
TE
AM
FL
Y

Team-Fly®

Focus On
3D Models

This page intentionally left blank

Focus On
3D Models

Evan Pipho

© 2003 by Premier Press, a division of Course Technology. All rights reserved. No part of
this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval
system without written permission from Premier Press, except for the inclusion of brief
quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press
and may not be used without written permission.

Publisher: Stacy L. Hiquet

Marketing Manager: Heather Hurley

Acquisitions Editor: Mitzi Foster Koontz

Project/Copy Editor: Kezia Endsley

Technical Reviewer: Kelly Dempski

Interior Layout: Danielle Foster

Cover Designer: Mike Tanamachi

Indexer: Kelly Talbot

Proofreader: Jenny Davidson

Wolfenstein, Doom, and Quake are copyrights of id Software. Half-Life is a copyright of
VALVe Software. Unreal is a copyright of Epic MegaGames. The Descent series of games
are copyrights of Parallax. MilkShape 3D was created by the chUmbaLum sOft company.

Discreet is a division of Autodesk, Inc., 3d Studio Max, 3D Studio VIZ, Character Studio,
Fire, Flame, Flint, Frost, Inferno, Lightscape, Smoke, Stream, and Wire are registered
trademarks, and Discreet, 3ds Max, Backdraft, Combustion, Jobnet, and Sparks are
trademarks of Autodesk, Inc., Discreet Logic Inc. in the USA and/or other countries.
Mental ray is a registered trademark of mental images GmbH & Co. KG. Vecta3D-MAX is a
trademark of IdeaWorks3D, Ltd. All other brand names, product names, or trademarks
belong to their respective holders. (c) Copyright 2002 Autodesk, Inc. All rights reserved.

Important: Premier Press cannot provide software support. Please contact the appropriate
software manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used
by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources
believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Premier Press, or others, the Publisher does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from use of such information. Readers should be
particularly aware of the fact that the Internet is an ever-changing entity. Some facts may
have changed since this book went to press.

ISBN: 1-59200-033-9
Library of Congress Catalog Card Number: 2002111229
Printed in the United States of America
03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41
Cincinnati, Ohio 45208

F irst off, thanks to my parents for letting me do this; without their
support and putting up with not seeing me most of the summer

this would have never been possible.

A big thanks to Trent Polack for helping me secure this book deal and
for being an awesome friend and programmer. Without you I would
have never made it to where I am today.

I can’t forget all of the great people over at gamedev.net, flipcode.com,
and their associated chat rooms. You guys have been invaluable in
helping me sort through problems, squash bugs, and are just great
friends. There are too many to name, but a few who have proved to be
invaluable have been Nicholas Cooper, Sean Kent, Denis Lukianov,
Ron Penton, and Henrik Stuart.

To my friend and lifesaver Amy for forcefully dragging me away from
my computer and out of my room every so often; it kept me from
going insane.

Thanks to all of my other friends who put up with not seeing me much
at all during the summer.

Last, but definitely not least, a huge thanks to the people over at
Premier Press, especially Mitzi for sticking with me the whole time I
was writing. Your support has been terrific, even through computer,
Internet, and communications problems. All of the editors who
worked on this have been great; all of you have taught me many
valuable lessons as I have worked on my first book. I hope to work with
all of you again.

Acknowledgments

This page intentionally left blank

Evan Pipho has always been interested in computers and electronics.
As a young child, he learned to operate his dad’s IBM PC, playing
games, and experimenting with the many programs it contained.
While playing with his dad’s Windows machine, he started to look at
languages such as QBASIC and C and to pursue his life-long interest in
game development. He had decided a long time ago that he wanted to
pursue game development, so he dug right in. After some classes at
the nearby community college and several maddening months in front
of the computer, he was hooked!

You can visit the author’s forums at http://www.codershq.com. Click the
Forums link. If you prefer private email to public forums, you can
contact him at evan@codershq.com.

About the Author

This page intentionally left blank

Letter from the Series Editor xvi

Introduction and Overview xix

Chapter 1 Reviewing Matrices and Vectors 1

Chapter 2 Introduction to Quaternions23

Chapter 3 Quake II’s MD2 Models 37

Chapter 4 Loading OBJ Files 61

Chapter 5 An Introduction to Skeletal Animation 71

Chapter 6 MilkShape 3D 87

Chapter 7 The 3ds Models................................ 109

Chapter 8 MDL, The Legendary Half-Life Format ... 127

Chapter 9 Enter the Quake: Quake III’s

MD3 Format135

Chapter 10 Tips, Tricks, and Methods....................153

Appendix A Common 3D Model Formats 165

Appendix B STL Vector Primer 169

Appendix C Going Above and Beyond 183

Index .. 191

Contents at a Glance

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

Contents

Letter from the Series Editor xvi

Introduction and Overview xix

CHAPTER 1 Reviewing Matrices
and Vectors.......................... 1
Understanding and Using Matrices ... 2

The Zero and the Identity Matrices ... 3

Matrix Operations ... 5

Determinants of Matrices .. 8

The Inverse of a Matrix ... 9

Using and Understanding Vectors ... 12

Vector Notation ... 14

Magnitude and Unit Vectors ... 14

Vector Arithmetic ... 14

Vector Products .. 17

Transforming a Vector by a Matrix ... 19

The CD’s Code ... 20

Conclusion ... 21

CHAPTER 2 Introduction to
Quaternions23
What Is a Quaternion and Why Are They Used? .. 24

Quaternion Operations .. 26

Quaternion Conversions .. 28

Interpolation with Quaternions .. 34

LERP (Linear Interpolation of Quaternions) .. 35

SLERP (Spherical Linear Interpolation) ... 35

Conclusion ... 36

xii Contents

CHAPTER 3 Quake II’s
MD2 Models 37
Understanding the FILE * Functions ... 39

Looking at the Source Code .. 43

The Data: Frames and Vertices .. 46

Making It Solid: Triangles .. 48

Rendering the Results for the First Time .. 50

Beautification: Adding Skins .. 52

Making It Move: Animation ... 55

Strips and Fans: GL Commands .. 56

Conclusion ... 58

CHAPTER 4 Loading OBJ Files ... 61
Parsing Text Files ... 62

Understanding the OBJ Format .. 63

Loading the OBJ Format ... 66

Rendering OBJ ... 68

Conclusion ... 70

CHAPTER 5 An Introduction to
Skeletal Animation71
Understanding Skeletal Animation .. 73

Benefits of Skeletal Animation ... 73

Inner Workings of Skeletal Animation ... 75

KeyFrames in Skeletal Animation .. 77

Taking Position .. 78

Attaching the Mesh .. 80

The Demo .. 82

The Demo’s Controls ... 82

Advanced Applications of Skeletal Animation .. 85

Conclusion ... 86

CHAPTER 6 MilkShape 3D87
Getting the Data ... 88

Vertices ... 89

xiiiContents

Faces .. 90

Meshes .. 92

Materials ... 93

Animation ... 99

Finding the Lost Parents .. 101

Initial Setup ... 102

Animation and Interpolation ... 103

Conclusion .. 108

CHAPTER 7 The 3ds Models 109
Understanding Chunky 3ds Files .. 110

3ds Chunk Headers: the Start .. 112

The 3ds Data File .. 113

Header 0x4D4D .. 113

The Version Chunk 0x0002 ... 113

Objects in the 0x4000 Chunk .. 113

Materials 0xAFFF ... 120

Rendering Your 3ds Files .. 122

Conclusion .. 125

CHAPTER 8 MDL, The Legendary
Half-Life Format 127
VALVe’s MDL Viewer Files ... 129

Initializing the Model ... 130

Rendering the MDL Code ... 131

Animating the Model .. 131

For More Practice... .. 132

Conclusion .. 133

CHAPTER 9 Enter the Quake:
Quake III’s MD3 Format135
Retrieving Data .. 137

The MD3 Header .. 138

Boneframes ... 138

MD3 Tag Structures .. 140

Meshes ... 141

Using Multi-Part Models .. 148

Tags ... 149

Conclusion .. 151

CHAPTER 10 Tips, Tricks,
and Methods153
Calculating Face Normals .. 154

Calculating Vertex Normals ... 155

Creating Your Own Format ... 156

Text-Based Format .. 156

Binary-Based Format .. 157

Planning the File ... 157

Creating the Files .. 160

Linear Interpolation .. 161

Optimization Tips .. 162

Conclusion .. 164

APPENDIX A Common 3D Model
Formats 165

APPENDIX B STL Vector Primer 169
The STL Vector ... 170

The Basics of Using Vectors .. 170

Sorting .. 173

Searching ... 174

Using Your Own Objects ... 176

Pointers .. 179

Conclusion .. 181

APPENDIX C Going Above
and Beyond....................... 183
For More Information .. 186

What’s on the CD ... 188

Index.. 191

xiv Contents

This page intentionally left blank

xvi Letter from the Series Editor

Letter from the
Series Editor
As a 3D game programmer, sooner or later the time comes
when you get bored with spinning cubes and flying space ships
in space. You want fully articulated 3D characters and anima-
tion. So you start looking on Internet for information thereof,
and sooner or later you realize that although there are a lot of
sites with information—and lots of demos—it’s all rather
useless in reality. There are too many holes in the file format
explanations, and in the end you would probably be better off
reverse-engineering the files rather than wade through hacker
document after hacker document.

This problem is one that I have personally been dealing with
for a long time. When I first wanted to write a Quake file
loader, I thought that it would be easy; there must be a billion
sites on the Internet with clear and concise explanations, right?
However, there is none! As far as I can tell there is literally only
one single document on the Internet with the .MD2 file for-
mat, and it’s not complete, but more of a FAQ. Moreover, it’s
just a file format; it doesn’t really explain all the details. This is
just one example. There are many. The bottom line is that
whether it’s a game format like Quake’s .MD2 or .MD3 or 3D
Studio Max’s file format, there is simply no single place to find
information. This issue was the motivation for this book.

My goal for this book was to give you a single reference for the
most popular file formats, but at the same time teach you how
to use them. That is, it’s useless to show how to read each key
frame from a .MD2 file if you don’t know how to interpolate
them. Thus, the author, Evan Pipho, has not only covered every
important file format (within reason), but he has also covered
foundational material such as mathematics, skeletal animation,
and more. If you open this book not knowing a single thing
about 3D character animation, by the end of the book you will
know how to work with all the popular file formats, how to
write readers, and how to actually animate the meshes in real-
time in your applications. Of course, this book assumes that

xviiLetter from the Series Editor

you are familiar with 3D graphics, DirectX (or OpenGL) and
you can create a rudimentary 3D engine either leveraging an
API or manually with software that at minimum can render
polygons and perform clipping, projection, and rasterization.

Nevertheless, I can’t tell you how excited I am about this book.
It’s the first of its kind—there is not a single other book on the
market that illustrates all these file formats from a game
programmer’s point of view.

In conclusion, this is yet another book that no 3D game pro-
grammer can do without. As I write this letter the book isn’t
even printed yet, but I am printing out a hard copy just to have
it on my desk to refer to!

Sincerely,

Andre’ LaMothe

Series Editor for Premier Press’s Game Development Series

This page intentionally left blank

Introduction and
Overview

A new trend is creeping into video games at an incredible rate.
This trend makes games more realistic, more believable, and in

some cases, more fun. A large percentage of new games use this trend,
and consumers are gobbling these games up as fast as they can be made.
This new trend, of course, is the use of 3D. From the player models to
the virtual game worlds, players are demanding some form of 3D inter-
action. This idea of 3D interaction encompasses many genres, even
those that have traditionally been 2D. Games such as Blizzard’s Warcraft 3
have brought 3D interaction into the “Real Time Strategy” genre, a
genre generally dominated by 2D games. Even puzzle and other “value
games” are starting to hook into the idea of 3D.

At the same time, hardware manufacturers are creating better and faster
hardware. Ultra-fast processors and graphics cards capable of handling
millions of pieces of 3D geometry every second are becoming very
commonplace in the average home computer. This allows you as a game
developer to write more realistic and graphically intensive games with-
out causing the average consumers’ computers to crawl under a rock at
the sight of them. New generations of graphics cards are allowing more
and more of the calculations to be done on the graphics card, freeing
up the processor to concentrate on other aspects of the game, such as
sound, enemy AI, and, well, even more graphical effects.

Many companies have realized that 3D is the future of video games
and have worked to provide players with top-rate graphics and realism,
including the following:

■ id Software (http://www.idsoftware.com) Starting in 1992, the
creators of the revolutionary Wolfenstein, Doom, and Quake
series were one of the first companies to realize the 3D dream.
Their 3D engines have been licensed by other companies for use
in countless games.

■ VALVe Software (http://www.valvesoftware.com) Even though
VALVe came in a little later than id, it still rocked the world with
the release of Half-Life in November of 1998. The graphical
aspect of Half-Life was mind-boggling, not to mention the

xx Introduction and Overview

advanced AI and the superb story line. For the first time, ad-
vanced technologies such as skeletal animation and colored
lighting were available on the home computer.

■ Epic MegaGames (http://www.epicgames.com) With its beautiful
Unreal Engine, Epic opened the world for games with large
outside areas, putting an end to the claustrophobic corridors
and tiny rooms of earlier games.

■ Parallax (http://www.pxsoftware.com/) Parallax showed gamers
how wondrous a full six degrees of freedom could be. With its
Descent series of games, Parallax opened the doors to a whole
new dimension in the 3D game industry.

■ 3DFX I can’t overlook the contributions of the now deceased
video chipset manufacturer. 3DFX introduced the general
public to the miracle of 3D hardware 3D acceleration with the
release of the Voodoo series of video cards. They were the fastest
you could buy until nVidia released their TnT2 Ultra. The
capability of the home PC to accelerate 3D graphics paved the
way for new, graphically advanced games.

id Software’s Quake III
TE
AM
FL
Y

Team-Fly®

xxiIntroduction and Overview

VALVe’s groundbreaking Half-Life

The incredible Unreal Engine in Epic’s Unreal

xxii Introduction and Overview

These companies and games are but a few of the many contributors to
the 3D phenomenon. Many games have come and gone, unnoticed by
the general public, and even to most gamers. Even so, a few of them
have introduced new technologies and ideas that have changed the
face of the gaming world forever.

Goals for This Book
Chances are if you are reading this, you either just got the book, or
you are standing in a bookstore trying to decide whether you should
get it. If you are interested in creating 3D games, this book shows you
how to implement one to work with one of the most important parts,
3D models. Open up one of your favorite 3D game, preferably a first
person shooter type. Look around you; see those enemies over there?
Or how about that health pack and weapon sitting in the corner
waiting for you to pick up? All of these features are created by 3D
models created by the artists and loaded into the game by program-
mers like you.

So now you are probably wondering, “how will I benefit if I get this
book and what will I learn?” You will learn all sorts of cool stuff here.
After you read this you should be able to:

■ Understand how to load various 3D model formats.
■ Display and animate various types of models in your programs.
■ Understand how skeletal animation, the innovation that uses

“bones” within models for animation purposes, works. Skeletal
animation uses “bones” and “joints” attached to the model’s
mesh to perform animation. Skeletal animation has many
advantages over traditional keyframe animation, including
reduced storage space, increased ease of animation for the
artists, and more realistic motion. You will learn much more
about this amazing technology later in the book.

■ Attach models to other models to form more complex objects.

The first two chapters are dedicated to a review of important math
skills, with a quick review of vectors and matrices. Then, after you read
the review of the elusive quaternion, you should be set for most of the
math used in the remaining chapters.

xxiiiIntroduction and Overview

After reviewing the necessary math skills, you move right into some of
the less complicated formats such as OBJ (Chapter 4) and MD2 (Chap-
ter 5). You will walk through the data structures and loading proce-
dures needed for each type. Code is sprinkled through the text in the
form of small functions or data structures, but there are never any
large code dumps.

From these simple formats, you will go on to learn about two of the
most important and useful technologies in 3D models: skeletal anima-
tion and tagging. You already learned what skeletal animation is in the
previous bulleted list.

Tagging, as many call it, is the capability to attach models so that they
move together. This technique is used to do things such as attach
weapon models to the hands of characters, or even piece models
together from parts, such as a head, torso, and leg models. Read on to
Chapter 9 and you will learn more about this useful technology, and
how it applies to Quake 3’s MD3 format.

After you learn about the needed math and play a bit with the simple
formats, , you can take a look at loading some of the more complicated
formats. Some of these will be skeletally animated using the techniques
described in the previous chapters, and some contain tags to make up
a full character model. Again, every detail of the formats will be out-
lined to allow easy implementation in your own game.

Who Should Read This Book
You do not need a lot of programming experience to use this book. All
of the code shown throughout the book is written in C++, so a basic
understanding of C/C++ is a must. The demos on the CD are written
using C++, with OpenGL as the graphics API. I tried to keep all of the
code and demos as simple as possible to make porting to other lan-
guages and graphics APIs possible. Because of this, the demos may not
be optimized as much as they could be, so feel free to look for ways to
optimize and speed them up.

If you need to brush up on either C++ or OpenGL, I recommend you
visit http://www.gametutorials.com and http://nehe.gamedev.net for help.
Other good references include books from the Premier Game Pro-
gramming series. OpenGL Game Programming and Game Programming All

xxiv Introduction and Overview

In One will put you in an excellent position for the rest of the book.
Once you have a decent grasp of C++ and OpenGL, you are almost
ready to begin your journey into the wide world of 3D.

This book assumes you can create a rudimentary 3D engine, either by
leveraging an API or manually with software that, at minimum, can
render polygons and perform clipping, projection, and rasterization.

You will also need to have a good understanding of algebra and trigo-
nometry. Understanding vectors, matrices, and quaternions is also
important. If you feel uncomfortable with any of those (except maybe
the quaternion part; no one really ever feels comfortable with them), I
would suggest a quick visit to http://www.math.com for algebra and
trigonometry, and a review Chapters 1 and 2 for a review of vector,
matrix, and quaternion math.

Now you are ready to conquer 3D models. Have fun!

What’s on the CD
As you have probably noticed, there is a CD attached to the back cover
of the book. There is lots of cool stuff on there. All of the source code
for all the model formats discussed in the book, plus a few extras for
formats that just didn’t fit are included. Also included are extra 3D
models made by the game development community. Please check the
README file for each of the models before using them in your own
projects. The README files contain each author’s name, email ad-
dress, and any terms of use that he or she has put forth regarding the
use of his or her artwork.

Digging deeper on the CD, you will find various tools used in manufac-
turing 3D models and other related objects, such as skins and textures.
Also included are shareware and trial versions of popular software. Try
them all and see which ones you want to purchase and keep.

An extras folder contains various projects and source code written by other
members of the community. As with the artwork, please read the README
files included with everything to avoid any copyright infringement.

Occasionally there will be bug fixes and updates for the source code
on the CD. Check out http://books.codershq.com. I hope in the future to
release more loaders for other types of 3D models, as well as port them
to other languages and APIs, so check the site often.

xxvIntroduction and Overview

A Final Word Before You Start
I hope you find this book useful as you start writing your dream 3D
game. The best thing to do is try to write your own code from the text,
instead of copying it from the examples. You will learn much more
that way. If you are frustrated at first, just keep trying; it will come to
you. Even the big names in the 3D game industry didn’t get it right the
first time. Remember, the most important element of game develop-
ment is to have fun! Enjoy the book.

This page intentionally left blank

CHAPTER 1

Reviewing
Matrices

and
Vectors

2 1. Reviewing Matrices and Vectors

A s you surf the Internet, learning how to make the next big 3D
game, you inevitably come across references to “matrices” and

“vectors”. If you have not had the pleasure of taking any math courses
beyond high school, you may have little or no experience with either
subject. This chapter takes you through the basic matrix and vector
operations you need to create your own game, as well as provides full
source code to a set of matrix and vector classes. This chapter provides
you with enough information to help you in your adventure into 3D
graphics. Although vector and matrix operations are discussed, the
theory behind them is not discussed in depth. There is a great site
available on the Web if you want to go more in-depth called Mathworld.
Check out Eric Weisstein’s World of Mathematics, available at http://
mathworld.wolfram.com.

Understanding and
Using Matrices
Just what is a matrix you ask? Well, simply put, a matrix is a rectangular
array of numbers. A few examples of matrices are shown in Figure 1.1.
You know what they look like, but just what are they good for? Well,
mathematicians like to use them to represent systems of linear equa-
tions. Using matrix operations, it is possible to solve these systems with
much less work than using other methods, such as substitution, to solve
them. In computer graphics, however, matrices are used to represent
transformations. Transformations are essentially rotations and translation
values for an object. The nice thing about using matrices for this type of
thing is the fact that transformations can be combined using simple
algebra, making it easy for you, and fast within your programs.

Most of the matrices that are used in graphics programming are
square matrices. A square matrix is simply a matrix that has the same
number of rows as columns. The leftmost matrix in Figure 1.1 is a
square matrix. Generally, 3D math only requires matrices that are 3×3
or 4×4 elements. For clarity, and to simply keep the size of the figures

3Understanding and Using Matrices

down, all the matrices in this chapter from now on will be 3×3 square
matrices. Keep in mind that the same principles that apply to 3×3
matrices will also work on 4×4 matrices.

As you work with OpenGL, D3D, or any other graphics API, you will
notice that they use mostly 4×4 matrices. There is a very good reason
for this. A 4×4 matrix is capable of not only storing rotation values, but
they can also store the translation, or movement values, at the same
time. This eliminates the need to keep track of two separate sets of
values for rotation and translation.

Individual elements of a matrix are denoted by the notation aij. The a is
standard notation, the i is the number of the row the element resides
in, and the j is the number of the column. Therefore, a matrix could
be written as shown in Figure 1.2.

Figure 1.1 A few examples of matrices. Notice that
they can be square or rectangular; two dimensions or one.

The Zero and the Identity Matrices
If you recall your elementary school math experience, you hopefully
remember that anything plus zero doesn’t change the original num-
ber, nor does anything multiplied by one. Well, the same thing is true
for matrices. For addition and subtraction of matrices you use what is

Figure 1.2 A 3×3 matrix drawn using matrix notation. Note that the first
subscript represents the row and the second subscript represents the column
of the element.

4 1. Reviewing Matrices and Vectors

known as the zero matrix. Adding or subtracting a zero matrix to or
from any other matrix will result in a matrix identical to the original,
just like adding zero to a real number gives you your original number.
A zero matrix is exactly what it sounds like, a matrix full of zeros. Every
element in the zero matrix contains a value of zero. A 3×3 zero matrix
is shown in Figure 1.3.

The identity matrix takes the place of the one in multiplication. Any
matrix multiplied by the identity matrix will be exactly the same as the
original matrix. The identity matrix is a square matrix that contains all
zeros, with the exception of the diagonal. The diagonal elements
starting at the top-left of the matrix and traveling to the bottom right
contain ones instead of zeros. Why ones and zeros? The reason for this
goes back to the definition of a matrix as a system of equations. The
elements in a matrix represent the coefficients of that system. If you
remember back to algebra again, when all of the coefficients in one of
the equations is zero but one, it means you have solved for that vari-
able. An identity matrix is just that. For each row or column there is a
single “one,” meaning the system of equations has been solved. Setting
a matrix to the identity matrix essentially “resets” the matrix.

For example, if the matrix is being used to position geometry, such as
the case with OpenGL’s Modelview matrix, changing the matrix to the
identity matrix (via glLoadIdentity() in OpenGL) will cause the next
parts of the geometry received to be drawn relative to the origin again,
rather than relative to the position specified by the previous matrix.
Figure 1.3 shows the 3×3 identity matrix.

Figure 1.3 The zero matrix and the identity matrices, both 3×3. They can
be used as placeholders when you do not want to modify your original matrix.
The identity matrix can also be used to reset transformations; anything
transformed by the identity matrix will not be transformed at all.

TE
AM
FL
Y

Team-Fly®

5

Matrix Operations
Now, on to the fun part, matrix math! As strange as matrices may
seem, a majority of the mathematical operations that can be per-
formed on them are relatively easy. Nearly everything that can be done
with real numbers can be done with matrices as well.

Addition and Subtraction
Just like regular numbers, matrices can be added and subtracted.
Matrix addition and subtraction are not used much in graphics pro-
gramming, but that does not mean they cannot be used in other parts
of your game. For instance, if you were building a strategy game, you
could use a matrix to represent all of the remaining hitpoints of a
group of units. You could add and subtract other matrices to or from
this matrix to modify all of your unit’s hitpoints at once, rather than
messing with each unit individually. Given two matrixes, A and B, you
simply take each element from A and add it to the corresponding
element in B. The resulting value goes in the same element in the
resultant matrix, called C. For instance, if A11 is 5 and B11 is 9, C11 would
be 14. If we were subtracting A and B, then C11 would be negative 4.

Going back to the strategy game example, if A11 represented the hitpoints
of “unit1” and B11 represented the number of hitpoints when the unit
passed through a certain area on the screen, C11 would store the final
number of hitpoints for “unit1”. You could then run through the matrix
and check for negative values, which would mean the unit is dead or
disabled. Matrix addition is associative. This means, given three or more
matrices, you can start by adding whichever two you like, without changing
the final result. (A + B) + C = A + (B + C). It is also commutative, meaning you
can add and subtract matrices in any order without changing the result. A +
B = B + A. An illustration of matrix addition is shown in Figure 1.4.

Figure 1.4 An example of matrix addition using 3×3 matrices. Notice how each
element of the first matrix is added to the corresponding element of the second matrix and
the result is stored in the corresponding element of the final matrix.

Understanding and Using Matrices

6 1. Reviewing Matrices and Vectors

Scalar Multiplication
There are two types of matrix multiplication: matrix times matrix and
matrix times scalar. Before you get into multiplying matrices by other
matrices, you should perform scalar multiplication because it is much
easier. A scalar is simply a number such as 10, 3, or 13,142. Multiplying or
dividing a matrix by a scalar is quite easy. As always, you start with the
matrix and a scalar value. All you need to do to multiply the whole matrix
by your scalar is take each element, multiply it by the scalar, and place it in
the resulting matrix. The same principle applies for scalar division. This
operation is illustrated in Figure 1.5. A good use of this technique again
goes back to the example used in the addition and subtraction section.
Say your group of units takes a wrong turn and plows across a pit full of
radioactive slime. This radioactive slime has the special property of
removing half of the health from each unit in the group. Using scalar
multiplication or division, you can perform this operation in one shot.
Simply multiply the hitpoints matrix by 0.5 or divide it by 2.

Figure 1.5 Multiplying a matrix by a scalar (a constant number).
Scalar multiplication will scale every element in the matrix by the same value.

Matrix Multiplication
Okay, on to matrix multiplication! Lots of people get confused when it
comes to multiplying matrices. In reality, however, it really isn’t that
hard. The first thing you need to do is determine whether the matrices
are conformable. Lets say you have two matrices, A and B, that have the
dimensions m×n and p×q. The matrices are conformable only if n=p.
For instance, a 3×3 matrix and a 3×7 matrix can be multiplied to-
gether, but a 3×2 and a 4×5 matrix cannot. If your two matrices satisfy
this requirement, you can move to the next step.

The resulting matrix will have the dimensions m×q. That means in the
previous example, a 3×3 and a 3×7 matrix multiplied together would
produce a 3×7 matrix. The nice thing about 3D graphics is that the
matrices you use are usually square. When you multiply two square

7

matrices together, you guessed it, you get a square matrix of the same
size, so a 4×4 matrix multiplied by another 4×4 matrix will give you a
final matrix with dimensions 4×4.

But just how do you multiply them together you ask? Well the idea is
pretty simple. You take the first row of the first matrix and multiply it
by the first column of the second matrix. This results in a single num-
ber that goes in the first row and first column of the result. The second
element of the result is the first row of the first matrix times the sec-
ond column of the second matrix, and so on. Sound confusing? Maybe
you need to look at it a little differently.

Consider two 3×3 matrices, A and B, which are multiplied together to
form C. You know that the first row of A contains the elements A11, A12,
and A13. The first column of B contains B11, B21, and B31. In order to get
C11, you take (A11 × B11) + (A12 × B21) + (A13 × B31). You do that a total of
nine times to get all the elements for the 3×3 result. Let’s try multiply-
ing one in Figure 1.6.

Figure 1.6 Multiplying two matrices together. When multiplying matrices, you take the first
row of A times the first row of B, the second row of A times the second column of B, and so on.

CAUTION
Matrix multiplication is not commutative, meaning that
unlike real numbers, the order in which you multiply two
matrices does make a difference. If you have two matrices,
A and B, multiplying A by B will not give you the same
result as multiplying B by A (AB ≠ BA). Go ahead and try
it with the matrices in Figure 1.6; the result is shown here:

Understanding and Using Matrices

8 1. Reviewing Matrices and Vectors

Determinants of Matrices
A determinant is a scalar value calculated from the elements of a matrix.
Determinants of matrices are useful for many tasks, such as solving
system’s linear equations and calculating the area of a parallelogram
or parallelepiped. You’ll use determinants in game programming to
calculate the inverse of a matrix. I will show you how to calculate the
determinant, but I will not show you any of its applications, other than
using it to find the inverse of a matrix.

The determinant of a 2×2 matrix is the easiest to calculate. All you
need to do is multiply the top-left and bottom-right values together,
and then subtract the product of the bottom-left and the top-right
values as shown in Figure 1.7.

Figure 1.7 Calculating the determinant of a 2×2 matrix. You need to know
how to do this before you can calculate the determinates of matrices with
dimensions greater than 2×2.

Calculating the determinant of a 3×3 matrix is a bit harder. You first
need to break the matrix into minors. To do this all you do is start at
the first element in the first row. You eliminate the i th row and the j th

column, and you are left with a 2×2 matrix. You multiply this matrix by
the element that was used to calculate which row and column to
delete. When you complete this process, you will be left with three 2×2
matrices. Next you need to calculate the determinant of each remain-
ing matrix and add them together, as shown in Figure 1.8

Figure 1.8 Calculating the determinant of a 3×3 matrix. You first break it
into minors and use the definition of a 2×2 determinant to finish it off.

9

The Inverse of a Matrix
Hey, what do you know, the last part of the matrix section is here
already. That wasn’t so bad was it? This section is on the inverse of a
matrix. The inverse of a matrix satisfies the following equation:
M(M-1) = I. M is the original matrix, M-1 is the inverse of M, and I is the
identity matrix. In graphics programming, you could use the inverse of
a transformation matrix to cancel out the effects of a previous transfor-
mation and return a previous transformation matrix. Not all matrices
have an inverse. If a matrix is non-square or has a determinant of zero,
it will not have an inverse. In programming it is important to make
sure the matrix in question does have an inverse before performing
this operation to prevent errors such as divide-by-zero. The inverse of a
3x3 matrix can be calculated as shown in Figure 1.9. In the figure M is
the original matrix and the elements in the matrix shown are the
cofactors of M, which I explain how to calculate here in a second.

In order to use that formula, you need to know how to calculate
cofactors of the elements of the matrices. The principle is simple; you
cross out the i th column and the j th row. Therefore, if the element is M11,
you would cross out the first row and the first column, leaving a 2×2
matrix . This is called the minor of the element. Now, you take the 2×2
matrix and calculate the determinant of it; the result of that determi-
nant is called the cofactor. See Figure 1.10 for more details.

Now for the last step. Take your newly found cofactor matrix and
multiply it by one over the determinant of the original matrix. The
determinant in this case is –17, so you multiply the cofactor matrix by -
1/17. By doing this, you have the final inverted matrix, as shown in
Figure 1.11.

Figure 1.9 Calculating the inverse of a matrix. To calculate the inverse of a
matrix, you first find its accompanying cofactor matrix, and then divide it by
the determinant of the original matrix.

Understanding and Using Matrices

10 1. Reviewing Matrices and Vectors

Figure 1.10 Calculating cofactors. Top: The original matrix.
Middle: Calculating two of the cofactors. Bottom: The matrix with all its
cofactors calculated.

Figure 1.11 Calculating the inverse of a matrix using the process
described in the previous section—results are rounded to three decimal
places to save space.

Transposing Matrices
Transposing matrices is important in game programming because it is
a fast, easy way to calculate the inverse of orthogonal matrix. Now, let
your brain relax a bit; this operation is much easier. To transpose a

11

matrix all you have to do is take the columns of the matrix and make
them the rows, and vice versa. The original matrix is orthogonal if when
you multiply it by its transpose, you end with the identity matrix
(M(Mt) = I). As you know from the last function, a matrix multiplied
by its inverse is also the identity matrix. It stands to reason that the
transpose of the original matrix must also be its inverse. An example of
an orthogonal matrix is the rotation matrix, which I will talk about
later in the chapter. This is a piece of cake compared to matrix multi-
plication; just check out Figure 1.12.

Building Transformation Matrices
One of the most important uses for matrices in game programming is for
transformations. Transformation matrices are used to position geometry
and other objects onscreen. There are five main transformation matrices
that you will use when working with 3D models. They are rotation around
the X-axis, rotation around the Y-axis, rotation around the Z-axis, transla-
tion, and scaling. A rotation matrix, whether around the X, Y, or Z axes,
will rotate all of the affected geometry around that specific axis. A transla-
tion matrix is used to move geometry from one place to another, and a
scale matrix is used to change the size of the geometry.

The best thing about these matrices is the capability to multiply them
together to perform several transformations with a single matrix. Keep
in mind that the order of multiplication is important here; multiplying
transformation matrices in one order will not necessarily give you the
same result as multiplying the same matrices in a different order. Let’s
look at an example.

Say you have three rotation matrices. The first is a rotation of 90 degrees
around the X-axis, the second -90 degrees around the X-axis, and the
third a rotation of 90 degrees around the Y-axis. If you multiply them in

Figure 1.12 Left: The original matrix. Right: The matrix after it has been
transposed. This is frequently done in game programming to find the inverse of
rotation and other orthogonal matrices.

