagrams
that organize these interactions in a
graphical manner for easy digestion on
the reader’s part.

Chapter 8: Game Design Document

The Controller Diagram

A critical diagram to create is the con-
troller diagram. This diagram shows at
a glance how the game inputs are
mapped to a game pad controller or a
keyboard.

BLACL& L_i PLAYSTATION 2 CONTROLS

The controller layout for Taldren’s upcoming game
Black9

In-Game User Interface

Working outward from the view and the
core activities, what are the other user
interface items visible on the main dis-
play? Health? Time? Mana? Distance to
target? Radar? Map? Now is the time to
detail the rest of these user interface
items to be found on the main display.
Take the time to create a diagram or
mockup for each of these display items
and update your use case hierarchy to
track these interactions (even if they
are a non-interactive display, the player
uses these items by viewing them).

An early preproduction view of the Black9 main
interface

Chapter 8: Game Design Document

Section Three: Contextual
Gameplay

This will be a fairly meaty section. In
this part of the game design document
you will detail all the rest of the game
mechanics that were too deep to dis-
cuss in the core gameplay section.

Shell Menus

Most games on both the consoles and
the PC have shell menus for creating
characters, upgrading cars, reviewing
inventory, selecting spells, viewing how
many stars or crystals have been col-
lected, and so on. Now is the time to
create a mockup of the shell menus
complete with all the displays and but-
tons. We have found it particularly
useful to create UML use case text and
diagrams for all the shell menu activi-
ties the player can go through. It is also
important to create a menu flow map
showing the relationship between all
the menus—how the player may navi-
gate between the activities in the game.

109

The Nuts and Bolts of Game
Mechanics

Now is the time to talk about how much
horsepower that engine will develop,
how many marines that transporter can
transport simultaneously, how many
charges are in your magic wands, how
fast the characters move. Detail every-
thing you can of the game mechanics. I
find it useful to pretend I am creating a
pen and paper role-playing game or
board game complete with all the
details. Of course all these elements
will need to be tweaked and balanced in
the future; however, every time I drive
down to this level of detail I learn more
about my game at the higher levels of
abstraction and go back and adjust ele-
ments of the higher design. This
section should be replete with spread-
sheets, charts, and diagrams.

Tutorial Mechanics

Almost all big games have integrated
interactive tutorials in the game. Some

1

B9 Manu Flow
Character
Creation Mid-
Campalgn
Biizsion Debriefing Mizsson Griefing
w @ H\ -f
= —
T ’ [Adwast Atisibutes | Troin Skills_____| Doy Geor _____|
% | Gean Deteit ____|
v

The menu flow
for Black9

110

of these tutorials are explicitly tutori-
als, others are billed as licenses as in
Gran Turismo, and other games simply
create very easy levels for the begin-
ning of the game like in Mario64. For
Starfleet Command: The Next Genera-
tion, we modeled the tutorials around
the education an officer in Starfleet
would receive while going through
Starfleet Academy. Discuss your phi-
losophy when approaching the tutorial
content, discuss what you want the
player to learn here, and discuss what
activities you will employ to reinforce
what the player is taught to make for a
smooth transition into actual gameplay.
In Baldur’s Gate, BioWare had the
player character start out in a safe town
where all of the NPCs acted partly as
an interactive in-game manual and also
related backstory to the players to get
them into the world. How are you going
to introduce your player to the game?

Consciously decide what controls
and game mechanics you are going to
directly cover in your tutorials and
what material you are leaving for the
player to learn over time as they mas-
ter the game. Keep in mind the goal of
the tutorial is not to teach everything in
the game; rather the purpose of the
tutorial is to get the player into playing
the game successfully and without frus-
tration as quickly as possible.

Multiplayer Mechanics

Will your game have a multiplayer com-
ponent? If so, what flavor? Will you
support LAN play for PC games in the
office or home LAN environment? Per-
haps you will feature online matching
via GameSpy or Microsoft’s Gaming
Zone. If your game is a massively
multiplayer role-playing game, then of

Chapter 8: Game Design Document

course you have a multiplayer feature
set to document.

If you did not cover your multi-
player menus in the shell menu section,
then this is the perfect place to detail
the activity flow between the menus.
Write down the functionality of each of
the buttons and describe the player’s
choices. Also detail the technical
requirements of the multiplayer feature
set that the technical design will need
to address. How many players will your
game support? Are these players simul-
taneous, concurrent players as in a
Quake game? Or are the players resid-
ing in a hybrid system like Starfleet
Command’s online campaign that is
capable of supporting hundreds of
simultaneous players where the battles
are played out in smaller sessions of up
to six players each?

Create diagrams documenting
these activity flows. Will your game
support the historic modes of multi-
player such as serial, modem-to-
modem, or even hot seat?

With the latest generation of con-
soles starting with SEGA’s Dreamcast
and on through Sony’s PS2 and Micro-
soft’s Xbox, the game designer now
needs to consider online multiplayer
gaming for their console games. On the
console side, multiplayer games have
often used multiple controllers. Will
your console game have multiplayer
gameplay? Will you split the screen?
Will you hot seat between players?

Many game designers put off
describing their multiplayer gameplay
until later in the project. This has led to
disastrous delays, poor gameplay and
game balance, and outright bugginess.
This procrastination in multiplayer
game design is fairly widespread and
carries down the line, with the

Chapter 8: Game Design Document

111

Ttie Splash

Seket Game

Skirmish

é/TOnllne Campaign

Campaign

Dning Campakn
Login

Select Shirmeh

Selact Campagn
Empie

conne

TCRAP Skiimish
Sekeotor

Empire

Single-|

Saved Garres

SF Campaign W Campaign
Custom Salector Seleotor

Player .. Host

{
L oomesw | Tutorial

Newe Campaign

The menu flow diagram for Starfleet Command 3

technical design stage often postponing
a serious discussion of the multiplayer
engineering requirements. Sometimes
these delays are so manifest, games
have resorted to the outright out-
sourcing of the multiplayer project.
Examples of this are Interplay’s
Klingon Academy and id’s Return to
Castle Wolfenstein, where Grey Matter
develops the single-player game and
another developer will come along
behind and implement the multiplayer
aspect of the game. I am highly skepti-
cal of outsourced game creation in a
piecemeal fashion. The only reason
people delay thinking about their
multiplayer feature set is because it is
hard. But being hard is not a good
enough reason for putting it off!

Section Four: Talk Story

This section of the game design docu-
ment calls for the game designer to
elaborate on the world they have cre-
ated. Many game developers would
really rather work on this part of the
game design document than discuss the
mundane buttons on the multiplayer
screens. The reason I have pushed this
section back as far as I did is because I
feel the game design document should
serve the team rather than the
designer. So I started with setting the
mood and quickly followed with captur-
ing the key requirements of the game.
Now let’s roll out the graph paper, char-
acter sheets, and scripts for the cut
scenes!

112

World Backstory

A fan-made map of Britannia from the Ultima series

Detail your world; what is the relevant
history of the world? Draw a map of the
world the player will explore. Use cool
maps for fantasy games such as
Baldur’s Gate and Ultima Online, but
also include ship blueprints for games
like System Shock 2, or the oceans of
the world for a naval simulation. The
depth of this section is highly depend-
ent on the genre of your game. id
Software is very proud that their Doom
and Quake series of games have no
need for such frills as a backstory!
Ultima Online and Baldur’s Gate each
draw upon decades of development for
their world’s backstory.

A game such as Gran Turismo
would only need the lightest treatment
of a backstory where the racing events,
the tracks, and the manufacturers of
cars would be enumerated to flesh out
the scope of the world’s backstory.

Chapter 8: Game Design Document

Character Backgrounds

The character background section is
also game dependent. All games have
characters; it is just the concept of
what a character might be that is
stretched a bit in some genres. For
example, role-playing games, action-
adventure, and platformers would all
have a section that is quite straightfor-
ward in its representation of charac-
ters, with sketches of how they look
and text describing their behavior and
attitude in the game. Include all of the
game mechanics stats that correspond
to this character such as attributes and
inventory. Include references to where
in the game the character will be found
and indicate what type of character this
is: protagonist, playable, non-player,
antagonist, or boss monster.

In the case of Gran Turismo I
would argue that the individual cars are
the characters, especially unique cars
like the Suzuki Escudo. Here the stats
behind the cars and the history of the
creation serve as the backstory. In a
real-time strategy game each of the
individual combat units is a character to
be detailed. For a real-time tactical
game like Starfleet Command: The
Next Generation, we actually have
three different classes of “characters”
that are quite different from each other,
but all need to be detailed. These three
character types are the classic charac-
ters to be found in the story, the ships
the player will command or interact
with, and the ship officers that the
player will recruit and train in the
course of their career.

Chapter 8: Game Design Document

A character concept for Black9

Level, Mission, and Area Design

This is my favorite part of writing a
game design document. I love examin-
ing and reading maps! Most likely your
game is broken down into levels, mis-
sions, areas, tracks, episodes, decks of
a ship, or some other manner of loca-
tion partition. In abstract games like
Lemmings, the levels are single
screens of challenge for the Lemmings;
for Gran Turismo it is the different
tracks of course; for Doom it is bizarre
and frightening levels that the design-
ers come up with in a backstory after
they have made them.

To document a level you have to
take into account what sort of game

you are making and how it is broken up.

For classic role-playing games, large-
scale fantasy maps of the countryside
with detailed blueprints scaled to ten-
foot corridors serve very well. For 3D
games, whether platformer, shooter, or

113

action-adventure, it can be very chal-
lenging for the designer to specify the
level in detail. The reason is that the
designer may be a good designer but
terrible in the use of a 3D CAD tool
such as UnrealEdit or WorldEdit. Often
these types of games employ a lead
designer who is good with these tools
and can articulate her visions directly
in the tools. For the developer without
these skills, very detailed writing as
found in a narrative supplemented with
sketches will often serve to give the
level designer a strong description to
work with.

Be sure to give good detail: Talk
about the colors, the textures, the
lighting, what the sky looks like. What
are the sounds that are present in this
area? What are the characters? Detail
each trick, trap, challenge, or feature in
your level design. On your first few
passes through here, just make notes to
yourself to follow up later and add more
detail in the next pass.

This is the time to explain your
campaign structure; show a flow dia-
gram that relates your areas to each
other. Is it linear? That is, can the

A view of a level in production for Black9

114

player proceed through your levels
along only one path like the increas-
ingly challenging levels of Lemmings,
or can the player wander about without
any direct purpose as in Ultima Online?
Be sure to diagram this flow.

Declare the purpose of the area; is
it a key hub area that the player will
visit often or is it a bonus area or is it a
part of the user interface such as the
difficulty selection of Quake I? Discuss
how this level may be reused like the
reversing of tracks in Gran Turismo or
going back for six stars in each of the
worlds of Mario64.

Cut Scene Descriptions

If your movie will employ cut scenes,
then write the scripts for these cut
scenes. While the game industry has no
standard format for the description of a
cut scene, there are two important
components: a storyboard and a script.

Chapter 8: Game Design Document

The storyboard is a key frame-by-
frame visual design of the cut scenes
that reads much like a comic strip. This
1s a critical design document for both
communicating with the artists who
will create the level and for achieving
buy-in from the project stakeholders.

The script should follow standard
movie script formatting guidelines. See
the following script excerpt for an
example of how to format your script
for voice-over (VO) and off-stage (OS)
voice work.

With this section complete, no
reader should have any large questions
or vagueness about the world and cast
of characters in your game design. The
reader should also have a strong under-
standing of what challenges the players
will face as they proceed through the
game structure.

INT. MISSION BRIEFING ROOM (GENESIS HQ-LAX)

Set in the mission briefing room of the Genesis Operations Headquarters in the LAX spaceport metroplex. The mission
briefing is a short cinematic Sequence performed in letterbox format using the in-game Matinee feature of the Unreal
engine. The briefing room has four characters: the player character, the Genesis Operations Chief, and two other contract
Genesis agents, one large, physically powerful male and one slim female.

GENESIS OPERATIONS CHIEF (V0)
We have a very serious development with our secure Al labs on the moon. We have had no communication
from the base personnel in 36 hours. While the computer network seems to be functional, we have lost access
to the data arrays—somebody has changed the authorization code. Fly-bys show no actual damage to the
structures and we have sent two regular patrols from Luna I—they have failed to report in after reaching the

lab.

(beat)
It appears that The Tea-Drinking Society is getting desperate now that we are so close to our goal; they must
have launched an assault on the lab and taken physical control—now they're busy downloading all of our

hard-earned work.

Your mission is to reclaim our labs and eliminate any hostiles that may be present.

You have two support operatives this time.

The Chief gestures towards a slim female in black super-hero spandex

GENESIS OPERATIONS CHIEF (V0)
Cassandra will provide you with infiltration and electronic hacking services. Her job is to get the team in there
as quietly as possible. The goal is to catch The Tea-Drinking Society in the act, get it on film, and eliminate the
suspected TDS agents before they are able to return to their masters with the fruits of our lab work!

Nodding towards a bulky male human with obviously large guns

Chapter 8: Game Design Document

115

a detail of history in short order.

The Chief points towards the player character

“Thank you, sir. We will not let you down.”

GENESIS OPERATIONS CHIEF (VO)
Rojak is a heavy weapons specialist. He'll back you up in a firefight and ensure that anything hostile becomes

GENESIS OPERATIONS CHIEF (V0)
As our most celebrated agent, you're in charge. Make contact after you've landed and entered the base.

PLAYER CHARACTER (VO)

Cinematic fades to black, the sound of rocket engines throttle up out of the darkness. ..

A snippet of a design document of Black9 featuring a cinematic sequence

Section Five: Cover Your Assets

This section’s format really is particular
to your game’s genre and method of
construction. This last point is so
important I would recommend not
creating asset lists until you are mostly
through the technical design stage. You
should certainly jot down the assets
that come to mind in each section at
the end of your first pass on the game
design document; however, your tech-
nical design document might reveal
that on the platform of your choice and
with your particular set of require-
ments, you are limited to the creation
of just 20 character models rather than
the 100 your initial design called for. Or
you might find that the technical format
and specification of your assets goes
through some bit of exploration during
the elaboration of your game in the
technical design stage. Nevertheless,
here are some categories of assets you
should list in your game design docu-
ment. These lists will come in handy
when creating the production plan,
which should be created after the tech-
nical design stage has been mostly
completed.

2D Sprites or 3D Models

Whatever your technology, no doubt
your game features moving bits of

eye-pleasing pixels. Write up the list
of such assets in a spreadsheet and
include columns for attributes that are
specific to your game’s design and
technical requirements.

A character model in production from Black9

Missions, Levels, or Areas

List the missions, levels, or areas to be
created for your game. Indicate game-
specific parameters such as size, prior-
ity, or placement in a hierarchy of
locales.

The city of Baldur’s Gate

116 Chapter 8: Game Design Document

Voice be detailed early in the project. As pro-
duction rolls along, maintain this
section to prevent a panic workload
when it comes time to record the voice.

It will be way too early to document
this section in the early phases of game
design; however, strong description of
the voice actors required can certainly

Command 190: Basic Controls
Setting: The Neversail NCC-0001 at Treasure Island, San Francisco, Earth
O Helm
O Target
00 Phaser Fire (somehow have plenty of phasers to fire)
O Destroy Cargo Boxes

Title: Command 190: Basic Controls

Briefing: This simulation will cover the basic controls of a starship.

Setting Text 1: Aboard the Neversail NCC-0001

Setting Text 2: Starfleet Academy, Home Fleet

Setting Text 3: Treasure Island, San Francisco, Earth

{The Neversail NCC-0001 is a police frigate armed with only Phaser-3s}

{The screen is already set in full screen mode}

{There is no terrain, only a beautiful backdrop}

{The player's ship is already in motion at a speed of 10}

{The player's ship is already at Red Alert}

{VOICE TALENT: FED-INSTRUCTOR-EARTH: Scotty? Not Sulu — we will save him for later tutorials.}
FED-INSTRUCTOR-EARTH: “Lieutenant, welcome to Starfleet Command school. To earn the rank of Lieutenant Com-
mander, you must pass both Command 190: Basic Controls and Command 290: Intermediate Helm Controls. Let's get

started.”

FED-INSTRUCTOR-EARTH: “The basics of starship control are very simple, yet require a lot of training and practice to
master. Let's begin with basic helm control aboard a small police vessel, the USS Neversail.”

FED-INSTRUCTOR-EARTH: “To turn the Neversail, use the mouse and left-click on the 3D tactical display. This will
issue a helm command to port or starboard.”

FED-INSTRUCTOR-EARTH: “Left-click on the 3D tactical display in the direction you wish to turn. Your helmsman will
choose the appropriate turn, port or starboard.”

{Wait for the user to turn the ship. Add sarcastic/encouraging comments to the player to hurry them along.}

Sarcastic Comments
FED-INSTRUCTOR-EARTH: “Well Lieutenant, what are you waiting for? A Klingon invasion?”

FED-INSTRUCTOR-EARTH: “Lieutenant, when | give an order | expect it to be obeyed.”

FED-INSTRUCTOR-EARTH: “I don't have all day, Lieutenant.”

FED-INSTRUCTOR-EARTH: “[Sigh]. We are all waiting.”

FED-INSTRUCTOR-EARTH: “Lieutenant, make up your mind before | make it up for you — and give you a failing grade.”

Chapter 8: Game Design Document 117

Positive Remarks
FED-INSTRUCTOR-EARTH: “Very good, Lieutenant.”

{Add 1 prestige point for each helm command up to 3 points}

FED-INSTRUCTOR-EARTH: “The farther you wish to go from your current heading, the tighter your turn will be.
Starships are massive vessels, even one such as this quaint police cutter. It takes time to maneuver them. Plan your
turns in advance for maximum advantage.”

FED-INSTRUCTOR-EARTH: “Now let’s talk about phasers. | knew that would pique your interest. To familiarize you with
the trustworthy phasers, | have created replicas of standard Federation cargo containers for you to target and destroy.”

FED-INSTRUCTOR-EARTH: “To target a container, point the mouse at the container that you wish to target and
right-click. This will set the cargo container as your current target. Alternatively you may tap the T key to cycle through
all targets in sensor range.”

{Add 1 prestige point for each targeting command up to 3 points}

{Wait for the user to target a container. Add sarcastic/encouraging comments to the player to hurry them along. }

Sarcastic Comments
FED-INSTRUCTOR-EARTH: “C’'mon, Lieutenant. It doesn't take that long to target a container.”

{Default the weapons to 1 at a time firing}

FED-INSTRUCTOR-EARTH: “To fire a Phaser-3 at the selected cargo container, left-click your mouse on the fire button
in the lower left corner of the display. Alternatively, you can tap the Z key to issue a fire command. Either one will direct
gigawatts of ionized superheated particles at your target. Sounds impressive.”

FED-INSTRUCTOR-EARTH: “Now destroy all three targets.”

{Wait for the user to fire upon a container. Add sarcastic/encouraging comments to the player to hurry them along.}

Sarcastic Comments
FED-INSTRUCTOR-EARTH: “What's keeping you? Most midshipmen enjoy this part of the tutorial.”

Encouraging Comments (when container destroyed)
FED-INSTRUCTOR-EARTH: “There she goes!”

FED-INSTRUCTOR-EARTH: “Good! Starfleet doesn’t approve of mindless destruction, but phasers do have their uses.”
{Add 2 prestige points for each container destroyed up to 6 points}

FED-INSTRUCTOR-EARTH: “Excellent, Lieutenant, you are coming along very well. Perhaps Command 290 will pro-
vide a greater challenge for your abilities.”

A shooting script for Starfleet Command 3

Key Framing and Motion Capture List your characters and the required
moves for each character. Maintain this
list during production. See the follow-
ing example.

If your game features human characters
moving about, then you might require
motion capture or you can use key
framing to animate your characters.

118

Chapter 8:

Game Design Document

Sample Shot List

Confidential
Scene#| filename performer | character concatenated capture client moves description Loop TrackProp
description
1 "Al-walk-idle" ‘assassin’ (we place a formula here “Assassin looks around, to be shot for looping “rifle"
which "concatenates” all standing in place.” (blending) in post
your detailed info into one
item)
2 "A1-walk-idle-fire" "assassin” "Assassin fires assault rifle to be shot for looping rifle”
straight ahead from standing | (blending) in post
position.”
3 "A1-walk-forward" "assassin’ “Assassin walks forward to be shot for looping “rifle"
carrying assault rifle." (blending) in post
4 "A1-walk-forward-fire" "assassin’ "Assassin walks forward firing | to be shot for looping "rifle"
assault rifle.’ (blending) in post
5 "A1-walk-backward" "assassin’ “Assassin walks backward to be shot for looping “rifle"
carrying assault rifle." (blending) in post
6 'A1-walk-backward-fire" "assassin” "Assassin walks backward to be shot for looping "rifle"
firing assault rifle.” (blending) in post
7 "A1-walk-step-left" "assassin’ “Assassin sidesteps to the left | to be shot for looping “rifle"
carrying assault rifle." (blending) in post
8 "A1-walk-step-left-fire" "assassin” "Assassin sidesteps to the left | to be shot for looping rifle”
firing assault rifle straight (blending) in post
ahead."
9 'Al-walk-step-right" ‘assassin’ “Assassin sidesteps to the to be shot for looping “rifle"
right carrying assault rifle." (blending) in post
10 'A1-walk-step-right-fire" "assassin” "Assassin sidesteps to the to be shot for looping "rifle"
right firing assault rifle (blending) in post
straight ahead."
" "Al-walk-turn ‘assassin” “Assassin turns in place to be shot for looping “rifle"
carrying rifle." (blending) in post
12 "A1-walk-turn-fire" "assassin’ "Assassin turns in place firing | to be shot for looping "rifle"
rifle.” (blending) in post
13 "Al-run-idle" "assassin’ “Assassin looks around, to be shot for looping “rifle"
standing in place, heavy (blending) in post
breathing, excited.”
14 "A1-run-idle-fire" "assassin” "Assassin fires assault rifle to be shot for looping "rifle”
straight ahead from standing | (blending) in post
position, heavy breathing,
excited."
15 "A1-run-forward" ‘assassin’ “Assassin runs forward to be shot for looping “rifle"
carrying assault rifle." (blending) in post
16 "A1-run-forward-fire" "assassin’ "Assassin runs forward firing to be shot for looping "rifle"
assault rifle.” (blending) in post
17 "A1-run-forward-hurdle" "assassin’ “Assassin runs forward to be shot for looping “rifle"
carrying assault rifle, hurdling | (blending) in post
low obstacle."
18 "A1-run-forward-hurdle-fire" 'assassin’ “Assassin runs forward firing to be shot for looping “rifle"
assault rifle, hurdling low (blending) in post
obstacle."
19 "A1-run-backward" "assassin’ "Assassin runs backward to be shot for looping “rifle"
carrying assault rifle." (blending) in post
20 "A1-run-backward-fire" "assassin” “Assassin runs backward firing | to be shot for looping “rifle"
assault rifle." (blending) in post
21 "A1-run-step-left" "assassin” "Assassin sidesteps quickly to | to be shot for looping “rifle"
the left carrying assault rifle.” (blending) in post
22 "A1-run-step-left-fire" 'assassin’ “Assassin sidesteps quickly to | to be shot for looping “rifle"
the left firing assault rifle (blending) in post
straight ahead."
23 "A1-run-step-right" "assassin’ "Assassin sidesteps quickly to | to be shot for looping “rifle"
the right carrying assault rifle.” | (blending) in post
24 "A1-run-step-right-fire" 'assassin’ “Assassin sidesteps quickly to | to be shot for looping “rifle"
the right firing assault rifle (blending) in post
straight ahead."
25 "Al-sneak-idle" "assassin’ “Assassin looks around to be shot for looping “rifle"
cautiously on balls of feet, (blending) in post
standing in place.”
26 "Al1-sneak-idle-fire" 'assassin’ “Assassin fires assault rifle to be shot for looping
straight ahead from standing (blending) in post
position."
27 "A1-sneak-forward" "assassin’ “Assassin sneaks forward to be shot for looping “rifle"
carrying assault rifle." (blending) in post
28 "A1-sneak-forward-fire" "assassin’ *Assassin sneaks forward to be shot for looping "rifle"

firing assault rifle."

(blending) in post

Chapter 8: Game Design Document

119

29 "A1-sneak-backward" "assassin” "Assassin sneaks backward to be shot for looping "rifle"
carrying assault rifle." (blending) in post

30 "A1-sneak-backward-fire" "assassin’ "Assassin sneaks backward to be shot for looping "rifle”
firing assault rifle." (blending) in post

31 "A1-sneak-step-left" "assassin” "Assassin gingerly sidesteps to be shot for looping "rifle"
to the left carrying assault (blending) in post
rifle."

32 "A1-sneak-step-left-fire" "assassin’ "Assassin gingerly sidesteps to be shot for looping "rifle”
to the left firing assault rifle (blending) in post
straight ahead."

33 "A1-sneak-step-right" "assassin” "Assassin gingerly sidesteps to be shot for looping "rifle"
to the right carrying assault (blending) in post
rifle."

34 "A1-sneak-step-right-fire" ‘assassin’ "Assassin gingerly sidesteps to be shot for looping "rifle”
to the right firing assault rifle (blending) in post
straight ahead.”

35 "A1-sneak-turn” "assassin” "Assassin turns in place with to be shot for looping "rifle"
soft steps carrying rifle." (blending) in post

36 "A1-sneak-turn-fire" ‘assassin’ "Assassin turns in place with to be shot for looping "rifle”
soft steps firing rifle." (blending) in post

37 "A1-crouch-idle" "assassin” "Assassin looks around, to be shot for looping "rifle"
crouching in place." (blending) in post

38 "A1-crouch-idle-fire" "assassin’ "Assassin fires assault rifle to be shot for looping "rifle”
straight ahead from crouching | (blending) in post
position."

39 "A1-crouch-forward" "assassin” "Assassin walks forward to be shot for looping "rifle"
crouching and carrying assault| (blending) in post
rifle."

40 "A1-crouch-forward-fire" "assassin’ "Assassin walks forward to be shot for looping "rifle”
crouching and firing assault (blending) in post
rifle."

41 "A1-crouch-backward" "assassin” "Assassin walks backward to be shot for looping "rifle"
crouching and carrying assault| (blending) in post
rifle."

42 "A1-crouch-backward-fire" "assassin’ "Assassin walks backward to be shot for looping "rifle”
crouching and firing assault (blending) in post
rifle."

43 "A1-crouch-step-left" "assassin” "Assassin sidesteps to the left | to be shot for looping "rifle"
crouching and carrying assault| (blending) in post
rifle.”

44 "A1-crouch-step-left-fire" "assassin’ "Assassin sidesteps to the left | to be shot for looping "rifle”
crouching and firing assault (blending) in post
rifle straight ahead."

45 "A1-crouch-step-right" "assassin” "Assassin sidesteps to the to be shot for looping "rifle”
right crouching and carrying (blending) in post
assault rifle."

46 "A1-crouch-step-right-fire" "assassin’ "Assassin sidesteps to the to be shot for looping "rifle"
right crouching and firing (blending) in post
assault rifle straight ahead."

47 "A1-crouch-turn” "assassin’ "Assassin turns in place to be shot for looping "rifle"
crouching and carrying rifle." (blending) in post

48 "A1-crouch-turn-fire" "assassin’ "Assassin turns in place to be shot for looping "rifle”
crouching and firing rifle.” (blending) in post

49 "A1-jump-standing" "assassin’ "Assassin jumps straight up, to be shot for looping "rifle”
carrying rifle." (blending) in post

50 “A1-jump-standing-fire" “assassin’ "Assassin jumps straight up, to be shot for looping “rifle”
firing rifle." (blending) in post

51 "A1-jump-forward" "assassin’ "Assassin leaps forward to be shot for looping "rifle”
carrying assault rifle." (blending) in post

52 "A1-jump-forward-fire" "assassin” "Assassin leaps forward firing | to be shot for looping "rifle”
assault rifle.” (blending) in post

53 "A1-jump-backward" "assassin’ "Assassin jumps backward to be shot for looping "rifle”
carrying assault rifle." (blending) in post

54 “A1-jump-backward-fire" “assassin’ “Assassin jumps backward to be shot for looping “rifle”
firing assault rifle." (blending) in post

55 "A1-jump-left' "assassin’ "Assassin lunges to the left to be shot for looping "rifle"
carrying assault rifle.” (blending) in post

56 "A1-jump-left-fire" ‘assassin” "Assassin lunges to the left to be shot for looping "rifle”
firing assault rifle straight (blending) in post
ahead."

