

Copyright 2003 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from the publisher.

Publisher: Jenifer Niles
Production: Publishers' Design and Production Services, Inc.
Cover Design: The Printed Image
Cover Images: Paul Steed

CHARLES RIVER MEDIA, INC.
20 Downer Avenue, Suite 3
Hingham, Massachusetts 02043
781-740-0400
781-740-8816 (FAX)
info@charlesriver.com
www.charlesriver.com

This book is printed on acid-free paper.

Paul Steed. Animating Real-Time Game Characters.
ISBN: 1-58450-270-3

All Betty Bad characters © 2002 WildTangent. All rights reserved.

All brand names and product names mentioned in this book are trademarks or service marks of their re-
spective companies. Any omission or misuse (of any kind) of service marks or trademarks should not be
regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks
used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data

Steed, Paul.
Animating real-time game characters / Paul Steed.

p. cm.
ISBN 1-58450-270-3 (paperback with CD-ROM : alk. paper)
1. Computer animation. 2. Computer games—Design. 3. Videogame

characters. 4. Real-time programming. I. Title.
TR897.7 .572 2003
794.8'15—dc21

2002014664

Printed in the United States of America
02 7 6 5 4 3 2 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups, cor-
porations, etc. For additional information, please contact the Special Sales Department at 781-740-0400.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your mail-
ing address, telephone number, date of purchase and purchase price. Please state the nature of the prob-
lem, and send the information to CHARLES RIVER MEDIA, INC., 20 Downer Avenue, Suite 3,
Hingham, Massachusetts 02043. CRM's sole obligation to the purchaser is to replace the disc, based on
defective materials or faulty workmanship, but not on the operation or functionality of the product.

CONTENTS

Preface
Acknowledgments
Foreword
About the Author

xv
xvii
xix

CHAPTER 1 BUILT TO MOVE
Design

Aesthetic Considerations
Technical Considerations
Understanding Reference

Modeling: Form
Using Reference
Basic Modeling Tips
Modeling Techniques
Starting With Primitives
Extruding Shapes Or Faces
Using Booleans
High Resolution Mesh Template
Patch Modeling With Surface Tools
Surface Issues
Optimization

Modeling: Function
Model Breakdown
Animation Accommodation
Neck and Head
Shoulders
Waist
Mips and Rear
Elbows and Knees
Hands and Fingers

1

2

2

4

4

8

8

13

15

15

16

16

17

20

21

29
31

31

32

33

34

35

35

37

37

vii

viii Contents

Wrists and Ankles
Fitting the Biped

Texture: Maps
UVW Coverage
Quality of the Texture

Summary

CHAPTER 2 RIGGING YOUR C H A R A C T E R S WITH BIPED
Setting up a Typical Biped

Steps to Setting up a Biped Rig
Loading Your Character's Mesh
Creating Your Biped
Adjusting the Structure of Your Biped
Adjusting the Biped's Body and Head
Adjusting the Biped's Arms and Legs
Saving the Biped's Pose

Rigging a Four-legged Character
Adjusting the Structure
Adjusting the Body, Head, and Tail
Adjusting the Legs and Arms

Other Types of Character Rigs
A Dog
A Dolphin
A Goat-Girl?

Facial Rigs
Face Rig Level 1
Face Rig Level 2
Face Rig Level 3

A Higher-Resolution Character Rig
Ta Da Vinci or Not Ta Da Vinci?
A Face Rig for a Higher-Resolution Mesh
Adding Bones and Using Different Controllers

Summary

C H A P T E R 3 WEIGHTING A C H A R A C T E R USING MANUAL
VERTEX ASSIGNMENT
A Typical Game Character

Steps to Applying Physique
Applying and Initializing Physique

Contents IX

Assigning Vertices to a Link
Typing in Weighting Values

Removing Vertices from Links
Adjusting the Elbow Area
Working on the Hand and Fingers

Saving Your Weighting Values
Assigning the Neck, Shoulders, and Torso
Weighting the Other Leg
Loading a.Bip File into Biped
Tackling the Hips
Adjusting the Gun Arm

Summary

95
99

105
107

113
116
117
120

123
125
128

133

CHAPTER 4 WEIGHTING A C H A R A C T E R USING ENVELOPES
Conquering Envelopes

Steps to Applying Physigue

Turning Off Unnecessary Envelopes
Adjusting the Radial Scale of the Envelopes
Adjusting the Parent/Child Overlap of the Envelopes
Copying and Pasting to Symmetrical Limbs
Removing Any Vertices from Links

Weighting the Waist, Hips, and Legs
Resorting to Type-in Weights

Assigning the Breast Vertices
Adjusting the Head and Face

Summary

137
138

138

139

144

147

150

153

153

156

158

163

168

CHAPTER 5 THINGS TO CONSIDER BEFORE You ANIMATE
Know Your Character

Appearance Dictates Identity
Uniqueness Required

The Animation Set
Genre
Environment

Size Still Matters
Game Controls
Game Technology

Keyframe or Motion Capture?
Keyframing Defined

171

172
173
174
175
175
177
177
179
180
181
182

I
X Contents

When to Keyframe
When to Use Mocap
Tips on the Mocap Process

Implementing the Character

Perpetual Windup Toy
Fitting the Technology

Summary

CHAPTER 6 KEYFRAME ANIMATION: PART I
First Things First

Footsteps versus Freeform
Think Animation Folder
Preparing the Biped

Keyframe Animation Basics

Frame Zero
The Track View
Configuring Time

Copying Keyframes
Animation Space Buffer
Track View and Active Animation Range

Posing the COM and Limbs
Locking Down the Feet and Hands
Refining the Idle Pose
Tension, Continuity, and Bias
Ease To and Ease From

Keyframes and the Time Slider Bar
Keyboard Shortcut Override Toggle
Secondary Motion
Animating the Tail
Using Layers
Using Time Tags

Summary

CHAPTER 7 KEYFRAME ANIMATION: PART II
Betty's Animations

One Chick, One Gun
Special Moves

Idles
It's All in the Pose
Anchor Keys

Contents xi

Doubling Keys 240

Secondary Motion 243

Join To Previous IK Key 246

The Third Idle 248

Shooting 250

The Firing Pose 250

Adding Recoil 254

The Other Two Idle Attacks 255

Aiming Mechanism 257

Jumps 259

Standing and Running Jumps 259

Implementing the Real-Time Jump 261

See Betty Jump 262

See Betty Jump...Again 267

Turnaround Jumper 268

Jumping while Shooting 273

Using Snapshot for Reference Objects 274

Hitting the Ground Shooting 277

Animation Ideology 280

Swimming 281

Treading Water 281

Creating a Smooth Loop 284

Swimming Forward 286

Summary 292

C H A P T E R 8 USING MOTION CAPTURE 295
Motion Capture Files 296

CSM Format 296

BVH Format 296

Converting CSM and BVH Files 297

Using Key Reduction 299

Deciding Which Mocap Files to Use 305

A Bad Run Animation 305

A Good Run Animation 307

Creating a Looping Run 308

Determining the Loop Length 308

Grabbing the Best Loop Segment 310

Comparing the Loop Segments 314

Doubling the loop 316

Refining the Loop with Layers 317

Creating a Death Animation 325

XII Contents

Using the Motion Flow Editor to Rotate the Biped
Adding Secondary Motion with Layers
Deleting Frames to Increase Impact Effect

Repurposing a Mocap File

Copying Posture
Loading the Getting-Hit Animation
Paste Pose/Posture/Track
Moving the COM
Creating the Firing Motion
Moving the Recoil Closer
Aligning the Right Foot by Moving the COM

Adjusting the Upper Body
Making Adjustments with the Set Multiple Keys Function

Summary

C H A P T E R 9 PUTTING IT ALL TOGETHER
Motion Flow Mode

Preparing an Animation for Motion Flow

Creating the Motion Flow Script
Adjusting Transition Length between Motion Clips

Rotating Motion Clips
The Export Process

Installing the WildTangent 3DS Max 4 Exporters
Creating and Exporting an Actor
Exporting an Actor with Animations

Final Thoughts

APPENDIX ABOUT THE CD-ROM
Recommended System Reguirements
Chapter Directories
Demo Files

Mocap Files

INDEX

PREFACE

G reetings! Thanks for buying or considering this book. Investing
your money in books like this is not an easy decision. There are
many to choose from and many to consider.

My intent in writing Animating Real-Time Game Characters has been to
share my work methods, thoughts, and ideas about animating real-time
characters in 3ds max 4™ and character studio 3®. Any factor that affects
the animation process using these two tools has been covered. Design,
modeling, texturing, rigging, weighting, keyframing, motion capture, and
exporting to a game engine are all in here. Written for the relatively new
or intermediate user of 3ds max, the book isn't just a rehash of the man-
uals and tutorials that came with your software, it's a companion to
them. Make sure that you know your way around 3ds max 4 at a basic
level and that you have at least gone through the animation tutorials in
order to understand the terminology that will be used. Since I usually
wait at least a year after the latest version of 3ds max comes out until I
begin using it, the information presented doesn't include or apply to 3ds
max 5. However, with the exception of a couple of key features, I'm con-
fident that many of the tips and tricks covered will work for 3ds max 3
and 3ds max 5 as well.

To illustrate ideas, tips, tricks, and techniques, I've used several char-
acters from games or projects I've completed over the last year and a half,
but most often I've used a character called Betty Bad from the self-titled
game that was released January 2002 by WildTangent. This is primarily
to show you the thought and work that goes into an implemented game
character. By doing so, I've hopefully given you a snapshot of what I do
every day and have been doing every day for the past nine years: charac-
ter animation. It's not just my job, it's my hobby, passion, and the thing I
love to discuss with others.

However, making sure that this book is useful has been the most im-
portant consideration and goal. Like most of you, I have many other
books on computer graphics and on 3ds max in particular. Unfortunately,

xiii

xiv Preface

only a few of them have that worn, coffee-stained look indicating that
they have been used frequently. This attrition isn't the fault of the au-
thors of those books I only glance through—rather, it's my fault because
I'm very picky, and I often look for something that just isn't there. I'm
very hard to satisfy in my quest for an easier, better way to do something.
That's one of the main reasons I've written this book—there isn't one out
there like it, and in writing it, I'm confident I've reduced the learning
curve for you and shed some light on most of the relevant aspects of
character animation. My unique background and experience give me a
ground-level perspective when discussing the topics covered. I work with
the tools every day.

You've picked this book because you want to learn something useful,
something that will help you animate that gorgeous player model so you
can get it into Quake III Arena™ or Unreal Tournament™. You want to get
just enough insight into character animation so you can meet your dead-
line of creating 36 enemies by March of next year. You don't want any-
thing but a little nudge, a little assistance.

Well, hopefully that's what I've accomplished—I hope to have given
you something that does help and does provide a glimpse into the
trenches of making and animating real-time characters for games. So
please, don't treat this book like a reverent tome of arcane knowledge. I
want you to fold corners, break the spine, and inflict a little tear here and
there, staining it with everything from Starbucks coffee to tomato sauce
or French-fry grease. That way, I know I've accomplished my goal in
writing it.

Good luck, and never stop striving to improve.
Paul Steed
Sammamish, WA

ACKNOWLEDGMENTS

Writing a book is a stressful and difficult task that rarely involves
sleep or fun, but which inevitably becomes a source of pride
and inspiration. I'd like to thank the following people for help-

ing me get through it once again: First and foremost, thanks to Jenifer
Niles and her crew at Charles River Media for their patience and perse-
verance in dealing with a cantankerous author; thanks also to Peter
Lewis, who, after editing my first book, still wanted to be my second set
of eyes on this one; comic book legend Jim Lee, founder of Wildstorm
Productions, for being a constant source of inspiration and a role model
for a successful artist; Joe Madureira for his loan of Red Monika and his
art over the years; Shalom Mann at Sony Pictures Digital Entertainment
for giving me the chance to work on cool projects that made it possible
for me to take the time to write this book; and to WildTangent for letting
me use and abuse my little tough-girl, Betty. Finally, I'd like to once
again thank id Software for the experience, recognition, and opportuni-
ties that I now enjoy.

xv

FOREWORD

M any of you reading this Foreword may be wondering why a
comic book artist such as myself would be writing this—an in-
troduction to a book on computer 3D modeling! Well, to be

honest, there is a bona fide professional angle here, so bear with me. As a
video game "enthusiast," let me be the first to admit that there are a ton
of gamers (read addicts) working in the comic book business and they have
been following with great interest the incredible technological advances
the video game industry has made in recent years. And, yes, that's how I
justify (read rationalize) playing hours of computer games. Research, ya
know!

All the advances in the industry have come about because of faster
CPUs and because of video graphics cards that are drastically more pow-
erful than ever before. More significantly, 3D modeling programs have
become both more intuitive and user-friendly in design and more afford-
able in cost, so everyone now has access to the very same tools with
which to create mindblowingly realistic imagery. But, unfortunately,
having the right tools does not an artist make.

That's why I marvel at guys like Paul Steed—guys who can turn
thought into image into 3D model. A sculptor in virtual space, Paul not
only knows how his 2D images will translate into 3D models, but more
important, he knows how to explain this process in words that a layman
can understand. He cuts through all the terminology and lingo that often
hinder the learning process and gets down to the nitty-gritty of how to
create—and with style.

Back in the days when I was obsessed with learning my craft but had
not yet broken into the comic book business, I often went to the library
and checked out every book on drawing and storytelling that I could. The
one book that made it all "click" for me was by an artist named George
Bridgeman, whose book on life drawing showed me how to see the
human form in ways I did not understand before. It was not a slavish ap-
proach to learning anatomy by memorizing all the names and locations

'
xvii

XVIII Foreword

of the muscles in the human body, but a blueprint to understanding how
the human figure is constructed in basic three-dimensional shapes; it ex-
plained how to maximize the dynamics and power of one's 2D figure
drawings by manipulating the relationships between these shapes in 3D
in your mind.

Paul's books take these same lessons to the next level, teaching us
how to make the leap from 2D to 3D, with impressive results. By taking
the very same tricks and principles of exaggeration we use in comic book
art and applying them to computer 3D modeling and animation, Paul
makes what seems like "real life" bigger and better than the ordinary, in-
fusing his figures with rippling power and striking sensuality. Bigger
shoulders, bigger guns, bigger, um, everything!

But it is finding the line between exaggeration and distortion that dif-
ferentiates the visceral and the sublime from the grotesque. Paul is one of
the modern-day wizards who possess both the talent and the knowledge
to show us the differences between the two. So now, we all have no
more excuses. No more procrastination. No more "researching" Quake III
Arena.

Sit down already and createl We now have the blueprint for how to
do it, thanks to the efforts of Paul Steed.

Jim Lee
La Jolla, CA

:

ABOUT THE AUTHOR

For the past 11 years, Paul Steed has been making computer games
for companies like Origin Systems and id Software. Author of Mod-
eling A Character In Max, Steed is best known for his work on the

best-selling Wing Commander and Quake series. Currently, he runs his own
contracting firm making real-time games and demos for companies like
Sony Pictures Digital and WildTangent, that can be downloaded over the
Internet. He is a regular speaker at the Game Developers Conference in
San Jose, CA and serves as an Advisory Board member for Game Developer
magazine. Paul Steed lives and works in the Seattle area and can be
reached at st33d@nak3d.com.

XIX

Animating Real-Time Game Characters

DESIGN

Agreat real-time game character can be measured by the success of
five elements: the character's design, the model built on that design,
the texture map applied to that model, the animations that bring the

textured model to life, and the sounds that complete the package. Making
sure your character is built to move means that the design is achievable,
the model supports proper form and function, and the texture map is of
the highest quality.

The design is the starting point for constructing the character, and it
needs to be fleshed out clearly on paper, in clay, or in Photoshop™ well
beforehand. Modeling from a vision in one's head is a fortunate and use-
ful skill, but having some sort of physical reference will always ensure the
character stays true to its design. The rendering of the character has to
impart a solid sense of its identity, whether it is a loose sketch or tight dia-
gram. At the same time, a great sketch that looks fantastic and imparts a
unique and interesting identity also has to be doable. It has to work within
the given restrictions of the game technology being used, and it has to fit
stylistically in the game world into which it's going to be dropped. There-
fore, there are three primary things to keep in mind when you design
your character: aesthetic considerations, technical considerations, and reference.

Aesthetic Considerations

An aesthetic consideration refers to your sense of the appearance or beauty
of something and is basically just another term for what you determine to
be "cool." Age, taste, education, favorite movies, favorite games, and fa-
vorite artists factor into the equation. Anime and Manga are particularly
good sources of creative inspiration for real-time characters, especially
the work of traditional modeler and awesome character designer, Yasushi
Nirasawa. Some other memorable fantasy and sci-fi artists to check out
are Oscar Chichoni, Brom, Simon Bisley, Luis Royo, WarHammer™ artist
Kevin Walker, and Mutant Chronicle™ painting studs Alessandro Horley
and Paul Bonner. They all have a dynamic art style and a great sense of
weight with their characters.

While everyone has their own definition of what pleases their eye,
there are some common factors that can apply to and/or guide the aes-
thetics of game character design. First, the design should be unique yet
adhere to whatever written description has been attached to it. Even if
intentionally derivative ("Make the character like the character from

Chapter! Built to Move 3

Game X. . ."), it can still be cool and have an identity of its own—if
enough time and thought are put into it. Uniqueness applies to not only
a comparison of characters done before, but also of other characters
within the same game. Using different color combinations is an easy way
to distinguish characters, but one of the most effective ways to keep your
characters distinctly recognizable is the silhouette principle. Figure f . l il-
lustrates the design differences between a few of the enemies from Betty
Bad™.

FIGURE 1.1 Visualizing a character in silhouette helps achieve uniqueness and should always be a

part of the design process.

A trick used to group a set of unique characters is to develop rules and
characteristics for the character(s) being designed. In Betty Bad, for exam-
ple, the alien bad guys vary in size and configuration, but always have the
common design element of a glowing dot for an eye or orifice. Most of
the time the dot is red, but occasionally it appears in other colors. Figure
1.2 shows just a few of the plethora of characters that renowned painter
and production designer-for-hire, Richard Hescox (www.richardhescox.com},
came up with during the development of Betty Bad that have this com-
mon design thread.

Another important consideration is whether a character's design suc-
cessfully fits whatever genre the game is being placed under, whether

FIGURE 1.2 Some character designs need to differ while maintaining common design
elements.

Animating Real-Time Game Characters

that is sci-fi, fantasy, or Western. Finally, the polygon count of a charac-
ter impacts its design, although this is also an important technical consid-
eration. Because of real-time characters' polygonal nature, highly organic
or sinewy shapes and flowing cloth or hair elements are very difficult to
pull off convincingly in a character that is built with less than 1,000
triangles.

Technical Considerations

As mentioned earlier, a polygon count restriction is a technical consider-
ation that has a definite impact on the design. However, the number of
polygons varies per platform and application of the real-time character.
The difference that 1,000, 2,000, and 5,000 triangles make in a charac-
ter's design is huge, but ultimately a good artist will accomplish plenty
with whatever budget is handed to them. Games played on the new con-
soles like Xbox™ and PlayStation 2™ are seeing characters that have up
to (and sometimes more than) 5,000 polygons. However, main characters
seen in PC-based real-time games played over the Internet need to be
anywhere from 500 to 2,000 triangles. In addition to the lower polygon
limit, many games use what's known as level of detail (LOD) to give the
game engine fewer polygons to render at a given distance. This means the
character is created in versions with a high, medium, and low LOD. Fig-
ure 1.3 illustrates the typical difference between three successive levels of
detail.

Another technical consideration that impacts design is how the char-
acter is implemented in the game engine itself. Some games use vertex de-
formation for their animation system, which means that each frame of
animation is a keyframe for the vertices in the mesh of the character to de-
form to or interpolate to. This effectively ties the animations more closely to
the frame rate set by the artist in whatever animation tool was used (such
as 3ds max). Other systems use a skeletal animation system, as in Half
Life'™ and Betty Bad, where the animations rely on an underlying bone
structure and on time instead of frames to play back animations. Any of
these systems could also rely on an actual structural limitation where the
head would have to be a separate object from the torso, which in turn
would have to be separate from the legs. This sort of breakup of the char-
acter prevents any sort of uni-bodied or contiguous mesh approach.

Understanding Reference

Now that you are armed with all the data you need for creating a charac-
ter, it's time to generate some reference to build it. There are two ap-

Chapter 1 Built to Move

FIGURE 1.3 Level of detail (LOD) helps puts fewer constraints on the character
design by giving the game engine fewer polygons to render at various
distances.

proaches to reference: loose and tight. The choice of approach relates
more to pose and finality than anything else, and each method is really a
personal preference of the modeler. Betty Bad was created using the loose
approach (Figure 1.4).

"A tough, sexy heroine with an attitude and maybe a gun integrated
into her combat armor with a look that's reminiscent of the ABC Warrior
seen in the British 2000 A.D. comics and the Judge Dredd movie."

The level of reference in that description was enough to build the Betty
Bad character. If the artist building the model has the freedom to design it,
this sort of loose reference works fine. If, however, the character being
built has to conform to a known character, then a different sort of reference
is needed. To attain the requisite level of accuracy when called for, it's best
to think of your reference as more of a diagram than a drawing. While the
action-pose approach works for most modelers, it always runs the risk of

6 Animating Real-Time Game Characters

FIGURE 1.4 The loose approach was chosen for creating Betty Bad.

something being lost or modified from the designer's original vision when
it's used as a basis for building the mesh. For example, look at several pan-
els that feature a character called Red Monika (Figure 1.5).

She's the extremely buxom femme fatale from the Image Comics
book by Joe Madueira called Battle Chasers. Building a character model
for this design requires a tighter reference approach than a very stylized
comic book illustration. A character diagram needs to be created (Figure
1.6).

The bottom line when it comes to reference is that you should go
with what feels most comfortable to you. If scribblings on a napkin work
for you, and the modeler is okay with it, then go for it. If, however, ex-
treme accuracy is required, then go with a more schematic or dia-
grammed approach. It will ensure that the modeler nails the design
exactly true to the character.

Chapter! Built to Move 7

FIGURE 1.5 These drawings of Red Monika are nice to look at, but not very good references from which to build a

model.

FIGURE 1.6 This shows a tighter, more diagrammatic approach to reference—and the result.

8 Animating Real-Time Game Characters

MODELING: FORM
Great character animation relies on the foundation of a well-built model
that adheres to and successfully translates a well thought-out design into
3D. The most important aspect of a model in this regard is its form. Sug-
gesting mass and identity, form is defined by the proper distribution of
vertices, edges, and faces. A great real-time character model uses all
geometry succinctly and efficiently—every vertex counts. However, the
first step in attaining the proper form is to make use of that reference you
spent so much time creating.

Using Reference

There are several ways to utilize reference images in 3ds max. You can
bring one into the background view, map it onto a plane in the scene, or
you can even bring it up via the Asset Browser in the Utilities command
panel (Figure 1.7).

FIGURE 1.7 The Asset Browser in 3ds max allows you to view images in any directory.

Chapter 1 Built to Move 9

Seeing your reference in via the Asset Browser works well because it
gives you the ability to see both the mesh and the image it's based on as
you build; however, the best way to use your reference images is to make
them into a 3D outline. To do this, bring the image into 3ds max as a back-
ground image. Then, using the Line tool, trace the image, creating a 3D
version of the reference drawing or picture. Note that you first need to
prepare your drawing before bringing it into 3ds max by darkening and
re-sizing it in Photoshop or your 2D program of choice (Figure f .8).

FIGURE 1.8 Prepare the reference before bringing it into 3ds max as a background
image.

You can see in Figure f .8 that the original sketch of Betty has been
darkened, her leg has been repositioned to make it more useful to the
modeler, and the image has been re-sized to have a "power of two" as-
pect ratio (in this case, 512 x 256). These extra steps ensure the best
image fidelity when brought into the 3ds max background using a ma-
chine with hardware acceleration.

Bring the image into the background by going to the Views pull-
down menu and clicking on Viewport Background (or just hit Alt-B).
Load your reference in by clicking on the Files button at the top of the
Viewport Background menu and finding the appropriate image file. Once

10 Animating Real-Time Game Characters

the file is loaded, make sure the Match Bitmap, Display Background, and
Lock Zoom/Pan boxes are all checked (Figure 1.9).

FIGURE 1.9 Bringing an image into the viewport background in 3ds max is very easy.

Click OK, and the image should appear in the viewport background
at the correct aspect ratio and at a fixed size relative to the viewport nav-
igation controls. If your construction grid is visible in the viewport, you
may want to turn it off so you can see your image better; you can do this
by hitting the G key.

If for some reason the image does not appear when you try to bring it into the view-
port background, go back up to the Viewport menu and click on Update Back-
ground Image or hit Alt-Shift-Ctrl-B (Figure 1.10).

Once the background image has been successfully brought into 3ds
max, trace it using the line tool under the Create I Shapes panel. Make

Chapter 1 Built to Move 11

FIGURE 1.10 Sometimes the background image needs a little
jumpstart to show up.

sure the Start New Shape box is unchecked, so you don't end up with a
bunch of separate lines (Figure 1.11).

FIGURE 1.11 Uncheck the Start New
Shape box to avoid the step of
attaching the lines together later.

Don't worry about the complexity of the line as you create it, since it
will only be used as reference.

12 Animating Real-Time Game Characters

Hitting the I key centers the view on wherever the cursor happens to be. In the case
of tracing an outline, it allows you to create continuous lines without having to
right-click and pan over to the area you 're trying to get to.

Once the image has been traced, turn off the background image, re-
name the line to "Guide," and use the outline shape to help create your
model in whatever view you desire (Figure 1.12).

FIGURE 1.12 A 3D line representation of the reference sketch helps you in any view.

Modeling in one viewport by toggling the Wkey is the best way to stay up-close and
personal with your work. You can even get rid of parts of the menus to give you
more room by hitting the 3 key. If you 're really the daring type, hit Ctrl-X to make
all but the very top menu bar disappear.

Bringing reference images into 3ds max is easy once you have them
saved on your computer's hard drive. However, unless you've created

Chapter 1 Built to Move 13

them in a paint or graphics program like Photoshop, you need to use a
decent flatbed scanner to bring in a digital copy (scanners continue to
come down in price, and buying one is an investment that will pay off
over the years). Using your reference, however you bring it into 3ds max,
will always result in a more solid and accurate representation of your de-
sign. It's the first step in attaining and maintaining form. Once you have
your reference finalized, you can move on to modeling.

Basic Modeling Tips

The following are some general modeling tips that apply to almost any
modeling program:

Build a character one part at a time. Concentrate on one particular
area and make it look like you want it to before moving on to the next
area. Model the head until you are happy with it, and move on to the
torso. Don't be afraid to even build a body part and save your work as
a completely separate file. You can always merge it into your main
character model file any time you want. This approach works for ele-
ments of individual parts as well. Build a perfect nose, or a perfect
eye, or a perfect ear, or the perfect boot. Make your own body shop if
you feel like it!

Cannibalize when you can. Why always model a character from
scratch? It's important to be able to build an original character model
from start to finish at least once or twice to go through that pain and
reward, but try to avoid reinventing the wheel. In fact, always keep
future characters in mind as you build any model. When you reach
the point in the model's development at which it's complete yet
generic enough to use in the future, save that file separately for ref-
erence and move on. Having this "stable" of body parts and whole
characters to draw upon saves you work, and more important, it
saves you time.

Work in one window. Use up as much screen space as you can when
modeling. Having multiple windows or views open is necessary
sometimes, but don't lean in and squint at your work. Bouncing back
and forth between views should be as easy as hitting the F (front), L
(left), R (right), or T (top) keys as needed.

Build in halves. If the geometry of your design is at all symmetrical,
build a bisecting line into it as you work. This enables you to build it
in halves: build one half, then copy, flip, and join the copy to the
original first half. In addition to saving time and effort during
the building process, this technique also saves time and effort in the

14 Animating Real-Time Game Characters

texturing process as well (more on texturing later). By creating a ref-
erence when mirroring a copy of the geometry you're working on,
you can effectively build both halves at the same time using a refer-
ence of the half. A reference is just what it sounds like. It's a copy, but
whatever you do to the original half is reflected on the copy. This
gives you a better picture of how a symmetrical mesh is coming along
as you build it (Figure 1.13).

FIGURE 1.13 Modeling by halves in 3ds max is greatly assisted by using a reference.

Make every vertex count. Always keep this thought in the back of
your mind when modeling. More about this is covered in the Opti-
mization section later in this chapter, but it's a very important thing
to remember and think about.

Make the modeling program your own. This relates to any sort of
customization you apply to your modeling package and to your use
of any hotkeys that speed up your work. Make the tool work for you

Chapter 1 Built to Move 15

instead of the other way around. The more comfortable you are in
your modeling environment, the better your work will be, and the
faster it will get done.

Stick with what works. While it's occasionally useful to experiment
with alternate ways to do things in a program like 3ds max, don't be
afraid to stick with what works for you. Modeling and animation is as
much affected by the modeler's personality and his comfort with a
technique as by any other factor. Everyone has their own methods
and their own reasons for using those methods. Never feel guilty for
only scratching the surface of a modeling program. The end result is
all that's important: a great model.

Modeling Techniques

In 3ds max (as in other modeling packages), there are always multiple
ways to accomplish the same goal. When it comes to modeling real-time
game characters, polygon modeling is usually the best approach. Patch mod-
eling is particularly useful when creating organic or soft-surface geometry
like hair, cloth, or an undulating surface like water. Other modeling
methods, such as non-uniform rational B-splines (NURBs) and sub-di-
vided surfaces, are valid and valuable tools but are more appropriate for
rendered characters than real-time characters. Modeling at the base level
and sub-object level by manipulating vertices, edges, and faces is the ab-
solute best way to maintain control of the overall face count and, more
important, the form of your character model.

Some of the more common polygon modeling methods include start-
ing with primitives, extruding shapes or faces, using Booleans, and even
using a higher resolution model as a template upon which to bui ld a
lower resolution model.

Starting With Primitives

This method is an approach to modeling that employs a "just give me
enough real estate to work with" mentality. All modeling packages have
a great quantity of primitives that you can create and shape as you want,
such as boxes, cylinders, and spheres. One of the best examples of this
modeling technique is the use of a cylinder in combination with your ref-
erence guideline to build a leg (Figure 1.14). First, the cylinder needs
enough sides and segments (A) to go up each row of vertices (segments);
they are roughly scaled and rotated to fit the guide (B). After adjusting
the shape in the front view to fit that guide perspective, the leg geometry

16 Animating Real-Time Game Characters

is adjusted further with edge divides, and with turns and vertices moved.
The shape is thus optimized and completed (C) .

FIGURE 1.14 Primitives can be shaped into the basic form and then adjusted as needed.

Extruding Shapes Or Faces

Using extrusions are another common method for modeling your charac-
ter. Figure 1.15 shows how extruding a shape and extruding faces are the
quickest ways to build a shoulder pad for Betty Bad. The pad is started by
creating an outline of a shape that approximates a cross section (A). Then
an Extrude modifier with three segments is applied to it, and the shape is
extruded outward to give it depth (B). Next, an Edit Mesh modifier is ap-
plied to align the vertices and select the faces at the top of the shoulder
(C) . The selected faces are then extruded upward to match the desired
shape via the sub-object Extrude button (D) . Finally the shape is ad-
justed, optimized, and slid into place (E).

Using Booleans

The use of Booleans is another useful way to model. The technique in-
volves joining, subtracting, or taking the result of the intersection of two

Chapter 1 Built to Move 17

FIGURE 1.15 Extruding both outline shapes and faces are great ways to model.

objects in order to arrive at the desired shape. It is a useful method for sit-
uations such as merging limbs with a torso or joining legs to a pelvis. The
only drawback to using Booleans is that they create excess geometry that
has to be cleaned up. For example, look at Figure f .16. Once Betty's hips
and legs are built and completely closed (A), they're positioned so they
intersect one another (B) . After they're joined together using a "union"
Boolean, there's an unnecessary geometry created (C). Cleaning up the
geometry, adjusting the shape, then mirroring the proper faces gives
Betty her legs (D).

Whenever performing Booleans, make sure all your geometry is closed beforehand.
Use the Cap Holes modifier or manually build faces to close any openings. If you

don't close these open areas, the Boolean may not work, or the results may not be
quite what you expected.

High Resolution Mesh Template

If you have access to higher resolution models, you might try using one
as a template. They're much too high in polygon count to use in a real-
time character situation, and the work it would take to optimize them is
too crazy to even consider. But what if you could trace a low-poly mesh
on top of the high-resolution model, as if you were tracing a photograph
onto onionskin? This really just takes the concept of using reference to its
logical conclusion. That is, if you had the ability to take a person or action

18 Animating Real-Time Game Characters

FIGURE 1.16 Booleansare messy to clean up but a fast way to join geometry.

ON THE CD

figure/maquette and shove it into your 3ds max scene to use as a guide
to build a model, you would. Think about it—it would be the perfect
reference!

Of course, building a mesh in this way requires a high-res mesh. Go
to the Chapterl directory on the CD-ROM that comes with this book, and
load Boot.max to see the process firsthand (Figure 1.17).

The trick to modeling, as illustrated by our boot sample, is to first iso-
late the proper vertices integral to the boot's shape. A good rule of thumb
to remember is that the number of vertices that make up a mesh are ap-
proximately half the number of faces. Once you have a target range of
how many faces you want to spend on the new lower resolution model,
just keep the isolated vertices down to half that number (1,000 faces =
500 vertices).

On the Sub-Object panel there is a counter for selected sub-objects such as vertices,
edges, and faces (Figure 1.18).

Chapter 1 Built to Move 19

FIGURE 1.17 Using a high-res mesh to build a lower-res mesh is a very fast way to model.

FIGURE 1.18 The Sub-Object panel gives you a convenient count of
any selected sub-objects.

20 Animating Real-Time Game Characters

Using a high-res mesh to build a low-res mesh can be considered an
optimization technique, technically, but really involves more building
than reducing.

ON THE CD

Patch Modeling With Surface Tools

Another approach worth mentioning (although it's not really a polygonal
modeling method) is the use of Surface tools. This is a spline-based, patch
modeling technique in 3ds max, which is ideal for making hair and other
organic geometry because the mesh is created using adjustable splines.
Load Hair.max from the Chapterl directory on the book's CD-ROM (Fig-
ure 1.19).

FIGURE 1.19 Surface Tools is a great way to make organic geometry like hair.

The Surface modifier allows you to turn a spline cage or referenced
spline cage into a parametric mesh. In the Hair.max file, move the ver-
tices of the splines on the right and watch how the geometry of the mesh
to the left is affected. This use of a referenced object is key to the utility of
Surface.

Chapter 1 Built to Move 21

When working with spline cages, turn the Weld threshold down to 0 instead of the
default I; this prevents you from receiving the annoying "Weld Coincident End-
points? " message that pops up if you move any segments or splines (Figure 1.20).

FIGURE 1.20 Lower the Weld threshold to
avoid an annoying message prompt.

The 3ds max software comes with an excellent tutorial that shows
the application of the Surface modifier. Experiment with this powerful
modeling tool and you'll quickly find yourself using splines to make hair,
or even a character. The ability to dial in different resolutions may even
result in the target triangle count you need for your character.

Surface Issues

After a model is built, and even during the building phase, it's a good idea
to examine the surface, or faces, of the mesh for flaws that can be fixed.
Paying attention to issues relating to the surface of a mesh helps attain
the goal of good form. The first issue to address is bad edges. If there's a
"dent" in the mesh where there shouldn't be, turn the edges necessary to
complete the illusion of mass. Otherwise, the surface will have a slight (or
severe) imperfection.

It's easier to identify bad concave edges if you view your model in a flat-shaded in-
stead of smooth-shaded viewing mode. Just right-click on the name of the view-
port in the upper left-hand corner, and select Facets (Figure 1.21).

Load Edge.max from the Chapterf directory on this book's CD-ROM
(Figure 1.22).

22 Animating Real-Time Game Characters

FIGURE 1.21 Right-click on the viewport name
to change the shading mode in 3ds max.

FIGURE 1.22 Turning edges is an important part of keeping a model's surface integrity.

Go to a flat-shaded viewing mode and examine the Edge.max model
in a Perspective viewport. Toggle the Edit Mesh modifier (renamed to
"edge turn") on and off to see the difference the turned edges make.

Chapter 1 Built to Move 23

Turning them results in a surface that looks smoother and more uniform,
which achieves a more effective sense of solidity.

The default 3ds max lighting works fine when seeking out surface imperfections in
your mesh. Just use Arc Rotate (Ctrl-R) to catch highlights and shadows, rotating
your view around the mesh to see any edges that need turning.

Applying a Smooth modifier to a model is the quickest way to remove its smooth-
ing groups and give it a faceted look as well. That way, even if you 're in a smooth-
shaded viewing mode, the model will always \ookflat-shaded (Figure 1.23).

FIGURE 1.23 Applying a Smooth modifier
to a mesh results in stripping its
smoothing groups (at first).

Speaking of smoothing groups, most real-time game engines have no
way of recognizing different smoothing groups in a mesh unless the ver-
tices that make up a triangle are detached. This is an unfortunate yet eas-
ily remedied shortcoming of the technology. Load Betty0l.max from the
Chapterl directory on this book's CD-ROM (Figure 1.24).

In BettyOl.max, select the mesh, toggle the Edit Mesh modifier on
and off to see the effects that merging the geometry at the rear has in re-
gards to the smoothing, and then delete the modifier. Betty's mesh avoids
problems with over-smoothing by having geometry that intersects each
other and forms a crease where the faces meet, creating a more realistic
look without the vertices being merged together. This technique works
particularly well for cleavage on female characters.

24 Animating Real-Time Game Characters

.9k
FIGURE 1.24 Smoothing groups are occasionally a pain in the behind.

A more popular way to overcome the automatic assigning of one
smoothing group to all the faces of a mesh by a game engine is to manu-
ally detach the faces and reattach them only at certain points. This gives a
selective smoothing group effect that works within the constraints im-
posed by the real-time game engine. Load Betty02.max from the Chap-
ter 1 directory on the book's CD-ROM (Figure 1.25).

Fix Betty's face in Betty02.max by detaching and re-attaching certain
polygons. Switch to wireframe viewing mode, then select and apply De-
tach to Element to the faces shown in Figure 1.26.

Hitting the F2 key will make selected faces appear solid and more visible. Hit F2
again to go back to normal selection mode.

By default, the command panel on the right is a single column in
which you can pan up and down. Another way to display it, however, is
to make it into two columns. Do this by putting your cursor over the right
edge of the viewport window (the left edge of the panel) until you see the
horizontal window re-size arrow. Then click on the edge and drag left
(Figure 1.27).

Chapter 1 Built to Move 25

FIGURE 1.25 One smoothing group applied to Betty's face doesn't look too hot.

FIGURE 1.26 Select these faces on the head to detach and then re-attach.

26 Animating Real-Time Game Characters

FIGURE 1.27 Resizing the menu makes the sub-menus more accessible.

This effectively opens up the menu so you won't have to continually
scroll up and down to find the right sub-menu. Next, select the vertices at
the perimeter of the group of faces you just detached; leave the Weld Se-
lected value set at the default 0.1, and weld the selected vertices by click-
ing on the Selected button (Figure 1.28).

Rotate your view so you can look through the back of the head
geometry. Note that the faces around the nose are made apparent by the
lines where no lines should be visible (Figure 1.29). This indicates de-
tached faces and/or vertices.

Lines can be seen through objects only when Backface Cull is selected in the object's
Properties menu.

Next, you're going to select the triangles of the upper lip and Detach
them to Element. Making the upper lip a detached element eliminates
the strange-looking uni-smoothing effect, making the surface around the
mouth look more realistic (Figure 1.30).

Now turn the smooth-shading mode back on and you should see that
the surface of the face looks a lot cleaner and the features are more dis-
tinguishable (Figure 1.31).

Chapter 1 Built to Move 27

FIGURE 1.28 Select and weld these vertices only.

FIGURE 1.29 Lines seen through the back side of a mesh indicate that the vertices are detached.

28 Animating Real-Time Game Characters

FIGURE 1.30 Detach the triangles of the upper lip to their own Element.

FIGURE 1.31 With the smoothing broken up manually, the surface of the face looks better.

Chapter 1 Built to Move 29

Again, the reason for this "detach and reattach" process is because
most real-time engines ignore the smoothing groups you assign in 3ds
max and apply their own form of smoothing as they draw your charac-
ter's mesh while rendering. This is the only way to simulate multiple
smoothing groups. Constantly policing edges and smoothing groups this
way is mandatory if you want to attain the best surface form for your
character's mesh.

Optimization

While fixing smoothing anomalies and correcting dents or divots by turn-
ing wayward edges is a one way to keep things tight, another aspect of
form is making sure the model is optimized and efficient. "Efficient"
means making every vertex count—a vertex only exists to support the shape
of the design. Real-time characters are always built and animated under a
polygon budget constraint, so extra vertices that just exist and don't carry
their share of the load translate into unnecessary triangles that could
push you over your limit.

Use the Polygon Counter found in the Utilities panel in 3ds max to keep track of
your polygon count. It allows you to enter a target limit for the number of faces in
your character and uses an easy coloring scheme to tell you when you 're ap-
proaching your target face count. (Figure 1.32).

Load Vertex.max from the Chapterl directory on the book's CD-
ROM and toggle the "vertex weld" Edit Mesh modifier on and off to see
the effects of just a few vertex welds used to manually optimize the mesh
(Figure 1.33).

Since the pectoral region of a male character deforms very little, if at
all, it's a prime candidate for optimization and can be made with a rela-
tively simpler geometry compared to the triangle-demanding deltoid/
shoulder area. In 3ds max, you can quickly weld two vertices by selecting
them and raising the Weld threshold to an excessively high number
(such as 10 or even 100, depending on your character's scale) before
clicking the Weld Selected button. Target Weld is another way to merge a
vertex to any of its neighbors.

Although there is an Optimize modifier (and the very useful Multi-
Res Mesh modifier) to take care of basic optimizing situations, it's better
in most cases to optimize manually. It's a little slower than simply press-
ing a button, but it gives you ultimate control over the (sometimes)
painful reduction process.

30 Animating Real-Time Game Characters

FIGURE 1.32 The Polygon Counter tool can help you stay within your face count budget.

FIGURE 1.33 Optimizing a mesh ensures the target face count is maintained.

Chapter 1 Built to Move 31

The Multi-Res Mesh (MRM) modifier is a great "quick-and-dirty " reduction tool
because it gives you the power to keep UVW mapping coordinates (UVW will be ex-
plained later in the chapter) and specific vertices while optimizing the rest of the
mesh. It's especially good at making LODs quickly!

Regardless of how you get rid of unnecessary vertices, you can never
be too critical when eradicating them. Even if the face-count budget is
high, don't let yourself be sloppy. Hunting down and eliminating stray
vertices that don't contribute to shape definition will keep the model at
its most efficient, giving other areas of the game (such as weapons, ef-
fects, environment) even more triangles to use. This keeps the quality
level and speed of the game as high as possible.

MODELING: FUNCTION
If the aspects of form dictate the shape of the real-time character, func-
tion applies to the shape as it deforms during animation. Function is a very
important area to consider when building your character model. After all,
real-time game characters aren't statues frozen for all time, unmoving as
they're admired for their artistry—they have to animate convincingly like
living creatures. They need to twist, stretch, bend, and generally deform
properly as they go through their motions, and all with a limited number
of polygons. To be properly functional, the character mesh needs to be
broken down both to allow access to vertices during the weighting
process and to conform to any technological constraints imposed by the
game engine. Most important, however, the mesh needs to accommodate
animation geometrically and be correctly aligned to a Biped in character
studio™ during the rigging and weighting phase.

.
Model Breakdown

In a real-time game environment, it's a good general rule to make the
characters as consolidated a mesh as is possible, allowing the game engine
to process fewer pieces. This means the character model is comprised of
the fewest number of separate objects.

Load Betty03.max from the Chapterl directory on the book's CD-
ROM. Notice the breakdown of the mesh. The left arm and torso (includ-
ing the right shoulder) are one object (A); the head, right arm, and left
leg are one object (B); the hips, abs, and right leg are one object (C); f i -
nally, the gun tip (D) is one object (Figure 1.34).

32 Animating Real-Time Game Characters

FIGURE 1.34 A mesh needs to be comprised of the least number of objects as possible.

Betty's mesh is broken up the way it is for two reasons: game design
and ease of access during weighting. Originally, the end of Betty's gun
was supposed to switch between two tip designs, based on which config-
uration or energy type she chose. Although the idea was scrapped, the el-
ement stayed separate (just in case). The rest of the objects are separate
solely for ease of access during the weighting process. There's no point in
struggling with locating and isolating vertices that are painfully close to
each other if it can be helped. The choice between making your job easier
and taking the risk of a performance hit due to the multiple objects is a
calculated decision that comes from experience more than anything else.

To change the color of a mesh, simply click on the small colored box to the upper
right (Figure 1.35).

Animation Accommodation

Gross functionality of a character's mesh depends on its structure; how-
ever, in order for a character to support or accommodate animation prop-
erly, it must have enough vertices and faces in key areas to avoid
unsightly crimping or collapsing. This section covers the various areas of a
model that need special attention when your character will be animated.

Chapter 1 Built to Move 33

FIGURE 1.35 It is easy to change the mesh color of an object.

Neck and Head

Accommodating the neck and the head is straightforward enough. The
head is always attached to the Biped head completely and, unless the char-
acter talks, is a single mass that swivels on the neck joint. The neck gen-
erally doesn't have to deform too much with the head atop it, but
sometimes the uppermost vertices can deform slightly as the head turns.
You don't have to put a lot of work into this unless the character has a
long flexible neck (Figure 1.36).

FIGURE 1.36 The head and neck bend easily without your having to add too much additional geometry.

34 Animating Real-Time Game Characters

Shoulders

The shoulder of an animated character is perhaps the most difficult area
to work with. Unfortunately, it's a very complex mechanism that is hard
to approximate with much success in a game character, even in a higher-
poly character. If possible, take the easy way out and make the arms de-
tached, using an "action figure" approach, and just stick the arm and
shoulder to the torso. Hiding the arms underneath armor is another way
to avoid the amount of effort it takes to deform a shoulder area properly
(Figure 1.37).

FIGURE 1.37 Take the easy way out and hide shoulders under shoulder pads.

In a higher polygon count character (4,000 to 6,000 triangles), it's
possible to create an accordion/fan arrangement of faces so the shoulder
deforms well in both the front view (Figure 1.38) . . .

FIGURE 1.38 The shoulder needs to retain as much of its shape as it can when the arm is
both up and down.

Chapter 1 Built to Move 35

. . .and the top view (Figure 1.39).

FIGURE 1.39 Side to side movement needs to be accommodated as well.

Shoulders not only require a lot of experimentation to get them
right, but they're different from character to character. The key to suc-
cessful shoulder geometry is to retain as much of its shape in as many po-
sitions as possible, while making sure it looks right from the most
commonly seen poses.

Waist

The waist is easy enough to animate. Just make sure you have included
enough triangles and that they're positioned properly to support twisting
and bending the trunk (Figure 1.40).

Hips and Rear

The hips and rear areas are sometimes just as problematic as the shoulder
area and need to support a full range of motion for the legs. The main
area you need to worry about is the rear area; make sure that as the
upper leg moves forward and backward, the shape of the gluteus max-
imus stays solid (Figure 1.41).

36 Animating Real-Time Game Characters

FIGURE 1.40 Make sure the waist has enough geometry to support twisting and bending.

FIGURE 1.41 The hips and rear areas need a little extra geometry to support leg
animations.

Never have the upper legs join in the groin area. Keep a gap at the
groin to ensure the legs will look right when they're in motion. This is es-
pecially true for martial arts moves. Pay special attention, too, to the front
part of the hips where the Biped upper leg attaches to the pelvis.

Chapter 1 Built to Move 37

Elbows and Knees

Elbows and knees abide by the same rule: When the arm bends (or the
leg bends), there has to be enough geometry to prevent it from collapsing
in on itself (Figure 1.42).

FIGURE 1.42 Keep the shape of the joint intact by using extra geometry that "fans" out when limbs bend.

Hands and Fingers

Actual fingers (that is, individual digits) are rare on real-time game char-
acters. They're usually in the shape of "mitts" that can be textured to look
like fingers (Figure f .43).