Understanding and Using Matrices

12 1. Reviewing Matrices and Vectors

the order of the first times the second, times the third, you will end with
a rotation of 90 degrees around the Y-axis because the first two will
cancel each other out. However, if you multiply in the order of the first
times the third, times the second, your end result will be a positive 90
degree rotation around the Z-axis. Quite a difference.

So, how do you create these transformation matrices? Each rotation
matrix will rotate a certain number of degrees around the X, Y, or Z
axis. Figure 1.13 shows the X, Y, and Z rotation matrices.

Figure 1.13 The three rotation matrices. The left matrix is for rotation around the X
axis, the center for rotation around the Y axis, the right for rotation around the Z axis. Each
matrix will transform an object θ degrees around its respective axis. Note that they are
placed in 4×4 matrices so they can be multiplied with the other transformation matrices,
but they could be stored in a 3×3 matrix as well.

The translation matrix will move an object a set number of units in each
direction. The distances in each direction are given by three values
stored in the bottom row of the matrix. The scaling matrix is also very
simple. Like the translation matrix, there are also three values, one for
each axis. Instead of being in the bottom row of the matrix, they are
located along the diagonal. The scaling matrix looks a lot like the
identity matrix, only with values other than one in the diagonal. Figure
1.14 shows both the translation and the scaling matrices.

Using and Understanding
Vectors
You know all about matrices now, so you can move on to the second
concept, vectors. Vectors are one-dimensional arrays of numbers. In 3D
graphics and games, most vectors have two, three, or even four compo-
nents, one for each axis, but a vector can have as many components as
needed. They can be used to represent locations, hold the direction and

13

speed of movement of an object, and are used extensively when working
with physics in 3D games.

A vector has both a magnitude and a direction. On paper, a vector can
be drawn as an arrow. The length of the vector is its magnitude, and
the arrowhead indicates the direction of the vector. In physics, you can
represent the velocity of an object. The arrow points toward the
direction the object was heading, and the length of the arrow indicates
its speed. Figure 1.15 shows several examples of vectors.

Figure 1.14 The translation and scaling matrices. The translation matrix
contains an ordered pair for movement along the X, Y, and Z axes; the scaling
matrix contains an ordered pair for scaling along the X, Y, and Z axes.

Figure 1.15 A few vectors, each having its own magnitude and direction,
on a two-dimensional graph. 2D, 3D, and 4D vectors are used extensively
through game programming to represent character positions and movements,
calculate how an object will react in an environment (physics), even store
lighting information.

Using and Understanding Vectors

14 1. Reviewing Matrices and Vectors

Vector Notation
If you are going to understand how vectors work, you first must under-
stand the notation that will be used whenever vectors are talked about.
There are three ways of representing the vectors. The first is shown in
the graphical method. The graphical method entails plotting the vectors
on a set of axes. Although this works great if you need a visual represen-
tation of the vector, it is inconvenient to draw plot every time you want
to talk about a vector. This method is often prone to error because it is
hard to draw a vector the exact length and to the exact position. This
error becomes worse when you try to draw three-dimensional vectors on
a two-dimensional sheet of paper, and becomes impossible when you
need to deal with vectors of four or more dimensions.

Fortunately, there are easier ways to represent vectors. The shortest
and most common way uses the following notation:

<x,y,z>

where x, y, and z are the distances along the x, y, and z axes, respectively.
When a vector is written using this notation it is called an algebraic vector.
You will see much more of this notation later on in the chapter.

Magnitude and Unit Vectors
Vectors have a magnitude, usually depicted and thought about as
length and written as ||v||, meaning the magnitude of the vector v,
where v is any vector. As with a line segment, the length or magnitude
of a vector can be found using the distance formula. The distance
formula is shown in Figure 1.16. A unit vector is simply a vector with a
magnitude of one. Any vector can be converted into a unit vector
using the process of normalization, by dividing the vector by the vector’s
original magnitude. This is also shown in Figure 1.16.

Vector Arithmetic
You can perform all sorts of math with vectors. You can add them,
subtract them, multiply them by scalars (constant numbers) to
change their magnitude, and much more. This comes into play in

TE
AM
FL
Y

Team-Fly®

15

3D programming when you’re moving players or other objects
around onscreen. You use vectors to do this because vectors can
store both the magnitude and direction, both of which are needed
before you can calculate the new position of a player or object. This
section covers vector arithmetic. You will learn how to work with
vectors and how to do all of the basic vector operations needed for
graphics programming.

Addition and Subtraction
As with real numbers and matrices you can add and subtract vectors.
To add vectors together, you simply add the first component of the
first vector to the first component of the second vector and so on. If
you had a vector <5,3> and another vector <1,2> and you added them
together, you would get a vector with the values <6,5>. This is illus-
trated in Figure 1.17.

Subtraction is accomplished the same way. Just take the values of the
second vector and subtract them from the corresponding components
in the first vector. So using the two vectors from the last section, <5,3>
and <1,2>, you could subtract the second from the first and end up
with the vector <4,1>. See Figure 1.18.

Figure 1.16 Finding the magnitude of a vector and using it to convert the
original vector to a normal vector. Here, v is a vector that needs to be reduced
down to a unit vector. As you can see, the current magnitude of v is 5. To
calculate the unit vector u from v you divide each component of v by the
magnitude of v, in this case 5. You can check it out at the end by calculating
the magnitude of u; it should be 1.

Using and Understanding Vectors

16 1. Reviewing Matrices and Vectors

Figure 1.17 Vectors can be added using the head to tail method. In this
method, the first vector is drawn normally, but the second vector starts where
the first ends. The vector that runs from the start of the first vector to the end
of the second is called the resultant vector. Any number of vectors can be
added this way, the resultant always being the vector between the start of the
first vector and the end of the final one.

Figure 1.18 Vector subtraction can be performed the same way as vector
addition with one minor change. When you draw the vectors, the vector you
are subtracting should go the opposite way as it normally would.

Scalar Multiplication and Division
Just like matrices, you can multiply and divide vectors by scalar values.
This is useful when you want to scale the speed of a vehicle up or down,
or enlarge a picture. For instance, if you had an object moving at a
certain speed in a certain direction and you wanted to make it go twice
as fast in the same direction, you would multiply its movement vector by
a scalar. The principle you use is much the same as the one you used for
matrices. All you need to do is multiply each component of the vector by
the scalar. Check out Figure 1.19 for a visual representation.

17

Vector Products
Vectors cannot be multiplied together in the traditional sense. Instead
of standard multiplication, there are two operations that take its
place—the dot product (also known as the scalar product) and the cross
product (also known as the vector product).

The Dot (or Scalar) Product
The dot product can be used to find the angle between two vectors
and is a quick test to determine whether two vectors are orthogonal (at
right angles to each other). This can be useful in 3D programming if
you need to find the final direction and speed of an object that has
wind, gravity, or other forces acting upon it. You would only need to
know the direction and magnitude of the forces, and the direction the
object would move without the extra force acting on it.

Two vectors are orthogonal to each other if their dot product is zero.
The dot product is defined in two ways. The first is u•v = ||u||*||v||*cosθ.
The second way is u•v = i1i2 + j1j2 … n1n2. All this means is that you
multiply each of the vector components in the first vector by the
corresponding component in the second vector, and then add all the
results. The first equation (u•v = ||u||*||v||*cosθ) is used when you only
know the magnitudes and angle between the two vectors, but may not

Figure 1.19 Scalar multiplication of vectors. A vector multiplied by a scalar
will have the same direction as the original, but a different magnitude (length).

Using and Understanding Vectors

18 1. Reviewing Matrices and Vectors

know the actual values of each component. The second equation (u•v
= i1i2 + j1j2 … n1n2) is used when you do not know the angle between
your two vectors, only the vector’s components. So now how do you
use those definitions to find the angle between your two vectors?
Simple, you just call up your algebra and trig skills and solve the first
equation for theta, which stands for the angle between the vectors. This
is done for you in Figure 1.20. As always an example is shown as well.

Figure 1.20 Calculating the angle between two vectors, don’t forget to use
the second definition for the dot product. The first part shows the equation for
the dot product solved for theta (the angle between the two vectors). Don’t
forget that ||v|| means the magnitude of v.The second part shows the
calculations involved in calculating the angle between two vectors using the
vectors <1,4> and <4,2>.

19

The Cross (or Vector) Product
The cross product can also be useful. Calculating the cross product of
two vectors yields a vector that is perpendicular to both of them. This
can be used to find vectors that are normal, or perpendicular, to a
surface. This is done often in 3D programming to calculate the light-
ing normals. The normals used for lighting purposes are unit vectors
that must be perpendicular to the surface that is being lit. The cross
product comes in handy when trying to find these values.

The cross product equation expands to the following: u×v = (y1z2-z1y2)i-
(x1z2-z1x2)j+(x1y2-y1x2)k where i, j, and k are the vector components for
the x, y, and z axes, respectively. As you noticed, it will not work on two-
dimensional vectors, so three-dimensional vectors are used instead.

Check out Figure 1.21 for an example.

Transforming a Vector by a Matrix
Often in computer graphics and game programming, you will need to use
matrices to move vectors and points around onscreen, such as to move a
point or piece of geometry to a new position. This process is called trans-
formation. Matrices are used here for two reasons. First, they are excellent
ways to store transformations as you saw previously, and second, they can
easily be used to transform vectors and points by multiplication.

In order to transform a vector, you simply use the vector as a 3×1 or
4×1 matrix, depending on which type of matrix you are using to
transform. This is important because if you try to multiply a 3×1 matrix
with a 4×4 matrix, it will not work. The same goes for a 4×1 matrix
being multiplies with a 3×3. Do not worry if your vector does not fill

Figure 1.21 Calculating the cross product. The resultant vector will be orthogonal
(perpendicular) to both of the vectors used in its calculation. You can verify this by taking
the dot product of each of the vectors by the result. You will find you get a value of 0,
meaning the vectors are orthogonal, both times.

Using and Understanding Vectors

20 1. Reviewing Matrices and Vectors

the whole matrix, for instance a 3D vector being transformed by a 4×4
matrix. All you need to do is set the last element in the 4×1 matrix to
1. Then, after transformation, the last value can be discarded and you
will once again have a vector with the same number of dimensions that
you started with. Multiply your matrices together, and you will get a
new, transformed, vector. This operation is shown in Figure 1.22.

Figure 1.22 Transforming a vector by a matrix. Multiplying a vector by
a matrix will yield a new vector with a new, transformed position. The
operation is just regular matrix multiplication as defined earlier in the
chapter, only this time it isn’t using two square matrices.

The CD’s Code
Take a look at the following directory on the CD: /Code/Chapter1/ or
/Code/Math. Here, you will find C++ classes to store and manipulate
matrices and vectors. There are separate classes for 3×3 and 4×4
matrices, both defined and implemented in the files matrix.cpp and
matrix.inl. The same goes for vectors. There are classes for both 2D
and 3D vectors, defined and implemented in vector.h and vector.inl.
All of the classes contain a variety of functions to perform the opera-
tions covered here, as well as overloaded operators that can be used to
do the basic mathematical operations such as addition and subtrac-
tion. There are even operators to compare two matrices or vectors and
tell you if they are equal. All these operators allow you to use matrices
and vectors as if you were just using real numbers. Syntax such as
vector1 = vector2 + vector3 and if(matrix1 == matrix2) are both valid
thanks to the wonderful features of C++ that allow programmers to
override the default definition of the mathematical operators.

In both directories you will notice a few extra files, as follows:

■ math.h is the main header file that basically includes all of the
other files, ensuring that you get all of the functionality avail-
able, without needing to remember to include a bunch of files.

21

■ The other two files, quaternion.h and quaternion.inl, are the
definitions and implementation of a class that is used to store
and manipulate quaternions, which you will be learning about in
the next chapter. There are a few functions in the matrix and
vector classes that use quaternions, generally signified by taking
either a reference to a CQuaternion class as a parameter, or return-
ing a CQuaternion class. Don’t panic if you don’t know what these
functions are for; you will learn about them in the next chapter.

Conclusion
That concludes the brief review of matrix and vector math. If you need
or want to learn more about either, I suggest that you visit a local
college library or bookstore and pick yourself up a book on linear
algebra. The books I used as a reference for most of this were Matrices,
written by Frank Ayres Jr. and Linear Algebra, by the same author. Both
are part of a series of math references known as Schaum’s Outlines
Series of Mathematics. If you cannot afford a book, or simply want a
different solution, I once again suggest Eric Weisstein’s World of Math-
ematics, available at http://mathworld.wolfram.com. Eric Weisstein’s World
of Mathematics has examples and explanations for many mathematical
problems, including matrices and vectors.

The next chapter introduces you to quaternions. Quaternions are used
by graphics programmers to represent rotations, much like a 3×3
rotation matrix. However, quaternions hold several advantages over
traditional matrices, such as the capability to avoid gimbal lock, and the
capability to create easy, smooth interpolation between orientations.
To top it all off, they take up less space than matrices. Check it out!

Conclusion

This page intentionally left blank

CHAPTER 2

Introduction
to

Quaternions

24 2. Introduction to Quaternions

A s you explore the wide world of three-dimensional graphics, you
will journey past vectors and matrices into the land of the quater-

nion. You may have heard this word thrown around before, but you
may not know what it means. That is what this chapter is for. By the
time you finish this chapter, you should have a decent understanding
of what a quaternion is, how they work, what they are good for, and
why you should use them.

What Is a Quaternion and
Why Are They Used?
Quaternions comprise a set of four numbers that are used to represent
rotations. Consider three-dimensional rotation, rotation in three-
dimensional space, discussed in
Chapter 1, add one more dimen-
sion, and you end up with a four-
dimensional rotation. There are
two components in each quater-
nion, a vector component which
consists of x, y, and z values, and a
scalar value which is usually
denoted as w. The scalar value
represents the angle of rotation
in the form cos(angle / 2).

Quaternions can also be written as
a scalar value such as n followed by
a bold letter representing a vector.
For example, =q = [nv].

I can already see that you are
thinking, “why the heck would I
need something like that?” To
understand why you might need

NOTE
Euler angles are probably the
most familiar, and in most
cases, the most practical way
to represent the orientation
of an object. A set of three
Euler angles specifies the
rotation around each axis, X,
Y, and Z. For example, you
might use Euler angles to
represent the orientation of
an airplane in your flight
simulator. Rotations around
each axis are called roll, pitch,
and yaw; the axis each is
associated with varies de-
pending on the coordinate
system and the applications.

TE
AM
FL
Y

Team-Fly®

25What Is a Quaternion and Why Are They Used?

quaternions, you first must learn a bit about another important part of
3D graphics, Euler angles, which are discussed in more detail later in
this chapter.

There are several reasons you should use quaternions to rotate your
objects and characters in your games. The first, and most important,
advantage is the fact that quaternions are not susceptible to gimbal
lock, a phenomenon in which an object loses the ability to rotate on
one of its three axes. Gimbal lock shows its face when two axes point in
the same direction. This causes all sorts of problems. See Figure 2.1 for
a picture of gimbal lock.

Another advantage to quaternions is the ability to have smooth, interpo-
lated rotations. It is much easier to interpolate rotations using quater-
nions rather than matrices, resulting in smoother animations. The last
main advantage of using quaternions is they take less room than a
rotation matrix (four elements versus nine), and some operations are
cheaper to perform on quaternions in terms of processor cycles.

Even though quaternions have many advantages over matrices, keep in
mind that most graphics APIs will not accept quaternions directly.
They must first be converted into matrices, a process that takes a fair
amount of CPU cycles. Keep this in mind when deciding whether you
are going to use quaternions in your game engine.

Figure 2.1 When two axes point in the same direction, you get gimbal
lock. When you use quaternions for rotations, you avoid any possibility of
gimbal lock occurring.

26 2. Introduction to Quaternions

W.R Hamilton
W.R Hamilton created quaternions in 1843, in Dublin, England. Origi-
nally used as a four-dimensional extension for complex numbers, it was
proven that quaternions could be used to represent rotations in three-
dimensional space as well.

Quaternion Operations
Quaternions can be treated simply as four-dimensional vectors for the
purposes of addition, subtraction, and scalar multiplication. Quater-
nion addition is exactly the same as vector addition, meaning you
simply add the components of the first quaternion to the correspond-
ing components of the second one. The same is true for subtraction,
although of course you subtract the components instead of add them.

Scalar multiplication of quaternions also follows the same path as vectors.
Each of the four components in the quaternion is multiplied by the scalar.
Figure 2.2 shows an example of both addition and scalar multiplication.

Figure 2.2 An example of quaternion addition and scalar multiplication.
Although not used directly in 3D programming, both of these operations are
needed later, when you interpolate between two quaternions.

Two other important qualities quaternions share with vectors is the way
their magnitude is calculated, and the way a unit quaternion is calcu-
lated. As with vectors, to calculate the magnitude of a quaternion, you
square each component of the quaternion, add them all together, and
take the square root of the result.

A quaternion does not become a “rotation quaternion” (a quaternion
representing a rotation) unless it is a unit quaternion. A unit quaternion
is the same as a unit vector. A unit quaternion has a magnitude of
exactly one, no more, no less. You can convert any quaternion to a unit
quaternion by dividing each of the components by the total magnitude.

27

Unless your quaternion has a magnitude of one, it does not represent a
rotation. If you find yourself with a quaternion without a magnitude of
one, other than in the middle of an interpolation, you have probably
done something wrong.

Multiplying Quaternions
As you read in the first part of this chapter, some operations that are
normally performed on matrices can be done much cheaper with
quaternions. One of these is multiplication. Multiplying two quater-
nions together has the same effect as multiplying their corresponding
rotation matrices, but at a lower computational cost. Multiplying two
rotation quaternions will cause the rotations to become concatenated, or
strung together in a series. For example, if one rotation represents a
rotation around the X axis and another rotation matrix represents a
rotation around the Y axis, multiplying them together will create a
matrix that represents a rotation around the X and Y axes. The for-
mula for quaternion multiplication is shown in Figure 2.3.

Calculating the Conjugate of a Quaternion
The conjugate of a quaternion is used for operations such as rotation of
a quaternion by another or rotation of a vector by a quaternion. This is
especially useful when you are transforming lighting normals or other
operations whereby translation is not needed.

The conjugate is very easy to calculate, requiring only that you negate
the vector component of the quaternion. Therefore, if you have the
quaternion q = [n,v], where n is a scalar and v is a vector, the conjugate
of q (denoted by the symbol ~) would be ~q = [n, -v]. You will learn
how to use the conjugate of a quaternion to rotate other quaternions
and vectors in the next section.

Figure 2.3 In the quaternion multiplication formula, n and m are the
scalar components of the quaternion, and u and v are the vector components.
Note: • refers to the dot product of the two vectors, whereas × refers to the
cross product of two vectors.

What Is a Quaternion and Why Are They Used?

28 2. Introduction to Quaternions

Rotating a Quaternion
You can use quaternions to rotate vectors or other quaternions. The
same formula is used to rotate quaternions by other quaternions as to
rotate vectors by other quaternions. The only difference is that the
vector becomes a quaternion with a scalar component of zero, yet the
scalar of the resulting product is ignored. The formula for rotating
vectors and quaternions is shown in Figure 2.4.

Figure 2.4 Using a quaternion to rotate vectors and other quaternions.
Remember, when rotating a vector, you use a quaternion with a scalar value of
zero and ignore the resulting scalar in the result.

Quaternion Conversions
Because of the complicated nature of quaternions, it is not always
feasible to specify a quaternion rotation directly. Instead, you might
want to specify a set of three Euler angles, or perhaps a rotation
around an arbitrary axis, particularly if you need to retrieve input from
a user. An average human being would have a hard time trying to
enter a rotation quaternion and would much rather enter a set of
Euler angles. For purposes of transforming vertices or other game
components, you may require a rotation matrix instead of a quater-
nion. This is no problem; you can convert between all of these ele-
ments with very little effort. The next section begins with quaternion
to matrix conversion.

Converting Between Matrices
and Quaternions
One of the most important aspects of quaternions is their ability to be
converted into rotation matrices. This is useful because graphics APIs
such as OpenGL and Direct3D cannot accept quaternions directly
rather, they rely on matrices to perform transformations. Because of
this, without being able to convert between quaternions, your graphics
would become useless because you would not be able to use the infor-
mation they contain along with OpenGL or other graphics APIs. For
example, if you have two sets of rotations for an object, the first set is

29

the starting rotation and the second is the ending rotation. Without
being able to convert these matrices to quaternions, it would be
impossible to take advantage of the ease of interpolation between
quaternions. Keep in mind that all matrices will be referenced in the
manner mij where i is the row and j is the column.

This section first investigates how to convert a quaternion to a matrix.
Because there is much more to cover in the later chapters of the book,
there is not room to go through the “whys” of the conversion. Instead,
this section looks at the formula for the conversion. Figure 2.5 shows
how to generate a 3×3 rotation matrix from a quaternion. Keep in mind
that when writing code to do the conversion, it is helpful to calculate
some of the multiplication ahead of time to avoid unnecessary overhead.

Converting back to a quaternion is a little bit harder, but not much.
The first thing you do is calculate the trace of the matrix using the
formula (tr = m11+m22+m33). If that value comes out to be greater
than zero, you can perform an “instant calculation” using the follow-
ing formula:

Figure 2.5 Converting a quaternion to a rotation matrix. W represents the scalar
value and X, Y, and Z represent the three parts of the vector component.

What Is a Quaternion and Why Are They Used?

30 2. Introduction to Quaternions

If it is less than or equal to zero, you have to take a different approach
that depends on which element of the major diagonal is the largest. If
the upper-left corner is the largest, you use this formula:

If the middle element outshines the others, use this formula:

And finally, if the lower-right corner takes the cake, use this one:

31

These formulas convert your rotation matrix into a quaternion so you
can take advantage of the many advantages they have, such as easy
interpolation, cheaper multiplication, and less storage space.

Converting Between Euler Angles and
Quaternions
There is one huge reason that conversion between Euler angles and
quaternions is necessary—ease of use. Because it is impossible to
visualize a quaternion, it is very hard to enter one into a program. If a
modeling program wants you to input a rotation value for an object, it
would be considerably easier to enter three Euler angles rather than to
enter a quaternion.

To convert a set of Euler angles to a quaternion, you first must convert
each angle to its own quaternion. This is done using one of three formu-
las, depending on which axis your rotation is around. All three formulas
are shown in the second part of Figure 2.6. To create a final quaternion,
all you have to do is multiply the three previous quaternions.

When you are ready to convert a quaternion, you must call on the
miracle of quaternion to matrix conversion. Before you can do any-
thing else, you must calculate certain elements of the rotation matrix,
which will later be used to extract the angles.

Figure 2.6 Left: A representation of Euler angles. Right: Converting the three Euler
angles into quaternions.

What Is a Quaternion and Why Are They Used?

32 2. Introduction to Quaternions

The elements you need to calculate are m11, m21, m31, m32, and m33. Let’s
review how to acquire those five elements from a quaternion.

m11 = w
2 + x2 – y2 – z2

m21 = 2xy + 2wz

m31 = 2xz – 2wy

m32 = 2yx + 2wx

m33 = w
2 – x2 – y2 + z2

Now all that is left is to extract the angles. Once those figures are calcu-
lated, you can extract the Euler angles using the following formulas:

These formulas are very useful. Most people would balk if a program
displayed quaternions instead of Euler angles to represent a rotation.
They would be much happier to simply see the three direction angles
instead because they can visualize the rotation much easier. With these
equations you can still appreciate all the advantages of quaternions
without driving away the people using your program.

Axis-Angle Conversions
The last kind of conversion you will learn about in this chapter con-
verts a rotation angle and axis to a quaternion. You’ll need to do this
because most graphics APIs cannot use a quaternion to directly repre-
sent a rotation, so when the time comes to apply the rotation, the
quaternion must be converted to another form. It might be possible to
simply rotate around an axis using a function such as glRotate, rather
than build a complete rotation matrix. Because there are fewer opera-
tions involved in converting from a quaternion to an axis angle than
converting from a quaternion to a rotation matrix, the axis-angle
approach may be a better choice when available.

This is by far the easiest conversion of the three. The left side of Figure
2.7 shows how axis-angle rotation can be represented in three dimen-
sions. The angle is a rotation around an arbitrary axis, generally
represented by a unit vector. To convert your axis/angle pair to a

33

quaternion, you first must make sure that your axis is a unit vector. If it
is, you calculate sin(angle / 2) and divide all the components of the
axis by it before storing them in the vector component of the destina-
tion quaternion. The scalar part of the quaternion is calculated using
the formula cos(angle / 2). Simple enough? Check out the right side
of Figure 2.7 if you are still a little bit confused.

Figure 2.7 Left: A picture axis-angle rotation. Right: Converting the axis
and angle to a quaternion.

Converting back is not hard at all. Using the inverse trig functions to
reverse the earlier operations and one of the most basic trig identities,
you can easily extract the rotation angle and axis. Step right over to
Figure 2.8 to see how to do it.

Figure 2.8 Converting a quaternion to a rotation axis and angle. This
conversion is cheaper in terms of processing power than a quaternion-to-matrix
conversion, making it ideal for use when a rotation matrix is not necessary and
when the graphics API can accept a rotation in the axis-angle format.

What Is a Quaternion and Why Are They Used?

34 2. Introduction to Quaternions

Interpolation with
Quaternions
Now, after all that, you get to learn about the coolest thing in quater-
nions: interpolation. Interpolation is very important when working
with 3D models. Imagine that you are working on a game that includes
enemies who patrol an area, back and forth. All you have to work with
are the endpoints of the patrol path and the time it should take for the
enemy to get from one to the other. This poses a problem because you
don’t actually know the points where the enemy would be at any given
time. Using interpolation, you can calculate where the enemies should
be, no matter how much time has elapsed since they started patrolling.

Interpolation is the act of producing the points in between two end
points. This can help produce smooth animation because you can
generate an unlimited number of midpoints, allowing the jumps
between points to be very small and—hopefully—imperceptible to
your game players. Interpolation is the real reason you should be using
quaternions. It is pretty easy to use and it results in super-smooth
animation. In this section, you will learn about the two main types of
quaternion interpolation: LERP and SLERP. Linear interpolation
(LERP) interpolates in a straight line. Spherical linear interpolation
(SLERP), on the other hand, interpolates in an arc. SLERP generally
produces a smoother animation, and will always stay at a constant
speed, whereas a LERPed animation will tend to speed up in the
middle and slow down at the ends. Figure 2.9 shows a two-dimensional
sketch of SLERP and LERP.

In general, you want to use SLERP to interpolate between two sets of
rotations. This allows the path to actually rotate, rather than simply be
connected by a straight line. Unfortunately, SLERP becomes unreli-
able as the distance between the rotations becomes smaller. When this
is the case, you must fall back to LERP (see Figure 2.9).

Notice in the figure that the intervals are all the same size on the
SLERP path, but are close together toward the middle of the LERP
path. This is why SLERP is used for rotation interpolation in most
places; it simply looks better. Now, you’ll learn how to actually perform
these operations on quaternions in the next sections.

TE
AM
FL
Y

Team-Fly®

35

LERP (Linear Interpolation of
Quaternions)
Linear interpolation is by far the easier of the two methods. Figure
2.10 shows the formula to linearly interpolate two quaternions, called q
and p, using an interpolation value of t, which is between zero and
one. After performing the operations, you must be sure to convert the
resulting quaternion back to a unit quaternion, or the end result will
not be what you expect.

Figure 2.9 A 2D representation of what SLERP and LERP do. SLERP
interpolates along the arc of the circle, whereas LERP interpolates along a
straight line from start to finish.

Figure 2.10 The equation to linearly interpolate (LERP) between two
quaternions. The path between the two quaternions will be a straight line.

SLERP (Spherical Linear Interpolation)
Spherical linear interpolation is not all that hard either. The only thing
you have to watch out for is making sure you take the shortest route. If
you look at Figure 2.9 again, you will see that you could go the short way,

Interpolation with Quaternions

36 2. Introduction to Quaternions

as the figure shows, or you could go back around the long way. Most
things would look pretty funny if you chose to interpolate the long way.
Taking the long route would be like turning right at an intersection by
turning left for three quarters of a turn and then turning right. Imagine
how strange that would look to a bystander. You can make sure it always
takes the shortest arc by checking the dot product of the two quater-
nions, and negating one if necessary. See the code on the included CD
for details; you will find it in the /Code/Math and Code/Chapter2 directories
in the files quaternion.h and quaternion.inl. On to the SLERP formula!
Figure 2.11 shows you how to SLERP between two quaternions. Again,
t is a value between zero and one.

Conclusion
There you have it, the basic operations of quaternions. Hopefully you
now have enough information to get some use out of them. Throughout
the next few chapters, you will use them to provide smooth animation
for your 3D models. If you desire to learn more about the background
and the math behind quaternions, I would suggest picking up book
devoted solely to them. W.R. Hamilton published several on his discov-
ery, and many people have devoted manuscripts to quaternions as well.
Just search your favorite online bookstore (most “physical” bookstores
do not carry books such as these) and see what you find. There are also
many online resources and sites that cover the ins and outs of quater-
nions. Load up your favorite Internet search engine and search away.

That concludes the math section. Next up, you will begin to learn
about 3D model formats. The book starts with simple formats such as
Alias|Wavefront’s Object format (OBJ) and id Software’s MD2 format,
originally created for Quake II. The book then moves on to more
complicated formats, such as MilkShape 3D’s MS3D and id Software’s
MD3 format.

Figure 2.11 The formula for using interpolating between two quaternions
using the SLERP method. Unlike LERP, where the resulting path will be a line,
the resulting path of SLERP is an arc.

CHAPTER 3

Quake II’s
MD2

Models

38 3. Quake II’s MD2 Models

F inally, you are through all that math and introductory stuff. Now,
on to the first chapter that really deals with 3D models!

First up, the MD2 format. The MD2 format was created by the folks at
id Software for the hit game, Quake II (see Figure 3.1). Since then, the
MD2 format has become a popular format for aspiring game develop-
ers due to its simple, easy-to-use format, the availability of quality tools
with which to create models, and the large collection of fan-built
models available at sites such as http://www.polycount.com. MD2 models
can be used in your game for just about anything. Enemies, weapons,
pickups, even pieces of the world geometry such as crates and light
fixtures can be stored using this format.

Figure 3.1 id Software’s Quake II introduced the MD2 format. Throughout the
game all the enemies, pickups, and weapons were stored in this format. Here, one of
the monsters (stored in the MD2 format of course) from the game harasses the player.

39Understanding the FILE * Functions

From here on, I am assuming that you are familiar with basic file I/O
routines, specifically the ones in the standard C library (FILE *, fread,
fwrite, and so on). If you’re not, you definitely want to brush up on
them before you continue. A large part of loading 3D models is getting
them loaded into memory correctly. Any good C book should have a
detailed section on these functions, but you get an introduction right
here in this chapter!

Understanding the
FILE * Functions
One of the most important parts of model loading is just getting the
file into memory. One of the ways to do this is to use a set of functions
from the standard C library, collectively known as the FILE * functions.
You have probably heard of them, perhaps even used them before.
This section is intended to give you a basic overview of the most impor-
tant functions and datatypes used for I/O. The first thing you need to
do before you can use FILE * I/O is include the appropriate header.
You will need <stdio.h> for C programming or <cstdio> for C++.

The first and most important part of the FILE* I/O is not a function at
all. Rather, it is a datatype called FILE. FILE is always used as a pointer
(FILE *) and holds exactly what it sounds like, a pointer to the file called
a file pointer. You need a separate file pointer for each file you want to
have open; each file pointer can only point to a single file at a time.

So now you have a datatype that points to the file, but how do you use
it? The first thing you need to do is open a file. The function you want
here is fopen(). fopen takes just two parameters. The first is a constant
string (const char *) that contains the file name of the file you desire
to open, the second, also a constant string (const char *), is the mode
you want to open the file in. The mode parameter can take many
forms, depending on what you want to do with the file. There are
modes for reading, and writing, and binary and text files.

How do you determine which mode to use? Simple, just check Tables
3.1 and 3.2 for a list of all the mode strings that can be used with fopen.
The mode string will consist of one part from Table 3.1, which tells
fopen which type of access you want, whether it be reading, writing,

40 3. Quake II’s MD2 Models

appending, or a combination. The second part of the mode string
comes from Table 3.2. The second part, also known as the translation
mode, tells fopen whether to look at it as a binary or text file.

The fopen function will return the file pointer (FILE *) for your file.
This file pointer will be used whenever you work with the file, whether
it is to read data from it or write new data back. Here are a few ex-
amples of opening a file in different modes:

FILE * f = fopen("file.txt", "w+t");

This will create and open the file called file.txt for reading and
writing in text mode. Anything currently contained within file.txt will
be destroyed.

FILE * f = fopen("file.bin", "rb");

Table 3.1 Access Modes for fopen()

Mode String Use

"r" Opens the file for reading only. If the file does not exist, a
new one will not be created and the call to fopen will fail.

"w" Opens a blank file for writing. If the target file contains
information, it is wiped out. Be careful when using this
mode; you could wipe out a file.

"a" Opens a file for writing, much the same as the "w"
mode. However, "a" will not destroy the data in the file.
Any new data will be added to the end of the file, also
known as appending the data.

"r+" Opens an existing file for reading and writing. As with
"r", the file must exist or fopen will fail.

"w+" Works the same as "r+" with two major differences. If
the file does not exist, fopen will create a blank one. If
the file does exist, all data will be erased. Another
function to be careful with.

"a+" Opens the file for both reading and appending, or
writing to the end of the file.

41

This will open the file file.bin for reading only, in binary mode. This is the
most common mode used when loading and using 3D models within your
games for several reasons. First, most model files are in binary form (but
not all of them; the next chapter contains a file format that is text-based).
Second, you rarely need to write to a model file when working with it in
your game. Generally, you only need to load and use, rather than modify,
the data it contains. Don’t forget to determine whether your file pointer is
valid (not zero) before you try to use it.