57 "Al-jump-right' "assassin’ "Assassin lunges to the right | to be shot for looping "rifle”
carrying assault rifle.” (blending) in post

58 "A1-jump-right-fire* "assassin’ "Assassin lunges to the right to be shot for looping "rifle’
firing assault rifle straight (blending) in post
ahead."

120 Chapter 8: Game Design Document

59 "A1-chest-hit" "assassin” "Assassin flinches from shot in| to be shot for looping "rifle”
chest while carrying assault (blending) in post
rifle."

60 "A1-chest-hit-fire" "assassin’ "Assassin flinches from shot in| to be shot for looping "rifle"
chest while firing." (blending) in post

61 "A1-gut-hit" "assassin’ "Assassin flinches from shot in| to be shot for looping "rifle"
stomach while carrying (blending) in post
assault rifle."

62 "A1-gut-hit-fire" "assassin’ "Assassin flinches from shot in| to be shot for looping "rifle”
stomach while firing." (blending) in post

63 "A1-left-hit" "assassin” "Assassin flinches from being | to be shot for looping "rifle"
shot from the left while (blending) in post
carrying assault rifle."

64 "A1-left-hit-fire" "assassin’ "Assassin flinches from being | to be shot for looping "rifle"
shot from the left while firing." | (blending) in post

65 "A1-right-hit" "assassin” "Assassin flinches from being | to be shot for looping "rifle"
shot from the right while (blending) in post
carrying assault rifle."

66 "A1-right-hit-fire" "assassin’ "Assassin flinches from being | to be shot for looping "rifle"
shot from the right while (blending) in post
firing."

67 "A1-knockdown-front" "assassin” "Assassin is knocked down by | to be shot for looping "rifle"
force from the front while (blending) in post
carrying assault rifle."

68 *A1-knockdown-front-fire* “assassin’ "Assassin is knocked down by | to be shot for looping “rifle”
force from the front while (blending) in post
firing."

69 "A1-knockdown-back" "assassin’ "Assassin is knocked down by | to be shot for looping "rifle”
force from the back while (blending) in post
carrying assault rifle."

70 "A1-knockdown-back-fire" "assassin’ "Assassin is knocked down by | to be shot for looping “rifle”
force from the back while (blending) in post
firing."

7 "A1-roll-stand-front" "assassin’ "From knocked down from blends from "rifle”

front position, assassin rolls | "A1-knockdown-front"
up and stands carrying rifle.”

72 "At-roll-stand-back" "assassin’ "From knocked down from blends from 'rifle’
back position, assassin rolls “A1-knockdown-back"
up and stands carrying rifle.”

73 "Al-activate" "assassin’ "Assassin activates a wall "rifle"
switch."

74 "A1-crouch-tinker-start" "assassin’ "Assassin crouches and begins| blends into "A1-tinker" "rifle”
tinkering with gadgetry.”

75 "Al-tinker" "assassin’ "Assassin tinkers with to be shot for looping "rifle”
gadgetry." (blending) in post

76 "A1-crouch-tinker-stop” "assassin’ "Assassin stops tinkering and | blends from "Al-tinker" | ‘rifle"
stands."

77 "A1-use-medkit" "assassin’ "Assassin presses small object rifle”
to neck, injecting healing
serum.”

78 "A1-pickup-table’ "assassin’ "Assassin picks up an object “rifle”
from table height."

79 "A1-pickup-floor* "assassin’ "Assassin crouches, picks up rifle”
an object from the ground,
and stands."

80 "A1-stunned-flash* "assassin’ "Assassin covers face with “rifle”

arm and cowers for 3 - 5
seconds before returning to a
normal stance."

81 "A1-death-falling" "assassin” "Assassin collapses to ground "rifle"
with some impact.”

82 "A1-death-slump" "assassin’ "Assassin folds up and slumps "rifle”
to ground.”

83 'A1-death-spasms" "assassin” "Assassin has several violent "rifle"
spasms before collapsing to
ground.”

*xxNOTE***

Please refrain from punctuation in your moves description and be as specific and brief as possible.

The list of moves to be motion captured for Black9

Chapter 8: Game Design Document

Sound Effects

Sound effects are elusive critters to nail
down early in the game design docu-
ment. My best advice is to mentally
walk through the mission/level/area
section of your game design document
and listen to what you hear as you walk
through these areas.

121

Music

Almost all games feature music; the
only exception I can think of is Quake
II1, which opted to allow the player to
play his or her own favorite music. In
this section, list the various tracks you
will require to help set the mood of
your game. Some games employ
sophisticated track blending routines to
go smoothly from tense battle music to
celebratory victory tunes. See the
Black9 audio bid on the following page
for an example.

Asset Reference Description Maya Slot Reference Animation Name anima(inn Sound Name(keyframe) SFX Notes Attribute Volume Status
otes
5 1
Nevin Combat Custom 14: Time Dilation Slash 1 timeDilationSlash1 SlashSquishDelay1 (5) 5 1
15: Time Dilation Slash 2 timeDilationSlash2 SlashSquishDelay1 (5) 5 1
16: Time Dilation3_ Fierce Slash timeDilationSlash2 SlashSquishDelay1 (5) 5 1
17: Time Dilati timeDi E3 Victory1 SpinSwirl4(3), Landing (17) 5 1
18: TimeDilationTraverse timeDilationTraverse Return Move
19: TimeD Ti E3 Attack SpinSwirl3 (2), Flangy swipe 5 1
SlashSquishDelay1(5)
20: TimeDi Ti E3 Attack SpinSwirl3 (2), 5 1
SlashSquishDelay1(5)
21: TimeDilation y timeD E3 Attack SpinSwirl3 (2), 5 1
SlashSquishDelay1(5)
22: TimeDilationCl lipslash timeDilationCl lipSlash Final Attack
23: TimeDilationTransPos2toPos3 TimeDilationTrans_Pos2_ Start Stretchdb (1), 5 1
to_Pos3
24: TimeDilationTransPos2toPos1 timeDilation_Pos2_to_Pos1 Start Stretchdb (1), 5 1
25: TimeDilationTransPos4toPos1 timeDilationTrans_Pos4_to_ Start Stretchdb (1) 5 1
26: TimeDilationTransPos4toPos3 timeDilationTrans_Pos4_to_ Start Stretchdb (1), 5 2
Pos3
27: TimeDi i Flip timeDi i lip SpinSwirl3 (6), Landing (19) 5 2
1 28: TimeD Spin T y SpinSwirl3 (3), SpinSwirl2 5
(5), HardKnock? (15)
Attack 0: fastSlashCombo1 basicFast1 1thru8* SlashChop (2) Leopard Roar 4, Combat 5 3
WB03
1: fastSlashCombo2 basicFast1 9thru18 SlashChop (2) 5 3
2: fastSlashCombo3 basicFast1 19thru27 * SlashChop (2) 5 3
3: slowSlashCombo1 basicPower1 SlashHard (1) ComboLibrary, 5 3
SwipesSwingV6
4 asicF SlashHard (1) 5 3
5: basicPower3 SlashHard (1) 5 Bad Export

The combat sound effects list for the character Nevin from Outrage’s game Alter Echo

122 Chapter 8: Game Design Document

Black9 Audio Bid
IMPORTANT: PLEASE READ ENTIRE DOCUMENT IN ORDER!

Note: The goal of the budget is to come as close to the final product as possible. In a game of this scope it is impossible
to know the exact amount of minutes of music. Both parties understand that these figures could change slightly either
way but that the figures given should be a very good representation of the budget needed.

MUSIC

In-Game Music: There are 3 different “worlds” in Black9. The music styles would be representative of those worlds but
would follow a sci-fi ambient based vibe (refer to CD). Analog pads, percussion, arpeggiatted synth lines and Enya
themed instrumentation will all be used to accomplish our goal. For certain worlds and levels such as China we can
incorporate ethnic Asian instruments such as Tibetan Bowls, Java Gamelans, Korean Gongs, Chinese Cymbals, Japanese
Kotos and Taiko Drums to give it a certain environmental flavor. Music does not need to be triggered at all times during
the game. In fact a lot of the game should be sci-fi environmental location based ambience. “Sci-fi analog action style”
music can be triggered when certain key events in each level happen (i.e., Canyon Chase sled escape). Refer to last 2
songs on audio CD called “Wild 9" and “Hover Bikes”. The use of short (3-5 second) musical stings can also be used
when certain events happen (i.e., pulls important lever to open important door). There are 3 different “worlds” in Black9.
The music styles would be representative of those worlds but would follow an ambient sci-fi feel/vibe.

Mars World:

6 search/ambient songs (@ 1:30 minutes = 9 minutes)

4 chase/battle/vehicle songs (@ 1:30 minutes = 6 minutes)
5 stings (@ 5 seconds = 25 seconds)

Hong Kong World:

6 search/ambient songs (@ 1:30 minutes = 9 minutes)
4 chase/battle songs (@ 1:30 minutes = 6 minutes)

5 stings (@ 5 seconds = 25 seconds)

Moon/Luna World:

4 search/ambient songs (@ 1:30 minutes = 6 minutes)
2 chase/battle songs (@ 1:30 minutes = 3 minutes)

4 stings (@ 5 seconds = 20 seconds)

Total In-Game music: ~ Approximately 40 minutes

Cinematic Music: Story and cinematics play an important role in Black9. The music for the cinematics should be
extremely subtle so that it adds a layer to the dialogue but does not get in its way. There doesn't have to be music playing
during every cinematic and some of the in-game music could be used as well.

Mars World: 3 songs @ 1 minute = 3 minutes

Hong Kong World: 3 songs @ 1 minute = 3 minutes

Moon/Luna World: 2 songs @ 1 minute = 2 minutes

Total Cinematic music: 8 minutes

Menu Music: There will need to be menu, sub-menu, and credits music. These can be based off of popular motifs we
would be creating for the game. Until actual screen interfaces are created it is hard to visualize the style and tempo.

Chapter 8: Game Design Document 123

Menu/Sub-Menu theme: 2 minutes
Credits music (variation of menu?): 3 minutes

Total Menu music: 5 minutes

Music Totals

In-Game: 40 minutes

Cinematics: 8 minutes

Menus: 5 minutes

TOTAL: 53 minutes (approx.)

53 minutes x $1,000 per minute = $53,000

SOUND DESIGN
Sound design will be the most important audio element in the game.

In-Game SFX: Big and beefy reverbs, amazing weapons, huge deep doors, frightening alarms, etc. Think of the best
sci-fi movie you've ever heard. .. then double it!

The main character will have common sounds that will always need to be loaded in memory (footsteps, weapons,
getting hit, landing from a jump, etc.). There will be other common sounds as well (pause menu, text messaging,
pick-ups, health, etc.) Each of the 16 levels in the game will have unique sound effects for the enemies, vehicles, objects,
surfaces, elements, etc. | would average about 50 unique sounds per level considering some of the enemies and weap-
ons will be reused throughout the game.

Commonsfx: 100
Level sfx: 50 X 16 levels = 800 sfx

Environmental/Ambient SFX: Strange room tones, machinery, equipment, and generators no one has ever heard
before, airy and cosmic tones, deep analog sweeps, dark dramatic atmospheres. Each area may have a different “tone”
which when mixed properly gives the sense of travel and exploration. These ambiences should be looping, streamed, and
about 1 minute each in length. In some areas you would only hear the ambiences with no music. These are very impor-
tant! The player will hear these more than they will the music! Ambiences can be reused for multiple areas. If we budget 3
looping ambiences per level we could mix and match just fine.

16 levels X 3 looping 1-minute ambiences = 48 minutes of ambience

Cinematic Sound Design/FX: The cinematics will be in-game based (not FMV) so technically they will be handled
the same as the in-game sfx (SPU based). | would estimate another 10 unique sfx per level to be used in the cinematics.

Cinematic SFX: 10 sfx X 16 levels = 160 sfx
Menu/Sub Menu SFX: Would depend on the look and style of the menus.

Menu SFX =10 sfx

Sound Design Totals

In-Game: 800 sfx
Environmental: 48 minutes/sfx
Cinematics: 160 sfx

Menus: 10 sfx

TOTAL: 1000 sfx (approx.)

Sound Design = $30,000

124 Chapter 8: Game Design Document

DIALOGUE/V.0.

Because of the sci-fi nature of the game, effects will play an important role in the creation of the voices. All sorts of
robotic, helmet gear, radio, flange/phaser, strange and unique effects will be used in pre- and post-production. Think Star
Wars.

Cinematic Character voices:

Genesis Contact, Player, Aegis, NPC Buyer, First Guard, Genesis Man, Oberon, Black Dragon Master, Genesis Operations
Officer, Fire Elder, Fire Elemental, Piwan, Dr. Tan, Agent Cassandra, Protagonist, Babbage Entity, Elder, Tea-Drinking
Society Operations Officer, TDS Ops, Hashi, Dr. Kellon, Tran, Automated Receptionist, TDS Shuttle Captain, Charles, TDS
Man, Gardener, Zubrin Marine, Zubrin Operations Officer, Lao, Zubrin Man, Zubrin Merc, Civilian, Zubrin Ops, Ambassa-
dor. (35 total)

Enemy voices: There would also have to be enemy character voices recorded. Screams, yells, hits, jumps, dies, etc.

We would need about 15 actors to record 35 characters. Each professional non-sag actor’s price would vary depending
on experience, how many characters, versatility, etc.

These are not one-liners (like Boxing), this is more serious acting. SAG rate for a 4-hour block-out (3 characters
max.) is $612.00. To get non-SAG actors (who are really in SAG) for a buyout usually costs about $750. Some actors will
charge $1000 and others will cost only $500. $750 | feel is a good average for a non-SAG buyout. It should take 3 studio
days to complete the script. In a script of this nature (characters, acting, size, etc.) it is always smart to put a 10% contin-
gency in the budget for call-backs.

Actors: 15X $750 = $11,250
Studio: 3 days X $1000 = $3,000
Casting Agent: $1,000

Editing,Mastering: $5,000
Contingency (10%): $2,000
Total: $22,250

This is my recommended buget.

GRAND TOTALS:

Music: $53,000
Sound Design: $30,000
V0. $22,000
Total: $105,000

Breathe, David. .. breeeeeathe..... Now count to 10.

Okay good!

Please realize that this is a huge game and there is a ton of audio here. | have given my $1,000 per minute of music
rate (usually $1,200-$1,500) because there is quantity. Same for the sound design; normally for the amount of sounds
required it would be much higher. If you were to go to any company in the industry and ask them for this amount of work
you'll get prices that are a little lower and some that are much higher.

The prices | cannot come down on. | cannot go lower than $1,000 per minute and | can't do 1000 sfx for under 30K.
If we needed the budget to be lower we could do the following...

Music:

Please keep in mind that the recommended budget was NOT a wish list. | had to struggle to get the minutes of music to
where it currently is. Notice that each tune is only approximately 1:30. 2 to 3 minutes is usually the norm, but | feel that
because of the ambient style of music we will be using that if I'm tricky with my loops | can get away with 1:30. We could
gasily just take the music figure down to about 40 minutes and just deal with it. It does start to take a quality hit as far as
repetitiveness goes (which | am already assuming in the 53 minutes), but it's not the complete end of the world. New
total: 40 minutes of music.

Chapter 8: Game Design Document 125

Sound Design:

The sound design is a tough one because there is no getting around it! The game is big and there are tons of SFX. If
worse came to worst and we really had to squeeze it all together we could unhappily shave an extra 5K off the 30K figure
and use less looping ambiences and reuse in-game sfx for the cinematics. Once again, quality would go down because
of repetitiveness. New total: Approximately 800 sfx.

Dialogue/V.0.:

This one is a little easier but the consequences are greater! We could easily get a bunch of actors @ $500 but | can guar-
antee you that the quality WILL NOT be great. Acceptable, but not great. We could also take out the 10% contingency and
just live with what we get in the sessions. New V.0. total with those changes = $16,500

New Grand Totals:

Music: $40,000
SFX: $25,000
V0. 16,500
Total: $81,000

If you are thinking of making this game an A or AAA title, the 100K budget is absolutely necessary. For a B title you can
easily get away with the 80K figure. Anything less and you're headed for the C title blues.

Let's discuss once you've had a chance to digest it all and talk it over with some people.
Thanks,

Tommy

The music requirements for Black9

Special Effects will need to be created. For a first-
person shooter, enumerate the weapon
effects and explosions. For a plat-
former, write down the magical effects
when the character picks up a power-up
or gathers another star or crystal.

This is a sort of catchall category that is
specific to your game’s genre and tech-
nical implementation. For example, in
Starfleet Command a list of the weapon
effects, astronomical features, and
other system effects like tractor beams

126 Chapter 8: Game Design Document

WEAPONS AND AMMO
WEAPON Cost Range Damage Magazine ~Magazine Categorization ~ Weapon Type llluminati Specialty? Threat Mission Comments
Size Cost Level First
Available
9mm Pistol $1,000 Bullets 21 10 5 15 $15 Firearms pistol no (global) 1
Shotgun $800 Shells 10 15 3 5 $20 Firearms rifle no (global) 1
(sawed off)
Shotgun $700 Shells 25 10 3 5 $20 Firearms rifle no (global) 1
Sub-Machine $5,000 Bullets 45 8 9 30 $5 Firearms pistol no (global) 1
Gun
Sniper Rifle $20,000 high-caliber 300 25 1 1 $10 Firearms rifle no (global) 4
rounds
Silenced Pistol ~ $15,000 Bullets 15 5 5 5 $10 Firearms pistol no (global) 4
Crosshow $5,000 Bolts 60 10 1 1 $5 Special rifle Tea-Drinking Society 7
Crosshow $5,000 Poison-Tipped 60 3 1 1 $25 Special rifle Tea-Drinking Society 7
Bolts
Crosshow §5,000 Explosive- 60 25 1 1 $20 Special rifle Tea-Drinking Society 7
Tipped Bolts
Grappling- Special rifle Genesis 1 grapple across
Hook Crosshow open spaces, but
vulnerable to
attack as it
becomes the
equipped
weapon
Magnum Pistol ~ $1,500 high-caliber 2 15 5 5 $10 Firearms pistol no (global) 4
rounds
Suitcase Gun $2,000 Bullets 12 5 1 3 $25 Firearms pistol no (global) 8
Grenade $25 N/A 8 30 1 1 $25 Explosives thrown no (global) 1
explosive
Flashbang $10 N/A 8 5 1 1 $10 Explosives thrown no (global) 4
explosive
Mine $50 N/A na 50 1 1 $50 Explosives dropped no (global) 1
explosive
Tripbomb $80 NA n/a 20 1 1 $80 Explosives mounted Zubrin 12
explosive
Motion-Sensor ~ $120 N/A nja 40 1 1 $120 Explosives mounted Zubrin 12
Bomb explosive
Satchel Charge $75 NA n/a 75 1 1 $75 Explosives dropped no (global) 5
explosive
MIRV Grenade $150 N/A 8 15ea 1 6 $150 Explosives thrown Zubrin 12 explodes into
explosive smaller
grenades
Detonation $100 N/A n/a 100 1 1 $100 Explosives mounted Zubrin 12
Pack explosive
Flare Grenade $30 NA 8 3 1 1 $30 Explosives thrown Genesis 4 blindness lasts
explosive longer than
flashbang
Rocket $30,000 Rockets, MIRV 200 50 2 5 $180 Heavy launcher Zubrin 12
Launcher Rockets, Weapons
Guided Missiles
Rail Gun $75,000 high-caliber 200 60 3 10 $250 Heavy armature Genesis 5
rounds Weapons
Flamethrower $6,000 fuel 10 0 1 5 $50 Heavy rifle no (global) 5
Weapons
Grenade $4,000 Grenade Shells, 100 30, 15 ea, 1 8 $200 Heavy launcher Zubrin 12
Launcher MIRV Grenade 30 Weapons
Shells, Remote
Detonation
Grenade Shells
(aka Pipe
Bombs)
Rad Flux Rifle $100,000 none 80 25 5 n/a n/a Heavy rifle Genesis 5
(recharges) Weapons
Assault Rifle $10,000 Bullets 90 20 8 30 $50 Firearms rifle no (global) 1
Heavy Machine $25,000 Bullets 200 20 10 100 $75 Heavy armature no (global) 5
Gun Weapons
Katana/ $5,000 NA 0 30 3 n/a n/a Melee two-handed no (global) 1
Wakizashi pair Weapons melee
Blit Sword $9,000 N/A 0 40 4 n/a n/a Melee one-handed Tea-Drinking Society 7 curved blade
Weapons melee conducts energy
from tip to base
Stun Gun $500 NA 0 5 1 n/a n/a Melee one-handed no (global) 1
(Tazer) Weapons melee
Blackjack $100 N/A 0 2 1 n/a n/a Melee one-handed no (global) 1
Weapons melee
Dagger $150 N/A 0 5 1 n/a n/a Melee one-handed no (global) 1
Weapons melee
Blit Dagger $250 NA 0 6 1 n/a n/a Melee one-handed Tea-Drinking Society 7 curved blade
Weapons melee conducts energy
from tip to base

Chapter 8: Game Design Document 127

WEAPONS AND AMMO

WEAPON Cost Range Damage R-0-F Magazine Magazine Categorization Weapon Type Illuminati Specialty? Threat Mission Comments
Size Cost Level First
Available

All Guns are data linked

Manufacturers: Krupp, Sakamoto Designs, KIM ~ Kim International Munitions, Mossberg, Specialty Defense Systems, SkullCracker

Note: f llluminati restrictions are too harsh, could be changed so that buying those weapons when in the employ of that llluminati is cheaper, and outside the employ the weapons must be secured on the black market, and are thus
more expensive. Restrictions can also be tweaked or dropped based on design analysis and QA gameplay feedback.

Note: mission appearances are subject to change after design analysis and QA gameplay feedback

The weapons and ammo list for Black9

Stepping Back a Bit

Looks like a bunch of work, huh? Good, engineering, automotive repair—to
that is why it is a job being a game practice the skills involved before mov-
designer and not a hobby. If it seems a ing on to practicing the profession.

bit daunting to undertake this effort in ~ Even novelists can take creative writ-
writing up your game, I have a sugges- ing courses and budding scriptwriters
tion. Practice the skill of game design can take scriptwriting courses. So |
by writing up the game design of an think it is perfectly logical that a game
existing game. Go through this entire designer should practice writing

rigor on a game that is already success- detailed game design documents by
ful! It is perfectly reasonable in any analyzing another game designer’s
other profession—medicine, game.

This page intentionally left blank

Chapter 9: The Technical Design Document

Chapter 9

129

The Technical Design
Document

Inception

Implemerdation
First Flayable Phase

Final Candidate Croke

b Release

Where the technical design document lies in the
project life cycle

This chapter introduces the technical
design document and the work involved
in putting together the technical plans
for creating your game. As an introduc-
tion, this chapter includes the concepts
in a light overview designed to kick-
start your technical design process;
however, it is Chapter 18 that discusses
the technical design stage in detail.

Object-Oriented Design

Modern electronic games are large
software projects that run from hun-
dreds of thousands of lines of code to
millions of lines of code. Object-
oriented design (OOD) was invented to
cope with large software projects. I am
not going to fill up this book with pages
discussing the pros and cons of object-
oriented design versus procedurally
designed software; there are countless
good books discussing object-oriented
design at your favorite bookstore. I am
already sold on OOD, and I approach
the technical design document using
OOD; I am only concerned here with
the application of OOD and UML to
game construction. There is also a bias
towards C+ + as the language for
implementation of the game code.

130

There are a few other important lan-
guages for creating games such as C
and Java. I will not evangelize for C+ +
here either. If you are using Java, then
you are probably creating a game with-
out significant performance require-
ments for graphics and are interested in
cross-platform distribution. If you are

Chapter 9: The Technical Design Document

using C, then you have probably made
the determination that C+ + is not yet
right for your team or have some other
requirement keeping you with C.
Assembly language is of course used
when hand optimizing critical sections
of code and is not relevant from an
architectural or design point of view.

Purpose of the Technical Design Document

The technical design document is the
blueprint for the software engineers on
your team to use in the creation of the
game. The ideal technical design docu-
ment will specify to your developers
not only what needs to be created but
also how it will be implemented. I was
introduced to strong software architec-
ture for the first time in the game
industry when I worked under Jay Lee
at Interna (a game company that has
since joined the mound of defunct game
companies). When I signed up for the
job as a developer at Interna, [was
looking to learn more about C++ and
artificial intelligence.

What Jay Lee did was to use strong
encapsulation of the implementation
details by creating a detailed set of
interfaces for the classes of the whole
game (a massively multiplayer casino
game). Jay labored for two months writ-
ing header files. There was not a bit of
working code at the end of his two
months, just header files. I remember
that the members of the team were a
bit skeptical about this; we thought
while leadership was great and archi-
tecture was probably a good thing,
would it not be better if our best pro-
grammer were writing some code? Well

it turned out that it took three junior
developers just three months to flesh
out the source files as indicated by Jay’s
headers to implement the software Jay
described. It was the fastest any of us
saw software come together.

JARGON: A header file or a .H file is a
file in C or C++ that describes the inter-
face to the software module defined in a
corresponding source file (.C or .CPP
file).

Jay Lee demonstrated very strong soft-
ware architecture; ever since that
experience I have been learning more
about creating software better. The
relationship between software architec-
ture and the technical design document
is that the technical design document is
broader in scope and less detailed than
a software architecture plan. The tech-
nical design document must synthesize
the requirements of the game, develop
a software design, serve as a testing
plan, and also supply the project man-
ager with critical information such as
the required developer roles, depend-
encies between tasks and developers,
and an estimate of how long it will take
to perform each of the tasks assigned to
the developers.

Chapter 9: The Technical Design Document

131

Technical Design

in a game’s development.
Often they cannot visual-

Requirements Gathering
& Analysis

() 2T
- .

|
)

-

Software Archileclure

ize the game the way the
game designers are able to
and are forced to
green-light a project based
on feelings of trust in the
developer. All executive
management teams would
rather replace this trust
with seeing some cool eye

The conceptual overview of a technical design document

The technical design document has
other customers besides the develop-
ers on your team: The game publishers
are becoming savvier in their technical
evaluation of game developers as the
scope of the projects grows and the
associated risks with the projects
increase. Most likely you will need to
deliver a technical design document as
an early milestone to your publisher.
The problem with a technical design
document is that while most of the
strong publishers are now asking for
them, there are few senior game devel-
opers with the requisite technical
expertise to perform an adequate
review of the developer’s technical
preparations. This lack of technical
review means the technical design doc-
ument will be poorly reviewed and as
such is not a very visible deliverable.
This creates another problem; early in
the project the executive management
1s almost always eager to see progress

candy on the screen show-
ing that the game is
happily in development
and looks fun. This creates
an unholy tension when
the developer is pressured to not think
about the technical design of the game
much in the early stages and must
instead play catch-up all project long. It
is widely known in the software engi-
neering field that you would much
rather identify and fix a defect in your
software at the design stage than at the
end of the project. Estimates vary, but
the consensus appears to be that it is
fifty times more expensive to fix a bug
at the end of the implementation stage
than at the design stage. Thus, I
encourage you, by whatever means you
can, to take your time on the technical
design phase of your project and work
closely with your publisher or execu-
tive management to make the work of
the technical design stage visible and
reviewed to assure that progress is
occurring on the project. Email me if
you come up with tips on how to get
publishers more excited about the tech-
nical design document.

132 Chapter 9: The Technical Design Document

Relative Productivity on Projects with Strong and Poor Development Processes

0 e —_—

% Effort Directly Into Forward
ull Progress
| —
50 K
40

Projects with Srong Development Process

Projcts with Poar Davelopmant Process

Month 2.
Month &
Final

onth 11

= o4
g £
2 =

Month 13
Maonth 14,
Month 15
Mongh 17

Strong process, poor process—relative efficiencies

The increase in cost due to a delay in bug creation and bug correction

% Requirements -
%, Dotailed Design ;
%‘ Implementation -
‘ = =

Post-Release -] -!
n“”‘. s § & i i %
4 = a 2 B

3 i 3 ¢t
5 : 5) ugie #

winen

The later you identify and fix a bug, the more the cost rises.