FIGURE 1.43 Mitts are the rage with most real-time game characters.

However, when you can add fingers, you must also add knuckles to
accommodate animation, in the same way that elbows and knees need
extra faces at the joint (Figure 1.44).

38 Animating Real-Time Game Characters

FIGURE 1.44 Talk to the hand . . . Betty's five-fingered hand, that is.

Wrists and Ankles

Wrist and ankles require very little extra geometry. There are usually
plenty of polygons that enable them to keep their shape, and they can be
forgiven if they deform incorrectly sometimes (Figure 1.45).

Sometimes, however, it's necessary to add an extra row of vertices
along the top of the wrist if you find your character bending his hand
down often. This is also true for the back of the ankle.

As you build your characters, always think about the areas that will
be deforming as they animate. Ultimately, the best way to see which
areas need extra triangles is to attach the mesh to a Biped, weight it, and
animate it. Only after going through this process will you really under-
stand the where, when, and why of how your model accommodates the
animation.

Fitting the Biped

There's one last topic to cover when it comes to function: aligning your
mesh to the Biped you'll be attaching it to. The joints of a Biped rotate on

Chapter 1 Built to Move 39

TEXTURE: MAPS

FIGURE 1.45 Wrists and ankles usually don't need extra geometry to hold their shape.

a pivot. The base of the fingers and the toes can be moved around and
any of the limbs can be scaled to fit any geometric shape. But there's only
so much you can do (and want to do) to the underlying skeleton. To as-
sure proper function, sometimes it's necessary to adjust your mesh to fit
the Biped. All this really entails is shifting some vertices around so they
align with the joint they'll be affected by (Figure 1.46).

Because the Biped is created after the mesh is done, there's really no
way to know what kind of "tweaking" needs to be done until the mesh is
complete. However, never be afraid to make adjustments to your mesh
during any part of the animation process.

Texture maps are another major consideration when ensuring a real-time
character is "built to move," and they contribute significantly to the over-
all success of the character. Texture maps are the image files applied to
the mesh to give the illusion of being a realistic character. There are two
distinct elements that make up a good texture map: UVW coverage and the
quality of the texture.

UVW Coverage

Mapping coordinates correlate to three spatial mapping axes that are
known as UVW. (They could have been given any series of letters, but are

40 Animating Real-Time Game Characters

FIGURE 1.46 Slight tweaks to the geometry near the joints are occasionally necessary to ensure the mesh deforms
correctly.

so named to precede XYZ in the alphabet. X, Y, and Z, of course, represent
the three spatial axes of the Cartesian coordinate system.) No matter how
good an artist you are, without the proper stretched canvas to paint upon,
the work of art you strive for might not look even or square—the same is
true for the real-time game character. You must ensure that the mapping
coverage assigned to your character is complete, thorough, and efficient to
give yourself the best canvas upon which to create your texture.

The following is just one way of many to apply mapping coordinates
to a model. It's effective, but feel free to explore other techniques as well.
First, visualize your model in pieces, seeing it as a collection of flat images
arranged in 3D that approximate the look you're after. The flat images
represent mapping planes or projections of the texture map that when
merged together on one big sheet, are an "unwrapping" of your model.

Load Headl.max from the Chapterl directory on the book's CD-
ROM (Figure 1.47).

Chapter 1 Built to Move 41

FIGURE 1.47 After the model is built, it needs to be textured.

The mesh shown in Figure 1.47 is the head of a higher polygon charac-
ter model. Detach to Element has been applied to its faces; they serve as
"sheets" of polygons that, in turn, represent a unique planar projection.
The process of applying the mapping coordinates starts with making sure
these elements are really detached and can be moved around (Figure 1.48).

Arrange all the elements so that they face the Front viewport with
the maximum amount of exposure. This way, the viewport essentially
becomes a planar mapping window. Use Snap (Snap to vertex) to put the
elements in place, but be as careful as possible to keep the vertices aligned
just as they were while whole.

It is very important to make sure you apply an Edit Mesh modifier before re-ar-
ranging the elements. This technique relies on the ability to turn the Edit Mesh
modifier off once the UVW Map and Unwrap UVW modifiers have been applied.
It's easy to just start moving the elements around without applying an Edit Mesh
modifier to the stack.

42 Animating Real-Time Game Characters

FIGURE 1.48 Arrange the elements as if they were unwrapped like an orange peel.

Next, select the vertices at the edge of those elements that you want
to be joined to form a continuous surface. Then bring up the Scale Trans-
form Type-In window by selecting and right-clicking on the Scale Trans-
form icon (Figure 1.49).

FIGURE 1.49 The Transform Type-In menu is a great
way to precisely scale, move, or rotate objects or
sub-objects.

Enter 0 in the Offset Screen box and the selected vertices will in-
stantly shrink in, occupying the same space without being welded. Unfor-
tunately, you absolutely cannot weld or otherwise merge the vertices of
the elements in this state; it would defeat the purpose of the technique
because it changes the overall number and numbering of the vertices of
the mesh. This ability to scale the vertices down by typing in a scale of 0
is one of the benefits of using this mapping technique instead of just the
Unwrap UVW modifier. After the vertices are all scaled down and the el-
ements are "joined" together, the mesh should look like Figure 1.50.

Use multiple Edit Mesh modifiers to lay out the elements. Just make sure no sub-
object is selected when the new modifier is applied—this would affect the end result
negatively.

Chapter 1 Built to Move 43

FIGURE 1.50 Scale the border vertices of the elements so the mesh is a continuous surface.

With the mesh now a continuous surface, there will be no seams in
the texture coverage. However, the end elements are curved and also
need to seam or "tile." To do this, simply slide the element on the right
over to the left side along the X-axis, and scale the vertices where the two
elements meet (Figure 1.51).

FIGURE 1.51 Align the end elements to make the mapping connect at the back of the
head.

Finally, arrange the rest of the elements so the mesh has a completely
tiled and covered mapping scheme (Figure 1.52).

Another advantage of this mapping technique is that you can assign a
wireframe material to the mesh and render it to whatever resolution you
want.

44 Animating Real-Time Game Characters

FIGURE 1.52 The mesh is ready to receive mapping assignment.

When rendering a mesh that has a wireframe material applied to it, the edges need
to be selected and made visible (Figure 1.53).

FIGURE 1.53 Make an edge visible in order
to see it when rendering in wireframe.

With the mesh splayed out like a Mercator projection of Earth, it's
time to apply a UVW Map modifier to the mesh. Change the mapping
gizmo's dimensions to be square in order to accommodate an eventual
512x512 texture map (Figure 1.54).

The size of the image isn't really important at this point. The most im-
portant thing is the fact that the mapping gizmo is square. In other words,

Chapter 1 Built to Move 45

FIGURE 1.54 Apply the UVW Map modifier once the elements have been arranged.

by being square, the mapping will eventually be able to conform to the
"powers of 2" rule (that is, a 512 x 512 or 256 x 256 texture page). Ren-
der at a high enough resolution to go down to the target resolution in-
stead of up.

Once the map has been applied, apply an Unwrap UVW modifier to
lock the mapping coordinates to the mesh. Render a wireframe image or
make a snapshot of the screen in order to have a base image to apply to
the mesh, and work from it as you create the real texture. Once the ma-
terial is made, apply it, turn off all the Edit Mesh modifiers (leave the
UVW Map and Unwrap UVW modifiers on, of course); the mesh snaps
back to its original shape, yet keeps the new mapping coordinates. This
allows you to see if there's any streaking in the mapping coverage. If
there is, just turn the Edit Mesh modifiers back on and adjust (or simply
adjust in the Unwrap UVW modifier). Once the coverage is good, it's time
to start making the real texture.

46 Animating Real-Time Game Characters

Quality of the Texture

Achieving a great texture map when making real-time game characters is
as subjective a process as they come. The truly great artists just start
painting and don't stop until their digital opus is complete. Texture artists
like John Mueller and Steve Garofalo of Epic Games have done (and con-
tinue to do) amazing work on character models for games like Unreal
Tournament and the upcoming Unreal Warfare. Their innate ability to ma-
nipulate pixels and textures just as if they were painting with traditional
color mediums is an inspiration to their peers.

Making a good texture means you know your mesh. In an ideal envi-
ronment, you design the character, you build the character, you texture
the character, and you animate the character. However, in the fast-paced
world of making games and online content, it's rare to have the luxury
(or the ability) to master all four areas. The more preferable scenario is
one in which the artist who designs the mesh hands it off to a modeler to
create; the modeler then hands it back to the artist who designed it so he
can texture it. The modeler or another animator can be the one to rig,
weight, and animate the character from there. This sort of "hand off"
process is standard in Hollywood special-effects houses. Unfortunately, in
most game development studios, everyone is expected to do everything.
Specialization is generally discouraged, and all artists are supposed to be
able to design, model, texture, and animate a character equally well. This
is generally not a good situation, productively or otherwise, because it
pits artist against artist, each one vying to be the best artist and the ulti-
mate content-creation contributor. It's bad for morale, and it's bad for the
health of any sneaky, ambitious types.

Every artist has his preference and area of specialization. Some are
simply better at certain areas than others. Spreading yourself thin by try-
ing to be a "perfect 10" at all levels of game art creation is an admirable
goal, but ultimately a bad idea. Certainly you need to know all the areas
in question and be competent in them, but this is where teamwork comes
in. Four artists who excel at each of the four major areas individually cre-
ate the best art team imaginable: designer, modeler, texture artist, and
animator. A two-artist team, a designer/texturer and a modeler/anima-
tor, are a must. Each artist knows enough about the areas outside his ex-
pertise to make his partner's job easier, but focuses on making sure his
responsibilities are met above and beyond expectation.

Regardless of who does the art, it needs to be as good as it can be and
fit the real-time game character to which it's been applied. It has to fit on
as few texture pages as can be managed, which reduces the strain on the
game engine as it's loaded into a scene. It has to also make use of opacity,

Chapter 1 Built to Move 47

reflection, or even bump-mapping capabilities if they are available. With
that in mind, load up Head2.max from the Chapterl directory on this
book's CD-ROM, and examine the final mapping applied (Figure 1.55).

FIGURE 1.55 Texture maps with opacity maps can create a convincing head and hairdo.

Note that the UVW coordinates have been changed to take advantage
of the mirroring function within the Unwrap UVW modifier. In this case,
the texture map applied to the head shows half the image in black be-
cause the rest of the character's texture will eventually have to fit on the
texture page as well. Betty Bad's texture arrangement is similar and gives
a look at how an entire character is mapped (Figure 1.56).

Both the textures shown in Figure 1.56 were created in Photoshop
and applied to the meshes in iterative steps: Texture a little, see how it
looks; tweak the map, tweak the mapping coordinates; repeat until done.
Bouncing back and forth between Photoshop and 3ds max is easy if you
have a powerful machine (or more than one machine), but keep in mind
that using both programs at the same time will be a severe drain on your

48 Animating Real-Time Game Characters

FIGURE 1.56 Betty Bad's texture map efficiently fills the texture page.

system's resources. There are also 3D paint programs like Right Hemi-
sphere's Deep Paint™ that can significantly help in the texturing process.

When it comes to the quality of the texture map, talent, thought, and
sense of efficiency will determine the success of the art. Make sure the tex-
ture holds up while animating. Texturing a shadow on the inside of a
character's thigh might look great in a static environment, but if it's lit and
shaded dynamically (as is the case in most game engines), that same
forced shadow can look out of place and affect the quality of the character.

SUMMARY
A great real-time game character can be broken down into five different
elements: design, model, texture, animations, and sound. In order for the
character to be built to move, its design, model, and texture have to suc-
ceed in specific areas. The design has to be well thought-out, unique,

Chapter 1 Built to Move 49

appropriate, and doable within the technological constraints of the game
engine into which the character will be dropped. Then, a suitable and
useful reference needs to be created and made available to the modeler so
that the character can be taken from 2D to 3D.

When it comes to modeling, the success of the character's mesh relies
on attaining superior form and function. Form is the integrity and artistry
of the mesh, and it gives the impression of solidity and weight while ad-
hering as closely as possible to the design. Factors to consider while striv-
ing for proper form are accuracy, efficiency, and surface quality. Because
the character is built for a real-time game, polygon modeling techniques
are best. Whether you start with primitives, use extrusions, Booleans, a
higher resolution mesh as a template, or even patch modeling tech-
niques, make sure every vertex is necessary to define the form—make
every vertex count. Function is achieved when the mesh is broken down
properly for both texturing and animation and it accommodates the anima-
tions imposed upon it by deforming correctly. Key areas like elbows,
knees, and other areas of the body must have the right distribution of
vertices and faces to support movement.

Finally, the texture has to be both technically correct and ar t ful ly
done. The only way to end up with a great texture is to start with ade-
quate and complete texture mapping coordinates. No matter which
technique you use to apply the mapping coordinates to your character,
make sure the canvas is big and laid out properly before painting your
masterpiece.

RIGGING YOUR
CHARACTERS WITH BIPED

C H A P T E R

2

52 Animating Real-Time Game Characters

N early all real-time game characters are animated using some sort
of skeletal animation system. This means the character has its
geometry, or "skin," with an underlying "skeleton" to deform the

"skin." Just as your skin doesn't move on its own, rarely will you animate
a character's mesh on its own. Of the character studio package's two con-
stituent parts, Biped and Physique, the former serves as the skeleton and
the latter (in conjunction with the character's mesh) serves as the skin.
The act of setting up a Biped to align correctly with and properly deform
your character's mesh is commonly known as rigging your character.

SETTING UP A TYPICAL BIPED

In 3ds max, using a Biped is preferable to the indigenous bones, because
it's a quick and easy way to create a character's underlying rig, complete
with inverse kinematics (IK), joint constraints, and adjustable parameters
for everything from number of fingers to adding a tail. The primary ben-
efit of using a Biped, however, is file-sharing. This applies to its default
pose as well as both keyframe and motion-capture data. It's a huge asset
to be able to create that perfect pose, walk, run, or jump and then use it
with any and all of your other characters.

Steps to Setting up a Biped Rig

1. Load your character's finished mesh and freeze it.
2. Create a Biped and put it into Figure mode.
3. Roughly align the Biped to your mesh by selecting and moving the

Center of Mass (COM), making sure the pelvis lines up appropriately
in all views.

4. Rename and adjust the Structure of your Biped.
5. Move, scale, and rotate the Spine objects into position in all views.
6. Hide all the limbs of one side of the character.
7. Adjust the remaining arm, starting with the clavicle and moving your

way down.
8. Adjust the remaining leg by starting with the thigh and moving your

way down.
9. Unhide all Biped objects, then copy and mirror the pose of the limbs

to their unposed counterparts.
10. Save the character's pose as a .fig file.
11. Turn Figure mode off, and save the Biped's default position as a .bip

file.
12. Your rig is now ready to be attached to your mesh.

Chapter 2 Rigging Your Characters with Biped 53

Loading Your Character's Mesh

Load Betty04.max from the Chapter2 directory on this book's CD-ROM
(Figure 2.1).

FIGURE 2.1 The first step to rigging your character is loading it into 3ds max.

There are several things you should note about the mesh. First, all
the parts have been colored differently so you can quickly tell them apart,
and their respective stacks have been collapsed. Also, the mesh objects
are presumed to be the final version and won't be substantially altered in
the future. This is very important, because once a mesh has been attached
to a Biped, detaching it to make structural changes deletes any of the pre-
vious weighting information.

Even though it's best to have a completely textured, final mesh before attaching it to a
Biped rig, more experienced modelers and animators always find it a good idea to do
some test runs with the geometry before applying texture. Adding and deleting geom-
etry to a mesh once the mapping coordinates have been applied sometimes makes a mess
of those coordinates. Waiting to lay the UVWs in untilyou 're sure the geometry is going
to work will display prudence and foresight gleaned only through experience!

Note also that the names of the parts are descriptive: m_torso,
m_headarmleg, m_gunarm, m_gun, m_energy, and m_fanvent. The

54 Animating Real-Time Game Characters

"m_" in front of the object's name ensures that the mesh objects stay
grouped together when bringing up a hit list. It also quickly differentiates
a mesh object from a Biped object.

As mentioned in the previous chapter, game characters need to be
made up of as few objects as possible to ensure the best performance by
the game engine. Also, it behooves you to keep certain elements de-
tached and spaced away from each other for easier access during the
weighting phase of rigging your character. M_headarmleg is an example
of how you can kill two birds with one stone and guarantee the best ac-
cess to the vertices. It's a pretty unlikely mesh object, but it reduces the
number of objects necessary for the character's mesh (Figure 2.2).

FIGURE 2.2 Sometimes unlikely elements form an object in a character's mesh.

Another reason to group certain elements together (or keep them
separate) is to support materials/shaders. Some game engines can't han-
dle a Multi/Sub-Object material, so some objects need to be separated by
virtue of the material/shader assigned to them; this can be due to the de-
sired shader effect, or to the fact that the objects are referencing different
texture files (Figure 2.3).

In Betty's case, m_gun, m_energy, and m_fanvent are all detached,
because they've all been assigned a material that uses a different texture
file than the rest of the character. However, m_headarmleg, m_torso, and

Chapter 2 Rigging Your Characters with Biped 55

FIGURE2.3 When materials assigned to a character reference
different bitmap images, the objects those materials are
assigned to sometimes need to be separate.

m_gunarm are detached purely for purposes of making life easier when
weighting the character.

Unhide all the mesh objects and freeze them. Doing this always
makes it easier to adjust the Biped you're about to make without inad-
vertently selecting the mesh you're fitting it to.

Creating Your Biped

Go to the Create panel, click on the ' Systems icon and click the
Biped button to activate it (Figure 2.4).

Put the 3ds max arrow cursor at the frozen feet of Betty's mesh, hold
the left mouse button down, and drag upward until the green box en-
compasses her head. Let go of the mouse button, and voila! You've made
a Biped! (Figure 2.5)

In order to act as terminators for the IK solutions, Bipeds need dummy objects
linked to the end of their fingers, the top of the head, and the ends of the toes. When-
ever you create a Biped, these dummy objects are automatically hidden. However, if

56 Animating Real-Time Game Characters

FIGURE 2.4 Creating a Biped is as easy as clicking on the Biped button.

FIGURE2.5 With the Biped button active, drag the green box up until it covers the mesh.

Chapter 2 Rigging Your Characters with Biped 57

for some reason they're not hidden, go to the © Display panel and check the
Helpers box under Hide by Category (Figure 2.6).

FIGURE 2.7 In order to fit your Biped to a mesh,
it needs to be in FIGURE mode.

With no animations applied to the Biped, putting it into Figure mode
has no noticeable effect, but now you have the ability to adjust its Struc-
ture to fit your mesh. To center the Biped in the world coordinate system
(and over the character's mesh), select the root of the Biped, the COM
object (the small, blue, diamond shape near the pelvis box), make the
Move icon active, and right-click on it to bring up the Move Transform
Type-In menu (Figure 2.8).

Double-click in the white portion of the
and hit Enter. If the number won't take and the Biped doesn't budge,
make sure the active move axis is X (hit the F5 key), and try it again.
With the Biped centered and nestled somewhat inside your character's
mesh, you can begin. . .

FIGURE 2.6 Keep a Biped's dummy objects hidden
since there's never a need to animate these "Nubs."

Now, in order to fit the Biped precisely to your mesh, you need to put
it into Figure mode. Think of this special state for a Biped as the default
pose or "time-out" pose that is used to tweak the rie before, durine. and
after animations have been applied to it. Go to the Motion panel and
put your Biped in Figure mode by clicking on the "little man" icon, mak-
ing it purple (Figure 2.7).

X-axis entry, type in 0,

58 Animating Real-Time Game Characters

FIGURE 2.8 The Move Transform Type-In menu
quickly and accurately moves objects.

Adjusting the Structure of Your Biped

Before adjusting the individual parts of a Biped (such as moving, rotating
or scaling), you need to adjust its basic Structure. Begin by giving the
Biped a name. Open the Structure rollout menu while in Figure mode.
Go over to the Root Name box, select the name BipOl, and rename it to
"Betty" (Figure 2.9).

While it's definitely not mandatory to name your Biped, it's a good habit to get into
in case you have more than one in your scene.

Look over the rest of the Structure sub-menu and enter the values
shown in Figure 2.10.

Unless your character doesn't need arms, leave the box beside Arms
checked. The Neck Links value is usually 1 unless your character has a ser-
pentine neck. The Spine Links values vary, but go ahead and stay with 4
(more on this later). Leg Link values are 3 by default (a value of 4 is sup-
posed to support a tri-legged character—but more on this later as
well).Keep Tail Links, Ponytaill Links and Ponytail2 Links values at 0.
Give Betty a Fingers value of 5 and Finger Links value of 3. Only give her
a value of 1 for Toes and Toe Links (most characters only need one toe and
one toe link). The Ankle Attach value is normally fine at whatever value it
defaults to, but feel free to experiment with different values if you like.

FIGURE 2.9 Any name you put in this field
renames the COM and all its children.

Chapter 2 Rigging Your Characters with Biped 59

FIGURE 2.10 The Structure sub-menu controls the
basic configuration of the Biped.

The Height value is basically irrelevant, because you've roughly pro-
portioned the Biped to fit the mesh, but it is a good way to double-check
your character's scale. Know beforehand how big your character will be
in its game world, and adjust the height accordingly. As for the Triangle
Pelvis box, just keep it checked.

Make sure that the height for both your character and Biped is correct before you
go through the effort of attaching your mesh to its Biped rig. Adjusting the Biped
height (especially with additional bones attached) after it's been attached doesn't
uniformly scale the character down, but instead squishes it in an unacceptable (al-
though funny) way.

Adjusting the Biped's Body and Head

With the basic structure now established, it's time to start adjusting the
Biped so that it lines up with the mesh. Begin with the body's trunk areas
since they drive and parent the limbs. Hide the arms (except for the clav-
icles) and the lower leg objects of the Biped. Zoom in on the pelvic area,
select the COM, and move it upward until the bottom of the pelvis lines
up with Betty's groin. Make sure the thighs are relatively centered in the
mesh legs (Figure 2.11).

60 Animating Real-Time Game Characters

FIGURE 2.11 Align the Biped's pelvis with the top of the character's groin.

The pivot point for the thighs are at their top, so envision your char-
acter's legs bending from these points. Widening the pelvis by applying

Non-Uniformly Scale to it along the
tachment point move further away from the center accordingly.

Double-clicking any parent of a Biped causes all the children objects to be selected
as well. This makes it very easy to select all the children in a limb hierarchy, for

example.

Next, select the four Spine objects, scale them down along the X-axis,
and move them so the clavicles end up relatively near the shoulder junc-
ture. Make sure the top of the first Spine object ("Betty Spine") is close to
the point where the waist would normally bend. Go to the Right view-
port, and apply the
until they conform to the posture of the mesh (Figure 2.12).

The axis coordinate system for a Biped is unique in that it remains constant re-
gardless of the coordinate system chosen in 3ds max. For most Biped parts, scaling
along the X-axis lengthens the objects, scaling along the Z-axis widens it, and scal-
ing along the Y-axis makes it thicker (as seen from the Front view). Rotating along
the Z-axis results in a bending forward or backward for most Biped objects, but

Z-axis; this makes the legs' at-

Rotate function to the spine links, moving them

Chapter 2 Rigging Your Characters with Biped 61

FIGURE2.12 Make sure the Biped's Spine objects are aligned to the mesh in all viewports.

there are exceptions. Overall, this different coordinate system definitely (ahem)
takes getting used to.

For the Head and Neck objects, just try your best to match their size
and angle to the mesh, remembering that the head's pivot point is di-
rectly beneath it. When the trunk is done, it's time to move on to the
arms and legs.

Adjusting the Biped's Arms and Legs

Unhide everything and unfreeze the mesh objects. Hide m_gunarm,
m_gun, m_energy, and m_fanvent, then re-freeze m_headarmleg and
m_torso. Hide all left-side limb objects, the torso, and neck and head ob-
jects of the Biped. In character studio, if your character has symmetrical
limbs, you only have to pose one side, due to the plug-in's powerful capa-
bility to copy and mirror objects' positions. It's also always a good idea to
keep your work as uncluttered as you can, so hide any extraneous geom-
etry; this allows you to more quickly pose what is there (Figure 2.13).

Before fitting the Biped to your frozen mesh, make sure the settings for the Biped
arms and legs (fingers and toes, too) found under the Structure rollout menu are
final. To see why, do the following: First, put your Biped in Figure mode. Second,

62 Animating Real-Time Game Characters

FIGURE 2.13 Hide any geometry and any objects that are unnecessary in posing one side
of the character's limbs.

select and hide any arm or leg Biped object. Third, go to the Structure rollout menu
and change the number of fingers or toes. Poof! All Biped objects disappear.

Start with the leg, since it's made up of fewer objects than the arm.
Use the regular transform methods to scale and rotate it into place (Fig-
ure 2.14).

Character studio offers another way to adjust the knee, ankle, elbow, and wrist
joints: Rubber Band mode. To use it, just click the Rubber Band Mode icon to
make it active, select the parent bone of the joint you want to move (for example,
the upper arm Biped object for the elbow joint), and move the joint into place (fig-
ure 2.15).

Hide the leg and then adjust the arm, starting with the clavicle and
working your way down. Since the clavicle is the root of the arm hierar-
chy, make very sure it's where you want it to be before moving on to the
rest of the arm. To adjust the hand and fingers, select the hand, go to a
Perspective view, and center the hand by hitting the
icon. Then zoom in and adjust the fingers one by one, matching them up
to the mesh (Figure 2.16, page 64).

Zoom Extents

Chapter 2 Rigging Your Characters with Biped 63

FIGURE 2.14 Align the leg to the mesh by scaling, rotating, and/or moving it into place.

FIGURE 2.15 Rubber Band mode is another way to adjust the major Biped
joints.

The first Spine object, as well as the Clavicle, Finger, and Toe objects, can be moved
anywhere, because they take their pivot point with them. The rest of the Biped ob-
jects are anchored to their parent. This gets a little problematic with the Clavicle ob-
jects, because you 're faced with the choice of moving them or rotating them to get the
arm into the correct pose. As a general rule, it's best to rotate and scale them, rather
than move them away from the neck.

Unhide everything hidden, re-freeze any character mesh objects, and
then experience one of the coolest parts of character studio: copying and
mirroring limb poses. Here's how it works. Double-click on the right
(green) clavicle to select all the arm bones. Go over to the Keyframing

64 Animating Real-Time Game Characters

FIGURE 2.16 Adjusting the arm is easiest when the rest of the Biped objects are hidden.

sub-menu on the Motion panel and click on the
As soon as you do this, the two icons below it will become selectable, be-
cause you've effectively pasted data onto your pose "clipboard" (Figure
2.17).

FIGURE 2.17 The Copy Posture function of character studio is a
powerful animation ally.

Click the icon to the right (Paste Posture/Pose/Track Opposite) and
the left arm bones assume the pose of the right arm bones. Double-click
the right thigh, and repeat for the legs. As soon as your poses are copied
over, you have a perfectly symmetrical stance (Figure 2.18).

Copy Posture icon.

Chapter 2 Rigging Your Characters with Biped 65

FIGURE2.18 Betty's Biped rig is almost done.

Now, unfreeze the mesh objects, and hide everything but the Left
Arm Biped objects as well as m_gunarm. Freeze the mesh object again,
and rotate your view so you're looking at the left arm at the elbow,
with the cylinder of her weapon arm seen from the side. Turn your
grid off by hitting the G key so you can see your work more clearly (Fig-
ure 2.19).

With Betty's left arm, mirroring the pose of the right arm was close,
but not exact. Because of the weapon system integrated into her armor,
the elbow joint is encased in some sort of mechanical device, so the fore-
arm has to travel as if it's locked into that mechanism. Thus, the elbow
joint needs to originate from the center of the cylinder, as seen from the
side in Figure 2.19 and Figure 2.20, and the arm itself has to line up more
precisely with the orientation of the cylinder. Since the hand and fingers
of the left arm won't be animated,
they're very small. This will make it harder to inadvertently select them
when visible (Figure 2.20).

That wraps up Betty's Biped adjustments. If you want to see what the
final results should look like, load Betty05.max from the Chapter2 direc-
tory on this book's CD-ROM. Study the file and think about how you
would approach your own unique character (Figure 2.21).

Uniformly Scale them down so

66 Animating Real-Time Game Characters

FIGURE2.19 Hide unnecessary geometry before making final tweaks on the left arm.

FIGURE 2.20 Now the slightly asymmetrical left arm objects fit the mesh better.

Chapter 2 Rigging Your Characters with Biped 67

FIGURE2.21 Load BettyOS.max to study her Biped rig.

Saving the Biped's Pose

The final step in building that rig for your character is to save it. You
should do this two ways, and in two character studio file formats. First,
with your Biped still in Figure mode, go over to the Biped menu and click
on the
lows you to save your Figure mode pose as a .fig file (Figure 2.22).

Fi!e name: '•$£$&,

Save as type: 1 Figure Files (' FIG)

FIGURE2.22 Make sure to save your fig file for later reference.

68 Animating Real-Time Game Characters

Next, as added insurance, go out of Figure mode and save your cur-
rent pose again, this time as a .bip file. Do this by once again hitting the
Save File icon (Figure 2.23).

FIGURE 2.23 Saving the non-animated, posed Biped as a .bip file provides
you with a handy reference pose.

That's it for a typical game character rig like Betty's. Now look at
some other character types that can be rigged with Biped.

RIGGING A FOUR-LEGGED CHARACTER
Biped works great for a normal game character, but what about a four-
legged, insectoid alien creature bent on the subjugation and consumption
of mankind? In Betty Bad, our feisty, busty heroine must overcome the
onslaught of an alien species as it tries to overrun a deep space asteroid
mining complex, eating every miner in sight. A recurring and tough hom-
bre is Widge. He and his cloned brethren are the main fodder for Betty's
ZU88 OmniGun.

Load Widge 1.max from the Chapter2 directory on this book's CD-
ROM (Figure 2.24).

Adjusting the Structure

In the Front viewport, create a Biped about 200 units in height that is
placed to the side of Widge (Figure 2.25).

Since you're going to be scaling the Biped rather severely, don't worry
too much about the base dimensions—the composition of the structure is

Chapter 2 Rigging Your Characters with Biped 69

FIGURE 2.24 This is Widge, the alien invader.

FIGURE 2.25 The basic Biped will be changed so drastically that its initial size is
unimportant.

70 Animating Real-Time Game Characters

FIGURE 2.26 The structural configuration of a
four-legged Biped is slightly different.

more important. Put the Biped into Figure mode and enter the values
shown in Figure 2.26 in the Structure sub-menu.

Rename the Biped to "Widge." Of course the arms are necessary, so
leave the Arms box checked. Widge's body bends in the middle only, so
enter 2 for Spine Links. The Leg Links value is 3. Tail Links are necessary,
so enter the maximum number of links you can have in a Biped: 5.
Widge won't have hair, let alone ponytails, so leave the Ponytail boxes
each set at 0.

The 3ds max tutorials, reference books, and even other third-party animation books
suggest using Ponytail Links for a jaw or mouth rig. However, this is a bad idea be-
cause character studio is very demanding on your processor and RAM. Adding

more indigenous bones to the Biped rig just makes the program work that much
harder. Instead, create a box and link it to the Head object, since any objects in 3ds
max can be used as bones and they are much less demanding on your CPU.

Adjusting the Body, Head, and Tail

Go to the Top viewport, freeze Widge's mesh objects, hide the Biped Arm
objects, and begin adjusting his Biped by positioning and re-orienting the
COM and pelvis (keep the legs unhidden to better see the pivot point
where they meet the pelvis). Scale the pelvis so that the upper thigh at-
tachments match the joints in the mesh. Go to the Right viewport, bring
the Biped down so it's inside the mesh, then tilt the pelvis slightly by ro-
tating the COM (Figure 2.27).

Chapter 2 Rigging Your Characters with Bi 71

FIGURE 2.27 Begin adjusting the four-legged Biped by aligning the COM and pelvis.

Next, hide the legs so they're out of the way, and adjust the Tail ob-
ject links so they correspond to the segments in the mesh. (Figure 2.28).

FIGURE 2.28 Align the Tail object links to the natural breaks in the mesh.

Next, adjust the Spine, Neck, and Head objects by scaling and rotating
them into position. The neck really isn't important or necessary, so scale
it down along the X-axis to make sure the Head object aligns with the
head region of Widge. His head is just a termination of the body at the
front, so it's okay to keep it facing downward (Figure 2.29).

FIGURE2.29 The strange dimensions of Widge's Biped continue...

72 Animating Real-Time Game Characters

Adjusting the Legs and Arms

Unhide all Biped objects, then rehide all but the right-side leg objects.
Begin adjusting the leg by rotating the thigh 90 degrees along the Y-axis
and 175 degrees along the X-axis (Figure 2.30).

FIGURE 2.30 Rotate the leg along the X- and Y-axes.

Rotate and scale the leg into position, so it matches the geometry
(Figure 2.31).

FIGURE2.31 Scale and rotate the leg to further match the geometry.

The calf doesn't need to match the curved aspect of Widge's back
forelimb, it just has to line up joint to limb-tip. The foot becomes nothing
more than a handle for moving the leg, so flatten it to nothing and widen
it for easier selection. The hand will be used in the same way as the foot,
as a handle to move the leg around. (Figure 2.32).

Hide the leg, unhide the right arm objects, and match them up the
same way you did using the leg objects. Remember that the point at
which the hand meets the forearm (that is, the wrist) needs to line up
with the end of the front forelimb (Figure 2.33).

Chapter 2 Rigging Your Characters with Biped 73

FIGURE 2.32 The foot is really just a handle with which to grab and animate the leg.

FIGURE 2.33 The arm objects are aligned just like the leg objects.

Now that the limbs on one side are complete, you can unhide the rest
of the Biped, copy and mirror the limb poses, and you've got yourself a
pesky alien critter rig! Feel free to load up Widge2.max from the Chap-
ter2 directory on this book's CD-ROM if you want to look him over (Fig-
ure 2.34).

OTHER TYPES OF CHARACTER RIGS
Biped can be used to rig almost any character type, from an evil alien to a
giant bird to a tiny ant. To help you with some common deviations, this
section will show you a few game characters that use a not-so-typical
Biped rig.

A Dog

Dogs (and other four-legged animals) have a specific and unique muscu-
lature that requires careful consideration when setting up the rig. The
knee, for example, is hard to see unless the dog is bending it. Instead of

74 Animating Real-Time Game Characters

FIGURE2.34 Widge's completed rig—one more ready-to-gib, four-legged bad guy.

walking around on its foot, it really walks around on its toes—the Biped
needs to reflect this (Figure 2.35).

FIGURE 2.35 can be used to make Rover... sit.

A Dolphin

If you've ever wondered why you would ever uncheck the Arms box in a
Biped's structure, wonder no more. How about when you're animating a
dolphin? It's a mammal, right? It probably shares our intelligence, why
not our Bipeds? (See Figure 2.36.)

Chapter 2 Rigging Your Characters with Biped 75

FIGURE 2.36 Finally, a reason for the option to not have arms!

While it's true the arms could have been kept on, to drive the flippers
for example, it depends on how complex the animation needs to be. Only
one leg is really needed, so the other one can be scaled down to nothing.
The pelvis is placed in the center of the body, which facilitates flips and
rolls through the water around that pivot point. However, the trickiest
part about rigging a dolphin or shark with Biped is figuring out how to
create parts like the dorsal fin. One solution is to add another bone; an-
other is to be very careful when weighting the character's mesh so that it
deforms properly.

A Goat-Girl?

Animating a tri-jointed legged character, like a chicken walker Mech
(think AT-ST in Return of the Jedi), or a "Goat-Girl" demoness with goat's
legs, is allowed for by the designers of character studio: there's a fourth
leg link you can add to your Biped. However, using it is a bit problematic
due to the way it recalculates the IK solution. Called a horselink, this
fourth Biped object is supposed to help mimic the mechanics of a horse-
like leg. Unfortunately, this extra bone added to the leg can never be a
forward kinematic parent of the foot and is always slave to its inverse
kinematics solution. Compare the following three leg configurations
shown in Figure 2.37.

In Figure 2.37, Biped A is a normal configuration, Biped B uses a
fourth leg link, and Biped C shows both thighs rotated 180 degrees along
the X-axis. When animating a character with tri-jointed legs, start with a
stance that is kind of a squatting position (it looks like zigzag, or a back-
wards Z). The deeper the squat, the more severe the zigzag. With Goat-
Girl, there's at least three ways to give her a rig that supports her mesh.
You can go with Biped A's design (a normal setup), ignoring the back
joint altogether, and dial in the weighting to compensate. Or, you can

76 Animating Real-Time Game Characters

FIGURE 2.37 There are several ways to configure the Biped legs.

wrestle with that "horselink" and fit it to your mesh, as shown in Biped
B. Your third choice is to go with Biped C's setup, flipping the legs
around; this ignores the often unnoticeable knee joint above it and relies
(like Biped A) on proper weighting (Figure 2.38).

The benefit of the third solution is that you can plug in normal .bip —
they are reversed only in regards to the knee. Try this technique to ani-
mate a character that moves solely by walking on his hands!

FACIAL RIGS

In a rendered character situation, you typically use morph targets to ani-
mate the face. Morph (short for metamorphosis) targets are posed head and
face shapes that are used as keyframes for emotion and phoneme recog-
nition for lip-synching. Unfortunately, in most real-time game situations,
characters can only have animated faces if they use some kind of a bone
system. While Biped doesn't have any automatic facial-rig solutions, it's
easy to add bones and link them to the Biped Head object. The type of fa-
cial rig you use depends on how detailed the facial animations need to be
and how high the mesh's resolution is. For example, the dog head mesh
shown in Figure 2.39 has enough polygons to support almost any level of
facial animation.

Chapter 2 Rigging Your Characters with Biped 77

FIGURE 2.38 Choose from three ways to skin that goat-legged cat.

L*

FIGURE 2.39 Animating Fido reciting poetry means adding bones to the Biped head.

78 Animating Real-Time Game Characters

As mentioned, when using Biped to animate your characters, you
have to add bones to it in order to create a face rig. In 3ds max, adding
bones is as easy as linking a box to the Biped. Of course, controllers and
other more complicated elements can be thrown into the mix, as well.

For a real-time game character, you have about four levels of rig
setup to accommodate options from a low-res, low-poly case to a high-
res, high-poly case. For lack of better terminology, call them Face Rig Level
1 through Face Rig Level 4 (this section will cover the first three levels).

Face Rig Level 1

• Single jaw bone (with Nub)

Known as the "muppet" approach, this rig is used frequently with game
characters, because a hinged jawbone can be moved programmatically to
key off sound wave amplitude. The reasoning is that a character has to
open its mouth wider when speaking loudly. Simply create an equal-
sided box, sized to fit within the mesh. Center the pivot point on the box
by going to the
and then click on Center Pivot To Object. Create a dummy object by
clicking on the
clicking anywhere in an orthogonal (F, K, L, R, T, B) viewport. Place the
dummy object in front of the jaw (and the mesh), and link it to the box
you created earlier by clicking the
on the dummy object, and dragging the dashed Link line to the box. Re-
name the box as "Jaw" and the dummy as "Jaw Nub" (Figure 2.40).

FIGURE 2.40 Face Rig Level 1 just needs a jaw bone and a jaw Nub.

Character studio needs the Nub not only to act as an end effector for an IK chain,
but also to supply a link in Physique to which vertices can be assigned. The advan-
tage of using a dummy object and naming it "Nub" conforms to the system already

Hierarchy panel, click Pivot, click Affect Pivot Only,

Helpers icon, making the Dummy button active, and

Select and Link icon active, clicking

Chapter 2 Rigging Your Characters with Biped 79

established by Biped. It also helps that all dummy objects can be hidden with the

checking of the right box in the Display panel.

Face Rig Level 2

• Single jaw bone (with Nub)
• Eyelids that can blink
• Eyes that move

At Face Rig Level 2, the facial rig involves animating the eyes and there-
fore requires some forethought when modeling. The eyes should be closed
when Physique is applied, because it's easy to deform the mesh opening the
eyes rather than closing them (think blink). A simple patch with geometry
can serve as an eye by including something distinguishable as an iris (a
few vertices will work), and a G-Sphere (or partial G-Sphere) of moderate
resolution can serve as an eyeball bone (Figure 2.41).

FIGURE 2.41 Face Rig Level 2 has bones to blink and move the eyes.

Eyeballs are made of fluid and are very malleable; it would take an impractical
amount of geometry to represent the viscous liquid found in your peepers. Form-

fitting a curved sheet of triangles is the best way to represent an eye object.

80 Animating Real-Time Game Characters

Keeping left and right facial bones symmetrical (even in naming)
helps you keep track of what's where much more easily. Even though the
eyeballs are partial objects, their pivot points are the same as if they were
centered on a whole G-Sphere.

Face Rig Level 3

• Single jaw bone (with Nub)
• Eyelids that can blink
• Eyes that move
• Eyebrows that move
• Articulate lips
• An articulate tongue

Moving up to a Face Rig Level 3 means adding the final components that
give any character realistic phonemes and emotions: eyebrows, lips, and
tongue (Figure 2.42).

FIGURE 2.42 The third level of rigging a face includes lips, eyebrows, and tongue bones.

In Figure 2.42, the tongue is shown separately for clarity's sake; re-
ally it is inside the mouth, intersecting the head geometry. This is because
you always have to link a mesh to a skeleton in its extended state. Like a

Chapter 2 Rigging Your Characters with Biped 81

tail or a loincloth that is rarely fully straight and extended, the tongue is
posed only after it's been attached to its bone.

If you were to continue to the fourth level of face rig, it would in-
clude even more bones that could be used to deform areas of the face like
cheeks, ears, more eyebrow areas, and so on—but this is enough for now.
To further examine the relationship between the linked bones of the face
and Biped, load up Boghead.max from the Chapter2 directory on this
book's CD-ROM.

A HIGHER-RESOLUTION CHARACTER RIG
Most typical real-time game characters are made up of anywhere from
500 to 1,500 polygons. While that number increases every year as the
hardware and rendering technology evolves, any character over 2,000
polygons can be considered a high-polygon character. Resolution obvi-
ously has an impact on the speed of gameplay when the character is im-
plemented. It also has an impact on the type of rig you use.

Ta Da Vinci or Not Ta Da Vinci?

In 1490, Leonardo da Vinci made a famous sketch based on an architec-
tural book by Vitruvius. The illustration attempted to verify the mathe-
matical formulas that Vetruvius proposed to describe the proportions of
the human figure (Figure 2.43).

Betty wasn't in this da Vinci pose when you built her Biped rig ear-
lier, because of her resolution. Since she comprises about 2,000 triangles,
she is still low-poly enough to warrant the manually assignment of
weighting values, which can be done in a relatively short amount of time.
Her pose isn't as important, so her model was built in a more casual
stance. The opposite would be true if she were a higher polygon charac-
ter like the one shown in Figure 2.44.

This character is in a da Vinci pose because she has 5,663 polygons.
She's built for a real-time application—not a game—that incorporates
dancing to music via music-playing plugins like WinAmp (a demo ver-
sion can be found on this book's companion CD-ROM). Her resolution
demands that she be in this pose, because it's the best way to allow for
automatic generation of weighting values based on influence envelopes.
In other words, the jumping-jack position keeps the main bones of an
underlying skeleton far enough away from each other that the surround-
ing vertices are influenced by the right bone.

82 Animating Real-Time Game Characters

FIGURE 2.43 The pose of da Vinci's "Vitruvian Man" illustrates the relative
proportions of the human form.

FIGURE 2.44 Higher resolution characters need to be in a da Vinci pose for weighting.

Chapter 2 Rigging Your Characters with Biped 83

While it is crucial that your character model be in some sort of de-
fault pose that makes it easy to texture (don't hand a texture artist a char-
acter in an action pose and expect him to create the mapping coordinates
from it!), the da Vinci pose is an unnatural position that most characters
would never be in. However, like the tongue example mentioned earlier,
it represents the extreme pose a character would be in, thus making any
pose up to that point not only possible, but realistic as well. Figure 2.45
shows the rig for the mesh shown in Figure 2.44.

FIGURE 2.45 A rig fora hi-res mesh has a few more extras than the typical game character.

A Face Rig for a Higher-Resolution Mesh

Because of the way she's implemented, the face rig of the character shown
in Figure 2.46 only needs to support an ability to show emotion. She has
eyebrows, eyeballs, eyelids, jaw, and lips, but she doesn't need a tongue.

The other reason she doesn 't have a tongue is that there is a clipping issue that is
an unfortunate limitation of the rendering engine. At the distance she's seen on-
screen, only one or two pixels of pink from a tongue would be displayed. The ren-
derer doesn't know whether to display the white pixel of her teeth or the darker one
of her tongue—the latter mightmake the character look like she's missing a front
tooth! Thus, she never does more than part her lips as she's boogying to the beat.

84 Animating Real-Time Game Characters

FIGURE 2.46 A closer look at the face rig of a higher resolution mesh.

Adding Bones and Using Different Controllers

In addition to the extra face bones, this character also has objects at-
tached to her torso that simulate her breasts realistically moving as she
dances (Figure 2.47).

FIGURE 2.47 Additional bones are added to the character's rig to move her breast
geometry realistically.

Once the box objects are oriented and aligned to the mesh, they can
be assigned a Spring controller to give them ancillary motion as the char-
acter dances (Figure 2.48). Load Bikinil.max from the from the Chapter2
directory on this book's CD-ROM.

Chapter 2 Rigging Your Characters with Biped 85

FIGURE 2.48 This dancing Biped is in need of a little "Spring" to her step—a Spring
controller.

The Biped already has a dance animation applied to it. Hit the
Play Animation button to the lower right of your screen and watch the
animation. The blue boxes don't move aside from being attached to the
spine. Now select either box, go to the Motion panel, and select the Posi-
tion track so it's highlighted and the
becomes selectable (Figure 2.49).

Click on the green arrows to bring up a list of controllers you can as-
sign to the Position track of the object (Figure 2.50).

Select Spring and hit the OK button. You've just assigned a Spring
controller to the object. Now, under Properties, give it some Spring Dy-
namics values that will cause it to bounce as the character moves: Enter a
value of 500 for Mass and 0.3 for Drag (Figure 2.51).

Close the dialog box, and assign a controller with the same values to
the Position track of the other object.

Always dose the Properties dialog box after entering values in the Spring controller
dialog box for the first time. If you don't, and then you click on another object, the
dialog box stays up; it may make you think a controller's been assigned to it al-

ready.

Assign Position Controller button

86 Animating Real-Time Game Characters

FIGURE2.49 Access animation tracks that can have
controllers assigned to them in the Motion panel.

FIGURE 2.50 Controllers are specific to
the animation track selected.

Once both objects have Spring controllers assigned to them, deselect
everything, close any dialog boxes, and hit the slash (/) key as a shortcut
to Play Animation (Figure 2.52).

Feel free to experiment with different values for Mass and Drag, but
as a general rule of thumb, make the objects heavy enough to be noticed
when they move (500 is a good number to start with). The higher the
value for Drag (given the same value for Mass), the less the amount of
bounce there will be. Again, try different variations, and even mess with

Chapter 2 Rigging Your Characters with Biped 87

FIGURE2.51 A Spring controller needs enough
Mass to be noticeable in its effect.

FIGURE 2.52 Now the dancing Biped enjoys a bit more bounce in her motions.

Tension and Dampening if you want. However, keep in mind that in
order to change those values, you first have to have the Self Influence
line in the dialog window selected (Figure 2.53).

88 Animating Real-Time Game Characters

FIGURE2.53 Self Influence must be highlighted
before Tension and Dampening can be adjusted.

Once a Spring controller has been applied to an object, you can access the dialog
boxes for it on the Motion panel itself, or right-click on the Position track, and click
on Properties (Figure 2.54).

or. ~: -w yy i

FIGURE 2.54 There are two ways to access the
Spring controller parameters.

Chapter 2 Rigging Your Characters with Biped 89

SUMMARY

Of the two parts that make up the character studio plug-in, Biped and
Physique, Biped is the half that provides a quick and easy way to get a
character's underlying skeleton built, complete with IK, constraints, and
pose sharing. Almost any character imaginable can be rigged with Biped.
The greatest benefit of using it is that you can use the rigging for a similar
character later on.