Now that you have an open file, you need to be able to retrieve data
from it. When working with model files, I like to read in the whole file
as a chunk of unformatted data, and then sort it out later. To do this
you use fread().

fread is used for just what it sounds like: file reading. This function reads
raw, unformatted data into an array. This is a quick and easy way to get
data from the file into memory. The fopen function takes four param-
eters, as follows:

■ The first parameter is a pointer to a buffer in which to store the
new data.

■ The second and third parameters will tell fread how much data
you want. These parameters contain the number of bytes in a
single “item,” or chunk, of data, and the number of items you
would like to read, respectively. Be sure your buffer is large
enough to hold all of your data; nothing is worse than overwrit-
ing an array and losing data.

Table 3.2 Translation Modes for fopen()

Mode String Use

"t" “t” stands for text mode. In text mode, each byte of the
file will be treated as its own character. You will gener-
ally use this format if the file was or needs to be
human-readable.

"b" “b” is for binary. A file opened in binary mode will be
treated as raw data and is generally not human-readable.

Understanding the FILE * Functions

42 3. Quake II’s MD2 Models

■ The fourth and final parameter is a file pointer. The parameter
should contain the file pointer that you created when you
opened the file using fopen. You can check fread to make sure it
read everything. The fread function returns the number of items
actually read. If this return value and the third parameter of
fread are equal, all the data was read successfully.

Here is a snippet of code that would read 100 bytes of unformatted
data from one of the files you opened previously.

byte Buffer[100];

fread(Buffer, 1, 100, f);

This will store 100 bytes of data (one byte per item * 100 items) read
from the file that f points to, in Buffer, an array of 100 bytes.

Just as fread is used for reading unformatted data from a file, fwrite is
used for writing unformatted data. The parameters for fwrite are
exactly the same as fread. The first parameter is the buffer containing
the data to write to the file, the second and third parameters hold the
sizes of the data to be written, and the fourth is a file pointer so fwrite
knows which file to output the data to. Here is code to take the data
you just read in (now stored in Buffer) and write it back to the file.

fwrite(Buffer, 1, 100, f);

Sometimes you need to read or write formatted data to a file. In these
cases, fread and fwrite will not work. You will need to look toward
functions such as fscanf and fprintf for formatted input and output.
These functions are used just like their text counterparts scanf/sscanf
and printf/sprintf. Other functions are in place to read or write single
variables to files such as fputc/fgetc (single characters) and fputs/fgets
(strings).

All of this is very useful, but what if you need to write or read data to or
from other parts of the file? You simply use the fseek() function. fseek
will move your file pointer to a new place in the file. The fseek func-
tion takes three variables. The first parameter takes the file pointer you
want to manipulate. The second argument takes the number of bytes
you want to move, relative to the origin. The origin point is given by
the third parameter. The origin can be one of three constant values:

■ SEEK_BEGIN places the origin at the beginning of the file. In this
case, fseek will move the specified number of bytes from the start
of the file.

43

■ SEEK_END is the second choice. SEEK_END will place the origin at the
end of the file and fseek will move in reference to that location.

■ The final constant for the origin is SEEK_SET. SEEK_SET will tell
fseek to move the specified number of bytes from the current
location in the file. After fseek is called, you may return to
reading and writing your file. This time, the file is coming from
or going to a new location.

When you are done reading or writing from a file, you need to close it.
Failing to close a file leaves some memory allocated, thus creating a
memory leak in your program. To close a file you opened with fopen,
you use fclose. fclose() takes a single parameter, the file pointer of the
file you want to close. You can also use the _fcloseall() to close all
open files; it takes no parameters at all and returns the number of files
it successfully closed. Here, you see the simple code necessary to close
the file f once you are done working with it.

fclose(f);

Well, there you have it. A short introduction to file I/O using FILE *.
This should be plenty to get you started loading your own 3D models.
If you want to know more, or would like to learn about other methods
of file I/O, I would suggest picking up a book on C or C++. Any good
C/C++ book will contain a section pertaining to file I/O, whether
covering FILE * or another method.

With that out of the way, and a review of file I/O complete, you are
ready to move onto the hard part—deciphering the MD2 format.

Looking at the Source Code
Before you begin, you might want to pull up the source code for this
chapter. The files pertaining to the MD2 models are named md2.h and
md2.cpp. Both of these files can be found in the Code/Chapter_3 direc-
tory on the CD. The first thing to look at is a general layout of the file.
The MD2 file contains geometry, texture, and animation information,
all in a very specific order, as shown in Figure 3.2.

The first thing in every good 3D graphics file is the header. A header is
simply information about the particular file located right at the start of
the file. Headers are very useful because they can reveal lots of informa-
tion about a file, without forcing you to dig through piles of data. Headers

Looking at the Source Code

44 3. Quake II’s MD2 Models

may include features such as “magic numbers” to identify the file type and
the version numbers to prevent old file versions from being used when a
program no longer contains support for it, as well as information about
the data that is in the file. MD2 is no different. The header contains a
plethora of useful information. Let’s see what it looks like.

struct SMD2Header

{

 int m_iMagicNum;

 int m_iVersion;

 int m_iSkinWidthPx;

 int m_iSkinHeightPx;

 int m_iFrameSize;

 int m_iNumSkins;

 int m_iNumVertices;

 int m_iNumTexCoords;

 int m_iNumTriangles;

 int m_iNumGLCommands;

 int m_iNumFrames;

Figure 3.2 The general layout of the data within an MD2 file.TE
AM
FL
Y

Team-Fly®

45

 int m_iOffsetSkins;

int m_iOffsetTexCoords;

 int m_iOffsetTriangles;

 int m_iOffsetFrames;

 int m_iOffsetGlCommands;

 int m_iFileSize;

};

Wow, that’s a lot of information. Now that you have that list, let’s see
what it is all for.

■ First up is the “magic number”. The magic number lets you
check to make sure that the file you are loading is indeed an
MD2. The magic number is IDP2, which stands for ID Polygon 2.
Combined into one integer, IDP2 turns out to be 844121161.

■ Following the magic number is the version number. This is
always 8, always. These two values should be checked upon load.
If either is wrong, the file is not a valid MD2 model, and there-
fore will not load correctly.

■ The next two variables deal with the skin, or texture, that is used
to cover the model. Each MD2 can use exactly one skin at a
time, although multiple skins may be loaded and used at differ-
ent times (more on that in a bit). The two four-byte integers,
m_iSkinWidthPx and m_iSkinHeightPx, represent the skin’s height
and width, respectively, in pixels.

■ Always one in every family, the next variable is a bit of an odd
one. m_iFrameSize, also an integer, gives you the size of each
keyframe in bytes. It saves a bit of time later, but it’s nothing that
couldn’t be easily computed later.

The next six variables are all about the numbers of things, as described:

■ The first (m_iNumSkins) is the number of skins defined in the file.
This variable does not refer to the number of skins used to
texture the model, but rather to the total number of skin op-
tions for the model. Different skins may be used to change the
appearance slightly for things such as team colors and to add a
bit of variation within the game.

■ m_iNumVertices, as the name implies, gives you the number of
vertices per frame. Every frame in the model will contain exactly
this many vertices.

Looking at the Source Code

46 3. Quake II’s MD2 Models

■ m_iNumTexCoords gives you the number of texture coordinates
within the file. This does not need to be the same as the number
of vertices. All the frames use the same set of texture coordinates.

■ m_iNumTriangles is the number of triangles in the whole model.
MD2 models contain only triangles; there are no other primi-
tives such as quadrilaterals present.

■ The next integer, m_iNumGLCommands, is a special one. It specifies
the number of special commands that can be used to optimize
the MD2’s mesh into triangle fans and strips for the renderer.
The GL commands are not necessary to load the model, but
provide an alternative way of rendering the model.

■ The last variable in this section, m_iNumFrames, gives you the
number of frames in the MD2 file. Each frame contains a full set
of vertex positions for that stage in the animation. Every frame
of the model is like a snapshot of its current position.

The next section of five integers gives the offset in bytes of each of the
major parts of the file, enabling you to simply skip to them when you
are loading. Keep in mind that these are the distances from the begin-
ning of the file, not the variable in the header or from the previous
section of data. If you measure the distances from the wrong place, you
will end up in the wrong section of the file.

The very last variable, m_iFileSize, gives you the file size from the start
of the header, to the end of the file in bytes.

Just remember that all the integers are four bytes, giving the header a
total size of 68 bytes. Now, to really get anything useful, you need to use
that information along with the data structures discussed next. Read on!

The Data: Frames and Vertices
To display anything, you first need to get the data out of the file. You can
start with the frames. Each frame starts with six floating-point values
representing the scale and translation of the vertices on the X, Y, and Z
axes. These values are used to decompress the vertices (more on this in
a second). Immediately after these values comes a 16-character string
that designates the frame’s name. The frame name is not overly useful
in the code in this book, but you may be able to find a good use for it.

47

Immediately following the name comes all the vertex positions for that
frame. In every frame, there is exactly the number of vertices indicated
by the m_iNumVerts variable in the header.

My frame structure looks like this:

struct SMD2Frame

{

 float m_fScale[3];

 float m_fTrans[3];

 char m_caName[16];

 SMD2Vert * m_pVertss

 SMD2Frame()

{

 m_pVerts = 0;

}

~SMD2Frame()

{

 if(m_pVerts)

 delete [] m_pVerts;

}

};

The first thing you probably notice about the structure is that it has a
constructor and a destructor. This is perfectly legal in C++, and allows
your frame structures to clean up after themselves so you don’t have to
worry about it. Another way to do it is to statically allocate an array to
hold the maximum number of vertices allowed by the MD2 format
(2048 vertices). However, this method wastes a considerable amount of

CAUTION
You need to be careful when working with structures,
particularly ones that include pieces other than variables,
such as functions, in them. The size of these structures
(found with sizeof()) might not match the size of the
structure in the model file. This is also true with structures
such as SMd2Vertex, discussed in the next section, because
the data that it stores is in a different format than is stored
in the file. Be sure to watch out for situations like these.

The Data: Frames and Vertices

48 3. Quake II’s MD2 Models

memory if the model is small. It is best to allocate memory for each
frame with the C++ keyword new.

You can’t easily use the previous structure if you do not know what the
vertex structure looks like. Take a look:

struct SMD2Vert

{

 float m_fVert[3];

};

That’s pretty simple; m_fVert is an array of three floating-point values
representing the X, Y, and Z positions of the vertex.

The vertices are not actually stored as floating point values. They are
compressed into one byte for each vertex component. To decompress
them, you must multiply each byte component by its respective float-
ing-point scale value, and add the appropriate translation value. When
this is done, the result can be stored in the SMD2Vert structure.

For each vertex, you read four bytes of the file into a temporary array.
Following that, you multiply the first byte by the first scaling value, the
second value by the second scaling factor, and so on. Then, in the
same fashion, add the appropriate translations.

Once you have all this loaded, you can actually draw your model. You
simply draw a single point at each vertex and you should see a rough
image of the final model, similar to Figure 3.3. Not very exciting
perhaps, but more than you had just a few pages ago. To really make it
look good, you need to make it solid.

Making It Solid: Triangles
Triangles in MD2 files are made using vertex indexes. For each tri-
angle, three two-byte integer values are stored, each representing a
vertex in the vertex array. If the three values are 4, 6, and 14, those
values can be used to index into the vertices of the current frame. All
frames use the same triangle indexes when being drawn.

49

The triangle structure looks like this:

struct SMD2Tri

{

 unsigned short m_sVertIndices[3];

 unsigned short m_sTexIndices[3];

};

Exactly m_iNumTriangles of these structures is stored at
m_uiOffsetTriangles bytes in the file.

In addition to the three vertex indexes, each triangle contains the same
amount of indexes into the texture coordinate array, which you will get
to in a second. Each vertex index has an accompanying index into the
array of texture coordinates. This allows textures to be added easily.

Using this information, you can draw the whole model as triangles as
shown in Figure 3.4. Finally, the model is starting to look decent; all it
really needs are some textures.

Figure 3.3 An MD2 model with only the vertices rendered. You can see a rough
outline of the model beginning to take shape.

Making It Solid: Triangles

50 3. Quake II’s MD2 Models

Rendering the Results for
the First Time
I bet you are anxious to see some results of your hard work, even
though you haven’t added textures yet. In this section, you learn how
to render the frames by themselves. A frame in the case of an MD2
model is simply a snapshot of the model in a certain position—simply
different versions of the same set of vertices. For this reason, the other
aspects of the model, such as the vertex indexes and texture coordi-
nates, do not change.

It’s fairly simple; all you need are a few simple OpenGL commands,
as follows:

■ glBegin(GL_TRIANGLES); tells the OpenGL that the vertices you
send to it should be formed into triangles with every three
vertices forming a separate triangle.

■ The glVertex3fv command sends OpenGL an array of three
floating-point values that make up a three-dimensional vertex.

Figure 3.4 The first render of an MD2 object, in wireframe mode.

51

■ Last, glEnd() tells OpenGL that you are done rendering the
triangles. All you need to do is render plain old triangles.

Take a look at the following code:

glBegin(GL_TRIANGLES); //You want to render triangles

for(int i = 0; i < m_Head.m_iNumTriangles; i++)

 //Loop through all the triangles, the number of

 //which is given in the file header.

{

 //each triangle has exactly three vertices

 //the triangle structure contains three vertex indexes,

 //and each frame contains its own vertices

 glVertex3fv(

m_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[0]]);

 glVertex3fv(

m_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[1]]);

 glVertex3fv(

m_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[2]]);

}

glEnd(); //Finish up with the list of triangles

Ugh, those vertex calls are a little confusing; lets break them down a
little bit more. Each vertex looks something like this:

m_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[0]]

■ m_pFrames is an array that holds all of your frame data, including
vertices.

■ frame is an index into the array of frames, it tells you which set of
vertices to use. For instance, if frame was 0, it would use the
vertices from frame #0.

Because each frame has its own set of vertices, .m_pVerts is a member of
each frame structure. It holds every vertex for the frame. Using the
triangle indexes, you must pick out which vertex you need. That’s where
m_pTriangles[i].m_sVertIndices[0] comes in. m_pTriangles is the array of
triangles, each which contains three vertex indexes. The i indicates
which triangle is currently being rendered so the renderer knows which
set of indexes to use. The very last part, m_sVertIndices[0], is the vertex
index itself. Being that there are three of them, one for each point in
the triangle, the 0, 1, and 2 are used to get each point, respectively.

Rendering the Results for the First Time

52 3. Quake II’s MD2 Models

Pretty cool, isn’t it? To look at the complete rendering code, check out
the Render() function of the CMd2 class. This function will render the
model in its initial position. Although there is extra code in the function
for texturing, you should still be able to see the geometry code alone.
Just disregard any commands with “texture” or “texcoord” in them, such
as glTexCoord2D. The remaining code will just render the triangles; try
commenting out the lines pertaining to textures and recompiling.

Beautification: Adding Skins
The model shown in Figure 3.4 would look a lot better if you added a
texture. This can be done in one of two ways.

The first way is to use the skin names embedded inside the MD2 file
itself. The number and location of the skin file names are dictated by
variables in the header, m_iNumSkins and m_iOffsetSkins, respectively.
Each skin name is 64 characters long, but the last part of the name in
the file can be all zeros, effectively terminating the string at that point.

If you look at the SMD2Skin structure, you will notice it contains an in-
stance of the CImage class. This class contains functions to load and bind
various kinds of textures. There is not room to go into detail on how it
works, but you are welcome to look at the source code. The files pertain-
ing to CImage are in the basecode folder and are image.cpp and image.h.

Each of the file names in the skin section is a different skin. A typical
skin could look something like the one shown in Figure 3.5.

Figure 3.5 A typical skin for an MD2 model. This is the skin for the HellPig
MD2 created by Psionic Design (http://www.psionicdesign.com).

53

The other way to load a skin for the model is to use the CImage class to
load a file, and then bind it to the model using the model class’s
SetSkin function.

But wait, before you can actually render the model, you need to load
the texture coordinates from the file.

The number of texture coordinates used in the file is given by the
variable m_iNumTexCoords in the header of the MD2. This many texture
coordinates are stored at m_iOffsetTexCoords bytes into the file. The
texture coordinate structure that will be used looks like this:

struct SMD2TexCoord

{

 float m_fTex[2];

};

Each texture coordinate consists of a pair of two-byte integers. The
first texture coordinate ranges from 0 to the width of the skin, the
second from 0 to the height of the skin. This will not work properly
with OpenGL; you must convert them into a floating-point value
between 0 and 1. To do so, you take the first short integr (two bytes),
and divide it by the width of the skin, which is given by the variable
m_iSkinWidthPx in the header. The same thing is done to the second
coordinate, only using the number in m_iSkinHeightPx instead. This is
done over and over until all the texture coordinates are calculated.
Once this is done, you can move to the last step.

All that is left to do now is modify your rendering function to use the
texture coordinates. First thing you do is enable texturing and bind
the texture using the Bind function included in the CImage class.

Then, you travel down to the loop that draws the triangle. In the same
way as the vertex indexes, the triangle structure also contains indexes
into the texture coordinate array, one index for each vertex.

They work the same way, except there is only one array of texture
coordinates, not one for each frame because only the positions of the
vertices change between frames; the texture coordinates stay the same.

Take a look at the new rendering code:

glBegin(GL_TRIANGLES); //You want to render triangles

for(int i = 0; i < m_Head.m_iNumTriangles; i++)

 //Loop through all the triangles, the number of which is

Rendering the Results for the First Time

54 3. Quake II’s MD2 Models

 //given in the file header.

{

 //each triangle has exactly three vertices and three texture coords

 //the triangle structure contains three vertex indexes, and each frame

 //a single array of texture coordinates is used for all of the frames

 //and they are accessed in much the same way as the vertices

 glTexCoord2fv(m_pTexCoords[m_pTriangles[i].m_sTexIndices[0]]);

 glVertex3fv(

m_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[0]]);

 glTexCoord2fv(m_pTexCoords[m_pTriangles[i].m_sTexIndices[1]]);

 glVertex3fv(m

_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[1]]);

 glTexCoord2fv(m_pTexCoords[m_pTriangles[i].m_sTexIndices[2]]);

 glVertex3fv(

m_pFrames[frame].m_pVerts[m_pTriangles[i].m_sVertIndices[2]]);

}

glEnd(); //Finish up with the list of triangles

That was pretty simple. Your model should look much better now,
perhaps like Figure 3.6.

Figure 3.6 A textured model. Here’s the HellPig again!

TE
AM
FL
Y

Team-Fly®

55

Making It Move: Animation
Now that you have a nice, textured model, you can start writing the
code to animate it onscreen. Animation of a keyframed model such as
an MD2 essentially involves drawing the frames one after another.

You can take the approach of simply drawing the next frame in the
series, but this will produce less than satisfactory results. This method
will result in jerky animation, and will run at different speeds on
different computers; something you definitely do not want.

The solution to this issue is to interpolate between the frames with
respect to time. In order to have smooth animations, you will automati-
cally create new frames that represent the model’s position at any
given time. This approach has many advantages. It provides smooth
transitions between frames. You can control the speed of the anima-
tion, and the frames will pass at the same rate on all machines. Last of
all, it is predictable. You can count on it being at frame x during time
y; even if the system gets hung up, the program will skip to wherever it
should be at the time it starts again.

To do anything with time, you need a timer. The CTimer class is pro-
vided just for that, you can find out how it works by examining timer.h.
The function you are most interested in here is CTimer::GetMS(). This
function returns the number of milliseconds that have elapsed since
the function was called.

If you know how many milliseconds have passed since the last frame,
and how long each frame should last in milliseconds, you can “create”
a new frame that is partway between two frames of the MD2 model.

First, you need the time it should take between frames (in ms). The
Animate() function of CMd2 takes care of that. A parameter is passed to
the function that tells the function how fast to animate, in frames per
second. Using this it is a simple matter of obtaining the number of
milliseconds for each frame. The timer takes care of the time elapsed
between frames.

Using these values, you can calculate an interpolation value. This will let
you calculate the vertices to display. Use the following formula:

Rendering the Results for the First Time

56 3. Quake II’s MD2 Models

In this equation, vo is the vertex position of the last previous frame, v1 is
the vertex position of the next frame, and t is the interpolation value.
The interpolation value must be between 0 and 1. If it isn’t, it means
that you have to skip frames. The next part does just that, it keeps
adding one to the frame number, and decreasing the interpolation
value by 1.0, until it is between 1 and 0. Once this is done, you will
know what frame the value falls between. If the last frame is 19, the
next frame will be 20, and if the interpolation value is 0.871, you are
essentially calculating frame 19.871.

To accomplish this, you obviously need somewhere to store the inter-
polated vertices. The code provided simply uses an array of
CMd2Vertices with the same number of slots as each frame. This pro-
vides a place to put every transformed vertex.

Next you must actually calculate the intermediate vertices. Using linear
interpolation to calculate the new vertices can be done using the
previous formula.

Now that you have an array of vertices, they can be rendered as a
regular frame, as you did earlier in the chapter.

As you look at the code, you will notice that there are static variables
that hold information such as the current frame and the last interpola-
tion value. The values of these variables are stored between calls to the
function, eliminating the need to store them in the class or in global
variables. This function is called every time the main game or render-
ing loop is executed.

One last shot of the model, in mid-animation, is shown in Figure 3.7.

Strips and Fans: GL Commands
The MD2 format also contains instructions to let you use triangle fans
and strips, instead of just raw triangles. Using triangle strips and fans
can help you speed up the rendering of your 3D models. The secret?
Triangles share two of their vertices with another triangle, rather than
having three of their own.

Say you have an object with four connected triangles. Using regular
triangles, you would need a total of twelve vertex calls, three for each
triangle. When using fans or strips, however, this is not the case. The
first three vertices of a triangle fan or triangle strip define the first
triangle in the series. Each vertex after that defines a new triangle,

57

meaning a total of only six vertices are needed. The reason for this is
simple. A new triangle is formed using the new vertex, plus two of the
vertices that have already been sent to the renderer.

With a triangle strip, the most recent two vertices are used in conjunc-
tion with the new vertex to create a whole triangle, creating a shape
like the one shown in the center of Figure 3.8. Triangle fans work
almost the same way. However, instead of using the most recent two
vertices to complete the triangle, a triangle fan uses the most recent
vertex and the very first vertex instead. This creates a shape like the
one shown on the right side of Figure 3.8.

An MD2 model contains a set of commands; each one represents a
triangle strip or fan. Each fan or strip will contain a set of vertex
indexes to use in place of the normal face indexes defined earlier in
the file. Each vertex index will also contain its associated texture
coordinate to replace the texture coordinates loaded earlier.

At the offset designated by the header, there are a set number of GL
commands (also designated by the header). Each command is exactly
four bytes and can be an integer or a floating-point value.

Figure 3.7 The model in mid-animation.

Rendering the Results for the First Time

58 3. Quake II’s MD2 Models

Each primitive starts out with an integer. This integer tells you how
many vertices are in the primitive. It also tells you what type of primi-
tive it is; if the number is negative, it is a triangle fan, positive means it
is a triangle strip. The number of vertices for the fan or strip is the
absolute value of that integer.

Immediately following that are the vertices. For each vertex, there are
two floating-point texture coordinates ready to be plugged into the
renderer without modification. Right after the two texture coordinates
is an integer that is the index into the array of vertices. This pattern
repeats for every vertex.

After all the vertices have been cycled through for the current primi-
tive, you start rendering another primitive in the same way. For time
and clarity’s sake, I did not include code to do this, but hopefully this
description should be enough to get you going.

Conclusion
Well, that concludes the chapter on the MD2 format. Using the infor-
mation here, as well as the code on the CD, you should be able to write
your own loader for use in your own game or demo. Have fun. If you
have any suggestions, or maybe need a little bit of help, be sure to visit
my site and post on the forums, or e-mail me. To find the forums,
point your favorite browser to http://www.codershq.com and click the
Forums link. If you prefer private email to public forums, my email
address is evan@codershq.com. Also be sure to visit Psionic Designs at

Figure 3.8 The difference between raw triangles, triangle strips, and triangle fans.

59

http://www.psionicdesign.com/. They created the HellPig model that you
see in the figures of this chapter. Their model (Hellpig.Md2) is also
included on the CD in the same directory as the code.

Now that you have an understanding of a simple binary format, let’s move
onto another type, ASCII. In the next chapter, you will learn about the
OBJ format, created by Alias|Wavefront (http://www.aliaswavefront.com),
for use with its popular modeling package, Maya.

Conclusion

This page intentionally left blank

CHAPTER 4

Loading
OBJ Files

62 4. Loading OBJ Files

N ext in line is the OBJ file format. This is a great format for static
objects in a game, such as simple pieces of level geometry, weap-

ons lying on the ground, and power-ups scattered throughout a level.
The OBJ format can be exported from Maya, one of the industry
standards for creation of 3D content, including 3D worlds and of
course 3D models for games. Used by many game developers and
artists worldwide, Maya has become one of the most popular 3D
modeling programs around. Maya is developed and sold by
Alias|Wavefront (http://www.aliaswavefront.com).

A simple, ASCII-based format, the OBJ model format contains geom-
etry data, but no animation. You might want to use this format if you
need to be able to edit, or even create, the files by hand, without a
modeling package. This is also a great format to use if you do not need
animation because it is very easy to work with. Although it can contain
features such as curved surfaces, such features are beyond the scope of
this book. This chapter covers just the basic geometry. This includes
the faces that make up the model, along with the vertices that make up
the faces themselves. It also includes texture coordinates to allow a
texture map to be added, as well as vertex normals used for lighting.

Parsing Text Files
Before you can work with ASCII files, you must know how to extract
the information you need, also called parsing, from the file.

C++ is pretty strict about what it datatypes. You can’t simply set an
integer equal to a string containing an integer in text format and expect
it to work as you thought. Rather, you must extract and convert the data
using special functions. Two of the best functions for doing this are
sscanf (for extracting data from strings) and fscanf (for doing the same
with files). Both functions take the same parameters, with the exception
of the very first parameter. The very first parameter for sscanf is a string
that holds the unformatted data, whereas the first parameter of fscanf is
the file pointer you want to extract the data from.

63Understanding the OBJ Format

The second parameter is the most important. It holds a string called
the format string. The format string tells scanf which types of variables
to look for and in what order they are. An example of a format string
follows, and Table 4.1 shows you how to build your own format string.

The last variables are pointers to the variables you want to store your
converted values in. You need a separate pointer for each value you
read in. Because the scanf functions take a variable number of argu-
ments, you can read in as many values at one time as you like.

This is best tied together with a simple example. Say you have a string,
called szVertex, that contains the line:

Vertex 15 - [14.12, 12.51, 33.10];

You can see that there is a string, an integer, and three floating-point
values, as well as some extra stuff such as commas, brackets, and a
semicolon. You want to extract the useful parts and store them in the
correct datatypes so you can use them later on in your program.

The sscanf function would look like this:

sscanf(szVertex, "%s %d – [%f, %f, %f];", s, &i, &f1, &f2, &f3);

As you can see, the format string looks a lot like the original line, only
with the actual values removed. The % arguments tell sscanf what kind
of variable to look for at that location. Table 4.1 shows you the most
common % arguments and what they stand for. The last set of param-
eters lists the destination variables. s stands for a string, probably an
array of characters, &i is a pointer to an integer, and &f1, &f2, and &f3
are pointers to floating-point numbers to hold the three values be-
tween the square brackets. Be sure your destination variables match up
with the appropriate argument in the format string (s goes with the
string, i with the integer, and f1, f2, and f3 with the three floating-
point values). You can do everything shown here with fscanf, only the
first parameter is the file pointer rather than a source string.

Understanding the
OBJ Format
As mentioned, the OBJ format is in plain text. If you open it in Notepad
or Wordpad, you’ll see lists of vertices and other geometry. Having an
ASCII (plain text)-based format rather than a binary one has advantages

64 4. Loading OBJ Files

and disadvantages. Because they are stored in plain text, it is easier for a
person to edit the file by hand. This can be good or bad. It is a good
thing if you need to tweak small parts of the model, but these innocent
tweaks can end in disaster if you accidentally change the way the file is
laid out. ASCII formats also tend to take up more disk space than binary-
based formats because they require extra space for large values due to
their length. One “part” of the geometry is on each line.

There are four types of lines you’re looking for. They are the lines that
give you details about a vertex, a texture coordinate, a vertex normal,
or a face. There may be other lines for things like curved surfaces and
comments as well, but you will not be needing them here.

Each line of the model file starts with one or two letters that tell the
program what that line is for. There are four prefixes, one for each of
the important types, as described here:

■ v: A letter v followed by a space is a plain vanilla vertex. If this is
the case, following a single space will be three floating-point
values, each separated by a single space as well.

Table 4.1 Parameters for Building
a Format String

Parameter Use

%s A %s as a format string means that scanf will look for
a string. It will read until it finds a null, space, or newline
character.

%c %c reads a single character. It will read the first charac-
ter it sees, regardless of what type it is, even a space or
a newline.

%d Reading in integers uses %d.With integers scanf will
read until it finds a space, letter, or symbol that is not
part of a number. Integers read with %d can be positive
or negative.

%f %f is used for reading real numbers, particularly floating
point values. It will cause scanf to read a number the
same way as %d, but it will include decimals.TE
AM
FL
Y

Team-Fly®

65

■ vt: The string vt signifies that the line contains texture coordi-
nates. Each texture coordinate is two floats, again separated by
one space.

■ vn: vn signifies a vertex normal. Other than the prefix, the line
mirrors the vertex lines: three floats.

■ f: An f signifies a face. A face is a set of indexes into the arrays of
vertices, texcoords, and normals. However, only the vertex
indexes must be present; the other two are optional. Every
vertex index should be positive. A negative value in the face
structure probably means the file is corrupt because you cannot
have a negative array index. It wouldn’t be right to say “retrieve
the negative second object,” so you obviously could not retrieve
the “negative second” vertex either. The best approach if you
find a negative value within a face structure is to simply ignore
the face altogether.

■ Anything else: Any other line of prefixes such as g (group), #
(comments), p (point), l (line), surf (surface), and curv (curve)
should be ignored for now. Although they are part of the for-
mat, they are not covered here.

A typical line in the OBJ file that represents a face or triangle and
contains only vertices would look something like this:

f 1 2 3

This code says that the faces use the first, second, and third vertex
indexes to draw the triangles. The absence of any other sets of indexes
indicates that texture coordinates and vertex normals are not needed.

If the faces are textured, but contain no vertex normals, the syntax
would be similar to this:

f 1/4 2/5 3/6

This line says that the triangles use vertices 1, 2, and 3 and texture
indexes 4, 5, and 6.

Yet another variation of this line could use all three types of vertex
data, the vertex, texture coordinate, and normal indexes. A line that
does that would look like:

f 1/4/7 2/5/8 3/6/9

The first number is for the vertex itself, the second is for its texture
coordinate, and the third is for the vertex normal.

Understanding the OBJ Format

66 4. Loading OBJ Files

There is only one more variation: vertex and vertex normals, but no
texture coordinates. It looks like this:

f 1//4 2//5 3//6

Two slashes separate the numbers instead of one; this indicates that
the second number is a vertex normal, not a texture coordinate.

The fact that the faces don’t need to contain all of the information can
be very useful. There is no reason an object that needs no lighting or
texturing should contain that information. By simply leaving the
unneeded information out, the file size is reduced considerably.

Let’s now move on to some code that shows you how to load the file
into something you can work with.

Loading the OBJ Format
Because the OBJ does not contain any sort of header, you need some
sort of resizable array to hold your vertices, faces, and the other com-
ponents. In the implementation shown here, everything is loaded into
an STL vector, a kind of resizable array.

Each data type has its own structure. Vector3 contains two floats and is
used to hold a single vertex position, or vertex normal. Vector2 is a lot like
its bigger brother, but holds only two values, perfect for texture coordi-
nates. Last of all is SObjFace, which contains 12 unsigned integers, three for
each vertex indexes, texture coord indexes, and normal indexes. Even if
all the face variables are not always used, the storage is still there.

Now you are ready to read in the file. The best way to do this is read in
one line at a time, check the prefix, and extract the rest of the values
using the sscanf function. Each type of value (vertex data, vertex
normal, texture coordinate, and face) has its own arrays to hold it. If
the loader finds a line that starts with something that does not signify a
recognized chunk, it simply reads the line and discards it.

In the CObj class, there are two Boolean values: m_bHasTexCoords and
m_bHasNormals. These variables are set to true if a texture coord (for
m_bHasTexCoords) or vertex normal line (for m_bHasNormals) is found in
the file. Although this does work, it has a few flaws. If for some reason
the faces do not come after all the vertex info, the loader will not
know what type of face to read and will default to reading vertices only.

67

This can cause unexpected results such as missing or deformed geom-
etry, or even the model not showing up at all. If this happens, the
easiest fix is to simply open the file and move the vertex information to
the top of the file. However, for the purposes of learning and loading
the most common OBJs, this should not be a problem.

When you get down to the face data, you simply take a look at the two
variables and set your sscanf parameters appropriately.

Once you have all the data collected and stored, there are a few more
things you should do before rendering. If you look closely at the class,
you will notice that there are pointers for all of the types, as well as the
resizable vectors. There is a very good reason for this.

The easiest way to access the elements of an STL vector is through the
operator[] as you do with a standard array. However, this method can be
quite slow and is not recommended, particularly if you need to use it
each time you render a single frame, as is the case with the OBJ format.

The solution to this is to simply set the pointers to the first element in
the STL vector. This does not cause a problem because STL vectors are

CAUTION
Because the OBJ format can be unpredictable and also
because it can be edited easily, it is helpful to have some
error checking in place. For instance, the face structures
may reference invalid vertices, such as vertex number –2,
or a vertex number greater than the total number of
vertices. To avoid problems later, you should incorporate
some error checking into your code. Every time you load
a value, be sure to check if it is valid. For instance, none
of the numbers on the face line should be negative.
Because they are indexes into an array, they must be
positive or the program may crash. The same goes for
values greater than the total number of vertices, texture
coordinates, or normals. If a face references a vertex
outside of what it should, the best option is to ignore that
face completely. Doing this will probably result in a hole
in your model, but a small hole will look better than an
ugly protrusion or artifact if you try to guess what the
index should be.