Why Have a Software Development development process is the method
Process? your team uses to take the game speci-
fications and turn them into a game.
Even the solitary game developer
working on her own private game, iter-
ating each night after working the day

All development houses have a devel-
opment process even if they do not
consciously go about creating one. A

Chapter 9: The Technical Design Document

job, still has a development process.
This lone developer’s process could be
as informal as writing up a sketch of the
main game interface on a piece of graph
paper and then incrementally building
the game, a new feature every night,
until the game is playable. Some
high-profile game development compa-
nies also use this method.

Steve McConnell’s seminal book
Code Complete is one of the most acces-
sible works discussing in detail soft-
ware development methods and why
organizations resist learning new devel-
opment processes. The problem with
learning a process is that it takes time,
and most organizations are in short
supply of time. They are under great
pressure to get something visible and
running as quickly as possible to reas-
sure management that the project is
well under way (a recurrent theme in
this book, I know). A strong software
development process will emphasize
thinking at the beginning of a project
where a weak development process will
create an even larger burden of wasted
time at the end of the project. In the
most extreme cases of poor process,
the projects find themselves in such a
hole of despair due to poor decisions
made at the beginning of the project
that the project itself is cancelled rather
than throwing everything out and try-
ing again. I am firmly convinced that all
of the games in the industry that are
taking 30 to 60 months to complete are
being performed at development
houses with a poor development pro-
cess, which results in a poor
preproduction.

It is understandable why game
development companies are generally
poor at enforcing a strong software
development process. First of all, most

133

software companies are poor at the
development process by all accounts;
second, the industry holds creativity
sacred (a good thing, but it can be used
as an excuse to avoid professionalism);
and third, the games themselves are
always becoming larger, faster, and
more complex—about at the rate of
Moore’s Law. The result is that studio
heads or publisher executives who
might have had hands-on experience in
creating a game five years ago now
have a misguided interpretation of the
scope of the project they are responsi-
ble for. Interpreting Moore’s Law
liberally, it would suggest that over five
years a game would be eight times
larger in complexity and scope than an
equivalent title five years before. This
last point I think is significant and
rarely discussed; managers are often
walking around with an impression of
the work to be completed as much
smaller, like when they were creating
games hands-on. They were successful
then, or they would most likely not
have achieved their leadership position.
That means they must have been suc-
cessful with their software development
process and that the penalties back
then were correspondingly smaller. 1
think this is a great source of subtle
evil in the game industry.

JARGON: Moore’s Law—computing

power will double every 18 months.

So are you ready to hear about a better
software development process?

The Unified Software Development
Process

We at Taldren use a modified, light
version of the Unified Software Devel-
opment Process. I will, however, pres-
ent an overview of the full Unified

134

Software Development Process and
then go back and explain what we do.
The core workflows of the Unified
Process are requirements, analysis,
design, implementation, and fest.
Looking over this list of five activities, I
would imagine most people in game
development would be surprised to see
the three preproduction activities:
requirements, analysis, and design. If I
were to interview game development
houses to ask them what core
workflows (after explaining what I
meant by the term) they are using in
their development, they would probably
say design, implement, and test. This is
one of the key fea-

Chapter 9: The Technical Design Document

The Unified Process recognizes that a
real-world project cannot crisply com-
plete one workflow and then move to
another workflow. To address this, the
Unified Process is an iterative and
incremental workflow method, where
each stage of the project is driven
through inception, elaboration, construc-
tion, and transition.

Phases of a Workflow in the Unified
Process
1. Inception
Elaboration
3. Construction
Transition

tures of the Unified

Phases

Process; it formally
recognizes that
gathering your
requirements is a
different activity
than analyzing the
requirements,

Requirements
Analysis
Design
Implementation

Test

Inception

;—* — l
[[

Q_* ol | | l

‘Elahnratlon ‘Constructmn Transition

which is in turn a

Iter #1

lter #2 | Ier #3 Iter #n-1| lter#in

wholly different

activity than design- The work flow of the Unified Software Development Process

ing your software to

meet your game’s

requirements. If you think back towards
an earlier chapter on gathering your
key business parameters before creat-
ing your game design document, you
will notice that I added a bit of material
from the game development domain to
the requirements capture stage.

Core Workflows of the Unified
Process

Requirements

Analysis

Design

Implementation

Test

ARl S

In the real world you will find yourself
late in the project, perhaps near alpha,
when you realize that your game inven-
tory system is broken and not fun (it
turns out tracking the adventuring gear
to the nearest gram was not a great
idea), so now you need to go back and
design a new inventory system. The
Unified Process would have you stop
and think about your new inventory
system, review your requirements, ana-
lyze what impact the new inventory
system requirements will impose on
the existing game, design the new

Chapter 9: The Technical Design Document

135

g

|
v

{ “Testtasel

(TestCose2 | [TesiCazed |

The various models of the Unified Software Development Process

inventory system, implement it, and
test the inventory system.

Perhaps at this point you may be
getting bored and rolling your eyes and
thinking to yourself, “This is just a
bunch of fancy multisyllabic names; of
course I think about my stuff before I
code it.” While it is true that these
terms are just a bunch of jargon, if you
actually consciously name what activity
you are performing, you will have a
much greater awareness of what you
are doing. This awareness will translate
directly into being more purposeful
about collecting your requirements
when the sign over your head says you
are in requirements capture; you will be
a far more effective analyzer of the
requirements when you are not obli-
gated to think about how you are going
to code the rasterizer. Your designs will
be much stronger when you have all of
the requirements and their impact laid
out in front of you.

When Should the Technical Design
Document Be Written?

The technical design document should
be developed in preproduction along
with the game design document but
perhaps staggered back a bit to allow
the game design document time to
form up. The technical design docu-
ment needs to be developed with a
thorough set of plans and time esti-
mates before the schedule and the
project plan (discussed in the next
chapter) can be completed.

During production it sometimes
becomes necessary to change the
direction of some features in response
to technical research, focus group test-
ing, market research, or an awareness
of a lack of thorough design in the
preproduction stage. In response to any
change in the game, a fast response
mini-technical design stage should be
initiated before any new development
of these changes is undertaken. In
other words, don’t allow your deeply
thought-out technical designs to be

136

held up like stone tablets that must be
followed. By all means, change your

Chapter 9: The Technical Design Document

design during implementation if you
identify a better design.

What Goes into the Technical Design

Document?

Now that I have established that a tech-
nical design and architecture are good
things to have, it is time to define what
goes into the technical design docu-
ment. The technical design document
acts as a plan of attack on the require-
ments of the game: a plan for whom,
when, and how these requirements will
be accomplished. This technical design
document is a miniature project itself
going through several stages: require-
ments capture, requivements analysis,
high-level architecture, mid-level software
design, deployment design, a testing plan,
and a transition plan. Each of these
stages will be chock full of documents,
diagrams, and time estimates to com-
plete the tasks described within.

being part of the engine development.
The goal is to write down every single
expectation the team, the executive
manager, the designers, and the fans
have for the game. Note that this stage
is named simply requirements capture;
there should be no efforts to cull, prior-
itize, or otherwise analyze the require-
ments and make any decisions. The
goal is to just cast the net as wide and
as far as possible and be very thorough
in collecting all of the fine details. Any
premature efforts to analyze the incom-
ing requirements will bog down the
process and create decisions that are
made on less than the full set of infor-
mation available to make these
decisions.

Requirements
Capture

Requirements capture
1s the process of iden-
tifying all the require-
ments the game as a
piece of software must
satisfy to meet the
goals and expectations
for the game. Require-
ments can take a myr-
iad of forms from a
frame rate require-
ment of 60 frames per

Py)

LAY
Blayar

second, to fitting on a
single CD, to not tak-
ing more than 80 pro-
grammer-months to complete, to
having very few defects, to having 3D
sound or 10,000 polygon characters, to

Capturing use cases

The requirements capture stage is the
most critical to a successful project and
in many ways is the most difficult. It is

Chapter 9: The Technical Design Document

difficult to decide when you have identi-
fied all your requirements, and it is also
sometimes difficult to describe them
clearly, such as when you are trying to
push your graphics to the “next level,”
whatever that might be.

Let us tackle it in order of easiest
to most difficult. The easiest require-
ments to capture are the requirements
described in the game design docu-
ment! This document should have a
design for the main game interface, the

137

shell screens, the game mechanics, the
art design, and the content such as mis-
sions, levels, and puzzles.

The Unified Modeling Language
has the use case diagram, which is
most helpful in the requirements cap-
ture stage. The idea behind the use
case diagram is to note the actors
(users and other discrete systems such
as a CD authentication server) and the
interactions these actors have with the
software system.

HEY

FLAYER ACTIVITY

DATA TRANSACTION

View Officer Name
—

PLAYER VIEW Views Cost to Buy Officer

i

GET INFO View Best sl

|

Views Bet

Rooturn bo Sourciidenu | Actty
} %

Folback or Trarsa? eq\nm-:nm;ns

HPecapl b1 Cancel /\":éw':urefl Prestips
' \
| asizeiae
- i Wik Startiadi N

e Sarfiest Command Tre

Py Heit Generation Officer
Uk Case Diasgram

/ Gt Playesr Info

<€ s >

(ot Starbase Info

View Officees Avalatis al Starbase E\"“‘-h-h_q_
<t i e o~ Er =
/5 = - View Ship Name
s e N Rz
/ // S Payer | s Get Player Info
= l \
L /
Get Starbiasa info / Gt Flayer Ship Info
C:) - & ‘Voew CLITNE Crow ASsignments -
Gat Officer Info o e Clrrory Selocted Ofcer Probis
Traewtor Officor In /' @
ccums > Vi Trado Ve G
View Offcer Name
Transact Oifter Changs At Assgn @
View Officer Narme
<< usofs >> View Officer Altributes
< -
Vidw Stabion Assgnment Vi Offices Shals
@ uset £
L 3
Gat Startase info ol Playes Info
>
G4t Player Ship Info Get Starbasa info Gat Player Info
Gat Player Stip infa
Gt Offcer infy et Player Ship Info
e ¢
Gat Offices Info Gat Oficer Info

The use cases of the officer menu in Starfleet Command 3

138 Chapter 9: The Technical Design Document

USS Enterprise - Crew Manifest STARBASE 17 - Available Recruits

Officer Station Worth Cost Baat 3ki
BB0 FIRST AID Expert
ARSWARKAS! 442 CLOAX COUNTERMS Legendary
Ursula Leguin Operations 660 860 FIRSTAID Skilled
442 (LOAK COUNTERMEASURES
880 FIRSTAID
Tim Powers Medical 880 CLOAK COUNTERMEASURES Legendary
Mz FIRSTAID Skilled
geg (LOAK [OUNTERMEASURES Veteran
Blish Security 42 FIRST AND Expert
[B peg CLOAX COUNTERMEASURES Expert
M FIRST AIDY) Legendary
Dan Simmons Unassigned B0 Skilled

Ellison Tactical 430

Philip K. Dick Engineering

Gerrold Navigation
Tanith Leo Unassigned

(LOAK EASURES Veteran
Jack Vance Unassigned L p "

AT ATOASSIGH | <
OFFICER HELM SKILLS [| ENGINEERING SKILLS

PROFILE THRUSTER CONTROL Basic THRUSTER EFFICEENCY Basic
PILOTING skm-d /WARP TECHNGLOGY Skilled
Everett Koop EMERGENCY PROCEDURES \ INERTIAL DAMIPER TECHNOLOGY Veteren

Maicer omcer (OBERATIONS SKis RIT
lnulllgtn:o: G Basic

(LOAK uumtmmum Skilled SIVE P Skilled
Veterea FINESS PROGRAM Veteren

MEDICAL SKILLS [N TACTICAL SKILLS

Basic TARGETING Basic
Bhkilligd, TROUBLESHOOTING Skilled
/ Vetgren CDUNTERMEASURES TRAINING Veteren

ENGINEER

Trined
A 5 [kilked
rruunrumu: £5 TRAIN | 1 = I { 1] Skilbed
TARGETING TARGETING Tisined
TROUBL TROUBLESHOATING
INTELLIGENC 12 e | INTELLIGENC 12 COUNTERME ASURES TRAINING
TOUGHN . + | TOUGHN
HEALTH n | o 5 4 I meaumn
WORTH I i i | WORTH J 2] Trained
I Shilled
Shilled

TARGETING = i A TARGETING
TROUBLESHOOTING TROUBLESHOOTING
COUNTERMEASURES TRAINING | 4 COUNTERMEASURES TRAINING

30
INTE RMEASURES

TARGETING L

TROUBLESHOOTING Shilled 1 TROUBLESHOOTING

COUNTERMEASURES TRAINING Shilled COUNTERMEASURES TRAINING

The nearly final officer screen

Chapter 9: The Technical Design Document

The above use case diagram is from
Starfleet Command: The Next Genera-
tion. The function of this menu is to act
as a vending machine, “selling” new
officers for the players to use on their
starship and allowing the players to
“sell” back the officers they already

139

to collect every single action the player
would have with this menu and arrange
it graphically to aid in the technical
analysis of what needs to be done.
Accompanying this diagram is a regular
document detailing these individual
interactions or use cases.

have. The purpose of this diagram was

Officer Menu Use Cases

Displays or Player Views
These are just views; there are no player interactions in these use cases.

View Ship Name
This is a simple text display of the player’s ship’s name.

View Current Prestige
This is a simple text displayer of the player’s current display. Display these prestige points in normal text output color if
they have enough prestige to buy the least expensive officer in the base; if not display this prestige as red text.

View Starbase Name
This is a simple text display of the name of the starbase or location that the player is performing officer selection. In the
case of multiplayer or skirmish games, display the name of the mission type.

View Current Officer Assignments

This is a complex display combining the following elements:
¢ (Qfficer Name

* Station Name and/or Station Icon

e Qfficer Trade-In Value

This display displays six such officers; there is no scroll bar.

Atall times there is to be an officer displayed here; even when the player transfers out an officer, a flunky ensign with
basic skills throughout will be displayed. We need a long list of potential officer names that is race specific and easy to
add to.

View Officer Profile
This is a complex display combining the following elements A and B:
A. Officer Attributes

e Officer Name

e Qfficer Intelligence

e (Qfficer Toughness

e Officer Health

e Officer Cost to Buy / Officer Trade-In Value

B. Officer Skills

Each of the skills is broken down into three sub-skills and a display of skill rank. The skill rank should have a header of
skill rank rather than the vague info as depicted in the current interface diagram. The skill rank should be a word
description:

¢ Basic [Green Text]: A basic understanding of the skill category. The officer can perform the skills in this category,
but with a negative impact on ship performance.

¢ Trained [Blue Text]: Trained. The officer's performance has no effect on gameplay and is altogether neutral.

140 Chapter 9: The Technical Design Document

¢ Skilled [White Text]: Skilled. The officer will impart some slight improvements in game effects to the performance
of ship operations in this skill category.

¢ Veteran [Yellow Text]: Veteran. The officer will bestow modest improvements to ship performance in this skill
category.

¢ Expert [Orange Text]: The officer has attained a skill that few others can compare; the gameplay effects are fairly
strong as an officer effect.

¢ Legendary [Red Text]: The officer has attained a level of skill that is unearthly. They are miracle workers.

Helm Skills

¢ Thruster Control: Improve acceleration

¢ Piloting: Turn radius

* Emergency Procedures: High energy turns (HET) breakdown adjustment

Engineering

* Thruster Efficiency: Improves maximum speed

¢ Warp Technology: Reduces vulnerability time before and after warp

¢ Inertial Dampener Technology: Reduces the effects (recovery time and regeneration) of breakdown

0PS

¢ Scanner Technology: Improves the range and effectiveness of the scanner systems

¢ Cloak Counter Measures: Decreases enemy cloaking effectiveness

* Find Weakness: Finds weak spots in the enemy’s defenses, which in turn increases weapon effectiveness
against targeted ships

Security

¢ Close Quarters Combat: Increases combat effectiveness of Marines

¢ Defensive Planning: Increases ships’ natural resistance to raids and boarding

¢ Fitness Program: Decreases likelihood of officers getting injured, including damage from any assassins

Medical

¢ Psychology: Sustains crew morale across missions

¢ First Aid: Increases the likelihood that an officer who is stunned recovers quickly

¢ Surgery and Recovery: Increases the likelihood severely injured officers survive

Tactical

* Targeting: Increases weapon efficacy

* Troubleshooting: Reduces the effects of weapon degradation due to damage

¢ Counter Measures Training: Reduces the effectiveness of both natural and artificial ECM

View Available Officers

This is a complex display combining the following elements:
¢ Officer Name

e Officer Cost to Buy

* Best Officer Sub-Skill

e The Skill Rank in this Sub-Skill

If there are no officers available at this starbase, display this text:
* “No officers available”

* This display is a scrolling display with no limit to the number of entries.
* The cost of the officer should be displayed in red if the player does not have enough prestige to buy the officer.

* The skill rank of the best sub-skill for the officer should be colored by the schedule of colors from the previous
section.

Chapter 9: The Technical Design Document 141

Player Activities

Cancel

All transfers in and out and auto-assignments of the player’s officers are thrown out and the officers the player had in
place when entering the menu are restored as well as the prestige the player had at the start. The player is then returned
to the source menu or activity from where they came from.

An “Are you sure?” modal dialog might be a good addition to this choice.

Accept

All transfers of officers in and out of the ship and auto-assignment of officer stations are committed as well as the pres-
tige changes. The shadow copy of the officer assignments from the beginning is thrown out. The player is then returned
to the source menu or activity from where they came from.

An “Are you sure?” modal dialog might be a good addition to this choice.

Transfer Out

The officer that is currently selected on the side of the player’s ship—the crew manifest—is transferred off of the player’s
ship and is placed in the starbase (and is viewable there). When the player transfers an officer out they only receive a K
constant on the trade-in value for the officer. I would like to initially set this value to 1.0 so that the player has no inhibi-
tion on transferring their officers from station to station. However, | would like to be able to change this value later, for
balance or difficulty settings.

[t should always be successful to transfer an officer out.
The transfer out button is always available.

If the player selects one of those basic ensigns with no skill, it just disappears into the ether and cannot be effectively
transferred to a new station. This is to prevent the player from transferring out their infinite supply of ensigns and filling
up the starbase.

Transfer In

The transfer in button will take the officer currently selected on the starbase side and swap places with the officer cur-
rently selected on the player’s ship side (effectively performing a transfer out of this officer at the same time).

If the player does not have enough prestige to transfer in the selected officer from the starbase, then the color of the cost
of that officer is red and the transfer in button is not enabled.

Auto Assign
By a simple algorithm the officers on the player’s ship will shuffle about to have the officer with the best skill for each
station. The algorithm should be something like this:

Take an officer and average the officer's Medical sub-skills to compute an average Medical skill rank; repeat this with all
major skills and all six officers.

Now sort the officers in order of who has the highest major-skill value from largest to smallest.
Whomever is at the top, assign them to the station that corresponds to the skill that has the highest major-skill rank.
Keep going down the list until all six stations are filled.

The use cases of the officer screen

A fundamental tenet of the Unified activity diagram, the sequence diagram,
Modeling Language (UML) is that you the class diagram, the package diagram,
should never create documents and dia- and the deployment diagram. This could
grams just for documentation’s sake. be a bewildering array of diagrams if
You should use your own judgment on you went about every menu with nine
how much rigor you should apply to the different diagrams and 50 pages of sup-
problem. That is because beyond the plemental text. You would quite clearly
use case diagram, UML offers eight never make a game, but you might
more diagrams such as the fest case, the make a bureaucrat proud.

142

With that cautionary statement
about not going overboard, I think it is
well worth your time to collect all the
use cases that directly involve the
player. Unlike most business applica-
tions, we game makers have the player
perform many interactions, and some
are quite complex. Take the time to
create a use case diagram for each shell
screen. Most of these you will not need
to document much, just some notes
here and there about how many charac-
ters that text entry should take, how
many digits that display should pro-
duce, and so on. It is absolutely
required that you create a menu flow
(my term) diagram to chart the flow
between your shell screens.

Chapter 9: The Technical Design Document

The main display of your game,
whether it is an isometric role-playing
game, a starfighter game, or a racing
game, should be where you put in most
of your use case analysis time. Take the
time to mock up the display in Adobe
Photoshop or some other layout tool.
Then carefully hunt and peck for every
interaction and requirement you have
for the main display. I would recom-
mend using a whiteboard or a piece of
graph paper to collect this first pass of
interactions and use cases.

Next, rearrange your use cases to
factor out common functionality or
behavior from your various interactions
and create your use case diagram in a
tool such as Visio. As a last step, adorn

Tutorial Intro ‘

B9 Menu Flow
F Character
Creation Mid-
Campaign
T
| Load Game | Am—
. o«
e
g ‘ Foltical Status
T Aujust Atributes ‘ m‘
% | skill Detail | | Gear Dotail |
v
v

The menu flow diagram for Black9

Chapter 9: The Technical Design Document

your use cases that have certain
requirements, like a frame rate of 60
seconds, that are not direct interac-
tions. This can be articulated as a note
on the view main display use case.

== LSEE ==

“iewr Current Prestige Get Player Info

=< Uses ==

Wiewr Starbaze Name Get Starbase Info

An example of adornment

To be productive with interactions, do
not attempt to analyze the use cases
into anything that resembles imple-
mentation. At this point you do not care
how the interactions will be handled;
rather you just want to know what the
interactions are.

Reverse Engineering

Now all this is just fine when you are
working from a clean slate, but in this
world of licenses and franchises you
will often find yourself working on a
sequel or port of a previously released
game. Use case diagrams are a valuable
tool for performing reverse engineering,
that is, taking a system that is already
built and working backward to under-
stand how it works. Understanding how
the existing system works is a key step
to successfully taking over someone
else’s code base. Here all of the use
cases are already functional in an exist-
ing game. Your job is to play the game
and take note of every interaction the
player is having with the game and
every requirement expressed in the
previous game and produce use case
diagrams and use case documents to

143

describe the existing engine. Last year
at Taldren, when I hired Ken Yeast to
take over maintenance programming
for my area of SFC: Empires at War, he
had a little trouble wrapping his mind
around the sequence of events and
interactions involved in the matching of
humans and Als in the online gameplay
for SFC: EAW. Ken not only came up
to speed with my code in an efficient
manner, but was actually fixing subtle
and complex bugs with the ability to
“see” what is expected of the system.

No matter how hard you look, you
will never uncover all the use cases and
system requirements for your game
project during the technical design por-
tion of preproduction. Don’t worry
about it; anytime you discover a new
use case, just figure out where it is fac-
tored into existing behaviors, if any, and
update the use case diagram and sup-
plemental text.

Nonobvious Requirements

Here are some other nonobvious
requirements that your game may
have:

Design requirements—you want the
game to support user extensibility, such
as a map editor or a scripting language,
or use an existing code base.

Interface requirements—similar to a
design requirement but closer to the
code, such as using OpenGL over
DirectX for portability.

Implementation requirements—
these are unusual coding standards
such as the commerce level of transac-
tions and database storage when
implementing your own billing system
for an online massively multiplayer
game. A simple example is the platform
for your game—PS2, PC, GBA, etc.

144

Performance requirements—exam-
ples of these requirements are the
all-important high frame rate or a toler-
ance to a specified level Internet
latency.

Requirements Analysis

The purpose of the requirements analy-
sis stage of the technical design
document is to take the use case model
of the game, which describes the game
in terms of player interaction, and cre-
ate an analysis model of the game in the
highest level of technical design for the
developer. The following table enumer-
ates the purpose of the analysis model.

Use Case Model Analysis Model

Described using the
language of the player

Described using the
language of the game
developer

Internal view of the
game

External view of the
game

External structure by
use cases

Internal structure by
use of stereotypical
classes and packages

Used primarily to build
a contract between the
development team and
the publisher (executive
management, i.e.,
customer) to articulate
what requirements the
game must fulfill

Used by the game
developers to
understand how the
game should be
designed and
implemented

Outlines how to create
the game including a
high-level architecture;
this is the first pass at
formal design

Captures the
functionality of the
game including
nonobvious
requirements

Defines use case
realizations, each one
the result of the
analysis of a use case

Defines use cases that
are further analyzed
during the rest of the
design through to the

test cases

The analysis model is not the name of a
diagram, rather it is the name given to

Chapter 9: The Technical Design Document

the collection of diagrams, text, and
designs that lie between the require-
ments capture stage and the deeper
design stage. It will be in the design
stage that you make your final plans for
the construction of the software. In
short, the analysis model is perhaps a
fancy name for your first pass at the
rest of your technical design. You can
create a package diagram recast in the
analysis model, a sequence diagram,
or a collaboration diagram. What you
are seeking to do is iteratively move
towards the deeper, more specific con-
structs. The goal is to avoid creating
bugs and defects in the game’s design
and architecture that could be fixed
now just by rearranging some symbols
in Visio rather than rewriting a tree of
classes near the shipping of your game
due to a subtle bug. You must use your
judgment here to decide how far to
push the analysis model. Getting the
client-server interactions of a mas-
sively multiplayer game is a place I
would feel comfortable taking my time.
Looking over the previous table, it
is clear that no matter what software
development process or lack of one is
employed, you will always end up
analyzing your requirements and imple-
menting the requirements. What is to
be accomplished in the requirements
analysis stage is to pause and take
stock of the use case model and “parse”
it into developer language by taking the
use cases that have been grouped
together by factoring common behavior
and come up with proto-classes and
basic sequences of events. The idea is
to start jelling the technical design
without committing to final class dia-
grams; this will prevent you from
following what may be the wrong path

Chapter 9: The Technical Design Document

of implementation. In other words, if
you start producing final class diagrams
in response to the first use case you
see, then you will produce a system
that best answers that first use case. In
any area of the game where you have a
complexity of use cases, all of them
vying for your attention, you should
probably take the time to stop and pro-
duce an analysis model of the aggregate
use cases.

As always, use your judgment;
there will be many times parts of your
game will not require the rigor of an
interim analysis model to be developed
before going ahead and creating your
final technical design. For example, the
menu presenting two buttons to the
players requesting them to choose
between single player and multiplayer
game mode will not require deep
thought, and you should just go ahead
and take the use case diagrams as the
analysis model—with a mockup of the
screen and its place in the menu flow, I
would call it a final design!

Class Diagram

The class diagram describes the static
relationships and roles of the classes
that comprise your game’s software.
The class diagram can be exhaustive
and detail every class and relationship
and be printed out on several hundred
sheets of paper and pasted to a wall (we
have a couple of walls at Taldren serv-
ing this purpose for fun), or your class
diagram could be focused on a narrow
portion of the game such as the classes
driving the Al of the starships in your
game.

The class diagram is the work-
horse of technical design. Most
programmers along the road of object-

145

oriented design will discover the class
diagram on their own. Either they were
faced with a tangled set of code in a
maintenance job and started scratching
sense out on a graph pad, or perhaps
they are facing a complex new system
they have been tasked to create, and
they want to nail it so they reach for
the whiteboard to consider a few differ-
ent class hierarchies.

As the following diagram shows,
the class diagram is a simple collection
of boxes, each representing a class, and
lines between the boxes showing how
the classes are related to each other.
There are many bits of detail and for-
mal notation we could add to the class
diagram such as descriptors declaring a
method to be public, private, or pro-
tected, and whether a class is a tem-
plate class or whether we are referring
to an instance of a class—an object.
These additional bits of notation are a
part of the UML I will introduce later,
but for the moment let us just consider
the essence of the class diagram:
classes and relationships.