To rig your character, load the character mesh you'll be fitting the
Biped to, and freeze it. Create a Biped, put it into Figure mode, and move,
rotate, and scale your Biped to fit it. Start with the root, or Center of Mass
(COM), move to the pelvis, and then to the spine. Adjust the limbs, be-
ginning with the thigh and the clavicle. However, if your character has a
symmetrical set of arms and legs, only pose one side or the other, then
copy and mirror that pose to the other side. The base pose that your char-
acter and Biped assume for the default position depends on the resolution
of the character's mesh. The "da Vinci pose" should be used for higher
resolution characters that are too time-consuming to weight manually,
vertex by vertex. It's up to you to decide whether or not to build a lower
resolution character in a da Vinci pose.

Since most real-time game engines don't support morph targets to
animate talking and other facial expressions, bones have to be used to de-
form the face. For facial rigs, you have to build and link objects to the
Biped's Head object (any object in 3ds max can be used as a bone). The
type of facial rig you use depends on how many polygons are in the face
and the amount of animation required. Finally, assign Motion controllers to
the bones attached to the Biped; this gives extra, ancillary motion to
them that is calculated automatically by 3ds max at playback.

WEIGHTING A CHARACTER
USING MANUAL VERTEX

ASSIGNMENT

91

92 Animating Real-Time Game Characters

Once you have your mesh fitted with a Biped, you need to apply
Physique to it. Again, the analogy behind Physique's role in ani-
mating your real-time game character is that it turns your mesh

into a "skin" that the Biped "wears." Animating the Biped deforms the
mesh, because vertices of the mesh are linked to one or more of its un-
derlying "bones." When exported into a game engine, the Biped is invisi-
ble in the final animation, so it appears that only your mesh is animating.
The controls and parameters of Physique give you the ability to dial in the
best ratio of influence that the Biped links will have over the vertices of the
mesh. Getting this weighting of the vertices right is a major factor in mak-
ing your animations look great.

A TYPICAL GAME CHARACTER

A typical game character is one that comprises up to 2,000 polygons and
has to perform a range of animations and functions. For most of these
characters, the lower number of triangles makes them candidates for
manually assigning vertices to links, rather than for using envelopes. This
allows the greatest control over a character that has relatively little real
estate to manage. It also places less of a constraint on the initial pose of
the mesh and doesn't require you to build it in the restrictive "da Vinci
pose." Still, manually assigning vertices is always going to be a slower
process than using envelopes, but it teaches you the fundamentals of
weighting and links. The fact that the vertices of real-time characters
need to be assigned as Rigid also makes manually assigning them desir-
able—and easy. Like anything else, once you get used to it, assigning ver-
tices manually really isn't so tough.

Steps to Applying Physique

1. Select all the mesh objects that make up the character.
2. Apply Physique to the mesh objects.
3. Attach to Node by clicking on the pelvis of the pre-fitted Biped.
4. Select Rigid under Vertex - Link Assignment.
5. Take the Biped out of Figure mode and apply an animation to it.
6. Adjust the weighting of the character by adjusting the Envelope set-

tings under the Physique Sub-Objects rollout menu, and adjusting
individual vertex weighting assignments.

7. Toggle Initial Skeletal Pose on and off to see the effects of the
weighting.

8. Save the weighting as a .phy file.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 93

Applying and Initializing Physique

Load Betty06.max from the Chapter3 directory on this book's CD-ROM,
put her Biped into Figure mode, hit the H key to bring up your "hit list,"
and select all the m_ objects (Figure 3.1).

FIGURE 3.1 Select all the mesh objects that will have Physique applied to them.

Assigning Physique to all your character's mesh objects at once is helpful, because
adjusting the parameters of Physique for one object is reflected in all the objects to
which the modifier was assigned.

Once they're all selected, go to the
Physique modifier to them. Initialize Physique by clicking the Attach to
Node button on the Physique rollout menu so that it's active (Figure
3.2).

Now zoom in so that the pelvis of the Biped can be easily clicked on.
Click on it, and the Physique Initialization dialog box will come up. Leave
everything as is, except for the Vertex - Link Assignment selection.
Change it from Deformable to Rigid (Figure 3.3).

Even if Deformable is chosen, the envelopes, links, or vertices can be changed to
Rigid afterward. Choosing Rigid during initialization saves time.

Modify panel and assign the

94 Animating Real-Time Game Characters

FIGURE 3.2 To initialize Physique, click the Attach to
Node button to make it active and click on the Pelvis
Biped object.

FIGURE 3.3 Most of the preset values in the Physique
Initialization dialog box are acceptable when you begin
weighting your character.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 95

Click Initialize; you may have to wait a few seconds as character stu-
dio works out the weighting solutions. When it's through, a gold stick fig-
ure will appear inside your mesh (Figure 3.4).

FIGURE 3.4 The gold stick figure inside your Physiqued mesh is really ail the links being
displayed.

Real-time game engines cannot take advantage of assigning Deformable vertices to
your mesh and will usually convert them to Rigid upon export from 3ds max. Also,
because of this limitation, Physique's spline-based deformation parameters found
in the Link, Bulge, and Tendon Sub-Objects settings cannot be utilized in the same
way as in a strictly rendered character.

Right-click anywhere in your viewport, and click Hide Unselected
from the Quad menu; this gets rid of everything but the mesh objects
(Figure 3.5).

Assigning Vertices to a Link

It's always best to start with the easier objects (or elements of an object)
that can be weighted and then hidden—easy just means the object should
be isolated, and the link the vertices need to be assigned to should be
readily apparent. In Betty's case, m_gun is the first lucky candidate.

96 Animating Real-Time Game Characters

FIGURE3.5 The Quad menu in 3ds max
is a quick and easy way to hide or
freeze objects.

Select it, and hit the small plus (+) sign beside Physique in the modifier
stack; this opens up the available sub-objects. Select Vertex, change N
Links to No Blending under Blending Between Links, and click the Select
button to make it active (Figure 3.6).

FIGURE 3.6 In order to adjust weighting values,
you have to be in one of Physique's Sub-Object
menus.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 97

Select all the vertices of m_gun, click the Assign to Link button to
make it active, make the Vertex type Rigid (green), and click on the left
forearm link to assign the vertices to it (Figure 3.7).

FIGURE3.7 With the vertices selected, just click on the link to which you want to assign them.

To complete the vertex re-assignment, you need to click on the Lock
Assignments button. Locking the vertices ensures they stay assigned to
the link you want them assigned to, even if you adjust the envelope or
values for other links (Figure 3.8).

Hide everything but m_headarmleg, and you can begin adjusting its
weighting.

With the Vertex sub-object selected on the Physique menu, right-clicking to bring up
the Quad menu doesn't work. You have to be out of Sub-Object mode, so click on
the word Physique to make it the active level in the stack. Then, right-clicking will
bring up the menu again.

98 Animating Real-Time Game Characters

FIGURE 3.8 It's very important to lock
the vertices after manually assigning
them to a link.

Start with the head element of the mesh, since it's easiest. Select all
its vertices, making sure No Blending is up instead of N Links, and assign
them to the Betty Head link (Figure 3.9).

FIGURE 3.9 Assign all the vertices of the head to one link—the Head link.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 99

Next, move on to the toe of the boot shaoe and assign the vertices to
the Betty L Toe link. Use
tices to the proper link (Figure 3.10).

L,

FIGURE 3.10 The toe vertices can be assigned exclusively to the Toe link.

When going through the weighting process, it helps to hide the vertices of the mesh
that have been assigned. This way, you can tell what has to be weighted next, and
it un-clutters your work area (Figure 3.11).

So far, you've manually assigned vertices to specific links, but more
often than not, you'll need to have vertices assigned to more than one
link. To do this, you have to learn about . . .

Typing in Weighting Values

Select the vertices of the foot shown in Figure 3.12 by dragging your se-
lection fence across them.

Assign them to the Betty L Foot link, and then select only the vertices
near where the ankle would be. Click on the Type-In Weights button on
the Vertex menu to bring up the Type-In Weights dialog box (Figure
3.13).

Arc Rotate to make sure you assign the ver-

100 Animating Real-Time Game Characters

FIGURE 3.11 Hide your vertices
once they've been weighted.

Lv

FIGURE 3.12 Select and assign the vertices of the foot.

By default, only the links that the vertices have been assigned to are
shown. To see all the links, you need to click All Links. Do so now, so you
can assign the ankle vertices to both the Foot and the Calf links. Simply
highlight Betty L Calf by clicking on it, and enter a value of 1 in the
Weight box (Figure 3.14).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 101

FIGURE3.14 You can share influence on a vertex
among as many links as you want.

When sharing influence between links, the values can be anything you want them
to be. Instead of 1 and 1 for example, two links can equally influence a vertex by
having values of 0.5 and 0.5. However, if you assign weighting to a link, or num-
ber of links, and the sum doesn 't add up to 1, Physique will automatically add in-
fluence to one link or the other so that the total weighting does equal 1.

FIGURE 3.13 The Type-in Weights dialog box can only be accessed if the vertices are
locked.

102 Animating Real-Time Game Characters

Unhide Betty L Foot, and rotate it along the Z-axis to test the weight-
ing (Figure 3.15).

FIGURE 3.15 Test the weighting by rotating or moving the corresponding bone.

Hit Ctrl-Z to "undo" the foot rotation and re-hide it. Select all the ver-
tices of the lower leg from above the ankle to mid-way at the knee, and
assign them to the L Calf link (Figure 3.16).

Zoom in on the knee area and select the line of vertices where the
Thigh and Calf links meet. Bring up the Type-in Weights dialog box
again, and enter a value of 1 for the parent Betty L Thigh (Figure 3.17).

Unhide Betty L Calf to bend the lower leg and test the deformation of
the knee geometry (Figure 3.18).

It looks acceptable, but it could look better with some further modifi-
cation. Assign the values shown in Figure 3.19 to the indicated vertices of
the knee.

Now when the leg bends, the geometry deforms better, holding the
shape of the knee more fully (Figure 3.20).

Don't be afraid to spread influences across as many vertices and as
many links as you need, above or below the link, to achieve the proper
deformation. Now, select the rest of the vertices on the left leg, assign
them to the Thigh link, lock them, and then hide them.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 103

FIGURE 3.16 Almost all the vertices of the lower leg can be assigned to LCalf.

FIGURE 3.17 The knee has to feature shared influence by both the Thigh and Calf links.

104 Animating Real-Time Game Characters

FIGURE 3.18 Testing the deformation of the knee shows the need for more tweaking.

FIGURE 3.19 Including more vertices to be shared by the thigh and calf makes for better
results.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 105

FIGURE3.20 The knee bends much better now, and retains its shape more effectively.

//, in the course of testing your weighting, you somehow screw up the pose of the
limb you 're moving, simply unhide the other limb, and copy/mirror its pose on
the one that's screwed up.

Removing Vertices from Links

With the left leg and head taken care of, it's time to weight the arm. First,
though, you'll try a different approach to testing the weighting, by ani-
mating the arm bones. Unhide all the Biped objects that make up Betty's
right arm. Click on her forearm, and turn Figure mode off. Make the Ro-
tate Transform active, and while at Frame 0, hit the Set Key button on
the Biped menu to set a keyframe for the rotation track of Betty R Fore-
arm (Figure 3.21).

Next, turn the
and with the forearm still selected, rotate it -75 degrees along the Z-axis
(Figure 3.22).

Obviously, there are a few things wrong with this picture. Go to the
Front viewport and select the character's mesh again. Go to the Modify
panel, and select all the vertices of the right arm element. Click the

Animate button on (make it red), go to Frame 5,

106 Animating Real-Time Game Characters

FIGURE 3.21 The Set Key button sets
a keyframe for the selected Biped
object.

FIGURE 3.22 Bending the arm out of Figure mode will help test the weighting of the mesh.

Remove From Link button to make it active, drag your selection fence
across the leg and torso links, and let go (Figure 3.23).

As they're removed from the influence of the incorrect links, the ver-
tices of the arm that were all stretched and deformed now snap to their
proper position. Hide everything but m_headarmleg again, and make the
Vertex sub-object of Physique active.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 107

FIGURE3.23 Selecting these links will prevent them from influencing the selected vertices.

Another way to test the weighting of a character's mesh is to drop an
animation into the Biped, and see where the problem areas are when the
mesh is deformed through the movements. Bending the arm like you
did earlier is a step in that direction. However, if the animation doesn't
have an "at rest" frame like you set at Frame 0 for the arm, there is an-
other way to toggle the character's mesh back and forth from animated to
non-animated: Uncheck and check the Initial Skeletal Pose checkbox
(Figure 3.24).

Click on the checkbox to turn on the Initial Skeletal Pose, and con-
tinue weighting the right arm. Start by assigning all of the upper arm ver-
tices (down to the bottom of the elbow) to the Betty R UpperArm link
(Figure 3.25).

Adjusting the Elbow Area

Since Betty has big shoulder pads, there doesn't have to be too much
effort put into a normally time-intensive area: the shoulders. However,
the elbow still needs to go through a trial-and-error process to see what the
weighting values should be. Near the center of the elbow, the influence
should roughly be equal to, or slightly biased towards, the UpperArm link

108 Animating Real-Time Game Characters

FIGURE 3.25 Assign all the upper arm vertices to the UpperArm link.

(think knee and thigh). Vertices that are farther above the elbow will be
less influenced by the forearm, and vertices below the elbow will be less
influenced by the upper arm.

FIGURE 3.24 The Initial Skeletal Pose
option helps you go from an animated
to unanimated state.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 109

Whenever it's a certainty that two links will be influencing a set of vertices like the
elbow, go ahead and assign them all an equal weighting (1 to the parent link and
1 to the child link). Of course, these values won't stay that way for all the vertices,
but it's a quick way to assign them to the right links simultaneously, causing the
default Currently Assigned Links Only to be a boon and not a handicap when
tweaking the values.

Zoom in on the elbow area, and only select those vertices that make
up the elbow. Bring up the Type-In Weights dialog box, click All Links,
and assign the vertices to Betty R Forearm by clicking on it and typing in
1 (the vertices will turn dark green). Toggle Initial Skeletal Pose back and
forth by unchecking and checking its box to see the effects the weighting
change has on the elbow (Figure 3.26).

FIGURE 3.26 The elbow here has equal influence on both the UpperArm and Forearm
links.

Unfortunately, the Forearm link does not immediately follow the UpperArm link
in the Type-In Weights dialog box. Several links that are children to the Forearm
appear first. Be careful not to accidentally assign weighting to a Hand link when
you think you're assigning it to the Forearm (Figure 3.27)!

While the weighting doesn't look bad, giving all of the vertices equal
influence from both links detracts from the intent of the geometry, which

110 Animating Real-Time Game Characters

FIGURE3.27 Beware the confusing out-of-order
Forearm link.

is to portray a thick elbow pad. Therefore, a few adjustments need to be
made. By toggling the Initial Skeletal Pose box on and off, you can get a
rough feel for what the values of the vertices should be changed to. For
example, the vertices at the top of the elbow need to be influenced less by
the forearm so the elbow can retain more of its shape, but the vertices
at the bottom of the elbow don't need to be changed as much. Turn your
Initial Skeletal Pose back on, and try the values shown in Figure 3.28 for
the elbow area.

Now when the elbow is bent, it looks better and keeps the shape of
the elbow pad intact. (Figure 3.29).

That solution solves the problem with the back of the elbow, but the
front of the joint (the bottom of the bicep area) needs to be tweaked as
well. With a weighting of 1 and 1, the arm crimps enough to make the
bleep shrink, instead of remaining the same or bulging. However, if you
bias the vertices more toward the UpperArm link, the forearm geometry
will look strange (Figure 3.30).

A solution to the forearm deforming the way it does is to lessen the
contrast of the elbow juncture; transfer some of the influence from
the forearm vertices over to the UpperArm link. It doesn't have to be
much, and can vary from character to character. Select the three vertices
at the top of Betty's arm in the bent position, lock them, and add the
Betty R UpperArm link to the links that influence the vertices. A value of
0.1 should work fine (Figure 3.31).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 111

FIGURE 3.28 The elbow needs to be biased more toward the UpperArm link.

FIGURE 3.29 The elbow looks better with the new weighting values.

112 Animating Real-Time Game Characters

FIGURE3.30 Biasing the front of the elbow joint to the UpperArm link causes a strange
deformation.

FIGURE 3.31 Adding the UpperArm link to links that influence these vertices helps deform
the forearm better.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 113

This juggling of weighting influence between adjoining links is neces-
sary to get around the limitation, which is a drawback of most generic
weighting algorithms found in most programs like Physique. Only with a
true "sliding skin" weighting system can areas like elbows, knees, wrists,
ankles, necks, and even shoulders and hips be 100 percent accurate in
the deformation of polygonal skin. However, keep in mind that this only
applies to real-time games; movies featuring CG-rendered characters em-
ploy all kinds of complex skeletal and musculature algorithms to simulate
skin and muscle movement.

Working on the Hand and Fingers

While most real-time game characters have mitts for fingers and clubs for
fists, Betty has the full use of five digits on her right hand. The weighting
for wrists is somewhat similar to that for ankles; select the vertices at the
joint, and give them equal influence by both Forearms and any of the in-
ternal Hand links.

To avoid too extreme a deformation at the wrist area, sometimes it's a good idea to
build your character with the palms facing forward instead of downward. This
may be as simple as turning the hand geometry, and then turning any bad edges
(Figure 3.32).

The fingers need to share influence between links at the knuckles.
Starting at the end link of the finger, and working your way towards the

FIGURE 3.32 Sometimes it's the geometry rather than the weighting
that needs to be tweaked to ensure proper deformation.

114 Animating Real-Time Game Characters

hand, select and assign the vertices to each link along the way (including
all knuckle vertices), locking them as you go (Figure 3.33).

FIGURE 3.33 Assign the vertices of the hand by starting with the fingers.

As you can see in Figure 3.33, the vertices highlighted in Group 1 are
assigned to Link A. Vertices in Group B are assigned to Link B, and those
in Group 3 are assigned to Link C. The quickest and easiest way to com-
plete the weighting is to go back and select only the knuckle vertices, and
share influence with the link that is the parent of the assigned link.

Whenever the Type-In Weights dialog box is brought up and All Links is chosen,
the link to which the selected vertices are assigned will automatically be high-
lighted, to make it easier to see against all the other links. However, when the link
selected is far enough down the overall list, character studio displays it by dropping
it to the bottom of the display window. By assigning vertices to the end link of the
fingers, and moving inwards towards the parent, the parent link that needs to
share influence over the vertices selected will be visible and on top of the selected
link when the list of links is displayed. If the vertices had been assigned to the par-
ent first, the child would be below the displayed list, and you would have to scroll
down to see the child of the selected link (Figure 3.34).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 115

FIGURE 3.34 When typing in values for a parent-child set of links, assign the
vertices to the child first, not the parent.

Character studio duplicates the naming of links so that each character
can have a number of Hand links. The best way to tell them apart is to
look below each link in the list of links. For Betty's uppermost knuckles,
share influence with the Hand link above the link the vertices have been
assigned to.

Often, when weighting vertices by hand, you 'II select a set, enter their values with
the proper links, and then select another set, keeping the Type-in Weights dialog
box open all the while. One quick way to isolate a link when "offscreen" is to toggle
back and forth between displaying All Links and Currently Assigned Links Only.
Doing this immediately lines up the selected vertices' link at the bottom of the long
list and saves you from scrolling up or down to find it.

For the thumb, rotate your view so you can see it in profile, and se-
lect and assign its vertices (Figure 3.35).

All the vertices in Group 1 are assigned to Link A, Group 2 to Link B,
and Group 3 to Link D. Share influence with the proper links, and the
thumb is weighted. The vertices in Group 3 that are assigned to the Betty

116 Animating Real-Time Game Characters

FIGURE 3.35 The thumb is a little different from the fingers, but you assign the vertices in

the same way.

Hand link (Link D) can share influence with Betty R FingerO (Link C). Un-
hide all the Biped Finger objects of the right hand to test the weighting.

Saving Your Weighting Values

Most of the time, the best way to save your weighting values is to save it-
erative versions of your mesh as you work. You can also easily reuse or
recover your weighting by saving the .phy file. Do this by clicking on the
Save Physique (*.phy) File icon (Figure 3.36).

FIGURE3.36 Save your Physique file
for additional insurance or later
reference.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 117

Keep in mind that when re-loading a physique file into one character
or another, the Biped structure has to be the same, with the same added
bones (if any) assigned to it.

When working with older Biped or 3ds max files, Biped will sometimes revert to the
previous version of character studio's naming convention. This means that all
Biped links will be named after their child (one link below) instead of the actual

bone they correspond to.

Assigning the Neck, Shoulders, and Torso

Hide m_headarmleg, and unhide m_torso, m_energy, m_fanvent, and all
the Biped Spine objects, and go to the Right viewport (Figure 3.37).

FIGURE 3.37 Even torso mesh objects are supposed to be heavily armored (that is, rigid).

Start with the neck. Since the head is a separate object, it's easier to
weight both it and the neck. When the neck is joined to the head, it re-
quires more polygons and more time to set up the weighting. Zoom in
to the top of the neck, select the vertices there, and assign them to the
Betty Head link. Unhide the Biped head and m_headarmleg to test
the deformation (Figure 3.38).

118 Animating Real-Time Game Characters

FIGURE 3.38 The top of the neck is linked solely to the head to avoid making the gap there
visible.

Since there's no geometry at the top of the neck, the line of vertices
there has to move with the head. Now, undo any rotations you did, and
re-hide m_headarmleg and Betty Head. Hide the assigned neck vertices,
go to the Front viewport, and select all the vertices near her right shoul-
der geometry. Don't include any of the rear backpack geometry (for ex-
ample, m_fanvent or m_energy), but assign them instead to the Betty R
Clavicle link (Figure 3.39).

Linking the shoulder to the clavicle gives you a small amount of mo-
bility, but because Betty is supposed to be wearing heavy armor, the
shoulder will remain almost motionless throughout her animations. Hide
those assigned vertices, and go back to the Right viewport. Make sure all
three of the mesh objects are selected (m_energy, m_fanvent, and
m_torso), and assign the vertices of the backpack and upper torso to the
Betty Spine2 link (Figure 3.40).

All the vertices are assigned to the second spine link instead of par-
tially to the third, because the backpack and upper body armor need to
appear hard and inflexible. Assigning as many vertices as possible to one
link achieves this look. However, because there are four links, some of
the lower backpack and torso vertices can be assigned to Spinel, the par-
ent of Spine2 (Figure 3.41).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 119

\ I I I

FIGURE 3.39 Assign the shoulder pad vertices (1) to the Betty R Clavicle link (A).

FIGURE 3.40 The backpack and upper torso vertices (2) are assigned to the Spine2 link (B).

120 Animating Real-Time Game Characters

FIGURE 3.41 The vertices in vertex Group 3 are assigned to Link C, the Spinel link.

Earlier, Spine2 was chosen as a link for the backpack vertices, because Spinel
would have vertices assigned to it as well, and Spine2 was a better choice over

Spine3 due to its proximity to the next bone in the hierarchy.

Next, the vertices near the waist need to be tweaked further, to make
sure they deform smoothly when the torso bends and twists. Select only
the vertices that make up the two rows you just assigned to Spinel, bring
up your Type-In Weights menu, and assign the vertices to the Betty
Spine link as well. Make sure you don't assign any backpack vertices to
the second link (Figure 3.42).

Weighting the Other Leg

Assign the vertices of the right leg to their proper link by referencing the
first leg you spent time weighting. First, assign the Toe vertices of the
leg element of m_torso to the Toe link, and hide them. Then unhide
m_headarmleg, and go to the Front viewport. Select both m_torso and
m_headarmleg. Click on the Select by Link button on the Vertex menu to
the right (Figure 3.43).

Click on the left Foot link and study the vertices selected (Figure 3.44,
page 122).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 121

FIGURE 3.42 Giving the waist vertices influence from both Spine! and Spine ensures
smooth deformation.

FIGURE 3.43 The Select by Link button selects all vertices assigned to a link.

Using Select by Link is a quick way to see which vertices you previ-
ously assigned and how. Because of the pose of the Biped rig, some of the
vertices of the right foot geometry are included in the vertices assigned to
the left Foot link. Ignoring this temporary weighting, select all the ver-
tices of the right foot geometry that mirror the left foot geometry. Assign
them to the Betty R Foot link; then, using the left foot vertices as a guide,
type in matching values for the right foot vertices (Figure 3.45).

122 Animating Real-Time Game Characters

FIGURE 3.44 Selecting the left Foot link to see which vertices are assigned to it also selects
some vertices of the right foot geometry.

FIGURE 3.45 Using the vertices of one foot for reference, the other one is easily and quickly
weighted.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 123

Use this same technique to weight the right knee and rest of the right
leg geometry. When you get up to the thigh area, hide m_headarmleg,
and make sure to assign the left thigh vertices to the Betty L Thigh link
(Figure 3.46).

FIGURE 3.46 Don't forget to assign the left thigh vertices to the L Thigh link.

Loading a .Bip File into Biped

Before moving on to weight the hips, you need to apply a run animation
to the character to see the effects of the weighting as you make adjust-
ments. The rest of the character could have benefited from a full anima-
tion as well, but for the hips, it's especially important to see the
character's mesh deform while adjusting it. A run or walk animation is
perfect for this.

Hide everything but Betty Spine and m_torso. Select Betty Spine, and
go over to the Biped menu on the Motion panel. Make sure you're out of
Figure mode. Click on the
the character will stay in view, even if the animation translates it through
space and it's supposed to move off-screen. This mode is great for fine-
tuning animations for real-time characters, which, by nature, usually
need to be animated "in place" for implementation in a game.

Click on the Load File icon (Figure 3.47).

In Place Mode icon (it turns purple). Now

124 Animating Real-Time Game Characters

FIGURE3.47 Click on the yellow Open
File icon to load a .bip animation into
your character.

Find Run.bip in the Chapter3 directory on this book's CD-ROM, and
load it into your character's Biped. Click on the Time Configuration icon
located near the bottom of the screen to the right (Figure 3.48).

FIGURE 3.48 The Time Configuration icon brings up the
menu that controls the number of frames displayed.

Once the Time Configuration menu comes up, establish the number
of frames in the active animation range by setting the Start Time to 0 and
End Time to 18 (Figure 3.49).

Changing the length of the animation to match Run.bip allows you
to play it in an endless loop if you want. Hit OK, and as you slide the
Time Slider or advance through the animation frames, the mesh deforms
with the run animation.

Advance forward through the animation one frame at a time by hitting the period
(.) key. Go back a frame at a time by hitting the comma (,) key. Play and stop the
animation by hitting the slash (/) key.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 125

FIGURE 3.49 Set the animation Start and End time to 19
frames (0-18).

With the animation applied to the Biped, you will find it easier to see
the deformation on all parts of the mesh. With the In Place mode active,
the character won't run away as you try to weight it.

The In Place Mode icon has a fly-out menu that allows you to restrict the movement
along the X-axis only, Y-axis only, or both simultaneously (the default). Just hold
down the mouse button with the cursor over the icon, and drag down to bring up
the other options (Figure 3.50).

Tackling the Hips

The hips are one of the most difficult areas to weight, second only to the
shoulders. Usually, even when weighting vertices manually, it's a good
idea to see how closely the default initialization weighted the hips before
dialing them in by hand. Put Betty in her Initial Skeletal Pose, and select
all the vertices around her hips. Click the Remove from Link button to
make it active, go to the Front viewport, and drag your selection fence
across all the links on either arm.

126 Animating Real-Time Game Characters

FIGURE 3.50 These are the options for
the In Place Mode icon's fly-out menu.

Whenever you use Remove from Link, you must select the right type of three avail-
able vertices. Since you 're dealing solely with rigid vertices, make the green plus
sign active, or the removal won't take. Also, under the Blending Between Links

menu, choose No Blending (Figure 3.51).

FIGURE 3.51 Under Vertex Type, select the
color of the vertices to which you're
applying Remove from Link.

Drag the selection fence across the upper body Spine links, as well.
Lock the vertices, and play or frame forward through the animation. The
front part of the hips look good, and the posterior looks nice except for
the bottom two rows of vertices of her rear. When Betty takes a step, you
can see those vertices have too much weight assigned to the leg links, so
they need to be corrected.

Turn on the Initial Skeletal Pose again, and, on Betty's right buttock,
select the nine vertices shown in Figure 3.52. Unlock them, and assign
them a weight of 1 for both the Betty R Thigh link and the Spine link that
appears just above it in the Type-In Weights dialog box (Figure 3.52).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 127

FIGURE 3.52 Assign these vertices an equal weighting value for both the Thigh link and
Spine link above it.

If you had not checked Triangle Pelvis under the Structure sub-menu on the Biped
rig, you wouldn 't have the two additional Spine links to help hold the hips together
(Figure 3.53). As you'll see later, these two Spine links will often supplant the
Pelvis link—if not replace it entirely—to hold the hip shape together.

FIGURE 3.53 The Triangle Pelvis checkbox is

pretty useful after all.

Turn off Initial Skeletal Pose again, and see how the area deforms.
Everything should look good now, except for the three vertices above the
ones just corrected. Select these three, unlock them, and assign them to
the Spine link above the Thigh link (Figure 3.54).

128 Animating Real-Time Game Characters

FIGURE 3.54 These three vertices still need a bit of an adjustment to their weighting.

After you've assigned them to the Spine link, give the vertices a
shared value of 0.5 with the Betty R Thigh link. Turn Initial Skeletal Pose
off once again, and check how the right buttock deforms from all views as
she runs. Do the left buttock as well, using the right as a guide. They
should look fine—the hips are done.

Adjusting the Gun Arm

Hide everything, and then unhide the m_gunarm mesh object. Go to the
Right viewport. From the looks of it, this object needs a little help (Figure
3.55)!

Select the object, go to the Vertex Sub-Object menu under Physique,
and put the object in its Initial Skeletal Pose. Select all of the vertices that
make up the left forearm elements of the mesh: hand, gun body, and
even the cylinder that covers her elbow. Rotate your view as necessary.

If you have Initial Skeletal Pose checked, and you then select another object in your
scene, and go to the Physique root or even to another Physique sub-object, the mesh
will remain in its Initial Skeletal Pose.

Don't select any of the vertices belonging to her upper arm element,
and only select the first few vertices of the belt that feeds into her back-

Chapter 3 Weighting a Character Using Manual Vertex Assignment 129

FIGURE 3.55 What is it?

pack. Assign all these vertices to the Betty L Forearm link, and turn the
Initial Skeletal Pose back off to see the results (Figure 3.56).

FIGURE 3.56 With the vertices assigned to the L Forearm link, the arm looks much better.

130 Animating Real-Time Game Characters

FIGURE 3.57 The belt feed geometry has to be linked to both rear shoulder and forearm.

The solution to this weighting dilemma isn't adding extra bones, it's
carefully sharing the weighting between Betty L Forearm and Betty L
Spine2—bypassing Betty L UpperArm altogether. Rotate your view so
you're looking down on her left side, and advance to Frame 6 in the ani-

Hide the vertices assigned; select and assign the upper arm element
vertices to the Betty L UpperArm link. Once they're assigned, hide them
as well, and you can then begin work on the real problem area: the belt
feed.

The shoulder for the left arm is a different design from the right one and can move
around with the arm. The only time it will look a bit odd is when Betty's arm goes
very far up or very far back.

The belt feed geometry is a looping structure that goes from back-
pack to forearm. Unfortunately, an extra set of bones couldn't be linked
to the Biped to serve as a weighting link for the geometry. If the bones
were linked to the back or shoulder, they wouldn't move with the arm.
If they were linked to the arm, they wouldn't stay linked to the back
(Figure 3.57).

Chapter 3 Weighting a Character Using Manual Vertex Assignment 131

mation. Select all the remaining vertices of the object and assign them to
Betty Spine2 (Figure 3.58).

FIGURE 3.58 Assign the remaining belt feed vertices to Betty Spine2.

Keeping selected all but the four vertices that touch the backpack,
bring up the Type-In Weights menu, and assign those vertices an addi-
tional weighting value of 0.5 to the Betty L Forearm link (Figure 3.59).

Deselect vertices from a selection set by dragging your selection fence across the ver-
tices while holding down the Alt key.

Obviously, the geometry can't stay that way, but at least the two
links to which the vertices need to be assigned are now ready to be dialed
in and their respective influences adjusted. Put the mesh back into its Ini-
tial Skeletal Pose, and begin at the row of vertices that starts at the top of
the feed belt near the shoulder. Rotate your view so you're looking at
the row of vertices "edge-on," and change their value from 0.5 to .05
(Figure 3.60).

Work your way over and down to each row of vertices until you
have the values for them shown in Figure 3.61.

Note how the forearm is given progressive influence over the feed
belt. This will result in a smoother deformation of the geometry. Now,

132 Animating Real-Time Game Characters

FIGURE 3.59 Being equally influenced by both the Spine2 link and the Forearm link is a

start.

FIGURE 3.60 Rotate your view so you can clearly see the row of vertices to be adjusted.

Chapter 3 Weighting a Character Using Manual Vertex Assignment 133

FIGURE 3.61 The weighting for the belt feed is biased toward the Spine2 link.

unhide the three vertices that are part of the belt feed where it nears the
forearm and that were hidden before. Rotate your view to see the re-
maining vertices better. Assign them the values shown in Figure 3.62.

Unhide the rest of Betty's mesh objects, and watch her jog a nice
steady pace (Figure 3.63).

Load Betty07.max from the Chapter3 directory on the companion
CD-ROM, and compare your results to the figure in this file.

While it takes a lot of trial and error to get the weighting of an object
like Betty's weapon belt feed to deform correctly, the only way it can be
done is to type the values in. The rest of her is composed of a low enough
number of triangles to also allow a vertex-by-vertex weighting approach.

SUMMARY
Getting the weighting values right for your real-time character's mesh
means the difference between average animations and great animations.
Without proper weighting, all that hard work spent on the design, model,
texture, and rig is wasted. Physique allows for quick and easy adjustment
of your character's "skin" by giving you access to individual vertices and

134 Animating Real-Time Game Characters

FIGURE 3.62 The rest of the feed belt geometry starts to bias more toward the forearm.

FIGURE 3.63 Betty is ready for act/on!

Chapter 3 Weighting a Character Using Manual Vertex Assignment 135

groups of vertices via envelopes. For typical game characters that are less
than 2,000 polygons, manually assigning the weighting values to the
mesh objects is the best way to ensure proper deformation.

When applying Physique to your mesh, initialize it by activating At-
tach to Node and clicking on the pelvis of the Biped, then select Rigid as
the vertex link assignment, with N Links for envelope creation/calcula-
tion. While it's recommended that you manually assign the vertices their
weighting values, it doesn't hurt to try using envelopes to see if they
work. Begin the weighting process with objects that are easy to weight, so
they can be hidden and removed from the work area. Pay particular at-
tention to the shoulder and hip areas of the mesh, and make sure the
deformation is correct in a variety of poses. Check the effects of the
weighting values by loading a simple animation into the Biped and tog-
gling back and forth between the Initial Skeletal Pose and the animated
state. Finally, save your Physique settings for reference in case the mesh
needs to be detached and reattached to the Biped.

WEIGHTING A CHARACTER
USING ENVELOPES

137

138 Animating Real-Time Game Characters

C haracters that can be used on many of the consoles today like Nin-
tendo's GameCube™ and Microsoft's Xbox show a substantial in-
crease in the number of polygons available for their models. Other

real-time applications, such as those with dancing characters for a music
visualization plugin, also use higher polygon meshes. These characters
still need to have rigid vertices and be as polygonally frugal as they can
be, because they're 3D and considered "real-time."

CONQUERING ENVELOPES
Figuring out how to use envelopes in character studio isn't easy. It takes
many hours of practice to make them a useful part of your weighting
process. However, you must conquer them when working on high-poly
characters. While manually assigning the weighting assures you the most
control, time is your enemy. It takes 50-100 hours to manually assign the
vertices of a mesh with 6,000 or 7,000 triangles. Compare that with the
50-100 minutes it takes to weight a character using envelopes. You owe it
to yourself and the project you're working on to conquer envelopes if
your characters are high-res.

Steps to Applying Physique

The steps to applying Physique to a character when using envelopes are
similar to those taken when assigning vertices manually:

1. Make sure all mesh objects have their stacks collapsed and are ready
to go.

2. Build a Biped rig and put it into Figure mode.
3. Apply Physique to the mesh objects.
4. Activate the Attach to Node function, and then click on the pelvis of i

the Biped.
5. Select Rigid under Vertex - Link Assignment.
6. Take the Biped out of Figure mode and apply an animation to it.
7. Adjust the weighting of the character by adjusting the Envelope set-

tings under the Physique Sub-Objects menu, and typing in individual
vertex weighting assignments.

8. Toggle Initial Skeletal Pose on and off to see the effects of the weighting.
9. Save the weighting as a .phy file.

However, using envelopes makes it necessary to pay closer attention
to the seventh item in the preceding list. The order in which you adjust
the weighting of a character that primarily uses envelopes is:

Chapter 4 Weighting a Character Using Envelopes 139

1. Turn off any unnecessary envelopes.
2. Adjust the Radial Scale of the envelopes.
3. Adjust the Parent/Child Overlap of the envelopes.
4. Copy and paste any appropriate envelope settings to symmetrical

limbs.
5. Remove any vertices from the appropriate links, and then . . .
6. Use Type-In Weights to finish the weighting for any remaining

vertices.

You save yourself the most time by adjusting the envelope settings
first, because they affect all the vertices of all the mesh objects to which
you've assigned the Physique modifier. This is the benefit of using en-
velopes — the pure speed at which you can weight a character. Manually
typing in the value of vertices is the last step in weighting a higher reso-
lution game character, because (as mentioned before) it is the most time-
consuming process.

Turning Off Unnecessary Envelopes

Load Bikini2.max from the Chapter4 directory on this book's CD-ROM
(Figure 4.1).

FIGURE4.1 A girl and a bikini—what more needs to be said?

140 Animating Real-Time Game Characters

This character, Bikini, weighs in at 5,663 triangles. Take a moment to
study the mesh, and the first thing you'll notice is that all the Biped ob-
jects and the bones attached to the Biped have been assigned a zero opac-
ity material. This is so the mesh can be seen in shaded mode without
being obstructed by the solid Biped objects. While there are other ways to
make the Biped object transparent, this way is the most reliable (more on
this in Chapter 6).

Another way to make your Biped less obtrusive when viewing your mesh is to se-
lect all Biped and bone objects, right-click on them, click on Properties, and check
the See-Through box under Display Properties (Figure 4.2).

FIGURE4.2 Turning on the See-Through option is
another way to make Biped objects less obtrusive
when viewing your mesh in a shaded viewport.

While this does make the objects transparent, their opacity is con-
trolled by 3ds max, not by you. Still, it is an option. You could also assign
a wireframe material to the objects and see them as shaded wireframes,

Chapter 4 Weighting a Character Using Envelopes 141

even when in a smooth-shaded view. Another way to change the appear-
ance of just the Biped objects is to go to the Display sub-menu for Biped,
click on the Bones button, and click off the Objects button (Figure 4.3).

FIGURE4.3 Turning Bones on and Objects
off is yet another way to make your mesh
objects easier to see in a shaded viewport.

The only problem with this sort of display arrangement is that when
you click on one of the colored stick figure "bones" that are now repre-
senting your Biped objects, you are actually selecting the child of that
bone. It's also harder to isolate a bone in order to click on it (unless the
mesh is frozen).

Another thing you may notice is there are only three Spine links.
This is due to the way the motion capture (mocap) data used for the .bip
file was captured. The motion just works better with three links instead of
four.

Select all the mesh objects (m_*) for the character, and apply the
Physique modifier to them. Go to the Right viewport, make Envelope the
active sub-object under Physique, and zoom in to the head area. Care-
fully select all the links of the head, except for Bikini Head (Figure 4.4).

When dealing with the plethora of links that can result in a facial rig, the best way
to make sure all the links are selected, excluding the head link, is to select every-
thing from the neck up; then, hold down the Alt key and select the Head link, thus
deselecting it.

Next, go over to Active Blending in the Blending Envelopes rollout
menu, and turn off the links selected by unchecking the Rigid box (Figure
4.5).

It may take a while for 3ds max to process the action, but once it
turns the envelopes off, switch to the Vertex sub-object for Physique, and

142 Animating Real-Time Game Characters

FIGURE 4.4 Select all the envelopes of the head links, except the Head link.

FIGURE4.S Turning off envelopes is as
easy as unchecking a checkbox.

select the vertices of the head mesh. They're now effectively within the
influence of the Bikini Head link.

Another way to remove vertices from the influence of an envelope is to select the en-
velope, go to the rollout menu, and enter a value of 0 for Strength under Envelope
Parameters (Figure 4.6).

Chapter 4 Weighting a Character Using Envelopes 143

FIGURE4.6 Entering a value of 0 is another
way to effectively "turn off" an envelope.

If you ever find yourself dialing an envelope's strength down to noth-
ing, or close to nothing, just turn it off. It saves processing time and effort
to have as few active envelopes as possible.

The reason why you just turned all those envelopes off is because en-
velopes will be useless even in a face of this resolution. Manually assign-
ing vertices is the only way to get the weighting just right. Pan down to
the end Breast links and turn them off, too (Figure 4.7).

FIGURE4.7 The Breast envelopes aren't necessary, either.

144 Animating Real-Time Game Characters

It's true the breasts are highly malleable by nature, and could be
weighted using envelopes, but assigning them manually ensures the right
amount of deformation to achieve a realistic look.

If the Breast objects hadn't had dummies (Nubs,) linked to them, this link wouldn't
exist, and the movement of the breast boxes couldn 't affect the geometry.

The last envelope to turn off is the Pelvis link. Go to the Front view-
port, use Arc-Rotate to rotate the view slightly so you can see the small
link underneath the Spine link; select the link, and turn it off (Figure 4.8).

FIGURE 4.8 The Pelvis link can also be turned off.

The best reason to turn off the Pelvis isn 't an aspect of weighting, but an aspect of
the game engine into which the character is exported. For some reason, many real-
time game engines have problems with this particular link. Besides, by having Tri-
angle Pelvis active in the Structure of the Biped, the need for a Pelvis link is moot.

Adjusting the Radial Scale of the Envelopes

If an envelope doesn't encompass a vertex, it won't influence it. Thus,
sometimes you have to increase, decrease, or alter the envelope so it in-

Chapter 4 Weighting a Character Using Envelopes 145

eludes (or even excludes) certain vertices. In areas like the shoulders and
hips, envelopes work best when several of them encompass the same
vertex or vertices. Everything you need in order to adjust the basic shape
and setting of an envelope can be found in the Envelope Sub-Object
menu under Physique.

First, click on the Physique modifier at the top of the stack, select one
of the Biped objects, and turn Figure mode off. Select just m_body, go back
to the Modify panel, go to the Envelope Sub-Object menu, and scroll down
to the bottom and check on the Initial Skeletal Pose box (Figure 4.9).

FIGURE 4.9 The Initial Skeletal Pose
checkbox is available in the Envelope
sub-menu, too.

Right-click in your scene and choose Hide Unselected to clear your
workspace. Then select the two Breast links that are parents to the end
links you turned off earlier (Figure 4.10).

Go to the Envelopes sub-menu and type in a value of 0.4 for Radial
Scale. Make sure the Both box above it is active and purple (Figure 4.11).

When Both is active, the number entered in the Radial Scale box acts
as a multiplier to the original value assigned to both the Inner and Outer
range of the envelope. The default value is set at the time of initialization
and typically is 1 for the Inner and 1.75 for the Outer settings. Thus,
when a value of 0.4 is entered, a decimal multiplier is applied to the outer
and inner envelope settings; the size of the envelopes selected visibly
shrinks (Figure 4.12).

146 Animating Real-Time Game Characters

FIGURE4.11 Radial Scale is the first step in
adjusting the influence of an envelope.

While these links could have also been turned off, keeping them on
at a lower setting turns into a serendipitous cosmetic trick. As the charac-
ter bends and gyrates while dancing, these spheres of influence will press
in upon the vertices at the waist, keeping the area looking tight, yet fem-
inine and sexy.

FIGURE 4.10 These links are created simply by the position of the Breast "bones."

Chapter 4 Weighting a Character Using Envelopes 147

FIGURE 4.12 At 0.4 of their original setting, these envelopes influence fewer vertices.

Next, go to the Front viewport and select the Bikini Spine2 link
found just below the neck. Go to Frame 430 by moving your Time Slider,
and turn the Initial Skeletal Pose off. Hit the P key to go to a Perspective
viewport, and rotate around to see the left shoulder area (Figure 4.13).

The hardest thing about Rigid weighting is accommodating the
shoulders of a mesh like this when the character is in an arms-raised po-
sition. An arms-back position looks a bit rough too, but there is a way to
alleviate the ugliness of the deformation. With Spine2 selected, enter a
value of 0.8 in the Radial Scale box. Now the shoulder area on the left
looks a bit more like a real deltoid (Figure 4.14).

There are more links that need their Radial Scales looked at, but since
you're working on the shoulder, it's a good time to learn about the next
kind of envelope tweaking: adjusting the parent/child overlap of the en-
velopes.

Adjusting the Parent/Child Overlap of the Envelopes

While entering a lesser value for the Radial Scale for the Spine2 link
helps the shoulder maintain it's shape, one more step needs to be taken
while that envelope is being adjusted. Go to Frame 260, and rotate your
view so you can still see the back of the mesh (Figure 4.15).

14 148 Animating Real-Time Game Characters

FIGURE 4.13 Clearly there is a problem in the shoulder area.

FIGURE 4.14 The shoulders look better once the Spine2 link's influence is lessened.

Chapter 4 Weighting a Character Using Envelopes 149

FIGURE4.15 The shoulder stil! needs one more adjustment to be complete.

Go to the Envelope sub-menu again and enter a value of 0.4 for Child
Overlap (Figure 4.16).

FIGURE 4.16 Child Overlap and Parent Overlap are
crucial settings for envelopes.

150 Animating Real-Time Game Characters

This value extends the envelope into the next link below the selected
link in the hierarchy of the links; it extends it more than the default 0.1
and smoothes out the roughness previously seen in the shoulder (Fig-
ure 4.17).

FIGURE4.17 The shoulder loses its rough edge by increasing Spine2 link's Child Overlap.

Sometimes, however, instead of increasing the Child Overlap, it's bet-
ter to decrease it. Go to Frame 110, and look at the left arm (Figure 4.18).

To fix the elbow area, type in a value of 0 for the Bikini L UpperArm
link's Child Overlap—and voila (Figure 4.19)!

Of course, the type of rig you have created for your character dictates
how much to increase or decrease the Child or Parent settings; however,
as a general rule, increasing the child overlap of the top Spine link and
decreasing the child overlap of the UpperArm link ensures the best defor-
mation in the shoulder and elbow area. So, with the Bikini L UpperArm's
envelope set, is there a way to copy the settings to the Bikini R UpperArm
link? Of course there is!

Copying and Pasting to Symmetrical Limbs

The task of adjusting your envelopes involves a very nice tool in charac-
ter studio: copying and pasting link settings. It's very simple to use. With

Chapter 4 Weighting a Character Using Envelopes 151

FIGURE4.18 The elbow appears crimped due to too much influence from the UpperArm

envelope.

FIGURE4.19 With less influence over its child's link, the upper arm doesn't crimp the elbow

joint when bent.

152 Animating Real-Time Game Characters

the Bikini L UpperArm envelope still active, go to Edit Commands in the
rollout menu to the right, and click on the Copy button (Figure 4.20).

FIGURE4.20 Envelope settings can be copied
and pasted to other links/envelopes.

To paste the envelope setting, simply click on the Bikini R UpperArm
link and hit the Paste button, found beside the Copy button you just hit.

When modifying arms and legs, go ahead and select both of the symmetrical links
at the same time. Entering a value In the Envelope menu while more than one link
is selected will change all the selected links to the new value. This method is an al-
ternative to copying and pasting link/envelope settings.

While it shouldn't really cause you much trouble to redo your tweak-
ing on an envelope-by-envelope basis, the copy and paste functionality of
character studio helps more when you have entered multiple settings
that have taken a long time to complete. This brings up another way to
adjust envelopes: Cross Section and Control Point (Figure 4.21).