Loading the OBJ Format

68 4. Loading OBJ Files

guaranteed to be continuous. This simple technique speeds the pro-
gram up a lot.

Now that all of your data is organized, you can start worrying about
rendering.

Rendering OBJ
Let’s see what you can do about getting this thing onscreen. If you
turn to the CObj::Render() function in obj.cpp, you will see what it takes
to get everything onscreen. The first thing to do is to activate and bind
the texture. Make sure to check if the texture is valid before calling
bind to avoid problems.

Then you can start rendering. The first thing that happens is it checks to
see which components are included in the model and picks a loop
based on the result. There is a separate loop for every possible combina-
tion to improve the speed. In pseudo-code, the rendering code would
look like the following code. Keep in mind the pseudo-code gives you
only a basic layout of how a function should look. It should be obvious
that the following code will not compile in a regular C/C++ compiler.

for(each vertex)

 if(normals are present)

 SendNormal();

 if(texcoords are present)

 SendtexCoord();

 SendVertex()

That would require two if statements for every vertex, which is a waste
of processor time when you can do with but a couple for every frame.
Instead, the structure is more like this:

if(has normals and tex coords)

 for(each vertex)

 SendNormal()

 SendTexCoord()

 SendVertex()

else if(has texcoords but not normals)

 for(each vertex)

 SendTexCoords()

 SendVertex();

69

And so on. Although this approach is longer, it is much more efficient.
To get the appropriate values for each of the components, you use the
face structure to index into the arrays of normals, tex coords, and
vertices. There is one little quirk here, however. For some reason, the
creators of the OBJ format decided to make 1 the first index, instead
of 0. To counter this, you must subtract 1 from each of the vertex,
texture coordinate, and vertex normal indexes that make up a face.
This is done at load time in the demo code; see the constructor of
SObjFace for more information. Have fun.

Take a quick look at the fully rendered model, shown in Figure 4.1.

TIP
Because the geometry is static, you might want to
consider compiling all of your rending code into a display
list. A display list creates a precompiled object and will
drastically cut down on the processing time needed for
each frame. This can be done at load time in OpenGL
using the functions glGenList and glNewList.Then, in your
rending function, instead of sending every vertex to the
renderer, you simply run glCallList with the appropriate
display list to display your model.

TIP
The OBJ format actually has much more to offer. It can
support multiple kinds of curved surfaces, faces that have
more than three sides, and other cool stuff. If you are
feeling ambitious, try modifying the loader to work with
all of the extra stuff. There are documents of the complete
OBJ all over the Internet. Just type OBJ Format into any
search engine. A couple of good links that pop up are
http://astronomy.swin.edu.au/~pbourke/geomformats/obj/
and http://www.royriggs.com/obj.html. Both contain de-
scriptions of the OBJ file format; the first URL covers the
full format, including lines, points, surfaces, and curves.

Rendering OBJ

70 4. Loading OBJ Files

Conclusion
That wraps up the chapter. Although the basic OBJ format is fairly
simple, the concepts from this chapter can be used to load other
ASCII-based formats you may come across, such as ASE and ASC.

The next chapter delves into some more advanced information with an
introduction to skeletal animation. In the following chapter, you will see
how skeletal animation has changed the gaming world and learn about
some of the games that already use it. You will also learn how skeletal
animation works, and why you might want to use it in your next game.

Figure 4.1 An OBJ model of a genie lantern being rendered. This particular model
included only vertices. For clarity it is rendered here in wireframe. This model was
created by John Spirko (http://www.iaw.on.ca/~jspirko/galleries.htm) and
was found at 3D Model World (http://www.3dmodelworld.com). Be sure to check
out both sites for more free models.

CHAPTER 5

An
Introduction
to Skeletal

Animation

72 5. An Introduction to Skeletal Animation

C ontains skeletal animation! Revolutionary skeletal animation
system! Realistic animations! Look at almost any new 3D game’s

box—these words, or some form of them, jump right out at you. It
seems that every new game uses some form of skeletal animation.

You have probably seen skeletal animation in action; games such as
Half-Life, the Unreal Tournament series, Soldier of Fortune II, and Doom3
all use skeletal animation in one form or another. Figure 5.1 shows
one of the first games to bring skeletal animation to the home com-
puter, in action

Figure 5.1 One of the first popular games to use skeletal animation was Half-
Life. Characters and creatures alike moved much more fluidly and realistically, thanks
to skeletal animation. The result? Scarier, cooler looking monsters such as this zombie.

73Understanding Skeletal Animation

Understanding Skeletal
Animation
Skeletal animation is the use of “bones” to animate a model rather than
editing and moving each vertex or face manually. Each vertex is at-
tached to a bone (or in some cases multiple bones). A bone or joint is
simply a control point for a group of vertices. These are similar in
concept to joints in our own bodies, such as our knee or wrist joint.
When the bone moves, every vertex attached to it moves as well, as
shown in Figure 5.2. Even the movement of bones themselves can cause
changes to other bones. This helps the model move appropriately,
because movements in one portion of the body affect other parts of the
body, as in real life. Consequently, programmers are required to work
with the bones to calculate the transformations for the individual verti-
ces. Although this can be more work, the result is definitely worth it.

Benefits of Skeletal Animation
Skeletal animation has many advantages over the traditional vertex
animation, which you saw in earlier chapters.

The first, and most visible to the game’s players is increased realism.
Skeletally animated characters tend to move much more realistically,
and often appear to interact better with their surroundings than
traditional models. The reason models tend to move more realistically

Figure 5.2 Vertex animation requires you to move every vertex, whereas
skeletal animation enables you to move only the bones within the model; the
vertices will follow.

74 5. An Introduction to Skeletal Animation

if they are skeletally animated is simple. In traditional keyframe anima-
tion, the game will linearly interpolate between two poses. However, in
this case, the joints do not actually rotate, which can be a problem
because living organisms move in rotational ways.

Not quite as noticeable to the users, but very important to the pro-
grammers, is that such animations take up less storage space. Instead
of storing a new set of vertices for each frame, all that needs to be
stored is the rotation and translation of the bone. That can amount to
a huge savings, even after you add the initial increased storage of the
bones and vertex-bone attachment information.

This extra bit of storage space can be used to store a more detailed
model, add extra animation frames, or even just be left for other parts
of the game that you want to improve. You could add more detail to
the game world, improve the A.I. to provide for a more exciting game,
or even add some cool extras or Easter eggs that you wouldn’t have
added otherwise, due to space concerns.

Yet another advantage lies with the artists who create the 3D content for
your games. A good skeletal animation system will cut the time the artists
need to animate their models. Almost every good animation program uses
skeletal animation already to ensure a smoother transition of the models
from the artists to the programmer, to the game, and ultimately to the
player. This speeds up the creation of content for the game, and ensures
that no animations or features are lost when the models are exported into
whatever format your game is using.

A fourth advantage is another one for the programmer (it just gets
better and better, doesn’t it?). Because of the nature of the bones, it is
possible to reposition them in real-time if you want, allowing needed
animations to be created during runtime. This provides a much more
diverse library of possible animations. You can even let the game control
the way a body acts when it collides with an object, or slides down a
slope. This kind of technology is just recently coming into play, a no-
table example being Unreal Tournament 2003’s Physics system (http://
www.epicgames.com). Characters and models react realistically with the
environment, including sliding down slopes and draping over edges.

The one disadvantage is that skeletal animation can be harder to
understand and implement than traditional keyframed animation.
This chapter should help you alleviate any fears you might have con-
cerning skeletal animation.

TE
AM
FL
Y

Team-Fly®

75

Inner Workings of Skeletal
Animation
Look at your arm. Extend your limb out in front of you and take a look
at it. Your arm has several bones, two main ones, and a bunch more in
your hand and fingers.

Move your fingers around, just your fingers move right? By moving your
fingers, no other part of your arm, or for that matter, any other part of
your body moved with it. Now bend your elbow. Not only does your arm
move, but your fingers and hand move up as well. If they didn’t your
arm would become disconnected from your hand and fingers, and they
would be left hanging there in the air; not a pretty thought.

How does this little arm exercise relate to skeletal animation? Well,
your arm represents part of a 3D model, your fingers, hand, lower and
upper arm are all pieces of this model. Various joints and bones run
through your arm, with joints at the shoulder, elbow, wrist, and fingers.

This shows you that when you move a bone “farther up” in your arm,
everything below it moves as well. This is one of the most basic con-
cepts of skeletal animation.

The beauty of this is that it allows you to move any bone in the model,
and filter the movement down the line, applying it to everything below
the origin of the movement. This allows you to move the shoulder of
the character, for example, without needing to worry about getting the
elbow and hand in the right place. You can rest assured that they will
automatically be updated as well. Figure 5.3 shows a few examples of
joints and vertices attached to them.

Figure 5.3 When doing skeletal animation, you worry about the joints, or
places where bones come together. Each vertex is actually attached to one of
these joints, rather than to the bone itself.

Understanding Skeletal Animation

76 5. An Introduction to Skeletal Animation

The Root Joint
The root joint is the ultimate joint in the model. Every other joint
eventually finds its way back to this one joint. Any operations done on
the root joint, whether they be translation or rotation, affect every
vertex in the model. You can think of the root joint as the joint that
controls all other joints. By simply modifying the root joint, you could
make the character walk upright, or you could rotate him so he is
upside down and let him walk on the ceiling—all with a single call.
There is only one root joint in each model, and it has no parent joint.
The root joint is generally located in a place where many bones come
together, yet in a place where little animation is required. Examples of
this include the middle and lower back. But there is nothing that
dictates exactly where the root joint is to be located in a model; it
could be different for each model if you desire. Figure 5.4 shows what
would happen to a model if you modified the position and orientation
of the root joint.

Figure 5.4 Rotating or translating the root joint will affect all the other
joints and vertices in the model.

Parent and Child Joints
A joint can have parent and child joints. The parent of a joint affects
everything it does. The parent’s rotations and translations are all taken
into account when computing the current joint’s new position. Using
the arm analogy again, the elbow joint would be the parent of the
hand joint. Moving the elbow affects the hand. In simple implementa-
tions of skeletal animation, each joint has only one parent joint, if it
has any at all.

77

However, a joint can have many child joints. A child joint is the oppo-
site of a parent joint. Everything you do to the parent joint will filter
down into the child joints. Another way to look at this is that the
current joint is the parent for all of the joints below it.

KeyFrames in Skeletal Animation
As with regular key-framed animation that stores multiple copies of the
vertices, skeletal animation systems also have keyframes. Recall that
keyframes are snapshots of a model’s position.

However, instead of each keyframe containing its own copy of the
vertices, a skeletal animation keyframe or boneframe contains a transfor-
mation, both rotation and translation, generally in the form of an X,Y,Z
value for translation, and three values containing rotation around the
X,Y, and Z axes, respectively. Just as with regular vertex keyframes, these
boneframes must be interpolated to provide a smooth result.

The position or translation values can be linearly interpolated be-
tween, just as you have been doing with the vertices in traditional
animation. The rotations pose a problem. Simply interpolating be-
tween them as you do with the translation values can cause strange
effects. The rotation will not be smooth; it will speed up and slow down
depending on its location. If the rotation differences are great, the
model may appear to “ooze” like a lump of gelatin. This is because
when using linear interpolation, everything gets interpolated along a
straight line. This can cause strange effects when performed with
rotations because rotations are meant to be interpolated along an arc
rather than a line. Cutting straight across the arc rather than following
it causes the “ooze” effect.

Figure 5.5 Parent-child joint relationships

Understanding Skeletal Animation

78 5. An Introduction to Skeletal Animation

The best way to get around this is to use quaternions. As you learned
in Chapter 2, “ Introduction to Quaternions,” one of the biggest
advantages of quaternions is that they can be interpolated easily. Not
only can they be easily interpolated; they can be easily spherically
linearly interpolated.

Spherical linear interpolation interpolates between two points on the
surface of the sphere. However, instead of cutting straight from one to
the other, spherical linear interpolation follows the surface of the
sphere. You can visualize this by picking up a round ball, such as a
basketball, and marking two points on it. Then, using your finger, find
the shortest path between the two points. Because your finger cannot go
inside the ball, the resulting path between the two points will be an arc.
This is what SLERP does. Using the SLERP function, the rotations can
be interpolated along an arc, creating a nice smooth, eye-pleasing effect.

Taking Position
Using the information you have already read, you could try to imple-
ment skeletal animation. However, you haven’t learned about how the
parent joints actually affect the child joints. Simply using the keyframes
would cause every joint to move independently of the rest, probably
producing a strange, contorted mess.

This section talks about how to change this so that the joints work
together. The first thing you do is build a transformation matrix for
each point using the data from the current rotation and translation
keyframes. A transformation matrix can be built by first generating the
three rotation matrices and translation matrix as shown in Chapter 1.
Multiplying the three together will produce a final transformation
matrix. Alternatively you can use the SetRotation and SetTranslation
functions in the matrix classes to avoid having to build and multiply
the matrices yourself. This matrix is called the relative matrix.

Next, you need to calculate what is called the absolute matrix. The abso-
lute matrix is the joint’s relative matrix multiplied by its parent’s abso-
lute matrix. The absolute matrix tells you the joint’s absolute transfor-
mation. This includes its relative transformations, as well as all of the
transformations any joints before it in the hierarchy have made. This is
what allows other joints to move as a result of moving a joint farther up
in the line. Consider, for example, how your elbow moves when you
move your shoulder. This begs the question: how do you calculate the

79

very first absolute matrix? Keep in mind that the root joint has no
parent. Therefore, its absolute matrix is the same as its relative matrix.

If you traverse down the joints in the right order, calculating the
absolute matrices as you go, every joint will have its parent’s transfor-
mations, and its parent’s parent’s transformations and so on. Figure
5.6 shows what happens when you take into account all previous
transformations before transforming a joint.

What if you do not store the joint’s parent index, but rather the child
indexes? This is no problem. The set of indexes you have access to
right away depends on the model format. Some formats such as MS3D
give you the parent index for each joint, whereas others give you the
child indexes. Using child indexes requires a slightly different ap-
proach than using parent indexes, but is really not any harder. You
start at the root joint again. After calculating the root joint’s transfor-
mation matrix, you push a new matrix onto the stack with a command
such as glPushMatrix. This creates a new copy of the world matrix, which
is the matrix that all geometry is transformed by before being dis-
played. Now, multiply your new matrix by the root joint’s local matrix.

Figure 5.6 Traversing down the joints, taking into account
all previous transformations. Notice that even though only one
joint is told to move, the ones below it follow, much like moving
your hip joint and having your knee and ankle follow as well.

Understanding Skeletal Animation

80 5. An Introduction to Skeletal Animation

The resulting world matrix positions everything so when the next bone
is drawn, the transformation of the parent joint is taken into consider-
ation. For example, the hip of the character may be rotated a certain
amount. Because the knee and ankle joints are children of the hip
joint, they will also be rotated.

The drawing function is recursive so, as each joint is drawn, it calls the
drawing functions of its children. Each child calls the rendering
function of its children, and so on. Only when a terminal joint is
reached (one with no children), is the matrix stack reset using a
command such as glPopMatrix. For example, when drawing the leg of a
character, new matrices can be pushed on the stack for the knee,
angle, and foot joints. But when it is time to start on the arm, you want
to pop back to the original position. Otherwise, whenever you moved
the leg, the arm would move as well.

Figure 5.7 shows a diagram of a recursive rendering function.

Figure 5.7 Rendering joints that are stored with child indexes
instead of parent indexes

Attaching the Mesh
When your joints are animating smoothly, it is time to attach the mesh.
The mesh is what makes up the shape of the model. It is a group of
vertices and triangles that help the model have volume and detail.
Without the mesh, a skeletally animated model would simply be a

81

skeleton. Each mesh vertex stores an index into the joint array to signify
that it is attached to a certain bone. Now, the way the joints were stored
determines the method of transforming and rendering these vertices.

If the joints are stored with each having its parent index, and you have
already gone through and calculated the final absolute matrices, attach-
ing the mesh is simple. Each vertex must be transformed by its joint’s
absolute matrix. Be sure to store your transformed vertex in a special
place; do not overwrite your original vertex. This is done because in
most formats, the boneframes are not cumulative. Each frame stores the
rotation and translation of a specific joint from the starting point. If you
do not go back to the original vertices when calculating new vertex
positions each time, the model will behave erratically. Figure 5.8 shows
what it means to attach individual vertices to a joint.

Now you are probably thinking to yourself, “well, I can animate a
model’s vertices, but what about triangles, normals, and texture coor-
dinates”? This is where skeletal animation really starts to shine. Each
model contains just one set of texture coordinates and triangle infor-
mation. Just because the positions of the vertices change does not
mean the triangle indexes and texture coordinates have to. This
means you don’t have to worry about them once you set them up.

Normals are another story. Because the orientation of the polygons
and vertices change, so will the normals. If you are using just face
normals, you need to recalculate them manually every frame before
sending them to the renderer. However, if you calculated vertex

Figure 5.8 Attaching vertices to joints.

Understanding Skeletal Animation

82 5. An Introduction to Skeletal Animation

normals at the beginning, you are in luck. Vertex normals do not have
to be completely recalculated after transformation. They can be
transformed by the same matrix as the vertices were. The only differ-
ence here is that you do not take in account translation. Using the
Transform3() function of the matrix class will rotate your vertex normal,
while still retaining its original magnitude.

If the joints store child indexes and you are pushing the current
transformation matrix onto the stack using glPushMatrix, rendering
your model becomes really easy. In this case, it is not necessary to
transform each vertex before displaying it. No changes are necessary
for rendering anything. Everything you render now will be trans-
formed properly, even face normals. Another issue to consider is how
vertices are attached to more than one bone. In this case, each bone
will have an assigned weight that tells you how much it will affect the
joint. The final transformation is the weighted average of all of the
transformations of the attached bones.

The Demo
This chapter’s demo allows you to see the relationship between parent
and child joints, and see what happens when an individual joint is
manipulated, as shown in Figure 5.9.

The demo allows you to pick from one of four joints and modify its
rotation and translation values. These new values in turn affect joints
that are farther down the line (child joints). By manipulating the differ-
ent joints, you can see the effect of your actions on all the other joints.

The joint numbers are, from top of the screen to bottom, as follows: 1,
0, 2, 3. Joint 1 and 3 are terminal joints. They are right at the ends of
the “model” and moving either of them will have no effect on the
other joints in the model.

Joint 2 is the parent of joint 3. Changing the values of this joint causes
joint 3 to move as well: try it and see. Finally, joint 0 is the root joint.
Anything you do to this joint will effect every other joint on screen.

The Demo’s Controls
On the left side of the screen, you will see a dialog box containing
various controls and text boxes, as shown in Figure 5.10.

83

Figure 5.9 A small simple skeletal animation demo. You can rotate and translate
individual joints, using the control panel at the left, and see their effects on other joints.

Figure 5.10 The control panel enables you to control the position and
rotation of each of the joints. Selecting the joint from the buttons on the top of
the control box, and then using the up and down arrows on the control boxes
enables you to translate and rotate joints in the model.

The Demo

84 5. An Introduction to Skeletal Animation

The radio buttons on the topmost section of the control dialog box
select the joint you would like to modify.

Underneath the radio buttons are six edit boxes. These boxes enable
you to change the orientation of the selected joint. The top set of
boxes change the joint’s rotation around the X, Y, and Z axes, whereas
the bottom set changes the object’s X, Y, and Z translation.

Underneath those boxes is a set of read-only edit boxes. These boxes
contain the equivalent rotation quaternion and transformation matrix
that would be used to transform any vertices connected to the joint. A
small box labeled Parent Joint displays the current joint’s parent.

This demo was a lot of fun to write and can be entertaining to play
with. Watch carefully to see how your actions affect the other joints in
the scene. Be sure to check out the onscreen help when you first run
the program. The help will be displayed onscreen when you first start
and can be toggled on and off by pressing H.

TIP
Although you can translate joints in skeletal animation, it
is generally best to stick with rotations. If you think about
it, on your own body, none of your joints ever changes
position, a higher-up joint simply rotates. For instance, if
you move your hand away from your body, you do not
translate the hand, you rotate the elbow instead. The
human body does not have any telescoping appendages,
thus almost 100% of movements can be done in terms of
rotation, rather than translation.

The only exception to this guideline is the root joint.
Translating the root joint will move the whole model,
which is useful if you want to change the actual position
of the model within the animation. You would use this if
you needed your model to change position during the
animation, such as to walk forward. However, it is gener-
ally best to let the game take care of moving the model
around the world. This means that all models that need
walk or run animations will be walking and running “in
place”. The game will add in the forward or backward
movement later.

TE
AM
FL
Y

Team-Fly®

85

Advanced Applications of
Skeletal Animation
That pretty much wraps up the introduction to skeletal animation. But
before you go, take a look at some of cool stuff that can be done with
more advanced techniques, beyond the scope of this book.

Figure 5.11 shows a shot of Epic’s Unreal Tournament 2003. Unreal
Tournament 2003 is one of the first games to implement a good
“ragdoll” system. In a ragdoll system, bodies change according to their
environment. For instance, when a person is killed in the game while
standing on a hill, their body does not remain lying in a straight line
like is common in many other shooter games. Instead, the body slides
down the hill in a realistic manner, bouncing and sliding while follow-
ing the orientation of the terrain. This method of animation adds a lot
to the realism and believability of any game.

Figure 5.11 Unreal Tournament 2003’s ragdoll system in action. Notice how the
body drapes itself around the hole, much like a real human would.

Advanced Applications of Skeletal Animation

86 5. An Introduction to Skeletal Animation

Conclusion
This concludes your introduction to skeletal animation. Hopefully you
have a grasp of how skeletal animation works and why many games are
starting to use it.

The next few chapters will use this information as you start learning
about formats that use skeletal animation for animation. You will be
able to see firsthand the smooth, fluid motion of models and start to
appreciate the idea behind skeletal animation.

The next chapter covers the MilkShape 3D format, also known as
MS3D. It is created by a shareware editor, also called MilkShape 3D.
Released by its author as shareware, it is rapidly becoming one of the
hottest tools for independent game developers everywhere. Its low
price, the capability to output models for many different games and
programs, and its expandability through plug-ins have quickly made it
a favorite among artists and programmers alike. Read on to learn
about this exciting and useful format.

CHAPTER 6

MilkShape
3D

88 6. MilkShape 3D

A s the book moves forward into this chapter, more advanced
formats start appearing. This is the first of several more compli-

cated formats. Gone are the days of simple “load-and-cycle” formats
such as the famous MD2 format discussed earlier in the book.

This chapter contains everything you need to know about the MS3D
format outputted by a very nice, very inexpensive modeling package
known as MilkShape 3D. MilkShape 3D was created by chUmbaLum
sOft, a small software company consisting of the founder, Mete
Ciragan. Mete created MilkShape to allow individuals to create new
models for VALVe Software’s Half-Life (http://www.valvesoftware.com)
without the use of expensive professional modeling tools.

Since its creation, MilkShape has become one of the most popular
modeling tools among independent developers of “mods”—smaller
games built on top of commercial ones—and games alike. It now
supports importing and exporting formats for many popular games
and engines. I recommend that any game developer on a short budget
take a look at this wonderful program. You can check out a 30-day trial
on the CD. You can find the setup file in the Programs directory.

For your viewing pleasure, Figure 6.1 shows the MilkShape 3D editor
with the model you’ll be using as an example in the upcoming pages.

Getting the Data
As always, you start by getting the data out of the file. Unlike most
model formats, MS3D does not contain information about the number
of vertices, triangles, or anything else at the start of the file. All that is
present is a simple header to verify that the file is indeed a valid
MilkShape file.

The header is exactly 14 bytes long and contains a 10-character identi-
fication string, and a version number. The first 10 bytes contain the
string “MS3D000000”. This string identifies the file as a MilkShape file.

89Getting the Data

Keep in mind that the zeroes in the ID string are characters, not
values. Make sure you keep that in mind loading the file. The second
four bytes contain a single integer. This is the version number of the
file and should contain the value 3 or 4. The format detailed here is
for these two versions only. As MilkShape progresses and new versions
of the format are released, I will post additions and changes on the
book’s Web site.

Vertices
Directly after the header come the vertices. As with other parts of the
file, the vertex chunk is prefixed by a two-byte unsigned integer that
contains the number of vertices present in the model.

The vertices are a little bit different than what you have been using
previously. Instead of simply an X, Y, Z coordinate plane, MilkShape’s
vertices also contain a one byte, signed integer that holds the number
of that vertex’s “bone”. A value of –1 means that the vertex has no
bone attached to it and is not affected during animation.

Figure 6.1 The MilkShape 3D editor complete with an example model.

90 6. MilkShape 3D

Here is the vertex structure that is used for the MS3D loader:

//--

//- SMs3dVertex

//- A single vertex

struct SMs3dVertex

{

 unsigned char m_ucFlags; //Editor flags, unused for the loader

 CVector3 m_vVert; //X,Y,Z coordinates

 char m_cBone; //Bone ID (-1 = no bone)

 unsigned char m_ucUnused;

};

The middle two variables in the structure were explained previously,
which leaves only two one-byte variables left unknown. The first con-
tains various flags for the editor to use for the vertex. This variable is
an unsigned char that holds the status of the vertex within the editor.
If the value is 0, the vertex is visible, but unselected. If the value is 1,
the vertex is selected in the editor, and if the value is 2, the vertex is
hidden from view in the editor window. A value of 3 means the vertex
is both hidden and selected. Although this variable is not necessary for
loading the models into your engine, it may be helpful if you are
writing an importer for another modeling program, such as 3D Studio
Max (www.discreet.com) or Maya (www.aliaswavefront.com). The second
variable contains nothing; you can just skip over it.

After the vertices are read, the file moves immediately on to the face
information.

Faces
The face for this particular model format contains a lot of informa-
tion. But, before you worry about loading the triangles, you need to
find out how many of them there are. As with the vertex chunk, the
face or triangle chunk starts with a two-byte integer. This integer
comes immediately after the last vertex is read, and just before the
triangle data is stored. This two-byte integer contains the number of
SMs3dTriangle structures to read from the file.

Right after the two-bytes worth of data that determine the number of
faces to read come the faces themselves. The face or triangle structure
contains editor flags, vertex indexes, texture coordinates, grouping

91

info, and even the vertex normal information. Lets take a look at the
SMs3dTriangle structure to see what solidifying the model entails:

//--

//- SMs3dTriangle

//- Triangle data structure

struct SMs3dTriangle

{

 unsigned short m_usFlags; //Editor flags

 unsigned short m_usVertIndices[3]; //Vertex indexes

 CVector3 m_vNormals[3]; //Vertex normals;

 float m_fTexCoords[2][3]; //Texture coordinates

 unsigned char m_ucSmoothing; //Smoothing group

 unsigned char m_ucGroup; //Group index

};

Well, that’s not too bad. A total of six variables are used for every
triangle in the MilkShape 3D model. The first, like the vertex struc-
ture, is just an editor flag. Like vertices, a 0 means a regular,
unselected face, a 1 means the face is selected, and a 2 means the face
is hidden from view. Again, a face can be both selected and hidden if
the value is 3. Notice that this flag variable here is two bytes, rather
than just 1 like it is in the vertex structure.

Next come three more unsigned two-byte integers. These three inte-
gers are indexes into the array of vertices covered in the last section.
The three vertices form a single triangle in the model. Using only the
data covered so far, it is possible to create a solid model. However, it
would be kind of boring with no textures or lighting.

Moving on down the line, you come to the vertex normals. A vertex
normal is used for lighting. Each vertex normal is an average of all the
normals of the faces its vertex shares. A face normal is perpendicular to
the plane the face lies in; the vertex normal is the average of all the
perpendicular vectors. A normal, whether it is a vertex or face normal,
must be a unit vector with a magnitude of 1. These are stored in a
CVector3 class. The CVector3 is made for vectors that consist of three
floating-point variables that take up a total of 12 bytes. The main advan-
tage of using a Cvector3 for each normal rather than a simple array of
floats is that the CVector3 class contains a myriad of functions. These
functions make it a lot easier for you later on when you start animating
the model. There are three normals—one for each vertex index.

Getting the Data

92 6. MilkShape 3D

Up next are the texture coordinates. The u and v coordinates are
stored kind of strangely in MilkShape. There are a total of six floats—
one pair of coordinates for each of the three vertices that make up the
face. However, instead of being stored u1, v1, u2, v2, u3, v3 like you
might expect, MilkShape stores all the us first, followed by all the vs.
This makes the order u1, u2, u3, v1, v2, and v3. If you do not remember
this ordering, it will come back to bite you. I spent several hours
debugging a program only to find I used the wrong texture coordi-
nates in the wrong places.

The last two variables deal with the group the face belongs to. These
variables are not too important as you will see in the section coming
up. The groups or meshes in the model take care of knowing which
faces belong to each group.

Meshes
For maximum flexibility, MilkShape 3D’s triangles are grouped into
meshes or groups. This allows different sections of the model to use
different textures, materials, and even render only certain sections of
the model. The mesh section of the file follows the triangle or face
section, and like the other section is preceded by a two-byte integer
telling how many meshes there are. Immediately following are the
groups. There are 35 bytes of general information, followed by a num-
ber of two-byte triangle indexes. The number of indexes is not constant;
some groups may have more than others. To compensate for this dis-
crepancy, you need to be able to dynamically allocate memory in each
group to hold these indexes. Here is what the structure looks like.

//--

//- SMs3dMesh

//- Group of triangles in the ms3d file

struct SMs3dMesh

{

 unsigned char m_ucFlags; //Editor flags again

 char m_cName[32]; //Name of the mesh

 unsigned short m_usNumTris;//Number of triangles in the group

 unsigned short * m_uspIndices; //Triangle indexes

 char m_cMaterial; //Material index, -1 = no material

 //Let it clean up after itself like usual

93

 SMs3dMesh()

 {

 m_uspIndices = 0;

 }

 ~SMs3dMesh()

 {

 if(m_uspIndices)

 {

 delete [] m_uspIndices;

 m_uspIndices = 0;

 }

 }

};

This structure takes a bit of care when being read in. The m_uspIndices
variable is a pointer, meaning you just can’t read in NumberOfMeshes *
sizeof(SMs3dMesh). For each mesh, you must read the first 35 bytes that
consist of some editor flags—the same flags that the vertices and
triangles use—0 for unselected, 1 for selected, and 2 for hidden. You
must also read a 32-character mesh name and a two-byte integer that
contains the number of triangles in the mesh. Using this last variable,
you must allocate the memory for the triangles indexes.

The m_uspVariable is now ready to hold all of the two-byte integers
necessary to show which triangles are used in the mesh. Each element
of the array is an index into the array of triangles that was created and
filled earlier in the load sequence.

Right after you read all the triangle indexes, there is a lone, single-byte
variable that holds the index into the materials array (which you will
be getting to in a second). The variable is signed, and a value of –1
means the mesh contains no material.

Last of all, as you can see, the structure takes care of deleting its own
memory, meaning you do not have to worry about remembering to
clear it when you are done using it. Deleting the array of meshes will
automatically delete everything in them.

Materials
To really make the model stand out and to add lots of customization,
you can use materials. Materials control the way the renderer handles

Getting the Data

94 6. MilkShape 3D

the texturing and lighting of the model. From textures, to color, to
transparency, materials do it all.

The materials structure is fairly large and contains a lot of data, so bear
with me here.

Remember to read in your two-byte variable that tells you how many
materials there are before you jump into reading the material data.

Here is the material structure:

//--

//- SMs3dMaterial

//- Material information for the mesh

struct SMs3dMaterial

{

 char m_cName[32]; //Material name

 float m_fAmbient[4]; //Ambient values

 float m_fDiffuse[4]; //Diffuse values

 float m_fSpecular[4]; //Specular values

 float m_fEmissive[4]; //Emissive values

 float m_fShininess; //0 - 128

 float m_fTransparency; //0 - 1

 char m_cMode; //unused

 char m_cTexture[128]; //Texture map file

 char m_cAlpha[128]; //Alpha map file

 CImage m_Texture;

};

You need to be careful when you start reading the data from the file.
Instead of reading the whole group of materials in at once, you must
loop and read them in one at a time. The reason for this is the very last
variable in the structure, m_Texture. m_Texture is an image class that is
used to store the texture for the material. This eliminates trying to sort
out the textures later when you need to use them during the program.
Note that this part of the structure is not actually contained within the
file, making the actual size of the structure in the file 361 bytes. The
CImage variable is a custom class that resides in the general basecode in
the files (image.cpp and image.h). You can easily remove this variable
and replace it with your own image-loading system.

The first variable in the structure is a 32-character array that holds the
name of the material. This isn’t all that important if you are just

TE
AM
FL
Y

Team-Fly®

95

making a loader, but it’s nice to have when working with the model in
MilkShape itself.

The next six variables contain the materials properties. These proper-
ties determine the way the lighting of the scene will affect the model.

■ The m_fAmbient and m_fDiffuse each store four floating-point
values that represent the red, green, blue, and alpha (RGBA)
values of a color. These colors help define the color of the
material and determine how the polygons using this material
will react to lighting in the scene.

■ The next variable, m_fSpecular, also contains an RGBA color.
The specular material properties dictate the color of the specu-
lar highlights or “shiny places” on the mesh using the material.

■ The last array of floats is the m_fEmissive set. This variable also
contains four floats. The emissive property specifies how intense
the material will emit light. The higher the values, the “brighter”
the material will be.

■ The final material property is the shininess of the material. The
m_fShininess variable contains a single float. This variable deter-
mines just how shiny the specular highlights are. The lower the
value, the darker and duller the highlights will be—just the
opposite as the value increases. Darker and duller highlights are
used for materials such as wood and asphalt, whereas brighter,
shinier highlights are best for shiny metal and artificial materials.