Base Character Class

AN

[Base Weapon Class

Sword

Bob the Ogre
Egb

A basic class diagram

146

Relationships

The class diagram models the static
relationships between the classes. It
does not model any dynamic behavior
of the classes such as when they are
instantiated or destroyed, and it does
not describe the message flow between
the classes. It is the relationships
between the classes that make a class
diagram a picture of value rather than
just a collection of boxes on a piece of
paper. These relationship lines describe
the dependencies between the classes,
and these dependencies define the
architecture of your game. There are
several vocabulary words that are
employed in formal OOD to describe
the relations between classes, however
they are all variations of three possible
relationships. The “is a” relationship is
used when one class is derived from
another class. An example of this is: a
textbook is a child class that “is a”
book. The “has a” relationship denotes
the relationship between a class that
uses another class in its composition.
The textbook class could have a “has a”
relationship with the page class. Very
neat and tidy, eh? Well, I have a loose
end. There is one more relationship
that occurs between classes; it is the
compile time dependency in which one
class uses another class in the imple-
mentation of a method (also known as a
function). Any module that manipulates
strings is quite likely to include the
header file string.h from the Standard
Library. Each type used as a parameter
in a function creates a dependency
between that class and the invoked

Chapter 9: The Technical Design Document

type. Drawing every single dependency
relationship between a class and all of
the other types that are employed in
methods of our class under study would
only create a very hairy diagram sport-
ing way too many lines to be useful.
That is why the dependency relation-
ship is a kind of third cousin to the
more important “is a” and “has a”
relationships.

Drawing “is a” and “has a”
Relationships and Ordinalities

The “is a” relationship is denoted by a
line between two classes with an arrow
on one side pointing to the parent class.
The “has a” relationship is just a line.
The “has a” relationship line is often
adorned with the cardinality of the rela-
tionship on either or both sides. An
example: The “has a” relationship
between the textbook and the page
class would have the Arabic numeral
“1” on the side of the textbook and an
asterisk “*” on the side of the page
class. This shows an indeterminate
number of pages contained in the text-
book. It is also quite possible to be
more specific. The relationship
between the die class and the face
class could be adorned with a “1” on
the side of the die class and a “6” on
the side of a face class unless you are
playing third edition Dungeons and
Dragons as I like to do from time to
time; in that case the relationship
between die and face would need that
asterisk back again to account for your
pile of 20-sided, 12-sided, 10-sided,
8-sided, and 4-sided dice.

Chapter 9: The Technical Design Document

Ogre

<< |5 g ==

oh the Ogre Sword

== has a ==

Focusing on the difference between “is a” and “has
a” relationships

Adding Annotation

Quite often you will want to add impor-
tant information and details to a class
diagram that is not a class or a relation-

147

The class diagram is one of the dia-
grams used to perform structural
modeling. Two other UML diagrams for
structural modeling are the object dia-
gram and the package diagram. The
object diagram is a variation of the
class diagram where the instanced
objects and the relationships between
these instanced objects are the focus of
the diagram. The class that the object
1s an instance of is semantically desig-
nated by naming the object box like
this: Goblin: Monster. Important attrib-
utes and values of the object are listed
below a dividing line in the box as seen
in the accompanying diagram.

ship but a note. To add a note to
your diagram, simply draw a rect-
angle and dog-ear a corner, then
draw a line to the class, object, or
relationship that you want to clar-
ify. Adding performance require-
ments such as “must render a
steady 30 frames per second to
the 3D view class” is a good
example of a relevant notation.

Character Inventary item
FARY |
layer Monster
AN AN T
[Gondar | [Bibmbamare o] [Em)
[J

Other UML Diagram Types

The Unified Modeling Language
provides a number of diagrams that
support different areas of technical
design and software architecture. In a
later section I will cover in greater
detail the diagrams I find useful. Here I
will present the briefest of introduc-
tions to the rest of the UML diagram
family.

An example of an object diagram

Package diagrams are used to organize
your class diagrams. Once you have
about a dozen or so classes on a sheet
of paper, they will start to blur together
and lose their meaning. A package dia-
gram looks a lot like a collection of file
folders where the interesting bits of
class are listed inside the file.

148

Chapter 9: The Technical Design Document

1

2D Rendering System

1 1

= Design Game

Menu System

Game Simulation System

sresanight Approval

An example of a package diagram

Dynamic Modeling

Structural modeling is the modeling of
how the software will be constructed
from a static point of view—in short,
the activity you would imagine when
setting out to architect your game.
However, your game also has dynamic
functionality, and UML has diagrams to
handle this activity. Remember flow
charts? UML has polished up the flow
chart and now calls it the activity dia-
gram. The activity diagram models the
logic flow from start states to end
states.

Sometimes a simple state diagram
cannot model the complex message
flow between various objects perform-
ing interesting tasks in your game. For
example, in a client-server game there
is often a complex flow of data going
back and forth from the clients initiat-
ing requests and providing user input
and the server taking all of this infor-
mation in, resolving the game actions,
and sending out packets to cause the
clients to correctly update their

Implament Gama
;‘)‘ QA Game
*

Fix Game I

i

l Release Game I

.

An example of an activity diagram

displays. A very useful diagram to
model this detailed, complex behavior
is the UML sequence diagram.

A few more esoteric elements of
dynamic modeling remain behind the
curtains, and I will leave them there for
the time being; see me again in Part III.

Team- FI‘IJ‘"

Chapter 9: The Technical Design Document

|
|
A~
|
.) |
Legen Regeest |
- :
|
SendioSeene) | T 7
] osonvatdsson
|
I Hewp |
] 3 Version Raguest
| 1
Seedto caorny |
= ; I
LN VS, :
|
|
SedisSae |
Logen Reply
|
Send s Ciers) |
L

An example of a sequence diagram

149

Architectural Diagrams

Modern games are becoming large
pieces of software that need to be
designed and orchestrated on a macro
scale. The UML provides component
diagrams to illustrate the relationships
between modules, libraries, dynami-
cally linked libraries, databases, and
other significant chunks of your whole
game’s software composition.

UML also provides a deployment
diagram that appears to be useful only
for massively multiplayer client-server
games. The deployment diagram
describes where all the pieces of the
software are going to reside at run
time.

Black 9 - PC Metagame Overview

Black 9 Shard #1

Player

Blackd
Shard® 1
Campaign Senver Sule

Black9 Game Black9 Game
Engine Engine

Tacica
/ famert
t..
Oﬂw Player
Tacsca
f Game 82
- \ e

- e =
‘-_*
- Dmemal“ \
Tacica
Game 24
B —
- o

s

Omer Player

Tachcal
Game ®

f Tachcal
g — Game #N

Black9 Game
Engine

An example of a deployment diagram

150

For most games, especially console
games, the deployment of the game
software is well understood and a
deployment diagram would only be
another diagram in your technical
design document suitable only for
impressing Dilbert’s boss.

Large-Scale Planning and the Evil
of a Long Build Time

There are a few tricky parts of building
large software projects that all of this
solid planning aims to keep in check.
The largest bugaboo of large projects is
large build times. With computers
already amazingly fast and only getting
faster every month, it is easy to not
care about build times. When your pro-
ject builds and runs in five to fifteen
seconds after making a change to your
code, you never break your concentra-
tion. When the build times grow to
about a minute or two in duration, the
build time might be just long enough
for you to reflect on what you are doing
and perhaps be able to perform useful
thinking. Once build times grow to five
minutes or more, you have a serious
productivity leak. When build times
reach twenty minutes or more, people
will naturally take a walk down the hall
to chat with neighbors, hit the rest-
room, gulp some water, or get invited
out for lunch, and two hours may elapse
before they settle down again at their
workstation.

A full rebuild of any large project
will take a long time, but a small change
to the implementation of a single func-
tion in a file will be a snap for the
compiler to change and the linker to
come up with a new executable for you.
However, the gray area is where you
realize you must change the interface
to one of your classes and a header file

Chapter 9: The Technical Design Document

must be touched. If only a couple of
files include this header file, no wor-
ries, but if dozens and dozens of files
include this header file, look out—you
might as well just do a rebuild all.

The trick to good large-scale pro-
ject making is to consistently practice
good OO and keep your code modu-
larized. Very crudely speaking, do not
get in the habit of copying the include
directives from one file to another like
a huge fishing net, hoping to catch the
right file. Take the time to verify that
each and every include directive needs
to be at the top of the file you are
working on. This has been a constant
struggle with our Starfleet Command
series. When I took over the project in
1998 it was my largest project to date
and I had a lot of challenges. (I will skip
boring whining comments.) Too far
down the list of priorities was writing
code with a fast build time. At the time
we were under heavy pressure to make
a date, and all of us thought this game
would be it and we would be on to other
projects. We had no idea our game
would be such a success as to merit
working with the same code four years
later. Our project builds slowly due to
its size, but it is a crime that relatively
minor architectural changes cause sig-
nificant build times (30 minutes or
more!). We would love to rewrite the
entire Starfleet Command code base
from the ground up—that would be the
way to go! However, with tight budgets
we must use as much of the animal as
possible with each release. In this real-
world example we have chosen to go
the route of incremental refactoring.

Refactoring

Refactoring is the art and science of
making the code better without adding

Chapter 9: The Technical Design Document

new features. A smart maintenance
programmer will take time to not only
understand the code but also to clean
up OO foulings and other architectural
errors in the code.

Refactoring can be applied to clean-
ing up any aspect of how your code is
created. For the latest version of Star-
fleet Command we have separated the
3D rendering engine into a separate
DLL, and we have vastly decreased the
labor involved in sending messages
back and forth between the client and
server. The multiplayer code base both
at the application level and the Ul level
were refactored. And the disappointing
UI engine that we inherited from
1998—Quill—we have wrapped a safe
and sane coding condom around that
performs as advertised while leaving
the underlying Quill alone. Refactoring
1s a pragmatic practice, and I am a prac-
tical person. So we are rewriting and
polishing up significant chunks of the
code as we go, creating better software
as we maintain a regular release
schedule.

Please see the excellent book on
refactoring, Refactoring: Improving the
Design of Existing Code by Martin
Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts for a full dis-
cussion on techniques of refactoring.

Insulation

I fear I may be straying a little off the
path of the technical design document.
However, I defend myself by wanting to
convey to you not only passion for
reducing build times, but also some
practical advice on achieving faster
build times. I also argue that a section
in your technical design document

151

discussing your coding practices and
software design approaches, including a
section on build times, could only earn
you a nod of approval from the folks
who are to review your technical design
document as well as acting as the most
clear piece of communication to your
team about how you intend for build
times to be managed.

Besides just practicing good OO
there is another technique your pro-
grammers can employ tactically to
sections of the game to dramatically
insulate portions of the code from each
other. It goes by different names such
as Interface-Impl and Insulation. The
basic idea is to create an interface class
that contains an implementation class.
The role of the implementation class is
the traditional role of getting the job
done, and the role of the interface class
1s to be the only public access to the
rest of the project. This permits the
developer of the implementation class
to change the attributes and members
of the implementation class all day long
without needing any other modules to
be recompiled!

A classic example of the use of
insulation is a class that is a stack. The
stack could be written using an array or
a linked list (or quite a few other data
structures) to push and pop data onto
the stack. You write this class as clean
as you want, but you will always give
away your implementation details in
the header file. Sure, that information is
privately declared, but it is still publicly
viewable and, more germane to this
point, any changes to the stack classes
implementation, say from an array to an
STL list, will cause a rebuild of all mod-
ules that ever used your stack class.

152

Chapter 9: The Technical Design Document

// stack.h - implented as an array

#if ! defined (stack.h)
#define stack.h
class cStack
{
private:
int* pStack;
int size;
int length;
public:
cStack () ;
cStack(const cStack &stack);
~cStack () ;

Stacké& operator= (const Stack &stack);
void mPush(int value);

int mPop () ;
int mTop () const;
bool mIsEmpty () ;

}
#endif

A stack written as an array

// stack.h - implented as a linked list
#if ! defined (stack.h)
#define stack.h

class cStackLink;

class cStack
{
private:
cStackLink* pStack;
public:
cStack () ;
cStack(const cStack &stack);
~cStack () ;

Stacké& operator= (const Stack &stack);

void mPush (int value);
int mPop () ;
int mTop () const;

bool mIsEmpty();
}
#endif

A stack written as a linked list

Chapter 9: The Technical Design Document

153

#if ! defined (
#define stack.h

stack.h)
class cStackIter;
class cStackImpl;

class cStack

{

Stacké& operator=

bool mIsEmpty () ;
}i

const cStacké& left,
const cStacké& left,

bool operator== (
bool operator!= (

class cStackIterImpl;

class cStackIter
{

private:

cStackIter (
cStackIteré& operator=

public:

cStackIter(
~cStackIter();
void operator++();
operator const void* ()
int operator() () const;

}i

#endif

private:
cStackImpl*pStackImpl;
friend cStackIter;
public:
cStack () ;
cStack (const cStack &stack
~cStack () ;

void mPush (int value
int mPop () ;
int mTop () const;

// stack.h - fully insulated we do not need to know the implementation

)i

(const cStack é&stack);
)

const cStack& right);
const cStack& right);

cStackIterImpl* pStackIterImpl;
const cStackIters
(const cStackIter&);

)i

const cStackIter& stack);

const;

A stack fully insulated from implementation details

In practice there are many variations
you can take to elide your implementa-
tion details, with the wholesale privat-
ization of the implementation class
being the most aggressive and achiev-
ing the highest degree of insulation. I
have worked on a project that used this
method of insulation aggressively

throughout the project, and after dis-
cussing it in depth with my teammates,
in the end we disagreed with the wide-
spread use of insulation. In particular it
makes inheriting a class a pain, and
while it does save a lot of mind space
by hiding the implementation details
from the rest of the team, it also places

154

an extra duty upon the developers who
have to write the interface and imple-
mentation classes. In the end, we
decided it is most useful in larger
classes like game manager classes,
which are likely to undergo a lot of
revision in development while at the
same time are unlikely to ever have
anything derived from them.

Please read the detailed and well-
written book on a relatively unexciting
topic, Large-Scale C+ + Software
Design by John Lakos.

Forward and Backward Code
Generation with a Modeling Tool

So why do I advocate UMLs particular
set of boxes and lines for describing
software? Well, any set of lines and
boxes will do, as long as you think
through the stuff you need to think
through and communicate it well to
your teammates and project stake-
holders. That being said, UML is
making rapid progress in being
accepted as the industry standard for
describing and documenting software.

By becoming an industry standard
we are now seeing several products on
the market that will perform both for-
ward code generation from your
diagrams and reverse engineering on
existing code. I should let that settle
with you for a moment.

Think about it; your programmers
can link a bunch of boxes together in a
class diagram describing the relation-
ships between the classes, attributes,
members, parameters, public, private,
protected—quite a few details—hit a
button, and bam—the files are created
and the skeleton code is written! All
that is left for the programmers to do is
program. That makes UML cool.

Chapter 9: The Technical Design Document

The reverse engineering part can
come in handy when you need to digest
a whole mess of code. It really is quite
fun and educational to generate large
class diagrams and spend an afternoon
pasting them to a wall and reading over
them to get a feel for the lay of the land.

There are several tools to choose
from for the creation of UML diagrams,
including Rational’s Rose and Together
from Together Soft. We have even been
teased by Microsoft that Visual Studio 7
will come with a new version of Rose
bundled into the development
environment.

So yes, you can use your own
boxes and lines, but why not use the
boxes and lines that have software out
there that can help you?

Testing Plan

Towards the end of your technical
design document you must have a sec-
tion on your testing plan. How will you
test your game? Toss it to the publisher
and fix what they ask? Beta testing,
unit testing, black box testing, or white
box testing—which will you employ?

Unit Testing and White Box Testing

Unit testing is the most straightforward
of testing procedures. As you finish a
piece of your software, write a testing
suite to exercise your new piece across
all ranges of valid and invalid input and
see what breaks. This is the sort of
activity developers of the piece of code
should implement as a matter of course
in the development of their work.

Also note that unit testing will not
work with poorly architected code as
you will have few truly modular parts of
your game that can be tested independ-
ently from the rest of the game.

Chapter 9: The Technical Design Document

The best kind of unit and white box
testing is automated. For example,
some developers of 3D games have a
test where a computer constantly gen-
erates random locations and directions
for the camera to look at to see if any
positions and/or views cause a crash. In
the development of Excel, Microsoft
employs three or more redundant, inde-
pendent algorithms for the calculation
of the worksheets and compares the
values across them all to identify errors
in the algorithm that is being optimized
for shipping with Excel.

Black Box Testing

This is the type of testing most publish-
ers will perform on your game. They
may have organized checklists to fol-
low, but in the end it will be a bunch of
young folks early in their careers play-
ing your game in a relatively unstruc-
tured manner, looking for things that
are broken. The advantage black box
testing has over white box testing is
that since the testing is performed from
the user’s perspective with no knowl-
edge of the implementation details,
black box testing will often find bugs
that a white box testing plan was not
even looking for. The flip side is that
since the testing is not based on any
knowledge of the implementation of the
game, the testing can become rather
unfocused and can consume quite a lot
of man-hours in the pursuit of bugs.

155

Beta Testing

Beta testing is great; it is putting the
game in the hands of people who will
buy your game. Fix all of the bugs they
identify and you know for sure you are
spending your time on bugs that need
to be fixed. The problem with beta test-
ing is that it is an exaggerated form of
black box testing, where you have fans
just playing the game and reporting
what they feel like reporting. Beta test-
ers also consume great amounts of the
development team’s attention, as they
are real people who will express their
feelings and need continuous feedback
and direction to keep them happy and
productive. However, every game (and
product for that matter) should undergo
beta testing, as it is the only way to
determine if you really are making
something people will enjoy.

From Use Cases to Test Cases

How do you organize your black box
and beta testing? Again, UML offers an
aid, the test case diagram. The great
thing about this diagram is that it is just
the use case diagrams from the start of
our project being dusted off and getting
a shiny new label. Remember all of the
use cases you worked up to describe all
the interactions between the player and
the game? Those interactions are pre-
cisely what you want to test during
your black box and beta testing efforts.
Just collect all of your use cases and
convert them into a checklist of a test-
ing plan for the black box testing team
and the beta testers to test.

This page intentionally left blank

Chapter 10: The Project Plan

Chapter 10

157

The Project Plan

What Is the Project Plan?

The project plan is the culmination of
the planning articulated in the game
design, technical design, and other
design documents such as an art style
guide. The heart of the project plan is a
schedule that describes what will be
accomplished, how long the tasks will
take, and who will perform these tasks.
The project plan contains other infor-
mation such as milestone dates, task
dependencies, and a risk management
plan. The information in the project

plan is published to both the executive
management for progress reports and
to team members in the form of task-
ing. It is also used by the project
manager to level tasks between
resources, identify critical paths, and
develop contingency plans. A good pro-
ject plan will act as a major tool to avoid
surprises. All this seems like good
stuff, so let us get on with making a
project plan.

1

Game Design
Document

— I) .
Technical | [1
Design | Tasks |
Document \ 4
) Human Resources

1

Art Plan

|. Estimates '|

_'.Pro,ea Planning N
{ andTracking |
Software

The Project Plan

/' Risks

Plans.

Components of a project plan: estimates, resources, tools, tracking, dependencies, risks, and alternate plans

How Do We Create the Project Plan?

To create the project plan we will need
a list of tasks to be completed, who is
available to perform those tasks, when
the critical project dates are such as
milestones, and what the relationships

are between the tasks. The list of tasks,
the estimates of how long it will take to
perform these tasks, and their depend-
encies will come directly out of the

158

game design document and technical
design documents.

Critical project dates such as mile-
stone and release dates should be
iteratively arrived at with the executive
management team as the project plan is
compiled. Many projects are schedule
driven; however, the most common for
the game industry is the holiday shop-
ping season from Thanksgiving to
Christmas every year. Often projects
will be planned by walking backwards
in time from November to discover the
critical dates like beta, alpha feature
lock, first playable. With these projects
it will be the project plan that adapts to
the critical dates. This is discussed
later in this chapter.

Chapter 10: The Project Plan

Developers Conference I discovered
there was a fairly wide range of project
management rigor applied to game
development. Some shops considered
themselves too small to plan their
work; they just worked on whatever
was the most pressing task at the time.
Many developers just used simple
spreadsheets in Excel to plan their pro-
jects; some folks used Microsoft
Project to plan their tasks and then fol-
lowed up in Excel to perform their task
tracking; the more determined develop-
ers used Project for both planning and
tracking; and one large French devel-
oper that was part of a construction
firm used Project to plan and Microsoft
Team Manager for task tracking.

4 Game Design I
Business Paramaters | Document

Technical

Document

/ Project Planning
andTracking
Software

The Project Plan

The project plan pipeline

All of this project information will
need to be compiled into a usable for-
mat for project analysis and report
generation. With tools such as Micro-
soft Project or Primavera’s SureTrak
products, a myriad of reports and
graphs can be generated to review the
workload across team members, under-
stand what the critical path is, measure
project progress, and a whole host of
other views of your project status.
Many people are intimidated by project
planning, or they have seen project
planning only partially implemented
that failed to work. From my round-
tables on game production at the Game

Gantt and PERT Charts for
Organizing Project Tasks

There are many reports, graphs, and
charts used in project planning and
tracking. The two most commonly used
charts are the PERT and Gantt charts.
The acronym PERT stands for Program
Evaluation Review Technique, a method-
ology developed by the U.S. Navy in
the 1950s to manage the Polaris subma-
rine missile program. The PERT chart
places each task in a rectangular box
with a line drawn to the predecessor
task and a line to the next task; thus
the whole diagram looks like some sort
of tree. The PERT chart’s key feature

Chapter 10: The Project Plan

is the visual ease in identifying the rela-
tionship between tasks and the critical
path of the project as a whole. The
drawback of a PERT chart is that its
utility is limited to just the higher-level
view of a project. When individual tasks
of any nontrivial project are displayed,
the resulting chart is crisscrossed with
lines and is too unwieldy for the viewer
to absorb.

159

excels in data entry, as there is no end
to fussing about where to put the boxes
as in a PERT chart. The project man-
ager usually just needs to enter the
task name, estimated time to complete,
and a resource to complete the job. A
tool like Microsoft Project will auto-
mate the graph side of the chart. The
Gantt chart will also accept task
dependency information like the PERT

Fnish: 7/29/02 Dur: 5 days
Res: EB

Dissign Game Dusign Ul Inplement Sound Engine
St 3oz e @ g B TR L Staet: T30[02 MOk 7
Fiide: J/IE12_ Due: 3y Fawdv: 72202 Du: B thoys Fad: G502 Dur: 5 s
Rex: S0 Rex: EB Res: 50
Dasign Charactars
P T [TR

Design Graphlc Engine
St 71602 I0: 4
Firwth: 722002 Dur: & days
Res: 50

|| Sab7EiE DS L

Implement Graphic Engine

Frush: 729002 Our: 5 das
Res: 0

Design Sound
Sort: 7002 10: 3
Finish: BE[I2 Our: & days

Design Sound Engine
Start: GIGi0E IOc &
Frish: 812/02 e S days

Bes: FR

[

Finish: 819/02 _ Dur: 5 days
Resi S50

04 This game
> Srar 82002 10t L0

Finish: 9202 Dur: 10 days
Resi EB

A PERT chart from Microsoft Project

The Gantt chart turns out to be the
most generally useful of the project
planning and tasking charts. It features
a spreadsheet-like data entry on the
left-hand side of the chart with any
number of columns, the minimum being
task name, task start date, task dura-
tion, and resource name. On the right-
hand side of the chart is a modified bar
graph where each task is a horizontal
bar organized in a cascading hierarchy
as time progress. The Gantt chart

chart and draw arrows between tasks to
show what order the tasks must be cre-
ated in; however, the Gantt chart pro-
duces a more flat graph that does not
show off the dependencies of tasks as
well as the PERT chart. The visual
clutter of a Gantt chart can be mini-
mized to a great extent by nesting the
tasks into a hierarchy of task, subtask,
sub-subtask, etc. Microsoft Project
allows for a total of nine levels of task
nesting.

Chapter 10: The Project Plan

Lil Task Name: Curson Swt Firish | Predecessors Resource Names
1 [oesion | Sdayn The TAIND Wed AR
2 Dasin Game Jowrs| TraIMIA2 MonTNSNZ w
ol Design Graprc Ergre deys ThuTATOZ Wea TTAZ %
3| Dostgn L0 Sders T THERZ Mon 72202]
6 | [S T TAROD VWed FOGO2 0
5| Dasian Craracten Sowrs| Tus IZMOZ Mon T2 w
| Deesign Sound Engne Sdws ThuTRSOZ Wed 7102 =
v | [Mdan Thu AR Wed 27282 1
3 | gt Gt Frgge. daye ThUENED Ve RO £
2| Implement Character dwys ThulnOD weed 8702 =]
| Ingiement Sound Ergee Sows ThuBBAZ Wed BN4NZ E
13 Vgl Goren Mechare: 10day ThaREED Wed RO
" Vnglement Cortriis dave ThuBASED Wed A =
Create 5P days| ThuGEIOZ WedB2OAZ £
15 Gualky Assraren 10dars ThuRM02 Wed 01102 8 =)

A Gantt chart from Microsoft Project

In my experience in game production I
have found the Gantt chart to be crucial
and the PERT chart fun. By fun [mean
that the PERT chart is so easy to digest
visually that seeing the key tasks get-
ting completed and checked off as the
project heads towards completion is a
visual treat. The problem with the
PERT chart is again you must reduce
the task resolution to just the highest
level tasks. This results in relatively
chunky task descriptions like “imple-
ment 3D engine,” “script campaign
one,” and “alpha test,” and these rela-
tively chunky tasks are actually
composed of many tasks spread over a
great deal of time. The PERT chart
becomes dissatisfying when you want
to mark off a PERT bhox when some-
thing is 90 percent complete even
though the final 10 percent will not be
completed for some time. For this rea-
son I do not use PERT charts for my
own projects.

NOTE: Please see Chapter 20 for a
quick survival guide to Microsoft Project.

Focusing on the Gantt Chart

So how exactly do we create a Gantt
chart? Obviously we need to know
what the tasks are, who is going to do
them, and how long they will take. The
ideal Gantt chart entry is a single, clear,
discrete task with a short duration

(debate rages but aim for between .25
day to 3 days in your task resolution).
An example of a poor entry would be
3D engine, 4 months, Bob. This task is
poorly described for two reasons: The
first is the name itself, 3D engine. What
does that mean? Test it? Design it?
Debug it? Implement it? Review it?
Break it? Fix it? Vague project task
names must be attacked ruthlessly and
reduced to a lean, aggressive name like
Create static design of the core 3D
engine. The second thing wrong with
this task is that it is four months long!
Good grief, why are we even putting
together a schedule? How will it serve
to measure progress when we can only
look Bob up after 15 weeks and ask if
he thinks he will make it next week?
With such coarse resolution we are
simply not getting enough incremental
task progression data to have a mean-
ingful analysis of whether the project is
tracking. For if we are not tracking,
maybe we should cut features in the 3D
engine, or maybe we need to add
another programmer to work on the
custom shaders, or maybe we should
kill the new 3D engine altogether and
make do with the previous engine or
integrate a commercial 3D engine. All
of these tough choices can be uncom-
fortable or even impractical for you and
your project, but these choices are

Chapter 10: The Project Plan

certainly not more comfortable when
Bob has been working for 15 weeks and
then admits that the 3D engine turned
out to be tougher than he thought and
that in four more weeks he will know
more!

There is a time and place for
coarsely defined Gantt charts—very
early in the project when you are defin-
ing your business parameters. At this
time it is useful to block out your pro-
ject with these coarse task granularities
to get an idea of how many people you
will need and about how long it will
take to get the job done. This proto-
Gantt chart can then be used iteratively
to help define the costs of the project
while they are still fairly malleable in
the early project negotiation phase. In
the ideal world a publisher would sign
up a project and pay for three months of
preproduction to determine the detailed
project schedule; this rarely happens.
Instead, you often work on the rough
size and scope of a project and then use
the early milestones to refine your
schedule and kill features to make the
project fit into the negotiated costs. I
have to warn you, creating these
proto-schedules is not a substitute for
going through with your full prepro-
duction phases and determining your
task estimates in detail! You should also
avoid creating a proto-schedule if you
have little experience in project plan-
ning, or where the game has not yet
jelled into a clear vision, or where there
are a lot of associated technical risks
because you or your team have not
developed a similar game.