Cross Section offers a way to move the cross section of an envelope
up and down the length of a link. To access this feature, click on the Cross
Section icon to make it active instead of the default Links; select a cross
section on a selected link, and move it around. Control Point offers a way
to grab and move the control points of a cross section. Click on its icon to
make it active, then click on a control point and you will be able to move
it where you want, along whichever axis you want.

While useful for extremely high-resolution meshes or very strange
shapes, these two added layers of refinement can usually be skipped with
a real-time game character. Definitely give them a try, however, as you

Chapter 4 Weighting a Character Using Envelopes 153

may find them to be useful tools for quickly achieving the right weight-
ing. Do make sure the results are truly worth the extra effort. Now let's
cover the next step in weighting your character with envelopes: remov-
ing vertices from links.

Removing Any Vertices from Links

While envelopes serve you well with certain types of characters, Remov-
ing Vertices from Links offers another way to quickly achieve the weight-
ing you want. Turn Initial Skeletal Pose back on, go to the Top viewport,
and pan or zoom until the right hand of the mesh fills the screen. Select
all the vertices of the index finger, starting with the second knuckle (Fig-
ure 4.22).

With the vertices selected, click Remove from Links to make it active,
make sure Rigid (green) vertices are selected under Vertex Type, and drag
your selection fence across all the links of the hand, except for the last
two links of the index finger just below the selected vertices. Lock the ver-
tices after you've removed them from the unwanted links, and repeat the
process for the other fingers (don't do the thumb yet).

Turn the Initial Skeletal Pose off, and you'll see the fingers deforming
correctly as they bend (Figure 4.23).

Weighting the Waist, Hips, and Legs

Weighting the waist is fairly simple. The only thing you generally need to
do is to reduce its Radial Scale a bit, and extend the first Spine link into its
parent, the pelvis. In the Front viewport, put the character in its Initial

FIGURE4.21 Adjusting an envelope's Cross Section and Control
Point are additional ways to change an envelope's shape and
subsequent influence over vertices around a link.

154 Animating Real-Time Game Characters

FIGURE 4.22 Select the vertices of the index finger to remove them from unwanted links.

FIGURE 4.23 Except for a crumpled thumb, the fingers look great after strategically
removing vertices from links.

Chapter 4 Weighting a Character Using Envelopes 155

Skeletal Pose if it isn't already, select the Bikini Spine link, reduce Radial
Scale to 0.8, and enter a value of 0.3 for Parent Overlap (Figure 4.24).

FIGURE4.24 The waist area needs to extend slightly into the pelvis.

Extending the Spine envelope down into the pelvis area helps com-
pensate for the Pelvis link being turned off. The two links that connect
the Spine link to the Thigh links are also called Spine links, but they really
serve as left and right Pelvis links.

While the naming convention for links in character studio 3 is better overall than
in character studio 2, the decision to allow redundant naming is puzzling. Equally
perplexing is the decision to call the links directly above the thighs and, in fact, in-
side the hips area 'Spine.' Why not L Hip and R Hip?

These two overlapping "Spine" envelopes need to not only maintain
the shape of the hips, pelvis, and rear, but they need to also overlap the
Thigh links. Select the two links that appear just above the Thigh links.
Leave their Radial Scale and Parent Overlap as is, and increase their Child
Overlap to 0.7 (Figure 4.25).

Moving down to the thighs, several adjustments need to be made.
First, the Radial Scale needs to be reduced to 0.8 so that the left thigh en-
velope reaches less of the right thigh vertices, and vice versa. Next, to

156 Animating Real-Time Game Characters

FIGURE 4.25 These two envelopes take over for the Pelvis link and do a great job!

avoid influencing too much of the rear geometry, the Parent Overlap can
be reduced to 0. Just like the UpperArm link, the Thigh link needs to
leave the Forearm link alone, so enter a value of 0 for the Child Overlap
as well (Figure 4.26).

Finally, the Betty L Calf and Betty R Calf links are taken care of with
the same sort of child/parent adjustments. Reduce the Radial Scale to 0.8,
leave Parent Overlap the same, and change Child Overlap to 0 (Figure
4.27).

You can now work on the feet. The bottom edge vertices of the feet
need to be rigid. They make contact with the ground and don't need to
deform, other than allowing for the Toes to bend when appropriate. In
the case of Bikini, her toes can't bend, so all the vertices lower than the
ankle can be assigned solely to the Foot link (Figure 4.28).

RESORTING TO TYPE-IN WEIGHTS
Finally, a;
be fixed by any other quick envelope tweaking. The thumb is a great ex-
Finally, as a last resort, type in the weights for areas of the mesh that can't

ample of a mesh area that needs to have weights entered manually. The
trick is to divide it up into zones that correspond to the underlying links,

Chapter 4 Weighting a Character Using Envelopes 157

FIGURE 4.26 The Thigh links need to have much oftheir influence taken away.

FIGURE 4.27 The calf/shin area needs to also have less of an influence on its children links.

158 Animating Real-Time Game Characters

FIGURE 4.28 The feet need to be rigid at their bottom edge.

and assign the vertices to those links. Vertices that are right on the line be-
tween links will, of course, get equal influence from each link. For exam-
ple, links A through E would have all the vertices inside their grid
"borders" assigned to them, with vertices close to the edges of border get-
ting equal influence (Figure 4.29).

You can spend as much or as little time as you care to with the fingers
and thumb. Generally, they won't be an easily recognized detail in a real-
time game character.

Assigning the Breast Vertices

The breast area also benefits from manually assigning the vertices. As the
breasts move and bounce, via the Spring controllers assigned to the breast
"bones," the mesh needs to deform appropriately and look realistic. As-
signing the vertices manually means the breast shape maintains the ap-
propriate form while animated.

Go to the Right viewport, zoom in to the chest, and select the vertices
around the breasts, hiding all the other vertices of the mesh so that you
have a clear workspace (Figure 4.30).

Chapter 4 Weighting a Character Using Envelopes 159

FIGURE 4.29 Zone off the thumb area in order to weight it properly.

FIGURE 4.30 Begin weighting the breasts by hiding all the other vertices of the mesh.

160 Animating Real-Time Game Characters

Whenever a majority of vertices need to be hidden, take advantage of Select Invert.
Simply select the vertices you want to remain in view, go to the Edit pull-down
menu, and click on Select Invert. Then the selected vertices become unselected

and the formerly unselected vertices become selected, allowing you to hide them
(Figure 4.31).

FIGURE4.31 Select Invert is the fastest way to
select and hide a large group of vertices.

Next, rotate around to the front of the mesh, then select and hide any
vertices that are part of the torso and that are not supposed to move with
the breasts. An exception to this would be the cleavage area—it will
move with the breasts to avoid bad deformation (Figure 4.32).

Once the immobile torso vertices are hidden, go to the Front view-
port again, and select all of the vertices of the right-side breast geometry,
including the cleavage vertices of the left-side geometry. Make sure Rigid
is selected as the Vertex type. Under Blending Between Links, choose No
Blending, and assign the selected vertices to the b_rbreast_nub link at the
end of the right breast's bone chain (Figure 4.33).

The center vertices that make up the cleavage can really be assigned
to either the left or right link. Including them in this step saves time. Hold
down the Alt key and deselect all the vertices you just selected; bring up
your Type-In Weights menu, and enter 1 for b_lbreast_nub to share in-
fluence over these cleavage vertices (Figure 4.34).

Select the remaining vertices on the left side and assign them to the
b_lbreast_nub link at the end of the left breast's bone chain. Now comes
the trial-and-error phase of trying some weighting values for the vertices
that tie into the rest of the torso at the top of the breast areas. Select only
the vertices that are above the breasts and below the armpits, and add the
Bikini Spine2 as an influential link (Figure 4.35).

Chapter 4 Weighting a Character Using Envelopes 161

FIGURE 4.32 Select and hide vertices that are part of the torso lying behind the breasts.

FIGURE 4.33 Assign all the vertices within the box to the b_rbreast_nub link.

162 Animating Real-Time Game Characters

FIGURE 4.34 These center vertices are linked to both Breast "bones."

FIGURE 4.35 Partially assigning these vertices to Spine2 will dampen the effect of the
breast links, resulting in better deformation.

Chapter 4 Weighting a Character Using Envelopes 163

That will ensure the breasts don't stretch unnaturally as they move
around. To further help this area, add influence from Spinel to the torso
vertices at the side of the breast (Figure 4.36).

FIGURE4.36 Adding the Spinel link to these vertices will help with the deformation.

Turn the Initial Skeletal Pose off and go to a shaded viewport. Scrub
the Time Slider back and forth to see how the mesh deforms as the char-
acter moves. When you're satisfied that the breasts are moving more nat-
urally, it's time to move on to adjusting the head and face.

Adjusting the Head and Face

With a character like Betty Bad, the head geometry doesn't have any
moving parts and is assigned fully to the Head link—nice and simple. For
a character like Bikini, on the other hand, there usually is some sort of fa-
cial rig. With the addition of a more elaborate hairstyle, there could also
be bones attached to the head (like a ponytail) that would require more
thought and effort put into the weighting of the head. Then it's just a
matter of manually typing in the weighting values again. However, now
that you have the basic understanding of how to do that and how to ad-
just envelopes, take a break from trying to follow along and simply study
the finished product.

164 Animating Real-Time Game Characters

Load Bikini3.max from the Chapter4 directory on the companion
CD-ROM. Select the head geometry and go to the Vertex Sub-Object
menu under Physique (Figure 4.37).

FIGURE 4.37 Nearly all the vertices of this character's head are assigned to the Head link.

Note that most of the vertices are only assigned to one link and that
there are very few blended dark-green ones. The vertices at the base of
the neck have to share weighting with the Neck link, of course, because
the head fits exactly on top of the body (even though it's detached). The
vertices by the mouth and eyes are weighted to more than one bone, be-
cause that's what is required to accommodate the basic facial rig attached
to the character: moving eyes, blinking eyes, and parting lips.

The important thing to remember is to begin weighting the head by
simply assigning everything to the Head link. This cleans up any stray
weighting or unwanted envelope influence over the geometry and pro-
vides a basic starting point. Then, if there are multiple objects that make
up the head, as with this character, start with the geometry that can be
weighted fastest and then hidden out of the way. In this case, the hair
was first. All of it was assigned to the head, even the geometry that was
near the shoulders and neck (in this case, no one will miss any swish-
swish of the ponytail mesh) and the mesh object was hidden. The
m_mouth geometry was next (Figure 4.38).

Chapter 4 Weighting a Character Using Envelopes 165

FIGURE4.38 Geometry is sometimes kept detached purely for access when weighting.

The eyeball elements are weighted mostly to the Head link, while the
circular arrangement of triangles in the center of the eyes are weighted to
the eyeball bone links. This makes it seem like the whole eye is moving,
even though it's just the iris. The lips and teeth are assigned to the Head
link, too, because of the minimal amount of animation required for the
character's mouth.

Keeping the lips of your character detached as an element within the mesh, even if
they're low-res, helps keep a nice line for that part of the mouth and prevents
smoothing from adding ugliness to the geometry's surf ace.

After m_mouth, the head itself was weighted, starting with the neck-
line. This was done by adjusting the values of m_head and m_body at the
same time (Figure 4.39).

The vertices of the neck highlighted in Figure 4.39 are where the
Biped's head meets the neck; they are equally influenced by both Head
link and Neck link. The vertices just below them are given a weighting of
1 to the Neck and 0.5 to the Head, to ensure the area deforms smoothly
as the head turns from side to side. The vertices above the head bone's
pivot point are actually influenced by Neck, Head, and Jaw links. The hair

166 Animating Real-Time Game Characters

FIGURE 4.39 The neck is weighted by adjusting the head and body mesh objects
simultaneously, because the vertices lie flush with each other.

mass can be assigned just to the Head link. Speaking of the jaw, these ver-
tices are assigned partially or fully to the Jaw link (Figure 4.40).

The extra link at the end of the jaw isn't really necessary, but it
makes the link easier to select than if it went directly to the lower lip
"bone." Its main purpose is to further deform the bottom lip, if necessary.
The corners of the mouth are weighted to allow the bones there to create
a pout or a smile. The rest of the face, up to the eyes, is weighted to the
head.

Next, work on the eyes. The two bones that control each eyelids are
all that are necessary to make the character blink (Figure 4.41).

When creating a character that has to blink, it's easier to weight and animate the
geometry when starting in an eyes-closed position. When using bones, an eyes-open
pose is more difficult to weight and animate to appear closed than the other way

around.

These vertices share influence with the Head link and the individual
eye bone links (not the eyeball bones). If the character required more

Chapter 4 Weighting a Character Using Envelopes 167

FIGURE 4.40 These vertices are linked wholly or partially to the Jaw link.

FIGURE4.41 The eye geometry is built with the eyelids dosed, to allow for weighting.

168 Animating Real-Time Game Characters

expressions, additional bones would need to be added for eyebrow move-
ment. Once the eyelid geometry has been weighted, you can bring back
the hair geometry, with the eyelashes attached, and give them the same
weighting that you did for the eyelids (Figure 4.42).

FIGURE 4.42 Since the eyelash geometry shares the same texture map as the hair, it also
shares the same mesh object.

That wraps up weighting a higher resolution real-time character. Re-
member to make envelopes do as much of the work as you can, before
getting your hands dirty at the manually-weighted vertex level. It will
save you many hours of work and effort (Figure 4.43).

SUMMARY

Adjusting envelopes is the best way to tackle the weighting of higher res-
olution real-time characters. The base pose of a character that will be re-
lying on envelope weighting needs to be well thought out. By putting the
character in the "da Vinci pose" (arms out, feet apart), the limbs are sep-
arated enough so that so that the envelopes generated avoid influencing
the wrong geometry.

Chapter4 Weighting a Character Using Envelopes 169

FIGURE 4.43 Say buh-bye to Bikini girl—for now!

The order in which you apply Physique and adjust weighting is also
more important when primarily using envelopes. If Physique is applied to
all the mesh objects of a character at the same time, then any envelope
settings are applied across all the objects, even if they're hidden or unse-
lected. For that reason, when dealing with a higher resolution character,
you need to achieve as much of the weighting via envelopes as possible
before resorting to manually entering the weighting values. It saves time

and effort.

THINGS TO CONSIDER
BEFORE YOU ANIMATE

171

172 Animating Real-Time Game Characters

I f you go to www.dictionary.com, the definition of animation you'll find is:
"The act, process, or result of imparting life, interest, spirit, motion, or
activity." In order to fully understand that definition, in order to "im-

part life" into your characters, you need to be alive yourself. You need to
have the innate ability to recognize what looks right and what doesn't
fook right when a character is moving around. You need to breathe life into
your characters—they're not going to take on life by themselves. Do this
by opening your eyes to everything and everyone around you. Watch
movies with the sound off, to better concentrate on movement without
the distraction of noise. Grab a book on stage-acting or even body lan-
guage, to see how physical movement becomes communication. Take the
act of animation seriously. This attitude, this mental aspect of animating
characters, may feel a bit melodramatic, but it's required if you want to
stand out from the pack. So, take a moment to consider some of the ele-
ments to be thought out before animating your real-time game characters.

KNOW YOUR CHARACTER
Successful character animation, whether it's for rendered or real-time
purposes, relies on many factors: the skill of the animator, the complexity
of the character being animated, the time available to do the anima-
tions—the list can go on. However, the most important thing to remem-
ber when animating a character is simply to know it. Knowing your
character is the first step towards bringing it to electronic life. Thinking of
the character as a real person or creature and animating it in a way that's
consistent with its nature will result in believable animation. Think of
yourself as both puppet master and puppet, or director and actor.
Achieve the performance you're after in your animation by constantly
asking yourself, "Is this something the character would do, and is this
how they would do it?"

Knowing your characters requires in-depth study and an intuitive
sense of what they're about. While creating a written description and
sketching the physical appearance can ensure you know your characters
on the surface, your translation of those inputs into action requires that
you know the characters completely. Don't be satisfied with just a one-
to-one processing of the information at hand. Strive to rise above
mediocre, lifeless animation, and search for some sort of uniqueness and
individual quality to inject into your characters' movements. Make their
animations not only adhere to and reinforce their identity, but make
them stick in the mind of the person viewing those animations as some-
thing cool.

Chapter 5 Things to Consider Before You Animate 173

Appearance Dictates Identity

The first step in knowing your character is to look at the model and any
"action" sketches done in pre-production. This will spark your imagina-
tion and begin to give you ideas for how the character should move. For
example, consider Widge. As a bad guy in Betty Bad, he's an evil alien
bent on defeating mankind—but he's also a soldier. He isn't too smart,
and it's not even known if he is actually a "he." One thing is for certain,
though—he's nasty (Figure 5.1)!

FIGURE 5.1 Widge is not a nice guy (or really even a guy, for that matter).

Why is he nasty? Well, he looks it, for one thing. He's all spiny and
angular, and his metallic skin is intended to make him even more of an
unfeeling, inflexible character who is entirely single-minded: He wants to
eat you. Even his eye is red, to let you know he's a bad guy and he's dan-
gerous. His physical appearance is based on a written description that
says: "Widge is the fodder for the game. He's mean, nasty, and travels in
packs."

This isn't much to go on, but combined with the model, it's enough
to inspire thought about the character's animations. While it's important
to adhere to the initial description, you need to give it a little more depth,
even if it's only in your mind. He's a bad guy without remorse. He's a lit-
tle "Terminator," who won't stop until he's been obliterated. Maybe he's
a bit too eager sometimes, and trips. Maybe when he gets knocked back,
he tumbles, rolls, and then comes right back at you because he's so anx-
ious to eat you (Figure 5.2).

Fill in the character's gaps—whatever it takes. The duty of the charac-
ter animator is to use your imagination to give the character a personality,

174 Animating Real-Time Game Characters

FIGURE 5.2 Widge is feisty, nasty, and mean, and his animations reflect it.

providing an identity template to follow while animating the character. If
no detailed background on the character exists, then create one. Don't
straddle the fence on a character's mannerisms or characteristics. Decide
what they are, and commit to them while putting it through its paces. It
will make a difference in the character's overall impact in the game.

The game Betty Bad is supposed to be light-hearted fare. It's not seri-
ous entertainment, just a little diversion to have fun with. So despite
Widge's nasty demeanor, he can't be all salt and vinegar. He needs to re-
flect a little of the game's attitude, as well. So take another look at his de-
sign. He has a fairly flexible tail that's probably for balance, but then
again, maybe he's like a dog and exhibits emotion through the ap-
pendage. Or maybe he's like a cat and swishes it from side to side, right
before he's ready to pounce! How you treat just one design element of a
character, like Widge's tail, can make all the difference in the attitude and
nature of the character. The geometry of the character can inspire as well
as direct the animations, even if it isn't written down for you.

Uniqueness Required

While uniqueness was mentioned earlier, it was meant to be a motiva-
tional suggestion to bring something to a character's motions that's not
mundane. It also applies to individual characters when compared to
other characters in the same game. Give them a limp, or a lean, or some-
thing that helps identify them in a line-up with the other characters in a
game. Give them a consistent aspect to their animations that keeps them
in character. While uniqueness also means trying to inject something dif-
ferent into your characters' movements to make them stand out, try also
to animate them so they are interesting and fun to watch.

Widge, for example, is always hungry. It's a very powerful driving in-
stinct that compels his species to attack and conquer. He lives to feed.
Naturally, therefore, he will eat almost anything—including a fallen com-
rade (Figure 5.3)!

Chapter 5 Things to Consider Before You Animate 175

FIGURE 5.3 Scoop, lift, and swallow—the observed eating habits of an evil alien.

The animation for Widge's feeding changed the game's design and af-
fected the gameplay, because everyone on the Betty Bad team thought it
was so cool. It also provided a reason for the character to stop and occa-
sionally be an easier target for the player. This sort of improvisation and
experimentation frequently happens during the animation phase and can
positively impact a game. Therefore, even though it was kind of weird, the
feeding animation for Widge made it into the game primarily because it's
what the character would do. He stayed true to his perceived character, and
the action made a twisted sort of sense. Remember, making sure your
character stays in character can only happen if you know your character.

THE ANIMATION SET

A character's animation set is the sum total of all his animations that are
required to be a part of the game. The number of animations, and kinds
of animations, depend on many things. When determining a character's
animation set, the genre, point of view of the game, its environment, any
file-size limitations, gameplay mechanics, and how the characters are im-
plemented within the game's core technology are all factors to consider.

Genre

There are lots of genres of games available today: action, strategy, puzzle,
racing, fighting, adventure, and so on. There are even sub-genres, like
first-person shooter (FPS) action games and third-person shooter action
games, "top-down" view racing games, and "in the car" racing games.
When you think "real-time characters," you mostly think of those found
in action games like Quake™, Unreal™, or Betty Bad. But even Luigi of
Nintendo's GameCube game, Luigi's Mansion™, and an X-Wing fighter
from the Star Wars™ game, Rogue Squadron II: Rogue Leader™ are real-
time game characters.

176 Animating Real-Time Game Characters

The animation sets for each character will differ solely in the way
they're implemented to support their genre. For example, in a typical
FPS, the characters run around a visually rich world, jumping, strafing,
and blowing things up with bright, satisfying explosions. They zip around
at superhuman speeds and make slippery and elusive targets for the
player behind the mouse. However, to make these characters come to
life, an artist has animated them, then programmed them to respond to
input from the person playing the game. The basic animation set for
games of the Quake and Unreal genre are basically made up of the follow-
ing actions:

• Idle
• Run
• Backpedal
• Walk
• Jump
• Crouch
• Crouch walk
• Strafe left
• Strafe right
• Shooting attack
• Melee attack
• Change weapon
• Taunt
• Pain
• Death

Idle animations are what you see when the character is inactive and
waiting for input. This could really be nothing more than one frame of
being "ready" to go into action. The other animations are either locomo-
tive in nature (attack or response from an attack) or getting temporarily
knocked out of action ("death" or recovery animation). This list supports
a character's movements based primarily on the demands of fast, respon-
sive input from the player. In other words, it supports the basic gameplay
requirements of an FPS: evade, attack, and die.

During the development of Quake II and Quake III Arena (Q3A), it was sug-
gested several times that the ideal deathmatch character would be just a box with
the player's face on it. It would keep the character's file-size to almost nothing and
reflect just how much hardcore deathmatchers cared about the aesthetics of regular
real-time game characters.

Chapter 5 Things to Consider Before You Animate 177

These animations are the meat and potatoes of the FPS character, but
what about the third-person action game? In a game like those in the
Lara Croft Tomb Raider™ series, Lara Croft runs, jumps, flips, and gener-
ally shows you her shapely posterior during the entire game. She climbs,
scoots, and straddles her way through very complex and very demanding
levels. For a third-person character like her, the animations set is decid-
edly more comprehensive.

Environment

A game's environment also affects a player's animations set. Will the
character fly? Is there water to swim in? Are climbing up ledges even part
of the game dynamics? Is rope-climbing or rope-swinging required (Fig-
ure 5.4)?

FIGURE 5.4 A swim animation is only required if there's something to actually swim in.

Game design will answer these questions. The level designer, project
leader, or art director will usually determine and clarify the issues. The
bottom line is that genre greatly affects many elements in the game de-
sign, especially the animation set.

Size Still Matters

Once the genre and game design elements are considered, the amount of
memory a character takes up also comes into question, as does the as-
sessment of how many animations there will be and what type of anima-
tion will be required. For example, a ceiling of 2 megabytes might be set
for a game character for in-game use. The mesh might take up 100 kilo-
bytes, the texture another 300 kilobytes, and the sounds 400 kilobytes.
That would only leave about 1.2 megabytes for the animations! This allo-
cation affects the creators' approach when determining not only the ani-
mation set, but the length and playback speed as well. It means that an

178 Animating Real-Time Game Characters

extra-long death animation must instead become about 10 frames show-
ing the character doing a face-plant, and the frame-rate is reduced from a
lush 30 frames per second (fps) to a potentially ugly 15 fps. Sometimes,
however, characters require a large list of animations just to function
within the game (Figure 5.5).

While all game characters need to be frugal with their frames, multi-
player games are particularly sensitive to the number and length of their
characters' animations.

Multi-player characters like those seen in Quake or Unreal need to consume as lit-

tle memory as possible, due to the nature of playing games online. As players duke
it out in their favorite deathmatch level, feedback information is sent back and forth
invisibly between players' machines. Characters with large animation sets, large

numbers of polygons, and large texture maps not only make it hard to support a
multi-player environment, but slow a game down noticeably because of the work
involved in processing the data that represents the character.

While the main character of a single-player game usually has the
most number of animation frames, sometimes other characters that are
used frequently have just as many (if not more) animations. In Gray Mat-
ter Interactive Studios' Return to Castle Wolfenstein™, the main character is
never seen outside of scripted cutscenes and option screens, so his ani-
mation set is subsequently lower than most of the other characters in the
game.

Another reason a character's animation set could be larger than an-
other's is a matter of utility. To save memory and maximize assets, some
characters can easily be turned into other characters by scaling them up or
down programmatically and adding or subtracting "accessories" to the
character at predetermined points. To add to their effect and distinctive-
ness, the characters will exclusively use select animations as well as share
animations from a larger animation set. In Return to Castle Wolfenstein, the

FIGURE 5.5 In Betty Bad, the main character has nearly 3,000 frames of animation.

Chapter 5 Things to Consider Before You Animate 179

designers and artists employed an excellent system of one body and mul-
tiple heads; to make the oft-seen Infantry and Elite Guard soldiers appear
as different characters, heads and accessories are randomly swapped.
These characters referenced difference animation sets based on their
configurations.

In contrast to the main character and the "fodder" characters that
pop up frequently, the "Boss" or major bad-guy characters (usually seen
at the end of levels in most games) have hardly any animations at all.
Those they do have are mainly attacking, showing pain, and then the
payoff when you defeat them: a big, elaborate death animation.

Game Controls

The game controls that drive a character also play a role in deciding the
number and types of animations a character needs. In Betty Bad, when a
change of direction is sudden enough, Betty performs another animation
that reinforces the suddenness. For example, when strafing left or straf-
ing right, Betty shuffles left or right appropriately. When going side-to-
side fast enough, she will perform a dramatic cartwheel motion that
covers more distance and looks really cool (Figure 5.6)!

FIGURE 5.6 See Betty run. See Betty cartwheel*.

180 Animating Real-Time Game Characters

In Quake, the first, highly successful three-dimensional FPS, instant weapon
switching was a feature. This meant that when you chose a different weapon, poof!
It appeared. During the development of Quake II, a lengthy and ongoing debate
developed over the amount of time a character spent changing weapons and
whether or not it was even necessary. People complained that it was too slow, and
the arguments that resulted boiled down to the difference between tenths of sec-
onds. When Q3A was made, the decision to animate the weapon switch by flick-
ing the arm down and away from the body also caused a controversy about
whether to perform the action in 0.6 seconds or 0.9 seconds. The shorter length of
time won, and players around the globe rejoiced.

Game Technology

A character's animation set can change a game's core technology, but
more often than not, it's a slave to it. In Quake and Quake II, the charac-
ters had no animations to support turning or looking around. During
deathmatch, if you were to see another player "free," looking around,
you would see the character in a single action pose, rotating and moving
while frozen in that pose. During the development of Q3A, a new anima-
tion system was implemented to support not only "looking around," but
also to portray character movements more realistically. The characters'
animations had to be divided into three parts: head, torso, and legs.
When given input from the player moving his mouse, the head would re-
spond, then the torso, and then the legs. All three would be involved if
moving while shooting or gesturing.

While creating the new animation system in Q3A, a side-to-side shuffle animation
was tried to simulate strafing. It wouldn 't work because the game engine didn 't
support smooth blending between animations. The solution was to turn the char-
acter's legs at a 45-degree angle while strafing left or right, with the upper body
pointing wherever the player pointed. This helped keep the animation set low, but
it wasn 't very accurate or realistic.

The decision to divide the characters into three distinct parts for Q3A
was made because regardless the action, character animations can be
roughly grouped into three different categories (Figure 5.7):

• Lower body (running, jumping, etc.)
• Upper body (shooting, weapon changing, etc.)
• Full body (deaths, taunts, etc.)

-

Chapter 5 Things to Consider Before You Animate 181

FIGURE 5.7 Animations can be categorized as upper, lower, or full body movements.

Q3A takes the categorization literally because it has to support the
game's technology and animation system. However in Betty Bad's case,
all her animations involve her full body, because the animation system
didn't support segmented body parts like in Q3A. Instead, the game tech-
nology requires unique animations for any given situation. This techno-
logical difference resulted in Betty's huge animation set, and was due to
redundancy and covering every animation situation throughout the
game. For example, in order for Betty to run in the game, she had to have
four different animations: her normal run, her run while shooting, her
run while shooting going diagonally to her right, and her run while
shooting going diagonally to her left (Figure 5.8).

Involving the full body in all the animations makes them richer—
they simply look better. The fact that Betty Bad is a third-person game also
required that more attention be placed on the aesthetic value of the main
character, since she's fully on screen at all times.

Once all the factors have been taken into consideration and the ani-
mation set for a character is roughed out, the next real question to con-
sider before animating your character is what technique to
use—keyframe or motion capture.

KEYFRAME OR MOTION CAPTURE?

As a character animator, it's very important to understand the timing
necessary to simulate realistic and exaggerated motion. The biggest

182 Animating Real-Time Game Characters

FIGURE S.8 Betty's run animation has to be in four versions to support the game engine.

question you always need to ask yourself is, "Does this look right?"
Does the animation succeed in its intent? More important, does it fit the
character?

When it comes to character animation, there seem to be two ap-
proaches to take: keyframe or motion capture (mocap)—that's "seem to
be," because in reality, all your animations are keyframed. You simply
can't animate a character without dealing with keyframes. While some
opponents of motion capture decry its validity (it's not "art"), it's just a
tool like any other plug-in, bought mesh, or scanned texture you would
use. Many purists feel it has to be one or the other, keyframe or mocap.
However, mocap is merely a starting point to animate characters, not a re-
placement for keyframing. The truth is that when animating real-time
game characters, using a combination of both keyframe and mocap is an
excellent solution for achieving great animations quickly. However, there
is no doubt whatsoever that your first step to mastering character anima-
tion is learning how to keyframe.

Keyframing Defined

Keyframe animation is the act of posing an object or character at time in-
tervals or at different "frames," and allowing the computer to fill in the
gaps between those intervals, simulating motion. In regular eel anima-
tion, senior artists make keyframes while junior artists fill in the "tweens"
(cels between the keyframes).

The steps involved in keyframing in 3ds max are:

• Turn on the Animate button (it becomes red).
• Select the object you wish to animate.

Chapter 5 Things to Consider Before You Animate 183

• Select the Move or Rotate Transform icon.
• Move or rotate the selected object, thus "setting" the keyframe.
• Advance forward in time and set another keyframe.
• Scrub the time slider back and forth between keyframes to review the

animation.
• Make adjustments as necessary.

When to Keyframe

It's true that all of the animation for a character (any character) can be
done solely by keyframing them. In fact, if you're completely new to
character animation, it's a good idea to animate at least one character
solely by keyframing all its moves, before you ever touch a mocap file.
However, this isn't a hard and fast rule and like all other rules ("Clean
your plate," "Color within the lines," "Finish every book you start" . . .),
is meant to be taken for its intent and acted upon only if you really want to.
The important thing about keyframing is to understand how to do it, so
when and if mocap is used, it can be tweaked and augmented as necessary
with keyframes.

There are some animations that are better suited for keyframes than
for mocap, though. As a general rule, when animating a character with a
typical animation set, the idle animations, upper body animations, and
hard-to-mocap moves, like swimming, are usually best done by keyfram-
ing them. This is more for expediency's sake than anything else. The idle
animations are particularly better suited for keyframing, because they're
generally very slight and very subtle. The exception to this is when the
character has to do a special idle animation, like breaking into a fancy
dance or lying down to take a nap.

In Betty Bad, if you sit idle for too long, the heroine of the game will turn around
and do a bit of hip-hop before demanding that you get on with playing the game.
This sort of "conditional" idle is a way to give a character more personality.

Of course, motion capturing four-legged animals to apply to a four-
legged character is hard to come by. Usually these types of characters are
animated solely through keyframing. So, that covers when to use
keyframes, but when do you use motion capture?

When to Use Mocap

Motion capture is the process of capturing movement from a real object or
person and using the data generated to animate a computer-generated

184 Animating Real-Time Game Characters

object or person. Special markers are placed over the joints of actors, and
special hardware then samples the position and/or orientation of those
markers in time, generating a set of motion data.

Mocap is ideal for animating real-time characters, because it adds re-
alism to a fantastic setting. Looking at a lower-poly character, you can tell
whether it's computer-generated. If the animations aren't very good, the
structural failings are even more apparent. With mocap, the movements
make you suspend your disbelief and let the character in. But motion
capture is nothing more than a tool to the animator.

Mocap is ideal for lower body animations and full body animations
like deaths and massive knockbacks. Animations like jumps are perfect
for mocap, because the nuances and subtleties of adjusting one's weight
after recovering from the impact of landing are hard to simulate through
keyframes. Complex cutscenes where multiple characters interact are
also great for mocap, if for nothing else but the speed with which the an-
imations can be captured and implemented. Studying mocap is also a
great way to improve your animation skills. The neck and shoulders are
particularly interesting to watch in a mocap animation, since they're not
often animated when keyframing.

Tips on the Mocap Process

As great as it is, and as much as it helps achieve quick, realistic anima-
tions, mocap isn't for every project. It's a little more costly than keyfram-
ing (that is, if your artist is a fast keyframer), and the wait time to get the
motion back from the service chosen to do the mocap is sometimes
longer than desired. However, if you decide to go the motion capture
route, here are some time- and money-saving tips:

Be prepared. This can't be stressed enough. A solid animation list is re-
quired in order to obtain a bid from a potential service bureau and is
crucial for you to refer to when the shoot takes place. Try to cover all
the bases; know exactly what's needed and how you want it broken
down. For example, will there be any props (that is, will the charac-
ter be carrying a weapon or something)? Most mocap houses have a
veritable tool chest of ready-made props, but knowing what they are
beforehand ensures they'll be available when the time comes. Most
mocap studios also have specific naming conventions they adhere to,
so come up with a basic naming convention for the animations that is
flexible and easy to change.

Shop around for the right service. Call and speak with several studios
before committing to one. Consider travel, lodging, and the logistics

Chapter 5 Things to Consider Before You Animate 185

of the whole process, and make sure that's factored into the bid as
well as the actual cost quoted. In most cases, an optical system like
Vicon is more preferable than magnetic-resolution or other "suit and
cable" systems. Suits are far too restrictive to the actors wearing
them, and certain actions like jumps or other moves where the actor
leaves the ground can be problematic. Still, these systems usually
offer cleaner data and a quicker turnaround time to get your moves.
When going with an optical system, make sure the studio has at least
eight cameras. This compensates for "losing markers" when a reflec-
tive marker is blocked or occluded by a body part or prop. Other fac-
tors to consider when choosing the right mocap house are their
knowledge of tools you use (such as 3ds max and character studio),
past customers of theirs, and their overall attitude toward you, the
customer. Some studios, like House of Moves, BioVision, and Loco-
Motion, have tons of motion capture files in ready-to-sell libraries.
Character studio comes with a substantial motion capture library.
However, nothing compares to getting the data you want by setting
up a mocap session.

Hire good talent. While it may be tempting to suit up and do the mo-
tions yourself, don't. It's very important that you hire someone else
to have the fun and pain of doing the animations. The most impor-
tant reason, however, is the performance itself. You have to be able
to see the actor do the moves and then nicely guide them into doing
what it is you really want. Studios like House of Moves have casting
calls to show you potential actors. Find someone who fits the bill
and is comfortable performing. During the shoot, they will look to
you or whoever is directing them for guidance and comments on
their performance, so be critical when putting them through the an-
imations. Just don't be insensitive to an actor who's trying to get it
right.

Rehearse the motions before the shoot. The week before, the day be-
fore, the morning before, and during the session itself, run through
each animation before capturing it. The more times you do this, the
easier and the sooner you will get the motions you want. In Star Wars:
Episode I and other movies that feature big fight scenes, the actions
are rehearsed up to a hundred times before committing to film. Take
your job seriously—rehearse!

Have the animator direct. The animator that will be using the data
needs to be at the motion capture session—directing the shoot, if pos-
sible. To direct, all you have to do is focus on the performance of the
talent and, as you do each take, make suggestions to get the motion
right. Be very precise in your comments and give tangible suggestions

186 Animating Real-Time Game Characters

for improving the move. If you're too shy to direct, have someone
who is more qualified do the directing, but be there watching the
process. A producer and his assistant are great for doing what they do
back at the studio, but at a mocap session, an artist is needed to make
sure the data matches what is required and desired. If you're sup-
posed to work with the data, and your producer won't allow you to
go to the shoot, find another company to work for.

Video the sessions with time code. Most studios will have this cov-
ered, but it's crucial to have some sort of video reference to choose
the motions you want. This makes selecting the in and out times (the
beginning and end of a motion) easier and allows the clean-up
process, which can be lengthy and somewhat painstaking, to happen
more quickly. Also, keep notes during the mocap session; you will
need to refer to them during the selection of animations to
keep/cleanup, especially if many animations are captured.

Bring any appropriate character models to the session. While not
mandatory, bringing models already rigged and weighted can't hurt.
Even giving the Biped file that will be used with the data to be cap-
tured to the motion capture technician is helpful when going
through the arduous cleanup process.

Be clear on the deliverable date. Before you leave the motion capture
studio, make sure you have an understanding of when the data will
be delivered to you in its final form. Plan on the process taking any-
where from one to four weeks, depending on the number of anima-
tions you've had captured.

While motion capture may not be for everyone, it behooves you as a
character animator to not only learn more about it, but to actually give it
a try and evaluate its usefulness before jumping in with the Purists and
Luddites and refusing to even consider it. Of course, regardless of which
approach you take, once you have your animations, you need to know
what to do with them.

IMPLEMENTING THE CHARACTER
The last things to understand before animating are how real-time charac-
ters are implemented in the game, the relationship between art and code,
and why characters are generally animated "in-place."

While in some ways, technology dictates the animation set, building
a game is always a combination of art and code, vision and implementa-
tion. Art includes production design, models, textures, animation level

Chapter 5 Things to Consider Before You Animate 187

design, and sound. Code is integral to the game engine, game tools, game
functionality, and game design (which is definitely an art form, most of
the time). Even the people who work on the game can be lumped into the
two categories of artists or programmers. (Even though game designers
generally straddle the line, individuals definitely weight toward either
the artist or programmer.)

While a game may be your favorite due to nostalgia or to some other
personal reason, most of the great games you've played over the years
have had the perfect balance of art and code. Games that excel at one or
the other are definitely memorable, too. Whether or not you'll like a
game that is good at one and bad in another depends on the extremes,
and of course, games that are terrible in both are not likely to remain in
your possession. This idea that the combination of art and technology is
important can also be carried down into the individual components of the
game as well. The option menus, the game screen, the gameplay me-
chanics, and especially the implementation of the characters all benefit
and work well when the ideal balance of art and code is attained.

Perpetual Windup Toy

So what is the actual mechanism by which a character is viewable and
playable in the game world? The next time you play an FPS or action
game, look at the characters' feet as they walk or run around. Undoubt-
edly, they're sliding a little bit, relative to the movement of the character.
This is due to the fact that all your character animations are generally
done in place. A good analogy of the relationship between the characters,
their animations, and the code is that of a wind-up toy soldier: Pick the
toy up, turn his key, and hold him off the ground slightly above the floor.
His feet move, but no contact is made with the floor. You simulate him
covering distance by moving him with your hand, instead of setting him
down and letting him walk on his own. In the case of the real-time game
character, the code becomes your hand, moving the character all over,
triggering this animation when that happens, and that animation when
this happens, making it seem like he's running, walking, strafing, and
backpedaling (Figure 5.9).

This approach, while common, can't be realistic, because of two fac-
tors. First, the speed with which the code moves the character can't be in
real time. Instead, the action has to be fast, furious, and frenetic. Thus,
the characters tend to move faster than normal; given the usual vast scale
of the game world, there's just no way you would want to truly travel in
real-time over the vast distance that world represents.

188 Animating Real-Time Game Characters

FIGURE 5.9 Introducing the "Action Betty" wind-up toy!

In Doom™, it has been estimated that the player characters move about 90 miles
per hour (mph) when running diagonally. In Quake™, the player characters
slowed down to about 63 mph, and in Quake II, the player characters moved at a
paltry 51 mph.

The second reason why the characters move around in an unrealistic
manner involves their stride. When a character is moved around pro-
grammatically, with its feet running to one speed and its displacement to
another, the rate is uniform. There's no ramp-up or wind-down period
found in any walk, run, or backpedal when they start or stop. Even the
looping animation itself has slight discrepancies in the amount of distance
that should be covered when moved, according to the motions of the loop.
Look at Figure 5.10.

The distance from Point A to Point B is only 8.5 units, because Betty
is just beginning her backpedal. The distance from Point B to Point C is
29.3 units, and she's almost into her stride. From Point C to Point D, she
travels 33.7 units and is well into her stride, as she is from Point D to
Point E, which is 39.8 units. From Point E to Point F is 34.1 units, but she
is slowing down, hence her position bending a bit forward. While Points
B through F could be a complete loop (look at the left leg), this still shows
the variance in the distance covered with a series of strides. Unfortu-
nately, some aspects of the animation have to take a backseat to reality
and are at the mercy and uniform pace of the technology.

Fitting the Technology

In Q3A, John Carmack remedied the deficiencies of the character anima-
tion system by creating the three-piece player model's head, torso, and
legs system. This is an example of technology supporting the animation
svstem in a way that result in fewer animations.

Chapter 5 Things to Consider Before You Animate 189

FIGURE 5.10 The distance covered by each stride varies from start to finish.

Betty Bad was not created using Quake technology, but WildTan-
gent™ technology. Instead of a three-piece tag system, the character ani-
mations had to accommodate a Quake //-like one-piece system. Therefore,
even though she isn't created for deathmatch, the Betty Bad character
does accommodate many different circumstances, but at the cost of a
much bigger animation set. The engine Betty was dropped into did have
one helpful thing that most other game engines have as well: interpola-
tion. That is, the engine can tell the character to go from one established
pose to another established pose, at no cost in animation frames by the
animator. Still, while helpful, it couldn't help the problem of having to
double all the animations that Betty could also shoot from. So it's very
crucial that you know and understand all the limitations and features of
an animation technology, so that the character and its animations will fit
properly in the game engine.

SUMMARY

Now that you have your character built, rigged, weighted, and ready to
go, there are a few things to consider before you begin to animate. The
first step is to know the character you're going to be working with. Bring
it to life by assigning a personality to it based on its appearance, any writ-
ten descriptions, and any additional traits you can imagine. Giving your

190 Animating Real-Time Game Characters

characters an identity ensures that their animations are consistent with
their perceived nature. Strive to apply at least one or two unique traits to
a character that make it stand out from other characters in the game and
from characters of other games. Determining the animation set is next on
your pre-animation checklist. The animation set is the sum total of ani-
mations required for the character to be implemented in the game; it can
be influenced by genre, game design, environment, file-size restrictions,
game controls, and the overall game technology.

After an animation set is created, you need to ask yourself whether
or not to use motion capture in addition to keyframing your animations.
Mocap isn't for everyone, and the budget, time constraints, and complex-
ity of the animation set will determine if it's right for you. If you do
choose to use motion capture, be prepared. Shop around for the right
motion capture studio or motion library. Use good talent, rehearse the
motions beforehand, try to bring any models or Bipeds to the shoot, and
when possible, have the animator destined to use the data direct the tal-
ent at the shoot. Videotape the session, and be clear on the delivery of the
final data.

Finally, implementation of the characters, like all facets of a game, in-
volves a combination of art and code. The programmer and animator
need to come up with an animation system that fits the game and accom-
modates the required gameplay. Often, the success of the system relies on
what's being closely focused on and who's in charge of the task. Yet,
nearly all characters are manipulated and integrated into the game by
programmatically moving them around, keying animations when events
take place. The characters are oblivious to their surroundings and go
through their animations diligently when told to by the code. Unfortu-
nately, this approach to implementing the characters doesn't account for
character motions like ramp-up and wind-down times, transitions, and
other random changes in velocity. However, regardless of the system, it's
crucial the animator knows and understands it completely, in order to
make sure everything works properly when the character is dropped into
the game.

KEYFRAME ANIMATION:
PARTI

191

192 Animating Real-Time Game Characters

FIRST THINGS FIRST

Learning how to animate a character starts with mastering keyframes and
the basic functionality of the tools (in this case, 3ds max 4 and character
studio 3). You also need to develop a few procedural approaches specific
to animating real-time characters. So, in order to introduce you to these
methods and features, in this chapter you're going to create a simple idle
animation for a relatively simple character: Widge.

Footsteps versus Freeform

In character studio, you can animate a Biped in Freeform mode, in Foot-
step mode, or using a combination of the two. Freeform simply means
posing and animating a character the old-fashioned way, keyframe by
keyframe. Footstep is a powerful tool in character studio that allows you to
quickly generate walks, runs, or jumps with all the basic movements as-
sociated with them. Footstep parameters can be adjusted to suit different
strides and gaits that are appropriate for whatever character you happen
to be animating.

Footstep mode won't be covered in this book, but the tutorials that
come with character studio are a great source of information if you want
to learn how to utilize it. While powerful and comprehensive, the tool is
complex and tends to cater to an approach to animating that is more
technical than artistic. Animation is about posing and animating your
characters, not pushing a button, drawing marks on the floor, and saying,
"Go there." However, no malignment of Footstep mode is intended by
omitting it from this book. It's just not the most ideal tool to animate real-
time game characters if you're relatively new to character animation.

Think Animation Folder

Try to think of an individual 3ds max file as an animation folder and of the
animations for your character as motion clips within that folder. The 3ds
max file becomes a comprehensive, virtual dossier containing everything
you need for your character, from mesh, texture maps, and rig, to the an-
imations. The importance of taking this unified approach to your anima-
tions becomes painfully apparent when you have to make a structural
change to the character or its Biped. If you have many separate anima-
tion files for the same character, you have to repeat the hypothetical
structural changes for all those files. This just doesn't make good sense
and the redundant work is a huge waste of time.

Chapter 6 Keyframe Animation: Part I 193

However, sometimes it's okay, and even necessary, to animate spe-
cific animations and save them as an individual file. This is more appro-
priate for creating a Biped file than a character file. It also applies mainly to
motion capture or extremely long animation files (more on this later
when you learn how to stream animations together using the Motion Flow
Editor).

Preparing the Biped

The character on which you're going to cut your keyframing teeth is
Widge. As stated earlier, he's one of the bad guys from the game Betty
Bad. He's not a typical game character in the two-legged sense—he's a
four-legged critter and must be animated using keyframes only. But
Widge is an easy guy to animate, and more important, he illustrates the
flexibility and utility of Biped.

A Betty Bad demo can be found on the CD-ROM that came with this book. If you
haven't installed and played it yet, you may want to, just to see how this anima-
tion will be implemented. It isn 't mandatory, it's just a suggestion!

Get started by loading Widge3.max from the Chapter6 directory on
his book's CD-ROM (Figure 6.1).

FIGURE 6.1 Widqe is back and ready for you to make him a baaad quy.

194 Animating Real-Time Game Characters

As you can see, Widge is rigged, weighted, and ready to go. However,
as with any character, there are a few things you need to do first to make
your life a bit easier while animating. Begin by making the mesh easier to
see in a shaded viewport by assigning a transparent material to all the
Biped objects.

Click on the
"invisio" that has an opacity setting of 0 (Figure 6.2).

FIGURE 6.2 Make a completely transparent
material to assign to the Biped objects.

Select all the Biped objects and assign this material to them. Next,
click anywhere in your view to deselect the objects, and go to the Display
panel. There's no need to keep the dummy objects in view, so check the
box beside Helpers (under Hide By Category) to hide all of them (Figure
6.3).

It's always a good idea to think of your characters as groups of ele-
ments. In the simplest sense, any character can be divided into a mesh
and Biped group. To quickly isolate them as one element of your scene,
select all the Biped objects (without the dummies) and turn them into a
selection set. Do this by typing the word "biped" into the blank Named Se-
lection Sets box at the top of the screen, while the objects are selected
(Figure 6.4).

Now when you want to select all the Biped objects at once, you sim-
ply need to click on the small arrow beside the Named Selection Sets box,

Materials Library icon, and create a material called

Chapter 6 Keyframe Animation: Part I 195

FIGURE 6.3 Keep the Biped'Nub'dummy
objects hidden to economize the object list.