After all these material properties comes one more—the transparency
of the material, which is stored in m_fTransparency. Although the other
material variables deal with color, transparency sets how opaque or
“see-through” the mesh is. A value of 1 is completely opaque and a
value of 0 is complitely transparent, or invisible. Because of the way
OpenGL handles materials, the easiest way to handle this is to take this
value and plug it into the last element of the diffuse property. This
method creates a reasonably nice transparent mesh.

After these are all taken care of, you must skip a byte to compensate
for a small, unused variable in the material information. This single
byte variable m_ucMode is unused by the format for now. It is in there for
use in later versions.

Then you get to the textures. The texture name is stored in a 128-byte
string. After you acquire it, you can send it directly to the Load function

Getting the Data

96 6. MilkShape 3D

of the CImage class included in the structure. This will retrieve the texture
and take care of loading it so it is ready to use when you get to the
rendering stage. The filename stored in the file can be passed directly to
the CImage::Load() function or to your own texture-loading functions.

The last variable holds the filename of the alpha map. Due to the fact
that I could find no information on this at the time this was written,
the use of alpha maps on models is not currently supported. However,
keep checking the Web site for the book and as soon as information is
available I will update the code and the text and post it there.

Whew, that was a lot of information. However, you now have enough to
render the model in what I call its “initial position”. This is the posi-
tion before any animation is applied. In general, this position is opti-
mized for ease of editing and probably does not appear in the actual
animation sequence.

Figure 6.2 shows what the model would look like rendered.

Figure 6.2 The model rendered in its initial position with textures, materials,
and lighting enabled.

97

Pretty cool huh? Rendering the model isn’t too hard. It basically involves
drawing the meshes one by one, making sure to set the appropriate
material and lighting properties beforehand. As usual, in order to make
the code easier to read and convert to other languages and APIs, I use
immediate mode calls that are pretty obvious in what they do.

The first thing that must be done is the material information. In
OpenGL this can be done using the glMaterialf and glMaterialfv calls.

 for(int x = 0; x < m_usNumMeshes; x++)

 {

 //Set up materials

 if(m_pMeshes[x].m_cMaterial >= 0)

 {

 SMs3dMaterial * pCurMat = &m_pMaterials[m_pMeshes[x].m_cMaterial];

 //Set the alpha for transparency

 pCurMat->m_fDiffuse[3] = pCurMat->m_fTransparency;

 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, pCurMat->m_fAmbient);

 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, pCurMat->m_fDiffuse);

 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, pCurMat->m_fSpecular);

 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, pCurMat->m_fEmissive);

 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, pCurMat->m_fShininess);

 glEnable(GL_BLEND);

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 //Texture map

 pCurMat->m_Texture.Bind();

 }

 else

 glDisable(GL_BLEND);

This little bit of code should be easy to follow. Because each model is
broken into meshes, you must loop through them and draw them one
at a time. The first thing to do is check to see whether the mesh does
indeed have a material attached to it. If the material index of the mesh
is not –1, a pointer to the appropriate material is obtained. Now you
are almost ready to send the material information to OpenGL; how-
ever, you first must take care of transparency. This is done by taking
the transparency variable and using it to replace the alpha value of the
diffuse property. Once that simple operation is completed, you can set

Getting the Data

98 6. MilkShape 3D

the material properties. Every property except Shininess uses
glMaterialfv. This is because all other values are arrays of values,
whereas shininess is simply a single float.

The next section simply turns on blending and sets the appropriate
blending mode. This assures that transparency will work correctly and
will minimize any funny visual artifacts.

Last, using the CImage class that you used to load the skin earlier, you
bind the texture to the mesh.

If there is no material for the group, you must make sure to turn off
blending. Failure to do so can cause very strange visual artifacts and
unwanted graphical glitches. You can also use glMaterial to set the
materials back to default. The default values for ambient, diffuse,
specular, emissive materials are (0.2, 0.2, 0.2, 1.0), (0.8,0.8,0.8,1.0),
(0.0,0.0,0.0,1.0), and (0.0,0.0,0.0,1.0), respectively. The shininess
material is also set to 0.

The code that sends the vertices to the rendering system follows:

 //Draw mesh

 glBegin(GL_TRIANGLES);

 for(int y = 0; y < m_pMeshes[x].m_usNumTris; y++)

 {

 //Get a pointer to the current triangle

 SMs3dTriangle * pCurTri = &m_pTriangles[m_pMeshes[x].m_uspIndices[y]];

 //Send the normal

 glNormal3fv(pCurTri->m_vNormals[0].Get());

 //Send texture coords

 glTexCoord2f(pCurTri->m_fTexCoords[0][0], pCurTri->m_fTexCoords[1][0]);

 //Send vertex position

 glVertex3fv(m_pVertices[pCurTri->m_usVertIndices[0]].m_vVert.Get());

 glNormal3fv(pCurTri->m_vNormals[1].Get());

 glTexCoord2f(pCurTri->m_fTexCoords[0][1], pCurTri->m_fTexCoords[1][1]);

 glVertex3fv(m_pVertices[pCurTri->m_usVertIndices[1]].m_vVert.Get());

 glNormal3fv(pCurTri->m_vNormals[2].Get());

 glTexCoord2f(pCurTri->m_fTexCoords[0][2], pCurTri->m_fTexCoords[1][2]);

 glVertex3fv(m_pVertices[pCurTri->m_usVertIndices[2]].m_vVert.Get());

 }

99

 glEnd();

 }

}

Just as you loop through each mesh, you must loop through each
triangle within the mesh itself. After acquiring a pointer to the appro-
priate triangle structure in the face array, you can send the normal
vector, texture coordinates, and vertex position to OpenGL. This must
be done three times for each triangle and once for each vertex.

Animation
This is the part you have all been waiting for. The first section that uses
what you learned in Chapter 5, “Introduction to Skeletal Animation”
(you did read that didn’t you?)

First thing you have to do is finish loading the model. The remaining
part of the model contains the joint (bone) data, including their
names, initial positions, and keyframes.

Like the other section of the ms3d file, the joints structure is preceded
by a two-byte integer that tells how many joints the file contains. Then
comes the data. The joints and accompanying structures are fairly
complicated, so bear with me.

First, the simple structure. This structure is used for storing the rota-
tion and translation of the keyframes:

//--

//- SMs3dKeyFrame

//- Rotation/Translation information for joints

struct SMs3dKeyFrame

{

 float m_fTime;

 float m_fParam[3];

};

This is a simple enough structure. The keyframe structure stores a
single “stop point” or landmark of the model. The first variable, fTime,
stores the time in seconds that this keyframe would be used to set the
position of the particular joint. The second variable is an array of three
floats. They store the rotations around the X, Y, and Z axes, or they

Animation

100 6. MilkShape 3D

contain the X, Y, and Z translation values. Each joint contains a set of
these keyframes for both rotation and translation values.

Now, on to the joint structure. This is a fairly large structure that con-
tains a lot of data. Some of it is to be loaded from the file; some of it is
created from these values instead of being loaded directly from the file.

Here again, the structure in the code varies from the structure in the
file. The file contains the editor flags, the joint name, the parent joint’s
name, the initial position and rotation, the number of keyframes for
rotation and translation, and the actual translation and rotation
keyframes. As was the case back in the group structures when you
needed to use a dynamically allocated array to hold the indexes, you
need to allocate memory for the keyframes before reading them in.

Brace yourself. Here is the code for SMs3dJoint, the joint structure.

//--

//- SMs3dJoint

//- Bone Joints for animation

struct SMs3dJoint

{

 //Data from file

 unsigned char m_ucpFlags; //Editor flags

 char m_cName[32]; //Bone name

 char m_cParent[32]; //Parent name

 float m_fRotation[3]; //Starting rotation

 float m_fPosition[3]; //Starting position

 unsigned short m_usNumRotFrames; //Number of rotation frames

 unsigned short m_usNumTransFrames; //Number of translation frames

 SMs3dKeyFrame * m_RotKeyFrames; //Rotation keyframes

 SMs3dKeyFrame * m_TransKeyFrames; //Translation keyframes

 //Data not loaded from file

 short m_sParent; //Parent joint index

 CMatrix4X4 m_matLocal;

 CMatrix4X4 m_matAbs;

 CMatrix4X4 m_matFinal;

 unsigned short m_usCurRotFrame;

101

 unsigned short m_usCurTransFrame;

};

Let’s walk through this step by step. Like all the data structures from
MS3D, this one has one byte’s worth of editor flags that can be ig-
nored. Following that there are two 32-character strings. These strings
hold the joint’s name and the joint’s parent’s name. Later, you’ll
match each joint to its parent so you don’t have to compare all the
strings every time the joint positions need to be recomputed.

Next come the initial rotations and translations of the joints. These six
values—three for rotation and three for translation—give the starting
positions of the joints.

Then come two two-byte integers, one for the number of rotation
keyframes and one for the number of translation keyframes. These are
used to allocate memory for the next two variables that hold the actual
rotation and translation data, respectively.

After allocating the memory, you can read the data from the file into
the newly created arrays. This is all the data that needs to come from
the file. You can close the file and get rid of any temporary buffers you
may have created or allocated.

Finding the Lost Parents
Each joint stores the name of its parent. Although this name can be
used, it is a pain to run lots of string compare operations and search
through every joint to find the right one. It is better that this compari-
son be performed only once, during the loading of the model. That’s
where the m_sParent variable comes in. This variable is an index into the
array of joints. At this index is the current joint’s parent. If the joint is a
root joint, meaning it has no parent, this is set to –1 to avoid confusion.

To calculate this variable for the current joint, you start at the begin-
ning of the array and loop through the joints until one of the joint’s
names matches the current joint’s parent’s name. Be sure to deter-
mine whether the parent name is blank first. A blank parent name
signifies that the joint has no parent, and it would be a waste of time to
search for one.

Animation

102 6. MilkShape 3D

Initial Setup
Before you can start animating, you must do a bit more setup. Each
joint’s matrices must be set to the initial rotation and translation, and
the vertices and normals attached to each bone must be transformed
by these matrices. Take a look at the CMs3d::Setup() function. (Because
the function is too large to display here, you might want to refer to the
code. CMs3d::Setup can be found in the Code/Chapter6 directory in
ms3d.cpp. The function starts around line 490.)

The Setup function consists of three parts. The first part loops through
the joints and creates the matrices. The first matrix created is the
relative matrix, stored in the variable m_matLocal. This is the rotation
and translation of the joint by itself. Using the m_fRotation and
m_fTranslation arrays in the joint, the m_matLocal matrix can be created
with the SetRotation and SetTranslation member functions of the
matrix class.

Next comes the absolute matrix. The absolute matrix is simply the
relative matrix (m_matLocal) multiplied by the joint’s parent’s relative
matrix. The resulting matrix is stored in the m_matAbs variable. If the
joint has no parent, the absolute matrix is the same as the relative or
local matrix.

The third matrix variable (m_matFinal) is the final transformation
matrix used during animation. For now, it can just be set to the same
value as the absolute matrix.

The second part of the setup function involves transforming the
vertices into what I call the “initial animation position”. The initial
animation position is simply the position assumed by the model when
the joints are set using the staring rotations and translation values—
the m_fRotation and m_fTranslation values—for each joint. This position
might not be included in the first animation.

To perform this transformation, all you need to do is retrieve the final
matrix from the joint the current vertex is attached to. The vertex
must be transformed by the inverse of this matrix. The inverse of a
rotation matrix will rotate the opposite way of the initial matrix. This
can be accomplished using the InvRotateVec and InvTranslateVec func-
tions included in the matrix class (matrix.inl).

Last of all, you must set the normals up to ensure proper lighting.
Because the normals are stored in the face structure, you have to loop

103

through the faces instead of the vertices. To obtain the appropriate
matrix for transforming the normals, you must use the vertex indexes
of the face structure to retrieve the joint and matrix used to transform
the vertex, which the normal belongs to. Once you have this matrix,
the normal can be rotated. Like the vertices, you use the InvRotateVec
function. However, because lighting normals are unit vectors, there is
no need to translate them as well.

Now, everything is set up and ready to animate.

Animation and Interpolation
Finally you get to the good stuff. All the vertices are in the right start-
ing places, all the joints are set up, and all the other data is loaded and
taken care of. Now you can animate the model.

The Animate function of the CMs3d class takes four parameters. The first
is the speed. The speed is a floating-point value that designates how
fast the model should animate. A value of 1.0f means the model
should animate exactly as fast as it was meant to when it was created. A
value of 2.0f will animate twice as fast as the original, and 0.5f will
animate the model half as fast as the original and so on.

The next two parameters, fStartTime and fEndTime, tell the function
which parts of the animation to use. Because each joint can have a
varying number of keyframes and the keyframes of a joint do not need
to occur at the same time intervals, it is unpractical to use a start and
end keyframe. The fStartTime and fEndTime give a starting and ending
time of the animation segment. If fStartTime is 0.3f and fEndTime is 0.9f,
only the six tenths of a second worth of animation between the two
times is drawn. Because there is nothing in the MS3D file that tells you
where separate animations start and stop, you might record the start
and end time of certain animations. For example, 0.0 to 0.5 seconds
contains a run animation and 0.5 to 1.3 contains a jump animation. By
plugging these values into the Animate() function, you can display just
the run or just the jump animation.

Now you need to determine just what part of the animation to display
at the current instant. It is not enough to just pick the keyframe with
the time closest to the current time. Doing this would result in jerky,
unnatural motion because the distance between keyframes can be
large and the time it takes to move from one to another can be fairly

Animation

104 6. MilkShape 3D

long. A keyframe might exist only at the start and the end of the leg
movement, and simply alternating between the two frames to repre-
sent walking would look awful. Instead, you need to interpolate be-
tween the keyframes.

Using the timer class included with the CMs3d class, you get the time
that has elapsed in seconds since the last frame. Adding this time to
the time elapsed since the last time the animation was restarted, and
adding the result to the beginning time specified in the parameters of
the function should give you a time value to use when finding the
position of the model.

Armed with this time value, you can find the “current” and “previous”
frame for each frame. The time value you calculated in the previous
step must fall somewhere between the previous and current keyframe,
with no keyframes between them. If the time falls between frame 5 and
frame 6, the previous frame is 5 and the current frame is 6.

Let’s start with the translation.

Translation
The first thing you do is find the current keyframe. This is done using
a loop to increment the frame counter, starting at 0, while there are
still translation keyframes, and while the time value for that current
keyframe is less than your calculated elapsed time.

There are three possibilities for the value of the frame counter, as
follows:

■ The first is 0. This means that you need to simply copy the
translation values for the very first translation keyframe into a
temp variable holding the current translation.

■ The second possibility for the frame counter is that it holds the
number of the last keyframe. In this case, you do as you did for 0,
except you use the last frame in the array of translation keyframes.

■ The final and most likely value is the number of a keyframe in the
middle of the two extremes. If this happens, you need to interpo-
late between this translation value of this keyframe and the
translation value of the previous keyframe (framecounter – 1).

So just how do you do this? Remember linear interpolation from when
you worked with formats such as md2? The same concept applies here.

TE
AM
FL
Y

Team-Fly®

105

All you need is the change in time between the two frames (∆t). Using
this value, you can calculate the interpolation value to use when you
perform linear interpolation. This is done using the following formula:

(CurrentTime – TimeOfPrevFrame)/∆t

You are subtracting the time of the previous frame from the current
time and then dividing by the change in time between the two frames.
Using the resultant value, you can easily interpolate between your X, Y,
and Z translation values.

Rotation
Now for rotation. Rotation is almost the same process. The current
and previous frames are calculated in the same way, and you follow
nearly the same process if the model is at the extremes. If the model is
at one of its extremes, meaning the current keyframe is equal to the
very first or very last keyframe of the model, the rotation values of the
last keyframe are placed into a temporary matrix using the SetRotation
function of the CMatrix4X4 class.

The main difference shows up when you need to interpolate between
rotations. Although you could use the same method as you did for
translation, a much better and more graphically pleasing method
involves using quaternions. If you skipped over Chapter 2, now would
be a good time to read (or re-read) it.

Because the model stores its rotation angles as three Euler angles, the
first thing to do is create two quaternions using the FromEulers func-
tion. You need to make two separate quaternions from the current and
previous rotation keyframes. These two quaternions represent the
rotations of each of the frames. Now, you must calculate the quater-
nion that represents the rotation at the current position. Once the
interpolation value is calculated (it is done the same way as for transla-
tion), the quaternions can be fed into the SLERP function, along with
the interpolation value, to create a new quaternion containing the
correct rotation for the current time.

Because OpenGL uses matrices, it is necessary to convert the quater-
nion. A quaternion can then be turned back into a matrix using the
ToMatrix4 function of the CQuaternion class.

After the rotation matrix is built, you need to add the translation to it.
Using the same temp matrix you used for rotations, you can call the

Animation

106 6. MilkShape 3D

SetTranslation function with the translation values you calculated
earlier to finish it off.

There’s only one step left before you can start drawing the model
again. To find the joint’s final matrix, you need to multiply the joint’s
local matrix (m_matLocal) by the temporary matrix you created. This
result can be stored in m_matFinal, and is the matrix that will be used
for transforming the vertices and normals later.

If you want, you can actually draw the bones alone now. The X, Y, and
Z positions of the bones are stored in elements 12, 13, and 14 of the
joint’s final matrix. Drawing a line from this point to elements 12, 13,
and 14 of the joint’s parent’s final matrix will give you an animated
“skeleton” for the model, as Figure 6.3 shows.

Figure 6.3 The animated skeleton of the model all by itself.

Now that you have the new joint information, you must transform all the
vertices and vertex normals. For clarity, all the code to transform and
display the model is in the Cmas3d::RenderT() function. This function is
called directly after the final matrices for all the joints are calculated.

As with the old render function, the meshes are drawn one at a time.
For each mesh, the materials are first set up. Then, you move on to
transforming the vertices and normals. You can start the rendering right
away. As the faces are looped through, the ones that have no bones
attached are drawn as normal, with no modifications whatsoever.

107

The rest of them, on the other hand, are different stories. A temporary
vector is set up to hold both the new normal and the new vertex. First
the normal must be taken care of. Because the matrix transformations
actually modify the vector that is passed to them, the first thing to do is
put the current normal into the temporary holder. After determining
which joint the normal’s vertex is attached to, you can use the Trans-
form3 function to modify the temporary normal, using only the rota-
tion part of the matrix.

The vertex can be transformed in much the same way. The only major
difference here is that the Transform4 functions should be used, rather
than Transform3. Transform4 adds the translation in as well, giving the
vertex its proper position.

Everything can now be sent to the rendering API. Don’t forget to send
the texture coordinates as well as the normal and vertex—make sure
they are sent in the correct order!

Figure 6.4 shows the model in its full animating glory.

Figure 6.4 The transformed model in mid-animation. Notice the bones that have
been drawn over the top as a reference.

Animation

108 6. MilkShape 3D

As you notice in Figure 6.4, you can see the bones over the top of the
model. In the demo this is done by disabling depth testing and draw-
ing the bones using the technique put forward earlier. Just make sure
you re-enable depth testing when you are done.

Well, there you have it. You can now load the low polygon format, which
is my personal favorite. (A low polygon format simply means that it
produces models with low polygon counts. Because you are dealing
with games that must be rendered in real-time, low polygon models
are a must. Using a high polygon model will slow down your game to
the point of being unplayable.) I definitely suggest checking the editor
and format out if you are an independent or money-strapped develop-
ment team. It is quite nice, and comes at a great price.

Hope you enjoyed this chapter. Remember, if you have comments,
questions, or suggestions, feel free to contact me at evan@codershq.com.

Conclusion
This chapter signifies the completion of your first skeletally animated
format. You should now be able to load and use a very useful format
that almost seems to be made just for games. You have learned how to
animate bones by interpolating between their rotations and transla-
tion. You have also seen the most common use of quaternions in 3D
game programming, interpolating between rotations.

Finally, the chapter tied it all together to create a fully working MS3D
loader, complete with skeletal animation. Be sure to check out
MilkShape’s site at http://www.milkshape3d.com and check out the demo
of MilkShape 3D on the CD (in the Software/MilkShape3d directory).

The next chapter covers one of the most popular formats, 3DS. You
will learn how to load and render this fairly complicated format. You
will learn how to use “chunk-based” formats. You will also catch a
glimpse of some of the information that you can store in a file.

CHAPTER 7

The 3ds
Models

110 7. The 3ds Models

A s I browse various Internet forums, read mailing lists, and even
just talk to various people about 3D models, this format seems to

come up a lot. The questions “How do I load 3ds models?” and “How
do I use 3ds models in my program?” show up all over the place.

Unfortunately, until now, there was not a very good reference on this
format available. The references out there fell into one of three
categories: libraries that offered you little control over what you could
do, code and programs that are impossible to decipher, and confusing,
very technical documents. Although this writing by no means covers
everything to do with the 3ds format, my goal here is to get you started
in the right direction.

This chapter guides you through loading and displaying a 3ds model
exported directly from AutoDesk’s 3ds format (http://www.autodesk.com).
There is a ton of information contained in the 3ds files. This chapter
extracts the data that will be most useful to you in your games or other
3D programs. This data includes the mesh data and material informa-
tion, neglecting editor flags, lights, and other pieces. However, if you do
feel you need these extras, it’s a simple matter to add them after you get
through this chapter.

Understanding Chunky
3ds Files
The format of a 3ds file is set up in a very interesting way. Each section
of the file is its own “chunk”. Each chunk contains an identifier, a
length, and a group of bytes that holds the data for that chunk. Al-
though other files had chunks, they either included a single header
telling you where you would find each chunk or had the chunks set up
in a specific order. A 3ds file does neither of these. The 3ds files can
have the chunks in any order and there is no header telling you where
they are located in the file or even how many of each chunk there is.
The idea of this is shown in Figure 7.1, which illustrates a single file,
made of up several chunks.

111Understanding Chunky 3ds Files

This is fine and dandy until you look a little more in depth. The setup
of a 3ds file can be very confusing at first glance. Not only is it split
into many small chunks, but each chunk can have smaller sub-chunks,
which may have even more sub-chunks. Worst of all, for the most part,
the chunks need not be in any specific order in the file.

The structure of a 3ds file is set up more like Figure 7.2, rather than
the format shown in Figure 7.1.

Figure 7.1 A file made of chunks of data.

Figure 7.2 A graphics representation of a file using a structure similar to 3ds.

112 7. The 3ds Models

So just how do you handle that? The easiest way I have found is to first
read in the header of the chunk. Each chunk in the 3ds file has a six-byte
header that holds the identifier and length of the chunk. Then, based on
the type of chunk and the length, a certain section of the program can be
called to manipulate and process the data. A chunk can represent the
meshes or triangles of an object, whereas sub-chunks of this chunk hold
vertices, texture coordinates, and material information for that mesh.
Other chunks can hold materials with sub-chunks for diffuse, specular,
and ambient materials, with sub-chunks for each of the colors.

There are many benefits to handling it this way. First of all, it allows
you to only process certain chunks. If a chunk contains data that is
unneeded, you can simply read right past it. In the 3ds data files, for
instance, you will probably want to skip over chunks that contain data
that is relevant to the editor. Second, it makes it very easy to work with
files such as 3ds models where the chunks are not in a set order.
Because the header is read first, the type of chunk can be determined,
and the appropriate actions can be taken by the code.

Last, this approach leads to a very modular program. If you need to
change the specifications of a chunk or you add code for new chunks,
it is a fairly simple process. It is very easy to find the section dealing
with certain parts of the code. Adding code to deal with new types of
chunks entails only tacking extra code onto the end.

This example program uses STL vectors quite a bit. If you need infor-
mation on vectors, check out Appendix B, “STL Vector Primer,” for a
brief introduction or refresher.

3ds Chunk Headers: The Start
Each chunk in the 3ds file starts with a S3dsChunkHeader structure.

//--

//- S3dsChunkHeader

//- Header for each chunk

struct S3dsChunkHeader

{

 unsigned short m_usID;

 unsigned int m_uiLength;

};

113

The first variable is the two-byte chunk identifier. This tells you what
type of data the chunk contains. It can be vertex data, face data,
animation data, even useless information data. The length variable is
the length of the whole chunk, including the header. This can be a bit
misleading however; the length value encompasses the current chunk
plus the lengths of all the sub-chunks it contains, so be careful. Table
7.1 lists the most common chunk IDs along with their uses.

The 3ds Data File
The 3ds file is made up of many chunks, some of which are important
for games, many which are not. In the following sections, you will learn
about the most important chunks within a 3ds file. Using these chunks
you can load, render, and texture a 3ds file. Although the first few
chunks are guaranteed to be at the beginning of the file, the rest may
pop up anywhere in the file, most of them any number of times.

Header 0x4D4D
Now you are ready to delve into the file itself. The first six bytes of
the file should contain the main chunk’s header. The ID of this
header is 0x4d4d and the length variable should contain the total
length of the file. This chunk contains all of the sub-chunks that
make up the file. No action is necessary at this point; you can just
move past the header and start reading chunks. Each 3ds model
contains only one of these chunks.

The Version Chunk 0x0002
Somewhere in the file, generally the first sub-chunk (the 0x4D4D chunk), is
this chunk. A total of 10 bytes in length, the data consists of a single four-
byte integer containing the format version. It should be greater than 3.
Older versions of 3ds Max differ from the newer versions in the way the
file is set up, meaning that this program might not load them correctly.

Objects in the 0x4000 Chunk
The 0x4000 chunk contains data about objects. An object can be a
triangle mesh, light, camera, or even window settings for the editor. For
game programming, you generally want to neglect everything but the

The 3ds Data File

114 7. The 3ds Models

Table 7.1 Common 3ds Chunks and Their Uses

ID Number Use

0x4D4D Used at the start of the file to signify that the file is a 3ds file.

0x0002 Holds the version number of the file.

0x4000 Contains an “object” such as a mesh, camera, or light.
Each 0x4000 chunk contains sub-chunks with vertex,
texture coordinate, and other information.

0x4100 A sub-chunk of 0x4000. A 0x4100 chunk contains every-
thing needed to build a mesh of triangles.

0x4110 Contains the vertices for the object. It is a sub-chunk of
0x4100.

0x4120 Also a sub-chunk of 0x4100, a 0x4120 chunk contains the
face information, including the vertex indexes that tell
which vertices make up each face.

0x4130 Another sub-chunk of 0x4100, 0x4130 contains informa-
tion on which materials are to be applied to which faces.

0x4140 Even another sub-chunk of 0x4100, this chunk contains the
texture coordinates that allow a face to be texture mapped.

0xAFFF A material definition is found inside 0xAFFF, colors for
ambient, diffuse, and specular materials, as well as
shininess and transparency are in this chunk.

0xA000 A sub-chunk of 0xAFFF that contains the material’s name.

0xA010 A sub-chunk of 0xAFFF as well, contains the ambient
color for the material.

0xA020 Another sub-chunk of 0xAFF, 0xA020 contains the diffuse
color of the material.

0xA030 A fourth sub-chunk of 0xAFF, this contains the specular
highlight colors for the specific material.

0xA040 Yet another 0xAFFF sub-chunk, this time contains the
shininess of the material.

0xA050 Again, a sub-chunk of 0xAFFF that controls how transpar-
ent or opaque a material is.

0xA200 0xA200 is also a sub-chunk of the 0xAFFF chunk. This
chunk stores the filename of the texture map or skin for
the current material.

TE
AM
FL
Y

Team-Fly®

115

meshes. Loading lights and cameras could interfere with other parts of
your game and lead to some very strange looking visual artifacts. How-
ever, you might want to look into loading and using the lights if you are
interested in using the 3ds format for a level or world format.

The 0x4000 chunk contains a little bit of data by itself; the rest is
wrapped up within sub-chunks. It contains a null-terminated string
that stores the mesh name. Because the string’s length is not set, it
must be null terminated. Using strcpy on the data buffer can extract
this name. However, if you are using a temporary pointer to move
through the array, make sure you move it strlen(m_cName) + 1 bytes to
account for the null terminator on the end of the string. After the
string is read, the rest of the data length is full of sub-chunks. Keep in
mind there may be a lot of meshes in the same file, so be sure to keep
track of where you are.

 //pseudocode to begin reading the 0x4000 chunk

 if chunkID is 0x4000

 read null terminated string (strcpy)

 advance pointer past string and null pointer (strlen+1)

Triangular Mesh 0x4100
This is where the data you really want is. A triangular mesh chunk
holds just that, a mesh containing triangles. A mesh is a group of
polygons that make up a surface; a triangular mesh is the same except
it consists of only triangles. In the 0x4100 chunk are the vertices, face,
and texture coordinates, as well as the face material information.

Before you worry about reading in this data, you need a place to store
it. That is where the S3dsMesh structure comes in. Each S3dsMesh struc-
ture holds one triangular mesh. Because the file does not reveal how
many meshes there are total, you can call on the power of STL and
std::vector to create a place to store any number of meshes.

Here is the mesh structure:

//--

//- S3dsMesh

//- Group Mesh Data

struct S3dsMesh

{

 char m_cName[256];

The 3ds Data File

116 7. The 3ds Models

 vector<S3dsVertex *> m_vVertices;

 vector<S3dsTexCoord *> m_vTexCoords;

 vector<S3dsFace *> m_vFaces;

 vector<S3dsObjMat *> m_vMaterials;

 unsigned short m_usNumFaces;

};

The first variable (m_cName) is the mesh name. This should be set when
you first enter the 0x4000 chunk, because that is where the name string
is located. You need to be careful here. The string within the 3ds
model is unrestricted; it can be any length. However, in your structure
there is only 256 bytes of storage. Hopefully, this will be enough to
hold any of the mesh names, but be sure to check first. If the length of
the string in the file exceeds 256 characters, you will need to truncate
it before storing.

The rest of the data is contained in sub-chunks of the 0x4100 chunk.
(Yes, you can have sub-chunks of sub-chunks!) Because you do not
know how many vertices, faces, or materials there will be, you may want
to use a std::vector. This is essentially a resizable array. Using
std::vectors, you can add as many objects to your array as you like
without allocating or resizing it. If you aren’t sure about how to use
std::vectors, I suggest you skip to Appendix B.

In the next section, you learn about the sub-chunks of the 0x4100
chunk. These chunks hold information about vertices, texture coordi-
nates, faces, and materials. A particular object can have all of these
sub-chunks, or just a few. An object doesn’t have to contain texture
coordinate and material information.

Vertices 0x4110

The 0x4110 sub-chunk of the 0x4100 chunk contains all of the vertex
information for the mesh. This includes the X, Y, and Z coordinates
for each vertex. (Thankfully, it does not contain another level of sub-
chunks.) The vertices are stored in the mesh structure in the
m_vVertices vector array.

Each vector is simply three floating-point values, wrapped in a structure
for clarity. Here is the very simple, fairly boring S3dsVertex structure. You
may notice that the vertex class here contains three floats, rather than a
CVector3 class like the MS3D vertices did. I chose to do this for a reason.
Because the vertices do not need to be transformed like those from

117

MS3D, there is no point in burdening your program with the extra files.
In this case, a simple array of three floats will do well.

/--

//- S3dsVertex

//- Vertex structure for 3ds models

struct S3dsVertex

{

 float m_fVert[3];

};

The first two bytes inside the 0x4110 chunk dictate the number of
vertices in the mesh. Immediately following these two bytes are many
sets of floating-point triples—an X, Y, and Z position for each vertex,
which are read and stored as S3dsVertex structures.

Now, if you would like to check your progress, you can use the render-
ing function (C3ds::Render()) to render all the vertices as points. To do
this, you must loop through the meshes one by one, and for each
mesh, draw each vertex as a point in space.

Faces 0x4120

Another very important chunk is the 0x4120 chunk, or faces chunk.
This chunk contains the vertex indexes for all the triangles in the
current mesh; pretty important if you want a solid model. The faces
are stored in the current mesh structure as well.

The S3dsFace structure is another fairly simple structure:

//--

//- S3dsFace

//- Face of a 3ds model

struct S3dsFace

{

 unsigned short m_usIndices[3]; //Vertex indices

 CVector3 m_vecNormal; //Face Normal

};

Now, you have to get these face components out of the file and into
memory. As with the vertices, the first two bytes of the 0x4120 chunk are
dedicated to holding the number of faces for the mesh (in this case,
three). After that, there are the vertex indexes. There are three indexes
for each triangle, one for each corner. That means there are three times

The 3ds Data File

118 7. The 3ds Models

the number of faces indexes. The m_vecNormal part of the face structure is
not stored in the file; it must be calculated. This is done using the
CalcFaceNormal function defined in model.h. This calculation will give you
a unit vector perpendicular to the plane the triangle lies in. This value is
required for lighting and materials when rendering.

The CalcFaceNormal function generates the face normal using the points
of the triangle. First, two vectors are created from the points using an
initial point of the first vertex and a final point as the second vertex for
the first vector, and the third vertex for the second vector. The cross
product of these vectors is then calculated. The resulting vector is
perpendicular to the triangles, just like a normal vector. The only
thing left to do is normalize the resulting vector so it can be sent to the
rendering API.

These normals are only per face. To do smooth shading you will need
per-vertex normals. A vertex normal can be calculated for a particular
vertex by averaging the face normals of all of the faces that share that
particular vertex.

You can now render the model as a solid object using just the vertex
indexes. You can even send the normal vectors you calculated for each
triangle and light the model as well.

Face Material Info 0x4130

Yet another level of sub-chunks. The face material information is a sub-
chunk of the faces chunk (0x4120). One nice thing about the meshes in
the 3ds files is that not only can you put different materials on differ-
ent meshes like you could when using the MilkShape 3D format, but
you can even put different materials on different parts of the same
mesh. For example, a space ship made of a single mesh might need a
different texture on the top of the ship than on the bottom. That’s
what the 0x4130 chunk is all about.