WARNING!—Creating proto-schedules
should only be done by experienced
project planners who have managed
similar projects and where the game
scope is well understood.

161

Using the Technical Design
Document

The technical design document is sup-
posed to have the information for the
technical tasks. Depending on how you
organize your team members, the game
design document, the technical design
document, or a stand-alone art asset
document will describe the art tasks.
Wherever the information is coming
from, as you sit down to enter these
tasks and time estimates into Project,
you will discover that these tasks are
not ready for immediate entry. For
instance, the 30 luminosity maps
needed for your starships will be listed
as 45 man-days from your art director.
Should you enter that as a single task
named luminosity mapping, 45 days, art-
ists? No you should not; that would be
creating a vague task entry like the
previous 3D engine example. Will you
have all of your artists working on this
for 45 days? Will you burn one of your
artists on this tedious task? Do you
need all of the luminosity maps done at
the same time? These are the ques-
tions you need to ask yourself as you
translate the task estimates from your
leads into your schedule. For a task like
this I would write up 30 1.5-day tasks
and distribute them evenly across the
artists I had available to perform these
tasks (in my management style, if there
is something boring and repetitious, I
generally distribute the tasks evenly,
perhaps a bit heavier on the junior team
member). Getting ahead of myself into
a discussion of risk management and
task dependencies, I would schedule
these repetitious, low-risk tasks
towards the end of the project with
perhaps some sample luminosity maps
done early on to verify we understood

162

the production path and time estimate
to create the maps. These 30 1.5-day
tasks would be an eyesore to look at if
we were to enter them flat into the
schedule. To handle that bit of dust,
sweep these 30 entries into a super-
task named create luminosity maps.
This way we can view this individual
information easily by expanding the
super task create luminosity maps and
hide it when it is not of immediate
interest. Each of the 30 subtasks
should also refer to the specific starship
that the map is for or at the very least
be uniquely identified as in create lumi-
nosity map for Federation Enterprise-E,
1.5 days, Ed.

Chapter 10: The Project Plan

It will be difficult to always break down
tasks into their proper subtasks. For
example many times you will get a rea-
sonable-sounding task like investigate
pixel shaders, 3 days, Tom. It has a fairly
clear verb—investigate—right? Well,
does it mean Tom will spend three days
on learning what is going on with pixel
shaders and then move on? What is the
deliverable for this task? Will Tom
merely know more about pixel shaders
or are you expecting to implement pixel
shaders? Will the artists need to per-
form additional work to support the
pixel shaders if Tom gets them done? I
recommend this task be broken down
into the following tasks: Investigate the

(1] Task Name Curation Slart Finish

Prend Fiwsource Names

lember 002 Hovembes FTE

ulher propect lesks day? Thu8A202 Tha 81202 dhers

Creale Lumiristy Mags A5 days Fif302 Thallf4D2 2 arlisls

ﬁ|ma|wu|-

i e propct lasks Piar? Fi 114502 Fil1AS02 4 cbers

3 0 0 8 (o =) I Y7 I T T3 R

" others

A poorly broken down task—too long

0 |Tamnens Dun | S Freh [Pres Fesource Menes.
£l e prosed task: VoayT TRuSN2OZ TN ey
—

‘ 1o Lurminusny Meps rom FIATIEE Mo BTN 2
A Swtup Jdepm FRAALES Tee SATAG
& Do v Megur eree: Tosy FiWNaOZ Fianeg Erad
| Crante tort map Jdeye FHRALNI Twean7og| Bd
o Frogection 4oayw Wed ITERZ Mon IBTINZ 4
v oree— ASdays Wed BARLOF ThugAse 64
18 e VHoms Tumnaez Fiacome B4
i Craste map.) Afdeps MonGOAT Tus40M0E B4
12 reele a4 1503 TeaUar weadoher B4
{E] Craste mop 5 Afdeps TruGDRGS Fed0700 B4
1 Creste et 1Soe BWamta mmanoez Ed
15 Craate map. 7 1fde T 00T et 10300 B4
1% e] 180 Wed 0RO Thoiodes B9
L Crante rop Afdeps FUAGAGT Menl0T03 B4
[0 reete oo 1) 1S0ms Men 10O Tusiomez 9
8 Craate o 11 Afdaye Wed 10807 TraiinG0d B4
Sreele o 12 V8o Troomnomz RilOneR R
o Crantn rop 13 Afdaye Mo ADAAR Tusd0NECE B4
£ Creste o 14 Vaowe T rnanz wednsez Ed
= “rasds rog A5 Afdas Wed GHRGT ThadRSED Do
£ S—T VSems Tunanz Frdcees Bee
= | “rasis map 7 Afdeyr MonBOU0F Tusdd0d Mos
» reste s 15 15 00ys Tow SOAO2 Vet SO50T B
| “rasis map iB & dwye ™3
» reste g 20 o B
D “rasis map H & dwye ™3
» reste map 22 15 0eys Wed 1002 Th 1002 B
n “rasis mop 31 Vhdeys FrA0AOF MoniST03 Dos
Ll reste g 24 1500y Mon T0MAE Tus 10 B
=1 “rasis mop 35 Afdeys Wed 10807 Tra0AG03 os
E reste mop 2% 15 00ys Tha1ONOOZ Fri 100002 B
® “rasis map 37 Afdeys Monf0HA0F Tus0AS00 Moo
» reste map 26 15 0eys Tue 1ONSOZ Wed 100802 B
ar | “rasts mop 3 Afdeys ThotOATOF FrA0AR0E Dos
» reste g X0 15days FriDONBOZ Mon 100182 B
-
= avel re et Basks Tdn? FiBNI0D FROAMER dhers [

The previous task
broken down into
30 bite-sized
1.5-day tasks
distributed to two
artists, with an
early phase to
determine the
validity of the task
estimate for both
artists, rolled up
under a super-task.

Chapter 10: The Project Plan

feasibility of pixel shaders, 1 day, Tom;
Implement core support for shaders, 1
day, Tom; Implement simple shader for
ripple effect, 1 day, Tom; Determine what
additional work the Artists must perform,
.25 day, Tom, and then wrap up all of
these tasks under a super-task named
implement ripple shader. Picture in your
mind that it is your job to view each and
every incoming task as a crystalline
rock that you examine closely, looking
for the fissures that represent the
subtasks inside of the project. Then
you grasp the task firmly in your hands
and break it up along these fissures.

7 S

Breakin’ down tasks

Task Granularity and Task Leveling

Task leveling is the act of distributing
the workload across your developers so
that no one developer is stuck holding
up the show while the rest kick back at
the beach. Task leveling is a difficult
and imprecise business. No two devel-
opers on your team will produce code,
art, or other game development bits at
the same rate and with the same level
of initiative and independence. Task
tracking is such a central activity of
game production that the next chapter
is dedicated to its discussion. However,
here in the planning stage we can set
ourselves up for success later by plan-
ning our task leveling now. In the

163

previous section I stressed breaking
down large, vague tasks into clear,
crisp, small tasks; it turns out that
breaking tasks up into crisp bite-size
chunks is also critical for effective task
leveling. By breaking up the tasks into
their smaller pieces you will not only
see more clearly just how much work
you have to do, but you will also be able
to better analyze how to distribute your
tasks across your company.

How Long Will That Task Take?

As you enter the data you will not only
need to break up the tasks into smaller
tasks, but you will also need to spend a
moment chewing on the time estimates
being reported by your team members.
There is a lot of debate in the commu-
nity about padding tasks by two times
or three times to count for the chronic
underestimation that developers are
prone to make. I fundamentally dis-
agree. | think it is a very bad thing for
the development team to think in terms
of “programmer-hours” and feel
assured that their management lead
will take responsibility for padding the
schedule to accommodate their opti-
mism. If you think about this for a
moment, it does seem ludicrous to take
the developer’s estimate and institu-
tionally lie and come up with another
number. I believe the reason organiza-
tions do this multiplying technique is
they have found that taking the devel-
opers estimates has resulted in
previous projects slipping and going
over budget. The answer is the devel-
opment process is flawed, and that is
why the project is late, not because a
developer makes poor estimates. How
can a project succeed when such arbi-
trary estimates are tossed around?

164

So how do you get good time esti-
mates? First of all I do not make creat-
ing the time estimates my responsibility
as the project manager; I make that the
developers’ responsibility. Is this just a
semantic nuance? No, the way to suc-
cess is to push down to them the
responsibility, the authority, and the
accountability to create their own time
estimates. I will not be performing the
work; they will. Your team members
are not just coders or pixel pushers;
they are game developers. Grow your
organization so they understand that
creating quality estimates is part of
their job and that they need to make an
estimate they can live with.

Will pushing estimating down to
the team members work? What about
the new artist; does he know how long
it will take to texture the level? How
about the Al programmer; now that he
has been tasked to create the network-
ing code, how will he come up with a
quality estimate? I am not saying that
the senior team members such as the
art director and the lead programmer as
well as the project manager should not
participate and help develop the esti-
mates. What I am saying is that my
team performs best when they are
working under a schedule they drafted.
It may look like I have not solved the
time estimate problem; it may look like
I just moved it down to the developer,
but that is too casual a statement.
When you walk up to Sally and ask her
how long it will take to create a mission
editor for the game, she might reply
with a shrug and a soul-searching
glance at the ceiling and come back
with an estimate of two months. This is
a low-quality estimate. Much better is
to walk up to Sally and say to her, “I

Chapter 10: The Project Plan

want you to think about what it is going
to take to get the mission editor done;
specifically, I want you to review the
technical and game designs for the mis-
sion editor and break it down into a
task resolution of one to three days
each and enter your tasks into
Microsoft Project. Would Friday be
okay with you to review your sched-
ule?” This is much stronger because
you gave a clear task of getting her area
estimated and put into a schedule, and
you told her how to get it down with
the comments on the time resolution
and Project. You also gave a firm date
and gave every indication that it is her
responsibility.

So what do you do when developer
estimates are too short or too long? You
are the project manager, and you have
responsibility for running the project.
While the buck stops with you, your job
is to get the right people matched to
the right tasks with the proper tools
and resources to get the job done. It is
the artists and the art director who are
responsible for the art estimates. You
said that before, Erik, but what do I do
with a time estimate that is clearly too
short? I want you to review every time
estimate for a reality check, a second
opinion, and for your own benefit to
build up a better mental map of how
long the myriad of development tasks
take. What I suggest you do with a
short time estimate is interview the
developer and/or lead for that section
and ask them why they thought they
could accomplish it so quickly. Maybe
you will find out something you did not
know; that would be a good thing.
Maybe they will shrug and admit they
didn’t give it enough thought. Or maybe
it is a feature they very much want to

Chapter 10: The Project Plan

see get done and do not want to see it
cut so they are “selling you” the
feature.

Short Time Estimate Possibilities

If the developer did not give the esti-
mate enough thought, then simply kick
it back for a revision. If you simply
were not aware of something that will
make the task quicker to complete—
no problem, accept the estimate. How-
ever, when it turns out they are selling
you on a feature, this could be a prob-
lem. First of all, this means you have a
flaw in your schedule that needs to be
corrected or the rest of your schedule
will be affected. The hard part is that
your developer is selling you this fea-
ture because she really wants to see it
get in the schedule and she felt she
needed to underestimate the task to get
it on the schedule. You have three
choices: Kill the feature, allow the fea-
ture, or allow a fixed amount of time to
work on the feature. Each situation is
unique, but I tend to ask the developer
why she thought it was so important to
implement the feature. If she does a
reasonable job convincing me it is a
desirable feature but I cannot afford to
rearrange the schedule to fit in the true
time for this task, then I will encourage
the developer to drop the feature. Many
times the developers will be passionate
about getting it done and will propose
to keep the time estimate to what the
schedule can afford, and they will work
hard to squeeze it in. This I feel is fair;
the manager should not create sched-
ules that require overtime, but I do feel
comfortable with developers working
as many hours as they like to create the
highest quality game they can.

165

Estimating Research Tasks

How do you estimate how long it will
take to get something done that no one
has done before, or no one in your orga-
nization has done before? Perhaps there
is little in the way of journal articles or
books to give direction. How do you
estimate how long one of these tasks
will take? The first step is to break
down the research task into as many
small, discrete tasks as possible as we
discussed previously. An example:
Elaborate on a task named research
pixel shaders and modify the task to a
series of tasks like the following:

1. Install video card with pixel shader

support

2. Install DirectX 8.0

3. Review DirectX 8.0 sample shader
code

4. Create stand-alone test bed to
explore pixel shaders

5. Create water effect through pixel
shaders

6. Create fire effect through pixel
shaders

7. Design architecture for the 3D
engine to utilize pixel shaders

8. Implement pixel shader
architecture

9. Unit test the pixel shader code

. Implement fire effect—attach to

fireball spell

Implement water effect—attach to

water blast spell

Test the fireball spell

Test the water blast spell

11.

12.
13.

By breaking down research pixel shaders
into 13 subtasks, we can put good esti-
mates on most of the tasks. Only task
number four, Create stand-alone test bed
to explore pixel shaders, looks like a type

166

of research that resists being nailed to a
firm time. The solution here is to set a
time box, a fixed period of time you will
allocate to the task. At the end of the
time box you will either be done with
the research or it will have turned out
to be too expensive to continue. Mm,
yes, what is that? How can you walk
away from something not done? Well
you might have to. Say you have 15
months to get your game done with ten
developers, five of them programmers.
Allowing three months for preproduc-
tion and three more months for testing
and transition leaves nine production
months or a total of 45 programmer
months. This is your time budget; if the
rest of your project is looking like 44
programmer months, then you have
just one month left over to play around
with your pixel shader. Put a time box
of one month around the pixel shader
work. These are the types of hard deci-
sions you will have to make if you are
going to run your project on budget.

Oh, so the pixel shaded spell
effects were a core feature? Everyone
thinks that is what it will take for your
Diablo killer to make it over the top?
After the one month passes and you are
still not done, would you feel it is still
so important a task that you would allo-
cate more time to get it done? If so,
then your original time box was not
honest by taking into account your pri-
orities. Time boxes only work if you
stick to them. If the feature is really
that important, then you should have
allocated two months or three months.
When setting a time box, set the maxi-
mum amount of time you are willing to
spend on a feature of that priority level.
Too many times when we are deciding
whether or not to implement a feature,
we just ask how cool it will be or

Chapter 10: The Project Plan

whether the competition has it, in the
end deciding to implement the feature
for a number of compelling reasons.
Remind yourself that the great games
all have a slim feature set that was exe-
cuted with excellence. Think about that
cool research-intense feature; do you
really need it? Only a project with
unlimited financing and no requirement
for shipping can afford to implement
features without asking the cost. Think
of time boxes as stones in a stream
where the rest of the tasks flow around
these blocks of time; a few rocks are
cool, many rocks is a stretch of rapids,
and a wall of rocks is a dam. Deter-
mining a task’s priority deserves its
own subsection.

Task Prioritization

Assuming you and your team are cre-
ative folks and that you are making a
game with a budget of time and money,
you will always face a situation where
you have too many ideas for cool fea-
tures and not enough time to imple-
ment them. You are then faced with the
job of prioritizing your features to be
sure you get the critical features
accomplished at the right expense of
the less important features.

I have a reliable method for task
prioritization: First discover all the
absolutely required overhead tasks
your team must accomplish or you will
not even have a shipping game. These
tasks include preproduction, beta test-
ing, getting hardware manufacturer
approval, getting licensor approval, cre-
ating milestones, and responding to
milestone feedback. These are what I
call zero-level tasks. Also do not forget
to estimate the number of holidays,
vacation, and sick time your team
members will take, and make a

Chapter 10: The Project Plan

reasonable provision for turnover (I use
one developer for every ten developers
per year). Subtract all of this
nonproduction time from your overall
schedule; this will leave you with the
real production time you have to work
with. Enter all of the zero-level tasks
into your Microsoft Project Gantt chart.
(See Chapter 20 for a quick overview of
Project and such tips as customizing
your team’s calendar.)

The next step is to take your
design documents and toss every task
into one of three buckets: core tasks,
secondary tasks, and tertiary tasks.
Take your time with this. I highly sug-
gest discussing the relative priority of
the tasks with various team members
to build consensus and to have some
solid feedback.

Now that you have your three
buckets, lay out all your core tasks in
Microsoft Project using good task artic-
ulation techniques, and assign the tasks
to the resources on your team. Now
that you have your zero-level tasks and
your core tasks entered into your Pro-
ject file, use the project-leveling tool to
see how the zero-level and core-level
tasks will lay out over time. If you were
conservative with what you labeled as a
core task, then you should have some
extra time left over to start plugging in
your secondary tasks. However, if the
buckets ended up with too much to do
for even your core tasks on the first
pass through, then you have to priori-
tize your core tasks and convert
enough of them to secondary to make
up the difference. This means that the
secondary and certainly the tertiary
tasks are unlikely to be completed if
you are having trouble accommodating
even the core tasks.

167

JARGON: Leveling is the term in project
management for the related tasks of
seeing how the tasks will lay out over
time and how loaded each of your
resources are, and the process of dis-
tributing tasks across your team to
achieve a more even workload.

How do you prioritize the core tasks
when you already consider them core?
First realize they cannot all be core. A
rigorous development process requires
developing good time estimates, and
you have done that; now you are look-
ing at a body of tasks that are core and
features you really want but do not have
the budget for. Perhaps you can make a
strong enough case for these features
to get approval to expand your project’s
budget. If you can do that, great—prob-
lem solved. If you are still holding to
your original budget, then let me show
you how I do low-level task prioritiza-
tion. It’s a crude method really, but it is
effective: Take all your core tasks and
enter them into a spreadsheet (use
Excel) with a column labeled priority
next to each task and a task time esti-
mate. Now quickly run down your
tasks, reading the task names and say-
ing out loud the first gut-level priority
that occurs to you for that task such as
7 or 3 or 10 if it is really critical. Go
down your whole column of tasks
whether it is ten core tasks or 200. Do
this first pass quickly; taking longer will
only make it harder. Now you will have
a first pass priority for all of your core
tasks. Have the spreadsheet software
sort the core tasks from most impor-
tant descending to least important. If
you are like me, then you will see that
you have stubbornly labeled too many
tasks with a 10 or 9, and too few tasks
have earned the label of 3 or 2. The
way to solve this is to allow yourself

168

only three level 10 tasks, three level 9
tasks, and so on. Start at the first item
labeled 10 and take your time thinking
deeply about the feature, discuss it with

Chapter 10: The Project Plan

these prioritization choices. You could
use the numbers 999 to 0, you could
use the alphabet, or you could use a
three-letter alphabetic core like AAA to

DDD; whatever you use just leave
yourself a set of three tasks at each pri-
oritization level. The size of your task
set should be roughly one-tenth of the
overall numbers of tasks to be priori-
tized. Now just draw a line where you
run out of time for core tasks, and toss
the lower priority tasks in with your
secondary tasks.

your team if you have to, but one by
one you are going to demote your 10s
to 9s until you are left with just three
must-do 10s. Repeat this process all
the way down your list. The mathemat-
ically astute will notice that this specific
labeling system will fail if you have
over 30 tasks. The exact labeling
scheme is not important; it is just
important to force yourself to make

Bug ID Bug Title Priority
2929 CD-Key

2953 SP - Klingon Campaign - Beginning Stardate is 112400.1, twice what it should be
2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel

2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member
3031 Dynaverse - Romulans can transfer in Borg officers

2561 Global - Freighter Convoys do not have escorts

2607 Campaign Screen - Player's ship gets stuck in Hex

2609 Tactical Sim - Fed vs Fed fights

2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking
3110 Dynaverse - Ten turn countdown results in stuck in Hexes

2624 Dynaverse Campaign Screen - Fleet leader is not clear

2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit
2633 Dynaverse - While being attacked, attacking another will teleport player

2637 DYNA - Map Screen not refreshing on completion of Mission

2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending
609 SP - Campaign Screen - States we are partners with the Contested Sector

2058 Dynaverse - Cause of numbers appearing after player names in the chat box
2119 New Conquest - Music stutters and pointer freezes loading new Conquest

2701 Global - When Al forfeits it stays in the Hex

2763 Dynaverse - Role of convoys

2765 Access Server not using list of IP addresses

2780 SP - General - Player can initiate a battle then auto move kicks in

2784 SP - General - Player can be attacked when auto move kicks in

2797 Hex information should appear in game display

2799 SP - General - There needs to be a message when auto move is enacted

2817 Dynaverse - "Stand by for mission briefing" panel repeats text

2826 Dynaverse - Spectate does not work

2841 Campaign Screen - All races should begin equally allied to Neutral Hexes

2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map
2869 Dynaverse - Enemy Al kills fleet member Al - Defeat with prestige

2880 Dynaverse - Borg cubes appear very infrequently in Shipyard

2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately

Tc(ml—Fly ”

Chapter 10: The Project Plan

2318
1681
2452
2981
951

2023
1790

Tactical Sim - Visioneer opinion on buying Starbases

Dynaverse - Officer advancement text cut off in message board

Al doesn't know to go back to a repair station to repair hull

Dynaverse - Severely damaged Al attacks healthy players

Dynaverse - Al does not team up properly in a Hex

Dynaverse - Able to join missions in old Hex after leaving for new Hex
SP - Tactical Sim - Able to click on map behind "Campaign Over" screen

169

The list of bugs and issues unprioritized

Bug ID
2929
2953
2979
2987
3031
2561
2607
2609
2617
3110
2624
2632
2633
2637
2641
609
2058
2119
2701
2763
2765
2780
2784
2797
2799
2817
2826
2841
2868
2869
2880
2309
2318
1681
2452
2981
951
2023
1790

Bug Title

CD-Key

SP - Klingon Campaign - Beginning Stardate is 112400.1, twice what it should be
Dynaverse - Fleets do not have accept / forfeit options in mission panel
Dynaverse - Hex changed color to red when Fed was leader and Kling was member
Dynaverse - Romulans can transfer in Borg officers

Global - Freighter Convoys do not have escorts

Campaign Screen - Player's ship gets stuck in Hex

Tactical Sim - Fed vs Fed fights

Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking
Dynaverse - Ten turn countdown results in stuck in Hexes

Dynaverse Campaign Screen - Fleet leader is not clear

Dynaverse - Can make movement bar disappear when leaving a Hex with refit
Dynaverse - While being attacked, attacking another will teleport player

DYNA - Map Screen not refreshing on completion of Mission

Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending
SP - Campaign Screen - States we are partners with the Contested Sector
Dynaverse - Cause of numbers appearing after player names in the chat box
New Conquest - Music stutters and pointer freezes loading new Conquest
Global - When Al forfeits it stays in the Hex

Dynaverse - Role of convoys

Access Server not using list of IP addresses

SP - General - Player can initiate a battle then auto move kicks in

SP - General - Player can be attacked when auto move kicks in

Hex information should appear in game display

SP - General - There needs to be a message when auto move is enacted
Dynaverse - "Stand by for mission briefing" panel repeats text

Dynaverse - Spectate does not work

Campaign Screen - All races should begin equally allied to Neutral Hexes
Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map
Dynaverse - Enemy Al kills fleet member Al - Defeat with prestige

Dynaverse - Borg cubes appear very infrequently in Shipyard

Dynaverse - Destroyed enemy ship reappears on Hex map immediately
Tactical Sim - Visioneer opinion on buying Starbases

Dynaverse - Officer advancement text cut off in message board

Al doesn't know to go back to a repair station to repair hull

Dynaverse - Severely damaged Al attacks healthy players

Dynaverse - Al does not team up properly in a Hex

Dynaverse - Able to join missions in old Hex after leaving for new Hex

SP - Tactical Sim - Able to click on map behind "Campaign Over" screen

Priority

OO0 >» 0w >» WO ®EO >

Prioritization starting (use A, B, Cor 1, 2, 3)

170 Chapter 10: The Project Plan

Bug ID Bug Title Priority
2929 CD-Key A
2953 SP - Klingon Campaign: Beginning Stardate is 112400.1, twice what it should be C
2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel B
2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member C
3031 Dynaverse - Romulans can transfer in Borg officers B
2561 Global - Freighter Convoys do not have escorts B
2607 Campaign Screen - Player's ship gets stuck in Hex A
2609 Tactical Sim - Fed vs Fed fights B
2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking C
3110 Dynaverse - Ten turn countdown results in stuck in Hexes A
2624 Dynaverse Campaign Screen - Fleet leader is not clear C
2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit C
2633 Dynaverse - While being attacked, attacking another will teleport player B
2637 DYNA - Map Screen not refreshing on completion of Mission A
2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending A
609 SP - Campaign Screen - States we are partners with the Contested Sector B
2058 Dynaverse - Cause of numbers appearing after player names in the chat box C
2119 New Conquest - Music stutters and pointer freezes loading new Conquest C
2701 Global - When Al forfeits it stays in the Hex C
2763 Dynaverse - Role of convoys B
2765 Access Server not using list of IP addresses A
2780 SP - General - Player can initiate a battle then auto move kicks in A
2784 SP - General - Player can be attacked when auto move kicks in A
2797 Hex information should appear in game display C
2799 SP - General - There needs to be a message when auto move is enacted B
2817 Dynaverse - "Stand by for mission briefing" panel repeats text A
2826 Dynaverse - Spectate does not work B
2841 Campaign Screen - All races should begin equally allied to Neutral Hexes B
2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map B
2869 Dynaverse - Enemy Al kills fleet member Al - Defeat with prestige B
2880 Dynaverse - Borg cubes appear very infrequently in Shipyard C
2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately A
2318 Tactical Sim - Visioneer opinion on buying Starbases C
1681 Dynaverse - Officer advancement text cut off in message board C
2452 Al doesn't know to go back to a repair station to repair hull C
2981 Dynaverse - Severely damaged Al attacks healthy players C
951 Dynaverse - Al does not team up properly in a Hex B
2023 Dynaverse - Able to join missions in old Hex after leaving for new Hex B
1790 SP - Tactical Sim - Able to click on map behind "Campaign Over" screen C

All tasks have received a priority.

Chapter 10: The Project Plan 171

Bug ID Bug Title Priority
2929 CD-Key A
2607 Campaign Screen - Player's ship gets stuck in Hex A
3110 Dynaverse - Ten turn countdown results in stuck in Hexes A
2637 DYNA - Map Screen not refreshing on completion of Mission A
2641 Campaign Screen - Ships inconsistent for Convoy between Attacking or Defending A
2765 Access Server not using list of IP addresses A
2780 SP - General - Player can initiate a battle then auto move kicks in A
2784 SP - General - Player can be attacked when auto move kicks in A
2817 Dynaverse - "Stand by for mission briefing" panel repeats text A
2309 Dynaverse - Destroyed enemy ship reappears on Hex map immediately A
2979 Dynaverse - Fleets do not have accept / forfeit options in mission panel B
3031 Dynaverse - Romulans can transfer in Borg officers B
2561 Global - Freighter Convoys do not have escorts B
2609 Tactical Sim - Fed vs Fed fights B
2633 Dynaverse - While being attacked, attacking another will teleport player B
609 SP - Campaign Screen - States we are partners with the Contested Sector B
2763 Dynaverse - Role of convoys B
2799 SP - General - There needs to be a message when auto move is enacted B
2826 Dynaverse - Spectate does not work B
2841 Campaign Screen - All races should begin equally allied to Neutral Hexes B
2868 Dynaverse - Able to access buttons (campaign screen) anywhere on Hex map B
2869 Dynaverse - Enemy Al kills fleet member Al - Defeat with prestige B
951 Dynaverse - Al does not team up properly in a Hex B
2023 Dynaverse - Able to join missions in old Hex after leaving for new Hex B
2953 SP - Klingon Campaign - Beginning Stardate is 112400.1, twice what it should be C
2987 Dynaverse - Hex changed color to red when Fed was leader and Kling was member (o}
2617 Dynaverse - Jumped from Lt. Commander ranking to a Fleet Admiral ranking C
2624 Dynaverse Campaign Screen - Fleet leader is not clear C
2632 Dynaverse - Can make movement bar disappear when leaving a Hex with refit C
2058 Dynaverse - Cause of numbers appearing after player names in the chat box C
2119 New Conquest - Music stutters and pointer freezes loading new Conquest (o}
2701 Global - When Al forfeits it stays in the Hex C
2797 Hex information should appear in game display C
2880 Dynaverse - Borg cubes appear very infrequently in Shipyard C
2318 Tactical Sim - Visioneer opinion on buying Starbases C
1681 Dynaverse - Officer advancement text cut off in message board (e}
2452 Al doesn't know to go back to a repair station to repair hull C
2981 Dynaverse - Severely damaged Al attacks healthy players C
1790 SP - Tactical Sim - Able to click on map behind "Campaign Over" screen C

And now they are sorted.