FIGURE6.4 The Named Selection Set is a great
way to select all the Biped objects at once.

and a list (there is only one item in your list so far) of assigned Selection
Sets will pop up for you to choose from. This really speeds up your
workflow.

Edit or delete your named selections by first going to Edit Named Selections under

the Edit menu (I), and then selecting the Named Selections listed (2). Add or re-
move objects in the Selection Set, or delete entire Selection Sets. You can even per-
form a sort of text Boolean operation on multiple Selection Sets by combining,
subtracting, or taking the intersection of them (Figure 6.5).

Finally, select and freeze the two Widge mesh objects, m_eye and
m_widge, so they're not inadvertently selected while you animate the
Biped.

196 Animating Real-Time Game Characters

FIGURE 6.5 The only way to delete a Selection Set is through this dialog box.

KEYFRAME ANIMATION BASICS

Keyframing is the heart of animation. The act of animating by hand is re-
warding, but can be frustrating, too. Experience and lots of practice will
make your keyframing "skillz" improve, but there are also some shortcuts
and suggestions that may help you along the way.

Frame Zero

It's a good idea to always leave Frame 0 alone when animating. If noth-
ing else, it serves as a great starting point for any animation in the overall
animation set. Yet in Widge's case, there's a very technical reason: Frame
0 has to be the default position in which the mesh was attached to the
Biped, because of weighting values. WildTangent technology calculates
the weighting parameters that are set with Physique for any character or
"actor" based on sampling the first frame of an animation set. This is al-
ways Frame 0, so the character must be in the same pose for which the
weighting was adjusted. If it's not, you'll get strange and undesirable re-
sults upon implementation.

Make sure Figure mode is turned off (you can't animate a Biped
while in this mode). Pick the Biped Selection Set out of the Named Selec-
tion Sets you made earlier (or double-click the Widge COM Biped object)
to select it and all its children. Click on the Select and Rotate button to
make Rotate the current type of transform. In the Motion panel, click on
the Set Key button (Figure 6.6).

Chapter 6 Keyframe Animation: Part I 197

Now all selected objects have keyframes set for them. However, the
COM root has three separate animation tracks compared to just one track
for the other Biped objects. Set a keyframe for each animation track of the
COM (Widge) by alternately clicking the Body Horizontal, Body Vertical,
and Body Rotate buttons in the Track Selection rollout menu, before hit-
ting Set Key (Figure 6.7).

FIGURE 6.7 Choose between Body Horizontal, Body Vertical, and Body Rotate animation
tracks for the COM.

FIGURE 6.6 Click on the Set Key button to
set a keyframe for selected Biped objects.

The active axis of movement and selected animation track for the COM also affect
the Type-In Transform menu when entering values to move objects. If, for some rea-
son, typing in coordinates has no effect, double-check your current axis.

The Track View

Another way to add a keyframe for any animation track is by using the
Add Key function in the Track View. Click on the
icon to bring up the Track View window (Figure 6.8).

Track View is just a way to represent the keys being set for an anima-
tion as a series of points that can be manipulated. It is here that you can
assign additional controllers, change the properties of keyframes, and
even add sound to your animation.

You can have up to 13 Track Views open and active in a single 3ds max scene. This
is why you have the ability to name the Track View windows that are open. These in-
dividual Track Views will be saved along with the scene when you save the max file.

Open Track View

198 Animating Real-Time Game Characters

FIGURE 6.8 The Track View in 3ds max is the best way to add, copy, delete, and move keyframes.

The sheer amount of information that can be displayed in the Track
View is so great that the designers of 3ds max gave you a wav to filter
things you're not interested in seeing displayed. Click on the
icon in the upper left-hand corner of the Track View window. This brings
up the Filters option window, where you can customize what's displayed
in the Track View. Check the Animated Tracks box under the Show Only
sub-menu to display the tracks for just those objects that are animated or
have a keyframe set for them (Figure 6.9).

Click OK, and the Track View only displays those tracks that have
keyframes. Next, left-click on Objects—just under Sound in the track list
to the left—to select it (it turns yellow). Holding your cursor over Objects,
right-click to bring up another list of menu options. Slide your mouse
down to Expand All and click again (left- or right-click, it doesn't matter).
This expands all the children under the Objects tree. You can also limit the
expansion to individual sub-objects or tracks under Objects (Figure 6.10).

Now re-size what's displayed in Track View by clicking on the
Zoom icon at the bottom of the Track View window and zooming in so
you can clearly make out Frame 0.

If you have a three-button mouse and a spinner on the middle button, spinning it
will zoom in and out while in the Track View. The Zoom icon also has the func-
tionality to limit the zoom vertically or horizontally. Just hold down the icon, and
select either option from the fly-out menu (Figure 6.11).

Hit the H key to bring up the "hit list" of selectable objects in your
scene, and select the COM (Widge) Biped object from the list. Go back to
the Track View, and you'll notice that the yellow box beside "Widge" in

Filters

Chapter 6 Keyframe Animation: Part I 199

FIGURE 6.9 Check the Animated Tracks box to only show animated tracks in Track View.

FIGURE6.10 Use Expand All on tracks to have access to all their
keyframes at once.

200 Animating Real-Time Game Characters

FIGURE 6.11 Zooming in and out of Track View
can be limited to the vertical or horizontal.

the list of tracks has a yellow highlight to it. This is a quick way to tell
from looking at the Track View whether or not an object is selected. If
you had the Select and Rotate button active when you enabled Set Key
for the COM, then there would only be a keyframe set in the
Widge/Transform/Turning track. If the Select and Move button had been
active and the X-, Y-, or XY-axis were current, a key would have been set
for the Widge/Transform/Horizontal animation track. With the Select
and Move button active and the Z-axis current, a key would have been
set for the Widge/Transform/Vertical track.

Regardless of which key is set, you need a key for each animation
track of the COM. Do this by using the ° Add Keys button at the top of
the Track View. Simply click it to make it active (1), and then click in the
empty space where you want a keyframe in any of the three Vertical,
Horizontal, and Turning tracks (2). Fill in the blanks, and now you have
keys for all Biped objects at Frame 0 (Figure 6.12).

FIGURE 6.12 Use Add Keys to manually add keys in the animation tracks of an object.

Configuring Time

With that done, you need to prevent yourself from accidentally overwrit-
ing Frame 0, which is accomplished by changing your Time Configura-

Add Keys button at the top of

Chapter 6 Keyframe Animation: Part I 201

tion. Close the Track View and click on the
at the lower right-hand part of your screen. When the menu pops up,
enter 0 for Start Time and 60 for End Time. Leave everything else set to
default, but remember your playback frame rate is 30 frames per second
(fps) (Figure 6.13).

FIGURE 6.13 The Time Configuration menu lets you specify a
range within which to animate.

You can change your frame rate and playback speed in Time Configu-
ration, or you can even scale an active animation range, if you want. How-
ever, the range you set in Time Configuration can have an impact on your
access to the keys displayed in Track View. This will make more sense in a
few moments. Meanwhile, you need to learn about copying keyframes.

Copying Keyframes

Now you will copy some keyframes. Go down to the Current Frame box,
just to the left of the Time Configuration button, type in 20, and hit Enter
(Figure 6.14).

This jumps you to Frame 20. This is a nice tool to have when working
with a huge animation made up of hundreds or thousands of frames.
Now, open Track View again, and apply Expand All if you have to. Click
on the W Zoom Horizontal Extents icon to center the active time range

Time Configuration icon

Zoom Horizontal Extents icon to center the active time range

202 Animating Real-Time Game Characters

FIGURE6.14 The Current Frame box allows you
to jump to a frame by simply typing it in.

in the view at the lower right of your Track View window. Zoom in so
that Frames 0-30 are in view, using the
left or right, if necessary.

If you use a three-button mouse (and you should be), the middle mouse button will
usually include a built-in spinner. Like in the regular 3ds max viewport, dialing
this up and down while in Track View will let you zoom in and out, expanding and
contracting the number of keys displayed. You can also pan left and right by hold-
ing down the middle button and moving your mouse left and right.

Next, select all the keyframes at Frame 0 by simply dragging a selec-
tion fence around them. Then, make sure the
live (it should be, by default), hold the Shift key down with one hand,
and while holding the left mouse button down, drag the keys to the right
until they are over Frame 20. This results in copied or "cloned" frames,
just like when you copy or clone objects or sub-objects.

An alternate way to copy keyframes from one frame to another is to right-click on
the Time Slider. This is the movable bar at the bottom of your viewport that reflects
the size of the animation range and the current frame. If you right-click on it (1),
it brings up the Create Key menu (2), and gives you the option to copy all trans-
forms or just some. However, you still need to bring up the Track View if you want
to set keys for all tracks of the COM (Figure 6.15).

Notice that there is a pink line running through the keys just copied to
Frame 20. This color-coded reminder of which frame you're on is very use-
ful. As you move the Time Slider, of course, the pink line moves with it.

Animation Space Buffer

When using the "animation folder" approach with your 3ds max charac-
ter files, you need to keep some space between the animations so that

Pan icon to move the view

Move Keys icon is ac-

Chapter 6 Keyframe Animation: Part I 203

FIGURE 6.15 Right-clicking on the Time Slider is another way to copy keyframes.

they're easy to find and edit in Track View. Leaving noticeable gaps be-
tween the animations also means you have to set complete columns of
keys for all the Biped tracks at the beginning and end of each animation.
This keeps the motions separate and distinct, making it visually easy to
see where they start and stop in the Track View.

Go back to Time Configuration, and set the Start Time to 20 instead
of 0. Open up Track View again, and hit the Zoom Horizontal Extents
icon to center the range of keys displayed.

Instead of dosing the Track View each time you're through with it, you can simply
minimize it.

The idle animation you're about to create will be 4f frames long,
from Frame 20 to Frame 60. However, because the 3ds max file is your
animation folder, it really doesn't matter where the idle animation is.
Starting it on a tenth frame between each animation is just an issue of
convenience more than anything else; always try to give yourself at least
a 20-frame buffer between animations. Anything less, and the gap dis-
solves when looking at the entire animation set in Track View—especially
when dealing with motion capture, which typically has a key set for every
track at every frame of the animation.

204 Animating Real-Time Game Characters

Track View and Active Animation Range

If you're wondering why you didn't just set the active time range to 20
and 60 from the beginning, it's due to a limitation of Track View which
makes viewing keys dependent upon the active animation range. Try
zooming in or out and panning left and right in Track View, now that the
range is from 20 to 60. In 3ds max, when navigating in Track View, the
program decides that when you set an active animation range, you really
don't want to view any keyframes before that range (and sometimes after,
as well). While you may occasionally get it to work and see those keys at
Frame 0, save yourself the frustration of even trying, and simply expand
the Start and End frames when you need to access frames before or after
the current animation range. This is why you included Frame 0 when
configuring time, earlier. It was the only way you could get to the keys
there.

Posing the COM and Limbs

The first step in any keyframe animation is posing your character while
the Animate button is red and active. The idle animation is no exception.
In Widge's case, he's always on the move, and he should look as if he's
ready to pounce even when standing still. His idle animation should con-
vey a pent-up, nervous energy. His idle pose also needs to be generic
enough so that when he begins to walk or attack, it seems like a natural
transition.

When posing any character, begin with the root object of the Biped
hierarchy, and move your way down. For Widge, you're going to select
his COM (Widge), position it, and then move the arms and legs into posi-
tion. Once those five Biped objects are in place, you can lock down the
hands and feet and adjust the rest of the character. The coordinates
shown in Table 6.1 have been provided to help you position Widge for his
idle animation, but feel free to just approximate the pose.

OBJECT X-AXIS Y-AXIS Z-AXIS

Widge (COM) -22 -12 66

Widge R Foot -168 24 0

Widge R Hand -191 -175 0

Widge L Hand 192 -98 0

Widge L Foot 165 99 0

TABLE 6.1 Widge's Idle Animation Coordinates

Chapter 6 Keyframe Animation: Part I 205

Make sure your Animate button is on and red, and move the COM,
hands, and feet into position (Figure 6.16).

FIGURE 6.16 Posing the COM and the limbs is the first step for Widge's idle pose.

With the basic pose established, you need to further refine it by ad-
justing the Pelvis, Spine, Head, and Tail objects. But before you can do
that, you need to lock down the hands and feet. Doing this means you
don't have to reposition the hands and feet each time you move or rotate
objects that are above the limbs in the hierarchical chain.

Locking Down the Feet and Hands

In character studio, locking down the hands and feet is as easy as clicking
on a special Set Key that's available in the IK Key Info rollout menu. Still
at Frame 20, select Widge R Hand, and open the IK Key Info rollout
menu on the Motions panel (Figure 6.17).

In this menu, in addition to the normal Set Key red dot, you have
three other Set Key buttons: Set Planted Key, Set Sliding Key, and Set
Free Key. With Widge R Hand still selected, click on the Set Planted Key
button. Uncheck Join to Prev IK Key, and look at the changes that have
occurred with the keyframe (Figure 6.18).

206 Animating Real-Time Game Characters

FIGURE 6.17 The IK Key Info menu has
everything you need for locking the
feet and hands.

t Ksufwrninn

FIGURE 6.18 Using Set Planted Key results in
different IK Blend and world space settings.

To access the special Set Keys, like Set Planted, you have to select one limb at a time.
You can't select multiple limbs and use these IK-specific keys.

Achieving this "planted" limb is a result of two things: IK Blend and
Object space. IK Blend determines whether or not you will have a more for-
ward or inverse kinematic solution for the limb selected. Zero is the de-
fault IK Blend setting, and in combination with Body being checked, it

Chapter 6 Keyframe Animation: Part 1 207

means the limb is in normal Biped space and using a forward kinematic
solution for its motion. By clicking on the Set Planted Key button, the IK
Blend changes to 1, and the limb is now in Object space. When in Object
space, you can further choose one of two options; you can choose an ob-
ject in your scene for the selected limb to follow, or you can choose for the
limb to be in that object's coordinate space. By not choosing an object in
your scene for the selected limb to follow, character studio concludes you
want to lock it in place, residing in World coordinate space instead of the
Biped's space. Join to Prev IK Key is just a way to link keys between each
other; it puts the selected limb in the coordinate space of the previous key.

This may seem a bit confusing; it may help to remember that when
setting a key for a foot or hand that has to stay planted, make sure the IK
Blend for that key is 1, with Object selected (instead of Body) for the co-
ordinate system.

Refining the Idle Pose

Next, you need to refine the pose further by rotating the Pelvis, Spine,
and Head objects. Use the coordinates in Table 6.2, or simply estimate
their rotations.

TABLE 6.2 Coordinates for Rotating Widge's Pelvis, Spine, and Head Objects

OBJECT

Widge Pelvis

Widge Spinel

Widge Head

X-AXIS

6 degrees

Y-AXIS

6 degrees

-2 degrees

Z-AXIS

4 degrees

By rotating the torso objects, you take the character away from the
stiff default pose. Next, refine the limbs further by rotating the forearms
and calves along the X-axis. This pivots the whole arm and leg, rotating
them forward and back, using the hand and foot as pivot points. Table 6.3
provides some coordinates if you need them.

TABLE 6.3 Coordinates for Pivoting Widge's Arm and Leg

OBJECT

Widge R Calf

Widge R Forearm

Widge L Forearm

Widge L Calf

X-AXIS Y-AXIS

18 degrees

15 degrees

-1 degree

16 degrees

Z-AXIS

TABLE 6.2 Coordinates for Rotating Widge's Pelvis, Spine, and Head Objects

208 Animating Real-Time Game Characters

Finish your refinements of the first frame of the idle by posing the
Tail objects. Again, this kind of tweaking takes the character out of a stiff,
default pose and gives it an organic and more animated stance. Use the co-
ordinates shown in Table 6.4.

TABLE 6.4 Coordinates for Posing Widge's Tail

OBJECT X-AXIS

WidgeTail

WidgeTail1

WidgeTail2

Widge Tail3

WidgeTail4

Y-AXIS

33 degrees

5 degrees

23 degrees

18 degrees

10 degrees

Z-AXIS

-22 degrees

4 degrees

6 degrees

The pose is complete once you have made the refinements (Figure
6.19).

FIGURE6.19 Widge has hisfiirst pose.

With the base pose fully established and refined, you can copy those
keyframes to the end of the animation range to establish a loop. Some-
where in the middle, of course, you need to make Widge do something,
also needs to be subtle enough so that it doesn't distract you with its

Chapter 6 Keyframe Animation: Part I 209

repetitive irregularity. Open the Track View, make sure that the
Keys icon at the top of your screen is active, select the keys at Frame 20,
and Shift-drag them over to Frame 60. This gives you a duplicate start-
and-stop point for the animation—the first step in creating a loop (Fig-
ure 6.20).

Move the Time Slider back and forth, and you'll see some light
movement of the character. This is because of the default animation
controller that is assigned to the Biped animation tracks whenever you
set a keyframe. It's called a TCB controller, which stands for . . .

Tension, Continuity, and Bias

There shouldn't be any movement at all if the keyframes are identical at
Frame 20 and Frame 60 and if no other keyframes exist in between.
However, because you have keys set at 0, 3ds max thinks you want to
apply an animation curve from key to key. Because there are at least
three keys with intervening space between each key, you get the subtle
motion caused by the application of an animation curve. The curve
that's been applied to the keys is determined by the C in TCB: Continuity.

Move

FIGURE 6.20 Create start and stop points for the loop.

210 Animating Real-Time Game Characters

Continuity controls how smooth an animation is by giving the
keyframe a tangential property to the animation curve; this helps the an-
imation be smooth and natural-looking. Tension controls the amount of
curvature in the animation curve and can be used to create a slight "ease
to" and "ease from" effect. Bias controls where the animation curve oc-
curs in respect to the key set. To view the TCB parameters, select the
COM (Widge) Biped object, and go over to the Motion panel. Click open
the Key Info rollout menu, and look over the TCB settings for the se-
lected object (Figure 6.21).

FIGURE6.21 As a default controller, TCB works
fine, most of the time.

The Key Info for a selected object will only appear if the active Transform button
matches the animation track for which the key was set. For example, if an object
has a keyframe set for the rotation track, and the Select and Move button is active,
the rotation key information won't appear in the Motion panel.

The default TCB settings are shown in Figure 6.21. They're designed
to produce a smooth transition from keyframe to keyframe. To see the

Chapter 6 Keyframe Animation: Part I 211

effect of a Continuity setting of 0, make sure the current frame is still
Frame 20, double-click in the number field for Continuity, and enter 0.
Click on the Next Key button (the small burgundy arrow pointing to the
right) at the top of the Key Info rollout, advance to the next keyframe for
the COM at Frame 60, and change that key's Continuity setting to 0, too.
Now, where there was a curve in the window above the setting values,
there's an inverted V shape. This means there is no curvature to the
interpolation between keys, just a straight line from key to key (Fig-
ure 6.22).

FIGURE 6.22 With a Continuity setting of 0, the motion
will reflect the linear interpolation between keyframes
and not add any extra motion.

If you were to select each limb, Spine, Head, and Tail object, change
their Continuity to 0 for all their keys set, and scrub the Time Slider back
and forth, all extra motion would be gone, and the character would re-
main in place. However, if you did have to do that (instead of going ob-
ject-by-object, key-by-key, using the Motion panel's Biped rollout
menu), use Track View instead.

212 Animating Real-Time Game Characters

Open Track View, if it isn't already open, and select both keys at
Frame 20 and Frame 60 for Widge L Clavicle. Right-click on either se-
lected keyframe, and a small menu (similar to the TCB sub-menu on the
Motions panel) will appear. Through Track View, you have access to TCB
settings and IK settings for the limbs (Figure 6.23).

FIGURE 6.23 You can access and change the TCB and IK Blend settings from Track View, as well as from the Motions
Panel.

While this is a great way to affect multiple keys, it only works on one
animation track at a time. You can't affect all keys at once or more than
one track of a single object like the COM.

The tracks for the limbs are compressed for easier keyframing; they are compressed

into one track each for the clavicle to the fingers and for the thighs to the toes, but
they can be expanded to show keys set for each limb sub-object. With a Biped object
selected, simply go to the Animation Properties sub-menu on the Motion Panel, and

check Arms and/or Legs under Separate Tracks (Figure 6.24).

Adjusting your Continuity settings can help add or subtract minor
motions that affect the integrity of the loop. There exists yet another cou-
ple of parts of the TCB controller that you can use to your advantage
when animating a loop like the idle, and those are the Ease To and Ease
From options.

Ease To and Ease From

Widge is tensed, ready to attack, and has the pose copied to the first and
last frame of the animation, but he still needs to do something. How about
swaying back and forth in anticipation? It's simple enough and shouldn't
be a noticeably repetitive motion. Advance to Frame 38, and click on the

Chapter 6 Keyframe Animation: Part I 213

FIGURE 6.24 With Separate Tracks boxes checked, the
Track View will display animation tracks for the rest of the
limb parts, such as hands, fingers, and toes.

Animate button, making it red and active. Select the COM, and move it
over to the right (about 55 units) along the X-axis. Use Zoom Extents so
you can see the character clearly, go over to the Motion panel, and click
on the
the animation back, which is great if your machine is processor-chal-
lenged (Figure 6.25)!

As you can tell, the effect of changing Continuity for the COM
(Widge) to 0 for the first and last frame of the animation gives the loop a
jarring effect when it reaches the repeat point. This is easy enough to fix.
Go back into Track View, select the three keys set in the Horizontal ani-
mation track for the COM, and right-click on one of them. Change the
Continuity back to 25 (Figure 6.26).

When a keyframe is set in between two keyframes with identical settings, it will
have those same settings—even if the default is different.

This changes all three keys back to a curve instead of a pointed V
shape. Next, go down to Time Configuration, and change the End Time
to 59 instead of 60 (Figure 6.27).

This removes the repetition of the first and last frame and should re-
sult in an even smoother loop. Go back to the Top Viewport, apply Zoom
Extents, and play the animation back again. Hmmm . . . there's still some

Biped Playback button. A "no-poly" version of the Biped plays

214 Animating Real-Time Game Characters

FIGURE 6.25 Biped Playback is a way to see your motions in a simple stick-figure mode.

FIGURE 6.26 Changing the Continuity settings back to 25
ensures smoother animation.

sort of hitch when the animation begins to loop, going from the last
frame back to the first. The first thing to check is whether the first and last
keyframes for all tracks are the same, by copying them again from Frame
20 to Frame 60. Try playing the animation back. Drat! There's still a
hitch. Well, here's where you dig deeper into the keyframe controls by
adjusting Ease To. This extra setting in the TCB controller allows you to
"ease to" (slow down) the position of a particular keyframe, by exponen-
tially decreasing the amount of change from the previous keyframe posi-
tion as it approaches the keyframe.

Chapter 6 Keyframe Animation: Part I 215

FIGURE 6.27 Change the End Time to one frame less, so
the frames don't "stick" during playback.

Bring Track View back up, and select the last Horizontal key for the
COM. Right-click on it (1) , and enter a value of 25 in the Ease To box at
the top of the small menu (2) (Figure 6.28).

FIGURE6.28 "Easing to" a frame means slowing down the motion right
before the key.

Close the box, close Track View, and try playing the animation. Muu-
uuch better. But now it seems that at the start of the animation, Widge is
almost lurching out of the animation to the middle keyframe position.
What would it look like if you added an Ease From value to the first key,
so that Widge didn't leave that position so quickly? As you can guess,
Ease From causes an animation to accelerate as it leaves one key for an-
other.

Bring up the Track View again, select and right-click the keyframe at
Frame 20 for Horizontal, and enter a value of 25 in the Ease From box.
However, instead of closing the animation track menu and the Track

216 Animating Real-Time Game Characters

View this time, move the Track View out of the way and hit the Biped
Playback button (Figure 6.29).

FIGURE 6.29 Values for keys can be adjusted interactively while playback occurs.

It looks okay, but maybe a value of 25 is too much. Without stopping
the playback, go up to Ease From, and type in 15. The animation changes
accordingly. Feel free to experiment more with the values of any of the
keys while the animation plays, to see the effects of your changes.

Instead of tweaking the values using Track View, you can always go to the Motion
panel and adjust the setting there. Make sure you select the object whose values you
want to adjust before you play back the animations.

Keyframes and the Time Slider Bar

When you're ready, go to the Front viewport, hit Zoom Extents, and play
back the animation. Widge moves from side to side, but what about
adding some sort of bobbing motion? He seems like he should be going up
and down just a little bit. Select the COM (Widge) again, make sure the
Animate button is red and active, go to Frame 40, and lower the COM by
2 units along the Z-axis, setting a new keyframe in the Vertical animation

Chapter 6 Keyframe Animation: Part I 217

track of Widge. Now go to Frame 30, and raise the COM about 8 units
along the Z-axis.

Next, you should notice that the keyframes you've been setting are
displayed on the Time Slider bar, showing red blocks for unselected keys
and white blocks for selected keys (Figure 6.30).

FIGURE 6.30 Keys set for selected objects will appear in the Time Slider bar for editing.

Keyframes will only appear in the Time Slider bar when the object selected has
keys set in that time range.

These keyframes aren't just for show. You can move, delete, and
copy these keyframes just like you can in Track View. Select the
keyframe you just created at Frame 30, hold your Shift key down, and
drag it to the right over to Frame 50. Let go, and you've just cloned a
keyframe in the Time Slider bar. Now play back the animation and see
how it's shaping up (Figure 6.31).

Now that's got more character to it. Go to the Right view, and further
refine the animation by getting the head involved.

Keyboard Shortcut Override Toggle

Since you're learning all kinds of things while working hard to make
Widge do virtually nothing in an interesting way, why not add a few
more useful tools to what you've learned so far? Click Zoom Extents in
the Right viewport and then click on the Keyboard Shortcut Override
Toggle button, located just beneath the Z-coordinates readout box, at the
lower right-hand part of your screen (Figure 6.32).

With this button active, any hotkey assignments that come with
plug-ins like character studio will take precedence over the default or
custom 3ds max hotkeys assigned. Some of the more useful character
studio hotkeys are as follows:

218 Animating Real-Time Game Characters

FIGURE 6.31 Widge is starting to feel creepy!

0 Sets a Biped key
V Toggles Biped Playback
ALT-C Copies posture of selected Biped object to clipboard
ALT-V Pastes posture from Clipboard to selected Biped object

Try out at least two of these as you give the head a little bit of sec-
ondary motion.

FIGURE6.32 This button gives you access to additional hotkey shortcuts.

Chapter 6 Keyframe Animation: Part I 219

Secondary Motion

One of the most important aspects of an animation (and the most time-
consuming to create) is secondary motion. This is a term applied to small,
almost insignificant motions that augment or accent the main motions of
the animation. Secondary motion is something like a foot tapping during
an idle, or a slight flexing of the fingers, or anything else that's barely no-
ticeable yet crucial to making the character come alive.

In the Right viewport, select Widge Head, select the Rotate trans-
form, and make the Z-axis the active axis of rotation. Left-click on the
Angle Snap icon to make it active. Then, right-click on it to bring up the
Grid and Snap Settings menu. Change the default of 5 degrees for Angle
to 3 degrees, and close the dialog box. Now when you rotate an object, it
will be restricted to increments of 3 degrees (Figure 6.33).

FIGURE6.33 Easily and quickly change
your Snap Settings to fit the situation.

To add this secondary (or ancillary) motion to the head, first set some
keyframes without doing any rotations. With Widge Head selected, go to
Frames 30, 40, and 50, hitting the 0 key at each frame to set a key for the
head as it is posed by default. Next, go to Frame 25, and rotate the head
down along the Z-axis (the blue axis) by 3 degrees, or one "tick" of rota-
tion. Go to Frame 35, and rotate the head up by 3 degrees along the Z-
axis; go to Frame 45, and rotate the head down again by 3 degrees (or
simply Shift-drag the key from Frame 25 over, via the Time Slider bar),
and, finally, go to Frame 55, and rotate the head up 3 degrees along the Z-
axis (or clone the frame at 35).

Now play back the animation by hitting the V key or the slash (/) key
(if you have a fast machine), and check the animation (Figure 6.34).

220 Animating Real-Time Game Characters

FIGURE6.34 Widge gets his head into the animation.

This very slight head motion is designed to give the head geometry a
more flexible, natural feel. You want to make it appear as if the head mo-
tion has somewhat of a lag, though, so this is why you have set keys at
30, 40, and 50—to provide anchors to the position the head would be in
without the bob. By rotating the head between these anchor keys, you
make the movement feel more attached to the act of going up or going
down. That is, as Widge raises his body (Frames 20-30), the weight of the
head would bring it down slightly (Frame 25) before assuming its for-
ward-facing pose (Frame 30). Setting these anchor keys takes a little bit
of thought when animating, but always keep the approach in mind when
adding secondary motion.

Animating the Tail

The next step in Widge's idle animation is to do something with the tai l .
In order to add to his nervous energy and impatient urge to attack some-
thing, making his tail swish from side to side like a cat's seems the thing
to do. The first calculation to work out is the timing. While complex for-
mulas can be applied to any animation to determine what the correct
timing should be, just go with what looks right, given the range of frames
you're dealing with. In other words, try it, see if it works, and try some-

Chapter 6 Keyframe Animation: Part I 221

thing else if it doesn't. Since doing keyframes every five frames worked
for the head motion earlier, and resulted in the timing supporting a loop,
use this base of five for the tail motion, too. However, the main motion of
swinging side-to-side needs to be every 10 frames, to give enough time to
insert the secondary motion that achieves a cat-like look instead of a dog-
like wagging look.

Go to the Top viewport, go to Wireframe mode, and look at the first
tail bone, Widge Tail (Figure 6.35).

FIGURE 6.35 Widge Tail is already bent to the left with the initial idle pose.

Since the first tail object is already bent to the left throughout all the
frames, select Widge Tail and set an anchor key at Frame 40. Do this by
keeping the Time Slider at Frame 20 and right-clicking on it. Enter 40 in
the Destination Time box and uncheck Position and Scale (Figure 6.36).

Always remember the default setting for Create Key is for all three animation
tracks. Try to specify which track you are targeting, even if it doesn''t seem necessary,
as with most Biped objects. This prevents problems when dealing with additional
bones that do have all three tracks available.

Now, right-click on Angle Snap again, and change the Snap setting
back to 5 degrees (Figure 6.37).

222 Animating Real-Time Game Characters

Close the menu, make sure the Animate button is on, move to Frame
30, and rotate the tail over to the right about 70 degrees, either by click-
ing on the yellow part of the Y-axis indicator icon, or by hitting the F6
key to make it the axis of rotation. Pose the rest of the tail as well, so that
it looks like Frame 20, but in reverse (Figure 6.38).

Now, with all the tail links selected, Shift-drag the single key visible in
the Time Slider bar to Frame 50. This is the quickest way to copy a key for
multiple objects. Slide the Time Slider back and forth to see how it looks.
You'll notice on Frame 40 that the tail doesn't reflect the position from
Frame 20 (Figure 6.39).

This is due to the fact you set a key only for Widge Tail, instead of for
all the tail bones. No problem. With all the tail bones selected, simply
Shift-drag Frame 20 over to Frame 40, and re-key Widge Tail and all its
children bones. Now, scrubbing the Time Slider, the motions are as they
should be, interpolating the transition between the two poses you've set.

While the motion is smooth, the tail seems stiff, still more like a dog's
tail than a cat's more prehensile appendage. This is an easy problem to fix
using secondary motion again. Go to Frame 25, keep all the tail bones

FIGURE 6.36 The Create Key menu is always
useful in cloning keys.

FIGURE6.37 Change the Snap setting for
Angle Snap back to 5 degrees.

Chapter 6 Keyframe Animation: Part I 223

FIGURE 6.38 Pose all tail bones at Frame 30, opposite the position in Frame 20.

FIGURE 6.39 The tail at Frame 40 is now different from Frame 20, which is not good.

224 Animating Real-Time Game Characters

except for the main Widge Tail, and bend them all back simultaneously
toward the direction they just came from (Figure 6.40).

FIGURE 6.40 Bend the children of Widge Tail back toward the first pose at Frame 20.

Copy the new pose to Frame 45, and advance to Frame 35. Now bend
the selected bones back toward the pose at Frame 30, and copy the new
key to Frame 55. Play the animation back and check the results. Defi-
nitely more catlike!

You can also use the Time Slider bar to access controller properties like Continuity
for a key, even if multiple objects are selected. Simply right-click on the bar itself at
the desired key—not on the Time Slider itself-—(1) and select the bone whose key
you want to tweak (2) to bring up the keyframe attributes menu (3) (Figure 6.41).

Even though you've basically completed the idle animation for
Widge, there's one more tool in character studio that you need to be
aware of: Layers.

Using Layers

Layers are used in character studio as a way to add animations on top of
animations for your Biped. This is basically an ideal way to affect a global

Chapter 6 Keyframe Animation: Part I 225

FIGURE 6.41 You can access Controller attributes for keys through the
Time Slider bar, too.

change to a character's animation set. Layers can be viewed individually
or collapsed into a new animation. In Widge's case, you're going to add
yet more secondary motion using this powerful tool.

Hit the K key to bring up the rear view (the Back view) of Widge, and
scrub the Time Slider back and forth. Notice how, from Frame 20 to
Frame 35, the tail goes down as it goes to the left. You're going to use Lay-
ers to give that same downward motion to the tail as it goes to the right
(Figure 6.42).

FIGURE6.42 Widge has a downward swish to his tail motion going left.

226 Animating Real-Time Game Characters

Hide all Biped Objects except for the Widge Tail objects. By default,
character studio assumes you want access to all these tail bones. Since
you won't need access to the keys of the children of Widge Tail, compress
the display when working in Track View by collapsing the hierarchy
tree for the tail (uncheck the box beside Tail under Separate Tracks) (Fig-
ure 6.43).

Keep in mind that whenever you want to, you can always separate
the tracks for those animation tracks available, and can close them just as
conveniently. Now, select just Widge Tail, open up the Layers sub-menu
on the Motion panel, and click on the
plies a new layer to your animation and makes the other Layers buttons
active (Figure 6.44).

FIGURE 6.44 Nearly all the buttons in the
Layers sub-menu are available now.

Begin this added layer of animation tweaking by going first to Frame
20, then rotating the tail root along the X-axis about 60 degrees so that
the curve of the tail is pointing downward (Figure 6.45).

FIGURE6.43 UncheckTail under
Separate Tracks to compress its
hierarchy tree.

Create Layer button. This ap-

Chapter 6 Keyframe Animation: Part I 227

FIGURE 6.45 Rotating the tail at Frame 20 will make the swish more pronounced.

Setting a key at the first frame of the animation range for the layer af-
fects the rest of the animation. Go to Frame 30 and rotate Widge Tail
about 95 degrees along the X-axis, so that it's also pointing further down-
ward than it was before Frame 20 was set (Figure 6.46).

A red stick figure that represents the original position of the bones before the layer
was added shows you just how much of a change you're making as you animate in
the layer.

Bring up the Track View so you can copy the two keys that you just
set to their respective positions in the rest of the animation. Copy the key
at Frame 20 to Frame 40 and to Frame 60. Copy the key at Frame 30 to
Frame 50 (Figure 6.47).

Upon opening Track View, you should immediately notice that
Widge Tail has all its children displayed, with keyframes set as well, even
though you just unchecked the box under Separate Tracks. This is due to
a bug in character studio 3 concerning Separate Tracks, Tail, and a d d i n g
layers. If you add a new layer to the animation, the program still keeps
the Separate Tracks box in its default state: checked.

Close Track View and play back the animation to see how the new
layer looks (Figure 6.48).

228 Animating Real-Time Game Characters

FIGURE 6.46 At Frame 30, rotate the tail along the X-axis so it's also pointing down.

FIGURE 6.47 Even though the T ail box is unchecked under Separate Tracks, a new layer will result in the default
checked box.

The last step in using Layers is to collapse them back down, once the
appropriate tweaks are satisfactory. Do this by clicking on the Collapse
button (Figure 6.49).

Chapter 6 Keyframe Animation: Part I 229

FIGURE 6.48 The new animation layer gives more"swishiness"to the swish.

FIGURE6.49 Once the layer is done, collapse
it down to a normal, layerless animation.

Using Time Tags

Now that the idle animation is complete, you can help yourself easily
pinpoint it for future reference with a neat feature of 3ds max called Time
Tag. Go to Frame 20 and click on the area next to the Keyboard Shortcut
Override Toggle that reads Add Time Tag (1) . Then select Add Tag (2) ,
and enter Idle for Tag Name (3). Now, whenever your Time Slider is at
Frame 20, Idle will appear in the Time Tag box (4) (Figure 6.50).

230 Animating Real-Time Game Characters

FIGURE 6.50 Adding a Time Tag gives you a nice shortcut to an animation clip.

Move your Time Slider to Frame 50. Click on the Add Time Tag box,
and a new option is there for you to click on: 20 Idle. Click on it, and the
Time Slider automatically goes to the first frame of the idle (Figure 6.51).

FIGURE6.51 Time Tags will appear when
clicking on the Add Time Tag message box.

Since Widge will be used for a WildTangent export, you will need to
know the start and end time of the animation when you export the ani-
mations later. Bring up Time Configuration again, and change your End
Time to 60 instead of 59. Then go to the Time Tag menu and select Edit
Tag (Figure 6.52).

FIGURE 6.52 Edit Time Tags to change
the name or delete a time tag.

When the Edit Time Tag menu pops up, select 20 Idle from the list
and rename it in the Tag Name field to Idle Start. Hit OK, and then go to
Frame 60. Click on Add Time Tag again, and create a new time tag called
Idle End (Figure 6.53).

Chapter 6 Keyframe Animation: Part 231

FIGURE 6.53 Add the end of the idle motion
to the Time Tag list.

The benefit of using time tags should be obvious. They are definitely
most useful when a character has a substantially large number of anima-
tions. With the animation complete, save your max file, skip ahead 20
frames, and you're ready to move on to any other animations required. If
you want or need to, load Widge4.max from the Chapter6 directory on
this book's CD-ROM (Figure 6.54).

FIGURE 6.54 Load Widge4.max to see how the alien psycho's supposed to look.

SUMMARY

Before animating, decide whether or not to use keyframes, motion cap-
ture, or a combination of the two. Whichever method you choose, think

232 Animating Real-Time Game Characters

of your 3ds max file as an animation folder that holds all your character's
moves. Prior to setting any keyframes, make sure you prepare your Biped
for animation by assigning a transparent material to it and/or creating a
Named Selection Set out of it for quick selection.

Once you're ready to begin animating, start by saving Frame 0 in the
Biped's default position, exactly as it was when attached to the mesh. Do
this using either the Track View or Set Key buttons in the Motion panel.
When working on an animation, define its range in the Time Configura-
tion menu. You can also define frame rate and playback speed there.
Copy keyframes either in the Track View or via the Time Slider bar, but
always keep a buffer between animation clips for easy identification.
Learn the effects of the tension, continuity, and bias settings of the de-
fault TCB animation controller. Use them to create smooth loops for your
animation clips. Always strive for secondary motion to add that extra bit
of detail to your animation. Use Layers to add this sort of additional mo-
tion over the rest of an animation.

Finally, make navigation through your collected animations (your
animation folder) easier by adding time tags to the start and end points of
your various motion clips.

KEYFRAME ANIMATION:
PART II

233

234 Animating Real-Time Game Characters

You now have the fundamentals mastered for using 3ds max and
character studio to create keyframe animations, but Widge was just
your appetizer. As an enemy character for a game, he has a rela-

tively less demanding animation set and mainly plays the role of target.
He sits idle, runs, walks, attacks, reacts to being attacked, and dies (Fig-
ure 7.1).

This isn't such a lengthy list; the player character, on the other hand,
is a much more demanding type of real-time game entity.

FIGURE 7.1 Widge only has the most basic animation set because it's all he needs.

BETTY'S ANIMATIONS
Betty Bad is and isn't a "typical" real-time character. At 2,000 polygons
and with WildTangent's dynamic LOD code, she has a medium to low
poly-count, yet she's in a third-person, online-only action game, using an
atypical game engine: WildTangent's Web Driver technology. She could
just as easily have been implemented in a Quake, Unreal, or LithTech
game engine as well. Another of Betty's non-typical features is her lack of
access to a multitude of different weapons that magically appear and dis-
appear on command. She only has one weapon, which processes energy
into different forms of ammo.

One Chick, One Gun

Despite not having to change an arsenal of weapons, Betty still has a
shotgun, grenade launcher, machine gun, rocket launcher, and railgun;
they're represented more by their effects than by a different physical
weapon. The decision to use this approach addresses two issues common
to action shooter games: the magic backpack and the cumbersome task of
holding a weapon that obscures most of the character. Taking away her
ability to carry around artillery consisting of a dozen different weapons
doesn't hurt the gameplay mechanics. It actually saves polygons while in-
troducing the aforementioned alternate theory to the magical backpack: a
weapons-manufacturing backpack. Whenever Betty kills an enemy, it
leaves behind energy for her to pick up and add to her weapons system

Chapter 7 Keyframe Animation: Part II 235

backpack. Along with this variant of a popular paradigm for the weapons,
Betty also serves as a guinea pig for animation ideas that the game's de-
signers wanted to try (but never did) in special move animations for
Quake III Arena (Q3A).

Special Moves

Like fighting games, action games in which characters have to run around
and shoot things can be spiced up a bit with combination moves, or special
moves. These animations are triggered by the player hitting a couple of
keys simultaneously or by a condition met during the game, such as a
character changing direction quickly. So, in addition to the standard ani-
mation set that a typical game character of this genre will have, Betty has
a few extras to support this special-move functionality. She also has extra
animations due to the environment and the constraints of the game tech-
nology. Yet she still has the following standard animations: Idle, Run,
Backpedal, Walk, Jump, Strafe, Shoot, Melee, Pain, and Death.

She also has the use of Special Moves, Use Moves, Swimming, Re-
covery, and Angled animations.

As mentioned before, Betty has almost 3,000 frames of animations
and that's definitely not your average animation count. It's due primarily
to the way her character had to be implemented and fit within the game
technology. It's also because the player sees her in the third-person per-
spective. Being on the screen all the time in a typical shorter animation
set would get repetitive and uninteresting very quickly, but Betty has a
wide range of animations. Betty also provides an excellent opportunity
for you to learn about animations similar to those you may be faced with
when animating a game character of your own. You'll create parts of her
animation set in this chapter by first concentrating on those motions that
are completely keyframed. In the next chapter, you'll use motion capture
to create the remaining animations. Let's begin by creating a couple of
idle animations.

Betty needs three idle animations: left foot forward, right foot forward,
and both feet even. The reason for this is for variety, and so that her tran-
sition from one animation to another is properly supported. Creating
these idles will also give you some idle pose ideas for animating your own
character. Load Betty08.max from the Chapter7 directory on this book's
CD-ROM (Figure 7.2).

236 Animating Real-Time Game Characters

FIGURE 7.2 Betty needs some idle moves.

It's All in the Pose

Since idle animations have to be relatively short loops that can't be too in-
volved because of their receptiveness, they are mainly all about the pose.
Change your Time Configuration settings to a Start Time of 20 and an
End Time of 50. Then, using your Rotate and Move transforms, pose
Betty at Frame 20 so she looks like she does in Figure 7.3. Use the main
construction plane as a ground reference to keep her feet right on their
line.

With her body turned slightly, her gun at the ready, her right hand
poised for balance, and a lower center of gravity, Betty is alert and ready
to go. Now you need to lock her feet and copy all the keyframes at Frame
20 to Frame 50. Do this by alternately selecting each foot and hitting the
Set Planted Key button on the IK Key Info rollout menu. Make sure to
uncheck the Join to Prev IK Key button (Figure 7.4).

Set Planted Key cannot be used on multiple limbs at the same time. Select and set a
key for one limb, and then repeat the process for any others.

In character studio, setting a planted key will automatically cause a
red dot to appear on the selected limb, which indicates the active IK pivot
point. These points on the hands and feet not only give you better use of

Chapter 7 Keyframe Animation: Part II 237

FIGURE 7.3 Make the idle pose interesting.

FIGURE 7.4 As soon as the pose is established, lock
the feet with the Set Planted Key button.

the IK chain that's established for the arms and legs, but can result in
some interesting animations. Select Betty L Foot and hit the Select Pivot
button in the IK Key Info rollout menu to see all the available pivots for
the foot. Change the active pivot by clicking on any of the dots that ap-
pear on the foot with Select Pivot active.

While you can change the pivot of an object at any time by using the
Select Pivot button, the hand or foot only rotates around that point if
the limb has a Planted Key set. Otherwise, it rotates from the normal for-
ward kinematic pivot point.

238 Animating Real-Time Game Characters

FIGURE 7.5 With the Select Pivot button active, pick a new pivot point for the foot.

Turn Select Pivot off, open Track View, and copy all the keys at
Frame 20 to Frame 50. Close or minimize Track View, and scrub the Time
Slider back and forth. You will see a subtle motion because of the Conti-
nuity setting of 25 for all keys, and the keys set at Frame 0.

Anchor Keys

It's crucial that you lock down the feet at the beginning and end of the
animation so that you can animate Betty by having her perform a small
motion in the middle of the animation segment. While using Set Planted
Key is one great way to lock the feet, another way is to use Anchor Keys
in the Keyframing rollout menu (Figure 7.6).

To see how this method for locking the feet works, go back into Track
View and delete the key for Betty R Thigh at Frame 50. Close or minimize
Track View, select the right foot, go to Frame 20, and hit the Set Free Key
button in the IK Key Info rollout menu. This turns the IK Blend to 0 and
puts the foot back in Body coordinate space, effectively unlocking the foot
(Figure 7.7).

Chapter/ Keyframe Animation: Part II 239

FIGURE 7.6 You can also lock the feet down
using the Anchor Key buttons.

FIGURE 7.7 The Set Free Key button changes
the keyframe back to an unlocked key.

The red dot that was the pivot will go away; when scrubbing the
Time Slider, you will see that the foot isn't planted. Now, go to Frame 20
and click the Anchor Right Leg button to make it active to lock the right
leg in place (Figure 7.8).

Click again on the Anchor Right Leg button to toggle it off, and
Frame 20 becomes a planted key again for the right foot, changing the IK
Blend to 1 and putting it back into Object space (Figure 7.9).

FIGURE 7.8 With Anchor Right Leg active, the
right foot is locked in place.

FIGURE 7.9 Keyframes for limbs are
automatically converted to a planted key
just by clicking on the Anchor button.

Regardless of the method you use, planting the feet is necessary
when adding a small motion in the middle of the animation segment. But
first, strip out the extra motion caused by the Continuity setting by going
into the Track View, selecting a row of keys, right-clicking on one of the

240 Animating Real-Time Game Characters

keys, and entering 0 for the Continuity value. Repeat this for all anima-
tion tracks except Betty L Clavicle and Betty R Clavicle—change their
Continuity settings to 15 (Figure 7.10).

FIGURE 7.10 Change the Continuity settings for all tracks to 0, except for the arms.

Close the Track View, then scrub the Time Slider to see the change in
the movement of all the Biped objects. Next, make sure your Animate
button is still active, select the COM (Betty), advance to Frame 35, and
drag it down about 0.6 units along the Z-axis. Hit the slash (/) key or the
V key to play the animation and check how it looks (Figure 7.11).

Change your Time Configuration to have an End Time of 50, and cre-
ate Time Tags for the animation. Call the first frame Idlel Start and the
last frame Idlel End (Figure 7.12).

Doubling Keys

While it's extremely useful to use your 3ds max file as an animation
folder to store the animation set of your character, the TCB controller can
cause you some problems with all the extra motion that results from the
default Continuity setting. Instead of manually changing the Continuity
to 0 to get rid of this motion "drift," you can achieve the same results by
doubling the keys. Use this technique, also called bracketing, for Betty's

Chapter 7 Keyframe Animation: Part II 241

FIGURE 7.11 Betty is happily idling away.

FIGURE 7.12 Add Time Tags to the beginning and end of
the animation.

next idle animation. First, change your animation range to have a Start
Time of 70 and an End Time of 99. At Frame 70, pose Betty so she looks
like she does in Figure 7.13, with her right foot forward.

Lock down the feet again, but this time use Track View to manually
enter the IK Blend and to make the change to Object space. Open Track
View, select the key at Frame 70 for Betty L Thigh, and right-click on it so
the keyframe parameters open; change IK Blend from 0 to 1 and change
Body to Object (Figure 7.14).