The S3dsObjMat stores information that defines which faces are to be
covered with which materials. The 0x4130 chunk contains only indexes
into the material array; it does not store the material information.
Again, there is a vector of these structures in the mesh structure due to
the fact that there could be more than one of them. The S3dsObjMesh
structure contains an index into the materials array (which you will get
to in a minute), as well as a list of face indexes that use this material.

119

//--

//- S3ds Objmat

//- Structure that holds which faces go to a material

struct S3dsObjMat

{

 unsigned short m_usMatIdx;

 vector<unsigned short> m_vFaceIndices;

};

The data in the 0x4130 chunk is in the following order:

1. First, you see a null-terminated string that contains the name of
the material to use. You can compare this string with the names
of the materials loaded from the material chunks (0xAFFF, de-
fined next). When the string matches, you can set the m_uiMatIdx
variable to the index of that material. This will save a lot of time
during rendering because you will not have to search for the
proper material.

2. The now-familiar two-byte integer that tells you the number of
faces that use this material is up next.

3. The number of two-byte integers, each representing a face, is
last. Each number is an index into the faces array. A “0” corre-
sponds with face 0, a “1” with face 1, and so on.

Now, when rendering the model,
you must first set the material
properties of the first material,
render all the faces that use that
material, switch to the next
material, and repeat the render-
ing process until all the faces
are drawn.

Texture Coordinates 0x4140 Chunk

The last important part of the mesh and the 0x4000 chunk is the 0x4140
sub-chunk. This sub-chunk holds the u and v texture mapping coordi-
nates for each mesh vertex. These values position the texture on the
triangle. They generally range from 0.0 to 1.0, but can go higher if the
texture is to be repeated or tiled on the triangle. The first two bytes of
the data give you the number of vertices. There are then two floating-
point values for each vertex. These are stored in S3dsTexCoord structures,

CAUTION
Do not use this chunk if you
have not yet loaded the
materials chunk. Doing so can
cause unexpected behavior
or crashes.

The 3ds Data File

120 7. The 3ds Models

which are similar to the S3dsVertex structures, but contain only two floats
rather than three.

There, all the geometry is now loaded. A relief isn’t it? Wait, that is
only half the battle. You still need to load all the material and texture
information so you can make your models look much more interesting
than a white, flat-shaded picture.

Materials 0xAFFF
To make your model more interesting and give it colors, highlights,
and textures, you must load in the materials chunk. The materials
chunk holds information about ambient, diffuse, and specular colors,
as well as texture information and shininess. The mesh face chunks
contain an index into this array of materials that specifies what materi-
als are used for which model faces. The materials chunk is another
conglomerate chunk, much like the 0x4000 mesh chunk. Even though
it has lots of sub-chunks, I promise it’s not as bad as the mesh chunk.

Let’s take a look at the material structure right away:

//--

//- S3dsMaterial

//- Material structure

struct S3dsMaterial

{

 char m_cName[256]; //Name of material

 float m_fAmbient[4]; //Ambient color

 float m_fDiffuse[4]; //Diffuse color

 float m_fSpecular[4]; //Specular color

 float m_fShininess; //Matl shininess

 CImage m_Texture; //Texturemap

};

If you look in the C3ds class, there is a vector of S3dsMaterial structures,
the same way there is a vector of meshes. This means there can be
more than one material in the 3ds file, so again, as with the meshes, be
sure to keep track of which material you are on.

The 0xAFFF material chunk does not contain any data of its own, only
sub-chunks, which are defined in the following sections.

121

Material Name 0xA000
The 0xA000 chunk contains the material’s name. This is just a null-
terminated string, same as the mesh name. It can be copied into the
m_cName variable of the current material. Again, be careful that your
material name does not exceed 256 characters. If it does, you must cut
it off before you store it or you will overwrite the array and risk crash-
ing your program.

Ambient Color 0xA010
This chunk contains the ambient color of the current material. A sub-
chunk 0x0011 contains the color in the form RGB, with one byte for
each color value, for a total of three bytes. Before being stored in the
m_fAmbient array, each element of the RGB color must be converted to a
floating-point value between 0.0 and 1.0 so that they can be sent
directly to the rendering API. This can be easily done using the for-
mula (255 – R)/255, where R is the value for the red, green, or blue
component of the color. The fourth value is always set to 1.0f in this
case, because the value is not specified otherwise. The fourth value is
included in the array so that it can be sent directly to the renderer,
such as OpenGL. The following pseudo-code reads the ambient color,
as well as the specular and diffuse colors.

 //pseudocode to read colors for materials

 read in three bytes of information, one for each red, green, and blue

 convert each value to a floating point value between 0 and 1

 store the new values in the first three appropriate array (m_fAmbient

for ambient color)

 set the fourth value of the array to 1.0 so that the whole array can

be sent to the rendering API

Diffuse 0xA020 and Specular 0xA030 Colors
The diffuse and specular colors work the same way as the ambient
color, except they are stored in their own variables. Both have the
same type of color chunks and values.

Shininess 0xA040 and Transparency 0xA050
A percentage sub-chunk gives these two values. The sub-chunk
0x0030 contains a single two-byte integer that ranges from 0 to 100

The 3ds Data File

122 7. The 3ds Models

(the percentage). Dividing by 100 returns the floating-point value to
between 0 and 1. The shininess percentage (0 percent being dull, 100
percent being as shiny as possible) goes into the m_fShininess variable;
the transparency is the fourth value in the m_fDiffuse array.

 //pseudo code to read shininess and transparency

 Read shininess chunk

 Convert shininess to a value between 0 and 1 by dividing by 100

 Set shininess parameter equal this value

 Read the transparency value

 Convert shininess into a value from 0 to 1 in the same way as transparency

 Set the fourth value in the diffuse color array equal to the resulting value

Texture Map 0xA200 and 0xA300
The last and probably the most important chunk of the material is the
texture. The texture is the “skin” that covers the model and contains
details too difficult to create only with triangles and colors. This gives
the model a definite look, enhancing believability and realism.

The texture map structure starts with a chunk of type 0xA200. This
0xA200 or texture map chunk contains sub-chunks as well, although the
only sub-chunk one you need is 0xA300. It contains a null-terminated
string that specifies the texture’s filename. This string can be fed
directly into the Load function of the CImage class contained within the
material structure. If you are not using the CImage class included in the
basecode, you can extract this string with strcpy and store it in a
temporary buffer to pass to your own image-loading functions.

//Reading and loading the texture filename

Set a pointer (char *) equal to the start of the data in the 0xA300

chunk.

Pass this pointer to the CImage::Load() function.

Whew, you now have all the static data you need to at least render the
model with light and texture.

Rendering Your 3ds Files
Let’s take a look at how to pull all the data you have loaded together
and put it onto the screen. You must deal with many issues while

123

rendering. Some meshes have material information stored in them;
some meshes have no materials at all. Some meshes might not contain
any triangles, due to the fact they are made for cameras and lights. You
must consider and deal with all of these circumstances.

The best way to visualize how these files are rendered is to look at a
flow chart. The rendering flow is shown in Figure 7.3. Take a look at it
before you read on.

Figure 7.3 Rendering flowchart.

Rendering Your 3ds Files

124 7. The 3ds Models

Your rendering function must contain a loop that loops through each
of the meshes and draws them if necessary.

The first thing you must determine is whether the current mesh
contains any face information. This can be done by checking the size
of the face array. If it is 0, just skip the mesh altogether and continue.
If it contains no triangles, it is not a valid triangle-mesh.

You must next determine how different parts of the model are ren-
dered. If there is information in the m_vObjMat variable, the mesh
contains material information and it must be set up first. If this branch
is taken, a new loop must be set up to loop through all of the ObjMat
objects so the proper material is applied to the proper faces.

Then, using the material index, you must set up the material proper-
ties. Make sure to enable blending, lighting, and to bind the texture as
well. If you are using OpenGL, the materials are specified using the
glMaterialf function, and blending is enabled using the glEnable
function with the parameter GL_BLEND. Make sure to set your blending
function using this code:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

As for the texture, you can use the CImage::Bind() function if you are
using the CImage class, or glBindTexture if you are using another image-
loading routine.

Then, you can render the faces specified by the current material
information.

If there are no materials for the specified object, you can now render
the faces. Because leaving blending enabled can cause undefined
results, it is best to disable it when you take this route. You should also
disable texturing as well.

In the C3ds::Render function, I use immediate mode to send vertex,
texture coordinates, and normal information to OpenGL. There are
better ways to do this; for instance using vertex arrays. I decided to
leave it this way to make it easier to understand, particularly if you do
not know OpenGL well.

TE
AM
FL
Y

Team-Fly®

125

Conclusion
This chapter should contain plenty of information to get you going.
You can now load and render a 3ds model, complete with textures and
materials. You also have been introduced to a format that uses a system
of independent chunks to create the file. Now you should be able to
look at the full 3ds format, which can be obtained from a site such as
http://www.wotsit.org, and be able to load and utilize any of the extra
chunks stored in the file that were not covered here. The 3ds format
stores a ton of information and holds endless possibilities. The next
chapter shows you how to create a loader for Half-Life’s MDL format
using basecode released by VALVe software. That chapter uses existing
basecode rather than creating an entire loader from scratch due to the
complexity of the format. Read on to find out how to load this popu-
lar, powerful format.

Conclusion

This page intentionally left blank

CHAPTER 8

MDL, The
Legendary
Half-Life

Format

128 8. MDL, The Legendary Half-Life Format

J ust about everyone has played, or at least seen, Half-Life. This
groundbreaking game from VALVe software became an instant

success, eventually spawning the insanely popular counter-terrorism
mod Counter-Strike (www.counter-strike.net). Figure 8.1 shows Half-Life
in action.

Figure 8.1 VALVe software’s legendary Half-Life in action. Half-Life rocked the
gaming world with its then groundbreaking graphics, AI, and of course its realistic
skeletal animations. Here, a scary alien slave readies a deadly blast of electricity.

Not only did Half-Life offer a refreshing change of pace from the rush-
around-with-guns-blazing 3D games of the time, it was quite revolution-
ary for its time. Not only was it one of the first mainstream games to
incorporate skeletal animation, it had an intriguing story, scripted
sequences, and great graphics to boot. Best of all, it even ran on my
old 133MHz computer.

129VALVe’s MDL Viewer Files

In my opinion, I think this is another great format to use due to the
popularity of the game. Because of this, there are a great number of
free models available at places such as PolyCount (http://
www.polycount.com) and FilePlanet (www.fileplanet.com), as well as a large
number of people creating new data for various modifications.

This chapter takes a slightly different approach. Instead of writing a
full loader from scratch, you will be using code files prepared by
VALVe software. These files are part of the Half-Life SDK. The reason
for this is that the Half-Life format is very, very complex.

VALVe’s MDL Viewer Files
Using the files from VALVe’s MDL viewer requires a little tweaking
before they will work with your basecode. The first thing to do is go
into mdlviewer.cpp and gut out all of the functions. These are the
initialization and main loop functions for a standalone viewer. Because
you are going to be using your own main loop and your own basecode,
their main loop and basecode has to go. The main() function and all of
its associated parts must be removed to make way for your own.

Also, any references to the glut library (glut.h and glut**) need to be
removed. This was also left in for the standalone viewer. All functions that
begin with “glut”, such as glutMainLoop() and glutInputfunc, need to be
removed. After these functions are gone, you can remove glut.h as well.

This has already been done for you in the included files, found on the
CD in the Code/Chapter 8/hl_src directory. To use the MDL loading
code, you need the following files (all included on the CD with the
demo in the hl_src folder of the demo):

Code/Chapter 8/hl_src /math.cpp

Code/Chapter 8/hl_src /mathlib.h

Code/Chapter 8/hl_src /mdlviewer.cpp

Code/Chapter 8/hl_src /mdlviewer.h

Code/Chapter 8/hl_src /studio.h

Code/Chapter 8/hl_src /studio_renderer.cpp

Code/Chapter 8/hl_src /studio_utils.cpp

Once all these files are included into your project (copy the hl_src
directory into your project directory), you are ready to start working.

130 8. MDL, The Legendary Half-Life Format

Initializing the Model
First things first, let’s load the model and get it set up. First of all you
need an instance of the StudioModel class to work with. StudioModel is the
name of the class containing everything to do with the models, just as
CMd2, Cms3d, and others were in previous chapters.

Loading the model is simple. Using the Init function of your
StudioModel instance, you pass it a filename. The class takes care of
loading everything from there. It doesn’t get much simpler than that!
Here is the actual code to initialize the model file "pirate.mdl":

 g_MDL.Init("pirate.mdl");

Before you can jump right to rendering, there are several more pieces
you must initiate. First is the animation sequence. An animation
sequence in the Half-Life MDL files contains one “action”. This may be
running, jumping, crouching, or any other action.

Using the SetSequence function, you can set the current animation sequence.
Because it’s the beginning of the program, I set it to 0 in my code:

 //Set the current animation sequence to 0

 g_MDL.SetSequence(0);

Next you need to initialize the programmable bone controllers. These
controllers provide a bit of extra functionality to the model. Using the
SetController function, I set all four of the controllers to 0.0. I recom-
mend that you play with the values just to see what they do; maybe a
great idea will come to your mind.

 //Set all bone controllers to 0

 g_MDL.SetController(0, 0.0);

 g_MDL.SetController(1, 0.0);

 g_MDL.SetController(2, 0.0);

 g_MDL.SetController(3, 0.0);

Last, the mouth position is set. The SetMouth function, as you might
imagine, effects the position of the model’s mouth. By modifying this
value during the game you can create a model that appears to be
speaking. Done carefully, it is even possible to get the lips synced with
the actor’s voice:

 //Set the mouth position to 0

 g_MDL.SetMouth(0);

131

Rendering the MDL Code
Now the minute you have all been waiting for! Rendering. Displaying
the MDLs onscreen is nearly as easy as loading them. A simple call to
DrawModel puts the model onto the screen. Just calling DrawModel, how-
ever, will not produce any animation. Here’s the code:

 // Draw the model without any animation

 g_MDL.DrawModel();

Animating the Model
To actually animate the model, you need a timer. The AdvanceFrames
function of the StudioModel class takes the change in time from the
last frame to the current one. Using the CTimer class from the basecode
makes this really easy to find. Calling the GetSeconds function returns
the number of seconds that have elapsed since it was last called. By
calling this function and feeding the results into the AdvanceFrame
function, you animate the model. You can even vary the speed of the
animation by multiplying the elapsed time by a speed value. A speed
value of 1.0 gives you the original speed, 2.0 gives you twice the speed,
and so on. Be sure to call the DrawModel function sometime after the
AdvanceFrame call or you will get a black screen. Here is the code that
uses a CTimer function to retrieve the number of seconds since the last
frame—it then uses that value in the Animate function:

 //Get the number of seconds that have elapsed since the last frame

 //Multiplying this value by a speed multiplier will slow

 // down or speed up the animation of the model.

 float fSec = g_Timer.GetSeconds() * fTimeMult;

 //Advance the model's animation using the value you just calculated

 g_MDL.AdvanceFrame(fSec);

 //Draw the model at its new position

 g_MDL.DrawModel();

That was pretty easy wasn’t it? Just for kicks, Figure 8.2 shows the MDL
loader in action.

Animating the Model

132 8. MDL, The Legendary Half-Life Format

For More Practice...
If you feel up to looking at VALVe’s code and deciphering parts of the
format yourself, try these projects:

■ Extract and replace the internal textures.
■ Extract the skeleton and replace it with one for a file (decompile it).
■ Create your own format out of it by dropping out everything you

don’t need.
■ Figure out how to use the attachments (hint, look at md3 first).

Overall, MDL is an interesting, but very complicated, format. It contains
data to do almost everything under the sun. From blending animations,
to weapons attachment, to embedded textures, MDL has it all.

Enter the MDL format at your own risk :)

Figure 8.2 The MDL loader in action. The Half-Life format is a very complicated
and powerful format.

133

Conclusion
Although this is a short introduction to such a powerful format, it’s a
good start to help you use it within your own games and programs.
VALVe created an extremely powerful, but also an extremely complex,
file format. The bone and mouth controllers can provide very specific
control over the model. Using the mouth controller, you can set up a
rudimentary lip-syncing system without creating a new format or
changing the core code that actually loads the model.

The next chapter covers id Software’s MD3 format. The MD3 format is
another very popular format due to its use in id Software’s own Quake III
as well as many games that use the Quake III engine licensed from id.
MD3 is another good format to use in your games. Read on!

Conclusion

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

CHAPTER 9

Enter the
Quake:

Quake III’s
MD3

Format

136 9. Enter the Quake: Quake III’s MD3 Format

B ack at the beginning of the book you learned about the MD2
format used in id Software’s Quake II. Since then, Quake and its

file format have matured. MD2’s bigger brother, MD3, was created for
use in Quake III.

Quake III pushed games ahead with more and prettier graphics
features, such as curved surfaces. The new MD3 format has the capa-
bility to “connect” with other models through the use of tags. The
characters in Quake III make use of this system with a different model
for the head, torso, and legs. This allows different parts of the body to
be running different animation sequences, and can also allow for mix-
and-match players if implemented correctly. Figure 9.1 shows id
Software’s Quake III in action.

Figure 9.1 id Software’s Quake III (http://www.idsoftware.com), just one of
the many games built around the Quake III engine.

137Retrieving Data

This is another good format to use because nearly all games based off
the Quake III engine (such as American McGee’s Alice and Return to
Castle Wolfenstein) use the MD3 format as well. This makes for many
resources, due to the strong mod community. Members of the gaming
community create many new and extra models. Because so many games
use this format, many new models are also created in this format.

Retrieving Data
As with all of the model formats, before you can render or animate
anything, you must have the data out of the file. MD3 contains many
data structures that are similar to MD2’s, but beware, there are differ-
ences. It is best not to try to modify your MD2 code to load MD3s, but
rather start from scratch.

The MD3 format is set up with a very specific structure. Starting with the
header and going all the way through the mesh data, it is set up much
like the MD2 files. Figure 9.2 shows the organization of the MD3 file.

Figure 9.2 The general structure of the MD3 file. This shows
what an MD3 file holds, in what order it holds information,
and the general layout of the file.

138 9. Enter the Quake: Quake III’s MD3 Format

The MD3 Header
The MD3 header is very similar to MD2’s header. It contains an ID, a
version number, and information about various chunks in the file.
Check out the definition of the header:

//--

//- SMd3Header

//- File header for the md3 file, similar to md2

struct SMd3Header

{

 int m_iId; //Must be IDP3 (860898377)

 int m_iVersion; //Must be 15

 char m_cFilename[68]; //Full filename

 int m_iNumFrames; //Number of animation keyframes

 int m_iNumTags; //Number of tags

 int m_iNumMeshes; //Number of sub-meshes

 int m_iMaxSkins; //Maximum number of skins for model

 int m_iHeaderSize; //Size of this header

 int m_iTagOffset; //File offset for tags

 int m_iMeshOffset; //End of tags

 int m_iFileSize; //Size of file

};

Quite a bit of stuff. Check out Table 9.1 for an explanation about how
each variable within the header is used.

Then come two more integers that dictate the start and end positions
of the tag structures. Again, you’ll get to tags later on in the chapter.

The very last variable is another integer that holds the total file size of
the model.

Boneframes
The next part of the file (directly after the header) contains what are
called boneframes. Each boneframe is a total of 56 bytes and holds
information concerning bounding boxes for the model. There is one
boneframe for each keyframe of animation, meaning that the
boneframes contain the bounding information for each frame. The
first twelve bytes are the minimum X, Y, and Z values of the bounding
box, whereas the second twelve bytes are the maximum values.

139

Table 9.1 MD3 Header Values

Variable Purpose

m_iID This variable identifies the file as an MD3 model. The value
of this variable is "IDP3", which translates to 860898377.

m_iVersion Should always be equal to 15. If either the first or
second variables are not what they are supposed to be,
the model is not valid.

m_cFilename This array of characters holds the filename of the model
relative to the BASEQ3 directory of Quake III.This is
generally of little use if you are using the model for your
own applications.

m_iNumFrames This variable holds the number of keyframes that are
used in the model for purposes of animation.

m_iNumTags Here you will find the number of tags, or attachment
points, stored in the MD3 model. Tags allow you to
attach one MD3 model to another.

m_iNumMeshes Each MD3 contains at least one mesh, or geometry data,
chunk. However, this variable will let you know if the model
contains just the required one, or two or more submeshes.

m_iMaxSkins This variable tells you the maximum number of skins
this MD3 model can use.

m_iHeaderSize The total length of this file header can be found by
reading this variable. This value will also tell you the offset,
in bytes, from the start of the file to the boneframes.

m_iTagOffset To read the tags, you must know where in the file they
are located. This variable will give you a value, in bytes,
that will allow you to seek out the tag structures buried
in the model file.

m_iMeshOffset Like the tag offset tells you where to find the tags, the
mesh offset tells you where to find the mesh data
within the MD3.

int m_iFilesize The last variable in the header. It contains the total size,
in bytes, of the MD3 file. This is useful for verifying that
all of the data is here and to help determine whether
the file has been tampered with.

Retrieving Data

140 9. Enter the Quake: Quake III’s MD3 Format

Each of the X, Y, and Z values is a four-byte floating-point number.
Using these six values you can construct a full bounding box for the
model. Next comes the X, Y, Z coordinates of the origin. This set of
three floats gives you the center of the bounding box. Although it is
typically 0, 0, 0, it can vary. The minimum and maximum values of the
box are relative to this point.

Next comes a floating-point value, which holds the radius of the
bounding sphere for the model. Like the bounding box, the center of
this sphere is determined by the origin specified. A bounding sphere
provides a faster way to quickly check whether a model might be
colliding with an object such as the world or another model.

Last there are 16 bytes that make up the boneframe’s name. This name
has no real purpose in the game, but can be helpful for the artists who
are creating the model.

MD3 Tag Structures
Next in line are the tag structures, used to connect models together. The
tag structures in MD3 are used when attaching two models together, such
as when attaching a character’s legs to its torso or a weapon to a character.
Each tag consists of a 3×3 rotation matrix, a position vector, and a 64-
character name. The name is simply a string that identifies the tag.
Common names for tags include Weapon01, Torso, and Head; each designates
what kind of model is meant to be attached to the specific tag. The
rotation matrix stores the rotation value for the specific frame. This
matrix will tell the attached models how much to rotate. For instance, the
attached weapon must rotate if the wrist it is attached to is rotated. Al-
though the rotations are stored in the file as a 3×3 matrix, it is helpful to
convert the matrix to a quaternion when you read it in.

Converting the matrix to a rotation quaternion will allow you to take
advantage of the quaternion interpolations when animating the model.
The last value, the position vector, gives the current position of the tag. It
is used to keep the models attached together. The position vector changes
when one part of the model changes positions, requiring the other parts
to keep up. This happens, for example, when the character crouches, at
which point the torso must also move downward to stay on top of the legs.

As mentioned previously, a much better way to efficiently store these
tags, as well as cut down on processing time, is to store the rotation

141

matrix as a quaternion. Using the FromMatrix function of the quater-
nion class, the rotation matrix can be converted into a quaternion
after being read from the file. After converting the data from the file
into a matrix, you can call the FromMatrix function included with the
CQuaternion class. By passing your rotation matrix to this function, it will
fill in the quaternion data for you.

Here is what you finally end up with for a data structure:

//--

//- SMd3Tag

//- Tag structure for Md3

struct SMd3Tag

{

 char m_cName[64]; //Name of tag

 CVector3 m_vecPos; //Position of the tag

 //Even though the file contains a 3x3 matrix

 //It is converted into a quaternion before being stored in memory

 // to conserve space and take advantage of quaternion interpolation

 CQuaternion m_qRot; //Rotation for the frame

};

The number of tags in each set is determined by the m_iNumTags vari-
able in the file’s header. Because the tags are used for animation, there
is one set of tags for every frame of animation. If there are 100 frames
of animation, and there is one tag to attach the weapon to, one to
attach the head, and one to attach the legs, there will be a total of 300
tags. (Three for each of the 100 keyframes.) To get the total number of
tags, you only need to multiply the m_iNumTags and the m_iNumFrames
variables that are stored in the header of the MD3 file.

Meshes
Meshes contain the real meat of the file (or any model file format for
that matter). The meshes contain everything seen on the screen. The
MD3 meshes contain all the vertex, animation, face, and texture
information, a lot like MD2 does. The difference here between MD2
and MD3 is that MD3 can have multiple meshes. The number of
meshes in each file is given by the m_iNumMeshes variable in the file
header. Multiple meshes can be useful if you want to apply different
types of animations to different parts of the model. The arms may be a
separate mesh from the torso because it might be easier for the artist

Retrieving Data

142 9. Enter the Quake: Quake III’s MD3 Format

to animate each part separately. Another instance in which multiple
meshes can be used is when parts of the model are not connected to
other parts of the model and must move independently.

Each mesh is independent of the rest and is set up in a specific order, as
shown in Figure 9.3. Because each mesh is independent, you can treat it
as its own 3D model. Each mesh contains its own animation data, and its
own vertices, texture coordinates, and triangles. A mesh will never need
to access data from other meshes, even within the same file.

Figure 9.3 The MD3 mesh layout. Each mesh chunk consists of faces
and texture coordinates as well as keyframes. Each keyframe contains a set
of vertices for that position.

Take a look at the following mesh structure:

//--

//- SMd3Mesh

//- A single mesh in the md3 file

struct SMd3Mesh

{

 SMd3MeshHeader m_Header;

 SMd3KeyFrame * m_pKeyFrames;

 SMd3Face * m_pFaces;

 SMd3TexCoord * m_pTexCoords;

 SMd3Skin * m_pSkins;

};

Quite a bit of stuff here! A header, animation data, faces, texture coordi-
nates, and more. There is a pointer for each of the sections, other than
the header, which means that you must allocate memory for each
section. Each section, including the header, keyframes, faces, texture
coordinates, and skins, are explained in their own sections that follow.

143

For the sake of simplicity, I chose not to use std::vectors here. Because
of this, if you look at the code, you will see a constructor and destructor
so the structure will clean up after itself when the program exits.

The Mesh Header
The mesh header tells you everything you need to do to find and load
all of the data. The header structure is 108 bytes long and contains the
number of each component, and offset into the mesh data for each
component as well. Here is the structure code; Table 9.2 contains the
mesh header values:

//--

//- SMd3MeshHeader

//- Header for each mesh in the md3 file

struct SMd3MeshHeader

{

 char m_cMeshId[4]; //Mesh ID

 char m_cName[68]; //Mesh name

 int m_iNumMeshFrames; //Number of animation frames in mesh

 int m_iNumSkins; //Number of skins for this mesh

 int m_iNumVerts; //Number of vertices

 int m_iNumTriangles; //Number of triangles

 int m_iTriOffset; //Offset for the triangles

 int m_iHeaderSize; //Size of this header

 int m_iUVOffset; //Texture coordinate offset

 int m_iVertexOffset; //Offset for the vertices

 int m_iMeshSize; //Total size of the mesh

};

Most of this is straightforward,
but there are a few things you
need to be careful of. The first is
to be sure you are reading from
the correct place in the file. The
offsets in this header are offsets in
bytes from the beginning of the
mesh chunk itself, not the start of
the file or the last piece of data
read. The second is to be sure
that you store the data in the

CAUTION
Just to reiterate: the offsets in
this header are offsets in
bytes from the beginning of
the mesh chunk itself, not the
start of the file or the last
piece of data read. Be sure to
remember this so that you
read from the correct place
in the file.

Retrieving Data

144 9. Enter the Quake: Quake III’s MD3 Format

Table 9.2 Mesh Header Values

Variable Purpose

m_cMeshId[4] A four-byte ID for the mesh; can be ignored.

m_cName[68] A 68-character mesh name; can also be ignored.

m_iNumMeshFrames This four-byte integer stores the number of
keyframes contained within the mesh.

m_iNumSkins Another four byte integer. This time, it stores the
number of skins that are used to texture this
particular mesh.

m_iNumVerts Yet another four-byte integer. This variable gives you the
number of vertices that each keyframe will contain.

m_iNumTriangles A four-byte integer again. It stores the number of
triangles that make up the mesh.

m_iTriOffset Tells you how far into the mesh the triangle informa-
tion can be found.

m_iHeaderSize Holds the total size of this header.

m_iUVOffset Tells the program where to find the U/V texture
coordinates within the mesh.

m_iVertexOffset Tells the offset into the mesh where the first of the
vertices and keyframes can be found. Because this
value will take you to the start of the keyframes, you
can also think of it as the keyframe offset.

m_iMeshSize Holds the total size of the mesh in bytes, header and all.

correct format and in the correct place. Nothing is worse than corrupt-
ing or losing data.

Before you can go on, you need to know the format of all the data in the
mesh structure, or it will not do you any good. Let’s start with the skins.

TE
AM
FL
Y

Team-Fly®

145

Skins
This is the simplest structure within the MD3 file. It contains only a 68-
character string that holds the path and name of the texture file.
Because the texture filename is relative to the baseq3 path, which you
probably won’t have, I would advise you to hack off the pathname, and
keep only the filename. It will make your life a lot easier. Another
problem you may encounter is filenames without extensions. With
Quake III, this means the model uses a shader for the particular mesh
instead of a regular texture. A Quake III shader is a text file, generally
with a .shader extension on it. These files contain texture information
such as animations and special effects.

If you come across one of these
cases, you will need to do one of
two things. You will need to create
a texture to take the place of the
shader or you will need to write a
routine to read and parse the
shader information to determine,
at the very least, the texture
filenames. The shader file can
contain many other pieces of data,
including multitexturing informa-
tion, deformations, and texture
effects. Although they do not have
to be loaded, they can add a lot of
detail and realism to a model.

KeyFrames and Vertices
These two sections, keyframes and vertices, go hand in hand in an
MD3 file. An MD3 keyframe is nothing but a collection of vertices that
define where the model is and what it looks like at a particular time.

A model may have a set of keyframes that, when cycled through, make
the model appear to be walking or jumping, or doing some other
action. Each keyframe stores its own set of vertex positions rather than
just storing ones that are moved or updated from frame to frame. This
approach is a lot like taking snapshots of the model’s vertices at certain
intervals and using these snapshots to animate the model later.

NOTE
Shaders are beyond the scope
of this book, and there are
many good resources on the
Web about them. One of the
best is the Shader Bible, cre-
ated by Paul Jaquays and Brian
Hook. It’s available online at
http://qeradiant.com/manual/
Q3AShader_Manual/.

Retrieving Data

146 9. Enter the Quake: Quake III’s MD3 Format

Let’s get right to the structures:

//--

//- SMd3Vertex

//- A single vertex in the MD3 file

struct SMd3Vertex

{

 float m_fVert[3];

};

//--

//- SMd3KeyFrame

//- A single animation keyframe, contains new vertex positions

struct SMd3KeyFrame

{

 SMd3Vertex * m_pVertices;

};

This is where you need to be careful. Even though you want the verti-
ces as floats, the MD3 files do not store them this way.

Each vertex takes up eight bytes, instead of twelve, to save space. The X,
Y, and Z components are two bytes each. To move from this format to
your three-float format, you divide each component of the vertex by
64.0f—FinalX = OriginalX / 64.0f—and store it in the appropriate place.

The number of keyframes in a mesh is stored in the mesh’s header, as
the m_iNumMesh frames variable, and the number of vertices in each
frame is contained in the m_iNumVerts variable. Don’t forget to use the
offset given to you in the header before you start reading in data.

Faces
As with the vertices and keyframes, be sure to jump to the triangle
offset as given in the header before you start getting data, lest you have
disastrous results. As with MD2, all faces in the MD3 model are tri-
angles. Each face structure contains three unsigned shorts that hold
indexes into the arrays of vertices.

There is only one set of faces per mesh; the same indexes are used
regardless of which keyframe of animation is being rendered.

147

Texture Coordinates
Models are pretty boring without textures on them. To use textures, you
need texture coordinates. The texture coordinates for each mesh are
stored at the offset given by the mesh header. Each texture coordinate is
simply two floating-point values, one for each u and v. These coordinates
will allow you to have more realistic models, without using too many
polygons. The texture can add details that the polygons cannot.

Once you have all this data, you can render and animate the model.

Basic Rendering and Animating
I am not going to go over this in great detail because everything in the
MD3 file can be rendered in the same way as an MD2 file. As you loop
through each mesh, the faces can be drawn in a traditional manner.
Using the vertex indexes stored in the face structures, as well as the
texture coordinates, it is very easy to get the model onto the screen.
Check out the CMd3::Render function for the exact code. Using the
CMd3::Render function is very simple; here’s an example of it:

//Rendering an MD3 model

//The Render function only renders one frame of the model

g_Md3Model.Render(frameNum);

Animating the model is also similar to MD2. Using a timer, you calcu-
late an interpolation value and use it to linearly interpolate between
the two nearest keyframes. This must be done for each mesh. The
simplest way to render the new, interpolated vertices is just to send
each to the renderer as soon as it is generated. This method avoids
storing the interpolated vertices, even temporarily. The vertices can be
sent one by one using a function such as glVertex3f in OpenGL.

If you want to use vertex arrays or other optimization techniques, you
might need to store the vertices in a temporary buffer before sending
them off to the rendering API. For a little more information and
applicable code, check out the CMd3::Animate function in the first
demo. The first demo found in the /Code/Chapter9 directory shows the
basic rendering and animation discussed here. Figure 9.4 shows a
single MD3 model being animated by itself.

Retrieving Data

148 9. Enter the Quake: Quake III’s MD3 Format

Using Multi-Part Models
The biggest advantage of the MD3 format is its ability to use multi-part
models. A multi-part model combines two or more models into one.
This is beneficial when you need to mix and match models such as
using two torsos and two sets of legs to create four unique models,
rather than just two. It also allows you to link weapons or other attach-
ments to a character or object without having to create custom anima-
tions for either the original model or the one being attached. Using
those mysterious tag structures you loaded in earlier, you can attach
one model to another at predefined points.