Resource Leveling left with an overloaded resource, then
you will have to take their tasks and
run them through a rigorous task prior-
itization session with the spreadsheet
as I described above. Find the true core
tasks and relegate the rest to a second-
ary phase.

In a real schedule it will be much more
likely that the bulk of your core tasks
will fit in your schedule but one or two
of your developers have been
overscheduled.

If at the end you have leveled the
tasks the best you can and you are still

172

Hold on to your secondary and
tertiary task lists. When you create
schedules that your developers can
accomplish, they will appreciate it and
respond with timely execution. It is
common for them to be excited and
push themselves to see how many of
the secondary and tertiary tasks they
can pick up. See the next chapter on
task tracking for more tips on how to
keep your team humming along.

If you were conservative with your
original labeling of core and secondary
tasks and you did have a surplus of
time, or if you had a surplus of time
with part of your development team,
then now is the fun time of piling on
your secondary tasks until you are out
of time with your resources. Use the
detailed task prioritization method on
the secondary tasks if you are having
trouble deciding which of the secondary
features you will implement.

Task Dependencies

Creating the schedule is not too bad so
far, is it? Painful decisions about what
will be a core task and what will be a
secondary task is about the only

Chapter 10: The Project Plan

difficult job. A rather tedious job, I
admit, entering tasks into Project, but
mechanical and straightforward. Project
planning enters a new level of complex-
ity when task dependencies are taken
into account. Task dependencies
develop when one task depends on the
completion of another task. A great
example is all of your production tasks
should be dependent on the completion
of the preproduction milestone. After
you have entered all your zero-level
and core-level tasks (as well as any sec-
ondary tasks you found time for) you
will now need to draw dependency lines
between tasks that are truly dependent
on each other. In Microsoft Project
there are two easy ways to link tasks:
One is to draw a link between two
tasks by simply left-clicking on one
task and dragging the pointer to
another task and letting go. The other
method is to simply type in the task ID
number in the Predecessors column.

JARGON: Dependent tasks are two
tasks that are linked such that work on
task B cannot start without the comple-
tion of task A. This makes task and
resource leveling more complicated.

o |Task Mame

'Duraﬂnn|Predece3®ors|Re®nLtceNms| Fri Sep 13
1

|
22 M [4am 600 [8an[10amM[12PM] 2P [4PM [6

()

w

Buy Food at Grocery Store 15hrs Erike

Make Lunch 2hrs 4 Erik

@ - @ ot s

Eat Lunch 1hr & Erik

An example of linking tasks

Chapter 10: The Project Plan

Try not to link too many tasks; specifi-
cally, link only tasks that are dependent
on each other. Some people, out of
frustration with Project’s leveling algo-
rithm, start linking all kinds of unre-
lated tasks to get their project to flow
in time the way they plan for produc-
tion to follow. In other words, do not
use the task dependency links to estab-
lish task priorities. Microsoft Project
has a field for task priority for every
task entry. Now run the Project level-
ing tool; if you are very lucky, all of
your tasks will politely level out and
none of your developers will be over-
scheduled due to the task dependencies
you entered.

2=l

ceoral | prodcessoes | Resorces | Advanced | Notes
Mame: [Crestemep 1L Curstion: [1.5d E|: I Estrnared
Bercent complete: R Priceiy: [+ =
Dates
Srart; [Wed 1073002 BT |
T rade task bar
I okl up Garitt bar o sumemary
_wo | Lo] o |

Setting the priority level of a task from 0 to 999

Most of the time, however, entering
task dependencies will cause one or
more of your developers to go over
schedule. Now you will earn some of
your salt; this is an area where it is dif-
ficult to give general advice that will

173

S

1 | L] | 15 i
| 8h|

|

Werk
(e |
Werk

26h
2|

Werk
(e |
Werk
Werk
(e |
ik
Werk
e

160
& 1880

182h|

e

The resource usage screen; the red numbers indicate an
overallocated resource.

apply to your specific overallocations
due to dependencies.

You first need to study the Gantt
chart and the resource usage charts to
understand what your dependency
problem is all about. In all cases your
developer was okay before the depend-
encies were drawn in from the earlier
stage where you determined the
zero-level and core tasks. So looking
back up the chain of tasks you will see
one or more tasks that are holding up
the show for your overscheduled devel-
oper. This will create a pocket of free
time for this same developer earlier in
the schedule as he is stalled waiting for
work. Now the most elegant solution
would be if the work he is waiting for is
something he could do himself; then
you can simply assign it to him and fix
the dependency problem. And in turn
you will need to take some other work
off this developer and exchange it with
the original developer who was the bot-
tleneck before.

a |Reanurce Name Wk | prals Aug T2 | S 02
| 28 T B8 | 25 1 8 15 2
|1 HEs 34885 | iork 40k 40h: a0k 40 a0k 40h th
2 # 50 240 | yagork azhi 40h oh: I 40h ah|
Work H H I

The resource usage report shows holes and gaps indicating a problem of one resource waiting on another.

a8 Rezource Mame ok Detalls [Aug ‘02 Sep 02
% 4 11 18 3 1
1 = ER T brs |k 241 40h 40h 408 40h ah
L 50 0 brs | ik 400 40h 40h 400 40h ah

The gaps filled by task reassignment

174

Chapter 10: The Project Plan

O | TaskNeme Duralion | Staet [T ——
1 = Design days Thu7A102 Wed 0402
3 Design 4 Sdws ThuTRIAE ied TATEE
4 Design Cenphec Ergne Sdws ThuTRMAZ Vied TATAR
5 Dsign Chasacters Sdays ThuTRBAT e 7402
6 | [-~ Scws ThuTARED Wed 7402
2| Design Game: Jdays ThuTAS02 Mon TRAOZ
7 Gt Sour Engane Saays ThuPESAR e TR
8 ImpledTe M aticn WEdays ThuR182 Mon B26A2 1
[H| Wpkmert Graphic Erghe | Soars T BAAE VRd IO
13| Wrplemart Game Machare: 10 ey ThuBNAIZ e BAAKTE
10| WokmeE SoundEngne | Sors ThuBEAZ Ve BRAGE
n | implement Controls Scays ThuBNSEZ Veed 010
12| mplement Characters Sows ThuBNS02 ed 2102
" | Crost SF% 26dws ThuBRIOZ Mo BOAOZ
s | Guaity Assurarce Sows MonATRAZ Mon G207 B

Resource Hames

ERSD
EBSD

The Gantt chart of the fixed schedule

If exchanging and rearranging tasks
still leaves you with a pocket of dead
time and a later overallocation of one of
your developers, then you will have to
trim off the overallocation and bring up
a secondary task to fill the void. That
will be the best you can do if all other
efforts to exchange, rearrange, and dis-
tribute the overallocated tasks fails.

The Top Ten Risks Document

By far the schedule is the major deliv-
erable of the project plan, but there is
one more document that is critical: the
top ten risks document. For this docu-
ment enumerate the ten most signifi-
cant risks to the project. Choose only
ten items; a longer list will lose its
focus. With each of the risk items also
list what actions you have taken or will
take to contain or address the risk.
Hopefully you will be able to create a

positive solution to each of your risks;
however, that is not a requirement.
The important thing is to create a
short, focused document with one
through ten of your risks that you can
share with your executive management
and with your development team.

This document should be main-
tained with delivery of each of your
development milestones from
preproduction to the game’s release.
You will then see a much greater
awareness from your executive man-
agement of the risks, and you should be
able to address these risks with more
energy. In fact, these short top ten risk
documents are the most effective way I
have found to communicate to my
executive management just how much
I need something: another programmer,
two more artists, or timely audio asset
delivery.

DATE: 3/1/02

Rank Risk Effect Solution

1 Mission design slips slip Finalize Missions ASAP

2 User interface design slips slip Finalize Ul ASAP

3 QA resources added late to the project low quality, slip More QA Resources earlier
4 Voice-over assets delivered late slip Finalize dialogue ASAP

5 Feature creep slip Stop adding features

6 Late solicitation to beta testers slip Submit to beta testers earlier
7 Server stability low quality Create testing tools

8 Design process overly distributed washed out quality Reduce number of authorized designers
9 Overextended use of overtime slip, low quality Address slip issues

10 Ul overcorrected for mass appeal lack of distinction Fewer designers

A top ten risks document

Chapter 10: The Project Plan 175

The Non-Zero Chance of Delivery
done, not the earliest possible date with a

At the end of the day your job as the
non-zero chance of delivery.

project planner is to create a plan for
how long it will take to get the job

This page intentionally left blank

Chapter 11: Task Tracking

Chapter 11

177

Task Tracking

Production Begins—Now What?

Congratulations! You have made it
through preproduction, your project is
approved and funded, now all you have
to do is follow your plans and make

Task Visibility

You cannot just print out copies of your
Gantt chart then surf the web for a year
while your people make the game. This
will not work. Even if you made the
most professional Gantt chart ever,
printed out in color and spiral bound.
Passing out these project binders to
everyone is an excellent idea, but if that
is all you do to make your developers
aware of their tasks and their team’s
tasks, then you will fail to get anywhere
near your team’s full production poten-
tial. I am not saying people are inher-
ently slothful, no, quite the opposite—
almost everyone I have met in the
industry prides himself on his ability to
work hard under a crunch to produce a
hit game. It is just that left to their own
devices, your folks will probably work

The Wall

I have an effective, low-tech way of get-
ting task visibility out to the team
members: I print out the Gantt chart
and/or task lists and pin them up on a

your killer game! This is a short chap-
ter on how to track the completion of
tasks and how to get the most produc-
tivity out of your team.

on what tasks are most interesting to
them unless they are reminded of
where they are on the schedule and
where everyone else is on the
schedule.

The key is to make the tasks visi-
ble. Team members need to know in
detail what they should be doing, and
they need to know how the work they
are doing correlates with others on the
team. They need to feel a part of the
team and share a sense of urgency to
get the job done. As tasks are com-
pleted it should be communicated as
quickly as possible to the rest of the
team to give them a sense of the pulse
of the project. I have some specific
techniques to share with you to achieve
strong task visibility.

central wall in our workspace. Software
solutions such as Microsoft Team Man-
ager and intranets to publish your
schedules and tasks are distinctly

178

unsatisfactory for two reasons: One,
your developers need to remember to
even open up the document or visit the
site, and two, monitors are too small to
show a whole Gantt chart, denying your
team the appreciation of the project
progress as a whole.

It is easy to print out your schedule
and pin it up. I recommend just display-
ing task name and ID, start time, end
time, who is assigned to it, and any pre-
decessor tasks on the left-hand side
and the Gantt chart on the right-hand
side. You should use the widest time
setting you have wall space for; when a
schedule is scrunched up into just dis-
playing quarters or months on the
Gantt window, you are not getting any
real-time information.

Now I make a requirement to my
developers that they come out to the
Gantt chart and mark the tasks off
themselves. I do not mark them off
even if I know they have been com-
pleted. This is to get the developers to
come out and find their place in the
schedule, mark off with a bit of pride
what they have finished, and then look
ahead to see what is coming up. Devel-
opers will almost always take the time
to then look over the whole schedule to
gauge how are they doing compared to
other team members.

When I first started using this
method of task tracking it was consid-
ered somewhat controversial. Some
people asked me privately if this was a
good idea. If someone were not accom-
plishing his tasks on time, would it not
be demoralizing for him if this were
made public knowledge? Would not that
developer feel more comfortable stay-
ing in his office and explaining privately
why he is behind in the schedule? Bah!
My first assumption is that everyone

Chapter 11: Task Tracking

on my team is a professional, and even
on an off day all would want to be
treated as professionals. Why would
protecting their comfort be of higher
importance than getting our tasks done
in a timely manner? If people are task-
ing late, they must have a reason. Was
it illness? Jury duty? Task underesti-
mation? Were they distracted helping
another team member on another prob-
lem? All of these are legitimate reasons
for being late and certainly nothing to
cause embarrassment or discomfort.
On the other hand, if they are late
because they were just goofing off, then
I feel comfortable making them squirm
in front of their other team members
and letting them know they have let the
team down. Knowing that the whole
team is aware of what they are and are
not getting done goes a long way to
inhibit goofing off.

A healthy bit of competition devel-
ops with a good wall. Assuming your
schedule was a sane schedule and man-
ifestly fair in the time allocated to the
tasks to be completed, your team will
be in a high morale state to begin with.
I use brightly colored highlighting mar-
kers to mark off the tasks. Your devel-
opers will come out at the end of the
day to mark off what they got done then
look ahead for something simple to do
before they go home—bam! Another
task is taken care of! This competition
effect will give extra momentum to
your whole project. It will give your
developers a meta-game to push them-
selves, and they will enjoy it.

Another benefit of the wall is that it
makes a great piece of visual feedback
to the executive management team.
They look over the wall and see all the
marked-off tasks spanning 25 square
feet of wall space and nod to them-

Chapter 11: Task Tracking

selves and move along. Do not under-
estimate the importance of reassuring
your management that you are respect-
ing their time and money and are mak-
ing measurable, steady progress. If you
are working in a large studio or in a
publishing house, the other teams will
see what you are doing and think you
are obviously trying to get attention. So
what—you are trying to grab manage-
ment’s attention. There is no glory in
obscurity.

Encourage your team members to
go ahead and write any unanticipated
tasks they had to complete onto the
wall’s task lists. This will help team

Journals

I have a background in engineering, and
while in school we were introduced to
the value of a journal to record actions,
observations, and data from the lab.
The 1dea is that no effort you make
should be unworthy of record. While I
admit that when we make a game we
are not building a skyscraper or a
transorbital spaceship, we are still cre-
ating something important and we
should take every care we can on the
execution of our game projects.

The Cult of the Yellow Notebook

For the last seven years I have been
using yellow notebooks that are about
5" by 8" inches and feature lined paper
on one side and quad-ruled paper on
the reverse. This format allows me to
track micro-tasks and thoughts on the
lined side, and use the graph paper for
game designs, user interface layouts,
and technical designs. I have this

179

members who might be falling behind
in tracking due to being sidetracked by
tasks that were not originally on the
schedule. While it may seem crude to
scrawl new tasks on the list, it is legiti-
mate. You are after the maximum
visibility for all tasks, not just the ones
you were smart enough to think of
earlier.

When the time comes to update
the schedule, the wall charts with the
new tasks written on it and the com-
pleted tasks marked off will come in
handy. Just tear it off the wall and bring
it to your workstation where you have
Microsoft Project.

notebook open as I work, taking notes
whether I am working at my worksta-
tion in Photoshop, MS VC+ +, Project,
Visio, Excel, or simply Word. I also
take my journal with me to every meet-
ing to record what I need to do and
what I need to follow up with. On a
shelf in my office are the 40 or so note-
books I have filled so far in my career.
These yellow notebooks are a staple
that we purchase for all of the employ-
ees at Taldren, and we have an ample
stock for when people fill theirs up.

I am passionate about these note-
books because I have seen countless
small tasks fall through the cracks in
our overburdened minds—such a waste
that the simple act of note taking can
fix! About once every two to four
weeks I go back through my pages to
search for tasks I might have failed to
address, and I pull them forward into a
new checklist.

180

Walk Around

There is no older and simpler method
of task tracking than simply walking
around and seeing how people are
doing. I try to carve out an hour or two
every day to walk around and meet
with the individual team members to
see how things are going. At this pace I
would visit everyone in the company
two to four times a month. This lets
people know their work 1s important,
and the human connection really shows
you care about getting a great game
done. When the project hits a tough
spot you will find that you want to stay
in your office and focus on the burning
fires. But it is when the times are
smoky that you should make the extra
special effort of visiting with your team
members. Also be aware that no matter
how much you like everyone on your
team, there will naturally be some

Chapter 11: Task Tracking

personalities that you enjoy spending
more time with than others. Some peo-
ple might feel slighted so be sure to
visit all of your team members, not just
the ones you like to talk to.

Often it is by walking around that
you discover that tasks you thought
were the clear responsibility of one
developer have been conveniently rele-
gated to the no-man’s land between two
developers and have dropped to the
floor. This is a great time to clear up
such misunderstandings and get these
tasks properly assigned. If you ask the
right questions and remain approach-
able, these walkabouts will also turn up
the deeper concerns your team mem-
bers might have felt too uncomfortable
bringing up in some other forum or
method. Keep your ears and eyes open
and falk to your team members.

Milestone Orientation Meetings

Another useful technique I have found
is to kick off each milestone iteration
with a milestone meeting to review
what everyone is tasked with and what
the associated expectations are for
their work. I did not start this cere-
mony until just this year; however, each
time I run the meeting I am amazed at
how many misunderstandings we are
actually carrying around, and this is on
a project that has received our most
detailed preproduction to date!

At these meetings I simply keep
everyone in the room as I go through
the features and tasks one by one and
get a verbal discourse back from the
responsible developer to be sure they
understand what they need to do and to

give them a chance to request clarifica-
tion. They will also get full visibility for
what they need to accomplish in front
of the whole team; this goes a long way
to fight the impression that so and so
does not have much work to do.

Praise People Publicly

I also take the time to praise individual
team members at each of these meet-
ings—not necessarily everyone—but I
do try to keep a running tab of who is
due for some recognition. While no one
[know would admit it, I think receiving
praise and recognition from your team
and supervisor is a great morale boost,
and the lack of praise and recognition
can be a significant drain on morale.

Chapter 11: Task Tracking

There are good books devoted to how
best to reward your employees with all
sorts of clever ideas from silver

181

nameplates to holiday turkeys, but I
think the best is a public thank you.

Maintain the Gantt Chart

By far the least fun part of project man-
agement is updating the Gantt chart.
As you sit in front of Microsoft Project,
none of the tasks will seem to have
been completed on the days you
planned. And so if you simply check off
tasks as they are completed, you will
be left with a schedule that is full of
hard-to-move completed tasks that
indicate they were completed on the
wrong day. These blocked off dates will
not be used in subsequent leveling
operations, and soon your schedule will
look like a mess.

No matter how tedious it is, do not
put off maintaining your schedule for
longer than a month. I have slacked
myself and have regretted it every
time. It just takes too much time to
repair a badly out-of-date schedule.
When a schedule is really in bad shape I
sometimes just start a fresh Project
file.

The latest version of Microsoft
Project does have one simple new fea-
ture: It lets you move completed tasks
back and forth in time! A minor mira-
cle, I tell you. In the older versions you
would have to unmark a completed
task, move it to the time it was com-
pleted (or at least out of the way of the
current task leveling concern), and
then remark it as complete. This only
made a tedious job twice as hard as it
needed to be.

Take the time to enter in com-
pletely new tasks that your developers
have taken the time to write on the
wall. Also take a close look at any open

tasks that are refusing to complete
despite one of your developers working
hard on the task. My bet is that if you
look under the hood of that task, you
will discover it is composed of multiple
tasks, some of which have been com-
pleted. Take the time to break up this
task into its component parts and give
your developer credit for what has been
accomplished. Quite often your devel-
opers will tell you that this or that fea-
ture is 90 percent done and that they
clearly had to move on to more press-
ing tasks for fear of causing stalls in the
project. Their judgment is almost
always correct in that there was little
profit in having them polish up some
feature to true shipping quality when
there are others waiting for them to
finish something else. This is the same
as a task that is really composed of
subtasks. In this case the subtask is
that final 10 percent of polish on the
radar, which is unimportant to solve
now. Take that 10 percent polish task
and enter it into the schedule; just put
it further down in time to when you
really will take care of the polish task.

For larger projects I strongly sug-
gest you delegate to your section leads
the input and maintenance of their part
of the schedule. This will help them
grow a valuable task, and it will help
you keep your job sane. To facilitate
this I favor using a tree of inserted
Microsoft Project files so that each
developer can work on his section of
the schedule. I discuss this in detail in
Chapter 20.

182

Update the Risks Chart

Rounding out the task tracking set of
duties is to update the risks chart: Take
the time to review your Gantt chart; is
it indicating a new problem down the
road? Are the artificial intelligence
tasks tracking? How is the mission
editor? How are the art assets coming
along? How is the testing of the multi-
player code coming along? Ask yourself
these types of questions as you review
the Gantt chart to see if a new risk has
developed or perhaps an older risk has
risen in priority. Also take a look at the
old risks; have some of then lessened
in importance or have they faded away
altogether? Some new risks may be
introduced from your walks around the
team or from a daily journal type mech-
anism or simple email from your team
members. Also take the time to review

Chapter 11: Task Tracking

what you are expecting from your
third-party vendors. Are they on time?
The true impact of a risks document
only comes into play when it is main-
tained like the project schedule. Be
sure to visit with your executive man-
agement and apprise them of the latest
risks. Post these risks in a public place
so that all of your team can review
them and have an opportunity to
respond to them. After all, taking the
time to discover your risks is a good
idea, but sharing your risks with the
rest of the team and management 1s
key to getting focus on the problems.
Of course occasionally you may develop
a risk that is personal in nature and is
not fit for wide dissemination. Use your
common sense and discretion when
choosing what to post on a wall.

Chapter 12; Outsourcing Strategies

Chapter 12

183

Outsourcing
Strategies

Why Outsource?

Many talented folks can be involved in
medium to large game projects from
the obvious artists and programmers to
writers dedicated to dialogue, to motion
capture actors, to voice-over directors,
to quality assurance leads. Artists and
programmers perform the bulk of the
labor on a game project, with these
other specialized tasks occurring for
relatively short blocks of time in
midproduction.

Publisher's Management 1
Game Developer's Management]
Witing | Music | Mo-Cap | SFX | vo |
ARTISTS |
DESIGNERS |

PROGRAMMERS |

Layers of game production—games are software
with toppings.

As can be seen readily in this diagram,
a single game project team requires
full-time work from the artists, pro-
grammers, design, and management;
however, the audio, dialogue, voice-
over, motion capture, and other

specialized tasks do not occur as a
steady task across the whole project.
This means that to be efficient in the
employment of these folks with special-
ized game development talents, we
need to either be a large development
house with many game projects in
simultaneous production, or we need to
outsource this work to third-party ven-
dors who will execute these production
tasks under our direction. Otherwise,
audio and other specialists who cannot
be gainfully employed across the dura-
tion of a single project would cause a
financial burden on our projects.

Most game developers would much
prefer to have generous budgets in
order to hire in-house all of these
experts and be able to work more
closely with them to achieve the high-
est level of quality possible. There are a
couple of problems with this approach:
First of all you are burning prodigious
cash whenever you cannot task them
directly to your game project; when
they are independent contractors you
only pay for the work you need to get
done. Second, it is difficult to find
excellent people to fill these positions.
The higher the quality you are looking

184

for, the more likely the individuals
would have risen to a key position at
another developer or third-party pro-
duction house or may even be the
owners of their own production house.
In short, it will take your organization a
long time to build up the financial
strength to employ multiple teams and
find and retain excellent people for the
non-core tasks.

Chapter 12: Qutsourcing Strategies

Almost all organizations outsource
to some degree; most publishers out-
source game development to developers,
and even those that internally produce
their own titles outsource a multitude
of tasks such as disk manufacturing and
payroll management. Now, what are
some good strategies and tasks to keep
in mind when weighing outsourcing?

When to Think About Outsourcing

Your outsourcing plan, which describes
what work will be outsourced, by what
contractor, by what date, and for how
much money, should be determined in
the earliest parts of preproduction, ide-
ally before the final budget of the
project is decided. There is a natural
tension here. The project needs an hon-
est preproduction phase to figure out
what tasks need to be performed and
who can perform them. Many times we
are creating new technology, and it will
take a bit of experimentation to figure
out how a particular kind of asset will
need to be created. All of this planning
will take a few people a couple of
months—varying widely depending on
the size of the project—which means
this will take money. However, the way
game projects work is that the pub-
lisher and developer have to come to
agreement on what the final budget will
be before any money is spent on the
project. This requires an unpleasant
choice for the developer: Either work
without compensation during the
preproduction phase to be able to rigor-
ously determine the costs or enter into
a fixed bid agreement with the pub-
lisher and then figure out how much the

project will cost. It is this tension that
1s a major source of business frustration
in the industry and is the root of a con-
siderable lack of profit for all

concerned.

That is why I have dedicated such a
large portion of this book to introducing
outsourcing in all of its various forms.
Experienced game developers make
better educated guesses on the costs of
various features and assets due to hav-
ing been there before. Too often a
project manager will arbitrarily budget
X dollars for voice-over work and Y dol-
lars for music, only to find that music
requires more money and that the
voice-over could get by with less
money. This is fine if you catch this dis-
crepancy before you approach either
the music contractor or the voice-over
director, but it is awkward indeed if you
have already signed a contract with the
voice-over director! This chapter only
introduces outsourcing; several chap-
ters in Part IV are each devoted to a
particular type of asset for outsourcing.
I hope to provide material for you to
take advantage of so that you can begin
planning your music needs as soon as
possible on your project—before the
entire budget parameters are fixed.

Chapter 12; Outsourcing Strategies

What to Outsource

In short, you should outsource tasks
that are not your core competency
and/or are needed for a short period of
time in your project. In other words, if
your organization is weak at something,
hire someone good to do it for you.

Do Not Outsource Programming—
Exceptions Noted

A big exception to this rule is the pro-
gramming. You should never outsource
your programming tasks on a game pro-
ject. A game is software and if you do
not have the expertise to create the
software, then you should hire the pro-
grammers for in-house production. If
you do not have programmers on staff,
you should not be making a game; make
what you are good at. This is why a lot
of publishers have outsourced game
development; it is the most difficult and
risky part of publishing games, and so
they have externalized those risks to
game developers. Almost all organiza-
tions can find a bucket of useful work
for programmers to perform year
round.

Occasionally I have heard of pro-
jects where the map editor, the video
compressor, or some other modular
tool-like portion of the project was
outsourced to an independent program-
mer. This may work and is more likely
to succeed the closer this task is to
being modular and having few interde-
pendencies with the game’s develop-
ment. This works especially well when
you are not prepared to staff up and
increase head count to perform this
minor amount of programming.

Much more controversial is the
outsourcing of the multiplayer portion
of a game project. The several exam-

185

ples I can think of where the multi-
player was outsourced all ended with
abysmal failure due to a lack of commu-
nication between the core team and the
multiplayer team, as there are just too
many interdependencies between
multiplayer and single player to suc-
cessfully outsource this area. The only
exception that comes to mind is the
case of Return to Castle Wolfenstein,
an amazing game produced by id Soft-
ware and developed by Grey Matter
with the multiplayer portion of the pro-
ject developed by Nerve Software. This
worked well because Grey Matter was
working with id Software’s solid Quake
III engine and could focus on the con-
tent creation. Likewise, Nerve had the
same solid engine to work with and
could work on multiplayer parts of the
game without needing constant com-
munication with Grey Matter. Thus,
the work was modular and there were
no awkward dependencies between the
two projects.

Taldren has outsourced a couple of
programming projects: We have had
external folks create missions for
Starfleet Command II, and we have had
folks create a ship editor for SFC II. For
the missions, it did not work out well
because the scripting API was still
being developed internally when we
had to get started making scripts (a
dependency). For internal teams this is
not that big an inconvenience and hap-
pens on most projects; the engine
development and content creation
stages are often overlapping (it is, of
course, much better to complete your
engine before content creation starts).
In the case of missions, we had to have
more communication with the external

186

mission programmers than was effi-
cient, and we had to perform significant
maintenance on the scripts later in the
development cycle. The ship editor
project worked out better because the
folks came forward with a functional
prototype of what they wanted to do
and just wanted an okay to move for-
ward on what was essentially their own
independent project.