242 Animating Real-Time Game Characters

FIGURE 7.13 This is Betty in her right-foot-forward idle pose.

FIGURE 7.14 Set the IK Blend to 1 and switch to Object space to lock the feet.

Do the same thing for Betty R Thigh, and then copy all the keys at
Frame 70 to Frame 100. Minimize Track View and scrub the Time Slider
back and forth. The excess animation is there. Go back into Track View
and copy the column of keys at Frame 70 to Frame 69 and to Frame 101
(Figure 7.15).

Close Track View and scrub the Time Slider back and forth again—
now there's no extra movement. This "double-tap" bracketing tech-

Chapter 7 Keyframe Animation: Part I 243

FIGURE 7.15 Doubling keys has the same effect as changing Continuity to 0.

nique strips out the effect of the animation curve of the Continuity set-
ting, even though it's still set at 25. Without a space between keys, the
animation curve becomes non-existent and affects Continuity as if it
were set to 0.

Now you need to give the character a slight animation like you did
for the first idle, just a subtle bouncing motion. Do this by going to Frame
85, selecting COM (Betty), making sure Animate is active, and lowering
the Biped root object by 0.7 units along the Z-axis (Figure 7.16).

Secondary Motion

At Frame 85, select all the fingers of the right hand (but not the thumb),
and rotate them along the Z-axis, to look as if Betty were slightly flexing
her hand. Curl the thumb downward and in slightly (Figure 7.17).

The quickest way to select only the fingers is to double-click on the Biped hand.
Then, holding down the Alt key, dick on the Hand and Thumb objects to deselect
them.

Next, while still at Frame 85, select Betty L UpperArm and rotate it
down just 2 degrees along the Z-axis. Now hit the Page Down key to se-
lect the left forearm, advance to Frame 90, and rotate it about 3 degrees
downward, also along the Z-axis (Figure 7.18).

While at Frame 90, rotate Betty's head 3 degrees downward to give
her a slight head nod (Figure 7.19).

244 Animating Real-Time Game Characters

FIGURE 7.16 Shifting the body down slightly while midway through the animation will
result in a motion that suggests impatient readiness.

FIGURE 7.17 Add secondary motion to the right hand by slightly flexing the fingers.

Chapter/ Keyframe Animation: Part II 245

FIGURE 7.18 Add secondary motion to the left arm by offsetting slight rotations for the
upper arm and forearm.

FIGURE 7.19 Rotate Betty's head at Frame 90 to create the sense that she's loose and
ready.

246 Animating Real-Time Game Characters

Complete the secondary motions by giving the keys at Frame 100 for
Betty Head, Betty L Clavicle, and Betty R Clavicle an Ease To value of 25;
this will make the loop smoother (Figure 7.20).

FIGURE 7.20 Adding an Ease To value of 25 to the last key of the animated objects makes the loop smoother.

The reason for putting the head nod and forearm rotation at Frame
90 is because of the lag it creates. With the head nodding slightly, but off-
set with the main body motion, it gives Betty a limber, loose, ready-to-go
look. The forearm lag creates the impression that the huge gun is little bit
heavy. Add time tags at the start and end frame of the second idle, and
it's finished.

Join To Previous IK Key

Before you animate Betty's third and last idle, there's something you
need to fix. Unless you've been tricky and thinking on your own, you
didn't set a keyframe at Frame 50 for Betty R Thigh. Creating the second
idle animation, specifically the key set at Frame 70 for Betty R Thigh, ob-
viously has an adverse effect on the first idle animation. Change the ani-
mation range in Time Configuration to a Start Time of 21 and an End
Time of 50 (Figure 7.21).

In the process of adding the missing keyframe, you're going to give
something new a try—seeing just what Join to Prev IK Key does. Go to
Frame 50, select the right foot, and hit the Set Planted Key button (1) ,
making sure the Join to Previous IK Key box is checked (2) (Fig-
ure 7.22).

Betty R Foot snaps to the position it was in for the previous key set
for Betty R Thigh (Frame 20). However, there's still a problem. Scrub
your Time Slider back and forth. The foot rotates—severely (Figure 7.23).

Chapter 7 Keyframe Animation: Part II 247

FIGURE 7.21 Change the Time Configuration to revisit the first idle and fix the
missing keyframe.

FIGURE 7.22 Finally, a use for this setting!

Sometimes a combination of tools is necessary to fix a particular
problem. Go to Frame 21 and turn on Anchor Right Leg (Figure 7.24).

Now go to Frame 50 and hit Set Key—with the foot anchored, just to
be sure. Scrub the Time Slider and you can see the foot is now locked.
However, the act of hitting the Anchor Right Leg button will set a key for
Betty R Thigh at whatever frame you happen to be in. Thus, a key was set
at Frame 21. It's perfectly fine to either leave the key there or delete it.
Either way, as long as the keys are in place at Frame 20 and Frame 50,
the animation is complete. Scrub the Time Slider and you'll see the foot is
still locked.

Of course, you're probably wondering why you didn't just go into
Track View in the first place, and simply copy the keyframe from Frame

248 Animating Real-Time Game Characters

FIGURE 7.23 The foot is in the same position as the Prev IK Key, but it rotates incorrectly.

FIGURE 7.24 Anchor Key is in use once again,
but this time to assist Join Prev IK Key.

20 to Frame 50. Well, that works just fine, too. But if you had done that,
you still would have seen the excess motion caused by Continuity being
set at 25. You would have to change it to 0 (Figure 7.25).

The Third Idle

Betty's third idle is somewhat more static and less action-oriented, be-
cause it's mainly a transition animation. It was added to her animation
set as an afterthought in order to accommodate other animations and the

Chapter 7 Keyframe Animation: Part 249

FIGURE 7.25 Setting Continuity to 0 after
copying the first key fixes the probiem,
too.

need for her to be facing forward. The other reason is just for variety. By
having three idles (left, right, and both feet), the rest of the animations
will not snap back to just one idle animation. The code's ability to choose
from the closest idle pose at the end of an animation loop gives a much
more diverse and interesting flow to Betty's animation.

Again, here are the steps to creating a short, repetitive idle:

1. Set the animation range.
2. Pose the character.
3. Lock the feet.
4. Copy the key from the start frame to the end frame.
5. Create a slight movement in the middle of the animation.
6. Adjust the TCB settings or double the frames to ensure a smooth loop.
7. Add time tags to the start and end frames of the animation.

In the case of this idle, create a pose where the character faces for-
ward, her right foot slightly leading the left. Lock her feet. Then, for move-
ment, have her sway a little bit side-to-side, flexing and unflexing her
fingers. Change your Time Configuration to f 20 and 149, go to Frame 20,
make sure Animate is on, and pose the character to look like she does in
Figure 7.26.

At Frame 135, shift her from one side to the other, adding some sec-
ondary motion to the left arm and head like you did for the previous idle
animation. Curl the fingers slightly at Frame 135 as well, to get that
clenching/unclenching motion. When you're through, change the Time
Configuration settings so you can see Frame 150, add time tags for the
beginning and end of the animation, and you're done with the idle
animations.

Save your work, or load Betty09.max from the Chapter7 directory on
this book's CD-ROM to see how the three idles should look. Now you can
move on to the Shooting animation!

250 Animating Real-Time Game Characters

SHOOTING

FIGURE 7.26 The third idle pose is less dynamic

What's an action game without someone shooting stuff? Most real-time
game characters run around holding large guns and they shoot things
aplenty. Unfortunately, posing a character with a gun and accommodat-
ing the positioning of many weapons can be a real hassle.

During the development of Q3A, the design of the weapons had to be such that they
all fit in the character's hands for one firing pose. Although a different pose per
weapon would have been nice, the idea was dropped because it added too many ad-
ditional animations to the animation set. Using the same pose for all weapons also
affected the weapon design, because even though the weapons had to look substan-
tially different, they all had to be held the same way by the character.

The first shooting, or firing, animation that needs to be created for
any character is "Shooting while idle." Of course, the first step is the fir-
ing pose.

The Firing Pose

The firing pose for a typical game character sometime depends on the
weapon, but it's generally a two-handed rifle grip. In Betty's case, it's a
little different (Figure 7.27).

Chapter 7 Keyframe Animation: Part I 251

FIGURE 7.27 What if Betty had to carry a big gun like regular characters?

Betty has one weapon strapped to her arm, with a weapon's plant
strapped to her back. While holding a weapon with both hands often ob-
scures the front of most characters, Betty doesn't have to worry about
that. This also makes the firing animations easy to create, the only caveat
being that multiple firing animations are required to fit the different
poses she can fire from.

Load Betty09.max from the Chapter7 directory on this book's CD-
ROM, if you haven't already, and change your Time Configuration set-
tings to an End Time of 200. Open Track View and copy the keys from
Frame 20 to Frame 165 and 170 to give you a starting point for the firing
pose.

When you are copying keyframes in Track View, looking at the destination frame
window that indicates where the keys are being copied to can help you make sure
you 're copying to the right frame (Figure 7.28).

Once you copy the keys, go to Frame 170, turn on your Animate but-
ton, and pose Betty to be in a firing-ready position. Do this by lowering
her COM slightly so she looks like she's getting ready by centering her
weight. Rotate all four Spine objects so she turns her gun arm toward the
target. Raise her gun arm, rotating it along the X-, Y-, and Z-axis so that

252 Animating Real-Time Game Characters

FIGURE 7.28 Watch at the bottom of your Track View to confirm that theframe to which keys are moved or copied
is the correct one.

the front of her weapon is perpendicular to the target. (Don't forget to ro-
tate the Clavicle along the Y-axis to raise her shoulder, too.) Rotate her
right arm down and slightly back, as if she's using it for a counter-bal-
ance, with her fingers straightened. Finally, rotate her right leg slightly,
so that the foot and shin are pointing more to her right, giving the viewer
the feeling that—again—she's bracing herself for the shot. Once you have
the pose, use Arc Rotate to look around her, making sure she doesn't ap-
pear off-balance in any way.

With the automatic constraints built into Biped, it's impossible to turn the Calf ob-
jects along the Y-axis. However, you can rotate them along the X-axis with inter-

esting results. You can't move the foot, either, even if it hasn 't been locked. Try it
when posing legs to see the effects.

When you're through posing Betty, she should look something like
she does in Figure 7.29.

Once you've created the pose, scrub the Time Slider back and forth to
see the transition from the first idle pose to the firing pose. This is the
only reason you copied the keys from Frame 120 to Frame 165: so you
could see the effect. This won't be a part of the animation set when ex-
ported, because of the way the animations will be implemented. Basi-
cally, when the character is in Idle1 and starts firing her weapon, she will
immediately jump to the pose at Frame 170. The programmer will specify

Chapter 7 Keyframe Animation: Part I 253

FIGURE 7.29 Betty is ready to do some damage.

the amount of time it takes to go from the last frame of the idle to the
pose you just created. The game engine will then "lerp" (short for interpo-
late) to the pose, making it almost appear animated.

The characters in Quake II were animated at 15fps with linear interpolation. In-
stead of being bone-based, the animation system relied on vertex deformation to
simulate animation, which is called a morph-target approach. Each frame of an
animation was exported to what became a vertex keyframe. If you watch the
characters move in slow motion, their shapes tend to do strange things as their ver-
tices just go from frame to frame, taking the straightest route to the next pose.

In Betty Bad, the interpolation between frames affects the bones that
drive the mesh. Being able to rely on this approach, going from one pose
to another without actually animating the movement, reduces the total
number of animation frames. In other words, a bone-based animation
system works better than a vertex deformation system. This is because
the bones rotate or move the vertices they influence, instead of just
squishing them from pose to pose. Without the lerping, the poses would
just snap to one another, looking jerky and unnatural.

With Betty now posed, copy the "firing-ready" keys to Frame 177 in
order to go to the next step in her firing animation, which is adding
recoil.

254 Animating Real-Time Game Characters

Adding Recoil

Seeing the transition from Frame 165 to Frame 170 gives you an idea
what the lerp to the firing pose will look like in the game, but there still
needs to be some sort of firing animation. In most games, players need
and want instant results from hitting the Fire button. They don't want
the character getting ready, charging the weapon, and then firing. There-
fore, Betty's firing animation, like a typical character's firing animation,
has to be short and sweet. The purpose of the weapon-ready pose you
just created is so that after the character fires, she's in a position to do so
again in a short time with relatively little noticeable lerping.

Since you don't need them now, delete the keys you copied to Frame
165. With keyframes set at Frames 170 and 177, go to Frame 172 and add
the effect of the gun firing. It can't be too severe, because it has to ac-
commodate several ammo types. Just move the COM back a little, and
rotate the Spine objects along the X-axis as if the gun fires and drives the
shoulder back. Rotate the head down slightly and you're finished. The
often annoying IK solution for the hands, which keeps them in the same
relative place when the Spine objects are rotated, actually works in your
favor this time (Figure 7.30)!

The animation is subtle because it needs to accommodate the effect of
a rapid-fire weapon as well as a single-shot weapon. Giving more time to

FIGURE 7.30 The firing recoil is subtle yet definitely noticeable.

Chapter 7 Keyframe Animation: Part II 255

get back to the default firing stance makes the shot/recoil seem more
abrupt and more realistic. However, concentrate on the pose at which
she gets into the firing-ready stance. As you'll see in the next chapter,
sometimes recoil isn't even necessary if the gun is simply pointed in the
right direction. Add time tags for this firing animation, and move on to
the next two firing sequences.

Before advancing to the next animation, avoid any unwanted drift due to the Con-
tinuity settings. Make sure to double the keys at the beginning and end of the mo-
tion dip you just finished.

The Other Two Idle Attacks

Repeat the following steps for the other two idle animations:

1. Copy the first or last frame of the desired idle animation.
2. Set the animation range for the firing animation.
3. Pose the first frame of the firing-ready stance.
4. Copy the keys to a point eight frames later.
5. Advance two keys after the first key and add a recoil.
6. Double the keys at the front and back of the motion clip.
7. Add time tags.

The second shooting-when-idle animation should take place from
Frames 200-207. Here are some suggestions for creating it and the recoil:
Lower and rotate the COM slightly; rotate the Spine objects slightly;
thrust the arm out so the gun muzzle is perpendicular to the ground and
pointing at the target; and tilt the head down slightly and double-check
the overall posture, so the character doesn't appear off-balance in any
way. When she fires, start by moving the COM back a little, and rotate all
Spine objects along the X-axis to pull the left arm back. Rotate the left
clavicle along the Z-axis a little bit to emphasis the "kick," but leave the
right arm as is (Figure 7.31).

The third animation should take place from Frames 230-237. Try
something a little different with this one and give her a gunslinger look.
Lower her COM and get her in a ready stance. Then place her right hand
on top of her weapon, like Clint Eastwood slapping the hammer back
with his opposite hand in some spaghetti Western (Figure 7.32).

When you make the firing motion, be sure to keep the right hand in
the same position for all three frames (Frames 230-232). Moving and ro-
tating it so it appears it's bucking with the gun will solidify the motion,
because it makes the viewer's brain link the two shapes and he'll believe

256 Animating Real-Time Game Characters

FIGURE 7.31 The second idle animation needs a firing pose just as dynamic as the first.

FIGURE 7.32 Make the third pose a little different, in a more Western style.

Chapter 7 Keyframe Animation: Part I 257

that Betty has a hand on her gun. Make sure it stays on top of the gun
while returning to the ready stance, too (Figure 7.33).

Complete the animations by doubling the keys at either end of their
ranges, and add time tags for the start and end frames. Then you need to
do one more step for the shooting animations. You need to give Betty
some sort of aiming mechanism.

Aiming Mechanism

When real-time game characters shoot their weapons, the programmer
needs to know where the shot comes from. The only way he can tell the
game engine to make it look like the shots are coming from the end of the
weapon is for you to identify it for him. In Q3A, the same tag system that
allowed for a three-part animation scheme provided the mechanism to
determine the origin of the shots on the weapon: a tag. In Betty's anima-
tion system, you need to add a bone that can be promoted during the ex-
port process (this will be covered in Chapter 9), letting the programmer
know where the firing will come from. Since any object can be a bone in
3ds max, you're going to link a dummy object to Betty L Forearm to serve
as this bone. That way, no additional polygonal geometry is added or
rendered.

FIGURE 7.33 Make sure the right hand stays in place through the recoil.

258 Animating Real-Time Game Characters

Click the Helpers icon to make it active in the Helpers panel, and click
the Dummy button to make it active. Create and position a dummy
object so it lines up with the front of the gun muzzle at Frame 230 (Fig-
ure 7.34).

FIGURE 7.34 Create and align a dummy object to the end of the weapon.

Rename the dummy object Weapon Pointer, and link it to Betty L
Forearm. Do this by selecting the dummy object and turning on the Se-
lect and Link button (1). Then hit the H key to bring up your scene's "hit
list" and select Betty L Forearm from the list (2) . Complete the operation
by clicking on the Link button at the bottom of the menu (3) (Figure
7.35).

Linking the Weapon Pointer object to Betty's forearm makes more
sense than linking it to the hand, because the hand isn't used or ani-
mated. This frame of reference for the source of the shots coming from
the weapon also provides a point for attaching muzzle flash geometry
and effects. Wrap up the shooting animations by adding time tags, and
save your work. If you want to, load Betty 10.max from the Chapter7 di-
rectory on this book's CD-ROM to see the way the firing animations
look. Then crouch down, swing your arms, and get ready for some
jumps!

Chapter 7 Keyframe Animation: Part II 259

JUMPS

FIGURE 7.35 Linking the Weapon Pointer object to Betty provides a
place from which gunfire originates.

If you've played Quake II or Q3A online, you're probably familiar with the
sound that every character of either game makes while they're jumping.
An endless barrage of "Huh, Huh, Huh" assails you as experienced play-
ers impersonate Mexican jumping beans doing their best to avoid being
"fragged."

Standing and Running Jumps

The jump animation itself is an important part of the overall animation
set, but it is a tricky motion to create because of its implementation. A
normal standing jump has four parts to it: anticipation (1), launch (2) ,
hang-time (3), and landing (4) (Figure 7.36).

As you can see, the landing is slightly more complex than the other
parts, because it includes both the impact with the ground and recovery.
A running jump is even more complex, because it has the added effect of
momentum, which influences the anticipation and landing motions (Fig-
ure 7.37).

In most real-time games, distance is taken into account and can even
be a part of the game play, requiring you to do something special to get
that super-jump to work right. Also, most of the time when you find your
character jumping while running, the motion generally doesn't reflect

260 Animating Real-Time Game Characters

FIGURE7.36 A standing jump can be divided into four distinct parts.

FIGURE 7.37 A running jump needs longer beginning and end phases than a standing jump.

the longer anticipation and landing recovery that should be there. The
only thing that most game engines take into consideration when charac-
ters jump is their relative velocity while in the air. They can cover that
extra distance when required.

Chapter 7 Keyframe Animation: Part II 261

Implementing the Real-Time Jump

To make a character jump in the game, the motion has to be broken up
into pieces or segments that a programmer can trigger, based on how
high the character needs to go, how far, and when he hits the ground. To
be implemented, the jump can't be one long motion, because it's impos-
sible to tell how long a character would be in the air after the launch, and
how far it would go, since velocity changes all the time. The only way a
jump can work in a game is if it's thought through a bit differently and is
divided into three parts: jump (1), idle (2), and landing (3) (Figure 7.38).

FIGURE 7.38 The jump sequence has to be broken into three parts to be implemented.

Anticipation for a jump isn't even considered, because of the require-
ment that a character react instantly to input from the player. The launch
is expanded to include the hang-time up to the point just before the char-
acter lands, so it's really launch and hang-time combined (hence the new
name of jump). The frame just before making contact with the ground be-
comes an idle pose that the programmer can hold for as long as it takes to
make contact with the ground—then the landing animation can play. Put
differently, the jump animation has to accommodate three things: input
to jump, waiting to re-establish contact with a surface, and contact with
the surface once again.

Another stipulation for the implementation of a jump is that it's ani-
mated in place. This means the characters don't attain any height during
the animation, because they need to be translated vertically and horizon-
tally by the code, based on input from the player. This is also due to
bounding box restraints and other collision-based considerations. When
creating a jump animation, take this last fact into consideration after
you've made the animation look right. Then just take out the vertical

262 Animating Real-Time Game Characters

keys for the COM, and let the code do the work when the character's in
the game.

Most real-time characters have what's known as a bounding box around them,
which is based on a pre-determined size and/or by the extreme boundaries of the
vertices of the character. Bounding boxes can also be generated in zones (high,
medium, and low) or can be generated per bone in a skeletal animation system. Of
the three approaches to bounding boxes, the first solution is the least expensive,
while the last is the most expensive.

See Betty Jump

As with the idle animations, Betty has more than one jump—she has
eight. She has so many because of the third-person perspective and be-
cause having just one or two jumps would quickly become repetitive.
However, you're only going to come up with five. This will give you ideas
for making your own character jump.

If you haven't already, load Betty10.max from the Chapter7 direc-
tory on this book's CD-ROM (Figure 7.39).

Change your Time Configuration Start and End settings to 250 and
300, respectively (Figure 7.40).

FIGURE 7.39 Now that Betty's ready to shoot something, it's time to make her jump.

Chapter 7 Keyframe Animation: Part II 263

Copy the keyframes for the idle pose at Frame 150 to Frame 250 in
order to have a default pose to check against the jump animation. It
won't look perfect, but you have to imagine it in the game assisted by the
interpolation code and the displacement of lifting the character up and
out when the input to jump is received. The timing for any jump varies
based on the game and the game engine, but for Betty, 11 frames are
enough for the jump duration. Go to Frame 155 to pose the first jump
frame. Pose Betty in a jump-split pose like something a cheerleader
would perform at a pep rally. Keep her back relatively straight, and l i f t
her left arm slightly. Keep the arm pointed somewhat forward so that the
lerping isn't as noticeable when she shoots from the position. As you
rotate her upper and lower legs, notice how the toes of the feet point out-
ward, giving an auto-assist with the pose. Don't rotate the legs com-
pletely in the split, but save some room for the second pose, in which the
legs will be fully extended. Finish the pose by straightening her right arm,
and selecting and pulling the hand down along the Z-axis (Figure 7.41).

When cheerleaders do the sort of move Betty's trying to pull off, they
go up, and then as they go down, their body bends noticeably forward as
they stretch their legs even further apart. Go to Frame 165 and bend the
Spine objects a little more and rotate the legs further upward. Straighten
the fingers on her right hand so she seems tensed while in the air (Fig-
ure 7.42).

Before you set the pose for Hang-time2, copy the Idle3 pose from
Frame 250 to Frames 278 and 285. This will allow you to establish the
foot position for the landing part of the animation. While any of the three
idles could have been chosen for the landing, Idle3 is the most generic.
Whenever the character jumps, it will land and automatically go into this
idle.

Now go to Frame 278, lock the feet, and pose Betty as if she's just hit
the ground after having been dropped from a height. Picture jumping
and landing and what your body would be doing. Add little details, like
the head looking slightly down and the hand tilted up (Figure 7.43).

FIGURE 7.40 Change the Time Configuration—again.

264 Animating Real-Time Game Characters

FIGURE 7.41 Betty says, "Gimme a B!"

FIGURE 7.42 "Gimme a B-E-T-T-Y!"

Chapter 7 Keyframe Animation: Part II 265

FIGURE 7.43 Oof! She nailed that landing, ladies and gentlemen!

Advance two frames and then add some secondary motion, such as
her head bend down, her arms coming down, and her waist bending for-
ward. This provides cues that suggest impact (Figure 7.44).

Now you can go back to Frame 275 and create the pose for Hang-
time2 just before the landing part of the animation. This animation is im-
portant; for really big jumps in any game, this is the pose that the engine
will hold the character in while waiting for her to make contact with
something to land on. When you pose her, think of the hang-time you
would experience while falling from a height. Make sure her feet are
poised just above the ground, ready to assume the landed-feet positions
(Figure 7.45).

Betty's arms can't be raised too high because of her shoulder pads,
but having them outward gives the sense she is striving to keep her bal-
ance as she falls. Hang-time2 is all about the pose of landing "readiness,"
so no animation for it is required. However, WildTangent's technology is
such that all animations must be at least three frames in length. There-
fore, once you're happy with the pose, copy it to Frames 273 and 274.
Scrub the Time Slider to see the whole jump animation.

Next, you need to spread out the jump components, treating them
like individual animations complete with time tags and frame buffers.
Open Track View, and start by deleting the idle pose at Frame 250, and

266 Animating Real-Time Game Characters

FIGURE 7.44 Adding secondary motion after the landing emphasizes the motion.

FIGURE 7.45 Ready to land, the character still needs to look as if she is airborne.

Chapter 7 Keyframe Animation: Part II 267

then slide the two jump-split keys over. Double-tap or "bracket" the keys
at the front and end of the motion to keep Continuity sway out of the an-
imation. Then, slide over the column of three keys that make up the
Hang-time2 pose so that they begin at Frame 280. Finally, slide the land-
ing sequence over to start on Frame 300, doubling the keys at either end
of that animation as well (Figure 7.46).

FIGURE 7.46 Shift the keys around so there is a buffer between the jump components.

Add time tags so that the animations are easy to find. This should
make quite a long list of time tags so far, so don't enter Start and End tags
for all the animations. All three idles are the same length, all the firing
animations are the same, and all the jumps will be the same length. By
only entering the Start and End tags for the first in a series of animation
clips, you'll find that your list of time tags will be more manageable (Fig-
ure 7.47).

Now, you can create some alternate jumps for Betty, keeping in mind
the need for variety when staring at the same character for the whole
game!

See Betty Jump.. .Again

One of the great comic book artists of the 1980s and early 1990s was
Frank Miller. He still does great work today, but his early work (Dare-
devil™, Spider-Man™, and, of course, Batman™) defined a style of story-
telling that is crucial to the character animator: dynamic action. Every

268 Animating Real-Time Game Characters

FIGURE 7.47 Keep time tags manageable
by limiting the Start and End entries.

panel featuring a Frank Miller character in motion is pure kinetic magic.
Staring at them, you feel like any of these 2D characters could leap off the
page at any moment. This is due to Miller's ability to capture an anima-
tion in the most powerful and interesting snapshot of a pose: hands out,
legs tucked, perfect balance, and with total awareness of their environ-
ment. His character rendering is amazing.

When posing your character in any animation, think of it as a panel
in a comic book. Go out and buy any Jim Lee compilation, like X-Men™
or Divine Right™. He, too, is a master at the interesting, eye-catching ac-
tion pose. As you look over the following poses for two of Betty's other
jumps, try to come up with some poses yourself that would look good in
any Jim Lee or Frank Miller comic book (Figure 7.48).

As you create the first pose of the 11 -frame animation, don't forget to
change it slightly at the back end as well; picture the slight movements as
the character sails through the air. Try to make each pose unique. For ex-
ample, the pose in Figure 7.49 shows Betty leaning to her right with her
right leg up. Figure 7.49 shows Betty with her left leg up, leaning forward
instead of backward. Even in silhouette, the two poses should be easy
enough to recognize.

Turnaround Jumper

For the fourth jump, try for something from the repertoire of a basketball
player or skater: a turn-around jump shot. First, change your Time Con-
figuration to have a Start Time of 390 and an End Time of 410. Then,
pose Betty at Frame 390 by lifting her knees, dipping her right shoulder,

Chapter 7 Keyframe Animation: Part II 269

FIGURE 7.48 Betty leaps through the air with the greatest of ease.

FIGURE 7.49 Even airborne, Betty has poise and readiness.

270 Animating Real-Time Game Characters

putting her right hand behind her and down, and lowering her gun arm
so it almost seems like it rests on her hip. It's important that her arms are
down, so that they can come up as she spins, imparting the sense of cen-
trifugal force. She's going to spin counter-clockwise, so lean her body
slightly toward that direction (Figure 7.50).

FIGURE 7.50 Start the turnaround animation by leaning Betty into the motion.

This animation needs to last a little bit longer than the other jumps,
about 13 frames in total. But instead of going to the end of the animation
and rotating the COM one complete rotation, you're going to divide it into
three separate rotations. So, to start, advance four frames, select just the
COM, and rotate it 120 degrees along the Z-axis (1) . Don't animate any-
thing else yet. Advance another four frames, rotate the COM another 120
degrees (2), then advance another four frames and rotate another 120 de-
grees. Youwill have a complete turn at Frame 402 (3) (Figure 7.51).

Test the turn to see how it looks. Now set the end pose; raise Betty's
arms and bend her forward, as if she's using her body to increase the
speed of the spin. Rotate her Spine objects and her right arm a little more
to the right than in the first frame. Adjust her legs so that they're facing
more forward (Figure 7.52).

Chapter 7 Keyframe Animation: Part II 271

FIGURE 7.51 Complete a 360-degree turn by turning in three increments of 120 degrees every fourth frame.

FIGURE7.52 The end of the turnaround jump needs to be just as dynamic as the
beginning.

272 Animating Real-Time Game Characters

Whenever you see a competitive diver or figure skater execute a se-
ries of high-speed spins or flips, you'll see them lead the motion with
their head. This is for the practical purpose of allowing them to see where
they're going to land, or to find some sort of mark to keep their bearings.
Refine this animation by adding some of that kind of secondary motion to
Betty's spine, head, and arms. Go back to Frame 396. Arch her back and
rotate her Spine objects along the X-axis so that she's twisting into the
spin. Turn her head along the X-axis as well, and tilt it slightly along
the Y-axis. Straighten her left arm to again emphasize the centrifugal
force of spinning. Bend her right arm so it seems like she's in the middle
of throwing her leading arm into the spin (Figure 7.53).

FIGURE 7.53 Add a secondary motion pose midway through the animation.

At Frames 393 and 399, rotate the head and tilt it into the turn to add
to the impression she is searching for her bearings. At Frame 400, bring
the right arm up and slightly back, extending to look like a whip motion,
further imparting the sense of spin and speed (Figure 7.54).

Scrub the Time Slider to see how the animation looks. If it's effective,
double the keys at the beginning and end of the motion clip, time tag it,

Chapter 7 Keyframe Animation: Part II 273

FIGURE 7.54 Complete the animation with final secondary-move tweaking.

and you're done with the fourth jump. The fifth jump animation is cre-
ated in case the character needs to shoot while jumping and/or landing.

Jumping while Shooting

To create this version of the jump, you'll start with animations that have
already been done. You're going to copy the keyframes that make up
Jump2, Hang-time2, and the landing, but don't bother changing your
Time Configuration to get to them. You're about to find out one of the
benefits of using the Time Tags feature. Click on Add Time Tag and then
click on Jump2 (Figure 7.55).

If you haven't been adding time tags then, yes, you will have to change your Time
Configuration to get to the keys in Track View.

Time Configuration changes automatically as the Time Slider
"jumps" to Jump2. Open Track View and copy all the keys from Frame

274 Animating Real-Time Game Characters

FIGURE 7.55 Clicking on Jump2 takes
you to that point regardless of the
Time Configuration settings.

329 to Frame 341 to start at Frame 419. Of course, the Time Tag trick
doesn't help you with Time Configuration if it needs to go further in time.
Change the Time Configuration to a Start Time of 280 and an End Time
of 480; this gives you access to Hang-time2 and the landing, as well as
pushing the animation range out to create the new jump animation.
Once you copy all the keys from Frames 280-308 to Frames 450-478,
change your Time Configuration again to a Start Time of 420 and an End
Time of 480. The keys should look something like this in Track View:
Jump2 (1), Hang-time2 (2), and Landing (3) (Figure 7.56).

Now that you've copied the keys, delete all of them from the follow-
ing frames: 419, 430, 431, 451, 452, 469, and 478. (Because you're
going to be creating new versions of the existing keyframes, you're
going to recopy the new poses anyway.) Then, go to Frame 420 and pose
Betty so she's in a shooting-ready position. Rotate the COM, Spine
objects, arms, and head to get something poised-looking and deadly (Fig-
ure 7.57).

Using Snapshot for Reference Objects

With the pose established, you'll need some way to keep the gun in a
steady position throughout the 11-frame jump animation. The best way
to do this is to make a snapshot of the end of the gun and use it as a guide.
Unfreeze All, select m_gun (1) , go to Snapshot under the Tools menu,

Chapter 7 Keyframe Animation: Part II 275

FIGURE 7.56 Copy the keys of previous animations to provide a starting point for the new animations.

FIGURE 7.57 Betty is jumping again, but ready to rock and roll this time.

and click on it (2). Then make sure Single is selected in the Snapshot dia-
log menu, and hit OK (3) (Figure 7.58).

Change the mesh color of the new object so it stands out against the
current color. Then copy the keys you just set at Frame 420 to Frame
430, and make a few changes to the pose, just for the sake of interest.

276 Animating Real-Time Game Characters

FIGURE 7.58 Use Snapshot to create a reference of Betty's gun in the firing
position.

Rotate her COM and torso in the direction opposite to the one they're
now facing, aligning the gun arm with the reference object you just cre-
ated. When you align the gun, concentrate on the front edge of the
weapon so you ensure it's parallel to the reference (Figure 7.59).

FIGURE7.59 Align the gun after slightly changing Betty's pose.

Chapter 7 Keyframe Animation: Part II 277

Double the keys to get rid of Continuity drift, and check to see if the
gun arm needs to be adjusted at any other frame of the animation. It
should be fine, so delete the reference gun object, and add a time tag.

Because a jump is such a relatively short animation, and one that involves gross
movement, there's no need to really animate a kickback part to the animation. This
applies to Betty's integrated gun and to a traditional game weapon as well,

Now go to the Hang-time2 key at Frame 450. Have Betty point the
weapon downrange and give her trademark "come hither and get shot"
look (Figure 7.60)!

FIGURE 7.60 Betty, waiting to touch down, still wants something to shoot.

There's no need to snapshot a reference to which to align the gun
arm, because there's no animation for this part. Just copy they keyframes
to Frames 451 and 452, time tag Frame 450, and give the same sort of
pointing-weapon treatment to the landing phase of the jump. Advance
token to Frame 470 to finish this last part of the jump.

Hitting the Ground Shooting

Again, the key to this sort of pose is to balance it with the reasoning be-
hind the current pose: landing. In a jump landing, even Clint Eastwood

278 Animating Real-Time Game Characters

would find it difficult to steady a gun like the cannon that Betty's carry-
ing. While suspending your disbelief is part of the allure and demands of
an action game, adding just enough heroic realism to make it believable
is required. Keep this in mind as you set the first pose of the landing
(Figure 7.61).

FIGURE 7.61 With the weapon pointed during landing, it's bound to take a dip soon after.

Now, add a twist to the animation by borrowing from the Fire3 ani-
mation. Since the feet position is taken from the landing, which in turn is
taken from Idle3, it makes sense to end up in the Fire3 pose. So, bring up
your Time Tags and click on the Fire3 animation at Frame 230 to use it as
the end pose for this animation. Copy the keyframes at Frame 230 to
Frame 480, lengthening the landing by a few frames.

Next, add evidence of an impact by advancing to Frame 273, bending
Betty at the waist, bringing her arms down a little, and bending her head
and hand down, too. Adding these secondary motions as Betty rises from
her post-impact crouch reinforces the feeling she has just landed (Figure
7.62).

Advance to Frame 275 and add the last bit of secondary motion, rein-
forcing Betty's recovery from the impact by rotating her head, gun arm,
and right hand slightly upward before she moves into the pose from
Frame 230. This will make it seem as if her reflexes are quick and she's
ready to go (Figure 7.63).

Chapter 7 Keyframe Animation: Part II 279

FIGURE 7.62 Betty reacts to the jarring impact of landing.

FIGURE 7.63 Betty's reflexes allow her to recover quickfy from the impact of landing.

280 Animating Real-Time Game Characters

Finally, make one more refinement to the animation. Go into Track
View and slide the keys for Betty Spine, Betty Pelvis, and Betty Head at
Frame 480 to Frame 478. This makes the hands that are assuming their
positions (at-ready and atop the weapon) more noticeable, because the
torso attains the pose before them (Figure 7.64).

FIGURE 7.64 Slide the keys for the Pelvis, Spine, and Head tracks to focus on the hands.

Add keys for the missing spots at Frame 480 and double-tap the ani-
mation, front and back. Last, time tag the start and end, and you're done.

Animation Ideology

You may be wondering why so much information has been thrown at
you for a relatively minor and often ignored animation (Q3A didn't have
this type of jumping-and-shooting motion). Well, this book is as much
about the ideology of character animation as it is about real-time anima-
tion, 3ds max, and character studio. The importance of simulating effects
such as momentum, centrifugal force, and impact on a character cannot
be overstated. These sorts of real-world phenomena imposed upon fan-
tastic creations and motions add up to superior real-time character ani-
mation. Small details make big impressions on the mind of the viewer.
Constantly reevaluate your animations and ask yourself if can they be
better. Should the head be tilted left—or right? Should the foot be turned
in—or out? To be a master of character animation, you have to be a stu-
dent of life first.

Chapter 7 Keyframe Animation: Part II 281

Not all games feature characters that swim. In Q3A, characters swim, but
there's only water in a few levels. Betty Bad features water as an integral
part of the game, forcing you to flood a level and then drain it. Corre-
spondingly, while Q3A just had the characters doing a simple frog kick or
scissors kick, Betty has an extensive set of animations to support her
while swimming, including swimming forward, swimming forward while
shooting, swimming backward, swimming backward while shooting,
swimming idle, swimming idle while shooting, swimming pain, swim-
ming death—you get the picture. She is shown completely submerged,
utilizing the same sort of breathing apparatus that Qui-Gon Jinn and Obi-
Wan Kenobi used in Star Wars: Episode I. This requires all her animations
to look as if she is realistically moving underwater. To give you the gen-
eral idea for aquatic animation, you're going to make Betty tread water
and swim forward.

Treading Water

The illusion of being underwater in a game is pulled off by making the
"air" of the level murky and/or increasing the amount of "fog" present.
Add in some random bubbles, a few objects floating serenely, and an
imaginary current, and you have a fairly realistic watery world—but
what really pulls off the feeling of being in the water is the animation of
the characters that are submerged in it. Betty is a little handicapped when
it comes to getting wet, because she really only has the use of one hand
(in addition to her legs, of course). The first step is to get her idle anima-
tion going by having her float or hover convincingly. Then it's a simple
matter of having her slowly tread water, waiting for some action.

Continue with the file you've been working with, or load Betty11.max
from the Chapter7 directory on this book's CD-ROM. Change your Time
Configuration to a Start Time of 500 and an End Time of 100 (swimming
idles take a long time to look properly languid and fluid). As in any major
animation, the first step in the idle is to "block it out" first, and then add
refinement and secondary motion with each pass. This just means that an
efficient workflow establishes the main poses at the beginning, middle,
and end; you then add poses between the beginning and the middle, and
between the middle and the end. This gives you a chance to play the an-
imation back, getting a feeling for the timing, and think about the next
pass you're going to make.

Betty's underwater idle motion will feature a slow cycling of her legs,
and movement in her arms that suggests treading water. Go to Frame

SWIMMING

282 Animating Real-Time Game Characters

FIGURE 7.65 The first frame of the swim animation is mid-stride, treading water.

500 and pose Betty like she appears in Figure 7.65. Be sure to twist her
waist and pelvis in opposite directions by first rotating the COM and then
the Spine objects (Figure 7.66).

FIGURE 7.66 This is the halfway point in the swim idle, the opposite of the first frame.

Chapter 7 Keyframe Animation: Part 283

Copy the keyframes you just set to Frame 600 and go to Frame 550 to
set the next pose. This time, pose Betty the way you did before, but mir-
rored: the left arm is in the right arm position, the left arm is in the right
arm position, and the Spine objects are rotated in the opposite direction
of her pose at Frame 500. Start by rotating her COM and Spine, then do
the arms and legs. Don't bend her feet too much, because they'll have to
bend on the downward stroke in later passes (Figure 7.66).

The quickest way to copy one limb pose and transfer it to the opposite limb at a dif-
ferent frame is to follow these steps: Go to the frame where the pose is, double-click
on the limb root, and hit the Copy Posture button (1). Advance to the frame where
you want the pose to be transferred, make sure Animate is active, double-click the
target limb, and hit the Paste Posture/Pose/Track Opposite button (2) (Figure 7.67).

FIGURE 7.67 Paste Posture/Pose/Track Opposite is a great way to keep both side arm and
leg poses consistent.

Now, double the keys at the start and end frames of the animation to
get rid of any Continuity-based motion, and play back the animation
to see how it looks. It should be a smooth, looping animation of Betty
doing a basic, lazy, kicking motion. To impart a sense of floating, go to
Frame 525, then, in the Right viewport, select the COM, and lower it by
about 1 unit along the Z-axis. Copy the key to Frame 575 and play the
animation back. Betty now has a little bit of a bobbing motion to rein-
force the illusion of being underwater.

Whenever animating a Biped, try to have the Motion panel always active. This
keeps all the coordinate axes correct relative to the Biped (that is, Z is up instead
of Y).

284 Animating Real-Time Game Characters

The next type of secondary motion you need to add is some extra leg
motion. This will also emphasize weightlessness and the look of floating
in water. Go to Frame 525 again, and adjust the left leg: Rotate Betty L
Thigh -20 degrees along the Z-axis, Betty L Calf -20 degrees along the Z-
axis, and Betty L Foot 60 degrees along the Z-axis. Pose the right leg by
just rotating Betty R Calf 50 degrees along the Z-axis. The default IK will
pose the foot for you automatically (Figure 7.68).

FIGURE 7.68 Bending the legs in anticipation of the downward kick adds to the illusion of
being underwater.

Double-click on Betty L Thigh and hit the Copy Posture button to
copy the pose for the left leg. Advance to Frame 575 and click Paste Pos-
ture/Pose/Track Opposite to paste the pose to the right leg. Go back to
Frame 525, click on Betty R Calf, and hit Copy Posture; advance to Frame
575 and paste it onto the left calf in the same way (Figure 7.69).

Creating a Smooth Loop

Sometimes it's very difficult to achieve a perfectly smooth loop in 3ds
max. No matter what you adjust or tweak, there's always some sort of a
slight twitch or snap. In most cases this goes unnoticed, and/or the game
engine helps by using interpolation. However, it's crucial during swim-
ming motions that the loop be absolutely smooth. Remember that the

Chapter 7 Keyframe Animation: Part II 285

FIGURE 7.69 Use the Copy and Paste Posture tool to mirror the pose just created.

3ds max file is really an animation folder, so you're free to create as many
keys wherever you want during the animation, since most game engines
allow you to specify the beginning and end times of animations at the
time of export (more on exports later). This is why time tags are so use-
ful. Keeping all that in mind, there's a very simple way to create a nearly
perfect loop by using a few extra frames.

Change your Time Configuration to have a Start Time of 500 and an
End Time of 700. Delete the keys you doubled at Frames 499 and 601.
Then, copy all the keyframes at Frame 525 to Frame 625, and all the keys
at Frame 550 to Frame 650. Change your Time Configuration settings to
525 and 624, and play back the animation (Figure 7.70).

The animation should be completely smooth now. Copying keys like
this is really just a variation of the key-doubling trick that forces 3ds max
to either recognize or ignore keys before and after the animation you're
working on. This is why the animation folder approach should make you
think of your animations within the 3ds max file more as motion clips
than distinct animations. The analogy will help you later on as you work
in Flow Mode (which we'll discuss in the next chapter).

You can experiment with secondary motion for the arms and head,
but with the leg tweaks, the swimming idle animation is fine as is. Now
you can move on to the animations for swimming forward.

286 Animating Real-Time Game Characters

FIGURE7.70 Create a smooth loop by duplicating keys, which extends the range of the animation and changes the
range itself to fall within the larger set.

Swimming Forward

While any character carrying a weapon needs to rely on their legs to pro-
pel them through the water, scissor kicks and frog kicks are about all you
can get away with. You can take the mermaid-style approach like in The
Man from Atlantis, in which the whole body gets into the motion, but the
carried weapon makes it very difficult to transition into other animations.

The first frame of the animation is important because it's the pose the
character moves into from the idle. With the help of interpolation, it's not
a huge issue, but it is something to think about. In Betty's case, her first
frame shows her flat out, in a prone position, with her right hand back as
she knifes through the water. The idea here is that interpolation will al-
most make it seem as if she pushes off into the swim from the idle. Change
your Time Configuration to a Start Time of 410 and an End Time of 670.
Pose Betty at Frame 470 so that she looks like she does in Figure 7.71.

Copy the keys at Frame 670 to Frame 710, and advance to Frame 690
to create the next pose. This is the halfway point at which Betty is drifting
and then reaching up for another stroke, getting ready to push off with a
powerful kick. However, the most important thing here is the movement
of the COM. As you create the pose in Figure 7.72, pull the COM back
along the Y-axis by four units, and down along the Z-axis by eight units.

Chapter 7 Keyframe Animation: Part II 287

FIGURE 7.71 The first frame of the swim-forward animation takes advantage of lerping.

Even though Betty will be moved through the water programmatically,
moving her like this will make it look like her pause between strokes re-
sults in her losing a little momentum, even sinking a bit. This helps with
the general impression of moving underwater (Figure 7.72).

With the COM taken care of, you next need to adjust the legs. This is
an example of the process of adjusting the parent object before the child
object. Whenever you find yourself preparing to animate a limb, make
sure the parent doesn't need animating first. For the legs, it's the COM
and Pelvis, while for the arms, it's the Spine objects. There are sometimes
exceptions, however, especially for the arms, as you'll see in a few
minutes.

The legs need to perform the frog-kick motion that will propel Betty
through the water. With the legs drawn up at Frame 690, they then need
to flex outward a little, just before flicking back at Frame 695. Finally,
they'll kick straight out at Frame 702, before going back to the default
start/end position (Figure 7.73).

With the main leg poses in place, refine the feet positions so that they
roll a little with the force of the leg movements. At Frame 695 and Frame
698, exaggerate the amount the feet roll inward along the Y- and X-axes
as the legs flex outward. Then, at Frame 702, rotate the feet outward as

288 Animating Real-Time Game Characters

FIGURE 7.72 At the midway point in the animation, Betty is ready to stroke and kick.

FIGURE 7.73 The three steps to a frog kick are to draw up, flex, and kick back.

Chapter 7 Keyframe Animation: Part 289

the legs push toward each other, simulating the effects of the water vol-
ume being displaced between Betty's legs. By forcing the slightly flimsier
feet to roll with this pressure, the illusion of the swimming motion is
complete (Figure 7.74).

FIGURE 7.74 The feet react to the legs displacing water.

With the legs set, you need to tweak the right arm so it looks more
like it's taking a stroke. However, keep in mind that Betty doesn't have
great mobility in her right arm because of her huge shoulder pad. Go to
Frame 680, hide the Spine and left arm Biped objects, and rotate the right
arm up so the hand is near the position it's in at Frame 690. Close the fin-
gers so they look like they want to push through the water. Close the

290 Animating Real-Time Game Characters

finger at Frame 690, as well. At Frame 696, keep the hand where it is, but
rotate the elbow down as the arm tenses to push down and back. Then,
go to Frame 706, open Track View, and copy the key at Frame 710 for
Betty L Clavicle to Frame 706. Close Track View and straighten the fin-
gers. Finally, go back up to Frame 702, and rotate the hand and fingers
slightly along the Z-axis so that it appears they're flexing back from push-
ing through the water (Figure 7.75).

FIGURE 7.75 The arm needs to anticipate, act, and react as it goes through the motion.

The last thing to adjust is the waist. Go to Frame 684, apply Unhide
All, and select all four Spine objects. Open Track View, and delete the key
you had set for Betty Spine at Frame 690. Rotate all four Spine objects to
Betty's left along the Y-axis as the right hand reaches up and out to take
the stroke. Then, go to Frame 705, and rotate the Spine objects along the
Y-axis back toward the motion of the stroke (Figure 7.76).

Animating the Spine objects (the parent) after animating the arm
(the child) is one of those special cases that is normally performed the
other way around. With Biped, you can get away with it because of
the unique IK arrangement of the Biped hand. With the animation com-
plete, there's only the matter of that smooth, fluid loop. However, the
start time of the swim is more important than was the start time for the
idle. Therefore, you need to move the entire motion clip and add
keyframes in front and back to get Continuity to work in your favor.

Open Track View, and Add Keys to all tracks at Frames 680 and 702
(Figure 7.77).