You can have one model for the legs of the character and another for
the torso. When connected together using the tags, they would look
and act like a single model. However, each part of the model can be
animated individually. The legs can be playing a running animation
while the torso is playing a shooting animation, thus allowing the
character to run and shoot at the same time. This feature alone has
many advantages. In the case of a first-person shooter using a tradi-
tional model format such as MD2, the artist would need to make a

Figure 9.4 A single-part MD3 model in mid-animation.

149

jump-and-shoot animation, a run-and-shoot animation, a walk-and-
shoot animation, and so on.

With MD3 however, a single shooting animation with the torso can be
played along with a running, walking, or jumping animation on the
attached legs. This also allows artists to make three leg models and
four torso models that can be mixed and matched by the programmers
to create a variety of characters.

The second demo (found in /Code/Chapter9/) contains all the code for
using multi-part models. Keep in mind that using this code does not
prevent you from using single-part models. The code from this demo
works just as well with both.

Tags
As I mentioned earlier, you finally get to use those tags you loaded from
the file. These tags will help you assemble the model together by provid-
ing information about how to transform each of the models so that they
all stay properly attached. Without tags, attaching legs to a torso can be
very difficult because when the torso moves upward, the legs may not,
creating a significant visual artifact. A good way to think about the tags is
as joints in a skeletal animation system. These tags contain parent nodes
and child nodes, just as with regular skeletal animation.

Interpolation
The first thing you need to do is modify the CMd3::Animate function.
Just like the mesh keyframes, the tag positions and rotations must be
interpolated as well. Because there is one tag for every frame, the last
and next frame indexes, the interpolation values calculated for inter-
polating between the mesh keyframes can be reused here. This time,
rather than sending each vertex to the rendering API as it is calcu-
lated, it may help to store them temporarily. This allows you to better
control the vertices and allows you to implement features such as
vertex arrays in the optimization process.

The CMd3::Animate function only needs to be modified slightly. Because
you are using the tags now, they must be interpolated along with the
rest of the model. This can be accomplished in the same way as regular
skeletal animation—using linear interpolation for the positions and a
quaternion SLERP function for the rotations.

Using Multi-Part Models

150 9. Enter the Quake: Quake III’s MD3 Format

Each tag “frame” consists of two important parts:

■ The position is stored in a three-element vector. For the purpose
of interpolation, the position can be treated as a single vertex of
the mesh.

■ The rotation is stored in the form of a unit quaternion. The
rotation quaternion should be SLERPed in order to give the
rotation interpolation a smooth curve. This is done using the
SLERP function provided in the math code used throughout the
book. Just plug in the quaternion from the previous frame, the
quaternion from the next frame, and the interpolation value,
and the SLERP function will spit out a new quaternion.

Attaching One Model to Another
Next, you need some way to attach one model to another. This is done
using the CMd3::Attach function. The Attach function specifies a pointer
to another CMD3 model, and an integer denoting which tag it should
be attached to. The Attach function takes this pointer and stores it in
an array of pointers known as the child-model array. The child-model
array contains one pointer for each tag on the model. All of the
pointers in the array start out as NULL, but when a model is attached to
that particular joint, the pointer is changed to point to the attached
model instead. An example of attaching one model to another using
the CMd3::Attach() model is shown here:

 //Attach a model called g_Weapon to g_Character at the

 //first tag

g_Character.Attach(g_Weapon, 0);

Models are always attached to their parents, not the other way around.
Generally, the root joints of a humanoid character are the legs. The
torso model is attached to the legs, the head and weapons models are
attached to the torso, and so forth.

Drawing the Multi-Part Model
Now that you have one model attached to another, it is time to draw
them. The first thing to do is to remove any drawing code from the
Animate function. Now you can call the animate functions in each
frame, but it will simply calculate the interpolated vertices and tags
and store them.

151

The RenderT() function is where all the action takes place. When the
RenderT() function of a parent joint is called, the parent joint’s meshes
are rendered as normal. Then, for each tag that contains a pointer to a
child mesh, a 4x4 transformation matrix is built using the interpolated
quaternion and position values of the tag. The rendering API can then
be set up to render the mesh in the correct position and with the
correct orientation.

This can be accomplished by pushing a new matrix onto the stack,
using a call such as glPushMatrix in OpenGL. Using the new copy of the
view matrix you just created, multiply it by the transformation matrix
you created from the tag data. This will give you the proper position
and orientation to render the first child mesh. A child mesh could be
used for a weapon attached to the character’s hand, or even perhaps to
allow the character’s head to move in sync with its torso.

Because the RenderT() function is recursive, if the child mesh you
render has a child of its own, the same thing will happen again. This
process will continue down the line until a mesh is reached that has no
children. The function then backs up, popping the matrices off the
stack as it goes, back to the original parent node. Then, it continues
the loop if there are more lines of child models to render. In this way,
every child down the line gets the combined transformation of every
parent before it.

Figure 9.5 shows a picture of a multi-part character model being
rendered. The legs, torso, and head are all separate MD3 models with
separate animations. If a weapon were present, it would also be its own
MD3 model with separate animations.

Conclusion
After finishing this chapter, you should be able to create an MD3
loader for your engine or game. With loading and animation capabili-
ties, you are ready to tell your artists to start churning out MD3s for
your new game. You can even use the attachment points to build full
characters and to attach weapons or other models to your characters.

The next chapter takes you through some tips and tricks that can be
used with your 3D models, regardless of the format. Sections on
calculating face and vertex normals, interpolation, and optimization

Conclusion

152 9. Enter the Quake: Quake III’s MD3 Format

can be found in the upcoming chapter. You will learn how to use each
of these tips and tricks in a non format-specific way so that you can
apply them to any model format, including your own.

Figure 9.5 A multi-part model being rendered using the tagging system to
hold it together.

CHAPTER 10

Tips,
Tricks, and

Methods

154 10. Tips, Tricks, and Methods

T his chapter aims to give you a few good tips and tricks that you
can apply to any 3D model that you come across. Using the meth-

ods here, you will be able to apply lighting to your models, move them
around, and even optimize your rendering code a little bit. You first
learn how to calculate face and vertex normals, which will enable you to
apply lighting to your model. Face normals give you a flat-shaded model,
whereas vertex normals give you a smooth-shaded model.

Calculating Face Normals
If you want to have lighting in your scene, it is essential to have at the
very least a normal vector for each triangle. Failure to do this will cause
certain parts of the model to be unlit, or lit in a peculiar way.

There really isn’t anything to calculating a face normal. Follow these steps:

1. First, you need two vectors in the plane of the triangle. Because you
have three points that lie within the plane (the vertices of the
triangle), it is easy to create two vectors. Going back to algebra or
geometry, you might remember that a vector can be found by
taking the terminal point minus the initial point. The points of the
triangle are these points. The first vertex of the triangle (Vertex0)
can be considered the initial point for both vectors, the second and
third vertices are the terminal points of the first and second vectors
(Vector1 and Vector2) respectively. Therefore, Vector1 will be Vertex1
minus Vertex0, and Vector2 will be Vertex2 minus Vertex0.

2. A vector normal to the triangle points straight up at a 90-degree
angle to the triangle’s plane. Taking the cross product of the two
vectors you just found will yield a single vector, orthogonal to the
plane. It is important that you always take the cross product in the
same order. The vector produced by crossing Vector1 with Vector2
(Vector1×Vector2) is not the same as the vector produced by
crossing them the other way (Vector2×Vector1). The two opera-
tions will produce vectors pointing in opposite directions. If some
of your faces appear to be lit incorrectly, make sure you are

TE
AM
FL
Y

Team-Fly®

155Calculating Vertex Normals

computing your vectors and cross products correctly. However, if
all of your faces are lit incorrectly, try crossing your vectors in the
opposite order. The normals may be pointing into the model,
rather than out of the model, as they should be.

3. Before you send this vector to the renderer, be sure to convert it
to a unit vector. Remember that a unit vector must have a magni-
tude of one. To create a unit vector, you divide each individual
component of the vector by the vector’s original magnitude.
This can be done manually, or you can use the Normalize func-
tion of the CVector3 class.

Take a look at this chapter’s first demo, found on the CD in the Code/
Chapter10/Normals/ directory, for a demonstration of face normals.

Calculating Vertex Normals
The other type of normal is called the vertex normal. Now, instead of
one normal for each polygon, one normal is used for every vertex.

Why use vertex normals instead of face normals? The answer is
simple—using vertex normals gives you a much nicer looking model.
Instead of each polygon being flat-shaded, the lighting is now interpo-
lated between the vertices, giving a nice smooth shade.

Figures 10.1 and 10.2 compare the visual difference between vertex
and face normals. Quite a difference, eh?

Calculating vertex normals is not difficult. The first thing to do is calcu-
late all of the face normals. Then, for each vertex, you must determine
which faces share that vertex. Once you find all of them, add up all of
those faces’ normals, and divide by the number of shared faces. This will
give you a new unit vector, which is called the vertex normal.

//pseudocode to calculate vertex normals from face normals

for each vertex

 for each face

 if face contains vertex

 add the normal of the face to the normals of any

 other faces that share the vertex

 to obtain the final normal for the current vertex

 divide the vector calculated by adding all the face normals together by

 the number of faces sharing the vertex

156 10. Tips, Tricks, and Methods

Creating Your Own Format
Creating your own 3D model format can be very beneficial to your
game. By “rolling your own,” you can include whatever data you need,
from vertices to animations in whatever order and whatever form you
want. You can also include other data such as textures or even game-
specific data such as character dialogue. Best of all, you are not limited
by the constraints of an existing format, and you can change the
format to fit your needs as you go.

The first thing you must decide about your format is whether it will be
stored in text or binary form. Both ways have advantages and disadvan-
tages, discussed in the following sections.

Text-Based Format
If the format is stored in a text-based form, you sacrifice some storage
space for readability. A text-based format will generally take up more
room, due to each character using a full byte (“255” will take three
bytes in text, only one in binary). Space may be a lower priority than,
for instance, readability. Most text-based formats can be opened in a
text editor and modifications can be made to the data without need-

Figure 10.1 A flat-shaded model
using only face-normals for lighting.

Figure 10.2 A smooth-shaded
model using vertex normals.

157

ing a full-fledged editor. This makes it easy to do simple things such
as change the textures on the model or even tweak vertex positions.

Another downside to text-based models shows up when you go to load
them. Text files can be a real pain to parse, particularly if small mistakes
such as an extra space, or a blank line, are inserted at an odd place.

Binary-Based Format
A binary format can solve many of these problems, but at the expense
of readability. A binary-based format is generally easier to parse be-
cause the size of each data type, such as a float or a short, is the same
throughout the file. A floating-point binary value is always the same
number of bytes, whereas in a text file, the same number could be any
number of bytes, depending on the number of digits. Both text and
binary will work; pick the one best suited for your needs.

Planning the File
The next thing you need to think over is what you want to include in your
files. Here are a few questions you might ask yourself during this process:

■ How will the vertices be stored? Will you have a simple X, Y, Z
floating-point triple? Perhaps each vertex will be one byte with a
floating-point scaling and translation value for each mesh, much
like MD2 does.

■ How will textures be handled? Will you simply store filenames
within the model? You could embed the whole texture file into
the model if you wanted, or even skip textures altogether and
include only color and lighting data. Texture coordinates must
be considered as well. Will you have only one set texture coordi-
nate for each vertex, or will you need multiple sets for environ-
ment or light mapping?

■ How are faces stored? Do you simply use triangles, or a combi-
nation of triangles and quads, or just quads? Another possibil-
ity is to store the model using n-gons, polygons with no set
number of vertices, for each face. You can even get rid of
polygons completely and store your model as a group of curved
surfaces. If you choose to go with the triangles-only method,
will the format be optimized for triangle strips and fans or just
individual triangles?

Creating Your Own Format

158 10. Tips, Tricks, and Methods

■ What else will the face information contain? Obviously it must
contain indexes into the vertex array, but what about material
information, texture coordinates, or normals? All these things
can be stored with the faces as well.

■ Will you use skeletal or keyframed animation? Or how about a
combination of both? The animation adds a lot to a model. Skeletal
animation is harder to implement (nearly impossible if you do not
have a formal editor, or are not converting from another format).
For some applications you might not need any animation, prefer-
ring to store only vertices, faces, and material information.

■ Will the model be singular or multi-part? Some formats like
MD2 consist of only one mesh that defines the whole file,
whereas other formats such as 3ds can contain multiple con-
nected meshes. You can even define attachment points to
connect other models like md3 does.

■ Planning on using extra “goodies”? Some model formats include
advanced features such as normal maps, bump maps, or curved
surfaces. These are unique structures and must be stored in a
separate part of the file.

■ Will you be including extra information not directly affecting the
model? Examples of this would be development information,
copyright tags, and other game-related content such as character
dialogue or AI information. Just because it’s a model file does not
mean you can’t add whatever extra data you want. However, you
will need to be careful about adding just any information. Before
you go ahead and add information to a model file, ask yourself, “is
it really necessary to add this, or it just bloat?” Adding unneeded
information to model files, or any type of file for that matter, will
take up extra space. You may need to stop and reconsider adding
information that has little or no effect on what the audience of
your game will see or perceive. If you need to keep the overall size
of your game to a minimum, take care to keep from blowing up
the file size on your models by adding trivial or useless informa-
tion. Those few extra bytes could probably be used more effec-
tively in another part of the game.

■ Do you plan on expanding your format later? The answer to this
question could affect the design and layout of the format, even
the way the format is stored. You can choose to make many
assumptions about the model, such as the maximum number of

159

vertices, or you can choose to make no assumptions at all. If you
want a very expandable format, you might lay it out like the 3ds
format does, with chunks and sub-chunks. This approach would
allow you to add chunks later in the process without requiring
you to rewrite all of your code. On the other hand, if your
format will stay the same throughout the development process,
you can use a more concrete layout. Keep in mind that a format
that makes more assumptions trades expandability and modular-
ity for ease of use and more efficient file I/O, whereas a format
that makes no assumptions swings the other way.

■ Last, will your models require any special treatment? For
instance, if you want to stream models to gamers over the
Internet or a network, you will need to take special consider-
ations when designing and compressing your models in order
to stream them as efficiently as possible. Other models may be
required to be compatible with other parts of the game, such
as scripts or shaders, that change the way they are displayed or
control the way the models act or move. Be sure to check that
out before designing your format. Nothing is worse than
having to go back to the drawing table because you forgot to
plan for one of these scenarios.

■ Now you need to work out how data will be stored in the file.
Will you have a header at the start? What will it contain? It helps
to sit down with a pen and paper and draw a diagram of your file
structure, an example of which is shown in Figure 10.3.

Figure 10.3 An example file structure. This chart shows the layout for a
new file format. It shows what is included in the file, as well as the order. The
datatype of each section is also shown; the vertices are made up of floats and
the indexes are unsigned shorts.

Creating Your Own Format

160 10. Tips, Tricks, and Methods

Once you have that down exactly how you want it, it is time to create a
way to make these new files.

Creating the Files
If your new format is very similar to an existing format, you can write a
converter. A converter simply takes the data you want out of the original
file and puts it into your new format, leaving behind anything you do
not need, and adding any extra data such as normals or texture data.

If your format is slightly more bizarre, or too different from an existing
format to easily write a converter, there is still an option before writing
a complete editor. You can use an existing editor to export your new
format. Many popular 3D editors offer packages that can be used to
write your own import and export plug-ins. Some, such as 3D Studio
Max, even have their own scripting language (MaxScript). Others have
a software development kit that is used to write plug-ins. MilkShape 3D
is an example of this. The MilkShape SDK is available free at the
Chumbalum Soft site, as well as on the CD of this book.

Finally, if neither of these is an option, you can write your own editor,
tailored specifically to your special format. Keep in mind that this
can be a complicated, time-consuming process. I would definitely
recommend checking out the other options before delving into
writing your own editor.

The format I created in this section is similar to the MD2 format.
However, I decided to leave out the optimization information, trim
down the header, and embed texture data into the file.

This new format is now more suited to my application than MD2 was.
Because I do not want people to be able to edit the skin on the model,
I simply embedded the image file into the model file. Also, because I
have no desire to use the optimization information included in the
MD2s, I simply got rid of it. Because it no longer exists in the file, I
removed all trace of it from the file’s header as well. Because I added
the image data to the file, I added a section of the header that will tell
the program where to find this data as well.

I decided the easiest way to create my format would be to create an
MD2 file and texture files first, and then write a converter to convert
and combine them into one single file. Figure 10.4 shows the result.

161

If you look at the CD in the directory for this chapter (/Code/Chapter10/),
you will see the converter I created, as well as some sample files and
code to load this new format into your programs.

Linear Interpolation
Linear interpolation is the basis behind all keyframe animation.
Although it has been discussed very briefly in previous chapters, this
section looks at it more deeply in a general form.

Linear interpolation is one of the most useful game programming
techniques. It is used to generate new frames in-between keyframes of
traditional vertex-animated models. It can also be used to position an
object between two end points, depending on the current time or other
factors. If a monster is supposed to be at the end of a straight path after
five seconds, you can use linear interpolation to determine where the
monster should be at one second, two seconds, or any other time value.
This allows you to move the monster along its path at a constant speed.

When you linearly interpolate between two points, you are finding a
point on the line connecting the two. To find the desired point, you
need three things—the ending point, the starting point, and an
interpolation value. The interpolation value is a floating-point value
between 0 and 1. If the interpolation value is 0, the result is the start-
ing point; if it is 1, the result is the very end point; if it is somewhere in
the middle, well, so is the result.

The general formula for doing this is as follows:

Figure 10.4 The brand new, never seen before.TERM format in action.

Linear Interpolation

162 10. Tips, Tricks, and Methods

Where P0 is the starting point, P1 is the ending point and t is the
interpolation value.

Take a look at the example in Figure 10.5.

Figure 10.5 Interpolating along a line. The object is at the beginning of the
line when t = 0 and the end of the line when t = 1. When t is any other value,
the object is in between the endpoints.

The linear interpolation method most often used in games is called
linear interpolation with respect to time. A time to get from point A to point
B is provided, and at any given time, for instance every frame, the
character or object must be drawn in the correct place. Linear interpo-
lation is the lifesaver here. The only problem is calculating the current
interpolation value.

First, you determine the amount of time that has elapsed since the
object started moving. Then, to calculate the interpolation value, you
take the elapsed time, divided by the total time the object should take to
move the entire distance. For example, if 7.22 seconds have elapsed, and
the object must reach the end in a total of 10.0 seconds, the interpola-
tion value is 7.22/10.0 or 0.722. Be sure that your units on the elapsed
time, and the total time are the same. If one is seconds, and the other is
milliseconds for instance, the desired effect will not occur.

Take a look at Figure 10.6 for a picture of an object moving with
respect to time.

This section also has a demo included on the CD; check it out in
/Code/Chapter10/Linear Interpolation/!

Optimization Tips
Part of the fun in game development is squeezing out those last few
frames per second and cramming as much information, graphics, and
data into your game as possible, while still staying within acceptable
limits for size and speed. Here, you will learn about a few optimization
tips you can use along with your 3D models.

163

■ Display Lists: OpenGL contains a very useful feature known as
display list. A display list holds compiled geometry. This is particu-
larly good for static models because you only have to compile the
list once and then you can display it many times. By using a
display list, you can cut down the processing time tremendously.
To use display lists in OpenGL, you should look into the following
functions: glGenLists, glNewList, glCallList, and glDeleteLists.

■ Vertex Arrays: Vertex arrays are another option for optimizing
geometry. There are three types of vertex arrays in OpenGL.
The first is simply an array holding the vertices in the order they
need to be rendered. After setting the vertex array information
using glVertexPointer, you can use glDrawArrays to render the
data. The second type of array is an extension of the first. Using
functions such as glNormalPointer, glTexCoordPointer, and
glColorPointer, it is possible to add normal, texture coordinate,
and color data into the arrays as well. The third type is an in-
dexed array. An indexed array is the same as a standard array
with one exception. Instead of just running through the array
from beginning to end, an array of indexes into the array is

Figure 10.6 An object moving with respect to time.

Optimization Tips

164 10. Tips, Tricks, and Methods

used. The index array specifies the order in which the vertices,
texture coordinates, colors, and normals are to be rendered.
Using this approach, vertices can be reused, leading to a smaller
array. The procedure is the same until you get to the
glDrawArrays call. For an indexed array, glDrawArrays should be
replaced with glDrawElements.

■ Compiled Vertex Arrays: Although vertex arrays are fast, compiled
vertex arrays are faster. Newer versions of OpenGL define an
extension that allows you to compile your vertex arrays much
like you compile a display list. The disadvantage here is that the
data within the arrays cannot be modified without first unlock-
ing the array, so compiled vertex arrays are best left to static
objects. To use compiled vertex arrays, you should look into
glLockArraysEXT and glUnLockArraysEXT as well as the functions for
regular vertex arrays.

Conclusion
You now have a bag of tips and tricks that you can apply to almost any
model format. You can calculate normals for models that do not
include them within the file, enabling you to apply lighting to your 3D
models and thus give them a more realistic look. You can also calculate
where an object should be at a certain time using linear interpolation.
This is especially useful when animating objects that use snapshots of
the model to represent different positions. Using linear interpolation,
you can create more snapshots to fill in the gaps between the originals
and create a model that animates smoothly.

You also learned various techniques you can use to optimize your
display and render code to increase the overall speed of your engine.
This extra speed allows you to add more game-specific elements, or
simply increase the frame rate when running the game.

Next up are the appendixes. In the appendixes, you will find a table
that shows various file formats, along with the editors that create them.
You will also find an introduction to STL vectors; useful if you need
resizable arrays or if you need the special functions such as searching
and sorting that STL vectors offer. You will also encounter a section
that describes some of the paths that you may want to take in the
future and suggests some Web sites and books for further reading.

TE
AM
FL
Y

Team-Fly®

APPENDIX A

Common 3D
Model

Formats

166 A. Common 3D Model Formats

N ot sure what a particular model is used for? This handy chart lists
some of the more common formats and which application, game,

or editor they come from.

Table A-1 Common 3D Model Formats

Extension Editor/Uses Links

3DMF 3D Meta File, http://www.apple.com
QuickDraw3D

3DO Jedi Knight http://www.lucasarts.com

3DS 3D Studio Max: http://www.discreet.com
Binary-based format

ACT Genesis 3D Engine http://www.genesis3D.com

ASE 3D Studio Max: http://www.discreet.com
Essentially a text-
based version of 3ds

ASC 3D Studio Max: http://www.discreet.com
Simple ASCII-based
format containing
only a minimum
of data

B3D Bryce 3D http://www.corel.com

BDF Okino http://www.okino.com

BLEND Blender http://www.blender.nl

CAR Carrara http://www.eovia.com/carrara

COB Calgari TrueSpace http://www.calgari.com

DMO Duke Nukem 3D http://www.3drealms.com

DXF Autodesk Autocad http://www.autodesk.com

167Common 3D Model Formats

Table A-1 Common 3D Model Formats
(continued)

Extension Editor/Uses Links

HRC SoftImage 3D http://www.softimage.com

INC POV-Ray http://www.povray.org

KF2 Max Payne animations http://www.maxpayne.com
and poses

KFS Max Payne mesh and http://www.maxpayne.com
material information

LWLO Lightwave layered file http://www.newtek.com
object

LWO Lightwave object file http://www.newtek.com

LWS Lightwave scene file http://www.newtek.com

MA Maya ASCII-based http://www.aliaswavefront.com
format

MB Maya http://www.aliaswavefront.com

MAX 3D Studio Max http://www.discreet.com

MD2 id Software’s Quake II http://www.idsoftware.com

MD3 id Software’s Quake III http://www.idsoftware.com

MDL id Software’s Quake http://www.idsoftware.com

MDL Valve’s Half-Life http://www.valvesoftware.com

MDL Serious Sam http://www.croteam.com

MS3D Milkshape 3D format http://www.swissquake.
ch/chumbalum-soft

OBJ Alias|Wavefront http://www.aliaswavefront.com

PSK Unreal/Unreal http://www.unrealtournament.com/
Tournament Mes

PZ3 Poser http://www.curioslabs.com

RAW Raw Triangles (None)

168 A. Common 3D Model Formats

Table A-1 Common 3D Model Formats
(continued)

Extension Editor/Uses Links

RDS Ray Dream Studio http://www.metacreations.com

RIB Renderman File http://www.renderman.com

SCN Calgari TrueSpace http://www.calgari.com

SKD Max Payne skin http://www.croteam.com
data file

SKN The Sims http://thesims.ea.com

SLP Pro/Engineer http://www.ptc.com

STL Stereo-Lithography http://www.sdsc.edu/tmf/
Format Stl-specs/stl.html

VRML Virtual Reality http://www.web3d.org
Modeling Language

X Microsoft’s Direct X http://www.microsoft.com
format

XGL Various CAD http://www.xglspec.com
Programs

APPENDIX B

STL Vector
Primer

—By Sean Kent

170 B. STL Vector Primer

A s you have been reading through this book, you have no doubt
heard plenty about the mathematical construct known as a vector.

Well, here you are going to be introduced to another kind of vector, a
data storage vector.

The Standard Template Library (STL) is a collection of container
classes, iterator classes, and other utility classes and functions. A
container is just that, it contains data of a user-specified type. The nice
thing about STL containers is that they clean up after themselves,
meaning that any memory they allocate, they also free. However, this
doesn’t include any memory you allocated. Iterators are a type of class
that points to the data contained within a container class. An iterator
has the capability to move through the elements inside of the con-
tainer, giving you access to the elements that the iterator points to.

The STL Vector
The STL vector class (from now on just called a vector) is a container
object that stores its elements in a linear arrangement, allowing for fast
insertions and deletions at the end of the vector, and slower insertions
and deletions in the middle or at the beginning.

When using the function vector<>::end, the return value will be the
element after the last element in the vector. You will find that this “past
the end” theme is repeated throughout STL.

The Basics of Using Vectors
The first thing you need to do to use a vector is to include the header
file that it is contained in:

#include <vector>

You will notice that there is no .h extension on it, which is not a typo.
STL headers in all of the implementations that I have used do not

171The Basics of Using Vectors

have an extension. The next thing you need to do is to declare a
vector; in this case, you are declaring a vector of integers:

std::vector<int> vec; // Declares a vector that will contain integers.

So what is up with this std:: thing? Well, std is a namespace, which I
won’t go into much, other than to say that for a C++ program, all you
need to do to avoid using this std:: is to add this line after the include:

using namespace std;

However, in a C++ program where you have multiple files, including
headers and such, it is generally a good idea to just stick to using the
std:: extension to prevent including namespaces unintentionally.

All right, so far you have included and declared a vector that will
contain integers. Now you will insert some data into it. Inserting data
at the end of a vector is easy; you just use the push_back function. The
following code will insert the numbers 0–9 at the end of the vector:

for(int i=0; i < 10; i++)

vec.push_back(i); // Inserts i onto the end of the vector

To remove data from the end of a vector, you simply use the pop_back
function. The pop_back function takes no arguments, and returns void.
So, if you wanted to remove that last nine from the vector, you would
do the following:

vec.pop_back(); // Removes the 9 from the end of the vector

Now that you have some data stored in your vector, you need to learn
how to access the data. To do so, you use a little thing called an
iterator. An iterator at its most basic form is just a class that gives you
access to the data stored in a container on an element-by-element
basis. You can use iterators for inserting, deleting, searching, and
sorting the data stored within said container. So let’s create an iterator
in order to walk through your data and print it:

std::vector<int>::iterator l, endi;

endi = vec.end(); // Returns the element "Past the end" of the

// last element

for(l = vec.begin(); // Returns the first element in the vector

 l != endi; // Checks to make sure that we are not at the end

 ++l) // Moves l to the next element, using ++l instead of l++ is

// faster because you don't create a copy

172 B. STL Vector Primer

{

 cout<<"Vector vec contains ["

 <<*l // the * operator returns a reference to the element l points to

 <<endl;

}

Not that difficult, eh? To insert data into a vector at any point, you
must use the vector<>::insert() function. A warning, though: If you
find that you are doing a lot of insertions and deletions anywhere
except at the end of a vector, it is advisable that you look into one of
the other container classes instead. Insertions at points other than the
end of a vector are more expensive than at the end. To insert at, say,
the beginning of a vector, you must first obtain an iterator pointing to
the beginning, and then you merely call the insert function with the
iterator, as well as the data you want to insert.

std::vector<int>::iterator l = vec.end();

while(l != vec.begin())

{

 --l;

 vec.insert(vec.begin(), *l) // Insert at the beginning

 // the element contained in l

}

There are two ways to remove data from a vector at points other than
the end. One is to use the vector<>::erase function and the other is to
use the remove functions. The difference between them is that erase will
remove and resize the vector, whereas remove will preserve the relative
placements of the elements, but will remove the specified elements.

// Using remove:

std::vector<int>::iterator newend;

// Searches the vector for all 7's and removes them

newend = std::remove (vec.begin(), vec.end(), 7);

cout << "Vector vec with value 7 removed is [" ;

for (l = vec.begin() ; l != vec.end() ; l++)

 cout << *l << " ";

cout << "]." << endl;

// To change the sequence size, use erase

173

vec.erase (newend, vec.end());

cout << "Vector vec resized with value 7 removed is [" ;

for (l = vec.begin() ; Iter1 != l.end() ; l++)

 cout << *l << " ";

cout << "]." << endl;

The next section of code removes all occurrences of 7 and resizes
the vector.

// Using just erase:

vec.erase(vec.begin(), vec.end(), 7);

The complete set of the remove functions includes remove_if,
remove_copy, and remove_copy_if. The remove_copy and remove_copy_if

functions create a new range of values, copying only those values that
are not part of the value specified. The remove_copy_if and remove_if
functions take a function argument called a binary predicate, which is
a true-false function that will return true for those elements that match
the predicate, and false for all others. These functions then remove all
elements that meet the binary predicate.

bool gt6(int val)

{

 return (val > 6); //returns true if greater than 6

}

.

.

.

std::vector<int> v2;

newend = std::remove_copy_if (vec.begin(), vec.end(),

v2.begin(), gt6); // copies to a new vector containing all values

// less than or equal 6

Sorting
At some point, you will likely want to sort your vector so that you may
do cool things like use a binary search to find elements. Sorting a
vector is a fairly simple process; you just use the sort function. The sort
functions are included using the algorithm header.

#include <algorithm>

.

The Basics of Using Vectors

174 B. STL Vector Primer

.

.

// The following code will sort your vector of ints in ascending order

std::sort(vec.begin(), vec.end());

The sort algorithm can also take a function argument that will be used
to determine whether an item should be moved. STL has several of
these functions already; you just need to include the <functional>
header.

#include <functional>

#include <algorithm>

.

.

.

//sorts using the greater function object (descending order)

std::sort(vec.begin(), vec.end(), greater<int>());

The greater<int>() part is actually a function object, which is basically
an overloaded operator() that’s contained within a structure or a class.

Searching
There are a few methods for searching a vector; however, this section
covers only the use of the find functions as well as the binary search
functions. The find functions work on both sorted and unsorted
vectors. They work by comparing every element to the value being
searched for. The binary search functions require a sorted vector, but
they take significantly less time to find the element.

The find function has four versions. They are find, find_end,
find_first_of, and find_if. The find function finds the first occurrence
of an element. The find_if function finds the first occurrence of an
element that meets a specified condition. The other two functions,
find_end and find_first_of, aren’t covered here.

To use find, simply call it with the range you want to search and the
element you want to find. So, to find a number within a vector of
integers, you would do the following:

#include <algorithm>

.

.

.

TE
AM
FL
Y

Team-Fly®

175

// Starts at the beginning of the vector, and proceeds to the end

// Till it finds a 7, or returns the element past the end if it doesn't

std::vector<int>::iterator i;

i = find(vec.begin(), vec.end(), 7);

if(i != vec.end()) // We found it

.

.

.

To use the find_if function, you simply do the following:

#include <algorithm>

.

.

.

bool IsGreaterThan5(int val)

{

 return (val > 5);

}

.

.

.

std::vector<int>::iterator i;

//Will find the first element that is greater than five

i = find_if(vec.begin(), vec.end(), IsGreaterThan5);

if(i != vec.end()) // if we found it

.

. // Do stuff

.

The binary search functions require a sorted vector, but can take
significantly less time to find the element you are searching for. The
binary search functions are binary_search, lower_bound, upper_bound, and
equal_range. The binary_search function returns true if the element
searched for exists. The lower_bound function finds the first occurrence
of an element within a vector, or the position it would be at if it ex-
isted. The upper_bound function finds the element past the last occur-
rence of the element searched for within a vector, or where it would be
if the element searched for existed. The equal_range function is just a
combination of the lower_bound and upper_bound functions.

The Basics of Using Vectors

176 B. STL Vector Primer

To use the binary search functions, you simply pass it the range of
sorted elements you want to search and the element you want to find.

#include <algorithm>

.

.

.

std::vector<int> vec;

for(int j = 0; j < 10; j++)

{

 vec.push_back(j); // Insert 2 copies of the number at the end.

 vec.push_back(j);

}

sort(vec.begin(), vec.end()); // Sort the vector

bool found = binary_search(vec.begin(), vec.end(), 7); //Is there a 7?

assert(found == true); //should be

std::vector<int>::iterator k, l;

k = lower_bound(vec.begin(), vec.end(), 5); // Find the first five

l = upper_bound(vec.begin(), vec.end(), 5); // Find the item past the five

assert(*k == 5); // should be the first five

assert(*l == 6); // Should equal the element after the last five

Using Your Own Objects
So far, you have just been using vectors containing integers. Although
integers are fine and dandy, you will probably want to use your own
user-defined types with vectors. This section covers a few issues about
using your own objects with vectors.