On Outsourcing Art

Art would have to be the next area I
would be reluctant to outsource from
my core development team. The out-
sourcing of art is probably the oldest
and most well understood of the tasks
to outsource. In the days when a single
programmer was all that was needed to
challenge the modest hardware, it was
common to find an artist buddy and buy
a month or two of art from him. Now
most games have their own internal art
teams to produce the required art for
the game. There are, however, common
exceptions.

Movies, Cut Scenes, or Full Motion
Video

The most commonly outsourced art
tasks are movies in a game. These
movies are sometimes called cut
scenes, in-game cinematics, or full
motion video (FMV), depending on the
technique used to create the movies
and the role they play in the game. The
reason movies are most commonly
outsourced is that movies are a labor-
intensive process that generally
requires building assets in a format and
of a higher quality than the game’s
engine and using tools and techniques
that are not applied in the production of
assets for the game itself. Large

Chapter 12: Qutsourcing Strategies

development houses such as Blizzard
and Square have developed very large
and internationally recognized movie
making teams.

(Sideways Comment on Large Movie
Teams

Again, you should outsource when you
are contemplating work that is beyond
your core competency or it would be an
overall financial burden to staff up for
this work. In the case of Blizzard and
Square, both organizations have
enjoyed so much historical success that
they could easily afford to employ
in-house movie teams. This allowed
them to create movies that the rest of
the game industry can only envy. There
is a significant drawback to having a
killer in-house movie team of such
\power—it needs something to do.

J
How do you outsource a movie? This is
discussed in detail in Chapter 32. I will
merely outline the process here. To
prepare for outsourcing a movie it is
best if your team has a competent
storyboard artist who can communicate
all of the scenes, actions, and assets
that will be required in making the
movie. If you lack a sketched story-
board, create one with just words.

Take your storyboard to a number
of movie houses and ask them to
respond with a fixed bid to perform the
work. Be sure to define clearly what
work you want them to perform. For
example, if you want them to create a
silent movie that you will later take to
an audio house, specify that, or they
might include audio in the quote. Also
explicitly indicate if you will supply any
of the models or other assets featured
in the storyboard; otherwise they will
assume they are to create these
models.

Chapter 12; Outsourcing Strategies

As the movie houses are respond-
ing to your bid request, follow up with
their supplied references and ask peo-
ple who have worked with them before
if they are satisfied with the work
performed.

In the end you will need to choose
the movie house based on your own
business parameters: fast, cheap, or
high quality (which two of the three do
you want?). Maybe one of the movie
houses can do the work for you in a
rush as you need, but at a steep price.
Perhaps another has a key art director
that you know will nail the movie and
you are willing to pay her fee. Or per-
haps there is a movie house with a
substantial hole in their revenue stream
and they are willing to offer a deep dis-
count to keep things flowing. In the
end, never grind so hard that you only
force them to come back and ask for
more money or to underperform the
work to get by.

3D Models—Modeling

Almost all modern AAA games are 3D
games: shooters, strategy games, role-
playing games, and adventure games.
The hardware is just so capable that it
1s pretty much uncompetitive not to be
a 3D game. Most game development
companies will have their own internal
staff of 3D modeling artists. However,
your project may be particularly 3D
model intensive and you prefer to
outsource than staff up, or you may
simply be late and you need some extra
modeling bandwidth to accomplish your
project’s goals. Or perhaps your devel-
opment organization is relatively young
and does not yet have 3D modelers in
house; in any of these cases outsourc-
ing your models would be a good idea.

187

How do you outsource a model?
Models tend to outsource well because
it is relatively easy to specify what you
are looking for by way of a sketch and
some technical details like poly count,
and models are modular and largely
have no dependencies on any other
aspect of the project. Finally, it is fairly
painless to inspect a model for
completeness.

Approach several art houses with
concept sketches of your model—
spaceship, racecar, or whatever you
need modeled—and provide a complete
technical description of the format you
need your model delivered in. Consult
your own art director and graphics lead
to determine if your models can have
only triangles or if quads are okay.
Determine poly count, and in addition
to being textured, specify any other
assets such as a damage layer, luminos-
ity, or specularity. What file format—
3D Studio Max or other? Write all of
this up and include other parameters
such as required delivery date and send
it out to the art houses you have
prescreened based on the portfolios and
references they have sent you.

Finally, as stated above, you must
select your modeling team based on
who is the best fit to your business
parameters: fast, cheap, or high quality.

In Chapter 32 I will go over this in
detail and provide a list of modeling
houses for you to contact.

Animation and Motion Capture

What good would having a fleet of static
character models be? Not much—that
1s why we invented character anima-
tion. Roughly speaking, characters can
either be animated by hand, using what
is called key framing, or the motion can
be captured from the movements of a

188

live human, called motion capture. In
practice, almost all motion capture
involves manual animation techniques
to smooth out the noise in the data cap-
ture to achieve final quality motion as
well as to create secondary motions
such as facial expressions and hand
gestures.

A key decision to make is whether
you are exclusively key framing or are
using motion capture. Motion capture
will tend to produce more natural look-
ing, realistic movement, usually also at
a greater cost than key framing. Key
framing, on the other hand, may be
better for your game if you are looking
for unrealistic movements such as a
game featuring cartoon characters or a
game about non-human animating char-
acters. I provide a deeper discussion
on the pros and cons of outsourcing
motion capture in Chapter 33.

User Interface Art

How about outsourcing your user inter-
face art? I have strong feelings about
outsourcing your Ul art. In short, don’t
do it! Ul art is one of the most intimate
bits of your game’s art. It is the Ul art
that will need to be tweaked many
times all the way through alpha and
beta to get it just right and to accommo-
date new features and changes to
existing features. There is almost no
way I can see a contract to outsource
this work; it is simply unfair to keep
asking an artist contractor to revise
over and over again the Ul as the game
progresses. Also, the changes in Ul
tend to be small and incremental and
require an inordinate amount of com-
munication between the programmers,
designers, and artists to get right. An
out-of-house artist would have to make
far too many visits onsite to make this

Chapter 12: Qutsourcing Strategies

work practical. It takes game program-
mers, game artists, a designer, and a
producer to call yourself a game devel-
opment team. Without someone
representing all four of these key posi-
tions, you should not make games.

All of these warnings aside, I did
successfully outsource the Ul art on a
gambling game that I ran back in 1997
when our game development house
lacked art bandwidth. To address this
we created what is fondly referred to as
“programmer art” throughout the
industry and kept on tweaking that art
until we had exactly the functionality
we needed. Then I turned that over to a
great guy, Bradley W. Schenck, who I
am happy to say is now one of my
employees.

Audio

Audio assets, on the other hand, are an
excellent and time-honored set of
assets to be outsourced. Audio does not
take as long as programming and art to
complete. Each of the three major
types of audio assets—music, sound
effects, and voice-over work—require
considerable talent, experience, a spe-
cialized toolset, and often contacts with
other talented folk such as cello players
that the rest of us do not regularly
maintain (or at least I do not).

Music

Music is almost always outsourced, and
only the largest of studios choose to
keep a staff composer on hand. Keeping
a composer year round would take an
extraordinarily versatile composer as
well as at least six major concurrent
projects. Highly talented and skilled
composers are readily available, and all
the composers I have met are rather
technical people quite interested in

Chapter 12; Outsourcing Strategies

game work and willing to deliver their
best to make the gaming experience
the strongest possible.

The first step is to contact a few
reputable composers and discuss the
vision for the game project with them.
Usually, people look into music for their
game after a lot of work for the game
has been completed. When that is true,
it is useful to provide a tape of the game
to the composer for review. You have to
outline to the composer your total bud-
get for music including post (unless you
are taking care of postproduction your-
self). Detail how many minutes of
music you are looking for and how you
would like to break down the music in
terms of themes. For example, in Star
Trek games we often create a Federa-
tion theme for when the player is
playing as the Federation as well as
themes for the other playable empires
such as Klingon and Romulan. Themes
are also broken into victory, defeat, bat-
tle, and suspense music. If you can,
supply your candidate composers with
some CDs of music that illustrate what
you are looking for; this is as effective
as providing a storyboard to illustrate a
proposed movie.

Your candidate composers should
then go away for a week or two and
give your project some deep thought.
They should then come back to you and
give you their proposal of how they will
approach the project: number of min-
utes and whether or not they will per-
form the music electronically or have
live players. If they will have live play-
ers, they should articulate how many,
the instruments, and the proposed
venue for the live performance. As for
providing a demonstration of the work,
it could go two ways: First, the com-
poser could deliver a small snippet in

189

electronic form; second, he might pro-
pose that a palette of new sounds be
created before any actual composition
work is performed.

Review the proposals and go with
the composer you feel has been most
responsive to your game. This is all dis-
cussed in detail in Chapter 28.

Sound Effects

Sound effects are another excellent set
of assets to outsource. To effectively
outsource this work, you must have a
very good idea of the number of sound
effects you are looking for and a strong
description of each sound. The game
developer creates a cue list of all of the
sounds, indicating which ones loop and
which do not, stereo or mono, bit-
depth, and sample frequency.

Ideally, all of the in-game animation
that corresponds to the sound effects
should be complete (or complete as far
as timing) with videotape of each of
these animations available for the
sound effects engineer to review while
making the sounds. If you do not have
the animations, then there will be a
needless amount of revisions and the
sounds will ultimately never quite fit
the animation.

With your cue list and animation
clippings in hand, select three different
sounds that should test the range and
versatility of the sound engineers. Send
out the business parameters, time of
delivery, budget, and delivery format as
well as the entire cue list, and highlight
the three sample test sounds you would
like to hear from the sound engineers.
If you send it out to half a dozen folks,
you will probably end up with one or
two who perform two of the sounds
well and two or so who perform one of
the sounds really well, and the rest just

190

miss. Now comes judgment time. After
getting it down to three or so choices, I
go with professionalism: Which engi-
neer made the best impression to work
with? And finally, I get whomever I
select to listen to the sounds another
engineer might have done better in a
particular case to better illustrate what
I was looking for. The process of
acquiring sound effects is detailed in
Chapter 30.

Voice-Over

Almost all voice-over work is out-
sourced to some degree as very few of
us make strong voice actors. Most top
games these days employ SAG talent,
and often quite high-profile stars are
used. Voice-over work involves six
roles: the talent, the director, the stu-
dio, postproduction, the producer of the
voice-over work, and the game design-
ers who specify what lines are needed
in the game.

I recommend using a full-service
voice-over house. The game designer
wants to focus on designing the game,
not filling out SAG union paperwork,
finding studio time, and organizing the
VO sessions.

Your job, in my opinion, is to design
the game and come up with a VO script
for all the actors in your game, not han-
dle all of the mundane tasks associated
with VO production. However, there
could be the odd case where you have

Chapter 12: Qutsourcing Strategies

the right facilities or the job you need
done is so small that it makes sense to
do it yourself. (I just have not seen a
job too small to have it done right.)
Chapter 29 discusses voice-over pro-
duction in detail.

What Else to Outsource

Of course there are a few other types of
work that could be outsourced. For
example, if you are self-publishing
something and want to sell direct to
consumers, you should look into elec-
tronic software distributors and
outsourcing your credit-card-taking
activities.

Outsourcing web site design makes
sense only if your team lacks both art
and web skills; however, a web site
design is usually well within the grasp
of a game development team. Out-
sourcing the web site hosting makes
good sense, and there is a wide variety
of vendors available; the services are so
standardized that it has become a
commodity.

I have seen a few businesses
advertise themselves as software test-
ing labs. While I do believe they will
perform very rigorous testing, I do not
believe there is a good market for these
folks to exist in—the ones I know of
have failed. I believe you as a developer
will need the facilities to test your own
game, and any strong publisher will be
sure to test your game.

Chapter 13: Shipping Your Game

Chapter 13

191

Shipping Your Game

Shipping Is a Phase

Shipping a game is not a point in time
where the game goes instantly from
production to a shrink-wrapped product
on a shelf at Electronics Boutique;
rather it is a process and a phase of the
project. Arguably all of the game devel-
opment process is in support of ship-
ping the game, so shipping starts at the
achievement of alpha with the team
taking a feature-complete game and
trying to make it the most polished
game they can before the last final can-
didate is burned and turned into a glass
master.

Great games truly become great in
the shipping phase, and the masses of
mediocre and almost-great games settle
into mediocrity in the shipping phase.
Sometimes the challenges are just too
great to save a mediocre game in the
shipping phase: too many bugs, devel-
opment overran its time budget, the
game’s vision has been misplaced.
Indeed all of the previous material in
this book was set down in the earnest
hopes of setting your game up for the
greatest degree of success.

How Do You Ship a Great Game?

There is one way I know to guarantee
shipping a great game: Simply play your
game (and have others play your game)
and keep fixing bugs, correcting flaws,
tweaking balance, and performing
wholesale changes to your game until it
is the most fun, addicting game avail-
able. You will see your total dedication
to gameplay and quality well rewarded
with appreciation from your fans, criti-
cal acclaim, and probably strong sales.
There is a large downside to this
method though: You have no way of
anticipating how long it will take to fin-
ish your game. Without that knowledge,
marketing will not be able to put
together a marketing plan, the sales-

people will not be able to sell your
game into stores with early strength,
fans will become frustrated waiting for
the game, the game magazine cover
that was so precious a year earlier is
forgotten, the publisher may choose not
to have an open checkbook, and finally,
the ultimate sales of the late but great
game may not support the additional
time and money spent on the project.

In short, working on a game
incrementally and without a plan until it
1s well done is a risky method of devel-
opment, and only the top developers in
the industry are such bankable game
makers that they can routinely get
away with this strategy.

192

The solution to the dilemma of
quality versus timeliness can be solved
by continuously focusing your whole
team’s efforts and all of the resources
available to you to achieving the widest
bandwidth of play testing, balancing,
bug detection and correction, and being
as organized as possible in utilizing the
time you have to make a great game.
While a game is a work of art, the test-
ing and tweaking part of the project can

Chapter 13: Shipping Your Game

be successfully engineered. I do not
claim that you will be able to fix all your
bugs, correct all the flaws in your user
interface, or actually be brilliant in your
game design and balance. I just claim
that I have some good suggestions for
using your shipping phase time to max-
imum effect. This chapter acts as an
introduction to QA on game projects
while Chapter 18 discusses QA meth-
ods in depth.

Alpha—Feature Complete

The industry standards for alpha, beta,
final candidate, first playable, and demo
vary from publisher to publisher, year
to year, and project to project. My defi-
nition of when a game achieves alpha is
when it is feature complete.

What Is Feature Complete?

It can often be painstakingly difficult to
decide if a game is feature complete. It
is easy to say that a first-person
shooter is not complete when the char-
acters are not yet taking damage, but I
would argue that if the texture artists
want to keep improving the look of a
level but the level is otherwise com-
plete and playable, then you have a
feature-complete level.

Additional Content

The gray area in my mind is what to do
when you have the game feature com-
plete, but you have some folks with
extra time on their hands who could be
used to make additional levels, models,
or missions for your game—pure con-
tent. Do you go ahead and create this
work after alpha, cut this content from
the final game, or delay alpha? After all,
alpha means that this is the first time

the complete game is together in one
place and is available to be played;
should we not feel comfortable adding
content to make the game fuller
between alpha and beta? I think the
answer to this question is feature spe-
cific; however, I have my own rule of
thumb: If the potential post-alpha con-
tent feature is very modular with no
dependencies on other members of the
development team, if the game could
ship without the additional content, and
this additional content will have only a
minimal need for testing, then I feel
comfortable allowing this content after
alpha. If this additional content would
require significant testing or creates
dependencies with other tasks, I then
have to determine whether it is a core
feature or should be cut.

Feature Trimming

If you are not quite done with your fea-
ture list but the anticipated date of
alpha is looming close at hand, you
should seriously consider changing the
rules and cutting features. How much
do you cut and how much do you move
your alpha date out? Answering this
question is why you are in charge. This

Chapter 13: Shipping Your Game

1s an exquisite balancing act where you
measure input and influence from your
executive management, your team,
your fans, and most importantly your
inner voice and choose a path to alpha.
It is easy to say cut the features that
are secondary and trivial and push for
the features that are primary. How you
make these choices is the hard part.
For myself I line up all of the open fea-
tures in Excel (I seem to take comfort
in lining up features for the cutting
block when they are neatly laid out in
Excel) and just start calling out loud to
myself “core” or “kill.” After I have
made my list of cut features, I print it
out and take it to a team meeting.
There I announce the fate of the fea-
tures one by one with a stony, poker

Testing Plan

Now that alpha has been achieved and
we have all of our features, it is time to
test the game. At the beginning of the
project we created a set of test cases
from our use cases and requirements;
now is the time to finalize the testing
plan.

Publisher QA

For almost all major releases the pub-
lishers assume formal responsibility for
the quality assurance of a game before
it is released. Some very small projects
have just a single tester, others have a
team of six testers led by a lead tester,
and some larger projects have dedi-
cated single-player and multiplayer
testing teams. Occasionally close to the
final push new testers will be rotated in
on a project to give the game some
fresh minds. Other significant mile-
stones such as alpha and beta may

193

face. My team has worked with me long
enough to speak up for a feature that I
have killed and attempt to make a res-
urrection. If they can make compelling
enough arguments to me and the team
to resurrect a dead feature, then they
must identify a feature I have desig-
nated to live as a lesser priority than
the feature they are arguing for and I
swap them. By coming to the meeting
well prepared, I am making an uncom-
fortable meeting—a meeting where the
topic is a group failure to realize fea-
tures—as comfortable as possible with
strength and direction. This is tem-
pered with the purpose of the meeting
where the team members review my
decisions and ratify the feature-cut
plan.

enjoy the attention of a dozen or so
testers for a week or two to verify the
readiness of the game.

These dedicated QA teams are
usually the only folks who are
employed full-time to test the game.
They should be the major source for
bug detection and sometimes are
invaluable in getting deep coverage on
an elusive problem. These publisher
QA teams will develop their own fea-
ture checklist for your game, and they
will move around the feature list, test-
ing as they receive builds, and perform
full verification sweeps at a lesser fre-
quency. The list that this QA team
compiles will be considered the bug list
that the other sources of bugs and flaws
are added to. This bug list will be main-
tained in a database. Some publishers
roll their own solutions, and others
such as Activision employ a web-based

194

bug tracking solution called PVCS
Tracker. This QA team or a dedicated
team will also perform compatibility
testing for PC games to ensure that the
game runs well across the spectrum of
PCs from the minimum requirements
to the latest hardware.

These QA teams sometimes do a
great job, and sometimes they are unin-
spired in their testing of the game for a
variety of reasons. My complaint with
publisher QA is that as an industry, the
publishers consider the testing posi-
tions to be low skilled and low paying.
Of course, I understand how the execu-
tives at a publishing house would be
hard-pressed to have a more enlight-
ened view of their QA when a casual
analysis would show that you are look-
ing at people who are very young, at
the beginning of their careers, who are
getting paid to sit around all day playing
the latest games and occasionally
writing down their observations on the
game. What skills could be involved in
playing a game that you are selling to
the masses? Why should you pay a pre-
mium wage for a position that has
endless applicants?

If you were the manager of a pro-
fessional baseball team, I doubt the
thought to fill some open positions on
the team’s roster from the pick of
Krispy Kreme’s employee softball team
would ever cross your mind. Hey, there
are millions of softhall players who
would love to play ball professionally,
and you could get them cheap too, but
then they would not be professional ball
players, would they?

Team Testing

Team testing is critical to the polish and
balance of a game, and it is also one of
the most difficult tasks to schedule.

Chapter 13: Shipping Your Game

The 1dea is to get everybody on the
team to stop implementing new fea-
tures and fixing bugs and take a fresh
and hard look at what they have cre-
ated. The development team will be the
game’s harshest critics; no one outside
of the team knows the full potential of
the team and the game, and the game’s
shortcomings will stand out sharply in
their own eyes.

It is commonly advocated to play
the game for 30 to 60 minutes two or
three times a week. In my opinion it is
costly to ask people to switch tasks, no
matter the task, and to ask them to play
the game for such a short period. I
don’t think you get a lot of quality infor-
mation from that effort. Instead, I
advocate a full four hours spent on
gameplaying as often as your project
can tolerate the distraction—once
every 10 to 20 business days at the lon-
gest interval. With these longer play
sessions your team will be able to
really wrap their minds around the
game and dig deep to get real feedback.
Some of these sessions can be aborted
after a relatively quick hour or two if
you come across a fatal flaw that pre-
vents the rest of the game from being
appreciated. Also, it is not critical that
every single team member participates
in every play session; it is just impor-
tant that the whole team feels a sense
of ownership and pride in the game
through direct play experience.

Often great leaps of inspiration will
come out of these sessions, especially
in the areas of usability and user inter-
face. This is when the team is most
likely to have an objective eye and look
at a feature and say, “That sucks, let’s
do this instead.” Having a festive atmo-
sphere at these times, such as ordering
pizza, will go a long way to making

Chapter 13: Shipping Your Game

these sessions a loose, fun, and produc-
tive method of testing.

Project Leader Testing

Following the trend inward, from pub-
lisher QA through team testing, we
arrive at project leader testing. The
project leader, lead designer, project
visionary, or whatever name you
choose, is the one who is ultimately
accountable to the gamers for the over-
all quality of the game—whether it is
fun. The project leader should play the
game thoroughly and often—more thor-
oughly than often. In a game such as
Starfleet Command, I don’t necessarily
play every mission in depth before
release; rather I play with all of the
user interface and a lot of multiplayer,
and I spend a lot of time thinking about
how the game could be made better.
The project leader is the person
who has to simultaneously decide what
goes in and what is cut in the quest for
fun. All the while the project leader
must maintain the schedule. Only by
playing the game directly will the pro-
ject leader have a proper appreciation
for relative importance of the change
requests being showered at the game
from all directions. It is also the project
leader who must bear the responsibility
for acknowledging critical weaknesses
in the game that can only be corrected
by large efforts. These weaknesses
must be confirmed through the project
leader’s own experience with the game
and must not fall into a trap of just
responding to the latest cry for change.

Automated Testing

Almost all games would lend them-
selves to automated testing for at least
a portion of the game. For example,
many 3D shooters employ an

195

automated camera test routine by ran-
domly placing the camera in any valid
point in the 3D level pointed in a ran-
dom direction. Any resulting crashes,
assert, or any other detectable fault can
be trapped, and all of the relevant con-
ditions such as the stack are saved off
for a programmer to follow up with.
Thinking of portions of your game that
lend themselves to automated review is
a great task for the programming staff
to brainstorm about. For example, in
Starfleet Command we have a mode [
call Popcorn where we have Al con-
trolled ships fighting each other in a
random free-for-all, and when a ship is
destroyed another is created to fill its
place. Over time, most of the tactical
game space is covered by these Als
smashing each other, automatically
uncovering bugs in the tactical game as
we go.

Focus Group Testing

Focus group testing is a quasi-science
unto itself. Anyone can perform focus
group testing; however, there is a grow-
ing industry of professional focus group
testing folks. The idea is to put the pro-
spective consumers in front of your
software and watch everything they do.
Observe every difficulty, every missed
click, every indication of being lost
through the use of cameras and direct
observation. The idea is that anyone
who is on the team or on the pub-
lisher’s QA team is too familiar with
the game to give true objective feed-
back. The focus group testing can
result in your strongest ego-busting
feedback (as in “this game sucks” or
“this is stupid”). However much your
pride might be damaged by the experi-
ence (many publishers do not let the
development team observe the focus

196

group testing), you must look hard and
deep past their initial complaint and get
to the root of their difficulties and
address them.

We must remember we are making
consumer software that people do not
need to buy. Consumer software must
work well right out of the box, and thus
it is the first 15 minutes of use of your
software that you want to nail. Recent
mega-hits are known to craft the open-
ing 30 to 120 minutes of gameplay to a
much higher level than the rest of the
game. This is where focus group test-
ing shines; this is the best method to
discover the flaws that your game is
presenting to the new user right out of
the box.

The most important task involved
in a focus group test is to sort out all of
the comments and throw away those
that are purely frivolous, outrageous, or
impossible to accommodate and then
carefully review the more reasonable
comments and develop a strong set of
new directives to fix the user interface,
usability, or other first-impression
problems the focus group testers
experienced. A large danger exists,
however, of overreacting to the input
from the focus group testers and creat-
ing flaws that will be apparent to the
players of your game who are hooked.

Beta Testing

Beta testing should be a big part of the
QA process on a strong PC title; it is
probably the most rigorous way to
identify design flaws, compatibility
problems, and outright bugs. With a
beta test, the developer or publisher
distributes either the full game or more
commonly a portion of the game via CD
or electronically to either a closed or
open set of beta testers. Mailing CDs

Chapter 13: Shipping Your Game

out to a few hundred beta testers is
now a fairly reasonable cost as there
has been tremendous competition
among CD duplication houses. Last I
checked, you could deliver a master
CD-R to a duplication house and get
them duplicated with four-color
silk-screening for less than 40 cents
each.

Unfortunately for console titles,
beta testing is impractical as currently
it would be far too expensive to get
your beta test build duplicated by the
hardware manufacturers to send out to
the beta testers. With duplication fees
at $10 and more per unit this could
quickly get out of hand. Also, I am
unaware of any console game that has
ever had a beta test, and it may prove
impractical to obtain the permission of
the hardware manufacturer. I believe
with the advent of the hard drive and
built-in broadband access in the Xbox,
we will see an electronically distributed
beta test of the online games for the
Xbox in 2003.

Open or Closed Beta Test?

The decision of whether your beta test
should be open or closed is somewhat
project specific. For example, if your
game is a tightly scripted narrative
game that may only be played once,
such as Myst, I suggest that you do not
employ an open beta test, as too many
potential customers would see how to
win the game and would not perceive
the released version as having signifi-
cant value.

Any kind of multiplayer game lends
itself to open beta testing, with perhaps
the Quake tests and Counter-Strike
being the two strongest examples of an
open beta test. In the Quake tests, id
Software releases a demonstration/beta

Chapter 13: Shipping Your Game

test of the game well before actual
release, often longer than six months
before release. These tests may have
content that will not ship in the final
game, and most certainly the game bal-
ance will change. What id is primarily
looking for is feedback from the hun-
dreds of thousands of users of their
Quake tests for compatibility reports.
As id games are creating the bleeding
edge of games, id is very careful to
have robust and reliable software so as
to not alienate consumers. So despite
having arguably the most advanced
graphic engines in the game industry,
id games run well on machines that
meet the minimum specification with

very few complaints at the final release.

Also it acts as an early adopter, word-
of-mouth marketing mechanism by
appealing to the hardcore gamer’s
sense of being “elite” by getting in on
the ground floor of a new game.

Of course another reason not to
perform an open beta test is because
your game is not up to widespread
scrutiny. You are showing the world
what your game is made of, and if it is
not compelling, it would probably be
better not to do an open beta test. Con-
sider holding a closed beta test before
an open test. The closed beta test may
be performed with as few players as
you like (I suggest between 50 and 500
people). This way you will receive
reports on your most egregious flaws
before the rest of the world sees them.
The best way to conduct a beta test is
to go in stages from 50 to 150 to 500
and then open. Then, at each stage you
have fresh people looking at the game
(and fresh systems to run your game
on) while each time fixing the largest
bugs before going forward.

197

In Chapter 23 I present methods
for organizing your beta testers, solicit-
ing and collecting bug reports, and
communication strategies not only from
development to beta testers but also
between beta testers.

Manufacturer Testing

In the console world, the manufacturer
will test your game thoroughly against
their quality standards before allowing
the game to be duplicated. This is prob-
ably the single strongest reason why
console games generally ship in better
condition than PC games. The hard-
ware manufacturers are not nearly as
motivated as the developer and the
publisher to ship a game and thus can
afford to be much more critical about
the quality of the game. The reason for
this is two-fold: There are at any given
time scores to hundreds of games being
produced for their platforms, so send-
ing any one game in particular back to
development is unlikely to materially
affect their short-term cash position;
and two, it is in their best interest to
maintain the quality levels of games on
their platform; otherwise the consumer
could quickly become disillusioned and
wander off to another game console.

The manufacturer’s quality stan-
dards are typically written up at an
early stage of the platform’s life cycle
and updated from time to time, with a
certain amount of the rules being an
oral history. Also note that between
large territories such as Japan and
North America, the standards on some-
thing as basic as the common accept
button on the controller differs from the
X button and the O button.