Chapter 7 Keyframe Animation: Part II 291

FIGURE 7.76 Complete the stroke with some subtle Spine object rotations.

FI6URE7.77 Add keyframes at Frames 680 and 702 so they can be copied elsewhere.

Next, change your Time Configuration to a Start Time of 670 and an
End Time of 720. Go back to Track View, select the keys vou added at
Frame 680, and copy them to Frame 720. Then click the
button to make it active, select all keys at Frame 670, and slide the entire
animation 20 frames to the right. Click the Move Key button active
again, select the keys at Frame 712, and copy them over to Frame 670.

Slide Keys

292 Animating Real-Time Game Characters

Change Time Configuration again, to a Start Time of 680 and an End
Time of 720. Play the animation back and see how it looks (Figure 7.78).

FIGURE 7.78 Betty is now on her way to being a certified swimmer.

Of course, Betty has a bunch of other swimming animations. She has
to swim backwards, shoot while idling, swim forward and backward, and
she has to feel pain and die a couple of times. The point of this chapter,
though, has been to cover just some of the animations you'll need to cre-
ate for a real-time game character using solely a keyframe approach.
Load Betty12.max from the Chapter7 directory on this book's CD-ROM
to see the completed swimming animations. Then get ready for the next
chapter, where you'll find out a bit more about mocap.

SUMMARY
A typical real-time game character can have anywhere from a couple
hundred to a couple thousand frames of animation. How small or how
great the number of animations will be will depend on the role of the
character in the game, as well as the way in which the character will be
implemented. Player characters definitely have the biggest share of ani-
mation frames in a game because they have to do so much, especially if
the game is in the third-person perspective.

Generally, the first motion you want to create in the animation
"folder" (the character's 3ds max file) is some sort of idle animation.
Whether the character has one or several idles, the motion is mainly
about taking an interesting pose and changing it slightly as it loops con-
tinuously. After the first pose is set, lock the feet using Set Planted Key,
and copy the pose to the end of the animation range. Change the Conti-
nuity settings to get rid of any excess animation, or use key doubling as a
way to quickly get rid of this sort of extra motion. Secondary motion is
crucial to the quality of any animation. Always find ways to add extra de-
tail to the animation.

Chapter 7 Keyframe Animation: Part II 293

When creating shooting or firing animations, start by establishing the
character's pose while he is holding the weapon. Then add a "knockback"
effect that simulates the weapon firing. As with the idle animation, con-
centrate on creating an interesting pose that fits the requirements of the
animation set. Don't be afraid to experiment with different ideas. Once
the weapon is posed, attach some sort of bone or dummy object to the
Biped Forearm; this will act as an aiming mechanism for a programmer so
that he can determine the point where a weapon's round will originate.

While using motion capture is a great way to create jump animations,
jumps are so specific to the real-time implementation of the character
that they're just as easy to keyframe. In the physical world, jumps have
four parts: anticipation, launch, hang-time, and landing. In the world of
real-time game characters, the jump animations are divided into three
distinct parts: jump, idle, and landing. Animate one complete jump se-
quence, then divide it up into these parts to suit the game engine and the
character. Some characters may have to shoot while jumping, which re-
quires a different animation—one that relies on the weapon always being
pointed at an imaginary target. Use the Snapshot function to create a ref-
erence guide by which you can line up the weapon as the character goes
through the jump motion.

Finally, while there are many animations required for the player
character for which motion capture would be effective, the swimming ac-
tion calls for particularly keyframe-intensive animation, because of the dif-
ficulty in getting accurate underwater motions with motion capture. In
order to get that languid, fluid motion looping correctly, it's sometimes
necessary to duplicate keyframes beyond just the "double-tap" practice,
copying whole segments of keyframes before and after the animation
range.

USING MOTION CAPTURE

295

296 Animating Real-Time Game Characters

M otion capture, or mocap, is the character animator's best friend. It
adds realism and detail to any motion and subtracts from the
amount of time it takes to create it. Movies, television, adver-

tisements, and even scientific research benefit from the use of motion
capture, and 3ds max makes it easy and quick to use.

MOTION CAPTURE FILES
There are three different types of motion capture files you can work with
in 3ds max and character studio: BIP, CSM, and BVH. While BIP files are
the proprietary Biped motion file, CSM and BVH are raw data ASCII files
that are the usual forms of output from the motion capture process. As an
animator, you should only really be working with the finished BIP files
that have been cleaned by the service that either did the capture or that
sells the data to you from a library. Although character studio does have
the ability to tweak the mocap data to suit your characters, the compa-
nies that specialize in delivering motion capture are better equipped to
alter the data. Still, knowing a little bit about CSM and BVH is always
helpful, because character studio 3 gives you the ability to convert these
file types to the standard BIP file format.

CSM Format

The CSM format is used to import positional marker data from optical
motion capture systems onto a Biped. The acronym stands for Character
Studio Motion Capture file. The CSM format is a little limiting, because to
be compatible with character studio, it must use names that match the
character studio setup. It also has to have an appropriate number of
markers in the specified locations on the actor (although character studio
3 does allow a few extra bone "props" now). The CSM format itself is ca-
pable of holding any kind of marker data, but it's assumed it adheres to
the name and marker configuration required by character studio.

BVH Format

The BVH file format is also generated from optical motion capture sys-
tems. It was originally developed by a motion capture services company
called BioVision as a way to provide motion capture data to their cus-
tomers. The name BVH stands for BioVision Hierarchical data. This for-
mat primarily replaced an earlier format that the company developed
(the BVA format) as a way to provide skeleton hierarchy information in

Chapter 8 Using Motion Capture 297

addition to the motion data. The BVH format is an excellent all-around
format, but its drawback is its lack of a full definition of the basis pose.
While still seen from time to time, it's no longer a prominent motion cap-
ture file format.

Converting CSM and BVH Files

Start or reset 3ds max and create a Biped. The new Biped's COM is au-
tomatically selected, so go to the Motion Panel, open the Motion Cap-
ture rollout menu, and click on the Load Motion Capture File button
(Figure 8.1).

FIGURE 8.1 Click the Load Motion Capture
File button to import CSM or BVH files.

When the Open file menu appears, select BVH from the three avail-
able file types in the Files of type drop-down menu. Then go to the Chap-
ter8 directory on the CD-ROM that came with this book, and load
Walky.bvh by selecting it and hitting the Open button (Figure 8.2).

When the Motion Capture Conversion Parameters menu appears,
make sure the Footstep Extraction selection is set to None: Freeform, and
that Conversion is set to No Key Reduction. Hit the OK button (Figure 8.3).

After 3ds max processes the conversion, the motion is loaded into the
Biped. Immediately, you'll notice the configuration and proportions of
the Biped change. This is because of the marker placement during cap-
ture and the export to the BVH format (Figure 8.4).

Always use a generic, default Biped to convert any BVH or CSM files, instead of
using your actual character. The Marker configuration and Biped configuration at
the time of capture and export to the BVH or CSM file format will alter the shape

and configuration of the Biped they're loaded into, thus severely distorting or ru-
ining your mesh.

298 Animating Real-Time Game Characters

FIGURE 8.2 In order to load a BVH file, that format needs to be
selected under the Files of type menu.

FIGURE 8.3 The Motion Capture Conversion Parameters menu is a great tool for
quickly converting BVH and CSM files.

Chapter 8 Using Motion Capture 299

FIGURE 8.4 Loading a BVH or CSM file noticeably re-configures the Biped.

Move your Time Slider to Frame 0 if it isn't already there. Notice that
the bottom row of buttons on the Motion Capture rollout menu is now
available. This is because whenever a BVH or CSM file is loaded, these
buttons allow you to recalibrate marker data. However, you rarely need
to access them, and it's best to leave that sort of tweaking to the mocap
service that gives you the data.

Using Key Reduction

One of the most useful features in the Motion Capture Conversion Para-
meters menu is the ability it gives you to reduce the number of keyframes
in the motion capture file. Since mocap files typically have a key set for
every animation track at every frame, filtering the data to reduce keys
makes it easier to edit the data when you want to customize it to fit your
character. However, it's usually best to keep at least one version of the
mocap file with all the keys intact as a source of reference.

With the Biped still selected, click on the Load Motion Capture File
button again, and this time load a CSM file called Shotdrop.csm from the
Chapter8 directory found on the CD-ROM that came with this book (Fig-
ure 8.5).

300 Animating Real-Time Game Characters

Leave the settings as they were before in the Motion Capture Con-
version Parameters menu. Once it's been converted and loaded into your
Biped, save it as a BIP file by clicking on the Save File button under the
General rollout menu (Figure 8.6).

FIGURE 8.6 Save BVH or CSM motion capture
files as un-reduced BIP files first.

Save the file as Shotdrop.bip, and click on the Load Motion Capture
File button once again. This time, choose Biped Files as the file type and
load the file you just saved (Figure 8.7).

Notice at the bottom of the Open menu that there are always two
checkboxes. Loading a BIP for conversion like this gives you the extra

FIGURE 8.5 Converting a CSMfile is just a matter of choosing
that file type and loading it.

Chapter 8 Using Motion Capture 301

FIGURE8.7 This time load a BIP file into the Motion Capture
Conversion Parameters menu.

ability to choose whether or not you want to re-structure the Biped
you're going to load the data into. This is one of the benefits of saving
BVH or GSM files as BIP files and then tweaking them afterward. How-
ever, by doing so, you do lose access to the marker data at Frame 0.

When the Motion Capture Conversion Parameters menu pops
up, select Use Key Reduction from the Conversion drop-down menu
(Figure 8.8).

FIGURE8.8 Choose Use Key Reduction to reduce
the number of keys in the mocap data.

Hit the OK button; the same motion has now been optimized with
many fewer keyframes. Character studio makes it easy to see the differ-
ence of the reduction of keys by storing the original un-reduced data in a

302 Animating Real-Time Game Characters

motion capture buffer. To compare the effect of the reduction you just
did, first go to the Display rollout menu, turn on Bones (the first button),
and turn off Objects (the second button) (Figure 8.9).

FIGURE8.9 Make the difference between the
reduced and un-reduced keys easier to see by
viewing only the Biped's bones.

Finally, to see the original motion capture data with all keyframes in
place, click the Show Buffer button to make it active (Figure 8.10).

FIGURE 8.10 Show Buffer allows you to view the
original motion before the keys were reduced.

Scrub the Time Slider back and forth to see the differences between
the purely red stick figure and the regularly colored stick figure. The dif-
ferences between the two are negligible except for where the motion is
most extreme, like when the Biped hits the ground (Figure 8.11).

To try for an even more extreme reduction, you can increase the tol-
erance under the Key Reduction settings. Instead of re-loading the mocap
file using the Load Motion Capture File button, click on the Convert from

Chapter 8 Using Motion Capture 303

FIGURE8.11 There are only several places (like here at Frame 164) where the motion
differs.

Buffer button to bring the Motion Capture Conversion Parameters menu
back (Figure 8.12).

FIGURE 8.12 The Convert from Buffer button is a
shortcut to the Motion Capture Conversion
Parameters menu.

When the conversion menu comes up, increase the Tolerance value
to 10 for all the tracks except for Body Horizontal, Body Vertical, and
Body Rotation. Leave their Tolerance value at 1. Change the Minimum

304 Animating Real-Time Game Characters

Key Spacing value to 6 for everything except those same three tracks,
keeping them at 3, 4, and 3 respectively (Figure 8.13).

FIGURE 8.13 Increasing Tolerance and Minimum Key
Spacing values increases the amount of key reduction.

If most of the tracks have the same settings, use the Set All line at the top of the Key
Reduction Settings menu to change all tracks at once for one or both Tolerance and
Minimum Key Spacing values. Then go back and adjust individual settings that
need to be different.

Hit OK, and you can see the difference that the higher values pro-
duce. Tolerance sets the maximum amount of units (or degrees) a posi-
tional or rotational track will deviate from the original position. Once
character studio calculates the Tolerance setting, it then reduces the keys
further using the Minimum Distance between Keys setting. This value
basically tries to put a bottom limit on the space between each key, but
even after reduction the space can be less than that, based on the results
of the Tolerance setting.

Most of the time, you don't have to worry about key reduction. If you have to make
adjustments to the motion capture data, layers are a great way to do it. However,
one benefit of reducing the keys on an animation is removing any "jitter" that
sometimes occurs when a keyframe is set for every frame of every track.

Chapter 8 Using Motion Capture 305

DECIDING WHICH MOCAP FILES TO USE

Of course, you can't always afford to record a new motion capture ses-
sion every time you have to animate a character. Sometimes you need to
make do with what you have or what you can find that's free and clear to
use. House of Moves supplies a wide range of GSM files for male and fe-
male characters both on spec and via their online Diva™ system. Modern
Uprising has BVH files for male and female characters that are available
upon request.

When deciding whether or not the mocap file will work for you, con-
sider these two factors: quality and ability to implement. Quality starts at the
time of the shoot; you are relying on the actor, the director, then on the
company's finished result after the files have been cleaned and fixed.
Having had nothing to do with any of those, the best thing you can do is
to just load the data into a Biped and observe it. It's either good enough
to suit your purposes or it's not. Ability to implement relies on the dura-
tion and loopability of the data, since real-time game characters have to
run, jump, swim, and shoot in endless repetitive loops. To achieve a loop,
there has to be a segment within the motion that has a similar beginning
and end pose (or poses close enough that they can be created).

A run animation is one of the best examples for illustrating the dif-
ference between good and bad mocap data.

A Bad Run Animation

For real-time game characters, most if not all animations occur "in place."
Therefore, the motions you need to use have to be generic enough to
support the motions of the character in the game properly. A run anima-
tion can't bias towards one direction or another. There can be no "lean"
or traces of acceleration or deceleration.

Unless otherwise directed, the frame rate for all animations is the default 3ds max
setting of NTSC or 30fps.

Go to the General rollout menu for Biped and click on the Load File
button. Navigate to the Chapter8 directory on the CD-ROM that came
with this book and load Badrun.bip into your Biped (Figure 8.1 4).

Turn Show Buffer off and switch back to Object display instead of
Bones. Go to the Left viewport and scrub your Time Slider to see the anima-
tion. The angle of the body during the animation goes from being slanted to
the right in the beginning to being slanted to the left toward the end. This
indicates acceleration and deceleration in the motion (Figure 8.15).

306 Animating Real-Time Game Characters

FIGURE8.14 Load a BIP file into your Biped by
clicking on the Load File button and finding the
file.

Velocity (or the lack of velocity) is crucial. When deciding whether or
not you can use a run animation, the first things you should look for are
the looping points. Looping points are the two nearest poses in the ani-
mation that can be joined based on consistent body angle, foot place-
ment, and arm swing. In the case of the mocap file you loaded, the closest
place you could call a start and stop looping point is Frame 0 and Frame
23 (Figure 8.16).

However, as you can tell from Figure 8.16, even though the left foot
is planted and the left arm is at about the right attitude, the body angle is
completely wrong. This bad loop is the result of the actor not having
enough room to get a full run captured. He leans into the motion, takes a
few steps, and immediately has to begin slowing to a stop, thus straight-
ening his body. When considering a motion capture service provider,
take a good look at their available capture space so problems like this
won't occur in the data.

Another reason why this particular mocap file is bad because it's only
29 frames long. Not only should the actor have had more distance to run

FIGURE 8.15 An example of a bad run animation.

Chapter 8 Using Motion Capture 307

FIGURE8.16 Unfortunately, there is no loopable animation here.

in, he should have run for twice the amount of time! When reviewing
data to turn into a run, you need enough of the motion repeated to grab
a "loopable" segment from the captured motion. This means the data
needs to be long enough for you to be able to chop the front and back
pieces off, remove any acceleration or deceleration bias, and still have a
successful segment.

A Good Run Animation

Now go to the Chapter8 directory on the CD-ROM that came with this
book, and load Goodrun.bip into your Biped. Scrub the Time Slider back
and forth to view the animation. Even without pointing to any specific
two frames, it's clear that this data is good enough to contain a solid loop.
The body remains at relatively the same angle throughout the motion,
indicating a constant pace (Figure 8.17).

FIGURE 8.17 This data captured from the middle of the motion sample is an example of a good run.

The consistent posture means there's no apparent bias towards accel-
eration or deceleration. This data is also longer than the previous file, and
at 45 frames in length, is enough to get almost two full loops of the run.

308 Animating Real-Time Game Characters

CREATING A LOOPING RUN
Once you have decided which motion capture file works best, you need
to clip it so it loops perfectly. The first step in doing that is to determine
the length of the loop you need.

Determining the Loop Length

Select all Biped objects (except for the small circular Footsteps object) and
go to Frame 0. Make sure you're in the Left viewport. Zoom in and pan
your scene so the Biped is to the left of the view. Then go up to Tools I
Snapshot (f) and create copies of the selected Biped objects (2) (Fig-
ure 8.18).

FIGURE 8.18 Snapshot the Biped Objects at Frame 0 to make copies of them.

You made a snapshot of the Biped at Frame 0 because you need some
sort of reference pose to determine the length of the loop. Now you need

Chapter 8 Using Motion Capture 309

to group those copied objects together to avoid accidentally selecting
them. Advance the animation a few frames so the Biped moves away
from the snapshot copies. Select those copies, go to the Group pull-down
menu (1) , and group the selected objects together (2), calling them the
default GroupOl (you're going to delete the group later) (Figure 8.19).

FIGURE8.19 Group the snapshot copies together to avoid selecting them later.

Now that you have a snapshot of the first frame of the animation and
it's been grouped for easy selection, you need to activate In Place mode so
you can tell when the loop repeats. Select any part of the original Biped
again, and click on the button in the General rollout menu that looks like
a bulls-eye so it turns purple (Figure 8.20).

This keeps the Biped "in place" at the center of the world as you work
on its motion. It's a great way to view your animations when determin-
ing the quality and usability of the mocap data.

310 Animating Real-Time Game Characters

FIGURE8.20 Put the Biped into In Place
mode so it stays in view as you work.

In Place mode can also be refined to restrict movement to just the X- or Y-axis by
choosing one or the other from the fly-out menu (Figure 8.21).

FIGURE8.21 In Place mode can also

be refined to be just the X- or Y-axis.

Next, advance the animation frame by frame, until you come up with
the first closest match to the snapshot. The nearest frame at which the
snapshot pose is repeated is Frame 26. Since the reference frame is from
Frame 0, this means the loop is approximately 27 frames long (Frames
0-26) (Figure 8.22).

Grabbing the Best Loop Segment

Now that you know the duration of the loop, you need to decide where in
the animation you're going to grab it. While it's always best to try to grab
the usable loop from somewhere in the middle of the mocap file, this is
only true if the data has a full range of the motion. When using data that
you haven't captured or that someone else has altered before you, it 's
best to just audit the motion using your known loop length as a guide.
For example, if Frame 0 to Frame 26 is a complete loop, then it stands to

Chapter 8 Using Motion Capture 311

FIGURE 8.22 The nearest match to the snapshot pose is at Frame 26.

reason that Frame 5 to Frame 31 is a usable loop too. Frame 19 to Frame
45 is the last segment that could be used, as the loop length is consistent
throughout the animation.

There are two ways to determine which is the best loop segment:
matching up the closest loop start and stop pose, trying different Time
Configurations, and playing back the loop candidate. To find the closest
matching pose between beginning and end points of the loop, use the
Current Frame box down beside your Time Configuration button. Delete
the grouped copies of your Biped objects, make sure you're still in the
Left viewport, and make sure that the smooth or faceted shading mode is
active. Double-click on whatever number or frame is being displayed,
type in 36, and hit Enter (Figure 8.23).

Whenever you type a value into the Current Frame box, it remains
selected (blue). This makes it convenient to hover your fingers over your
keyboard and just type in other frame numbers. To find the best match-
ing loop points, therefore, you can just start typing numbers in that are
26 frames apart and easily compare the poses. With Frame 36 active, type
in 10, hit Enter again, and the current frame becomes Frame 10 and the
pose changes. See how it works? Now go down through the animation,
starting back at 0, and type in sets of numbers that represent potential
loop points: 0 and 26, 1 and 27, 2 and 28, and so forth.

312 Animating Real-Time Game Characters

FIGURE8.23 The Current Frame window

displays the current frame, and jumps to a
frame when a value is entered.

Using this method it becomes clear that the best matches are Frames
0 and 26 (A), and 11 and 38 (B) (Figure 8.24).

FIGURE 8.24 Frames 0 and 26 or Frames 11 and 38: Both are close matches.

Why Frame 38 and not Frame 37? Well, sometimes the human body
doesn't like to conform to a convenient frame count. The actor some-
times doesn't run at a consistent pace, either. While Frame 0 and Frame
26 match up nicely, the actor slowed down a little after Frame 26 as he

Chapter 8 Using Motion Capture 313

was running. Even a fractional decrease in speed will add a frame to the
loop. Thus, the first two possible loop points are 26 frames apart and the
second two are 27 frames apart.

To test the usability of these two sets of loop points, you're going to
use Save Segment to isolate the two loop segments. This will make it eas-
ier to see which loop is best. Click on the Save Segment button in the
General rollout menu of Biped (Figure 8.25).

FIGURE 8.25 Use Save Segment to
isolate the potential loops in order
to better test them.

Make sure the Start Frame of the segment is 0 and the End Frame is
26; save the segment as Looptestl.bip (Fig. 8.26).

FIGURE 8.26 Save Segment allows you to specify just the part of the animation that
you want.

314 Animating Real-Time Game Characters

In the Save As dialog menu, notice the option to save a key for every track of every
frame of the animation. This is a nice shortcut to adding keys to a longer anima-

tion, when necessary.

Now, do the same for the second potential loop: The Start Frame is 11
and the End Frame is 38. Save the second segment as Looptest2.bip. Once
you've done that, load Looptestl.bip into your Biped, turn on In Place
mode, and study the animation further.

Comparing the Loop Segments

You next need to decide which loop deserves to be chosen and worked
on further to become a smooth, better animation. Do this by making a few
modifications to each loop and comparing their potential. Change your
Time Configuration to a Start Time of 0 and an End Time of 25 (note that
you don't want to include the last frame, because it is a close match to the
first frame). Then, open Track View and change your Filter settings to
show only animated tracks. Hit Alt-Ctrl-H to hold your scene (just in
case), then select and delete all keys at Frames 25 and 26. Next, copy the
keys at Frame 0 to Frame 26 (Figure 8.27).

FIGURE 8.27 Delete the last two sets of keys and copy the first set to Frame 26.

Play the animation back to check how it looks. Theoretically, copying
the first frame keys to one frame past the end of the loop should produce
a smooth loop. However, stepping through the animation, you can see
there's definitely a hitch at the end, when transitioning from the last

Chapter 8 Using Motion Capture 315

frame of the loop to the first. It seems like the character drops down
slightly at the end of the loop, in a limping motion. This indicates that
there might not be a sufficient number of frames for the left foot's plant-
and-stride motion, which is described in Frames 25, 26, and 1-10. In
comparison, the right foot goes through the same range of motions from
Frame 11 through 24—that's 13 frames for the left foot to travel versus
14 frames for the right foot to travel. The difference between the duration
of motion may be what's causing the hitch. As an experiment (and based
on the longer length of the second loop), try making the loop one frame
longer.

Hit Alt-Ctrl-F to fetch your scene, or simply load Looptestl.bip back
into your Biped. Bring up your Track View again, select all keys, and move
them one frame forward. Then delete the keys at Frame 1 and Frame 26.
Copy the out-of-range keys at Frame 27 to Frame 0 (Figure 8.28).

FIGURE8.28 Try a different approach to making the first segment loop.

Play the animation back and see how it looks. It still has a noticeable
hitch at the loop point because of the posture of the torso as it starts to
straighten slightly at the end of the segment. It isn't perfect, but it is an
improvement over the first loop attempt, and it looks better with the ad-
ditional frame. Next, try the second segment and see if you can make a
better loop out of it. Save the tweaked Looptestl.bip as Looptestla.bip
and load Looptest2.bip into your Biped.

Turn on In Place mode again, change your Time Configuration to a
Start Time of 0 and an End Time of 26, and open Track View. Delete the
keys at Frame 26 and copy the keys at Frame 0 to Frame 27 (Figure 8.29).

316 Animating Real-Time Game Characters

FIGURE 8.29 For the second loop segment, delete the last frame keys and copy the first frame keys to Frame 27.

There's a hitch, but generally, the animation will be easier to work
with because the initial work needed to get a decent loop is less than that
of the first segment. Save it as Looptest2a.bip and you're ready to refine
the loop further.

Doubling the loop

Once you've identified a good segment and roughly adjusted it so it
loops, there's one more thing you can do to improve it using the Motion
Capture Conversion Parameters menu. Click on the Load Motion Cap-
ture File button and load the Biped file you just saved (it will already be
entered and highlighted in the field called File name). Check the small box
beside Loop under Load Frames and enter a value of 1 beside it (Figure
8.30).

Now you've taken the loop you created and tweaked earlier and
you've doubled it. The advantages of doing this are that it gives you more
frames to work with and it gives you the ability to change the start and
end point of the loop to suit the needs of your character. For example,
you may want the animation to start on the right foot instead of the left
as it does now. Or you may want the animation to start mid-stride. Dou-
bling the loop gives you the option to make those sorts of changes.
There's only one minor adjustment you need to make to the new double-
loop.

Because the start and end frame of the original loop were the same,
there are double keys in the middle of the animation. Open Track View,

Chapter 8 Using Motion Capture 317

FIGURE8.30 The Loop option in the Motion Capture Conversion
Parameters menu is a handy tool.

select all the keys at Frame 27 (or 28), and delete them. Then select the
keys to the right of the deleted column and slide them one frame to
the left. Change your Time Configuration to 0 and 54, and play the ani-
mation. Even with the keys at Frame 0 and Frame 54 the same, the
animations play smoothly (Figure 8.31).

Refining the Loop with Layers

To make the loop run even more smoothly, there are a few more refine-
ments you can make to the animation. First, change the first frame of the
loop so that it's more of a launch into the run. That way, when the char-
acter is stopped and then goes into the run, the motion won't be so de-
pendent upon one or the other foot being forward. Do this by making the
Start Time 5 and End Time 31 for the Time Configuration settings.

Next, identify the first area that needs adjustment by looking at the
trajectory of the COM. Click on the In Place mode button to turn it off, and
select the BipOl object. Right-click on it, click on Properties (1), and check
the Trajectory box (2) (Figure 8.32).

318 Animating Real-Time Game Characters

FIGURE 8.31 Finally, a nicely looping run with only minor areas to fix.

FIGURE 8.32 Turn Trajectory on to see the path of the COM.

Now a red, dotted curve appears that corresponds to the position of
the COM as it goes through the animation. Even though the line cuts
back to the beginning at Frame 26, you can still see the peaks and valleys
of the curve. The difference in their heights relative to one another is a
source of one of the problems with the animation (Figure 8.33).

The curve represents the natural up and down motion of the charac-
ter's COM as he goes through the motion of the run. When you play the
animation with In Place mode on, you can sense that towards the end of
the motion the character springs a little higher off his right foot than his

Chapter 8 Using Motion Capture 319

FIGURE 8.33 With the Trajectory displayed, the source of one of the problems with the
loop is revealed.

left foot. The proof of this is in the height of the second peak of the tra-
jectory compared to the first. Also, the first valley of the trajectory at
Frame 0 is lower than the second valley at Frame 13. In order for the an-
imation to be smooth and unobtrusive, the two valleys should be the
same height and the two peaks should be the same height.

You can also see the path of any selected Biped object by turning on the Trajectory
button in the Display rollout menu (Figure 8.34).

The easiest way to correct the problem of varying trajectory heights is
to use a Layer. With the COM still selected, click on the Create Layer but-
ton to add another layer of animation (Figure 8.35).

Before you move the Biped, click the Select and Move icon at the top
of your view to make it active. Then hit the Set Key button at Frame 5
and Frame 27 to keep those positions the same.

Although it's a good habit to have the Animate button on when animating, Set Key
works independent of whether the Animate button is on or not.

Next, go to Frame 8 and raise the COM along the Z-axis until it's
right on the nearby grid line (A). Advance to Frame 14 and lower the

320 Animating Real-Time Game Characters

FIGURE 8.34 The Trajectory button
shows the trajectory or path of any
selected Biped object.

FIGURE8.35 Adding a Layer is
the best way to make major
adjustments to the animation.

COM until it's on the grid line below the one you just used for Frame 8
(B). Finally, go to Frame 21 and lower the COM until it's on the grid l int-
used for Frame 14 (C) (Figure 8.36).

FIGURE 8.36 Move the COM so that the trajectory's peaks and valleys are the same.

Now adjust the feet of the Biped so that they stay firmly on the
ground plane. Add another Layer to the animation by clicking on the
Create Layer button again.

Chapter 8 Using Motion Capture 321

Adding layers on top of each other when making corrections to an animation is
much the same as adding modifiers to the modifier stack. It isn 't mandatory, but in
case you have to go back and delete or alter one of the changes you 've made, it gives
you the ability to delete layers if necessary. This gives you an extra level of protection.

Select the right foot and hit the Set Key button for Frame 11 and
Frame 18. Then, at Frame 13, rotate it and move it along the Z-axis so
that it is perfectly flat on the ground plane. Do the same at Frame 15 (Fig-
ure 8.37).

FIGURE 8.37 The right foot needs to be on the ground plane and be flat when planted.

Select the left foot next, and give it the same treatment. Add a Layer,
look for where you need to apply Set Key to keep the desired part of the
animation, and adjust the rotation and placement. In this case, the only
adjustments are minor. Click on Set Key for Frames 24 and 27, and then
rotate and move the foot flat at Frames 25 and 26.

The last Layer you need to add resolves an issue with the torso
straightening slightly near the end of the animation. Create another
Layer, select the first Spine object, and hit Set Keys for Frames 21 and 29.
Then go to Frame 25 and rotate the Biped Spine -5 degrees along the Z-
axis (Figure 8.38).

Collapse the stack of layers and move to the Front viewport to fix one
last problem (Figure 8.39).

In the Front viewport, step through the animation while watching
the left foot. From Frame 24 to 26, it needs to be moved and slightly ro-
tated so that its inner edge is along the main grid line at 0, 0, 0. There's no
need to use a Layer—just start at Frame 24 and move and rotate the foot
accordingly.

322 Animating Real-Time Game Characters

FIGURE 8.38 Rotate the Spine object to overcome a slight straightening at the end of the
loop.

FIGURE8.39 The Collapse Stack
button compresses all the
animation layers.

When you rotate a Biped object with the Animate button active, you can only do so
using the Local axis coordinate system. When you go to move the Biped object after

rotating it, the coordinate system will also go to the Local coordinate system. If it
does, just change back to the View Coordinate system (Figure 8.40).

Now you can see how your fine-tuning has affected the animation.
While it's a great way to view your animations by keeping the Biped in

Chapter 8 Using Motion Capture 323

FIGURE 8.40 Rotation transforms are
restricted to the Local coordinate
system..

view, just using the default In Place mode doesn't give you an accurate
playback for the animation if you're viewing it anywhere but from a side
view. If you want to more accurately see the animation, put the Biped
back in In Place mode, but this time choose In Place Y mode (Figure 8.41).

FIGURE 8.41 Hold down the fly-
out menu and click on the In
Place Y mode.

Now the character will move slightly from side-to-side as it goes
through the run animation—an important secondary motion to any run
or walk. Change your Time Configuration to an End Time of 32 to get a
smooth playback of the animation (Figure 8.42).

The last step to adjusting the animation is to manually move the
Biped to the origin point. While In Place mode is a great tool to use dur-
ing the review and tweaking stage, it's helpful to manually center the
Biped as a finishing move on your animations for looping motions like a
run or walk. Do this by selecting the COM, turning In Place Y mode off,
and going frame by frame to move the Biped back to 0 along the Y-axis
using the View coordinate system. Of course, the best way to move it is to

324 Animating Real-Time Game Characters

FIGURE 8.42 With the adjustments complete, there's only one more step to finishing the
animation.

bring up your Move Transform Type-In menu and enter 0 for the Ab-
solute: World value (Figure 8.43).

FIGURE 8.43 The Transform Type-In menu
is always useful.

While it's true that bringing up Track View and deleting all the Horizontal keys for
Bip01 will keep the COM at 0, it deletes both X- and Y-axis translation. Since side-
to-side movement in the X-axis is crucial during animations like runs and walks to
simulate balance and weight transferal, manually moving the animation to 0 in
the Y-axis is a preferable solution.

Once you get the Biped moved to 0 for all the frames of the loop, save
the animation using Save Segment. Click on the Active Time Segment but-

Chapter 8 Using Motion Capture 325

ton to the right of Start Frame to automatically set the segment to the cur-
rent animation range. Save the new Biped file as Myrun.bip (Figure 8.44).

FIGURE 8.44 The Active Time Segment button sets the Start
and End frame to match Time Configuration.

As an experiment, try loading Myrun.bip into the Motion Capture
Conversion Parameters menu. Don't use Footstep Extraction, and do use
Key Reduction. Uncheck the Loop checkbox, because you don't need it,
and also uncheck the Body Horizontal, Body Vertical, Body Rotation, Left
Leg, and Right Leg tracks under Key Reduction Settings (Figure 8.45).

Play around with the Tolerance and Minimum Key Spacing values,
and include the Legs and Body in the reduction pass to see if you can
smooth the animation even further.

CREATING A DEATH ANIMATION

Shotdrop.csm is an animation of a character looking down the barrel of a
gun to see why it's jammed. The idea was for a sort of blooper series of
animations for a game project. The idea was never implemented but the
data was still captured. If the first chunk of the data is removed, and
the overall orientation changed, shotdrop.csm has strong potential for
being a great death animation.

Using the Motion Flow Editor to Rotate the Biped

Create a new Biped or keep the one you've been using for the run ani-
mation. Load the Shotdrop.bip file you saved earlier after converting it

326 Animating Real-Time Game Characters

FIGURE8.45 Use the Motion Capture Conversion Parameters menu to optimize the upper
body during the animation.

from a GSM file. If for some reason you don't have it, load the original
Shotdrop.csm file from the Chapters directory on the CD-ROM that came
with this book into the Motion Capture Conversion Parameters menu
and convert it. After you've loaded the file, go to the Front viewport (Fig-
ure 8.46).

There's no rule that says motion capture has to be done in any par-
ticular front, back, or side orientation. It can be at an angle, left, right, or
facing the opposite direction. This particular data was captured facing the
wrong way. One way you can turn him around is to apply a Layer and
rotate the COM so that the character faces forward. However, using Mo-
tion Flow mode offers a better way.

Chapter 8 Using Motion Capture 327

With the Biped selected, go to the General rollout menu for Biped
and click on the Motion Flow mode button (the one with the curvy, Z-
shaped icon) found to the right of the Footsteps button (Figure 8.47).

FIGURE8.47 Using the Motion Flow Editor is a
quick way to reorient motion capture data.

Nothing really happens when you click on the Motion Flow Editor
button—you have to first input mocap files into the editor using Motion
Flow Graph and Motion Flow Script. Think of the Motion Flow Editor as
a separate program within character studio. It gives you the ability to
combine and alter BIP files to create longer (or just different) animations.
To use the Motion Flow Editor, you first have to click on the Show Graph
button in the Motion Flow rollout menu (Figure 8.48).

FIGURE 8.46 Obviously somebody is facing the wrong way.

328 Animating Real-Time Game Characters

FIGURE 8.48 The first step in using
the Motion Flow Editor is clicking the
Show Graph button.

This brings up the Motion Flow Graph window. Click the
Clip button active and then click once anywhere in the background space
of the window with the funny-looking arrow cursor (Figure 8.49).

FIGURE8.49 The Motion Flow Graph is where the motion clips are
created.

After you've placed clipl in the window of the Motion Flow Graph,
open the Motion Flow Script rollout menu, and click on the Define Script
button (Figure 8.50).

After you click on the Define Script button, character studio waits for
you to tell it which clips to enter into the list of clips that are defined by
the Motion Flow Script. Click once on the clip1 script you created in the
Motion Flow Graph. It turns red to show it's been added to the Motion
Flow Script and the script itself now has an entry (Figure 8.51).

Create

Chapter 8 Using Motion Capture 329

FIGURE8.50 The Define Script button
allows you to establish a connection
between motion clips.

FIGURE8.51 Clicking on clipl in the
Motion Flow Graph enters it into the
Motion Flow Script.

Now right-click twice on the red clipl; this will bring up the clipl di-
alog so you can load a biped file into it. Notice that the Define Script but-
ton goes off. This happens because you've effectively told character
studio you're through defining the script (Figure 8.52).

FIGURE8.52 Right-click on the motion clip
icon to load a BIP file into it.

Click on the Browse . . . button and choose Shotdrop.csm from the
Chapter8 directory on this book's CD-ROM. Click OK and close the Mo-
tion Flow Graph.

Loading a file into the Motion Flow Editor has no effect whatsoever on the current
animation loaded into your Biped. If you turn Motion Flow Editor off, it keeps all

330 Animating Real-Time Game Characters

settings and files loaded until you return, even if you save your 3ds max scene and
exit the program. The next time you load that file, you 'll find that the data in Mo-

tion Flow are still there.

Now let's do what you came here to do: rotate the orientation of the
data to face forward. Go over to the Motion Flow Script rollout menu and
enter 200 in the Start Rotation field (Figure 8.53).

FIGURE 8.53 Entering 200 in the Start
Rotation field rotates the character 200
degrees along the Z-axis.

This rotates the orientation along one axis—the Z-axis. The character
is now facing front. Scrub the Time Slider to make sure the re-orientation
is correct, and then save the altered BIP file by clicking on Save Segment.
Click on the Active Time Segment button to change the Start and End
frame. Then, since you're only interested in the part of the animation
where the character falls down, enter a value of 110 for Start Frame. Call
the new animation Deathanim.bip (Figure 8.54).

Quit out of Motion Flow mode by clicking on the Motion Flow mode
button again, and load the newly rotated Shotdrop.bip into your Biped
by clicking on the Load File button in the General rollout menu (Fig-
ure 8.55).

There are many more reasons to use the Motion Flow Editor and there
is much more functionality to it than illustrated here. It will be covered
more fully in the next chapter when you learn how to combine a series of
animations to create an animation set. For now, it's enough to know how
to use Motion Flow Editor to do a simple rotation re-orientation.

Chapter 8 Using Motion Capture 331

FIGURE 8.54 Animation created in the Motion Flow Editor can
only be saved as individual BIP files using Save Segment.

FIGURE 8.55 Now the Biped is facing the right way, ready to die correctly.

Adding Secondary Motion with Layers

When you loaded Deathanim.bip into your Biped, the file reflected the
segment that was saved in the Motion Flow Editor. Open Track View and

332 Animating Real-Time Game Characters

slide all the keyframes over so the animation begins at Frame 0 (Fig-
ure 8.56).

FIGURE8.56 Saving the animation in the Motion Flow Editor requires a little key-tweaking.

Change your Time Configuration to end at Frame 100, and add a
Layer using the Create Layer button in the Layers rollout menu. Turn on
the Animate button, select all the Biped Spine objects, and apply Set Key
for them at Frames 0, 10, and 54. Since this is a death animation, you
need to exaggerate the impact of whatever has inflicted the killing blow.
Go to Frame 5 and rotate the selected Spine objects 8 degrees along the Z-
axis. This will make the jerking motion of being hit more noticeable (Fig-
ure 8.57).

Setting the keyframes at 0 and 10 ensures the animation is still the
same at those frames while changing just from Frame 1 to Frame 9. If you
scrub back and forth through the animation at the point where the Biped
hits the ground, you'll notice the actor's left hand reaches down to break
his fall. This sort of performance glitch is why it's important to find great
talent when capturing the data. During the mocap session, the director
should have noticed the character reaching back and corrected the per-
formance. Still, it's an easy problem to fix. Go to Frame 50 and rotate the
Spine objects about -10 degrees along the X-axis, away from the fall (Fig-
ure 8.58).

Now, select the Head object and apply Set Keys at Frames 0, 10, 30,
and 50. Then go to Frame 5, and rotate the Head 50 degrees along the Z-
axis so that it rolls forward with the impact of being hit. Then go to Frame
20, and rotate the head forward 40 degrees to make it seem like the

Chapter 8 Using Motion Capture 333

FIGURE 8.57 Rotate the torso back to emphasize the motion of being hit by something.

FIGURE 8.58 Twist the Spine objects to begin lessening the anticipation of the fall.

334 Animating Real-Time Game Characters

character is facing his attacker with some sort of disbelieving look. Rotate
the head about 35 degrees at Frame 45 to give a lull to the head as the
character falls back, making the impact with the ground a few frames
later even more pronounced (Figure 8.59).

FIGURE 8.59 Extra head motion emphasizes the impact of being hit and hitting the ground.

With the torso and head adjusted, you now need to correct the left
arm movement so it doesn't reach back to break the fall. Select BipOl L
UpperArm, and apply Set Keys at Frames 0 and 55. Go next to Frame 45
and rotate the left arm -120 degrees along the Z-axis, and then go to
Frame 50 and rotate it -35 degrees along the Z-axis as well (Fig-
ure 8.60).

Finally, fix the right leg so it doesn't stay planted during the end of
the fall. Otherwise, it makes the fall seem staged. Select BipOl R Calf, and
Set Keys for it at Frames 35 and 65. Go to Frame 50 and rotate the calf
and foot until they're pointing out and up, as if the leg had given out
sooner during the fall backward (Figure 8.61).

Those minor adjustments make the fall seem more exaggerated and
forceful. They remove the deficiencies of the performance and make the
fall seem more realistic. Now you need to adjust the velocity of the fall
near the ground plane to make the fall seem even more dynamic. Play
the animation back to see how it looks. Compare the changes you've
made to the original animation by clicking on the Previous Layer button
and viewing the unedited version (Figure 8.62).

Chapter 8 Using Motion Capture 335

FIGURE 8.60 Rotate the arm to make the fall seem less anticipated.

FIGURE 8.61 Untucking the leg and making it kick out improves the effect of the fall.

336 Animating Real-Time Game Characters

FIGURE 8.62 View the difference the Layer makes
by clicking on the Previous Layer button.

Click the Next Layer button (the arrow pointing upward) to return to
the animation layer, and collapse it. Save the BIP file as Deathanim2.bip,
and move on to the last step in making the mocap into an effective death
animation.

Deleting Frames to Increase Impact Effect

So far, the changes you've made to the animation have made it seem less
staged and more dramatic. Another trick to give the animation more im-
pact is to delete specific frames, with the purpose of accelerating move-
ments so they seem more abrupt. This technique is particularly effective
with motion capture files since there is typically a key set for every frame
of every animation track.

Start with the initial impact of the hit the character takes. Open Track
View and delete Frames 1, 2, and 4. Then close the gap created by the
deleted keyframes by selecting and moving them to the left (Figure 8.63).

Play the animation back to see the effects of removing the keys. Next,
you need to give the same treatment to the point at which the character
hits the ground. Go to the Track View again, and select and delete the col-
umn of keys at Frames 40, 44, 47, 49, and 50 (Figure 8.64).

Before closing the gaps left by these deleted keys, study the spacing
between the selected columns. By deleting keys, you've effectively in-
creased the acceleration of the body falling as it hits the ground. Two
frames are removed at the point of impact, one frame is removed two
frames before that, one frame is removed three frames before that and fi-
nally, one from is removed four frames before that. Deleting Frames 49
and 50 adds the perfect "jarring" effect to the motion. The other keys

Chapter 8 Using Motion Capture 337

FIGURE 8.63 Deleting the keys and closing the gaps makes the initial impact more abrupt.

FIGURE 8.64 Select and delete the keys near the impact with the ground to increase the effect.

deleted prior to 49 are to simply incrementally increase the speed of the
fall towards the end of the motion.

Close the gaps left by the deletions and play the animation back to
see the results (Figure 8.65).

Hopefully this exercise has given you ideas for giving more punch not
only to your death animations but also to your jump landings, hits, and
any other animations requiring some sort of impact.

REPURPOSING A MOCAP FILE

Motion capture data often come in handy for reasons other than those
for which they were intended. Combined with keyframe animation, even

338 Animating Real-Time Game Characters

FIGURE8.65 You can almost hear the jarring impact of the character hitting the floor.

the most unlikely data can be turned into something useful and interest-
ing. To illustrate this re-purposing of mocap data, you're going to be giv-
ing Betty a special firing animation for her most powerful weapon mode,
the railgun. To emphasize to the viewer just how much of a wallop this
gun mode packs, Betty needs to exhibit a huge knock-back and recovery
when she fires the gun. To get this sort of motion, you're going to use an
animation of a character being hit, along with some manual keyframing.

Start by loading Bettyl3.max from the Chapter8 directory on the CD-
ROM that came with this book (Figure 8.66).

Copying Posture

The pose that Betty's in is created to support a game design element lor
the weapon type she's firing. Whenever she uses the railgun, she has to
wait a few seconds while the weapon charges. Once it's at ful l power, she
fires and goes through the animation you're about to create. So how are
you going to transfer the getting-hit animation into the current Betty
Biped without losing the current pose? Easy. The fact that it's just a pose
makes your job easy. Select the COM (Betty) Biped object, make the
Select and Move button the active transform button, and right-click on it
to bring up the Move Transform Tvpe-in menu (Fisure 8.67).

Now make the
Biped objects. Then, go to the Keyframing rollout menu and click on

Select and Rotate button active, and select all

Chapter 8 Using Motion Capture 339

FIGURE 8.66 Betty is back and ready to .. .shoot something.

FIGURE 8.67 Keep these nui
them soon.

landy—you'll need

the
the pose buffer.

When copying postures into the pose buffer, the type of data recorded depends on
which transform button is current, and also on which axis of movement is current.
When you are copying whole Biped poses and you have to decide between the Body
Horizontal, Body Vertical, and Body Rotate animation tracks for the COM, choose
Body Rotate. Also, choose Body Rotate before selecting all Biped objects. Otherwise,
selecting a track manually will cause all objects to be unselected (Figure 8.68).

Copy Posture button to temporarily store Betty's current pose in

340 Animating Real-Time Game Characters

FIGURE 8.68 If there has to be just one track
for the COM, choose Body Rotate.

Loading the Getting-Hit Animation

Click on the Load File button in the General rollout menu, go to the
Chapter8 directory on the CD-ROM that came with this book, and load
Whacked.bip into Betty's Biped. Then, to remove the excess keyframes
you won't need for the animation, you need to open Track View, then se-
lect and delete all keys from Frame 0 to Frame 69 and from Frame 120 to
135 (Figure 8.69).

FIGURE8.69 Trim the getting-hit animation down by deleting the first 69 frames.

Deleting large numbers of keyframes in Track View can sometimes create a huge
drain on your computer's processor and bring 3ds max to a crawl. An alternative
to deleting keyframes is to save the portion of the animation you want to keep by
using Save Segment.

Chapter 8 Using Motion Capture 341

Paste Pose/Posture/Track

Go to Frame 0, turn the Animate button on, make sure all the Biped ob-
jects are still selected, and hit the
The pose you stored before will now put Betty back into her pre-shoot
stance (Figure 8.70).

FIGURE 8.70 Betty resumes her gun-ready stance after you paste in the stored pose.

Select just the COM (Betty). Pasting the stored posture back into
Betty unfortunately doesn't move her back to where she was when you
copied the pose. Only the rotation animation track for her COM was
copied over, so you're going to have to manually move her back into
position.

Moving the COM

Bring up the Move Type-In Transform menu, and with the proper axes
active, use the X-, Y- and Z-axis coordinates from Figure 8.67 to re-
position Betty (Figure 8.71).

When you are positioning a character's COM, but nothing happens when you
enter a value into the Move Type-In Transform menu, click either the Body Verti-
cal or the Body Horizontal button and try again.

Paste Posture/Pose/Track button.

342 Animating Real-Time Game Characters

FIGURE 8.71 Using the coordinates you noted earlier, move Betty back into position.

Now, bring up Track View and copy the column of keys at Frame 0 to
Frames 1,9, 10, and 30. This creates the "animation" that will be used for
the gun-charging portion of the firing sequence, and it also keeps any
Continuity drift out of the motion (Figure 8.72).

FIGURE 8.72 Copy keys to create the "animation" that will be used as the gun charges.

Chapter 8 Using Motion Capture 343

There's no need to really animate the character for this "build-up"
state, because the duration of it is variable—a pose is all that's required.
The keys copied to Frame 30 are for the next step in the firing animation.