The first thing you need to do before you can store an object in a
vector is define that object. An object that is going to be stored in a
vector should include a copy constructor, because copy constructors
are used when moving objects around. An overloaded assignment
operator can also be helpful.

class MyObject {

 int age

int height; //in CM

public:

 MyObject() {}

 MyObject(int a, int h) : age(a), height(h) {}

177

 // Copy Constructor

MyObject(const MyObject& a) : age(a.age), height(a.height) {}

 void SetAge(int a) { age = a; }

 void SetHeight(int a) { height = a; }

 int GetAge() { return age; }

 int GetHeight() { return height; }

 //Overloaded assignment operator

 MyObject& operator=(const MyObject& r) {

age = r.age; height = r.height; return *this; }

};

There is the basic object. To tell a vector to use it, you simply replace
the int portion of the vector with MyObject:

std::vector<MyObject> vec; //vector to hold MyObject types

Now comes the tricky part—storing a MyObject inside of the vector.
To do so, you call push_back with a MyObject, like so:

.

.

.

// Stick 10 random MyObject's into the vector

for(int j = 0; j < 10; j++)

{

 vec.push_back(MyObject(rand()%20+1, rand()%120 + 1));

}

To sort the objects, you must either overload the < operator or supply the
sort function with another function. You will notice in the example code
that you are passing everything by reference. This avoids a copy and thus
saves you memory and time. This example sorts the vector by age:

#include <algorithm>

.

.

.

bool LesserAge(MyObject& l, MyObject &r)

{

 return (l.GetAge() < r.GetAge());

}

//or:

The Basics of Using Vectors

178 B. STL Vector Primer

bool operator<(MyObject& l, MyObject &r)

{

 return (l.GetAge() < r.GetAge());

}

.

.

.

sort(vec.begin(), vec.end(), LesserAge); // Sorts by age

sort(vec.begin(), vec.end()); // Sorts by age using <

Because the find function uses the == operator, you must overload it to
work with your class. This is a simple operation:

#include <algorithm>

.

.

.

bool operator==(MyObject l, MyObject r)

{

 if(l.GetAge() != r.GetAge())

 return false;

 if(l.GetHeight() != r.GetHeight())

 return false;

 return true;

}

.

.

.

std::vector<MyObject>::iterator j;

j = std::find(vec.begin(), vec.end(), MyObject(10, 120));

if(j != vec.end()) //We found it

.

.

.

The equality operator (== operator) is used in comparisons to deter-
mine whether one element equals another. However, it will only work
on C++ defined types. To get around this limitation, you can overload
it to accept other types. In this case, it is overloaded to accept MyObject
types and to compare them based on both age and height. However,

179

you could just as easily compare based on age alone, thus allowing for
levels of equality.

Pointers
One of the disadvantages of storing an object inside of a vector is that
whenever it gets moved, it has to copy the entire object to its new
location. For small vectors, this may be possible, but when you start to
get larger vectors, it becomes unacceptable. The way to avoid this is to
use pointers. A pointer is quite a bit smaller than most objects, so
moving them around takes a lot less time. However, because pointers
use memory you have allocated, you must also remember to free that
memory when you are done.

Declaring a vector to hold pointers to objects is fairly simple; you just
replace the MyObject portion with the appropriate conversion:

std::vector<MyObject*> vec;

To put something into the vector, all you really have to do, from the
last code, is add the new operator:

.

.

.

// Stick 10 random MyObject's into the vector

for(int j = 0; j < 10; j++)

{

 vec.push_back(new MyObject(rand()%20+1, rand()%120 + 1));

}

Sorting the vector is a bit different, because the sort operator will use a
binary predicate that you specify or the < operator by default. Because
a pointer is just an integer, the < operator will sort by the memory
address and not the contents of the MyObject.

#include <algorithm>

.

.

.

bool GreaterAgePtr(MyObject* l, MyObject *r)

{

 return (l->GetAge() > r->GetAge());

The Basics of Using Vectors

180 B. STL Vector Primer

}

.

.

.

sort(vec.begin(), vec.end(), GreaterAgePtr); // Sorts by age

sort(vec.begin(), vec.end()); // Sorts by age using < (memory address)

Searching has the same problem as sorting because it uses the ==
operator, except in this case there is a way around it:

#include <algorithm>

.

.

.

bool operator==(MyObject *l, MyObject r)

{

 if(l->GetAge() != r.GetAge())

 return false;

 if(l->GetHeight() != r.GetHeight())

 return false;

 return true;

}

.

.

.

std::vector<MyObject>::iterator j;

j = std::find(vec.begin(), vec.end(), MyObject(10, 120));

if(j != vec.end()) //We found it

.

.

.

Again, you are overloading the equality operator (==) just as you did
earlier. However, this time, it can compare a pointer to a MyObject
object and compare a MyObject object to itself. After you are done with
your vector of pointers, you must free the memory that you allocated.
This is a fairly simple process:

#include<algorithm>

.

.

.

181

template<typename T>

class DeletePtr

{

public:

 void operator()(T *elem)

 {

 delete elem;

 }

};

.

.

.

std::for_each(vec.begin(), vec.end(), DeletePtr<MyObject>());

The class DeletePtr with the member function operator () is called a
function object. All it does is delete MyObject pointers. If you wanted to,
you could make it delete integer pointers by simply changing this line:

for_each(vec.begin(), vec.end(), DeletePtr<MyObject>());

to:

for_each(vec.begin(), vec.end(), DeletePtr<int>());

Simple and easy (and useful too).

Conclusion
If you are wondering about some of the applications of vectors in
games, I have an idea. My idea is for a simple scene-graph. If you
derive all of your objects from some base object, you could use a vector
of pointers to the base object. This would allow you to easily do up-
dates, collisions, and rendering. Because you would know that all
objects before the current object had already moved and had been
collision tested, you wouldn’t have to test against them for your cur-
rent object. Also, you could reuse vector elements, such as when a
creature dies, so you set its vector element to an empty object, and
when you need a new object, just reuse the empty ones.

Finally I would recommend that you do some more research into
template programming, especially pertaining to the Standard Tem-
plate Library. It has many types of containers, including deques, lists,

Conclusion

182 B. STL Vector Primer

sets, multisets, and maps. Each container has its own advantages and
disadvantages, so picking the right one is not always easy. There is
generally one container that will be better suited for a certain applica-
tion than another.

APPENDIX C

Going
Above and

Beyond

184 C. Going Above and Beyond

W ell, you made it. By now you should have a greater understanding
of one of the most important parts in a 3D game, the 3D model.

Using the information in this book, you can now load, display, and
animate several different types. No longer will you be stuck with a
substandard model format or even be stuck coding in vertices and
texture coordinates by hand!

Now that you know how to use these 3D models, you can recruit artists
to begin making the content for your new game, freeing you to work
on the programming aspects. You can fix those weird intermittent
crashes every game seems to have, or maybe you can work on some
cool new features to blow your audience out of their seat.

Even if you want to use a format that is not covered in this book, the
information that you have just learned about will still prove valuable.
The basic parts of a 3D model file—vertices, texture coordinates, and
bones or keyframes—are found in nearly every format. All you need to
do is search around for a format spec sheet to find out how the file is
organized and set to work.

Good starting places to find papers detailing different formats include
Wotsit’s Format (http://wotsit.org), the Graphics File Format Page
(3Dhttp://www.dcs.ed.ac.uk/home/mxr/gfx/3d-hi.html), and the “For
Programmers” section of ziron.com (http://www.ziron.com/links/
forprog.htm). Other good places to start looking include the Web site of
the manufacturer of the accompanying program, and even your
favorite search engine such as Google (http://www.google.com).

Best of all, you can use your new-found skills to develop a file format
that fits your needs exactly. Never again be stuck wishing that your
format supported embedded textures, or that it used skeletal anima-
tion instead of keyframes; now you can design your own file type, with
just what you need.

This book is by no means the limit of your 3D adventures. New 3D
model innovations are popping up each day, making games more
realistic and more fun to play. Start taking a closer look at your favorite

TE
AM
FL
Y

Team-Fly®

185Going Above and Beyond

games; chances are you will see something that makes you say, “I wish my
game could do that.” Now, starting with the knowledge you have gained
from this book, you can make it happen. Using the basic principles of
skeletal animation, you can create realistic “ragdoll” systems. Ragdoll
characters and other models move more realistically around the envi-
ronment than traditional. From players sliding down hills, to the dead
bodies of your defeated foes tumbling end over end into the bottomless
pit, your ragdoll system can generate an unlimited supply of realistic
animations on the fly. All without requiring any special animations or
efforts from your poor, overworked, underpaid, stressed out artists.

Are your artists too busy to create variations for each animation such as
walking or jumping? Perhaps you need many animations that are very
similar to each other? Sounds like its time for a procedural animation
system. A procedural animation system will allow you to vary anima-
tions on the fly. Your characters can finally reach toward different spots
on a table, without requiring your artists to create a different anima-
tion for every reach; instead, the artist creates a generic animation.
This animation is then modified by your program to go in the direc-
tion, or perform the exact move you want. Another application of a
procedural animation system is to create more realistic and varied
animations to break the monotony seen in most games. Everyone
knows that a real person does not always walk at exactly the same
speed in exactly the same way, so why should game characters? Using a
procedural animation system, you can modify the speed, and even the
appearance of the walk slightly to give it some variation.

Although these applications may seem subtle, they can greatly enhance
a gamer’s experience.

This is only the tip of the iceberg. There are many other cool and
useful things you can do with your models and their associated code,
even without enlisting the help of a talented artist. The sky’s the limit.

One last thing before you run off to start work on your new game.
Don’t forget to check out the book’s Web site at http://
books.codershq.com. Here you can find additional supplemental code,
errata, even spec sheets and code for loading model formats not
discussed here. Also available on the site are ways to contact people if
you get stuck, or need help flushing out that elusive bug in your code
as well as links to papers and information that can help you create
some of the extra things talked about briefly in this ending chapter.

186 C. Going Above and Beyond

There are even links to free 3D models and data that you can use in
your games and programs.

Okay, let’s get cracking, the game world is waiting for your new innova-
tions, have fun.

For More Information
If you want to go above and beyond the call of duty and implement
features beyond what is detailed here, there are a few sites you should
check out as well as a few books to look into. First the links:

■ http://www.opengl.com: At this official site, you can find out
anything that deals with OpenGL. From a detailed description
of each and every function, to news on OpenGL related topics,
to updated drivers and information on new versions of OpenGL,
this site contains it all.

■ http://nehe.gamedev.net: The place to go to learn the basics of
OpenGL. Jeff (NeHe) Molofee has created a wonderful site
filled with tutorials, demos, and news pertaining to OpenGL.
Many new programmers cut their teeth on OpenGL program-
ming at this very site.

■ http://developer.nvidia.com: At nVidia’s developer’s site, you can
find information to help you optimize your 3D model rendering
and other graphics code. At this site, you can find white papers
on everything from new API features, to special effects, to card
specific optimizations. Definitely a site every graphics program-
mer should visit regularly.

■ http://www.ati.com/developer/index.html: Like nVidia, ATI also has
a section of their site tailored to developers. Here you can find
information related to the ATI card and its features, as well as
how to use it within your programs.

■ http://www.gamedev.net: One of the premier game development sites
on the Internet. Gamedev.net contains many articles and references
for programmers of all skill levels. The forums at Gamedev.net are
also very active and are full of knowledgeable people who can help
you out if you come across a problem you cannot solve.

■ http://www.flipcode.com: Another great game development site,
Flipcode caters more to the intermediate and advanced crowd.

187

Also with a myriad of tutorial and articles, as well as a fairly
active forum, Flipcode should definitely have a space in your
bookmarks.

■ http://www.gamasutra.com: This site contains many types of ar-
ticles, from technical articles on very specific subjects to game
post-mortems that detail what went right and wrong within the
development process of a certain game. This is another must-
visit site for intermediate and advanced game developers.

■ http://www.gametutorials.com: Game tutorials is an excellent place
to learn about specific topics in game development and pro-
gramming in general. Although mostly aimed at the beginning
game developer, there is something for nearly everyone. Tutori-
als are in the form of source code with very extensive comments
to explain what is going on and how it works.

Here are my favorite books on the topic:

■ OpenGL Game Programming (Premier Press, ISBN 0761533303):
A good intro to OpenGL game programming created by some of
the staff of Gamedev.net. If you need to brush up on your OpenGL
skills, this is the book to get. It even creates a small engine and
game that you can expand on.

■ OpenGL Programming Guide, aka The Red Book (Addison-Wesley
Publishing, ISBN: 0201604582). The Red Book is a must for any
serious OpenGL programmer. It goes through the features of
OpenGL in an easy-to-understand manner complete with ex-
ample code and demos.

■ OpenGL Reference Manual, aka The Blue Book (Addison-Wesley
Publishing, ISBN: 0201657651). Another essential book for
when you are dealing with OpenGL. The OpenGL Reference
Manual contains everything there is to know about the standard-
ized OpenGL library. This book is aimed more at the intermedi-
ate and advanced folks, rather than beginners.

■ Game Programming Gems Series (Charles River Media). This excel-
lent series of books is aimed at the advanced crowd. These books
contain everything from language tips and tricks to articles on
AI. They also contain many articles dealing with 3D models and
worlds, including topics such as mesh optimization, cell shading,
shadowing, and progressive meshes.

For More Information

188 C. Going Above and Beyond

What’s on the CD
The CD contains many programs that will help you as you build your
next 3D game. First and foremost are the code and example demos that
show you how to load and use every format in this book, as well as mini-
demos showing off some of the concepts such as skeletal animation and
linear interpolation. All of the code and demos that go with the text are
found in the /Code/ChapterX directory, where X is the chapter number.

Next comes a tool that will make sure you can run all of these demos.
glSetup is a tool that will ensure that your computer contains the
correct OpenGL drivers for your specific video card. This program will
make sure you have the latest drivers for your card, even if your card is
a bit outdated by industry standards. glSetup can be found in the
/Programs/glSetup directory on the CD.

In order to use 3D models, someone must create them, either you or
another artist. To help you or your artist along various modeling
programs, both shareware and freeware are included:

■ MilkShape 3D is one of the most popular shareware 3D model-
ers available. With its capability to import and export many
game specific formats, MilkShape3D (http://www.milkshape3d.com)
is a must-have for any independent game developer. Get a taste
of it by installing the 30-day trial included on the CD, which can
be found in the /Programs/MS3DTrial directory.

■ Another useful modeler is GMax. GMax is a free version of
Discreet’s (http://www.discreet.com) popular 3D Studio Max
modeling package that is specifically tailored to games. Many new
games even ship directly with GMax and the needed plug-ins for
the specific games. It is found in the /Programs/Gmax directory.

■ Recently open-sourced, Blender (http://www.blender.nl) is a
powerful and free modeling package that will export in several
useful formats. It can be used to create amazing 3D models and
scenes. The installer can be found in the /Programs/Blender
directory and the source code can be found in the /Programs/
Blender/Source directory.

■ 3D Canvas (http://www.amabilis.com) is created and sold by
Amabilis Software. 3D Canvas uses an intuitive drag-and-drop
method for creating and editing models. There are several

189

versions of 3D Canvas with prices starting at free. The free
version is what you will find on the CD at /Programs/3DCanvas.

■ Anim8or (http://www.anim8or.com) is another small 3D package.
It can be used to create low-poly models for games and other
applications. It is free and can be found in /Programs/Anim8or/
directory on the CD.

Sometimes you need to convert between different file formats in order
to use specific models in your programs. Deep Exploration is the
program you need here. Created by Right Hemisphere, Deep Explora-
tion offers a drag-and-drop interface and can convert between many
file formats, both 2D and 3D. Deep Exploration can be found in the
/Programs/DeepExploration/ directory.

To make your models less boring, you need to create textures to put
on them. PaintShop Pro (www.jasc.com) and the gimp (www.gimp.org) are
two of the best programs for doing just that. The demo version of
PaintShop Pro can be found in the /Programs/PSP/ directory and the
full, free version of gimp is located in the /Programs/Gimp/ directory.

Because you learned about using Half-Life (http://www.valvesoftware.com)
models in association with the MDL library released with the Half-Life
SDK, it is only reasonable that you can find the rest of the Half-Life SDK
on the CD. Using this SDK you can create your very own Half-Life
modification and try to attract some of the thousands of players that
fire up the game every day to play their favorite modifications.
The /Extras/HLSDK/ is where you want to look for this.

Last, there’s the DirectX SDK (http://www.microsoft.com). Although
none of the demos included actually use DirectX, many game engines
do. You may want to port some of the demos included here over to
DirectX in order to use them in your own engines and games. To do
so, you will need this SDK. It’s a big file, so if you are stuck without
broadband, grabbing the SDK from /Extras/DirectXSDK/ will save you a
lot of download time.

What’s on the CD

This page intentionally left blank

Index

Symbols
3D model formats, 166-168

binary-based, 157

planning, 157-160

text-based, 156-157

writing, 160-161

3D Model World Web site, 70

3D Studio Max Web site, 90

3ds

chunks, 110-112

crashes, 119

faces, 117-119

headers, 112-113

ID numbers, 114

materials, 120-122

meshes, 115-120

objects, 113-115

skins, 122

textures, 119-122

versions, 113

vertices, 116-117

overview, 110-112

rendering, 122-124

Web site, 110

A
absolute matrices, 78

addition

matrix operations, 5

vectors, 15-16

AdvanceFrame() function, 131

Alias Wavefront Web site, 62

angles

quaternions

axis-angle conversions, 32-33

Euler, 24, 31-32

vectors (theta), 18

Animate() function, 55, 103-104

animation

linear interpolation, 161-162

MD2 interpolation, 55-56

MD3, 147

MDL, 131-132

MilkShape3D, 99-101

interpolation, 103-108

parents, 101

rotation, 105-108

setup, 102-103

translation, 104-105

skeletal

absolute matrices, 78

boneframes, 77

demo, 82-84

joints, 75-77

keyframes, 77-78

meshes, 80-82

overview, 72-74

recursive rendering, 78-80

relative matrices, 78

world matrices, 79

arithmetic (vectors), 14-17

addition, 15-16

scalar division, 16-17

scalar multiplication, 16-17

subtraction, 15-16

arrays, vertex, 163-164

Attach() function, 150

attaching multi-part models, 150

AutoDesk Web site, 110

axis-angle conversions (quaternions), 32-33

192 Index

B
binary-based formats, creating, 157

Bind() function, 53

boneframes

MD3, 138-140

skeletal animation, 77

books, 187

building transformations, 11-12

C
CalcFaceNormal() function, 118

calculating

conjugates, 27

normals

faces, 154-155

vertices, 155

CD

matrices, 20-21

overview, 188-189

vectors, 20-21

child joints, 76-77

chunks (3ds), 110-112

crashes, 119

faces, 117-119

headers, 112-113

ID numbers, 114

materials, 120-122

meshes, 115-120

objects, 113-115

skins, 122

textures, 119-122

versions, 113

vertices, 116-117

CImage class, 94-98

classes

CImage, 94-98

CMatrix4X4, 105

CObj, 66

CQuaternion, 105

CTimer, 55-56

CMatrix4X4 class, 105

CObj class, 66

code, 43-46

Coders HQ Web site, 58

cofactors (matrices), 9

color (MilkShape3D), 93-99

commands (OpenGL)

glBegin, 50

glEnd, 51

glPopMatrix, 80

glPushMatrix, 79, 82

glVertex3fv, 50

conformable matrices, 6

conjugates, calculating, 27

converting

MDL, 129

quaternions

axis-angles, 32-33

Euler angles, 31-32

matrices, 28-31

CQuaternion class, 105

crashes, 3ds, 119

cross products (vectors), 19

CTimer class, 55-56

D
data

MD2, 44

MD3, 137

MilkShape3D, 88-89

data storage vectors, 170

demo, skeletal animation, 82-84

determinants (matrices), 8-9

direction (vectors), 13

display lists, 69, 163

division, scalar, 16-17

dot products, 17-18

drawing. See rendering

DrawModel() function, 131

193Index

E
error checking (OBJ files), 67

Euler angles

converting, 31-32

quaternions, 24

F
faces

3ds, 117-119

MD3, 146

MilkShape3D, 90-92

normals, calculating, 154-155

fans (MD2), 56-58

fclose() function, 43

FILE * functions, 39-43

FilePlanet Web site, 129

files. See also specific modeling formats

OBJ

display lists, 69

error checking, 67

format strings, 64

loading, 66-68

overview, 63-66

parsing, 62-63

pointers, 67

prefixes, 64-65

rendering, 68-70

textures, 65-66

vertices, 64-65

Web sites, 69-70

pointers, 39

find() function, 174-176

fopen() function, 39-41

format strings, 62-64

formats. See also specific modeling formats

creating

binary-based, 157

planning, 157-160

text-based, 156-157

writing, 160-161

model, 166-168

fprintf() function, 42

frames

keyframes

linear interpolation, 161-162

MD3, 138-140, 145-146

skeletal animation, 77-78

MD2, 46-52

fread() function, 41-42

FromEulers() function, 105

FromMatrix() function, 141

fscanf() function, 42, 62-63

fseek() function, 42-43

functions

AdvanceFrame(), 131

Animate(), 55, 103-104

Attach(), 150

Bind(), 53

CalcFaceNormal(), 118

DrawModel(), 131

fclose(), 43

FILE *, 39-43

find(), 174-176

fopen(), 39-41

fprintf(), 42

fread(), 41-42

FromEulers(), 105

FromMatrix(), 141

fscanf(), 42, 62-63

fseek(), 42-43

fwrite(), 42

GetMS(), 55

GetSeconds(), 131

Init(), 130

InvRotateVec(), 102

InvTranslateVec(), 102

Load(), 96

OpenGL

glBlendFunc(), 124

glMaterialf(), 97-98

glMaterialfv(), 97-98

Render(), 52, 68-70

194 Index

functions (continued)

RenderT(), 106

SetController(), 130

SetMouth(), 130

SetRotation(), 78, 102, 105

SetSequence(), 130

SetSkin(), 53

SetTranslation(), 78, 102, 106

Setup(), 102

sizeof(), 47

sort(), 173-174

sscanf(), 62-63

ToMatrix4(), 105

Transform3(), 82, 107

Transform4(), 107

fwrite() function, 42

G
GetMS() function, 55

GetSeconds() function, 131

gimbal locks, 25

glBegin command (OpenGL), 50

glBlendFunc() function (OpenGL), 124

glEnd command (OpenGL), 51

glMaterialf() function, 97-98

glMaterialfv() function, 97-98

glPopMatrix command (OpenGL), 80

glPushMatrix command (OpenGL), 79, 82

glVertex3fv command (OpenGL), 50

Google Web site, 184

Graphics File Format Page Web site, 184

H
headers

3ds, 112-113

MD2, 43-46

MD3, 138-139, 143-144

HellPig model, 59

I
ID numbers (3ds), 114

identity matrices, 3-4

indexes (triangles), 48-50

Init() function, 130

initializing MDL, 130

interpolation

animation

MD2, 55-56

MilkShape3D, 103-108

linear, 161-162

multi-part models, 149-150

quaternions, 34-35

inverse matrices, 9-12

transformations, 11-12

transposing, 10-11

InvRotateVec() function, 102

InvTranslateVec() function, 102

J-K
joints (skeletal animation), 75-77

keyframes

linear interpolation, 161-162

MD3, 138-140, 145-146

skeletal animation, 77-78

L
layout (MD2 data), 44

LERP (Linear Interpolation), 34-36

lighting (MilkShape3D), 93-99

linear interpolation, 161-162

Linear Interpolation (LERP), 34-36

lists, display, 69, 163

Load() function, 96

loading OBJ files, 66-68

locks, gimbal, 25

low polygonal format, 108

TE
AM
FL
Y

Team-Fly®

195Index

M
magnitude, 13-14

materials

3ds, 120-122

MilkShape3D, 93-99

Mathworld Web site, 2

matrices

absolute, 78

CD, 20-21

cofactors, 9

conformable, 6

determinants, 8-9

identity, 3-4

inverse, 9-12

transposing, 10-11

MD3, 140-141

minors, 8

operations, 5

addition, 5

multiplication, 6-7

precedence, 7

scalar multiplication, 6

subtraction, 5

orthogonal, 11

quaternions, 28-31

relative, 78

tag structures, 140-141

transformations, 2-3

building, 11-12

vectors, 19-20

world, 79

zero matrix, 3-4

Maya Web site, 62

MD2

animation interpolation, 55-56

data layout, 44

fans, 56-58

FILE * functions, 39-43

file pointers, 39

frames, 46-48

rendering, 50-52

headers, 43-46

overview, 38-39

size, 47

skins, 52-54

source code, 43-46

triangles

strips, 56

vertex indexes, 48-50

vertices, 46-48

MD3

boneframes, 138-140

data, 137

headers, 138-139

keyframes, 138-140, 145-146

matrices, 140-141

meshes, 141-143

animation, 147

faces, 146

headers, 143-144

keyframes, 145-146

rendering, 147

shaders, 145

skins, 145

textures, 147

vertices, 145-146

multi-part models, 148-149

attaching, 150

interpolation, 149-150

rendering, 150-151

tags, 149

tag structures, 140-141

MDL

animating, 131-132

converting, 129

initializing, 130

rendering, 131

196 Index

meshes

3ds, 115-120

MD3, 141-143

animation, 147

faces, 146

headers, 143-144

keyframes, 145-146

rendering, 147

shaders, 145

skins, 145

textures, 147

vertices, 145-146

MilkShape3D, 92-99

skeletal animation, 80-82

MilkShape3D

animation, 99-101

interpolation, 103-108

parents, 101

rotation, 105-108

setup, 102-103

translation, 104-105

data, 88-89

faces, 90-92

low polygonal format, 108

materials, 93-99

meshes, 92-99

vertices, 89-90

Web site, 108

minors (matrices), 8

model formats, 166-168

models. See also specific modeling formats

creating

binary-based, 157

planning, 157-160

text-based, 156-157

writing, 160-161

HellPig, 59

multi-part, 148-149

attaching, 150

interpolation, 149-150

rendering, 150-151

tags, 149

Web sites, 38

multi-part models, 148-149

attaching, 150

interpolation, 149-150

rendering, 150-151

tags, 149

multiplication

matrix operations, 6-7

quaternions, 27

scalar

matrix operations, 6

vectors, 16-17

N
normalizing vectors, 14

normals, calculating, 154-155

notation (vectors), 14

O
OBJ files

display lists, 69

error checking, 67

format strings, 64

loading, 66-68

overview, 63-66

parsing, 62-63

pointers, 67

prefixes, 64-65

rendering, 68-70

textures, 65-66

vertices, 64-65

Web sites, 69-70

objects

3ds, 113-115

STL vectors, 176-179

OpenGL

commands

glBegin, 50

197Index

glEnd, 51

glPopMatrix, 80

glPushMatrix, 79-82

glVertex3fv, 50

functions

glBlendFunc(), 124

glMaterialf(), 97-98

glMaterialfv(), 97-98

operations

matrices, 5

addition, 5

multiplication, 6-7

precedence, 7

scalar multiplication, 6

subtraction, 5

quaternions, 26-28

calculating conjugates, 27

multiplying, 27

rotating, 28

orthogonal matrices, 11

P
parent joints, 76-77

parents, MilkShape3D, 101

parsing OBJ files, 62-63

planning formats, 157-160

pointers

file, 39

OBJ files, 67

STL vectors, 179-181

points, interpolation, 34-35

Polycount Web site, 38

PolyCount Web site, 129

precedence, matrix multiplication, 7

prefixes (OBJ files), 64-65

products (vectors), 17

cross, 19

dot, 17-18

scalar, 17-18

vector product, 19

Psionic Designs Web site, 58

Q
quaternions

animation (MilkShape3D), 105-108

axis-angles, 32-33

Euler angles, 24

converting, 31-32

gimbal locks, 25

interpolation, 34-35

LERP, 34-36

matrices, 28-31

operations, 26-28

calculating conjugates, 27

multiplying, 27

rotating, 28

overview, 24-26

rotation, 26

rotating, 28

SLERP, 34-36

skeletal animation keyframes, 78

unit, 26

R
recursive rendering, 78-80

relative matrices, 78

Render() function, 52, 68-70

rendering

3ds, 122-124

MD2 frames, 50-52

MD3, 147

MDL, 131

multi-part models, 150-151

OBJ files, 68-70

recursive skeletal animation, 78-80

RenderT() function, 106

resources

books, 187

Web sites, 186-187

root joints, 76

rotation. See quaternions

198 Index

S
scalar division (vectors), 16-17

scalar multiplication

matrix operations, 6

vectors, 16-17

scalar products (vectors), 17-18

Schaum’s Outlines Series of Mathematics, 21

searching STL vectors, 174-176

SetController() function, 130

SetMouth() function, 130

SetRotation() function, 78, 102, 105

SetSequence() function, 130

SetSkin() function, 53

SetTranslation() function, 78, 102, 106

setup (MilkShape3D), 102-103

Setup() function, 102

shaders (MD3), 145

size (MD2), 47

sizeof() function, 47

skeletal animation. See also animation

absolute matrices, 78

boneframes, 77

demo, 82-84

joints, 75

child, 76-77

parent, 76-77

root, 76

keyframes, 77-78

SLERP, 78

meshes, 80-82

overview, 72-74

recursive rendering, 78-80

relative matrices, 78

world matrices, 79

skins

3ds, 122

MD2, 52-54

MD3, 145

SLERP (Spherical Linear Interpolation),
34-36

skeletal animation keyframes, 78

sort() function, 173-174

sorting STL vectors, 173-174

source code (MD2), 43-46

Spherical Linear Interpolation (SLERP),
34-36

sscanf() function, 62-63

STL (Standard Template Library) vectors,
170

objects, 176-179

overview, 170-173

pointers, 179-181

searching, 174-176

sorting, 173-174

strings, 62-64

strips, 56-58

structures (tag)

MD3, 140-141

multi-part models, 149

subtraction

matrix operations, 5

vectors, 15-16

T
tags

MD3, 140-141

multi-part models, 149

text-based formats, creating, 156-157

textures

3ds, 119-122

materials (MilkShape3D), 93-99

MD3, 147

OBJ files, 65-66

skins (MD2), 52-54

theta, angles, 18

ToMatrix4() function, 105

Transform3() function, 82, 107

Transform4() function, 107

transformations

building, 11-12

matrices, 2-3

199Index

transforming vectors, 19-20

translation (MilkShape3D), 104-105

transparency (MilkShape3D), 93-99

transposing matrices, 10-11

triangles (MD2)

strips, 56

vertex indexes, 48-50

U-V
unit quaternions, 26

unit vector magnitude, 14

VALVe software Web site, 88

vector product, 19

vectors

angles, theta, 18

arithmetic, 14-17

addition, 15-16

scalar division, 16-17

scalar multiplication, 16-17

subtraction, 15-16

CD, 20-21

data storage vectors, 170

direction, 13

magnitude, 13-14

matrices, transforming, 19-20

normalizing, 14

notation, 14

overview, 12-13

products, 17

cross, 19

dot, 17-18

scalar, 17-18

vector product, 19

STL

objects, 176-179

overview, 170-173

pointers, 179-181

searching, 174-176

sorting, 173-174

versions, 3ds, 113

vertex arrays, 163-164

vertices

3ds, 116-117

faces

3ds, 117-119

MD3, 146

MilkShape3D, 90-92

normals, calculating, 154-155

MD2, 46-48

MD3, 145-146

MilkShape3D, 89-90

normals, calculating, 155

OBJ files, 64-65

triangles, 48-50

vertex arrays, 163-164

W-Z
Wavefront Web site, 62

Web sites

3D Model World, 70

3D Studio Max, 90

3ds, 110

Alias Wavefront, 62

AutoDesk, 110

Coders HQ, 58

FilePlanet, 129

Google, 184

Graphics File Format Page, 184

Mathworld, 2

MilkShape3D, 108

models, 38

OBJ files, 69-70

Polycount, 38

PolyCount, 129

Psionic Designs, 58

resources, 186-187

this book, 185

VALVe Software, 88

Wotsit’s Format, 184

Ziron, 184

Weisstein, Eric, 2

world matrices, 79

World of Mathematics, 2

Wotsit’s Format Web site, 184

writing formats, 160-161

zero matrix, 3-4

Ziron Web site, 184

200 Index

“Game programming is without a doubt the most intellectually challenging field of
Computer Science in the world. However, we would be fooling ourselves if we said that
we are ‘serious’ people! Writing (and reading) a game programming book should be an
exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

Premier Press, Inc.
www.premierpressbooks.com™

Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game
developers around the world create and publish their
games on the commercial market. Xtreme Games helps
younger developers break into the field of game pro-
gramming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of devel-
opers around the world, if you’re interested in becoming
one of them, then visit us at www.xgames3d.com.

www.xgames3d.com

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following
terms and conditions. If, upon reading the following license agreement and
notice of limited warranty, you cannot agree to the terms and conditions set
forth, return the unused book with unopened disc to the place where you
purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on
the software disc. You are licensed to copy the software onto a single computer
for use by a single user and to a backup disc. You may not reproduce, make
copies, or distribute copies or rent or lease the software in whole or in part,
except with written permission of the copyright holder(s). You may transfer the
enclosed disc only together with this license, and only if you destroy all other
copies of the software and the transferee agrees to the terms of the license. You
may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Premier Press to be free of physical defects
in materials and workmanship for a period of sixty (60) days from end user’s
purchase of the book/disc combination. During the sixty-day term of the
limited warranty, Premier Press will provide a replacement disc upon the
return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL
CONSIST ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN
NO EVENT SHALL PREMIER PRESS OR THE AUTHORS BE LIABLE FOR
ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA,
CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARD-
WARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH
OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CON-
SEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PREMIER AND/OR
THE AUTHORS HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSI-
BILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR
TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO
NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITA-
TION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE
LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Indiana without
regard to choice of law principles. The United Convention of Contracts for
the International Sale of Goods is specifically disclaimed. This Agreement
constitutes the entire agreement between you and Premier Press regarding
use of the software.

TE
AM
FL
Y

Team-Fly®

	sample.pdf
	sterling.com
	Welcome to Sterling Software