The great thing about a console of
course is that compatibility testing is
not a large task. Rather, the game must

198

be eminently playable, with short load
times, high frame rates, and very for-
giving gameplay relative to a PC game.
In Chapter 23 I discuss how to better
prepare your game for the hardware
manufacturer’s testing process.

Licensor Testing

When you create a game based on a
licensed property such as our Starfleet
Command series based upon Star Trek,
the licensor (the folks who own the
intellectual property) will usually enjoy
some sort of signoff authority on the
game’s look, feel, and content to be
sure your work supports the license
and does not infringe upon other
properties.

Typically the licensor will be
involved at the game’s conception and
take deeper looks from time to time
during the project, especially paying
attention to the finished game design
document, the first playable build, the
beta build, and the final release
candidate.

Occasionally you will work with
licensed material where the licensor
does not have any approval rights over
your work. That was the case also in
Starfleet Command for the Star Fleet
Battles material developed by Arma-
dillo Design Bureau, which we used to
base our core game mechanics upon. It
was critical in the case of Starfleet
Command that we have only one licen-
sor with final design approval (I
shudder at the nightmare of having
two!). It is very important to maintain a
great relationship with your licensor as
most often they are not in the game
business and they may not immediately
appreciate what you are trying to
achieve with their property. You do not
want them to be close minded about the

Chapter 13: Shipping Your Game

liberties you will likely need to take to
create a great game.

How Do You Balance a Game?

Game balance is the finest art in game
making. It is painstakingly difficult to
analytically describe what a balanced
game is or present a method for devel-
oping balance in your own games.

The simpler the game and its game
mechanics, the closer to perfection
your balance will need to be. For exam-
ple, the game chess has had its rules
tweaked and refined over the centuries.
Many years ago, the rules changed
from the queen being able to move only
a single square of distance like the king
to her present powers of destruction.
Later, pawns were given the ability to
move one or two squares on their first
move. In response, the move en
passant was created to rebalance the
game after the pawn was given this
two-square option for first move. With
the advent of powerful computers, pre-
vious end games that were thought to
be theoretical draws have been won by
computers that found winning
sequences—some after more than 200
non-capture moves! The purpose of
these rule changes has been to achieve
a perfectly balanced game. At the pro-
fessional level, there are scores of rules
involving adjournment, time controls,
and a host of other details that are
adjusted as we strive to create the per-
fect game of chess. This refinement is
also occurring in professional sports
where many minor rules are made or
adjusted that are not apparent to main-
stream viewers.

The general idea with game bal-
ance is to start with the most dominant
rules and balance those first and work
your way out slowly to refine the

Chapter 13: Shipping Your Game

secondary and tertiary rules. The fol-
lowing diagram illustrates how we
prioritized game balance in Starfleet
Command 3.

For example, in a first-person
shooter, first determine how fast you
want the characters to run, turn, and
jump before you determine the damage
and rate of fire of the plasma rifle. In a
real-time strategy game, determine
how much the basic grunt units will
cost to build in time and resources
before you determine what the zeppelin
brigade will cost. Work your way
outward.

For PC games, the beta testing
cycle will provide you with plenty of
feedback about game balance, espe-
cially if there is a multiplayer option to
your game. I believe it is between

199

humans, not against the computer, that
you will have a strong enough opponent
to develop true balance.

I have discussed how to achieve
balance but not what balance is. I
regard a well-balanced game as one that
delays as long as possible the point at
which it is apparent to the loser that he
will lose the game. As soon as the loser
is certain of his doom, the game
becomes uninteresting and the loser
will want to quit. You want this realiza-
tion to be as close as possible to the
last moment in a game. Storytellers
know this intuitively, as every time a
chess game is used as a prop in a movie
or a book, the winner cleverly check-
mates his opponent in some surprising
manner that the loser was not
anticipating.

Tactical Ul

Impravements

Computers

Clazk

Cloak Hurkirg

Transpariers
Tractorirg
Hit =nd Run -
Repal Tractors

Hull Size
Speed
Humbsar of
Hardpoirts

Turmiing

‘Wémapon Arcs

‘Weapon Welghts (-

Waspan Costs
shidlds

Snlad
Rertorcement

Fepsic Rsbes
Officar Sffacts
Fempair Crevs

Repir o
Ergires

Tarrain Eftects

Helm Corbrals |

EmM

wingman

Difarark fings of
Ehuttias Cartralz

Game Mechanics of Star Trek: Starfleet Command: The Next Generation

Balancing Starfleet Command 3 from the inside outward

200

For many games there is not a
clear winner or loser. In games such as
SimCity, you play as you do with a toy
rather than play a game. It is still
important to balance these games
though. Here again, the goal is to pro-
long the moment of manifest ending.
Instead of losing the game, a play-
oriented game must provide a lot of
simple game mechanics that interrelate
with each other, like Play-Doh and

Final Candidate Cycle

The final candidate cycle is where
everything comes together to make a
game. The final candidate cycle pro-
duces many war stories of not going
home, missing FedEx deadlines, and
finding obvious bugs that have some-
how escaped every form of testing to
date. Strong development teams bond
even closer during the final candidate
cycle, and unhealthy teams sometimes
turn on each other with team members
scattering to the four corners of the
globe as soon as the game ships.

It is extremely important in your
final candidate cycle to make as few
changes as possible to your game. This
means that you should fix very few
bugs during your final candidate cycle if
you have a fixed ship date that cannot
move. I learned just how important this
is with the first version of Starfleet

Chapter 13: Shipping Your Game

Legos building upon each other. The
goal 1s to create an apparent endless
amount of replay through different sce-
narios. In SimCity a friend of mine
wanted to find out what it took to map
the entire city with Arcologies, and I
would build my cities up into greatness
only to wreak devastation and let the
simulation run overnight to see if the
city would recover without my
guidance.

Command. During the final two weeks
before we shipped we fixed probably
100 bugs. As soon as the final candidate
was off to duplication we began to find
more bugs in the game. The bugs we
found in the first week after having the
game sent off to duplication were all
bugs that were created by fixing other
bugs late in the final candidate cycle. 1
now believe that when you are
approaching that final two weeks, you
should document all of the bugs you
find in the second to last week and not
change a single line of code (maybe
data-only fixes, but no code fixes).
Then take a long hard look at that bug
list. If there are any bugs that you can-
not live with, you need to alter the
schedule to provide not only time to fix
the bugs, but also time to have a clear
two-week buffer to retest the entire
game.

Transition, Ship, and Point Release

This chapter illustrates that shipping a
game is not a single event in time
where the gold master is handed over
for duplication; rather it is a phase that
starts as far back as first playable,
through alpha and beta testing, through

final candidate, and on into commercial
release. For PC games there is often
the compelling need to patch and bal-
ance your game post-release. The
largest PC games in the industry, the
massively multiplayer games, perform

Chapter 13: Shipping Your Game

the greatest amounts of post-release
work. That is why they have not only
what are called transition plans to go
from development to release, but they
have transition teams to hand off the
project to a live team.

Console games have had to live up
to a much higher standard of quality in
the late 1990s as compared to PC
games, as there was no opportunity to
patch a game after release. The stron-
gest PC developers and publishers
release games of the same or even
higher quality standards of a console
game and do not 7ely on post-release
patching. Rather, companies like Bliz-
zard and id Software use point releases
as an opportunity to offer additional

201

content, fine-tuned balance based on
customer feedback, and the occasional
bug fix for a particular piece of hard-
ware incompatibility. Increasingly, as
PC games incorporate more multi-
player and online gameplay, the post-
release patches are often required to
perform critical cheat-prevention mea-
sures. Now that consoles such as the
Xbox are shipping with hard drives, it
will be interesting to see if publishers
have the stamina to remain as rigorous
as they have in the past or if they start
to slip and offer post-release support
that starts off with additional content
and later degrades into mere patches.
In Chapter 24 I discuss how to best
manage your point release efforts.

This page intentionally left blank

Part 1l

Game Development

This page intentionally left blank

Chapter 14: The Vision Document

Chapter 14

The Vision

All games need to be sponsored by
some sort of bankroll. It might be Lara
Croft’s money at Eidos, or it might be
some sweat capital from some young
guys in Texas. At any rate, all games
will need that signoff before they are
able to proceed. For modern games
capable of competing with the main
field this is a tidy sum indeed. Many
aspiring game developers have asked
me and others in the game industry
this question: “Hey, um. So I have this
great idea for a game, how do I get it
funded?” The truth of the matter is
there is no magical formula; each and
every game project has had its own
path to funding. That being said, all
games need some sort of outline or
vision document that explains to an
executive team why this game, of all of
the hundreds of game proposals they
have received, needs their support and
attention.

The vision document (also known
as the concept document) is an execu-
tive summary of the game design
document that touches upon all the key
features of the game in such a manner
to grab them and get them to request to
see the game demo and move forward
with a deal. Despite this rather prag-
matic use for the vision document (I
know, I know—you are a creative sort
and are not really interested in the dirty
details of raising money), it does serve

205

Document

a noble purpose in keeping the game’s
focus clear to all stakeholders in the
game including the development team.

Write the Vision Document Twice

This chapter on creating the vision doc-
ument has been placed before the main
chapter on creating a design document
on purpose. The writing of the vision
document begins the moment a game is
conceived. Lawrence Block, a very suc-
cessful mystery writer, advises in his
book Telling Lies for Fun and Profit that
inexperienced writers should actually
start off writing novels instead of short
stories. The reason is that it is much
more difficult to find just the right
words and say something important in a
few words than it is to stumble around
and write a few hundred thousand
words and hope that your readers will
entertain themselves on the way.

Your vision document, you hope,
will win the equivalent of the year’s
best sci-fi short story award and be
picked up by a major publisher and help
motivate your team to its best efforts.

The only way to make this docu-
ment tight and strong is to write it,
seek out criticism, and revise the vision
document. You will learn a ton about
the game you are proposing to make as
you perform your game design and
technical design processes. So I

206

advocate revising your vision document
again at the end of the design phase.

So Is the Vision Document a
Proposal?

A formal proposal would contain the
vision document plus a schedule, a bud-
get, the team bio, and the company’s
history. Some folks put their proposed
budget and schedules straight into their
vision documents. I think it is better
instead to keep the budget as a sepa-
rate document, the schedule as a
separate document, and your team
bio/company history as another sepa-
rate document. The reason for this is
that it usually takes a long time to sell a
game project, and you will most likely
learn important new facts about your
game that will materially affect your
budget and schedule as you are circulat-
ing the vision document. What usually
happens is that you mail out or drop off
your vision document (possibly with a
VHS of gameplay) with a publisher’s
business development person, and your
proposal sits on their desk for a while
until they call you up and want to learn
more. I have had publishers call me six
months to a year after I passed them a
proposal, and I have had publishers visit
my studio without having yet seen the
vision document. Each relationship is
unique, and you should hold onto the
schedule and budget information until
you have firmed up interest from the
publisher and your facts are as current
as possible.

Thus I recommend you prepare a
separate document that features your
company, discusses the management
team, highlights the strengths of the
key employees, and indeed discusses
all of your employees and resources. A
game company is not about a single star

Chapter 14; The Vision Document

developer, but rather about a team.
This document will come in handy to
pass out to other potential partners of
your team that are not necessarily pub-
lishers looking to pick up a new title;
for example, you may want to pass it
over to your local NVIDIA developer
relations representative.

Instead of placing the schedule and
budget information with the vision doc-
ument, focus on getting the publisher
to visit your shop and meet your team
and firm up interest. When your pro-
spective publisher is ready to know
about the budget, don’t worry, they will
ask.

Only 1 Percent Catch the Eye

When I was working at Interplay as a
senior group producer, my boss at the
time resigned and was so distracted by
his new prospects that he forgot to
come back and clean out his office. His
office sat that way for two weeks while
I wondered what should become of his
office. Is there not some sort of stan-
dard plan for cleaning up an executive’s
office? Presumably there are contracts
and stuff in there, right? Well, being the
temporary senior guy in the division, I
shrugged and went in there with a few
boxes to start cleaning it out. The most
interesting thing about the abandoned
office was the more than 200 game
proposals/concept documents/vision
documents that were lying about in
stacks. I boxed these up and took them
to my office and looked at them for a
while. Then one night Sean Dumas
(one of my two partners at Taldren) and
I sat down and looked through all of
them critically as if it were our own
money we were looking to invest and
wondering which games we would pick
up. After leafing through the more than

Chapter 14: The Vision Document

200, it came down to just two vision
documents; only 1 percent looked like
they were potentially worth backing to
us. Why these two vision documents?

Both were carefully prepared with
oversized paper, liberal use of colorful
graphics, and unusual bindings, and
from page 1 we understood what the
proposed game was about and were
compelled to keep leafing through the
vision document learning more about
the game. We found that we wished we
could go and meet the guys who put
together these two vision documents.
That is what a good vision document
will do for you; it will attract people to
come and meet you and see what you
are all about.

What About the Precious Game
Secrets?

Some people might wonder about pass-
ing out their game’s secrets to people
they have never met. Even worse,
some big publisher might just steal
their idea! I have never seen or heard
of this actually happening. The industry
is full of game concepts; virtually every
developer I know of has his own pet
game project, and some have cabinets
full of them. Very few people in the
industry want to use someone else’s
idea in place of their own. If your vision
document is compelling, they will want
to meet your team. Making a great
game is far more work then coming up
with a strong idea, and all of the pub-
lishers know that.

In fact, after a publisher develops
interest in your vision document, the
most likely game deal will be that they
meet the team and place one of their
ideas in your team’s hands to execute.

207

Visuals

The vision document must be liberally
illustrated with images—both concept
art and screen shots—to accurately
convey the gameplay as well as give the
game life in the hands of the reader.

Select one single image, most
likely a concept image, to grace the
cover of your vision document. This
one image alone should convey the
game.

Throughout the rest of the vision
document be sure to place a striking
visual on each page that helps reinforce
the topic of the pages. For instance, if
you were making an RPG, the section
on backstory should feature an outdoor
shot giving the reader an impression of
what the world is about and another
drawing of perhaps a character in full
gear on the section on character
creation.

The document as a whole should
be somewhere between 5 and 20 pages.
Most people would suggest keeping it
at the lower end of the range, and I
would instead say keep it at the longer
end of the range if you have strong
visuals to carry the extra material.

Another idea for visuals is to use a
full page to illustrate the controls in
your game proposal. Use a picture of
the controller itself with annotations
describing the function various controls
perform.

Another striking use of visuals is to
illustrate your proposal with logos—
your company’s logo of course, the
game title’s logo, but also include the
PS2, Xbox, or GameCube logo if you
are proposing a game for those plat-
forms. If you are licensing an engine
such as Unreal, Quake, LithTech, or

208

NetImmerse, then by all means place
their logos on the page where you dis-
cuss your approach to developing the
game.

Tactile

The actual physical binding of your
vision document is very important. At
Taldren, each of our proposals has been
bound in a unique manner: a wooden
and brass screw setup for a hor-
ror-western game, an American Indian
inspired design featuring beads and
feathers (our most impressive), and
Black9’s metal binding. These bindings
do not need to cost a lot; the metal
bindings for our Black9 proposal were
made from two 90-cent steel joist
straps bound together with two 10-cent
bolts! Use oversized paper and con-
sider using a landscape format instead
of the normal portrait layout for your
vision document.

Most of those 200 vision docu-
ments that I dismissed were presented
in regular report covers that one might
use for a freshman English composition
class, some were just stapled pages
without any formal binding, and one
was submitted in a peach folder! You
might accuse me of being shallow; how-
ever, Sean and I read every single
vision document, and there was a rigid
one-to-one correlation between the
quality of the game concept and the
presentation of the game concept. If
you do not care enough to make your
best impression, why should anyone
else care enough to fund your project?

Chapter 14; The Vision Document

| FEES
The physical presentation of the Black9 vision
document

What About the Words?

Yes, of course your vision document
should include a carefully selected set
of words to communicate the game’s
vision. What are these words?

The hook: In just one to three sen-
tences describe the hook of your game.
I personally cringe every time I hear a
movie-type person say something like
“It’s Shrek meets Fast and Furious.”
Your mission: Say why the world needs
your game for its unique offerings, yet
simultaneously reassure the funding
source that it is substantially derivative
in either gameplay or licensed content
to assure certain success. Yep, that is
why it is unique, compelling, and more
of yesterday’s hit at the same time.
That last bit might sound a little cyni-
cal, but I am very sympathetic to the
problem; regardless of the size of the
risk it is just common sense to make a
piece of entertainment software that
many people will actually “get.” No
points are awarded for eclectic artistic
expression in the game industry; save
that material for the National Endow-
ment for the Arts.

Team-F [_1]"“'\

Chapter 14: The Vision Document

Touch upon every major feature in
your game. Think about the back of the
box and what the marketing messages
will be for this game. You must be the
champion for your game at this point
and put on your marketer’s hat. Don’t
be modest; now is the time to be the
confident showman. Marketing is all
about the art and science of getting
people to buy what they are told, and
you must be the one to start the sales
pitch.

After you write up the first pass of
the vision document, I recommend tak-
ing it down to your local copy shop or
coffee shop or anywhere your target
audience may be hanging out. Let them
casually leaf through the vision docu-
ment and see if they like it. My favorite
is the copy club where we sometimes
get stuff copied and bound. I put an
extremely deadpan look on my face as
if I were an overworked office drone,
and I plop the vision document down on
the counter and ask for it to be bound.
Then I watch the clerk’s eyes very

209

carefully. If he starts leafing through it
and comes back to you saying, “Whoa,
this is cool, so are you guys making
games or what?” then you know you
are on the right track. If he could not be
bothered to leaf through it, then you
should consider taking it back to the
conference room table and discussing
with your teammates how to spice it
up. (You can see that I like to beta test
everything!)

I would actually say very little
about the development team inside the
vision document; that is what the team
bio and company history are for, and
you would be handing them out simul-
taneously. Instead, have the vision
document focus just on the game.

Contact Information

Always place your contact information
on the last page of the proposal. List
phone numbers, email, fax, street
address, and phone extensions. Don’t
put any barriers in the way of a pro-
spective nibble on your vision
document!

This page intentionally left blank

Chapter 15: Requirements Gathering

Chapter 15

211

Requirements
Gathering

The key to successful game develop-
ment is planning, and you cannot create
a good plan without understanding what
goals or requirements your plan must
fulfill.

Where requirements gathering
stops and requirements analysis and
game design begins is in reality a bunch
of fuzzy borders, and you may certainly
consider the requirements capture
stage the first step towards creating a
game design document.

In traditional software develop-
ment you have customers that have a
need fulfilled, for example, ATM or
inventory control software. In games
we of course have customers, and when
working on sequels there is usually no
shortage of customers expressing
desired features. But for original games
your customers do not yet exist. This
makes it a bit more challenging to
determine your customers’ needs.
Instead, as a game development team
you will need to look into your creative
minds and work with your publisher’s
executive and marketing teams to
develop the requirements for the game.

The Flavors of Requirements

There are many types of requirements
that are routinely placed on a game

such as creative, functional, technical,
fiscal, licensee, and temporal require-
ments. Perhaps LucasArts has
approached your team and has
requested a proposal for a Star Wars
Episode I-II RTS exploiting your game
engine to be delivered by Q4 of the fol-
lowing year. This request for a proposal
has touched upon a great variety of
requirements, and you must build these
requirements out before you are able to
submit a bid of any confidence.

Creative/License Requirements

With our hypothetical example of a Star
Wars Episode I-II real-time strategy
game, we are able to rapidly understand
the creative space to build the proposal
around: The ground assault mechanized
units should not be the AT-AT walkers
from Episode V, the game should not
feature Star Trek Enterprise E’s float-
ing about, etc. Now this is a fairly easy
example to understand; however, take
the Star Trek license. In the years that
my company has worked on the Star-
fleet Command series, Viacom has seen
fit to license out portions of the Star
Trek universe to Interplay, Simon
Schuster, Hasbro, and Activision. The
licensees of the modern eras like Voy-
ager and Deep Space 9 could and would

212

sometimes feature material from the
original series via some sort of time
travel mechanisms. This would of
course irritate Interplay, which held the
TOS license, as it waters down their
“exclusive” license. Even more wild is
that the Star Trek universe features
forward time travel, and indeed Harry
Lang at Paramount’s licensing group
agreed that it was certainly plausible
for Interplay to request to use Next
Generation material!

Even more complications arose
with the fractured licenses; Interplay
was the oldest licensee at the time with
the most vaguely written license. For
Starfleet Command 2 we proposed to
create the online Dynaverse with sub-
stantially the gameplay of a massively
multiplayer game. Activision at the
same time had spent quite a large sum
of money to wrap up all of the licenses
under their banner and demanded to
have the exclusive license on massively
multiplayer games. So who had the
rights—Activision or Interplay? It
looked like Paramount briefly sold the
same thing twice inadvertently due to
the age of the Interplay contract. The
frustrating thing about it was during
the development of SFC2 we were
required to never refer to SFC2 having
any kind of massively multiplayer
gameplay. We struggled for months to
help Paramount find the language that
would best market our game yet at the
same time not require Activision to
more actively defend their license.

So you can see from the example of
Star Trek above, that licensing require-
ments may sometimes be difficult to
understand and document clearly.
understand that the game industry is
currently entertaining two entirely

Chapter 15: Requirements Gathering

independent Lord of the Rings licenses:
one license derived from the book and
the other from the movie! Goodness
grief! Regular folks like us would not
think to cut a cake so cleverly!

Take your time and understand
exactly what license you have in your
hands. Find out if you are able to kill
major characters in your game. This is
an important feature for many games as
they are not a linear medium; you must
allow the player to explore different
options whether it is a role-playing,
strategy, or action game. Games must
almost always allow for alternate possi-
ble histories. Determine whether or
not you are allowed to create new
material for the license, and how the
approval process works for adding this
new material (forget about owning the
new material; no license holder of any
property with value would allow the
ownership to become fractured).

Technical Requirements

The technical requirements are mun-
dane requirements such as the pub-
lisher requiring that the game ship on
one CD or one DVD as that will signifi-
cantly lower the cost of goods sold.

The hardware manufacturers of the
consoles have many dozens of individ-
ual technical requirements like how
long you are allowed to load a mission
or level, and what buttons on the con-
troller may be used for what purposes.
By and large these console require-
ments are born from many years of
experience that aim to provide the play-
ers with the best gaming experiences.
The nice thing about these require-
ments is that you will not be given any
opportunity to negotiate these items so
you may free yourself from that

Chapter 15: Requirements Gathering

responsibility and just get on with
designing your game to fulfill these
console requirements!

Other technical requirements
include minimum frame rates, and for
the PC game market you will need to
identify your system requirements:

213

Required
Operating System:

Win 98/ME/2000SP2/XP

System Requirements for BioWare’s Neverwinter Nights:

Recommended
Win 98/ME/2000SP2/XP

CPU: Pentium Il 450 MHZ or Pentium [l 800 MHZ or
AMD K6-450 MHZ Athlon 800 MHZ

Memory 98/ME: 96 MB 128 MB

Memory 2000/XP: 128 MB 256 MB

Hard Disk Space: 1.2GB

CD ROM: 8x

Audio System: DirectX certified

Video System: 16 MB TNT2-class OpenGL NVIDIA GeForce 2/ATI Radeon
1.2 compliant video card

DirectX: version 8.1

Of course, the lower your system
requirements, the broader the base of
consumers’ machines your game will
run on. However, the broader your
requirements, the tougher it will be on
the programming team to develop an
engine that will simultaneously take full
advantage of the higher end of the
machines available and not leave behind
the machines that just barely meet the
minimum spec. The decision on where
to set the minimum specification is
usually a negotiated discussion involv-
ing the marketing and development
teams, and both sides need to keep in
mind what the targeted market is for
the game. First-person shooters from id
Software generally push the world’s
computers into the future, and Sesame
Street games for kids need to work on
pretty much any machine out there!

Fiscal and Temporal Requirements

Know what your budget of money and
time is and be prepared to design your
game around these parameters. Much
discussion earlier in the book has been
devoted to this subject. I feel comfort-
able sharing with my team members
the overall budget numbers we have to
work with as I find it empowers them
to make stronger contributions to the
design and overall production of our
games.

Use Case Diagrams

Traditional software development
would interview the future customers
of the software and create use case dia-
grams to document these interactions
between the user of the system and the
software. That would indeed be a
requirements gathering activity; how-
ever, that is essentially impractical in
games. The game designer must step
forward and lend his magic to the

214 Chapter 15: Requirements Gathering

process and design these player (user) requirements gathering process, I have
and game (system) interactions. As this placed the discussion of the use case
process is more of a creative design diagrams in the next chapter on the
activity rather than a formal game design document.

Chapter 16: The Design Document

Chapter 16

215

The Desigh Document

The design document is the soul of the
game. Some design documents exist
only as visions in their designer’s head,
and others consist of hundreds of
HTML linked pages complete with a
version control system tracking the
changes to the design document. Most
other game design documents lie in
between these two extremes.

My goal in this book has always
been to focus on sharing what I know
about the production and development
of games and to shy away from being a
book about game design. There are
already several of those at your local
bookstore, and despite the heavy

emphasis on rigor and process through-
out this book, I still feel that the true
game design process is an art form that
is difficult to put on paper. How does an
artist decide what will be a moving
piece before he creates it? I do not
know, and I would be very depressed to
learn that someone has figured out the
emotional magic to art and has devel-
oped a formula that someone else could
follow.

Thus, I will focus on how best to
articulate your game design document
and only touch upon some of the cre-
ative processes that might be involved
in developing the game design ideas.

What Does the Game Design Document Do?

Obviously it communicates what the
game should be to the development
team, but let’s take a closer look and
examine what that implies:

1. The programming staff must be
able to pick up the game design
document and efficiently develop
the technical requirements and
technical design for the software
that is needed to be developed for
the game.

2. The art team led by the art director o.

must be able to read through the
game design document and under-
stand the look and feel as well as

the scope of the art assets involved
in creating the game.
3. The game designers on the team
must understand what areas of the
game require their detailed hand in
fleshing out such as 3D levels, dia-
log, and scripting.
The audio designers must under-
stand what sound effects, voice-
overs, and music need to be
created for the game.
The marketing folks should under-
stand what themes and messages
they need to use to build the mar-
keting plan around.

216

6. The producers must understand
the various components of the
game so they are able to break the
game down into a production plan.

7. The executive management team
must be able to read through the
game design document and develop
all of the required warm and fuzzy
feelings it would take for funding.

Chapter 16: The Design Document

That is certainly a heavy list of custom-
ers for this game design document! Not
just a sketch of the game world and
some descriptions of the monsters,
huh? To deliver on all of the above
effectively, we should be organized
about the task.

The Game Design Document as a Process

The game design document is not
something you simply dash off over the
weekend. Instead, it is a process that
must be carried out over time by a
team of game developers for a game of
modern complexity and scope.

Game Concept

This is the classic step of imagining a
game that you would love to create, a
game so compelling that you wish you
could play it yourself, 7ight now! This is
the sort of task you could accomplish
over the weekend or just an evening. At
Taldren this usually occurs late at night
after some milestone has been accom-
plished through a non-trivial amount of
blood and sweat, and we lie there in
exhaustion and begin to have glimmer-
ings of what we would love to create
next. This magical process I cannot
help you with; you either have it in you
or one of your team members has this
juice. The next step is to document the
vision.

Write out just two or three pages
that describe the game to your most
intimate development team members.
Don’t take the time to justify anything
—just write. After you have nailed the
core idea and the excitement behind
your game, gather your team into a

conference room with a whiteboard and
stacks and stacks of different colored
Post-it notes. What, didn’t you know
that Post-it notes stick well on
whiteboards?

Brainstorm

I have designed games by myself and
with others. Games that are designed
by committee are usually horribly
muted game designs and games that
are designed by solo individuals often
contain spikes of “game design noise.”
Think of all of the minds churning out
game design thoughts as sound sources
making sounds of all different shapes,
intensities, and durations. And now
think of the process of culling these
design thoughts down into a design
document. It’s easy to see each individ-
ual will bring his own bias, perspective,
wishes, and agenda to the design. If you
allow a solitary individua