Creating the Firing Motion

With the pose copied, you now need to make the actual gun-firing ani-
mation. Close Track View, then select and freeze all the Betty mesh ob-
jects. Go to a Left viewport, change your Time Configuration to a Start
Time of 30, and click the Animate button so it is red and active. You
should automatically be at Frame 30 when you change the Start Time; if
not, go to that frame. Next, alternately select each foot and lock it down
using the Set Planted Key (in the IK Key Info rollout menu). Uncheck the
Join to Prev IK Key checkbox as you lock each foot (Figure 8.73).

FIGURE 8.73 Lock down each foot at Frame

30, unchecking the Join to Prev IK Key box.

Open Track View again, and copy the column of keys at Frame 30 to
Frame 35. Go to Frame 35 and create a pose for Betty that shows her just
after the gun initially goes off. As you do so, picture yourself holding the
gun out like Betty is now and then BOOM! It goes off and rocks your en-
tire left side back. The knock-back would drive your hand back, twist
your body to the left, and rock your head forward and down. When you
pose Betty's left gun arm, try to keep it pointing forward as it goes back,
and bring her left hand forward as if she's using it to catch her balance
(Figure 8.74).

344 Animating Real-Time Game Characters

FIGURE 8.74 Betty rocks back with the force of the gun going off.

Moving the Recoil Closer

With the shot having been fired, you can now put to use the animation
you loaded into the Biped earlier. However, first you need to select the
feet and snapshot them for reference for when you move the recoil ani-
mation closer to the firing animation (both in terms of time and in the
scene itself). Go to wireframe mode, select the feet, choose Snapshot from
the Tools dropdown menu (1), and then hit OK when the Snapshot menu
pops up (2) (Figure 8.75).

Change the Time Configuration to an End Time of 110 and open
Track View. Select and move all the keys that make up the getting-hit an-
imation to the left so they start at Frame 40. Then select the column of
keys at Frame 30 and copy them to Frame 100 (Figure 8.76).

Play the animation back to see how it looks. During the getting-hit
animation, the character is off the ground and a little too far to the right.
You need to reposition her so everything matches up with the beginning
and end pose.

Aligning the Right Foot by Moving the COM

Go to the Layers rollout menu and click the
to make a new Layer. Switch to the Front viewport, turn the Animate

Create Layer button

Chapter 8 Using Motion Capture 345

FIGURE 8.75 Snapshot the feet to use as a reference for the recoil positioning.

FIGURE 8.76 Move the "recoil" keys closer to the point where Betty fires the gun.

346 Animating Real-Time Game Characters

button on, and select COM (Betty). Make sure the Select and Move but-
ton is the active transform button, and apply Set Keys for the COM at
Frames 35 and 100. You want the motion to remain the same before and
after the recoil. Now, go to Frame 40 and move the COM so that the feet
line up with the snapshots you took earlier. Concentrate on matching the
green right foot instead of the blue left (the weight is on the right foot
when the character goes back) (Figure 8.77).

FIGURE 8.77 Move the COM until the right foot becomes aligned with the right foot's
snapshot reference.

There's no way to manually select both Body Horizontal and Body Vertical buttons
in the Track Selection rollout menu at the same time. You either dick one button or
the other. However, if you click on the Restrict to ZX or Restrict to YZ buttons, then
Body Horizontal and Body Vertical both become selected, allowing you to set a key
for both animation tracks simultaneously (Figure 8.78).

If you use the Axis Tripod for your X-, Y-, and Z-axis selection/trans-
lation, a key can be set for both tracks; simply move the COM using the
corner selection icon as you move it in two axes simultaneously (Figure
8.79).

Next, while still in the Front viewport, go to Frame 90 and again
move the COM until Betty's right foot lines up with the right foot's snap-
shot reference (Figure 8.80).

Chapter 8 Using Motion Capture 347

FIGURE 8.78 Using the Restrict to ZX or Restrict to YZ buttons,
you can set keys for both Body Horizontal and Body Vertical
animation tracks for the COM.

FIGURE 8.79 By using the Axis Tripod and moving the COM via
the corner selection icon, you can set keys in both Body
Horizontal and Body Vertical tracks.

Now, scrub the animation back and forth between Frames 40 and 60.
The character bounces around a little, starting from Frame 45 and ending
at Frame 53. Go to Frame 45 and move the COM until the right foot once
again lines up with the reference. Then go to Frame 53 and do the same
thing. Scrub the animation back and forth, and wherever you see the foot
deviate from the reference, move the COM until the foot lines up during
the entire animation. Ignore the foot position at Frames 36-39 because
you're going to move the foot instead of the COM to line it up for those
frames. Move the COM at Frame 95 to align the feet, but ignore Frames
91 to 94 and 96 to 99 for the same reason.

Go through the animation in the Right viewport as well, moving
the COM at each frame where the foot doesn't line up, taking into

348 Animating Real-Time Game Characters

FIGURE 8.80 Move the COM over at Frame 90 until the right foot matches upas well.

consideration the bouncing motion from Frame 45 to 55 (just move the
COM along the Y-axis) (Figure 8.81).

Don't worry if the positioning isn't exact. The main point here is that
you massage the getting-hit motion via a Layer to get the feet in the right
position by first moving the COM. Don't worry about the foot going
through the floor for now.

Don 't attempt to use Set Planted Key in a Layer — wait until the layers have been
collapsed. Try it sometime and you 'II quickly see why. The foot and leg will just do
weird things.

Adjusting the Upper Body

With the overall position of the character aligned correctly, you need to
adjust the torso, arms, and head to better fit the idea of firing a weapon.
Currently, the hands come up to the face after being hit, and the torso
and head are turned too far to the right. Select the Spine objects, arms,
and head and apply Set Keys for them at Frames 35 and 100. Then ad-
vance to Frame 40, and pose the upper body so it's facing forward more

Chapter 8 Using Motion Capture 349

FIGURE 8.81 Move the COM in the Right viewport as well, so the foot lines up properly.

and so it fits the action of having just shot the weapon (instead of having
been hit). Rotate all the Spine objects, the arms, and the head. Don't for-
get to involve the clavicles, too. They're a very important and often over-
looked part of the arm that is crucial in imparting the motion of the arm
(Figure 8.82).

Then, to complete the feeling that she's immediately looking to get
back to her default position to fire the weapon again, go to Frame 0 and
rotate the upper body so the body is facing a little bit forward; the spine
should also be bent more along the Y-axis as she struggles to get her
balance back. Rotate her head so it faces forward and slightly down (Fig-
ure 8.83).

Finally, go back to Frame 45 and rotate the head down so it faces for-
ward. The head will always beat the body to recovery like this because
the eyes are always looking forward or at the target. Scrub through the

350 Animating Real-Time Game Characters

FIGURE 8.82 Rotate the head, spine, and arms so Betty is facing forward more.

FIGURE 8.83 Pose the upper body so Betty starts to regain her balance for another shot.

Chapter 8 Using Motion Capture 351

animation and adjust the head so that it's always facing somewhat for-
ward (Figure 8.84).

FIGURE 8.84 The head will always try to face forward so the eyes can see the target.

Once the head adjustments are finished, collapse the Layer, and fix
the feet where they go through the floor in Frames 35 to 40.

Making Adjustments with the Set Multiple Keys Function

While Layers are one way to make adjustments to a mocap file to bend it
to your needs,
and select all keys for just the Betty R Thigh track from Frame 40 to 89
(Figure 8.85).

With the keyframes selected, close the Track View, go to a Front
viewport, and advance to Frame 59. Zoom in on the right foot and look at
the way it's bent along the Z-axis (Figure 8.86).

Set Multiple Keys is another way. Open Track View

352 Animating Real-Time Game Characters

FIGURE 8.85 Select just the keys for the right thigh of the appended got-hit motion.

FIGURE 8.86 The right foot is rotated throughout the animation due to floor matting.

If you study the animation, the foot is at an unnatural angle because
of the soft floor pad that the motion was performed upon. You can
quickly and easily fix this problem using Set Multiple Keys.

Chapter 8 Using Motion Capture 353

Turn the Animate button off, and select and rotate the foot along the
Z-axis until it's flat on the floor (1) . Then, click on the Set Multiple Keys
in the Keyframing rollout menu (2), and the Biped Multiple Keys menu
will appear. Click on the Apply Increment button (3), and the rotation is
applied across all selected keys in the Track View (Figure 8.87).

wwwwraw?* „ i
FIGURE8.87 Use Set Multiple Keys to have a transform function affect a specific number of keys.

Whenever you use Set Multiple Keys and Apply Increments, the immediate results

sometimes seem to stretch or deform the geometry. See if the Apply Increments
worked by scrubbing your Time Slider back and forth or hitting the period (.) key
and comma (,) key a few times. Also, remember you have to rotate or move the se-

lected object along one axis at a time, and hit Set Multiple Keys and Apply Incre-
ments before moving on to another axis or transform type. In other words, you can't
do a series of moves and rotates, then hit Set Multiple Keys, and expect them all to

work.

Play the animation back to see if there are other areas to fine-tune.
Experiment with deleting keys for the arms, spine, and head at different
places during the animation to make the motions smoother. That wraps
up turning Betty getting hit into Betty recoiling from a punch into Betty
recovering from a lot of kick from her gun (Figure 8.88).

354 Animating Real-Time Game Characters

FIGURE8.88 Betty's gun has got one heckuva kick.

SUMMARY
There are three types of motion capture files you can use with character
studio and 3ds max: CSM, BVH, or BIP. The first two are more for the
motion capture professional who needs access to marker data and other
calibration elements. As an animator, you mainly just need to know how
to convert CSM and BVH files to BIP files in character studio. This is done
through the Motion Capture Conversion Parameters menu accessed in
the Motion Capture rollout menu. It's in this menu that you can reduce
the number of keys that make up a mocap file (keys are set for every
frame of every animation track) or generate a loop by simply repeating
the data.

When it comes to working with mocap files, it's always best to do a
capture for every project for which you need the motions recorded. How-
ever, time and money sometimes make it necessary to hunt down or buy
stock motion capture data and adjust it to fit your needs. When consider-

Chapter 8 Using Motion Capture 355

ing which mocap file to use, study the data and look at the quality of the
motion and the usability of it. Will it fit with the character and can it be
easily and quickly modified? A good way to illustrate what factors to look
for in a mocap file is to compare good and bad run animations. A good
run animation has no trace of the initial acceleration into the motion or
of the deceleration as the character comes to a stop.

You can add or remove frames in a motion capture file to exaggerate
and emphasize physical forces like centrifugal force and impact. Applying
Layers in character studio gives you the ability to alter and adjust your
mocap data as you see fit.

Motion capture files can be used for many purposes. Don't think in-
side the box and use the data only as it was intended. Instead, experiment
with combinations of motion capture data to come up with something
entirely different.

PUTTING IT ALL TOGETHER

357

358 Animating Real-Time Game Characters

MOTION FLOW MODE

You might have noticed that in Chapter 8 you didn't establish a
Frame 0 pose. When working with motion capture, it's best to mas-
sage the data into what you need and save it as an individual BIP

file. As you go through the process and create a number of files, Motion
Flow mode allows you to string the files together, either on top of Frame
0 or by adding them into the grouped motion clips later. Finally, when all
your motions have been strung together and your required animation set
is complete, you will need to export the motions with your character into
a format that can be used by the game engine.

Made to create transitions between motions and to reorient motion files
as required, the Motion Flow Editor is perfect for linking all the separate
animations you create; it completes the animation folder analogy. Whi le
there are many useful features in Motion Flow mode, in this chapter
you'll be sticking to just the process of stitching your animation set
together.

Preparing an Animation for Motion Flow

There are three things you need to look for or correct in a motion clip be-
fore bringing it into the Motion Flow Editor. First, the first column of keys
needs to start at Frame 0. Even if there isn't any animation from Frame 0
to Frame 50 for some reason, the first column of keys set for all Biped ob-
jects as seen in the Track View needs to be at Frame 0. If not, when you
bring the clip into Motion Flow, the transitions and segment length of t he
animation could be wrong. Load Betty15.max from the Chapter9 direc-
tory on the CD-ROM that came with this book (Figure 9.1).

Bring up the Track View and you'll see that the keys are off to the
right instead of starting at Frame 0. This sometimes occurs when you save
a segment instead of just saving the whole BIP file (especially if in Motion
Flow). Select all the keys and slide them over so the first column is on
Frame 0 (Figure 9.2).

Second, you need to make sure there are keys at the last frame of the
animation, making it a completely closed motion clip. As you string the
animations together, they therefore don't affect one another. In the case
of Betty's kick animation that you've loaded, copy the first set of
keyframes to the end (Figure 9.3).

The third and last thing you need to do is add an extra column of
keys at the end of the motion clip. When a motion clip is brought into the

Chapter 9 Putting It Al l Together 359

FIGURE 9.1 Betty is ready to get all her moves together.

FIGURE9.2 Slide the keys over so the first column starts at Frame 0.

Motion Flow Editor, its last frame is "eaten" when another motion clip is
tacked onto the end of it. This happens even if there's no transition de-
fined. 3ds max and character studio just assume the last frame is either a
duplicate of the first (for loops) or is expendable in the transition. Select
and drag the last column of keys one frame over to create a "cushion" of
keyframes (Figure 9.4).

Note that motion clips don't have to be just one animation. When
you keyframed Betty's idle, shooting, and swimming animations earlier
in the book, the resulting file was pretty big; it is an excellent choice for
being the first motion clip because of the inclusion of Frame 0 in the

360 Animating Real-Time Game Characters

FIGURE 9.3 "Close" the motion dip so it isn't accidentally altered by another motion added
to the end of it.

FIGURE9.4 Add an extra column of keys at the end of the motion clip to serve as a buffer that can get
absorbed by the succeeding clip in Motion Flow.

default pose. A motion clip can contain more than one motion, and since
you've gone to all the trouble to add time tags to the file, it's an even bet-
ter reason to make it Clipl.

Get some practice making sure your clip is ready to be brought into
Motion Flow by loading Betty12.max again from the Chapter7 directory
on this book's CD-ROM; add a frame to the end of all those keyframes
(Figure 9.5).

Chapter 9 Putting It All Together 361

FIGURE9.5 Make all the animations you created for Betty the first motion clip you'll bring into the Motion Flow
Editor.

Once you copy the keys at the end, save the file as betty_clip01.bip.
Now that you know how the clips need to be prepared, you can create
your animations set using Motion Flow.

Creating the Motion Flow Script

To string all your animations together, you have to create a motion flow
script, specifying the order in which the animations are linked and any
transitions or re-orientations that need to be done. Creating this script al-
ways involves the same process, so, still using Betty 12.max as an exam-
ple, perform the following steps:

1. Select any Biped object.
2. Click the Motion Flow Mode button to make it active (purple) (Fig-

ure 9.6).

362 Animating Real-Time Game Characters

FIGURE 9.6 Creating a motion flow script begins by being in Motion Flow mode.

3. Click the Show Graph button to make it active.
4. Make the Create Clip button active in the window called Motion

Flow Graph: Betty.
5. Enter as many clip boxes as you need (enter eight for Betty) (Figure

9.7).

FIGURE 9.7 Create the Motion Flow Graph.

Chapter 9 Putting It All Together 363

Arrange the motion clips in a way that makes it easy to link them all together. Usu-
ally a stair-step configuration is best, but any system you devise will work. To move
the clips around, you first have to click the Move Clip button to make it active (Fig-
ure 9.8).

FIGURE9.8 Arrange your motion clips by activating
the Move Clip button and positioning the clips.

6. Right-click on the empty motion clip boxes.
7. Browse for the right motion clips.
8. Load the motion file into each clip box. Load the betty_*.bips files

from the Chapter9 directory on this book's CD-ROM in the following
order (Figure 9.9):

FIGURE 9.9 Load the motion clips into the Motion Flow Graph.

a. betty_clip01
b. betty_bigshot

364 Animating Real-Time Game Characters

c. betty_kick
d. betty_death
e. betty_recovery
f. bettyjog
g. betty_backpedal
h. betty_specials

9. Once all the motions are loaded, open the Motion Flow Script rollout
menu.

10. Click the Define Script button to make it active.
11. Choose the Create new script box and hit OK (Figure 9.10).

FIGURE 9.10 Create a new Motion Flow
Script.

12. Click on each clip box in the order in which you want them strung
together. For Betty, click on the motion clips in the following order
(Figure 9.11):
a. betty_clip01
b. betty_bigshot
c. betty_kick
d. betty_death
e. betty_recovery
f. bettyjog
g. betty_backpedal
h. betty_specials

13. Close the graph window and click on a clip name in the script to the
right so that it's highlighted (blue).

Chapter 9 Putting It All Together 365

FIGURE 9.11 Click on each clip in order to specify the order in which they're
played in the script.

14. Click on the Edit Transition button.
15. Edit the transition parameters (Figure 9.12).

FIGURE 9.12 Define the Motion Flow Script and adjust the
transitions between clips.

366 Animating Real-Time Game Characters

Adjusting Transition Length between Motion Clips

With your script defined and your motions entered, you now need to get
rid of any transitions between motion cfips. Close the Motion Flow Graph
window and bring up the transition parameters for the first script entry
(Steps 13 through 15 in our earlier list). Enter a transition Length of 0
and change the Start Frame value for the next clip to 731 (Figure 9.13).

FIGURE 9.13 Adjust the Length and Start Frame values to remove
any transition between clips.

The red stick figure you see when opening the transition parameters menu repre-
sents the destination motion and is only important when you 're creating a transi-
tion to the next motion clip. A yellow stick figure, representing the source clip,
allows you to scrub the Time Slider back and forth, comparing the relative positions
of the character during the transition.

The value you use for the Start Frame is easy to calculate: Enter the
number to the far right of the Source Clip (just above the Start Frame
box). After you've changed the two values, click on the Next Transition
in Script button, advance to the next animation clip, and change Length
and Start Frame accordingly (Figure 9.14).

Rotating Motion Clips

Once you've removed any sort of transition that occurs between the mo-
tion clips, the next thing to look for is the orientation of the clips. Each
successive clip starts at the end of the clip before it, and the rotation of the

Chapter 9 Putting It All Together 367

FIGURE9.14 Cycle through all the transitions in a
script by clicking on the Next Transition in Script
button.

COM is relative. This means you sometimes need to rotate the animation
clip using the same method you used earlier to rotate an entire motion.
Go to Frame 731 and look at Betty in the Top and Front viewports (Fig-
ure 9.15).

FIGURE 9.15 The second clip is rotated incorrectly.

Go back to the transition parameters menu for the first motion clip
entry in the script, and enter 40 in the Angle box (Figure 9.16).

It usually takes some trial and error to dial in the correct angle when rotating mo-
tion clips using the transition menu.

As you enter values in the Angle box, the character rotates accord-
ingly (Figure 9.17).

368 Animating Real-Time Game Characters

FIGURE 9.16 Entering a value in the Angle box rotates the next
animation clip.

FIGURE 9.17 Rotating the motions after the first clip by 40 degrees corrects the second clip.

You'll notice that the transition menu settings affect the next motion
clip in the script. Keep in mind, however, that all the motion clips follow-
ing the first motion clip in the script are rotated 40 degrees, because the
orientation of each clip is relative to the one preceding it.

Now you need to check the other motion clips and make sure they're
oriented properly. With the transition parameter menu still open, click
the
tion clip.

Next Transition in Script button again to take you to the next mo-

Chapter 9 Putting It All Together 369

You can advance to the first frame of each animation in the script by highlighting
a particular motion dip and clicking on the
Motion Flow Script rollout menu.

The next transition, from betty_bigshot to betty_kick, needs a little
bit of rotation so that Betty's head is facing forward instead of at an angle
(Figure 9.18).

FIGURE 9.18 Enter a value of-8 in the Angle box to correct the orientation of the third clip.

When entering values in the Angle box to rotate motion dips, a positive number
will rotate the character clockwise and a negative number will rotate it counter-
clockwise.

Go to the next transition and scrub the Time Slider to play the death
animation. It's more or less oriented correctly because Betty falls rela-
tively straight back, perpendicular to a side view. The next transition
needs to be corrected, though. Betty_death to betty_recovery needs an
Angle value of -58 degrees added to the transition so that she falls
straight back and returns to her feet facing forward (Figure 9.19).

Don't worry about the relative height being off. You can fix it using a
Layer once you finish all the transitions, save the BIP, and re-load it into
the Biped. Advance to the next transition. Even though it may go unno-
ticed, Betty's head is rotated a little bit too far, so the entire animation
needs to be rotated 5 degrees to make her head face forward (Figure
9.20).

For the next transition, scrub the animation back and forth, watching
it in the Front viewport. Even though Betty's head isn't facing forward,
her feet and body placement suggest an angle correction of -10 degrees
will be enough to line her up properly (Figure 9.21).

Go To Frame button found in the

370 Animating Real-Time Game Characters

FIGURE9.19 The fourth transition in the script needs to have a -58 degree angle applied.

FIGURE9.20 Betty's head needs to be rotated 5 degrees.

FIGURE 9.21 The backpedal needs to be adjusted so Betty is facing forward more.

Chapter 9 Putting It All Together 371

The last motion clip is made up of several animations, like
betty_clip01. Go to Frame 1082, where the character faces somewhat for-
ward in the Front viewport. You can see that the motion needs to be ro-
tated about another -f 0 degrees to line the clip up correctly (Figure 9.22).

FIGURE 9.22 The last transition needs -10 degrees applied to it as well.

The last motion clip doesn't give you the option of adjusting the transi-
tion, precisely because it is last and has nothing to transition to. With the
transitions tweaked, the animations are ready to be saved and re-loaded
into the Biped. Click on the
menu. Click on the Active Time Segment button to get the correct anima-
tion range, and uncheck the Generate a Keyframe per Frame box in order to
avoid adding needless keyframes. Call the new BIP betty_01 (Figure 9.23).

FIGURE 9.23 Make sure to uncheck the Generate a Keyframe per
Frame button to avoid adding needless keyframes.

Save Segment button in the General rollout

372 Animating Real-Time Game Characters

Clicking on the Motion Flow Mode button to turn it off drops you
back into normal character studio mode. Hit the $1 Load File button, and
the file you just saved will be automatically entered in the file name box.
Hit the Open button, and the newly linked animations are now ready to
be adjusted even further.

Always view the Motion Flow Editor as a tool to be used to temporarily attach all
your animations together. Exporting the animations to a new file and loading
them into the Biped gives you the ability to edit them further. Another reason to
save and reload the new BIP file is that the Motion Flow Editor loads the anima-
tion clips from the directory specified. This makes it difficult when others have to ac-
cess the same 3ds max scene and/or the animations, because the file will look for the
motion clips in the same directory. If it doesn 't exist and you don't have the files, the
animations can't be loaded. Saving the new BIP file removes the dependency on
motion file location.

Some of the adjustments you need to make to the new BIP file in-
clude offsetting any motion (like the betty_recovery clip), adding the
buffer between animations, and adding time tags. Once the animation set
is complete, it's time to move on to the export process.

THE EXPORT PROCESS

Implementing real-time game characters invariably requires some sort of
export process. For Q3A, the characters were exported to 3ds max's ASCII
format (called ASE), and then the programmers would wave their math-
ematical wands, and the characters would magically appear in the game.
A configuration file set the frame rate per animation and defined when
the animation started and stopped. Using this kind of batch-file approach
works, but is definitely not "artist friendly."

However, not all companies eschew the visual tool approach and
force the artist to (shudder) type stuff after a lengthy export. WildTan-
gent's Web Driver technology and Criterion Software's RenderWare™
toolset represent the new breed of graphically oriented exporters that im-
prove the art development path. To illustrate just one instance of the ex-
port process, the following section details the use of WildTangent's 3ds
max 4 exporter. It requires you to install a series of WildTangent pro-
grams onto your machine, so if you'd rather skip it and go to the Final
Thoughts section, please do.

Load File button, and

Chapter 9 Putting It All Together 373

Installing the WildTangent 3DS Max 4 Exporters

Before you give the WildTangent exporter a try, read the Known Issues
section of the Read Me file in the Demos | WT directory on this book's
CD-ROM to make sure your system is supported. If it looks like there
won't be any compatibility problems, close all programs, including 3ds
max. Go to the Demos I WT directory and run the wtwdinstFull setup file.
This installs WildTangent's Web Driver onto your system. Think of it as a
miniature operating system that allows you to run content created on
their proprietary platform.

Next, run the WildTangentMax4Plugins setup to install the actual
3ds max 4 exporter. As soon as the exporters are installed, run 3ds max 4
again. Go to the Utilities panel, click the More . . . button, select Wild-
Tangent Actors from the list of utilities, and click OK (Figure 9.24).

FIGURE 9.24 After installing the WildTangent exporter, you
access it through the Utilities panel.

Load Bettyl6.max from the Chapter9 directory on this book's CD-
ROM, and then select just Betty's mesh objects (Figure 9.25).

374 Animating Real-Time Game Characters

FIGURE 9.25 Load Betty 16.max and select all her mesh objects.

Creating and Exporting an Actor

Next, click on the New Actor button in the Actor Geometry rollout menu.
By default, it assigns a name to the actor, choosing one of the selected ob-
jects. Highlight the name that appears in the box and rename it to Betty
(Figure 9.26).

FIGURE 9.26 Change the actor's default
assigned name to Betty.

Chapter 9 Putting It All Together 375

Click anywhere in the viewport to make the name change stick, and
hit the Export Actor button under the Actor Export rollout menu. A blue
status bar will appear at the bottom of your screen as the program exports
the selected actor to a special viewer. When it's done, you'll see a new
program indicator flashing at the bottom of your screen on your Win-
dows toolbar. Click on it to bring up the viewer window (Figure 9.27).

FIGURE 9.27 This is the WildTangent actor viewer as seen using Windows
Explorer.

Hold down your left mouse button and drag in the viewer window to
rotate the camera around the exported Betty. Hold down the right mouse
button to pan, and hold down both buttons while moving forward and
backward to zoom in and out. Hit the B key to toggle through gray,
white, and black backgrounds.

Since the default camera settings cause a clipping issue, Betty looks a
little strange from a distance. As you zoom in, however, she looks fine.
The default location for the file you just created is stored in a Documents
and Settings I [User] I Application Data I WildTangent I Generated Files I
Web directory. Close the Viewer window, go back to 3ds max, and click

376 Animating Real-Time Game Characters

on the Preferences button in the Actor Export rollout menu. Click on the
Web-Ready Format tab when the Export Preferences menu pops up, and
highlight the directory path under Web-Ready Output. Type in
c:\artgc\export (or whatever drive you want instead of c:\) (Figure 9.28).

FIGURE9.28 The Export Preferences menu determines where the exported actors
go.

When the prompt to create the directory appears, click OK. Now,
whenever you export an actor in this particular 3ds max scene, it will go
to this directory.

Exporting an Actor with Animations

Here's where all those time tags come in handy. Click on the Add Time
Tag box and note the frames in which the Swim Forward animation takes
place (Frame 680 to Frame 720) (Figure 9.29).

Chapter 9 Putting It All Together 377

FIGURE9.29 Click on the Add Time Tag box
to get a list of the start and stop frames for
the animations.

Open the Actor Motions rollout menu and click on the New Motion
button. Rename it in the name field to Swim Forward. Hit the Tab key or
double-click in the Start Frame box, and enter 680. Enter 720 in the End
Frame box (Figure 9.30).

Hit the Export Actor button once again, and open the Viewer Web
page again (Figure 9.31).

If the dipping issue bothers you and you can edit an HTML page, do the following:
Go to the directory to which the viewer is exported and find the file called Wild-
Tangent.html. Using FrontPage, Notepad, or another HTML editor, open the file
and go to line 339. Change the single line:

camera.setClipping(10000*globalPositionIncrement,

2*globalPositionIncrement);

to the following:

camera.setClipping(lOOOO*globalPositionIncrement, 4.0)

This change increases the Z-buffer accuracy, but increasing it too much will start to
clip away the front parts of your model, so you may want to tune it a bit. The

378 Animating Real-Time Game Characters

FIGURE9.30 Adding animations is as easy as
naming and specifying an animation range.

FIGURE 9.31 Betty is now swimming in your Web browser!

FINAL THOUGHTS

Chapter 9 Putting It All Together 379

exporter tries to set a good default that works with most models, but depending on
the size of the model, these numbers can be increased for better Z behavior. Save the
file and keep it somewhere handy to overwrite the default WildTangent.html file
that's written whenever you export an actor.

To get a character like Betty in the game, all her animations had to be
entered in the motion list before she was exported. Additionally, there
are other settings you can adjust, such as promoted bones and WildTangent
materials creation. Feel free to explore the WildTangent exporter, and
visit www.wildtangent.com for more involved tutorials.

Because it exports to a Web page, the WildTangent exporter gives
you a way to create a model or several models, animate them, export
them, and share them with anyone capable and willing to download
WildTangent's Web Driver.

Character animation is without a doubt the greatest excuse for getting
paid that I can think of. As I've gone though this book, giving you tips,
tricks, and instructions, I have hoped you'll be able to come away with a
newfound confidence that you can make your characters come to life.
3ds max and character studio are excellent tools to work with and they
get better with every iteration. That fact, combined with the increasing
power of PCs and game consoles, leaves the future of real-time character
animation wide open. I have no doubt that within the next five years
we'll be seeing 10,000-polygon characters that animate blazingly fast
with tons of cool pyrotechnics and other procedural effects.

It will be your duty as a character animator to make use of any tech-
nological innovation that comes along and to bend it to your creative
will. Character animation will always be one of the most difficult and the
most rewarding forms of computer graphics. Getting better at it means
spending thousands of hours on practice and experimentation. Most of
all, getting better as a character animator requires mastering your tools so
that the interface is forgotten and your thoughts are translated to results.
Whichever tool you use, whatever project you're on, never be satisfied
with what you have done (if time and schedule permits!). Always strive
for that cooler pose or that dynamic clean movement. Within all of us is
the ability to improve and achieve.

Feel free to contact me with any of your questions or comments by
e-mailing me at st33d@nak3d.com.

Best of luck!

ABOUT THE CD-ROM

The companion CD-ROM to Animating Real-Time Game Characters contains
all the files necessary to follow along with the tutorials and exercises in
the book. Feel free to use the models and animations as starting points for
creating your own characters.

RECOMMENDED SYSTEM REQUIREMENTS
In order to make use of the CD-ROM, you need to have at least the fol-
lowing system requirements:

• Pentium II 400MHz processor
• 128 MB RAM
• CD-ROM drive
• Windows 2000, Windows NT, or Windows XP
• 3ds max 4 with character studio 3.x

It's also recommended that you have some sort of 3D graphics card
that supports hardware acceleration and some sort of sound capability to
fully experience the demos.

CHAPTERS
In addition to tutorial and lesson files, each Chapter directory contains
jpeg images that correspond to the illustrations in the book. If for some
reason, you can't see a particular detail due to the black and white
printed page, refer to these color images.

381

382 Animating Real-Time Game Characters

DEMOS

MOCAP

Under demos you'll find files needed to play the Betty Bad demo and sev-
eral music visualizers and feature real-time characters created by the au-
thor. Please consult the README.RTF file before installing them. All
demos and programs associated with the demos are property of their re-
spective owners.

The BIP files included are combinations of keyframe and motion capture
animations that are samples of real-time game character animation sets.
Feel free to use them for your own characters or simply load them into a
Biped to review the animations.

INDEX
Active Time Segment button,

325
Actors, creating and exporting,

374-376
All Links option of Type-In

dialog, 114
Anchor keys, 238-240
Angle, value settings for rota-

tions, 367-369
Animation

animation sets, 175-181
categories of character ani-

mation, 180-181
character identity and,

172-175
character implementation,

186-189
death animation sequence,

325-327
details in, 280
drift, correcting, 240-243,

255
dynamic action, 267-268
exporting animations with

actors, 376-379
Footstep vs. Freeform mode,

192
game environments and, 177
ideology of, 280
idle poses, 176, 236-238,

248-250

jumps, 259-280
keyframe animation,

181-183
layers and, 224-229,

317-325, 331-336
memory and, 177-179
modeling to accommodate,

32
optimizing with key reduc-

tion, 299-304
organizing files, 192-193,

202-203
secondary motion, 219-220,

243-246, 265, 266,
271-272, 279-280, 324,
331-336

selection sets, 193-196
shooting weapons, 250-

259
smooth loops in, 284-286
snapshots as references,

274-277

special moves, 235
swimming, 281-292
Time Configuration, 200-201
track selection, 197
track view, 197-201
walking, realistic, 187-189
see also Keyframe animation;

Loops, animation; Motion
capture (mocap) animation;
Motion Flow mode

383

A

384 Index

Arms
Bipeds adjustments, 61-67,

72-73
copying limb poses, 283
gun arm weighting, 128-133
weighting, 105-113

Artists, inspiration for character
design, 2-3

Asset Browser of 3ds, 8-9

B
Backface Cull, 26
Battle Chasers, 6-7
Bias, keyframe animation, 210
BioVision Hierarchical (BVH)

files, 296-299, 300
Bipeds

arm and leg adjustments,
61-67, 72-73

body adjustments, 59-61,
70-71

coordinate systems, 60-61
creating, 55-58
da Vinci poses and, 81-83
display options for, 140-141
dog rigs, 73-74
dolphin rigs, 74-75
fitting to mesh, 38-39, 57
four-legged creatures and,

68-74
head adjustments, 59-61,

70-71
hierarchy in, 60
keyframing and, 193-196
leg attachments, 60
loading BIP files, 123-125
loading CSM or BVH files,

296-299
meshes for, 53-55
poses, saving, 67-68

rotating with Motion Flow
Editor, 325-331

Rubber Band mode and
joints in, 62, 63

selection sets and, 193-196
Spring controllers and, 84-88
steps to set up Biped rig, 52
structure adjustment, 58-59
tail adjustments, 70-71
transparency of, 140
tri-jointed legs, 75-78

BIP files, loading into Bipeds,
123-125

Bodies
Biped adjustments, 59-61,

70-71
weighting torsos, 117-120

Body Horizontal and Body Ver-
tical, simultaneous selec-
tion of, 346

Booleans, modeling, 16-17, 18
openings in geometry and, 17

Bracketing, 240-243
Breasts, 84

weighting of, 143-144,
158-163

Bulge Sub-Object settings, 95
BVH format files, 296-299, 300

C
Characters

design of, 2-7
identity and design attributes,

173-174
implementation of, 186-189
individuality of, 172
inspiration for, 2-3
motivation of, 174-175
preparing for animation,

172-173

Index 385

Character Studio Motion
(CSM) files, 296-299, 300

Child Overlap settings, 147-150
Clipping, adjustment for actor

exports, 377-379
Continuity, keyframe anima-

tion, 209-212, 239-240
Converting CSM or BVH files,

297-299
Coordinate systems, in Bipeds,

60-61
Copy Posture button, 338-339
CSM files, 296-299, 300

D
Da Vinci poses, 81-83
Death, animation sequence,

325-337
Deep Paint (Right Hemisphere),

48
Define Script button, 328-329
Demos, 382
Design, character design

aesthetic considerations, 2-4
implementation and techni-

cal considerations, 4
inspiration for, 2-3
references for, 4-7
technical considerations, 4
see also Modeling

Dogs, Biped rigs for, 73-74
Dolphins, Biped rigs for, 74-75
Doubling keys, 240-243
Drift, correcting, 240-243
Dummy objects, 55-57, 78-79

in weapons aiming mecha-
nisms, 257-259

Ease From and Ease To settings
of TCB Controller, 212-216

Edges
making visible, 44
turned, 21-23

Edit Mesh modifier, UVW maps
and, 41-44

Elbows
modeling, 37
weighting adjustments,

107-113
Emotion, facial rigs and, 83
Envelopes

applying Physique, steps for,
138-139

copy and paste for symmetri-
cal limbs, 150-153

parent / child overlap adjust-
ments, 147-150

radial scale adjustment,
144-147

turning off unnecessary,
139-144

Environments and animations,
177

underwater environments,
281

Export process, 372-379
WildTangent 3DS Max ex-

porters, 373
Extruding, modeling, 16
Eyebrows, 80-81
Eyelids, 79-81
Eyes, 79-81

weighting of eyes and eye-
balls, 165, 166-168

Faces and facial rigs
animation and facial rigs,

76-81
eyes and eyelids, 79-81
for high-res meshes, 83-84

E

F

386 Index

Faces and facial rigs (cont.)
lips and tongues, 80-81
single-bone "muppet," 78-79
weighting faces, 163-168

Feet
animation of walking,

187-189
keyframe animation and,

205-207
locking with Set Planted,

238-240
weighting of, 155

File sharing, Bipeds and, 52
Fingers

modeling, 37-38
secondary motion animation,

243-244
weighting, 113-116

Footstep mode, 192
Four-legged characters, Bipeds

for, 68-74
Frame zero, keyframing,

196-197
Freeform mode, 192

Game controls, animations and,
179-180

Game technology and anima-
tion, 180-181

Generate a Keyframe per
Frame button, 371

Genre, animation sets and,
175-177

H
Hair

modeling with splines, 20-21
weighting of, 163, 164

Hands
keyframe animation and,

205-207

modeling, 37-38
secondary motion animation,

243-244
weighting values, 113-116

Heads
Biped adjustment, 59-61,

70-71
jump animations and,

271-272
modeling, 33
secondary motion animation,

243-246, 271-272
weighting, 163-168

Hescox, Richard, Web address,
3

Hierarchy
in Bipeds, 60
weights assignment and,

114-115
High resolution mesh template

modeling, 17-20
Hips

envelopes for weighting,
153-156

modeling, 35-36
weighting, 125-128, 153-156

Hips and rear, modeling, 35-36
Holes or openings in geometry,

Booleans and, 17
Hotkeys

comma (,), 124
to fetch scenes, 315
function keys, 24, 315
"I" key, 12
override toggle and, 217-218
period (.) , 124
slash (/) , 86, 124
vertex deselection, 131

Idle animations, 176, 205-209,
236-238, 248-250, 281, 292

G

I

Index 387

IK Blend, 206
IK Keys, 236-237

IK Key Info rollout menu,
205-207

Impacts
of falls, 336-337
jump landings, 265-267,

277-280
Implementation

animation and, 186-189
of real-time jumps, 261-262
technical considerations and,

4
Initial Skeletal Pose option,

108-110
In Place mode, 123-125,

309-310
Inspiration

for character design, 2-3
for dynamic animation,

267-268
Interpolation, animation and,

189

J
Jaws, 70
Jitter, key reduction to elimi-

nate, 304
Join to Prev IK Key, 246-248
Joints, 37

elbows, weighting adjust-
ment, 107-113

Rubber Band mode and, 62,
63

tri-jointed legs, 75-78
wrists, 113

Jumps
jump-split pose, 263-264
landing impacts, 265-267,

277-280
real-time jumps, implement-

ing, 261-262

running jumps, 260-261
secondary motion in, 265,

266
shooting while jumping,

273-274
standing jumps, 260-261
turn-around jump shot,

268-273
weapon kickback and, 277

K
Keyframe animation, 181-183

active animation range, 204
anchor keys, 238-240
Biped preparation, 193-196
copying keyframes, 201-202,

251
Ease To and Ease From set-

tings, 212-216
frame rates, 201, 253
frame zero, 196-197
Generate a Keyframe per

Frame button, 371
idle poses, 204-209,

236-238
IK Key Info rollout menu,

205-207
Join to Prev IK Key,

246-248
layers and, 224-229
playback speed, 201
secondary motion, 219-220
TCB (Tension, Continuity,

and Bias) controller,
209-216, 240-243

Time Configuration and,
200-201

Time Slider bar, 202,
216-217, 224

Time Tags, 229-231
Track View, 251-252
see also Swimming animation

388 Index

Key reduction, settings for,
303-304

Knees, modeling, 37

L
Layers

animation and, 224-229
loops refined with, 317-325
managing, 321
motion capture data and, 304
secondary motion added

with, 331-336
Set Planted Key and, 348

Legs
attachments, 36
Bipeds adjustments, 61-67,

72-73
copying limb poses, 283
four-legged creatures and,

68-74
knee joints, 37
leg attachments, 60
tri-jointed legs, 75-78
weighting, 99-105, 120-123,

153-156
weighting with envelopes,

153-156
Level of Detail (LOD), 4

Multi-Res Mesh modifier and,
31

Links
assigning vertices to, 95-99
copying and pasting link set-

tings, 150-153
vertices, removing from,

105-107, 126, 153
Link Sub-Object settings, 95
Lips, 80-81

weighting of, 165
Loops, animation

comparing segments,
314-316

doubling, 316-317
finding matching poses for,

311-312
layers used to refine,

317-325
loop length, 308-310
mocap and, 308-325
smooth loops in keyframe

animation, 284-286

M
Memory, 177-179

deleting keyframes and, 340
Menus and menu bars, 95-96

command panels, 24-26
IK Key Info rollout menu,

205-207
Motion Capture Conversion

Parameters menu, 316-317
Move Type-In Transform

menu, 341-342
Quad menu, 95-96
Structure rollout menu, 61-62
Structure sub-menu, 58-59
3DS menu bar, 12

Meshes
for Bipeds, 53-55
color of, 32

Mitts, 37
Modeling

animation accommodation
and, 32

Asset Browser to import ref-
erences, 8-9

Booleans, 16-17, 18
elbows and knees, 37
extruding, 16
fitting the Biped, 38-39
function and, 31-39
hands and fingers, 37-38
hips and rear, 35-36
legs and groin area, 36

Index 389

necks and heads, 33
optimization, 29-31
patch modeling, 15, 20-21
polygon modeling, 15
primitives, 15-16
real-time vs. rendered charac-

ters, 15
reference images and, 8-11
shoulders, 34-35
smoothing, 23-29
surface issues, 21-22
Surface tools, 20-21
techniques, 15
3D outlines and, 9-10
tips for, 13-15
turned edges, 21-23
waists, 35

Motion Capture Conversion
Parameters menu, 316-317

Motion capture (mocap) ani-
mation, 181-182, 183-186

BVH files, 296-299, 300
creating loops, 308-325
CSM files, 296-299, 300
evaluating files for, 305-307
files on CD-ROM, 382
key reduction, 299-304
Motion Capture Conversion

Parameters, 298, 301
Motion Flow Editor and,

325-331
repurposing mocap files,

337-354
Set Multiple Keys function to

adjust, 351-354
Motion controllers, 84-88
Motion Flow Editor, 325-331
Motion Flow mode

creating a Motion Flow
script, 361-365

preparing animation for,
358-361

rotating motion clips,
366-372

transitions between clips, 366
Mouse controls, 198, 202
Mouths, 70

weighting of, 165
Move Type-In Transform

menu, 341-342
Multi-Res Mesh (MRM) modi-

fier, 31
"Muppet" facial animation,

78-79
Muzzle flash, 158

N
Names, older naming conven-

tions, 117
Necks

modeling, 33
weighting, 117-120

Nubs. See Dummy objects

O
Objects

dummy objects, 55-57,
78-79, 257-259

mesh objects, 54
model breakdown and,

31-32
Object space, 206
Optimization

with key reduction,
299-304

modeling and, 29-31
Optimizing with key reduction,

299-304
Organizing files, 192-193,

202-203

Parent Overlap settings,
147-150

p

390 Index

Patch modeling, 15
Surface tools and, 20-21

Pelvises
spline links and, 155
Triangle Pelvis, 127
weighting of, 144

Physique
applying and initializing,

93-95
Rigid vs. Deformable Link

Assignment, 92-93
steps to applying, 93
vertices assignment, 92

Planting limbs, keyframe ani-
mation, 205-207

Playback
Biped Playback button, 213
playback speed, 201

Poly-count, character design
and, 4

Polygon modeling, 15
Ponytail links, 70
Poses

copying limb poses, 283
da Vinci poses, 81-83
idle poses, 176, 236-238,

248-250
Initial Skeletal Pose option,

108-110
jump-split pose, 263-264
matching poses for loops,

311-312
saving, 67-68

Primitives, modeling, 15-16

Quad menu, 95-96
Quadrupeds, Bipeds for, 68-74

R
Radial Scale settings, 144-147

Real-time vs. rendered charac-
ters, 15

Recoil animation, 254-255,
277, 293, 343-351

Red Monika, 6-7
Reference images

character design and, 4-7
loose vs. tight, 5-7
modeling and, 8-11

References, Snapshot tool and
animation references,
274-277

Remove from Link option, 124
Rotation

Angle box values, 367-369
Motion Flow Editor to rotate

Bipeds, 325-331
rotating motion clips,

366-372
Rubber Band mode, 62, 63

Scale Transform dialog, 42
Scripts, creating a Motion Flow

script, 361-365
Secondary motion animation,

219-220, 243-246,
271-272

in jumps, 265, 266, 279-280
layers to add, 331-336
side-to-side motion, 324

Selection sets, 193-196
Set Keys, keyframe animation,

205-207
Set Multiple Keys function,

351-354
Set Planted Key, 236-237
Shooting, 283

aiming mechanisms, 257-259
while jumping, 273-274

Shooting weapons, 250-259

s

Q

Index 391

Shoulders
gun arm shoulder, 130
modeling, 34-35
parent / child adjustments for

envelopes, 147-150
rigid weighting and, 147
weighting, 117-120

Side-to-side motion, 324
Size, animations and, 177-179
Skeletal animations

da Vinci poses and, 81-83
technical considerations and

character design, 4
see also Bipeds

Skinning. See Physique
Smoothing, 23-29
Smooth loops in, 284-286
Smooth modifier, 23
Snapshots as references,

274-277

Snapshot tool, animation refer-
ences and, 274-277

Special moves, 235
Spring controllers, 84-88
Structure sub-menu, suggested

value settings for, 58-59
Sub-object panel, 17-18
Surfaces, surface flaws and

modeling, 21-22
Swimming animation

forward movement,
286-292

frog-kick motion, 287-290
treading water, 281-284

System requirements, 381

Tails, animating, 70-71,
220-229

TCB (Tension, Continuity, and
Bias) controller, 209-212

doubling to avoid drift,
240-243

Ease To and Ease From set-
tings, 212-216

Technical considerations and
character design, 4

Templates, high resolution
mesh template modeling,
17-20

Tendon Sub-Object settings, 95
Tension, keyframe animation,

210
Texture maps

in modeling process, 53
quality of, 46-49
UVW coverage, 39-45

Time codes, motion capture
and, 186

Time Configuration, 124,
200-201

Time Slider bar, 202, 216-217,
224

Time Tags, 229-231
Tongues, 80
Torsos, weighting, 117-120
Track selection, 197
Track View, 197-201, 251-252

active animation ranges and,
204

filtering information in, 198
Track view, 197-201
Trajectories, 317-319
Transitions between clips, 366
Triangle Pelvis, 127
Turned edges, 21-23
Type-In Weights dialog box,

101, 109, 114

U
UVW coordinates, texture maps

and, 39-45

T

392 Index

Vertex deformation, technical
considerations and charac-
ter design, 4

Vertices
assigning to multiple links,

99-105
Deformable vs. Rigid, 92-93,

95
deselecting, 131
link assignment, 95-99
manually assignment of, 92
modeling and isolation of, 18
optimization and modeling,

29-31
removing from envelopes,

141-143
removing from links,

105-107, 126, 153
scaling of, 42-43

W
Waists

modeling, 35
weighting, 153-156

Walking, realistic, 187-189
Walking, realistic animation,

187-189
Weapons, 234-235

aiming mechanisms, 257-259
firing motion animation,

343-351
firing pose, 250-253
muzzle flash, 258
recoil animation, 254-255,

277, 293, 343-351
Web addresses

author's contact info, 379

WildTangent, 379
Weighting

breasts, 143-144, 158-163
da Vinci poses and, 81-83
envelopes used for,

138-156
feet, 155
gun arm, 128-133
hands and fingers, 113-116
hips, 125-128
legs, 120-123
neck, shoulders, and torso,

117-120
pelvis, 144
removing vertices from links,

153
saving weighted values,

116-117
shoulders, 147-150
type-in weights, 156-168
Type-In Weights dialog box,

101, 109, 114
values for, 99-105
waist, hips and legs with en-

velopes, 153-156
zones for, 156
see also Envelopes

WildTangent
3DS Max exporters, 373
web address for, 379

Wrists, 113

Zones for weighting, 156
Zooming

mouse control of, 198, 202
with Zoom Extents, 62

V

z

